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Abstract

Modeling Vascular Homeostasis and Improving Data Filtering Methods for Model
Calibration

by

Jiacheng Wu

Doctor of Philosophy in Engineering − Mechanical Engineering
and the Designated Emphasis in

Computational Science and Engineering

University of California, Berkeley

Professor Shawn C. Shadden, Chair

Vascular homeostasis is the preferred state that blood vessels try to maintain against
external mechanical and chemical stimuli. The vascular adaptive behavior around the
homeostatic state is closely related to cardiovascular disease progressions such as arterial
aneurysms. In this work, we develop a multi-physics computational framework that couples
vascular growth & remodeling (G&R), wall mechanics and hemodynamics to describe the
overall vascular adaptive behavior. The coupled simulation is implemented in patient-specific
geometries to predict aneurysm progression. Lyapunov stability analysis of the governing
equations for vascular adaptation is conducted to obtain a stabilizing criterion for aneurysm
rupture. Also, to facilitate patient-specific computations, an algorithm is proposed to gener-
ate vascular homeostatic states by incorporating non-uniform residual stress and specifying
optimal collagen fiber deposition angles. Since the accuracy and effectiveness of the com-
putational models relies on properly estimating the unknown/hidden model parameters, we
also demonstrate recent progress on improving data filtering techniques for inverse prob-
lems derived from model calibration. First, iterative ensemble Kalman filter (IEnKF) is
applied to solve the inverse problems. The convergence of standard IEnKF is discussed and
we show that the poor convergence of IEnKF is caused by the covariance shrinkage effect
of the standard Kalman updates. An ensemble resampling based method is proposed to
resolve this issue by perturbing the covariance shrinking via ensemble resampling and ensur-
ing “correct” update directions by keeping the first and second moments of the resampling
distribution unchanged. In the case of ill-posed inverse problems, we demonstrate that solu-
tion non-uniqueness can be overcome by incorporating additional constraints in a Bayesian
inference framework. Constraints are imposed by defining a constraint likelihood function,
and the method is demonstrated in both exact Bayesian and approximate Bayesian inference
scenarios.
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Chapter 1

Introduction

1.1 Vascular homeostasis

Cardiovascular disease is one of the leading causes of morbidity and mortality in the world;
the progression of which is closely related to vascular adaptation in response to mechanical
and chemical stimuli. The function of this vascular adaptive behavior is to maintain a pre-
ferred homeostasis against vascular stimuli [49]. Homeostasis reflects the state in which a
normal vascular system operates. Failure to maintain vascular homeostasis can potentially
leads to vascular diseases such as arterial aneurysm or stenosis [30, 18]. As a framework
to better understand this adaptive behavior to the homeostatic state, a theory for vascular
growth and remodeling (G&R) was proposed by Humphrey, et al., based on a constrained
mixture model [75] in which the vessel wall adapts to mechanical stimuli and recovers a
homeostatic state via smooth muscle cell synthesis and matrix turnover [117, 118]. Kine-
matic models of G&R have also been considered [111], where the time rates of change of the
growth stretch ratios are assumed to linearly depend on the local smooth muscle stress and on
vascular wall shear stress. The constrained mixture theory of G&R has been applied to study
stress-mediated aneurysm expansion in idealized ellipsoidal and cylindrical geometry [13, 12]
to better understand key factors influencing expansion rate and resulting aneurysm shape.
Recently, G&R simulation has been extended to 3D geometries to predict the more complex
case of asymmetric expansion [138]. In other works, [130] studied the role of collagen prop-
erties on AAA progression modeling, and [129] studied the influence of the initial state of
the aorta on enlargement and mechanical behavior. Humphrey and Holzapfel [72] provided
a review of the experimental data, computational models, mechanobiological factors, and
open problems for G&R of human abdominal aortic aneurysm.

The vascular homeostatic state plays a key role in vascular adaptation and disease pro-
gression. From a modeling perspective, the vascular homeostatic state is the nominal initial
state used when modeling the biomechanical behavior of vascular tissue. Usually, it is mod-
eled as a known state with predefined wall structure and stress distribution. However, it
is still an open question how the vascular homeostatic state should be defined and it is a
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non-trivial task to computationally generate a proper homeostatic state that leads to re-
alistic model behavior. Fung first mentioned in [49] that stress is uniform throughout the
transmural directions in the homeostatic state. In [41, 138, 134], the homeostatic state is
characterized by uniform stress throughout the geometry with predefined fiber orientations.
[40] treats homeostasis as a mechanostat set point that is fixed to certain type of cells but
may adapt to the environment.

To model the homeostatic state, two pieces of information need to be specified about
the vascular homeostatic state: (a) the vessel wall structure, (b) the stress distribution.
Arterial tissue is generally composed of three layers (intima, media, and adventitia) and the
major mechanical constituents are elastin, collagen, and smooth muscle fibers [71]. Elastin is
effective under small strain, while collagen bears the majority of loading when deformation is
large [96], and smooth muscle fibers provide additional and vasoactive support [48]. To model
these structural characteristics, different constitutive models have been proposed to describe
the mechanical nature of arterial walls; examples include Fung-type models [26] and models
based on constitutive relations proposed by Holzapfel et al. [61]. Notably, the arterial
wall is often modeled as a two-layer fiber-reinforced material. A non-collagenous ground
matrix, which includes elastin, is typically described as isotropic using a neo-Hookean strain
energy function [35]. The collagen and smooth muscle fibers, which impart the anisotropic
behavior of the vessel wall, are often described by a Fung-type exponential response [61] and
[14]. Fiber orientations are prescribed from statistical analyses of histological data [60] or
rule-based approaches [10], with more recent works [51] and [64] considering the additional
dispersion of fiber orientation.

The total stress distribution in the homeostatic state is hypothesized to be uniform
throughout each layer of the vessel wall. To maintain this condition, it is thought that
non-uniform residual stress helps to homogenize the stress distribution within the tissue
[49]. Therefore, incorporating residual stress is important to accurately modeling the in vivo
state of a vessel and potential vascular remodeling [63]. In idealized cylindrical vascular
geometries, the residual stress field is often specified based on an opening angle [2], however,
this approach is often inadequate in more realistic vascular geometries. Pierce et al. [93]
prescribed residual stress by specifying the deformation gradient mapping from a stress-
free configuration to the actual mixture configuration of the vessel wall. Bellini et al. [14]
incorporated a prestretch ratio into the total deformation to model the effect of residual
stresses; in this study the authors also showed that the stress distribution within the tissue
tends to be more uniform when residual stress is included. Holzapfel et al. investigated a
3D behavior of the residual stress experimentally [66] and developed a theoretical framework
to incorporate residual stress in different vascular layers [63]. Previous works have often
required parameter information that can be difficult to obtain or is of challenging applicability
when complicated patient-specific geometries are considered. Likewise, the residual stress
distribution has not been well considered when the vascular homeostatic state needs to be
reconstructed in non-idealized geometries.
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1.2 Bayesian data filtering methods

Computational models are pervasively used in cardiovascular modeling problems. Recent ad-
vances in computer platforms and numerical methods have enabled models to be increasingly
sophisticated and comprehensive.With greater model complexity comes greater challenge to
determine model parameters (including initial/boundary conditions), which are often un-
known or uncertain. To address this challenge, one typically solves an inverse problem by
using observational data to specify model parameters so that the model output matches the
observational data. Many inversion techniques have been developed and used by different
communities. These methods can be roughly categorized into two classes: variational and
statistical approaches [9]. The variational approach aims to minimize a specific cost function
based on classical optimization theory and calculus of variations [110], while the statistical
approach aims to evaluate or maximize posterior functions based on statistics and Bayesian
theory [27].

Because of its robustness and capability for uncertainty quantification, Bayesian inver-
sion techniques are widely used for hidden state and parameter estimation for many physical
systems [77, 126, 125, 83]. In the Bayesian framework, both the hidden state/parameters
(prior) and observable quantities (likelihood) are described as random variables with statisti-
cal distributions. The Bayesian estimation aims to calculate the posterior distributions of the
inferred quantities from the prior and likelihood based on Bayes theorem. Directly comput-
ing the posterior distribution based on the prior and likelihood functions is referred to as the
exact Bayesian approach. In general, the posterior is obtained by sampling the prior and like-
lihood distributions based on efficient Monte Carlo sampling such as the Markov chain Monte
Carlo (MCMC) method. However, since MCMC requires an enormous amount of samples,
which is computationally infeasible when the likelihood calculation involves expensive model
evaluations, many approximate Bayesian inversion approaches have been developed, such
as the extended Kalman filter (EKF) [57], unscented Kalman filter (UKF) [123], ensemble
Kalman filter (EnKF) [39], and sequential Monte Carlo (SMC) method [33].

The iterative ensemble Kalman filter (IEnKF) [76] was developed specifically to handle
nonlinear inverse problems and leverage the computational efficiency of utilizing ensemble-
based methods. However, despite its broad applicability, the IEnKF can suffer from poor
convergence and stability. A major reason the IEnKF can fail to provide accurate estimation
is due to a progressively diminished estimation (shrinking) of the covariance. This was
initially addressed by including covariance “inflation” in the covariance updates [6]; however,
tuning the inflation parameter can be inefficient. More recently, several adaptive covariance
inflation methods have been proposed, which tune the inflation based on the innovation [4,
5, 17, 139, 136]. Similarly, [114] proposed an adaptive covariance inflation method where the
inflation parameter depends on both the innovation and the covariance between the observed
and unobserved components.

Another common challenge in solving inverse problems is identifiability. Measurement
data is typically very limited and solutions for the hidden states and parameters are nonunique.
Moreover, numerical stability of the inversion can be significantly reduced for ill-posed prob-
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lems and uncontrolled inference may happen due to small random noise in the observation
data. To address these issues, a general strategy is to incorporate additional information
into the inversion process, either by including more observation data or imposing additional
constraints. In most mission-critical applications, data are difficult to collect and limited in
quality. In such cases, additional constraints can be significantly useful to help regularize
the inversion results to consistent ranges and relieve ill-posedness. Fortunately, for many
physical systems, constraints on the state and parameters are available based on existed
knowledge [58]. Nonetheless, most existing Bayesian methods do not take constraints into
account [106].

1.3 Thesis outline

The goal of this thesis is to better understand the vascular adaptive behavior around the
homeostatic state and improve data filtering methods for physical models. Chapter 2 de-
scribes the theory of vascular G&R and homeostasis in terms constrained mixture the-
ory [75], and develops a computational framework to couple vascular G&R, vessel wall me-
chanics and hemodynamics in patient-specific geometry applied to the problem of predicting
aneurysm progression. Chapter 3 proposes a computational method to generate vascular
homeostatic state by incorporating proper residual stress and optimal stress-driven fiber de-
position. Chapter 4 conducts a theoretical analysis of the governing equations of vascular
G&R around the homeostatic state for cylindrical geometries. A stability criterion is derived
and the connection with predicting aneurysm rupture is established. Chapter 5 discusses
about implementing IEnKF to solve nonlinear inverse problems and the underlying conver-
gence issue of the standard IEnKF which is improved by a proposed ensemble resampling
approach. Chapter 6 proposes a way to incorporate physical model information as prior to
improve the convergence of parameter estimation in the case of multiple local minima when
observation is insufficient.



