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Article
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Abstract: Background: The metabolome of COVID-19 patients has been studied sparsely,
with most research focusing on a limited number of plasma metabolites or small cohorts.
This is the first study to test saliva metabolites in COVID-19 patients in a comprehensive
way, revealing patterns significantly linked to disease and severity, highlighting saliva’s
potential as a non-invasive tool for pathogenesis or diagnostic studies. Methods: We
included 30 asymptomatic subjects with no prior COVID-19 infection or vaccination,
102 patients with mild SARS-CoV-2 infection, and 61 hospitalized patients with confirmed
SARS-CoV-2 status. Saliva samples were analyzed using hydrophilic interaction liquid
chromatography–mass spectrometry (HILIC-MS/MS) in positive and negative ionization
modes. Results: Significant differences in metabolites were identified in COVID-19 patients,
with distinct patterns associated with disease severity. Dipeptides such as Val-Glu and Met-
Gln were highly elevated in moderate cases, suggesting specific protease activity related to
SARS-CoV-2. Acetylated amino acids like N-acetylserine and N-acetylhistidine increased in
severe cases. Bacterial metabolites, including muramic acid and indole-3-carboxaldehyde,
were higher in mild–moderate cases, indicating that oral microbiota differs according to
disease severity. In severe cases, polyamines and organ-damage-related metabolites, such
as N-acetylspermine and 3-methylcytidine, were significantly increased. Interestingly, most
metabolites that were reduced in moderate cases were elevated in severe cases. Conclusions:
Saliva metabolomics offers insightful information that is potentially useful in studying
COVID-19 severity and for diagnosis.
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1. Introduction
SARS-CoV-2 continues to circulate and evolve in human populations, with approx-

imately 161,000 new cases reported globally during the 28-day period in January 2025,
despite extensive vaccination efforts. With over 7 million deaths, it is clear that early
SARS-CoV-2 episodes were fierce, with a high mortality rate [1]. The human innate im-
munological response was unprepared for SARS-CoV-2, leading to a dysregulated and
hyperinflammatory response that contributed significantly to severe and fatal cases [2].
Currently, a human/SARS-CoV-2 co-adaption process and vaccination programs have led
to a reduced mortality rate and a more trained innate (monocyte/macrophage trained due
to prior infections) or adaptive immune response (due to vaccination and prior infections).
A modulation of the inflammatory response is required to fight back the infection and
reduce the damage to the patient [3].

Understanding the initial interactions between SARS-CoV-2 and naïve human popula-
tions provides critical insights into the immune response to novel zoonotic viruses, a risk
that remains ever-present [4]. A key element in this scenario is the microenvironment at
the site of infection, which is intricately influenced by the virus, epithelial cells, immune
responses, cytokines, and antiviral molecules, which collectively contribute to the complex
etiology of the disease. The upper respiratory tract harbors a rich microbial community in
humans, second in diversity only after the gut microbiota [5]. This microbial community
has the capacity to modulate infectivity, transmission, and even the severity of viral infec-
tions through three mechanisms: (i) priming the immune system through certain bacterial
species, thereby enhancing antiviral defenses; (ii) restricting viral entry via commensal
bacteria that compete for host receptors or produce antimicrobial substances that indirectly
affect viral infectivity; or (iii) modulating the inflammatory response, which may either
exacerbate or mitigate viral disease severity [6].

The microbiota represents a key element in defining the composition of the metabolome
in the respiratory tract microenvironment, directly producing specific metabolites or im-
pacting the metabolic activity of the epithelial and immune cells in this niche. However,
there are limited reports that study the metabolome of the respiratory tract in COVID-19
patients. Saliva has emerged as a promising matrix for exploration. We recently reported
significant changes in the microbiota of the saliva of patients with SARS-CoV-2 infection [7].
Our findings demonstrated that the diversity, composition, and networking of the microbial
communities differed according to the severity of the disease. The metabolic activity of
these communities was inferred with Picrust2 software, and significant differences were
predicted, particularly in the metabolism of amino acids, fatty acids, and antibiotics. A
comprehensive characterization of the metabolome within the oral cavity is expected to
yield insights into the establishment of the viral infection “culture medium” and provide
crucial information to elucidate the pathogenesis and severity of the disease [8]. Saliva
is a non-invasive, readily accessible biofluid that can be collected without the need for
specialized personnel. However, it remains underutilized in metabolomic research for
health and disease. As a biofluid, saliva reflects both systemic and local metabolites, with
the potential to inform about metabolic signatures associated with diverse diseases, partic-
ularly in respiratory tract infections, which makes it a valuable matrix for diagnostic and
prognostic purposes [9].