5

Chapter 2

Coupled simulation of hemodynamics
and vascular growth and remodeling

2.1 Introduction

In this chapter, we follow the basic framework of the constrained mixture theory for G&R
described in [12, 120, 119]. Unlike previous works, we extend the formulation of coupling
hemodynamics with vascular G&R to a realistic vascular model that includes branching and
several arterial segments. This provides capability to consider more complete patient-specific
geometries than previously considered, which is necessary to translate such modeling to
many important clinical applications. The model used herein is derived from medical image
data and vascular adaptation resulting from an idealized injury model is simulated. Blood
flow is modeled as an incompressible, Newtonian fluid and simulated when G&R introduces
significant geometric change. Hemodynamic forces are used to regulate G&R over longer
time scales. In Sec. 2.2, we define the basic concepts, G&R kinetics, constitutive relations,
hemodynamics and stress mediated growth laws. An algorithm for the coupled simulation is
presented, which was implemented within a finite element framework using custom code and
COMSOL as a generic FEM solver. In Sec. 2.3, we present simulations of different scenarios
for abdominal aortic aneurysm expansion by varying initial mass loss. Coupled simulations
are performed with different values of G&R feedback gains to demonstrate the influence of
these constants on both the resulting aneurysm shape and hemodynamics.

2.2 Methods

2.2.1 Definitions

Vascular G&R is modeled by the theoretical framework proposed in [75]. The vessel wall is
modeled as a membrane and treated as a constrained mixture, which implies that at each
location the mixture (collagen + elastin + smooth muscle) deforms together. The reference
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configuration will be denoted κ0 for the mixture. This configuration corresponds to zero
transmural pressure, P = 0, however, constituents in this configuration are not necessarily
stress-free due to prestress. At any time t, the deformed configuration of the mixture is
defined as κ(t). The deformation gradient tensor F(t) maps κ0 7→ κ(t).

Collagen is assumed to be anisotropic and is characterized by discretized collagen families
k, which have individual collagen fiber directions and reference configurations. Collagen can
be incorporated into the mixture at intermediate times τ , with pre-stretch defined by tensor
Gk(τ). For each orientation k, Gk(τ) maps the natural configuration of the newly produced
collagen at time τ , denoted κkn(τ), to the deformed configuration of the mixture at this time

τ ; subscript n(τ) denotes the natural configuration at time τ . For each collagen family, we
define a deformation gradient tensor, which maps the natural configuration of that family
to the current deformed mixture configuration, by

Fk
n(τ)(t) = F(t)F−1(τ)Gk(τ) , (2.1)

hence, the right Cauchy-Green deformation tensor can be obtained as

Ck
n(τ)(t) = Fk

n(τ)(t)
ᵀ Fk

n(τ)(t) . (2.2)

These mappings and their compositions are shown schematically in Fig. 2.1.

k
n(0)

(0) (⌧) (t)

k
n(⌧) k

n(t)

Gk

Gk Gk

F(0) F(⌧) F(t)

0

Fk
n(⌧)(t)

New collagen New collagen New collagen

Time = 0 Time = ⌧ Time = t

Individual
natural
configurations

Current
mixture
configurations

Mixture
reference
configurations

1

Figure 2.1: Configurations and associated mappings used to describe G&R framework.

The unit vector in the direction of collagen family k at time t is denoted ek(t), and
collagen fiber produced at time τ is assumed to be deposited in the ek(τ) direction, i.e., in
the direction of existing collagen. Therefore, the direction of the collagen fiber produced at
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time τ in its natural configuration, κkn(τ), is described by the unit vector

ekn(τ) =
Gk(τ)−1ek(τ)

‖Gk(τ)−1ek(τ)‖
. (2.3)

With ek(τ) and ekn(τ), Gk(τ) can be defined as a two-point tensor

Gk(τ) = Gk ek(τ)⊗ ekn(τ) , (2.4)

where Gk is the stretch ratio of newly produced collagen fiber from the natural configuration
κkn(τ) to the mixture configuration κτ . We assume Gk does not depends on collagen family
k and is equal to the homeostatic collagen stretch ratio Gc

h, set herein to 1.05; subscript h
denotes the homeostatic state. The stretch ratio Gk can be obtained as

λkn(τ)(t) =
√

ekn(τ) ·Ck
n(τ)(t)e

k
n(τ)

=
∥∥F(t)F−1(τ)Gk(τ)ekn(τ)

∥∥
=

∥∥F(t)F−1(τ)Gc
h

(
ek(τ)⊗ ekn(τ)

)
ekn(τ)

∥∥
= Gc

h

∥∥F(t)F−1(τ)ek(τ)
∥∥

= Gc
h

∥∥F(t)F−1(τ)ek(τ)
∥∥ / ∥∥F−1(τ)ek(τ)

∥∥
‖ek(τ)‖ / ‖F−1(τ)ek(τ)‖

= Gc
h

λk(t)

λk(τ)
, (2.5)

where λk(t) is the stretch ratio of the mixture in the direction of collagen family k, defined
as

λk(t) =

∥∥F(t)F−1(τ)ek(τ)
∥∥

‖F−1(τ)ek(τ)‖
. (2.6)

For elastin, we assume the mapping from the natural configuration to the mixture reference
configuration is Ge, and therefore the mapping from elastin’s natural configuration to the
current mixture configuration is given by

Fe
n(t) = F(t)Ge . (2.7)

In this model we take Ge = diag[Ge
1, G

e
2,

1
Ge1 G

e
2
], which assumes the prestretch occurs in the

principal directions of the existing mixture, where the third component has been written in
terms of the prior two by imposing incompressibility.

2.2.2 Kinetics of growth & remodeling

The vessel wall has ability to adapt in response to mechanical stimuli in order to recover
a homeostatic state. This process occurs by both the removal of old constituents, and
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incorporation of new constituents into the mixture due to natural turnover as well as stress-
mediated growth. Let Mk(t) be the mass per unit area of each collagen family k, and the
time evolution of Mk(t) is described by

Mk(t) = Mk(0)Qk(t) +

t∫
0

mk(τ)qk(t− τ)dτ . (2.8)

The first term on the right of the equation describes natural turnover of the initial mass
produced before the G&R process. The second term describes the incorporation and natural
turnover of the newly produced constituent. Qk(t) is the remaining fraction at time t for
the kth collagen family produced at time 0. mk(τ) is the mass production rate of the kth
collagen family at time τ and qk(t− τ) is the remaining fraction at time t.

For elastin,
M e(t) = M e(0)Qe(t), (2.9)

where Qe(t) is the corresponding remaining fraction of initial mass for elastin at time t.
Since functional elastin is thought to be mainly produced during early development, there
is no second term for newly produced elastin in (2.9), as there was for collagen in (2.8).

The remaining fraction for collagen family k is assumed to have the following form [41]

qk(t) =


1, if 0 ≤ t < t1
1
2

{
cos
(

π
t2−t1 (t− t1)

)
+1
}
, if t1 ≤ t ≤ t2

0, if t2 < t ,

(2.10)

where t2 is the lifespan of the constituent. For collagen we use t1/t2 = 0.2, and t2 = 1.
Hence, time herein is normalized by the lifespan of collagen, which is generally between 70–
80 days [130, 87]. The function representing the remaining fraction at time t of the initial
mass is given by

Qk(t) = 1−
∫ t

0
qk(τ)dτ∫ t2

0
qk(τ)dτ

= 1−
2
∫ t

0
qk(τ)dτ

t1 + t2
. (2.11)

2.2.3 Constitutive relations

Collagen was assumed to follow a Fung-type exponential constitutive relation. The strain
energy per unit mass of the kth family of collagen is

W k
(
Ikn(τ)

)
=

c2

4c3

{
exp

[
c3

(
Ikn(τ) − 1

)2
]
− 1
}
, (2.12)

where
Ikn(τ) =

(
λkn(τ)(t)

)2
. (2.13)

Let
Ck
n(τ)(t) = Fk

n(τ)(t)
ᵀ Fk

n(τ)(t) (2.14)
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denote the right Cauchy-Green deformation tensor of the kth family of collagen produced at
time τ , whose current direction is denoted by ek(t), with respect to its natural configuration.
The subscript n(τ) denotes the natural configuration of the constituent produced at time τ .
For elastin, the strain energy function is defined based on a Neo-Hookean behavior,

W e(Ce
n(t)) =

c1

2
(I1 − 3) , (2.15)

where
I1(t) = tr(Ce

n(t)). (2.16)

Ce
n(t) = Fe

n(t)ᵀ Fe
n(t) is the right Cauchy-Green deformation tensor of elastin with respect

to its nature configuration.
Based on the mass-averaged principle for a constrained mixture, the total strain energy

per unit area for all constituents at time t is

w(t) = we(t) +
∑
k

wk(t)

= M e(0)Qe(t)W e(Ce
n(t))

+
∑
k

Mk(0)Qk(t)W k
(
Ikn(0)

)
+

t∫
0

mk(τ)qk(t− τ)W k
(
Ikn(τ)

) (2.17)

where we(t) and wk(t) denote the total strain energy contributed by elastin and the kth
collagen family, respectively. We do not directly model the passive response of smooth
muscle due to the fact that smooth muscle is much more compliant than collagen and thus
has minimal contribution to the passive mechanical behavior of the vessel wall [22]. However
the active response of smooth muscle does play an important role in vascular adaptation to
altered flow. It is important to note that the strain energy function depends on both the
current state and the history of deformation. Once the mathematical form of the total strain
energy function is formulated, the deformation of the vessel wall can be obtained from the
virtual work principle

δI =

∫
S

δw dA−
∫
s

P n · δx da = 0 , (2.18)

where P is the vascular transmural pressure, n is the normal vector on vessel wall surface
and δx is the virtual displacement of the vessel wall. S and s denote the surface area of
vessel wall in the reference and current configuration, respectively.

2.2.4 Defining local anisotropic material property

One of the challenges in implementing growth and remodeling in 3D patient specific ge-
ometry is to define local anisotropic material properties, i.e., to define the local directions
for collagen families. Usually local collagen directions ek0 are defined with respect to local
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circumferential and axial directions in the reference configuration, and later evolve with the
mixture deformation F(t). Therefore, the current collagen directions ek(t) are defined as

ek(t) = F(t)ek0 . (2.19)

Note that normalization is needed to obtain unit direction.
In idealized geometries, circumferential and axial directions can be readily defined (see [13,

12]), but defining these directions in 3D patient specific geometry is nontrivial. In [137], the
authors defined the local circumferential and axial directions based on a 2-D parameteriza-
tion of the vessel wall surface. However, it is not obvious how to apply this approach to
a geometry with multiple outlets or bifurcations. In the work herein, local circumferential
and axial directions are defined using local principal curvature directions, from which, local
collagen directions are then calculated. As long as the geometry is smooth enough (which is
usually the case), principal curvature directions are everywhere well-defined.

2.2.5 Hemodynamics

Blood was modeled as an incompressible, Newtonian fluid described by the Navier-Stokes
and continuity equation

ρb

(
∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t)

)
= −∇p(x, t) + µ∇2v(x, t) , (2.20)

∇ · v(x, t) = 0 . (2.21)

The blood density ρb and viscosity µ were set to 1.05 g/cm3 and 0.035 Poise. A no-slip, no-
penetration boundary condition was specified along lumen surface of the fluid domain, and a
velocity profile (Dirichlet boundary condition) was specified at the inlet plane. At the outflow
surfaces, Neumann-type boundary conditions were specified by coupling resistive models of
the downstream vascular beds. Namely, the pressure P0(t) at each outflow boundary was
solved as

Po(t) = RQo(t) (2.22)

The flow rate Qo at the respective outlets was obtained from the 3D domain, and using
Eq. (2.22) the pressure Po at the outlet was computed and applied at the zero traction
outlet faces as Neumman boundary conditions. Details of the FEM implementation of the
boundary conditions can be found in [36].

It is important to note that the time scales for G&R (.weeks) and blood flow simulation
(.second) are several orders of magnitude different. A fully-coupled simulation of both
processes is neither efficient nor necessary, because the hemodynamics stresses imparted
from the blood flow do not change significantly until usually several weeks of geometric
change has occurred through G&R. Nominally, blood flow was simulated when G&R caused
changes to the boundary of the fluid domain, and for all times in between, the values for
WSS and pressure were well approximated by the values from the last blood flow simulation.
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Specifically, it was assumed that mesh quality was an appropriate measure to monitor vessel
deformation and the need for computing a new Navier-Stokes solution. This is (at least)
consistent with the fact that the numerical accuracy of the Navier-Stokes solution, and
hence WSS, depends on mesh quality.