In this work, we aimed to thoroughly analyze the metabolome in saliva samples
from patients who acquired SARS-CoV-2 infection during the early phase of the pan-
demic, prior to the development of vaccines and without previous infection. In addition,
we aimed to elucidate possible differences between cases with diverse disease severity.
The results showed that SARS-CoV-2 infection was significantly associated with distinct
metabolomic profiles.
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2. Materials and Methods
2.1. Study Population

Patients were recruited from June 2020 to January 2021, before any vaccination pro-
gram was in place and during a period characterized by uncertain epidemiologic and
clinical scenarios with strict containment measures, including evolving treatment protocols,
a limited understanding of COVID-19 progression, and the absence of widely available
vaccines. This study was approved in May 2020 by the IRB (Institutional Review Board),
the ethics committee, and the National Research Commission of the Instituto Mexicano
del Seguro Social, Mexico (registry number R-2020-785-053). During this time, there was a
total absence of treatment protocols and the natural history of the disease was unknown.
Therefore, patient recruitment had to be conducted by the attending health personnel
of the Hospital General de Zona con Unidad Medicina Familiar No. 8 in Mexico City.
A group of mild cases included ambulatory patients with mild respiratory symptoms
(fever, cough, headache, odynophagia, myalgias) presenting for COVID-19 diagnosis, and
recruited before any prescribed treatment (AP group). Patients who, during follow-up,
required hospitalization because they developed severe symptoms were excluded from
this group and included in the hospitalized group. The group of severe patients included
cases that required hospitalization because of severe symptoms (HP group), with oxygen
saturation below 92% and the presence of risk comorbidities including hypertension, di-
abetes, morbid obesity, immunocompromised, cardiovascular or neurological diseases,
chronic renal failure, tuberculosis, or neoplasia. Patients were usually hospitalized within
the first seven days after symptoms started and followed until discharged because of
recovery, improvement, or death. Patients with suspicious symptoms before a confirmed
diagnosis participated in this study. After testing for SARS-CoV-2 (COBAS 6800, Merck
Mexico, Mexico City, Mexico), they were classified as positive or negative for the infection.
Individuals without symptoms and no previous COVID-19 infection were included in the
asymptomatic case (AC) group. Smokers and those with any chronic disease were excluded.
Patients who consented were asked to sign an informed consent letter. A summary of the
clinical groups studied is shown in Table 1.

Table 1. General characteristics of the clinical groups studied.

Group Number of Cases Description

Asymptomatic cases (ACs) 30 Asymptomatic cases, negative for
SARS-CoV-2 infection

Ambulatory patients (APs) 102 Ambulatory patients, PCR+ for
SARS-CoV-2

Hospitalized patients
(HPs) 61

Patients that required
hospitalization because of severe

symptoms, PCR+ for SARS-CoV-2

Total studied 210

2.2. Collection and Processing of Saliva Samples for Untargeted Metabolomics

Patients were asked to thoroughly wash their mouths with 10 mL of saline solution
(0.85% NaCl) and spit back into a 50 mL plastic tube. Samples were immediately transported
to a central laboratory for SARS-CoV-2 diagnosis. On arrival, samples were inactivated by
heating at 65 ◦C for 30 min. After the diagnosis, samples were sent to the UC Davis West
Coast Metabolomics Center, Fiehn Lab, following international safety regulations. Samples
were frozen at −70 ◦C until studied. The sample preparation procedure was performed
according to standard protocols for untargeted metabolomics. After extraction, the samples
were analyzed using hydrophilic interaction liquid chromatography–mass spectrometry
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(HILIC-MS/MS) in positive and negative ionization modes to generate the metabolomic
data. Quality control was ensured through the use of 40 deuterated internal standards,
CUDA, and the tripeptide Val-Tyr-Val. These standards were employed to evaluate peak
shapes, and raw peak intensities during the runs, and to normalize retention times.

2.3. Data Preprocessing and Quality Control

Samples were processed on a Sciex TripleTOF 6600 high-resolution mass spectrometer
(SCIEX, Redwood City, CA, USA), using a Waters BEH Amide 2.1 × 50 mm column with
1.7 um particles and an acetonitrile/water gradient [10]. Raw LC-MS files were processed
by MS-DIAL 4.0 software [11]. A total of 3452 features were obtained in positive (2218)
and negative (1234) modes. For quality control, data for blanks and pool quality controls
were acquired after every 10 samples. Metabolites were removed if they had signal/noise
ratios (s/n) smaller than 3:1 when comparing samples over blank controls or removed if
s/n < 10 for unknown compounds. MS-FLO software v1.8 was used to integrate adducts
and remove duplicates. In order to normalize, pool quality controls were used for signal
drifts using Systematic Error Removal with Random Forest (SERFF) [12]. Compounds were
annotated by matching accurate mass and MS/MS data against NIST17 and MassBank of
North America libraries. Principal Component Analysis (PCA) was applied for quality
control to assess the overall sample distribution and detect any outliers or batch effects
(Supplementary Figure S1).

2.4. Statistical Analysis, Variable Selection, and Performance Assessment

The statistical analysis began with the selection of main ions pertinent to the biological
question by Partial Least Squares Discriminant Analysis (PLS-DA) using MATLAB R2023b
and PLS toolbox 9.1. Only annotated ions were retained for further analysis, resulting in a
size 308 × 905 data matrix. The data matrix was divided into a calibration set and a test set,
with 10% of the samples assigned to the test set. PLS-DA was performed on the data matrix
to discriminate between the groups, using Pareto-scaled data with 100 iterations and leave-
one-out cross-validation for the inner loop to optimize the model’s parameters. The groups
analyzed included AC vs. AP, AC vs. HP, and AP vs. HP (see Table 1). The selected features
from PLS-DA were then applied to the test set to evaluate their discriminative performance.
Performance metrics included the Area Under the Receiver Operating Characteristic Curve
(AUROC) and the misclassification error. Variable selection was conducted using the
selectivity ratio and Variable Importance in Projection (VIP) values. Features identified as
highly discriminant in at least 80% of the models were considered relevant to the biological
question. Differences in metabolites between experimental groups were further analyzed
to identify compounds that significantly distinguished each group, using R 4.4.0 packages
and Rstudio 2024. One-way Analysis of Variance (ANOVA) was used to explore the data
with multigroups, and the False Discovery Rate (FDR) was calculated to identify important
compounds among all comparisons (p < 0.05). Violin plots were built with the ggplot2 v3.5.1
package [13]. The geometric mean for each metabolite across all samples was calculated
using DESeq2 v1.44.0 [14] and normalized using the total sum scale (TSS). To analyze the
differences in the abundance of metabolites between groups, the fold change (FC) was
calculated, and p-values were obtained using the Wald test. These values were corrected for
multiple tests using the Benjamini and Hochberg method by default. Volcano plots were
created with EnhancedVolcano v1.12.0.

2.5. Data Availability

The database of the metabolome is described in Supplementary Table S1, showing
information on the assays, intensities, and internal standards.
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3. Results
3.1. The Composition of Saliva Metabolites Clearly Distinguished the Clinical Groups

To identify the metabolites that contributed the most to the observed group separation,
we conducted pairwise PLS-DA comparisons (Figure 1). The results identified 35 metabo-
lites distinguishing AC (asymptomatic cases) from AP (moderate ambulatory patients),
33 differentiating AC from HP (severe hospitalized cases), and 37 separating AP from HP.
A literature review indicated that these metabolites originated from human, environmental,
or microbial sources (Table 2).