2.2.6 Stress-mediated growth & remodeling

Here we describe how vascular adaptation is regulated by wall tension and WSS. Once the
deformation is obtained by solving the variational equation (2.18), the Cauchy stress tensor
is obtained as

T(t) =
1

J(t)
F(t)

∂w

∂I1(t)

∂I1(t)

∂F(t)
+

1

J(t)
F(t)

∑
k

∂w

∂Ikn(τ)(t)

∂Ikn(τ)(t)

∂F(t)
+Tactive

=
2

J(t)

∂we

∂I1(t)
B(t) +

2

J(t)

∑
k

∂wk

∂Ikn(τ)

∂Ikn(τ)

∂Ik(t)
ek ⊗ ek+Tactive, (2.23)

where B = FFᵀ is the left Cauchy-Green deformation tensor, and J(t) is the determinant of
the deformation gradient tensor F(t). The first term on the right hand side denotes the stress
contribution of elastin and the second term denotes that of two collagen families. The last
term Tactive denotes the active membrane stress due to active smooth muscle contraction
and relaxation. However, to keep the model simple and computation tractable, we do not
include this active response term in our later simulations. A scalar measure is obtained from
the Cauchy stress tensor in the direction of collagen family k as

σk =
ek ·Tek

h
, (2.24)

which is the stress in the ek direction. The thickness of the vessel wall was calculated as

h(t) =
M(t)

Jρ
, (2.25)

where M(t) =
∑

kM
k(t) is the total collagen mass and ρ denotes the volume density of

collagen.
In G&R theory, the vascular homeostatic state is recovered through stress-mediated feed-

back. The mass production rate of the kth family of collagen is assumed to depend linearly
on the deviation of wall tension σk with respect to the homeostatic value σh. In addition,
WSS regulation may be active via interactions between vascular endothelium and blood flow.
It is well-known that endothelial cells can release multiple vasoactive chemicals in response
to altered WSS. These chemicals can affect smooth muscle cell proliferation and collagen
turnover. For instance, nitric oxide (NO) is a potential inhibitor of synthesis of collagen
and smooth muscle proliferation [94], while endothelin-1 (ET-1) is a promoter of synthesis of
collagen and smooth muscle proliferation [95]. NO is up-regulated in response to increased
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WSS [115] and ET-1 is up-regulated by decreased WSS [86]. These factors make WSS reg-
ulation uncertain. Due to lack of further information, we naively assume mass production
rate of collagen is proportional to the deviation of wall shear stress τw from the preferred
state τhw and consider cases of both positive and negative feedback. Thus the complete stress
mediated growth law is given by

mk(t) =
M(t)

M(0)

(
Kσ

(
σk(t)− σh

)
−Kτ

(
τw(t)− τhw

)
+ f̃kh

)
, (2.26)

where f̃kh is the basal value of mass production rate for collagen family k,

f̃kh =
Mk(0)∫∞

0
qk(τ)dτ

, (2.27)

which balances the degradation rate of collagen in the homeostatic state. Note that τw(t)
in (2.26) is given directly by the blood flow simulation, whereas σk depends on transmural
pressure. Kσ and Kτ are feedback gains for the deviations of wall tension and wall shear
stress. For Kσ > 0, if σk(t) > σh, the mass production rate mk(t) will increase, and in turn,
cause an increase in wall thickness h(t). The thickening of the vessel wall will decrease the
vessel radius for the same transmural pressure. Based on Laplace’s law for a cylinder, σ = Pr

h
,

and we can postulate that σk will hence decrease and return back to the homeostatic value.
This means that for Kσ > 0, the growth law (2.26) initiates a negative feedback mechanism.
Using similar arguments for wall shear stress based on simple Poiseuille flow, τ = 4ηQ

πr3
, we

can postulate that a decreased vessel radius will increase WSS, so that Kτ > 0 also initiates
a negative feedback mechanism for wall shear stress deviation. Therefore, if Kσ and Kτ are
large enough, the stress will converge to the corresponding homeostatic value.

2.3 Results

In this section we apply G&R simulation to a vascular model of the aorta whose lumen
morphology is derived from medical image data. The model is a truncated section of an
aortofemeral model (ID: OSMSC0006) publicly available on vascularmodel.org [131]. After
initialization of the model, scenarios for G&R are considered by introducing mass loss at
various locations to simulate the development of abdominal aortic aneurysm. Material con-
stants used in the simulations are listed in Table 2.1. In the following results, two main
helical collagen directions (45◦ and 135◦ from the axial direction) are included in the sim-
ulations. This is consistent with prior observations that close to 90% of the total mass of
collagen is distributed in these helical directions [62], although this does not hold universally
true and additional families or orientations could be considered. Fig. 2.2 displays the fiber
orientation about the aortic bifurcation region. It is observed that the collagen directions
in both families naturally become aligned about the apical ridge at the bifurcation, which
is consistent with the simulation results in [56] and consistent with experimental findings
in [45].
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Figure 2.2: Local collagen directions calculated based on principal curvature directions at
the aortic bifurcation: (a) 45◦ collagen family, (b) 135◦ collagen family.

Table 2.1: Material constants for elastin and collagen [138, 52]

Elastin: c1 = 112 Pa/kg Ge
1 = 1.25 Ge

2 = 1.25
Collagen: c2 = 917 Pa/kg c3 = 25 Gc

h = 1.05

2.3.1 Generation of initial homeostatic configuration

In the G&R theory, the healthy vessel wall is assumed to be in the homeostatic state, i.e.,
the stress of each constituent is equal to the homeostatic value, and therefore no significant
growth and remodeling is induced beyond the basal production and turnover rate. Recall
that a membrane model is used for the vessel wall. The vascular geometry derived from the
medical image data is irregular, and therefore achieving an initial homeostatic stress state
requires specifying an appropriately varying mass distribution of the constituents. This
can be accomplished by an initial G&R stage to solve for an appropriate homeostatic mass
distribution, as proposed in [138]. Namely, an accelerated G&R stage is simulated using
a feedback gain for wall tension, Kσ, set to 0.005. This enabled the mass distribution to
converge (approximately) to the homeostatic state without significantly altering the overall
geometry.

In Fig. 2.3(a)(b), and 2.3(c)(d), the deviation of stress relative to the homeostatic values
for the 45◦, and 135◦, respectively, oriented collagen family are plotted before and after
the initial homeostatic simulation. Wall tension distributions become mostly uniform after
the initial homeostatic simulation, with stress values in both directions generally within the
range of 0.9σh to 1.1σh. This initial homeostatic simulation ensured that subsequent G&R
would be induced almost entirely at the location(s) where mass loss is introduced–that is,
the modeled site(s) of injury.

While convergence of wall tension σ to homeostatic value can be obtained via adjustment
of geometry or mass density distribution, convergence of wall shear stress τw can only be ob-
tained through adjustment of vascular geometry. Because the initial homeostatic simulation
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(a) (b)

(c) (d)

Figure 2.3: Deviation of stress relative to homeostatic stress
(
σk − σh

)
/σh before (left) and

after (right) 14 time steps of “accelerated” G&R simulation for the 45◦(a)(b) and 135◦(c)(d)
collagen families. Each time step represents 1/10 of collagen lifespan.

should not introduce large geometric change, i.e., the original geometry should be main-
tained, wall shear stress regulation was not included in the initial homeostatic simulation.

2.3.2 Simulation for aneurysm expansion

An interesting application of the coupled G&R framework is to simulate aneurysm expansion
in a region of vascular damage. Aneurysm expansion can be induced through constituent
mass loss at specific locations, coupled with sufficiently low mass production rate of vascular
constituents. Initial mass loss was introduced for the following three scenarios:

(1) Banded mass loss distribution

Mk(x, 0) =

{
Mk

h (x)
(

1− 0.5fmr

(
cos
(
π(z−z0)

2R0

)
+ 1
))

, z0 − 2R0 ≤ z ≤ z0 + 2R0,

Mk
h (x), else .
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(2) Point mass loss distribution

Mk(x, 0) =


Mk

h (x) (1− fmr) , |x− xc| ≤ R0,

Mk
h (x)

(
1− fmr

(
2R0−|x−xc|

R0

))
, R0 < |x− xc| ≤ 2R0,

Mk
h (x), else.

(3) Multiple point mass loss distribution

Mk(x, 0) =



Mk
h (x) (1− fmr) , |x− xc1| ≤ 0.5R0,

Mk
h (x)

(
1− fmr

(
R0−|x−xc1|

0.5R0

))
, 0.5R0 < |x− xc1| ≤ R0,

Mk
h (x) (1− fmr) , |x− xc2| ≤ 0.5R0,

Mk
h (x)

(
1− fmr

(
R0−|x−xc2|

0.5R0

))
, 0.5R0 < |x− xc2| ≤ R0,

Mk
h (x), else.

Mk
h (x) is the mass density generated by the initial homeostatic simulation. fmr is the

maximum mass loss percentage set herein to 50%. R0 is the nominal value of the radius of
the abdominal aorta, which was equal to 0.75 cm.

Figures 2.4(a)(b), 2.4(c)(d), and 2.4(e)(f) display the different initial mass loss distribu-
tions, along with the resulting vascular geometries after 110 G&R steps assuming Kσ = 0.
(Below, we consider nontrivial values for Kσ.) Each G&R step was set to 0.1 of the collagen
lifespan, so that 110 steps is equivalent to ≈800 days, assuming collagen has a life span
around 72 days. It can be observed that significant expansion is only induced within or near
the region of initial mass loss while the homeostatic state is effectively maintained in all
other regions.

COMSOL was used to solve the Navier Stokes equations. For illustrative purpose, a
steady inflow was used with a resting infrarenal abdominal aortic flow rate equal to 15.2
cc/s. This approach considered time-averaged flow conditions since we are interested in the
affect of the flow over time scales much longer than the cardiac cycle. Alternatively, we
could apply a pulsatile inflow boundary condition and then perform time-averaging of the
resulting wall shear stress and pressure fields. The outlets of the 3D fluid domain were at
the level of the iliac arteries. To set the resistance values for each outlet, an equivalent
resistance was first computed so that the mean pressure was 100 mmHg. This resistance was
then distributed in parallel to the iliac arteries, resulting in R = 1.8269× 109 Pa·s/m3, and
R = 1.8285× 109 Pa·s/m3, for the left and right iliac, respectively.

To explore the importance of feedback gains on vascular growth in our coupled framework,
different values were considered for Kτ and Kσ. These results are summarized in Fig. 2.6,
where the point mass loss shown in Fig. 2.4(c) was used to trigger G&R in all cases. All
panels in this figure represent the respective field and geometry at the end of 110 G&R steps.
Namely, columns are ordered by increasing expansion resulting from feedback gain choice (not
evolution in time). The first column considers relatively large feedback gains: Kτ = 0.005
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Initial mass loss distribution(ratio between current and homeostatic mass den-
sity) and resulting aneurysm shapes(color denotes values of det(F)) after 110 G&R steps.
Correspondence relations: (a)→(b), (c)→(d), (e)→(f)

and Kσ = 0.005. In this case, the gains are large enough that even with the introduction of
significant mass loss, expansion can be strongly suppressed through appropriate increase in
wall thickness (mass density). After the 110 G&R steps, stress in both collagen constituents
converged to the homeostatic value σh = 133kPa (see Fig. 2.5), and collagen turnover did
not introduce any significant expansion.