Metabolites 2025, 15, x FOR PEER REVIEW  5  of  15 
 

 

2.5. Data Availability 

The database of the metabolome is described in Supplemental Table S1, showing in-

formation on the assays, intensities, and internal standards. 

3. Results 

3.1. The Composition of Saliva Metabolites Clearly Distinguished the Clinical Groups 

To identify the metabolites that contributed the most to the observed group separa-

tion, we conducted pairwise PLS-DA comparisons  (Figure 1). The  results  identified 35 

metabolites distinguishing AC (asymptomatic cases) from AP (moderate ambulatory pa-

tients), 33 differentiating AC from HP (severe hospitalized cases), and 37 separating AP 

from HP. A literature review indicated that these metabolites originated from human, en-

vironmental, or microbial sources (Table 2). 

Furthermore, we assessed the predictive ability of these metabolic profiles using re-

ceiver operating characteristic  (ROC) analysis. The area under  the curve  (AUC) values 

demonstrated excellent classification performance for all pairwise comparisons (Figure 1). 

Supplemental Table S2 provides a detailed breakdown of metabolite intensity differences 

across the groups. 

 

Figure  1.  PLS-DA  score  plots, metabolite  selection,  and  predictive  performance  across  clinical 

groups. PLS-DA results for AC vs. AP (A–C), AC vs. HP (D–F), and AP vs. HP (G–I). Panels (A,D,G) 

Figure 1. PLS-DA score plots, metabolite selection, and predictive performance across clinical
groups. PLS-DA results for AC vs. AP (A–C), AC vs. HP (D–F), and AP vs. HP (G–I). Panels
(A,D,G) show PLS-DA score plots illustrating the metabolic separation between clinical groups:
asymptomatic cases (ACs), moderate ambulatory patients (APs), and severe hospitalized cases (HPs).
Panels (B,E,H) display the corresponding loadings plots, where metabolites are highlighted based on
their Variable Importance in Projection (VIP) values. Panels (C,F,I) present predictive performance
metrics, including AUROCs (left) and predicted response plots (right), where the red dashed line
represents the classification threshold. ACs, asymptomatic cases; APs, ambulatory patients; HPs,
hospitalized patients.
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Table 2. Origin of metabolites showing significant association with severity of COVID-19 origin:
microbial, environmental, human, or drugs.

Microbial Human Environment Drugs

AC vs. AP

N-Methylisoleucine N-Acetylserine Val-Glu S-Adenosyl-
methionine

Indole-3-carboxaldehyde N-Methylserine Ser-Pro-Arg N,N Diethyl-2-
aminoethanol

Muramic acid gamma-aminobutyric
acid Serine DMSO

Guanidine Phenylalanine Isradipine

Inositol Tyrosine

L-Homocitrulline Gluconolactone Xanthine

N-Acetylhistidine
1,4-

Cyclohexanedicarboxylic
acid

Mannitol

Met-Gln Fluorene Cefdinir

Arachidonyl
dopamine Tryptophan Benzphetamine

Acetylenedicarboxylic
acid

2-Amino-4-tert-
butylphenol

Uridine diphosphate
galactose

Glyceraldehyde

4-Pyridoxic acid

AC vs. HP

Pantothenic acid N8-Acetylspermidine Theobromine Acetaminophen
sulfate

1-(2-Hydroxyethyl)-
2,2,6,6-tetramethyl-4-

piperidinol
3-Methylcytidine Theophylline Ornidazole

Indole-3-carboxaldehyde 1,7 Dimethyluric acid Caffeine Xanthine

N-Acetylneuraminic
acid Aconitic acid Cefdinir

N-Cinnamoylglycine Dehydroisoandrosterone
sulfate Diethanolamine

Oxypurinol
1,4-

Cyclohexanedicarboxylic
acid

N-Acetylhistidine Ferulic acid

Targinine Catechol

Uracil

5,6-Dihydrouracil

Uric acid
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Table 2. Cont.