We next considered four WSS feedback gains Kτ = 0.005, 0,−0.005,−0.01, whose results
are respectively shown in columns 2–5 of Fig. 2.6. In each of these cases, we set Kσ = 0 to
isolate the influence of WSS regulation on aneurysm progression, aortic pressure and blood
flow. (Note that the case Kσ 6= 0 and Kτ = 0 was considered previously in Fig. 2.4.) It
can be observed that Kτ > 0 (corresponding to negative feedback) led to the lowest rate of
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Figure 2.5: Convergence of constituent stress Kτ = 0.005, Kσ = 0.005 at the location of
largest mass loss x = xc

expansion (Fig. 2.6, column 2). Positive feedback (corresponding to Kτ < 0) produced the
most rapid expansion (Fig. 2.6, column 4 & 5). In all cases, it can be observed that WSS
changed by roughly one order of magnitude within the aneurysm region, which contributed
to G&R, whereas the change in transmural pressure varied very little (less than 0.1%).

It can be observed from Fig. 2.6 that both positive and negative values for Kτ led to
expansion. Note that in the absence of any feedback (Kσ, Kτ = 0, Fig. 2.6, column 3),
expansion occurs due to the normal turnover of collagen. Namely, the initial insult leads
to immediate stretching of the existing collagen so that wall tension balances transmural
pressure. This collagen is in an elevated stress state. Natural turnover of collagen produces
new collagen whose prestress is lower than this elevated stress state, which causes these
new fibers to stretch. This process drives a “basal expansion” due to the insult and natural
collagen turnover. Kτ > 0 helps to suppress this basal expansion (column 2), whereas Kτ < 0
contributes to further expansion (columns 4, 5).

2.4 Discussion

We have presented a framework for coupling vascular growth and remodeling with blood
flow simulation in a 3D patient-specific geometry using a constrained mixture theory for the
vessel wall. Prior computational models [41, 107], coupling blood flow with G&R simulation
have been applied to idealized geometry, or to a cylindrical segment of realistic geometry.
Vascular G&R intrinsically occurs in all regions, and the purpose of this work was to develop
coupled simulation of G&R with blood flow in a more complete and anatomically realistic
vascular model than had previously been considered.

One difficulty in applying G&R simulations to complex vascular domains derived from
medical image data is defining appropriate initial conditions. When starting from a healthy
model, it is reasonable to assume an initial homeostatic configuration. We demonstrated,
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as similarly shown in [41, 138] that an accelerated G&R stage can be performed to produce
an approximate homeostatic configuration without significant geometrical alteration. As
shown in Fig. 2.3, the relative stress deviation was nontrivial (>10%) in some regions after
the initial accelerated G&R stage. The rate of convergence of the stress to the homeostatic
value is proportional to the deviation. Therefore relatively long simulations times are needed
to obtain very small deviations, whereas herein a relatively modest number of G&R steps
were used. Indeed, our later simulation for Kσ = 0.005, Kτ = 0.005 verified that stresses
do eventually converge to very near the homeostatic values after 110 G&R steps. Moreover,
our simulations (Fig. 2.6) also show that the initial nontrivial deviations in stress from
the homeostatic values do not result in significant unbalanced G&R for the time scales
considered herein, and that significant expansion is almost entirely induced near or within
the region where mass loss is introduced. Regardless, it might be more natural in future
implementations to apply a homeostatic range instead of specifying a single homeostatic
value.

Another challenge of applying G&R to complex vascular domains is consistently defining
local axial and circumferential directions, with respect to which local anisotropic material
properties are defined. In [137] this was addressed by defining local axial and circumferential
directions using a 2-D parameterization of the vessel wall surface. However, such parameter-
ization cannot be defined for domains that include multiple/branching vessels. To overcome
this issue herein, local principal curvature directions on the surfaces were used to represent
local axial and circumferential directions. Initial collagen directions (45◦ and 135◦) were
defined with respect to axial and circumferential directions in the reference configuration κ0

and later evolve with the mixture deformation.
In several prior coupled G&R modeling studies, aneurysm progression is triggered by

prescribing initial insult as in [41]. Time dependent insult models have also been used [127]
whereby AAA formation is initiated by prescribing a spatial and temporal degradation func-
tion for elastin. In more recent papers [128, 7, 105, 107], elastin degradation has been coupled
to hemodynamics (mainly WSS) in order to initiate aneurysm progression. Herein, we used
a simple insult model to trigger aneurysm progress since our focus was on application of
coupled simulation to patient-specific geometry. However, more sophisticated initiation pro-
cesses can be incorporated in this framework when applied to specific clinical applications.

In the coupled simulations with blood flow, the influence of G&R feedback gains Kσ and
Kτ on the resulting aneurysm geometry and hemodynamics were studied. For large values of
Kσ = 0.005 and Kτ = 0.005 (column 1, Fig. 2.6), growth and remodeling can compensate for
relatively large initial mass loss so that the resulting geometry changed very little. Fig. 2.5
shows the convergence of the stress σk(t) to the homeostatic value σh at the center of mass
loss, xc. We note that xc is the location of largest mass loss and generally corresponds to
largest deformation; hence recovery of σk at xc generally indicates the convergence of stress
in entire geometry.

We set Kσ = 0 to promote aneurysm expansion and then varied the value of Kτ to study
the influence of the coupling with WSS regulation on the aneurysm progression. The role of
WSS in aneurysm progression is complex and not well understood, therefore we considered
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cases for Kτ being positive, negative and zero. Indeed, prior publications have considered
Kτ positive [118] and negative [41]. Mass loss will necessarily lead to some expansion when
Kσ = 0. However, Kτ > 0 will compensate and reduce expansion rate due to the induced
negative feedback. And conversely, expansion was exaggerated when Kτ < 0 due to the
induced positive feedback.

The WSS plots in Fig. 2.6 show that the magnitude of WSS is very low in the aneurysm
region (less than 0.05Pa), consistent with reported values in AAA [99]. We note that even
for Kτ > 0 WSS does not converge to the homeostatic value. This may be because WSS
regulation was turned off during the initial accelerated G&R stage or due to the fact that
WSS is more sensitive to vascular geometry and hence more difficult to converge. Lastly,
we note that it was verified that setting Kτ = 0 led to identical expansion to a case that
did not consider coupling with fluid dynamics. From the pressure plots in Fig. 2.6, it
can be observed that pressure change within the 3-D computational domain is small (less
than 0.5%), and pressure changes even less at each location between the cases considered.
Therefore, it may be reasonable to apply a uniform pressure for all cases instead of explicit
coupling the pressure information from the fluid simulation.

The choice of material parameters describing the passive vascular response given in Ta-
ble 2.1 were obtained from [138]. These parameters are based on a phenomenological model,
which may included smooth muscle. Applying these parameters in the model herein, which
neglects the passive response due to smooth muscle, may introduce additional uncertainty
to these parameters. However, because smooth muscle is at least an order of magnitude less
stiff than collagen, its contribution to the passive stress-strain behavior is expected to be
small. Hence, we do not anticipate that such additional uncertainty in parameters will be
significant, especially in comparison to the inherent uncertainty in these parameters.

2.5 Conclusions

Herein a computational framework to couple vascular growth and remodeling with blood flow
simulation in a 3D patient-specific geometry was presented. We demonstrated that stress
mediated regulation of wall tension and wall shear stress led to expected long-term response
in vessel wall progression following mass loss for different feedback parameters. These results
extend prior computational work on coupling G&R with hemodynamics simulation to more
complex, subject-specific setting. Additionally, by coupling the time scales of hemodynamics
and G&R simulation we are able to better understand the connections between local, short
term hemodynamic factors and long term vascular change. Indeed, most image-based blood
flow modeling has been concerned with understanding hemodynamic phenomena occurring
on the time scale of the cardiac cycle for diagnosing current flow conditions. However, there
is compelling need to develop simulation capabilities to predict blood flow conditions and
vascular adaption over time scales of months to years, which is difficult, or impossible, to
consider experimentally. This framework helps to bridge this gap.
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Appendix

Algorithm for coupled simulation of G&R and hemodynamics

(1) Generate initial homeostatic state through accelerated G&R.

(2) a) Introduce initial mass loss to the homeostatic state.

b) Simulate blood flow in the initial geometry and obtain initial WSS field τw(x, t).

c) Set initial values for mass production rate mi → mk(t).

(3) Formulate the weak form for displacement u = (u, v, w) from the virtual work principle,

δI =

∫
S

δwdA−
∫
s

Pn · δxda = 0 ,

and solve using a nonlinear FEM solver.

(4) a) Generate stress measure field σk(x, t) based on deformation and constitutive re-
lations

b) Update mass production rate:

mk(t) =
M(t)

M(0)

(
Kσ

(
σk(t)− σh

)
−Kτ

(
τw(t)− τhw

)
+ f̃h

)
(5) If

∥∥mk(t)−mi

∥∥ / ‖mi‖ < tolerance (in this work, tolerance= 0.001),

a) Set mi ← mk(t)

b) Set t← t+ ∆t

c) Update values for remaining fractions Qk(·) and qk(·)
d) Go to Step (6)

Else,

a) Set mi ← mk(t)

b) Go to Step (3)

(6) If the geometric change is significant for fluid domain,

a) Solve blood flow in the new geometry

b) Update WSS field τw(x, t) and pressure P (x, t)

c) Go to Step (3)

Else, go to Step (3)
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Figure 2.6: Results from coupled simulation with blood flow. The mass loss shown in
Fig. 2.4 (c) was used to trigger G&R in all cases. All panels represent the respective field
and geometry at the end of 110 G&R steps, with each column representing different feedback
gain choices. Pressure is normalized with respect to the peak value for each case: 13339,
13291, 13518, 13602, and 13688 Pascals respectively from left to right.
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Chapter 3

Reconstructing vascular homeostasis
by growth-based prestretch and
optimal fiber deposition

3.1 Introduction

Mathematical modeling of the vascular homeostatic state requires consideration of many
important factors, including the influence of residual stress and vessel wall structure. In this
chapter, we propose a two-step approach to the reconstruction of the vascular homeostatic
state. The first step aims to generate an appropriate residual stress level for a given config-
uration of the vessel, and the second step aims to generate optimal fiber alignments based
on the stress field. Inspired by kinematic G&R models [97], [111], and [112], we introduce a
prestretch tensor, obtained through an iterative process to match a prescribed homeostatic
stress value at physiologic pressure. The deposition angle of the collagen fibers is then de-
fined by the solution of an optimization problem, which enables the vessel to sustain the
stress with minimal amount of biomass, while stochasticity is incorporated into this process
to account for fiber dispersion. We further propose the application of supervised learning to
predict the prestretch in vascular bifurcations or other geometric anomalies, where theory-
based methods struggle due to topological singularities. Based on this overall framework,
the generation of the residual stress field and fiber directions is made numerically stable for
more realistic geometry. Beyond addressing the vascular homeostatic state reconstruction
problem, the method proposed here provides a starting point for general biomechanical anal-
yses, such as FSI simulations of soft tissue, where residual stress and proper fiber alignment
play important roles.
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3.2 Methods

3.2.1 Constrained mixture model

The vessel wall is modeled as a constrained mixture [75] of collagen, elastin, and smooth
muscle fibers, and we assume that all constituents deform as a continuum. The turnover
of collagen and smooth muscle fibers is a process of degradation of existing material and
production of new material, which can be described mathematically as

Mk(t) = Mk(0)Qk(t) +

∫ t

0

mk(τ)qk(t− τ) dτ , (3.1)

where k denotes different collagen or smooth muscle fiber families; Mk(t) is the local mass
density denoting the mass of the constituent k per unit volume in the reference configuration
κ0; and mk(t) is the corresponding mass production rate. Qk(t) is the remaining fraction
of the initial mass for the constituent k at time t, and qk(t − τ) is the remaining fraction
at time t for the constituents produced at time τ . In contrast to collagen and smooth
muscle fibers, functional elastin is only produced during early development and does not
continuously turnover. Therefore, the time evolution of the mass density for elastin is given
by

M e(t) = M e(0)Qe(t) , (3.2)

where M e(0) is the initial mass density for elastin, and Qe(t) is the remaining fraction of the
initial mass.