Microbial Human Environment Drugs

AP vs. HP

Muramic acid N1-Acetylspermine Ser-Pro-Arg S-Adenosyl-
methionine

2-Amino-1-
phenylethanol

8-Oxo-2-
deoxyadenosine Met-Gln DMSO

Allantoic acid N-Methylisoleucine Val-Glu Cefdinir

3-Hydroxyanthranilic acid Acetylenedicarboxylic
acid Phenylalanine Benzphetamine

N8-Acetylspermidine PyroGlu-Pro Mannitol

N-Methylserine Tyrosine Methotrexate

Serine Phenylacetaldehyde
isomer Isradipine

Porphobilinogen Gluconolactone

3-Methylcytidine Theobromine

Diethyloxalpropionate Theophylline

N-Acetylserine

Uridine diphosphate
galactose Fluorene

Cytidine
5′-diphosphocholine

2-Amino-4-tert-
butylphenol

Pipecolic acid

Melamine

Valine

Furthermore, we assessed the predictive ability of these metabolic profiles using
receiver operating characteristic (ROC) analysis. The area under the curve (AUC) values
demonstrated excellent classification performance for all pairwise comparisons (Figure 1).
Supplementary Table S2 provides a detailed breakdown of metabolite intensity differences
across the groups.

3.2. Amino Acid Metabolites Were Strongly Associated with Moderate COVID Cases and Bacterial
Metabolites Were Srongly Associated with Severe Cases

The presence of SARS-CoV-2 infection was associated with markedly significant dif-
ferences in metabolites in saliva, particularly in moderate cases when compared with
the asymptomatic group. The contribution of each metabolite to the differentiation of
these groups was determined using a volcano plot (Figure 2). When comparing AP with
the AC group, a significantly higher concentration of metabolites was observed. No-
tably, dipeptides, such as Val-Glu and Met-Gln, showed highly significant values in AP
(p-value > 10−40) (Figure 3). Additionally, amino acids and their derivatives, including
serine, phenylalanine, tyrosine, N-acetylserine, and N-methyl serine, presented higher
abundance in AP subjects (p-values > 10−20). In contrast, in the AC group, Ser-Pro-Arg
(p-value < 10−20), S-adenosyl-methionine, and N-methylisoleucine (p-values around 10−10)
were significantly higher.
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Figure 2. Pairwise differential abundance analysis of metabolites among the three clinical groups.
The volcano plot shows metabolite fold changes (FCs) on the x-axis and the False Discovery Rate
(FDR) on the y-axis. Dashed lines indicate the threshold, FC ≥ 1.0 (either positive or negative), and
FDR > −log (0.05). Metabolites with significant abundance are depicted as orange dots. (a) Compari-
son between the asymptomatic control group (AC) and the ambulatory SARS-CoV-2-positive group
(AP); (b) comparison between the asymptomatic control group (AC) and the hospitalized SARS-
CoV-2-positive group (HP); (c) comparison between ambulatory patients (AP) and the hospitalized
SARS-CoV-2-positive group (HP).
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Figure 3. (a–l) Violin plots of metabolites with differences among the AC, AP, and HP groups, accord-
ing to their source. A selection of metabolites for three categories (microbial, human, environment) is
shown. False Discovery Rate (FDR) values (<0.05) with one-way ANOVA are indicated.

The metabolome of HPs presented a different pattern when compared with ACs
(Figure 2b), with the concentration of three bacteria-derived metabolites, pantothenic acid,
1-(2-Hydroxyethyl)-2,2,6,6-tetramethyl-4-piperidinol, and indole-3-carboxaldehyde, being
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significantly higher. Also, human-derived N8-acetylspermidine and 3-methylcytidine
concentrations were significantly higher, whereas amino acids or their derivatives were
almost absent (as opposed to results in the AP group). In contrast, the saliva of AC
individuals was significantly enriched with human-derived 1,7 dimethyl uric acid, N-
acetylneuraminic acid, and dehydroisoandrosterone sulfate.