Following [61], elastin fibers are modeled as an incompressible isotropic neo-Hookean
material and the constitutive relation is given by the strain energy function per unit mass

W e(C) =
c1

2
(I1(C)− 3) , (3.3)

where c1 > 0 is a stress-like material parameter and I1(C) = tr(C) is the first invariant of
the right Cauchy-Green deformation tensor C which is defined with respect to the reference
configuration κ0. Collagen and smooth muscle fibers are modeled as an anisotropic Fung-
type material and the constitutive relations for each family is given by the strain energy
function per unit mass

W k(C) =
c2

4c3

{
exp

[
c3

(
Ik(C,Ek

f )− 1
)2
]
− 1
}
, (3.4)

where Ik(C,Ek
f ) := C : Ek

f ⊗ Ek
f is the fiber invariant corresponding to the square of the

stretch λk of fiber family k; Ek
f is the fiber direction in the reference configuration κ0.



CHAPTER 3. RECONSTRUCTING VASCULAR HOMEOSTASIS BY
GROWTH-BASED PRESTRETCH AND OPTIMAL FIBER DEPOSITION 24

Based on the mixture rule [75], the total strain energy of the constrained mixture is

w(C, t) = M e(0)Qe(t)W e(C, t)

+
∑
k

Mk(0)Qk(t)W k(C, t)

+
∑
k

∫ t

0

mk(τ)qk(t− τ)W k(C, t, τ) dτ

:= we(C, t) +
∑
k

wk(C, t) . (3.5)

The strain-energy function for collagen and smooth muscle fibers, W k(C, t, τ), depends on
both the current time t and the time that the fibers are produced τ , which also determines
the natural configurations for the fibers.

To incorporate the nearly incompressible behavior of vascular tissue, a standard decom-
position [46, 61] of the strain energy was used

w(C, t) = U(J) + w(C̄, t) , (3.6)

w(C̄) is termed the isochoric component and

C̄ = J−2/3C . (3.7)

The volumetric component U(J) is given by

U(J) =
κ

2
(J − 1)2 , (3.8)

with κ the bulk modulus and J the determinant of the deformation gradient tensor. By way
of Eq. (3.8), changes to Mk affect both the referential and spatial density of fibers in the
tissue; this has to be taken into account when setting initial values for the mass densities in
Eq. (3.5).

Note that decomposition in Eq. (3.6) for fiber-reinforced materials can lead to the fiber
material contributing stresses orthogonal to the fiber direction [100, 59, 55]. This can be
mitigated by using more advanced finite elements [133], or if the bulk modulus is sufficiently
large. Although a more consistent decomposition was discussed [100, 59, 55], we found
that results of passive inflation from this method were consistent with those derived from
using Eq. (3.6) for physiologic pressure values, and the decomposition in Eq. (3.6) was more
numerically stable. Nonetheless, either decomposition is possible as the underlying approach
presented herein does not inherently depend on this decomposition.

Once the total strain energy of the mixture is formulated, the deformation of the vessel
wall can be obtained by applying the virtual work principle

δI =

∫
Ω0

δw dV +

∫
∂Ωt

P nt · δx da = 0 , (3.9)

where δI is the virtual work; Ω0 is the vessel tissue in the reference configuration; ∂Ωt is the
inner surface of vessel in the current configuration; P is the transmural blood pressure; nt
is the outward normal; and δx is the virtual displacement.
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Figure 3.1: (A) T11 and T22 are the two principal stress directions of the Cauchy stress tensor
T; θf is the deposition angle of fiber family ef ; and en the fiber normal direction. (B) Relation
between different configurations. κ0 is the unstressed reference configuration (T = 0); κR

is the configuration with residual stress incorporated; κt is the current configuration with
external pressure imposed.

3.2.2 Residual stress field generation

3.2.2.1 Basic methodology

In vascular growth and remodeling theory, a nominal homeostatic stress value σh is typically
assumed [49], and the residual stress field helps to create this homogenized stress distribution
[25] and [71]. We define residual stress implicitly through a “growth tensor” Fg that maps
the unstressed reference configuration κ0 of the vessel to the unpressurized configuration
with residual stress κR, see Fig. 3.1(B). This approach is similar to prior works [97] and
[111] that have used Fg to broadly describe deformation due to growth and remodeling in
development. Tensor F∗ in Fig. 3.1(B) describes additional deformation due to loading, i.e.,
pressurization by pressure P . Thus, the total deformation F with respect to the reference
configuration κ0 is given by

F = F∗Fg , (3.10)

where the growth tensor Fg is determined by the growth stretch ratios in local (r, θ, z)-
directions

Fg = diag (λgr, λgθ, λgz) . (3.11)

If the growth stretch ratios are known (discussed below), the elastic deformation gradient
tensor F∗ and right Cauchy-Green deformation tensor can be written as

F∗ = FF−1
g , C∗ = F−Tg CF−1

g , (3.12)
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and substituted into Eq. (3.5) to yield the total strain energy of the constrained mixture

w(C∗, t) = we(C∗, t) +
∑
k

wk(C∗, t) . (3.13)

The strain energy function is used to define the variational equations for momentum balance,
which can be solved numerically to compute the stress distribution. Note, the strain energy
in Eq. (3.13) can be decomposed according to Eq. (3.6). For the volumetric part, nearly-
constant volume is imposed by

U(J) =
κ

2
(J∗ − 1)2 , (3.14)

where J∗ = det(F∗). In general, for processes involving growth and remodeling (especially for
development), constant volume should not be assumed, however it is a reasonable here since
the contribution from Fg, which captures the main volumetric change of the development
stage, is excluded.

3.2.2.2 Growth stretch ratios

Above we assume the growth stretch ratios are know. Here we discuss how these can be com-
puted. The basic premise is residual stress (and hence growth stretch ratios) tend to help
homogenize the stress state in the loaded configuration, thus helping to define a homeostatic
stress state. While the concept of hemostatic stress is fundamental to vascular biomechanics,
there is no consensus on its exactness. It has been shown that residual stress homogenizes cir-
cumferential stress in the radial direction, but it remains unclear whether homeostatic stress
varies spatially. Therefore, for generality we assume that there exists a (known) homeostatic
stress distribution σh and that the growth stretch ratios homogenize circumferential stress
in the radial direction. In §3.2.2.3, we discuss computation of σh; however, the material here
applies to any desired homeostatic stress distribution.

In solving the variational equations for momentum balance, the growth stretch ratios are
updated to produce a desired homeostatic stress distribution σh. Namely, following [111] and
[112], the growth stretch ratios are updated according to the following evolution equations

λ̇gθ

λgθ

=
1

τθ

(
σθ(t)

σh

− 1

)
, λ̇gr = 0, λ̇gz = 0 , (3.15)

where τθ is a time constant controlling how fast the growth stretch evolves. Thus, the
momentum equations are coupled with these evolution equations and solved in a staggered
procedure until convergence of the stretch ratios (and, based on Eq. (3.15), circumferential
stress). The algorithm for this iterative procedure can be found in the Appendix. Note, radial
stress is governed primarily by the boundary conditions at the inner and outer surfaces, not
residual stress [68]. It is also small in comparison to the circumferential stress, which has
been shown experimentally [122] and computationally [61], [73], and [23]. Additionally, the
axial stress component is mainly determined by the boundary condition and geometry of the
vessel. Therefore, only convergence of circumferential stress is considered here. More details
can be found in [113], [112], [71], and [74].
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3.2.2.3 Defining the homeostatic stress distribution

The method above can be applied for any homeostatic stress σh, which can generally vary
spatially. Indeed, Fung [49] demonstrated that residual stress tends to make the stress
distribution uniform primarily in the transmural direction. Hence, we aim to formulate a
target homeostatic stress distribution σh(x) that is uniform in the transmural direction, but
may vary in the circumferential and axial directions. This can be formulated through the
steady-state solution of the following diffusion equation defined in the vessel wall domain Ω0

as
∂

∂t
σh(x, t) = D∇2σh(x, t), for x ∈ Ω0, t ∈ [0, T ]

σh = g(x), for x on Γinner,

n · ∇σh = 0, for x on Γouter,

(3.16)

where D is a virtual diffusion constant, and Γinner and Γouter denote the inner and outer
wall of the vessel, respectively. Following [12] and [43], the stress distribution g(x) can be
obtained from a passive nonlinear elasticity membrane problem with constitutive relations
Eqs. (3.3) and (3.4), and is effectively used here to assign the variation of stress in the
circumferential and axial directions. This above system Eq. (3.16) is solved until steady
state, which yields a stress distribution that is uniform in the transmural direction, and
defines the target homeostatic stress under normal blood pressure.

Although the steady version of Eq. (3.16) could alternatively be used to obtain the steady
state solution, we retain the unsteady version for generality since, as shown in Sect. 3.3, the
unsteady formulation in Eq. (3.16) enables the ability to generate a quasi-uniform stress
distribution in the transmural direction by controlling the simulation ending time T . This
quasi-uniform distribution is generally in better agreement with expectations of transmural
stress, particularly when considering deviations of blood pressure from the mean arterial
pressure (see e.g., Fig. 7 in [14]).

3.2.2.4 Estimating residual stresses near bifurcations and boundaries

Generating the stretch ratios λgr, λgθ, λgz is based on an iterative algorithm that couples the
structural mechanics (momentum) equations (3.9) with the evolution equations (3.15). The
iterative method can struggle to converge in bifurcation regions where the irregular geome-
try may cause stress to deviate significantly from the target homeostatic value. Nonetheless,
the overall theoretical framework provides a governing connection to guide how geometric
and mechanical factors determine the growth stretch ratio. Therefore, the convergence of
this method otherwise throughout the model may be used indirectly to guide specification
at locations where numerical factors become nuisance. Thus, instead of explicitly defin-
ing the growth stretch ratios at bifurcations or boundaries (or potentially other geometric
anomalies), we exclude computational nodes close to these geometrical features, compute
the growth stretch ratios in the rest of the domain according to the formulations above, and
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use that data along with supervised learning to estimate the growth stretch ratios at the
excluded locations.

For the supervised learning process, random forest regression was chosen based on its
general accuracy and robustness against overfitting [47]. In order to take both mechanical
and geometric factors into account, the initial local stress σ0(xi) and the local curvature
tensor R(xi) are used as the prediction features, while local growth stretch ratio λg(xi) is
the training label. The data pair (σ0(xi),R(xi);λg(xi)) associated with each location xi in
the vascular geometry contributes to one data point in the overall training data sets. The
mapping

M : (σ0(xi),R(xi)) 7→ λg(xi) (3.17)

is obtained by constructing a random forest regressor. In random forest regression, the
prediction of λg(x) is determined by the average of B individual regression trees characterized
by their parameters Θb

f̂Brf (σ0(x),R(x)) =
1

B

B∑
b=1

Tb(σ0(x),R(x)|Θb) . (3.18)

Each individual tree Tb(•) is constructed based on randomly sampled features and boot-
strapped data sets, and the optimal tree parameters are obtained by minimizing the least
square error

Θ∗b = arg min
Θb

N∑
i=1

(λg(xi)− Tb(σ0(xi),R(xi)|Θb))
2 . (3.19)

Once Θ∗b is obtained in the training process, given a new input (σ0(xnew),R(xnew)), the
growth stretch ratio λg at the new location xnew can be computed as

λg(xnew) = f̂Brf (σ0(xnew),R(xnew))

=
1

B

B∑
b=1

Tb(σ0(xnew),R(xnew)|Θ∗b) . (3.20)

We used the random forest regression implementation available from the Python package
Scikit-learn [90].

3.2.3 Optimal stochastic fiber deposition

After the residual stress field is generated, stress-driven fiber deposition is incorporated to
capture the fiber alignment in the homeostatic state. In most prior studies, collagen fibers
are deposited in predefined directions [43], and all later newly produced collagen fibers are
deposited to align with the existing corresponding collagen families. In this work, we as-
sume fibers can be freely deposited in orientations based on the stress state at the time of
deposition. Inspired by [29], the deposition angle is given by the solution of an optimiza-
tion problem. Although the stress state is in fact triaxial for the 3D vascular geometry,
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the radial component of stress is much smaller compared to the axial and circumferential
component. Therefore, for simplicity, we assume the vessel is under a biaxial stress condition
(see Fig. 3.1A) with T11 and T22 as the two largest eigenvalues of the Cauchy stress tensor T
(we use T to denote the full Cauchy stress tensor and σ to denote scalar quantities derived
from T) , which is given by

T =
2

J
F
∂w

∂C
FT . (3.21)

We denote by σf,max the maximum stress that fibers can sustain when the fiber mass density
is equal to some baseline value M0. The maximum stress is assumed proportional to the
fiber mass density. Thus, for any arbitrary fiber density Mf , the maximum stress that fibers
can sustain is σf,max

Mf

M0
, and the contribution of the fiber family to the local stress tensor is

Tf := σf,max
Mf

M0

ef ⊗ ef . (3.22)

Here, ef = [cos θf , sin θf ]
T is the fiber direction represented in the local coordinate system

defined by the circumferential and axial directions and θf is the fiber deposition angle (see
Fig. 3.1A). Note that the circumferential and axial directions and the deposition angle θf

are all defined in the current configuration κt. Further, the local circumferential and axial
directions are computed as the eigenvectors corresponding to the two largest eigenvalues T11

and T22 of the local Cauchy stress tensor T [32]. The projections of the fiber stress tensor
Tf in the circumferential and axial directions are

Tf,circ = [1, 0]Tf [1, 0]T = σf,max
Mf

M0

cos2 θf , (3.23)

Tf,axial = [0, 1]Tf [0, 1]T = σf,max
Mf

M0

sin2 θf . (3.24)

Assuming the body tends to minimize the mass needed for vascular fibers, while main-
taining the ability to sustain circumferential and axial loading, the optimization problem to
determine the deposition angle θf is given by

min
Mf ,θf

Mf such that

σf,max
Mf

M0

cos2 θf ≥ T11,

σf,max
Mf

M0

sin2 θf ≥ T22 .

(3.25)

The solution of Eq. (3.25) is

M∗
f =

T11 + T22

σf,max

M0, (3.26)

θ∗f = ± arctan

√
T22

T11

, (3.27)
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which defines the optimal directions for newly produced collagen fibers. As T11 and T22 may
change with time, θ∗f is generally not constant. The “±” sign in Equation (3.27) corresponds
to the two collagen families. It is worth noting that the optimal angle θ∗f depends on the
fiber mass density Mf indirectly via T11 and T22.

It has been observed that fiber deposition exhibits a stress-dependent stochasticity [44].
We assume that the deposition angle follows a Gaussian distribution

θkf ∼ N
(
θ∗,kf ,Σ(σ∗,kf )

)
, (3.28)

with mean value θ∗f . The variance Σ(σf) is defined as a function of the fiber stress σf

Σ(σ∗,kf ) = Σ0
σscale

σ∗,kf

, (3.29)

where σscale is a scale parameter for vessel wall stress, and Σ0 is the nominal value of the
variance. To avoid numerical instabilities when σ∗,kf is very small, a small positive number
ε is added to the denominator of Equation (3.29). The stress in the new fiber direction is
given by the projection of the Cauchy stress tensor onto the fiber direction

σ∗,kf = T : e∗,kf ⊗ e∗,kf . (3.30)

Σ(σ∗,kf ) is designed to be a decreasing function of the stress projection in the fiber direction

σ∗,kf so that fibers are aligned more coherently when σ∗,kf is higher [44]. Note that the optimal

deposition direction e∗,kf and the actual fiber deposition direction ekf are defined respectively
as

e∗,kf = [cos θ∗,kf , sin θ∗,kf ]> , (3.31)

ef = [cos θf , sin θf ]
> . (3.32)

Once the fiber deposition directions ekf at the time τ are determined in the deformed config-
uration κτ , the fiber direction in configuration κR can be computed as

Ek
f (τ) =

F ∗(τ)−1ekf (τ)∥∥F ∗(τ)−1ekf (τ)
∥∥ , (3.33)

and the invariant of this fiber at a later time t is

Ik(C∗(t),Ek
f ) := C∗(t) : Ek

f (τ)⊗ Ek
f (τ) . (3.34)

Substituting the fiber invariants into Equations (3.4) yields the strain energy for the collagen
fiber

W k(C∗(t),Ek
f (τ))

=
c2

4c3

{
exp

[
c3

(
Ik(C∗(t),Ek

f (τ))− 1
)2
]
− 1
}
, (3.35)
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and therefore the total strain energy for fiber family k can be computed based on Equation
(3.5) as

wk(C∗, t) =

∫ t

−∞
mk(τ)qk(t− τ)W k(C∗(t),Ek

f (τ)) dτ

=

∫ t

t−t̂
mk(τ)qk(t− τ)W k(C∗(t),Ek

f (τ)) dτ

≈
N∑
i=0

mk(τi)q
k(t− τi)W k(C∗(t),Ek

f (τi))∆τ , (3.36)

where t̂ is the lifespan of the fibers. N is the number of discretization intervals for computing
the time integral. Note that, for each time slice ∆τ = τi+1− τi, the strain energy of the fiber
produced at τi depends on the deposition angle at that time θf(τi). Based on the total strain
energy for the current moment t, the current stress distribution can be computed, which
can be used to compute the new optimal fiber deposition angle for the next time step. The
general algorithm for applying the above method is described in the Appendix.

3.3 Results

The framework proposed above was implemented to first generate a residual stress field based
on the evolution equations (3.15) and then to iteratively generate collagen fiber directions
based on the optimality conditions (3.27) along with deposition randomness (3.28). The
code was developed in Python, and the finite element solution was implemented using the
open source package FEniCS [84]. All computations were performed using linear tetrahedral
elements with an average edge size smaller than 0.7 mm. The constitutive material param-
eters were taken from literature [52], [138], and [42] and are summarized in Tab. 3.1 along
with the other parameters used for the simulations.

Fig. 3.2 illustrates the results of the algorithm applied to an idealized cylindrical vessel.
Panel (A) shows the circumferential stress distribution for a passive inflation with a pressure
of 100 mmHg in which the material properties are assumed to be constant throughout the
vessel wall and no residual stress is incorporated. As expected the resulting circumferential
stress is nonuniform along the transmural direction. Panel B displays the circumferential
stress distribution after prestretch is incorporated by the stretch evolution equation (3.15)
using a prescribed homeostatic stress σh of 150 kPa. The convergence of the stress to the
homeostatic value over the iterations of the algorithm is plotted in Fig. 3.3 for the cylindrical
test case.

Similar numerical simulations were carried out for a patient-specific aortic bifurcation
geometry. The original image data was obtained from the Vascular Model Repository
(http://vascularmodel.org), and a membrane model was constructed using SimVascu-
lar [116]. After that, a 3-D volumetric mesh is generated using Gmsh [53], and the local
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thickness of vessel wall is set to be equal to 10% of the local radius (obtained from max-
imum inscribed sphere). A homeostatic stress distribution σh(x) was generated by solving
the diffusion equation (3.16) with g(x) set to be the solution of a passive inflation membrane
problem at mean arterial pressure of 100 mmHg. Fig. 3.4A displays the steady-state σh(x),
which serves as the target stress distribution for the residual stress generation process. For
comparison, Fig. 3.4B displays the stress distribution of a passive inflation with a pressure of
100 mmHg with no residual stress incorporated. As an intermediate step, Fig. 3.4C displays
the stress distribution when residual stress generation is applied only to the cylindrical por-
tions of the domain with the inlet, outlet, and bifurcation regions excluded–hence, results in
these regions may be considered invalid. The prestretch distribution at the excluded nodes
were then predicted by a random forest regressor trained via the data from the remainder of
the simulation domain. The resulting final stress distribution is shown in Fig. 3.4D, which
qualitatively and quantitatively matches with the nominal target stress distribution shown
in Fig. 3.4A. To better visualize the stress distribution near the bifurcation and the effec-
tiveness of the prediction by the random forest regressor, a rescaled and zoom-in view is
provided in Fig. 3.4E. It can be seen that higher stress is concentrated along the bifurcation
ridge, consistent with previously published results [92].

To evaluate the stress distribution along the thickness directions, cross-sectional views
are provided in Fig. 3.5, with panel (A) corresponding to the simulation without residual
stress and panel (B) corresponding to the simulation with residual stress incorporated. It
can be seen that although the stress distribution is not uniform throughout the geometry,
the stress becomes uniform along the thickness when prestretch is included, (and becomes
generally more homogenized in other directions although this is not imposed).

Once prestretch is generated, the residual stress distribution can be obtained by releasing
the internal pressure and remove tethering boundary conditions. Fig. 3.2C shows the residual
stress distribution after a virtual pressure release. It is noteworthy that the circumferential
stress in the inner layer is negative – the tissue is under compression – and the stress in
the outer layer is positive – the tissue is under extension – which is consistent with prior
published results [2]. Qualitatively the pattern of the stress distribution also matches with
experimental results on rabbit arteries in [25]. The randomness of the stress distribution is
mainly due to the stochasticity of the fiber deposition. Note that for this virtual pressure
release experiment, a small axial stretch is needed to achieve numerical stability. Namely,
this applied axial stretch makes the inner layer of the vessel less prone to buckle while under
compression. While this can be done for an idealized cylinder geometry by applying a small
displacement to one of the free ends, this is not a trivial task for more general geometries and
results may become unreliable (cf. [65] and [82]), which was confirmed for the patient-specific
geometry.

The computation of the prestretch distribution is based on first treating the collagen
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fibers as isotropic, the constitutive relation of which is given by the dispersion model [51]

W k(C) =
c2

4c3

{
exp

[
c3

(
Ik∗ − 1

)2
]
− 1
}
,

Ik∗ :=
(
ωdI + (1− 3ωd)Ek

f ⊗ Ek
f

)
: C

(3.37)

with the dispersion parameter ωd equal to 1
3
. This is because prestretch is caused by unbal-

anced growth during the early development when the vascular material is more isotropic.
Once the proper amount of prestretch was incorporated, the isotropic collagen fiber network
is replaced by anisotropic fibers by setting the dispersion parameter ωd = 0 (which recovers
the original anisotropic constitutive relation Eq. (3.4)) and deposited in the optimal direc-
tions defined by Eq. (3.27), with randomness included as described in Sect. 3.2.3. Fig. 3.6
shows the two helical fiber directions generated by the optimal fiber deposition algorithm
for both idealized and patient-specific geometries. It can be seen that in both cases that the
fiber directions show dispersion instead of perfect alignment in a particular direction, which
corresponds to experimental observations [88]. Fig. 3.6B also shows the fiber directions in the
bifurcation region of the patient-specific geometry, which qualitatively matches the results
in [56].

Since in most practical applications the vascular geometry is derived from in vivo imaging,
it is important to consider how the generation of residual stress affects the final loaded
configuration. Comparison of the loaded, prestretched geometry to the original image-based
geometry is shown in Fig. 3.7C, which indicates that the proposed algorithm changes the
shape of the geometry to a relatively small degree. By comparison, an inflation that does
not consider residual stress results in a more curved and displaced loaded configuration as
shown in Fig. 3.7A. Also for comparison, we considered the case of prescribing a uniform
homeostatic stress distribution, which as shown in Fig. 3.7B tends to undesirably straighten
the artery as might be expected since such configuration would be desirable to achieve more
uniform stress.