We next explored the differences between the two SARS-CoV-2-infected groups, AP
and HP (Figure 2c), and observed that N1-acetylspermidine, 8-oxo-2-deoxyadenosine,
S-adenosyl-methionine, and dimethyl-sulfoxide (DMSO) were significantly enriched in
the HP group (p-value 10−25). N-methyl isoleucine, Ser-Pro-Arg, acetylene dicarboxylic
acid, and N8-acetylspermidine were also significantly more abundant in HPs. In contrast,
amino acids and their derivatives, Met-Gln and Val-Glu (p-values > 10−80); phenylalanine,
pyroGlu-Pro, and N-methylserine (p-values > 10−50); and serine, N-acetylserine, and
tyrosine (p-values > 10−25) were extremely higher in the AP group. Furthermore, muramic
acid and 2-amino-1-phenylethanol were two bacterial products highly enriched in AP
(p-value 10−50).

As shown in Figure 3, the concentration of certain metabolites exhibited significantly
different concentrations between the groups. Metabolites are presented according to their
origin, whether microbial, human, or environmental.

3.3. Some Metabolites Distinguish Deceased from Severe-Hospitalized Patients

In the group of hospitalized patients, there were 17 deceased cases (DHP), and we
searched for any difference between these 17 and the remaining 44 hospitalized patients
(HPs). S-adenosyl-methionine, N-acetylhistidine, porphobilinogen, tyrosine, and bacteria-
derived muramic acid were significantly increased in DHP compared to those in the
HP group (Supplementary Figure S2). In contrast, only 2-amino-4 tertbutylphenol was
significantly enriched in the HP group.

4. Discussion
While several metabolomic studies in COVID-19 patients have been published, most

of them reported metabolites in plasma with a limited number of samples [15,16]. The
few studies conducted in saliva included a smaller number of patients and a more limited
search for metabolites [17–19]. The present work is a comprehensive analysis of metabolites
present in the saliva of patients with COVID-19, showing significant differences in the
composition and concentration of metabolites in patients infected with SARS-CoV-2 and
specific metabolite patterns associated with disease severity. We discuss our work in the
context of both the utility of our findings to better understand pathogenic mechanisms, but
also in the search for metabolites as potential candidates for diagnosis or disease severity.

The presence of the dipeptides Val-Glu and Met-Gln in the saliva of patients with
moderate COVID disease was significantly higher than in asymptomatic uninfected in-
dividuals. We did not find any report of these peptides in saliva, but saliva is known
to contain several proteolytic enzymes [20] and peptides could be the products of these
enzymes. The marked abundance of only these two dipeptides would suggest that in
mild–moderate COVID episodes, SARS-CoV-2 infection induces the activity of specific
proteases. Previous studies have suggested that saliva contains a mixture of enzymes
that are resistant to protease inhibitors but with a tightly controlled activity that has been
associated with health and disease [21,22]. Some dipeptides may present cell-signaling
effects [23] or regulatory functions important for health [24]. Val-Glu and Met-Gln may be
useful for the diagnosis of the infection.

Phenylalanine, serine, tyrosine, and tryptophan also increased in cases of mild–
moderate disease, and may also result from proteolytic activity, but could also be of
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microbial origin. Recent studies have shown that tryptophan catabolites produced by
microbial members may have relevant roles in health and disease, and they may stimulate
the immune system, epithelial barrier, and even gut hormone secretion [25]. In contrast to
our results, an exploratory study by Frampas et al. reported a decrease in phenylalanine
and tyrosine in the saliva of COVID-19-infected patients [26]. Patients in our study were
recruited during the first wave of the pandemic, before vaccination, and this might be
an important difference from other reports. In any case, it is important to explore which
proteases are activated during SARS-CoV-2 infection and the role their products may have
in the pathogenesis of COVID-19.

Two acetylated amino acids that are strongly associated with mild–moderate COVID-
19, N-acetylserine and N-acetylhistidine, have also been reported to be elevated in the sera
of patients with chronic kidney disease and were suggested as markers of tubular renal
function [27,28]. In addition, N-acetylhistidine was found to increase during ischemia in
pigs with induced myocardial infarction [29] but was reported to be significantly decreased
in the brains of Alzheimer‘s disease patients [30]. The N-terminal acetylation of amino
acids has been suggested as part of the response to stress and has been associated with
cancer and other developmental disorders [31]. In previous studies, acetylated amino acids
have been detected mostly in sera. Our study shows for the first time that they can also be
detected in saliva and suggests that saliva N-acetylserine and N-acetylhistidine might be
useful as markers for patients at risk of developing more severe COVID-19 disease.

Muramic acid, a component of the bacterial cell wall, was significantly increased
in mild–moderate cases, suggesting that there might be an overgrowth of bacteria as
a response to SARS-CoV-2 infection. Indole-3-carboxaldehyde, a bacterial metabolite
of tryptophan, also increased in mild–moderate cases. This metabolite is synthesized
particularly by Lactobacillus spp. and is known to stimulate IL-22 production and increase
the immune reactivity of mucosa [32]. The increase in these two metabolites attests to
relevant changes in the oral microbiota of patients infected with SARS-CoV-2.

Ser-Pro-Arg was significantly reduced in mild–moderate patients, which is probably
a product of proteolytic activity. We did not find reports of this peptide in saliva or other
human fluids, although its sequence was present in at least five repeats in the histone H1,
where they might be important for the structure of the protein [33].

S-adenosyl-methionine (SAM), a key metabolite in methylation reactions, was sig-
nificantly reduced in mild–moderate patients, which suggests that it might be consumed
during infection. SAM is produced in the liver and has been associated with liver disease,
including steatosis, hepatocarcinoma, or hepatomegaly, and might be a sensitive marker
for liver damage, one of the multiple targets of SARS-CoV-2 [34]. It is interesting to note
that the administration of SAM to patients with HCV inhibits the expression of the virus
and improves the activity of peginterferon [34]. Also, N-methylisoleucine was reduced
in mild–moderate patients, and this compound has been found to be upregulated in the
plasma of patients with glioblastoma [35]. It is tempting to suggest that Ser-Pro-Arg, SAM,
and N-methylisoleucine are amino acid metabolites that are significantly depleted during
acute SARS-CoV-2 infection to prevent severe disease.

The bacterial metabolites pantothenic acid and indole-3-carboxaldehyde significantly
increased in the hospitalized patients (Figure 2b). Pantothenic acid is a precursor in the
synthesis of CoA and studies have revealed that many Bacteroidetes and Proteobacteria
produce it [36]. Indole is produced by many bacteria and multiple physiological functions
have been described, including plasmid stability, drug resistance, or biofilm formation [37].
The observed increase in these two metabolites in severe cases as compared to asymptomatic
individuals suggests differences in bacterial composition.
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Polyamines are essential for cell survival, participate in multiple processes like
metabolism or the regulation of replication, and have been associated with multiple dis-
eases [38]. N8-acetylspermidine is a polyamine produced in episodes of cardiac ischemia,
cancer, or even infections, usually detected in plasma [39]. A study in patients with gastric
cancer reported that increased plasma levels of acetylated polyamines correlated with
severe cases [16]. Here, we found increased levels in the saliva of patients with severe
COVID-19 infection, probably as an alert sign for the extensive damage to multiple organs.

1-(2-Hydroxyethyl)-2,2,6,6-tetramethyl-4-piperidinol is not a human metabolite but
is found in the blood of people exposed to a possible source such as additive stabilizer in
the synthesis of plastics or light stabilizers. This compound was increased in the serum of
rats exposed to stress, and authors suggested that it may have a role in the gut–brain axis
dialogue [40]. In addition, 1-4-cyclohexanedicarboxilic acid is a polyvinyl chloride used as
a flavor in food, beverages, and medical applications [41] that was also increased in severe
cases. The increased level of these two metabolites in the saliva of hospitalized patients
may suggest that previous exposure to these compounds represents a risk of developing
severe COVID-19 disease.