Used for Parameter

Material model c1 = 688 Pa/kg c2 = 917 Pa/kg c3 = 25 [−]
Eqs. (3.3, 3.4, 3.8) κ = 5× 106 Pa

Fiber deposition Σ0 = 0.5 σscale = 200 kPa ε = 0.001
Eqs. (3.29, 3.36) t̂ = 1 N = 20

Residual stress field generation Cylinder: σh = 150 kPa
Eqs. (3.15, 3.16) Patient-specific model, nominal blood pressure: P = 100 mmHg

D = 1.0 τθ = 2.0

Table 3.1: Parameters used in the numerical experiments. Note that all time constants are
normalized with respect to the lifespan of the fibers.
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Figure 3.2: Circumferential stress distribution (A) of a standard passive inflation simulation;
(B) with residual stress incorporated; (C) residual stress.
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Figure 3.3: Convergence of the circumferential stress to the homeostatic stress after pre-
stretch is incorporated based on Eq. (3.15). The red curve denotes the inner layer and the
blue curve denotes the outer layer.

3.4 Discussion

A computational framework to generate the vascular homeostatic state has been proposed,
which includes the generation of appropriate prestretch distribution and the specification of
physiological vascular fiber deposition directions. A benefit of this framework is that in order
to generate the residual stress distribution only a homeostatic stress value (or distribution)
needs to be specified. In particular, the specification of the natural configurations of the
different constituents and the mechanobiological mechanisms that form the residual stress
distribution are not explicitly required and the effects of the residual stress distribution
can be incorporated into a growth tensor Fg. This greatly facilitates the determination and
generation of the residual stress distribution needed to achieve a homeostatic stress condition
for the pressurized in vivo state for a particular vascular model geometry. While the approach
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Figure 3.4: (A) Nominal homeostatic stress distribution determined from membrane prob-
lem. (B) Stress distribution from a standard passive inflation simulation. (C) Stress dis-
tribution after incorporation of residual stress. (D) Stress distribution after residual stress
and machine learning repair. (E) Stress distribution near bifurcation (note change in color
scale).

Figure 3.5: Circumferential stress distribution (A) of a standard passive inflation simulation
for a patient-specific geometry; (B) with residual stress incorporated for a patient-specific
geometry.
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Figure 3.6: (A) Fiber directions in both helical directions for the cylinder geometry; (B)
Fiber directions for the patient-specific geometry near the vascular bifurcation.

Figure 3.7: Comparison of the original geometry taken from imaging (transparent gray)
with the displacement field of (A) an inflation experiment without the application of the
residual stress; (B) an inflation experiment with residual stress generated from the uniform
homeostatic stress distribution; (C) an inflation with residual stress generated from the
residual stress distribution that is uniform only in transmural direction.
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for generating the residual stress and fiber distribution through a growth tensor is inspired
by classical G&R theories [75, 28, 54], it should not be confused with trying to reproduce the
actual G&R process (but rather focuses on the end result of deriving an appropriate loaded
and pre-stressed homeostatic state).

A unique feature of this work is the combination of the constrained mixture model of
G&R [75] with an optimal fiber deposition process. In the constrained mixture model of
G&R, fibers are commonly deposited in predefined fiber family directions, with new fibers
aligned in the same direction as the existing fiber family directions. In this work, fibers
are deposited based on a physiologically-motivated angle that depends on the current local
stress state, instead of predefined directions. And since the local stress may vary over the
iterative deposition process, the deposition angle of newly produced fibers also varies. This
results in fiber dispersion, which has been well documented in human arteries, see, e.g., [88].
While prior works [51] have accounted for fiber dispersion using a set dispersion parameter
κd, the method herein naturally leads to dispersion as a result of a stress-driven process.
Also, in comparison to prior work [56] that suggests a nominal deposition angle of the form
tan θ∗f = T22

T11
, the physiologically-motivated optimal deposition angle employed herein suggest

an alternative square root relation of the form tan θ∗f =
√
T22/T11 which is consistent with

the results shown in [29].
For cylindrical regions, the prestretch distribution can be readily computed using itera-

tive methods, as have been applied previously, e.g, [14], [2], and [93]. However, this method
is often unstable when applied to more complex geometries, particularly since the topological
features of the bifurcation cause irregular stress distribution that can significantly deviate
from the prescribed homeostatic distribution. Thus, instead of being directly computed, the
prestretch for the bifurcation region is predicted based on local geometric and mechanical
properties from surrounding regions using a random forest regression. The logic here is that
we assume the mapping from mechanical and geometric factors to the growth stretch ratio
should guide specification regardless of numerical challenges. This provides a way to deal
with realistic applications where geometric complexities are difficult to handle numerically
using strictly theory-based methods, while maintaining specification based on a governing
theory. As with most machine learning, the mapping is not necessarily guaranteed to satisfy
a theoretical (fiber-deposition) principle, it is rather trained from the principle. However,
it is possible to mathematically constraints inference problems to satisfy deterministic con-
straints [135].

While prior work has proposed the inclusion of residual stress on a fully three-dimensional
patient-specific geometry [3], this approach results in a largely deformed loaded configura-
tion, whereas the method proposed here results in relatively minor distortion of the loaded
configuration when compared to the image-derived configuration (see Fig. 3.7C). We note
that the distortion that does persist could be due in part to the lack of external tissue
support from surrounding organs, which is missing in our model. Additionally, although
not explored herein, patient-specific calibration of simulation parameters could be incorpo-
rated in the residual stress generation procedure such that the final loaded configuration
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matches as closely as possible with the image-based geometry. This is a reasonable addi-
tion since model parameters are generic and often fitted from ex-vivo experimental data.
Also, compared to [20] where the authors presented a backward displacement method to
generate prestrech for a patient-specific geometry, our algorithm additionally incorporates
stress homogenization and a more physiological material model including the generation of
fiber directions. We note that although prior studies have assumed that there is a unique
homeostatic stress value [41, 13, 134], there is sparse experimental data confirming this. The
seminal work of Fung [49], indicates that stress tends to be homogenized in the transmural
direction, and hence the approach presented herein assumes only homogenization of homeo-
static stress in the transmural direction. Moreover, using a constant homeostatic stress value
results in unphysiologic model deformation as shown in Fig. 3.7(B). Nonetheless, the algo-
rithm presented herein can accommodate any desired homeostatic stress distribution. For
example, a presumed constant value can be taken from literature [12, 137], or obtained from
additional computations, such as using the stress distribution from an equivalent membrane
problem as proposed herein, or computed as the mean stress throughout the geometry from
a passive inflation simulation. Likewise, while this method was applied to reconstruct the
nominal, healthy homeostatic state, it could potentially be applied to specify the residual
stress distribution and fiber alignment in diseased vessels by appropriate change to model
parameters.

We note here several limitations of this work. First, to generate the residual prestretch
distribution, a homeostatic stress value or distribution needs to be known. Properly spec-
ifying this function is nontrivial; it can either be taken from literature [12] and [137] or
obtained from additional computations, such as using the stress distribution from an equiv-
alent membrane problem as proposed herein or computed as the mean stress throughout the
geometry from a passive inflation simulation. Moreover, the robustness of the generation
process should be further verified with a larger number of patient specific geometries. Also,
the vessel wall in our study was modeled as a single effective layer while in reality the blood
vessels consists of multiple layers that are mechanically relevant. However, this framework
can be readily extended to a multi-layer setting (i.e., explicitly modeling the media and ad-
ventitia) with corresponding parameters specified for each layer. Likewise, while this method
was applied to reconstruct the nominal, healthy homeostatic state, it could potentially be
applied to specify the residual stress distribution and fiber alignment in diseased vessels by
corresponding changes to model parameters.

3.5 Conclusions

We presented a framework to reconstruct the vascular homeostatic state by developing a
method to compute the residual stress distribution and fiber directions. The residual stress
is implicitly incorporated by iteratively computing a growth prestretch based on a prescribed
homeostatic stress distribution. Vascular fiber directions are further incorporated based on
the solution of a physiologically-motivated optimization problem. The methodology was ap-
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plied to an idealized cylindrical geometry and a patient-specific aortic bifurcation geometry.
Simulation results for residual stress distribution and fiber alignment match with numerical
and experimental results in prior works. In contrast to previous studies the proposed frame-
work is not limited by geometrical restrictions such as bifurcations making it more applicable
to patient-specific scenarios.
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Appendix

The two-stage algorithm to generate the vascular homeostatic state.

1. Generate residual stress field by incorporating proper amount of growth prestretch:

• Define initial guesses for the growth prestretch:

λgθ = 1, λgr = 1, λgz = 1 ;

• Do :

a) Solve the balance equation

δI =

∫
Ω0

δw dV +

∫
∂Ωt

P nt · δx da = 0 ,

to obtain current stress.

b) Exit loop if ‖σθ − σh‖ < ε.

c) Update the current prestretch ratios:

λ
(t+1)
gθ = λ

(t)
gθ +

∆t

τθ

(
σ

(t)
θ

σh

− 1

)
λ

(t)
gθ ,

λ(t+1)
gr = 1,

λ(t+1)
gz = 1 .

d) t = t+ 1 and return to (a).

End loop.

2. Generate fiber deposition angles and incorporate fibers into the vascular mixture:

• For i = 1 to imax:

a) Solve the balance equation

δI =

∫
Ω0

δw dV +

∫
∂Ωt

P nt · δx da = 0 ,

to obtain current stress tensor T, and then compute two principal stress
components T11 and T22.

b) Compute the optimal deposition angle

θ∗f = ± arctan

√
T22

T11

,

and generate the actual deposition angles based on the following distribution:

θf ∼ N (θ∗f ,Σ(σf)) .
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c) Modify the strain energy function to incorporate the new fibers:

wk(C, t) =
N∑
i=0

mk(τi)q
k(t− τi)W k(C, θf(τi), t)∆τ .

End loop.
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Chapter 4

Stability Analysis of Vascular Growth
and Remodeling

4.1 Introduction

The functional adaptation of arteries to biomechanical stimuli has been long recognized as
an important feature of vascular growth and remodeling (G&R), and has led to the devel-
opment of mathematical theories to describe such phenomena [70]. A common theoretical
framework has been the constrained mixture theory model for studying growth and remod-
eling of soft tissues [75]. Previous research in applying the constrained mixture theory of
vascular G&R has focused mostly on numerical investigations, and especially in relation to
aneurysm growth. For example, [13, 12] applied the constrained mixture theory to study
stress mediated aneurysm expansion in idealized geometries to better understand different
factors influencing geometry and aneurysm growth rate. Later, G&R theory was extended
to 3D geometries to predict complex aneurysm shapes [138]. In addition, vascular G&R
simulations have been coupled with blood flow dynamics to study the coupling between
hemodynamics (e.g. wall shear stress) and vascular adaptations in cylindrical-type geome-
tries [41, 128, 107], and more recently to patient-specific geometries [134].

It has been suggested [19, 11] that a better understanding for risk of aneurysm rupture
may involve the stability of aneurysm expansion due to vascular G&R, i.e., rupture might
be a result of unstable vascular G&R. While the above studies considered the numerical
implementation of G&R in various applications, theoretical analysis of the stability of the
underlying adaptive mechanism has received less attention. In this regard, the recent work
of [101] studied the arterial growth instability using a goal function based approach. In
important work of [30, 31], the authors introduced the concept of mechanobiological stability
based on comprehensive analysis of the differential equations of mass density and vessel wall
position from vascular G&R theory. As shown herein, the mathematical underpinnings
of mechanobiological stability can be seen to have origins in the degenerate nature of the
(linearized) system about the homeostatic state. This degeneracy complicates the use of
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linear stability analysis to study the stability of the homeostatic state to infer the stability
of the original (nonlinear) system.

In this chapter, we start from the integral state equations of the continuum based con-
strained mixture model of G&R and derive the state equations (time-delayed differential
equations) describing vascular expansion. By employing a commonly used exponential form
of the constituent survival function and by introducing an extended state variable, the de-
layed differential equations can be reduced to an ODE system. Linear stability analysis is
subsequently applied to this ODE system and a stability criteria is obtained based on G&R
kinetic parameters and material properties. To address the problem of the degeneracy of
the linearized system about the homeostatic state mentioned above, we formulate a reduced
sub-system that is shown to be exponentially stable, which enables us to extend the linear
stability results to the original (nonlinear) system and rigorously prove stability properties
observed in prior computational and theoretical studies.