3-methylcytidine increased in severe-hospitalized patients. It is a key regulator of
transcription, responsible for fine-tuning the gene expression in response to changing con-
ditions, and is considered an epitranscriptome marker [42]. Probably in severe COVID-19,
there is a demand for 3-methylcytidine because of a need for increased transcription activity,
particularly requiring tRNA m3-C32 modifications.

It was intriguing to note the striking differences in metabolites between moderate and
severe cases. Several metabolites that significantly decreased in moderate patients (8-oxo-2-
deoxyadenosine, S-adenosyl-methionine, N-methylisoleucine, Ser-Pro-Arg, acetylenedicar-
boxylic acid, and gluconolactone) showed higher values in the severe cases. Furthermore,
the strong dipeptide and amino acid response observed in mild–moderate cases was absent
in the severe cases. It is tempting to speculate that the stronger metabolic changes observed
in moderate cases represent a robust response that prevents patients from developing
severe disease. In contrast, in severe patients, the strong increase was in alarm metabo-
lites like N-acetylspermine, S-adenosyl-methionine, and 8-oxo-2-deoxyadenosine, already
described as markers of other severe diseases.

Finally, it is interesting to note that when comparing the deceased cases with the severe
patients, the most significant difference was a high increase in N-acetylhistidine in fatal
cases, a metabolite that has been associated with kidney failure [28] but also myocardial
ischemia [29] and even Alzheimer’s disease [30]. Porphobilinogen was also increased in
deceased cases and has been suggested as a marker for hepatic porphyrias and kidney
disease [43]. Thus, the detection of N-acetylhistidine and porphobilinogen in saliva may be
markers of kidney, heart, or brain damage in severe COVID-19 cases with an increased risk
of a fatal outcome.

A limitation of this study was that patients were recruited during the first wave
of SARS-CoV-2 infection, when the universal measure was strict restrictions on human
contact, and when there was no known treatment to limit the infection or to counteract
symptoms and damage to organs. Under these circumstances, it was not possible to control
the selection of patients or the correct sampling, and the out-of-proportion demand for
medical attention impeded the use of questionnaires to uniformly record clinical and
epidemiological information. As a result, several drugs, antimicrobials, food remains, or
even compounds from herbal self-medication were found in the saliva samples. Still, highly
significant differences were found between groups in this study performed under real-life
worldwide crises.
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One of the key challenges in analyzing metabolomic differences among groups with
different severities is the influence of external factors, including medical interventions. In
our study, patients were recruited during the first wave of COVID-19, when there was
no standardized therapy. Hospitalized patients likely received supportive care, including
oxygen therapy, corticosteroids, antivirals, and other medications that may have influenced
their metabolic profiles. For instance, corticosteroids have been reported to modulate
amino acid metabolism and inflammatory responses, potentially affecting the levels of
metabolites such as S-adenosyl-methionine or polyamines, which were elevated in severe
cases. Additionally, antibiotic use in these patients might have contributed to the observed
differences in bacterial metabolites like pantothenic acid and indole-3-carboxaldehyde, by
altering microbiota composition. While our study provides a comprehensive metabolomic
analysis of saliva in COVID-19 patients, future studies should incorporate detailed treat-
ment records to assess their direct impact on metabolic changes. Nevertheless, the robust
differences observed between moderate and severe cases indicate that metabolic shifts due
to disease progression are key contributors to the observed profiles.

5. Conclusions
This study documents strongly significant differences in the metabolome of the saliva

of patients infected with SARS-CoV-2 and presenting with moderate COVID-19 disease, par-
ticularly in dipeptides and amino acids, probably because of specific proteases. Metabolome
differences in severe cases were also highly significant, but with a completely different
pattern, where metabolites previously associated with damage to the kidney, heart, brain,
and liver were significantly increased. Some of these markers were further increased in
deceased patients. This study shows the convenience of saliva for exhaustive analyses of
metabolic profiles, particularly in patients with COVID-19, and suggests its potential utility
for diagnosis, prognosis, and even pathogenesis studies.
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