4.2 Constrained mixture theory of growth and

remodeling

The vessel wall has the ability to adapt to changes of mechanical environment to maintain
a homeostatic state via vascular G&R [70, 118]. This process occurs through removal of old
vascular constituents and incorporation of new constituents, which can be described by an
equation of the form

M(t) = M(0)Q(t) +

∫ t

0

m(τ)q(t− τ)dτ . (4.1)

M(t) is the mass per unit area of vascular constituents at time t. The first term on the right
represents the contribution from the “initial” mass before G&R, whereas the second term on
the right represents the incorporation and natural turnover of newly produced constituent.
Specifically, Q(t) is the remaining fraction of initial mass at the current time t, m(τ) is the
mass production rate of vascular constituent at time τ , and q(t−τ) is the remaining fraction
of newly produced constituent at time t.

The mass production rate m(t) is assumed to depend linearly on the deviation of wall
tension σ with respect to a homeostatic stress σh [12],

m(t) = M(t) [kg[σ(t)− σh] + fh] (4.2)

where kg is the growth feedback constant and fh is the basal value of the mass production
rate. The above growth law describes the stress-mediated feedback mechanism by which the
homeostatic stress is maintained.

In the constrained mixture theory of G&R [75], the vessel wall is modeled as a mem-
brane and treated as a constrained mixture, i.e., all vascular constituents deform together
at each location. The reference configuration κ0 for the vascular mixture corresponds to
the configuration with zero transmural pressure. For any time t, the current configuration
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of the mixture is denoted as κ(t), and F(t) is the deformation gradient tensor mapping from
κ0 to κ(t). However, the deformation of individual vascular constituents is computed with
respect their natural configurations κn(τ), which depends on the time τ when the constituent
was produced. The newly produced vascular constituent is deposited into the vascular
mixture with pre-stretch defined by G(τ), which maps from the natural configuration κn(τ)

to the deformed configuration of the mixture at τ . Therefore, based on the relations between
different configurations shown in Chapter 2 Figure 2.1, the deformation gradient tensor of
the vascular constituents produced at time τ mapping from the natural configuration κn(τ)

to the current deformed configuration κ(t) is defined as

Fn(τ)(t) = F(t)F−1(τ)G(τ) . (4.3)

The right Cauchy-Green deformation tensor is computed as

Cn(τ)(t) = Fn(τ)(t)
TFn(τ)(t) . (4.4)

The pre-stretch tensor G(τ) is defined as the two-point tensor

G(τ) = Ghe(τ)⊗ en(τ) , (4.5)

where e(τ) is the direction of vascular constituent at time τ in the mixture configuration
κ(τ), and en(τ) is the direction of the vascular constituent produced at time τ in its natural
configuration κn(τ). The relation between e(τ) and en(τ) is described by

en(τ) =
G(τ)−1e(τ)

‖G(τ)−1e(τ)‖
. (4.6)

Gh is the pre-stretch of the vascular constituent when it is deposited into the mixture, and
since we assume it is equal to the stretch ratio of vascular constituent in the homeostatic
state, we mark it using the subscript “h”.

After Cn(τ)(t), G(τ) and en(τ) are defined, the stretch ratio of the vascular constituent
produced at time τ with respect to its natural configuration κn(τ) can be computed as

λn(τ)(t) =
√

en(τ) ·Cn(τ)(t)en(τ)

=
∥∥F(t)F−1(τ)G(τ)en(τ)

∥∥
=

∥∥F(t)F−1(τ)Gh

(
e(τ)⊗ en(τ)

)
en(τ)

∥∥
= Gh

∥∥F(t)F−1(τ)e(τ)
∥∥

= Gh
‖F(t)F−1(τ)e(τ)‖ / ‖F−1(τ)e(τ)‖

‖e(τ)‖ / ‖F−1(τ)e(τ)‖

= Gh
λ(t)

λ(τ)
, (4.7)
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where λ(t) is the stretch ratio of the mixture in the direction of the vascular constituent,
defined as

λ(t) =
‖F(t)F−1(τ)e(τ)‖
‖F−1(τ)e(τ)‖

. (4.8)

Based on the mass-averaged principle for a constrained mixture, the total strain energy
per unit area for the mixture at current time t is

W (t) =
M(0)

ρ
Q(t)Ŵ (λn(0)(t)) +

∫ t

0

m(τ)

ρ
q(t− τ)Ŵ (λn(τ)(t))dτ , (4.9)

where ρ is the volume density of the vessel wall and Ŵ denotes the strain energy per unit vol-
ume, which depends on the stretch ratio λn(τ)(t). The mathematical form of Ŵ is determined
by the constitutive relation.

Our goal is to perform stability analysis of vascular G&R. To simplify the analysis while
retaining the essential dynamics, we assume the geometry is cylindrical and deformation
occurs in the radial direction. For conciseness of exposition, we assume here that vascular
constituents are aligned in the circumferential direction. We later in Sec. 4.4.7, discuss the
extension of this model to the case of multiple vascular constituent orientations, which is
known to occur in vivo.

Under these assumptions, the stretch ratio of the mixture in the circumferential direction,
λcirc(t), is obtained as

λcirc(t) =
‖F(t)F−1(τ)ecirc‖
‖F−1(τ)ecirc‖

=
r(t)

R
, (4.10)

where r(t) is the vessel radius at time t in the mixture configuration κ(t) and R is the vessel
radius in the mixture reference configuration κ0. Hence, the stretch ratio of the vascular
constituents with respect to the natural configuration is obtained as

λn(τ)(t) = Gh
λcirc(t)

λcirc(τ)
= Gh

r(t)

r(τ)
. (4.11)

For conciseness of exposition, we here assume a linearized stress-strain relation with
respect the homeostatic states of the vessel wall for the purpose of stability analysis. However,
since vascular material is usually considered nonlinear [61, 69], we later in Sec. 4.4.6 discuss
the extension of the model for a nonlinear material model. Based on the above assumptions,

Ŵ (λn(τ)(t)) =
1

2
E
[
λn(τ)(t)− 1

]2
=

1

2
E

[
Gh

r(t)

r(τ)
− 1

]2

, (4.12)

where λn(τ)(t)−1 represents the strain of the vascular constituents with respect their natural
configurations κn(τ). Therefore (4.9) becomes

W (t) =
M(0)

ρ
Q(t)

1

2
E

[
Gh

r(t)

rh
− 1

]2

+

∫ t

0

m(τ)

ρ
q(t− τ)

1

2
E

[
Gh

r(t)

r(τ)
− 1

]2

dτ , (4.13)
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where rh is initial homeostatic value for vessel radius. Note that for the initial mass, the
stretch ratio is equal to Gh

r(t)
rh

instead of Gh
r(t)
r(0)

because the initial vascular constituents are
not necessarily produced at t = 0. Instead they are produced when the vessel radius equals
to rh since we assumed the tissue is in the homeostatic state before t = 0, after which point
G&R occurs.

We are here interested in system stability, and hence the long-term behavior of the model.
Due to natural turnover, the “initial” mass terms in both (4.1) and (4.13) rapidly decay to
zero in time upon integration of the differential equations. Thus, in terms of stability analysis,
we are left with

M(t) =

∫ t

0

m(τ)q(t− τ)dτ (4.14)

W (t) =

∫ t

0

m(τ)

ρ
q(t− τ)

1

2
E

[
Gh

r(t)

r(τ)
− 1

]2

dτ . (4.15)

Note that this simplification is mainly for the convenience of deriving corresponding dif-
ferential equations. The true initial conditions for each variable will later be imposed to
the resulted differential equations to account for the effect of initial mass. In the case of
cylindrical geometry, the force balance equation in the circumferential direction yields

Pr(t) = Tθ(t) =
1

λz(t)

∂W (t)

∂λθ(t)
, (4.16)

where

λz = 1, λθ(t) =
r(t)

R
. (4.17)

Therefore,

∂W (t)

∂λθ
= R

∂W (t)

∂r(t)
= R

∫ t

0

m(τ)

ρ
q(t− τ)E

[
Gh

r(t)

r(τ)
− 1

]
Gh

r(τ)
dτ. (4.18)

Substituting the above into (4.16) yields

Pr(t) = R

∫ t

0

m(τ)

ρ
q(t− τ)E

[
Gh

r(t)

r(τ)
− 1

]
Gh

r(τ)
dτ . (4.19)

Note that mean arterial pressure is used here and is assume to be constant. Although
pressure varies over the cardiac cycle, we assume mean pressure is of most interest in the
long term behavior of vascular G&R.
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4.3 Converting to an ODE system

From the previous section, the time evolution of vascular growth and remodeling is described
by the following equations

M(t) =

∫ t

0

m(τ)q(t− τ)dτ , (4.20)

Pr(t) = R

∫ t

0

m(τ)

ρ
q(t− τ)E

[
Gh

r(t)

r(τ)
− 1

]
Gh

r(τ)
dτ , (4.21)

m(t) = M(t) [kg[σ(t)− σh] + fh] , (4.22)

σ(t) =
Pr(t)

h(t)
, (4.23)

where h(t) = M(t)
ρJ(t)

is the vessel wall thickness, and J is the determinant of the deformation

gradient tensor, which is equal to r(t)
R

. Since the current behavior of the system depends
continuously on all past time history, the system is a continuous time-delayed system. For
analysis, it is convenient if we can convert this to an ODE system depending on current
states. To make this reduction possible, we assume the survival function has an exponential
decay

q(t) = exp(−αt) , (4.24)

where α > 0 is the decaying constant. This implies that the rate of decay of the constituent
is proportional to its current value as

q̇(t) = −αq(t). (4.25)

To proceed we differentiate (4.20) with respect to t

Ṁ(t) = m(t)− α
∫ t

0

m(τ)q(t− τ)dτ (4.26)

= m(t)− αM(t). (4.27)

Substituting in (4.22) yields

Ṁ(t) = M(t)kg [σ(t)− σh] +M(t) [fh − α] . (4.28)

Since fh is the basal value of the mass production rate, it should balance with the natural
decay of constituents caused by the survival function q(t). Thus we require that fh = α and
subseqently

Ṁ(t) = M(t)kg [σ(t)− σh] . (4.29)
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Now taking the time derivative of (4.21) yields

P ṙ(t) = R

[
m(t)

ρ
E (Gh − 1)

Gh

r(t)

+

∫ t

0

m(τ)

ρ
q(t− τ)E Gh

ṙ(t)

r(τ)

Gh

r(τ)
dτ

−α
∫ t

0

m(τ)

ρ
q(t− τ)E

[
Gh

r(t)

r(τ)
− 1

]
Gh

r(τ)
dτ

]
. (4.30)

The last term in the above equation is just −αPr(t), and defining an extended state variable

y(t) = R

∫ t

0

m(τ)

ρ
q(t− τ)E

G2
h

r2(τ)
dτ (4.31)

yields

ṙ(t) =
m(t)

r(t)

RE [Gh − 1]Gh

Pρ
+

1

P
y(t)ṙ(t)− αr(t) . (4.32)

Take time derivative of (4.31), we obtain the ODE characterizing dynamics of y(t)

ẏ(t) = k2
m(t)

r2(t)
− αy(t) , (4.33)

where k2 =
G2
hER

ρ
. The extended state y represents the generalized stiffness of the vascular

mixture, as explained later in the Discussion section.
Based on (4.22), (4.23), (4.29), (4.32) and (4.33), the system of equations for vascular

growth can now be written as

Ṁ(t) = M(t)kg [σ(t)− σh] (4.34)

ṙ(t) =
1

k(t)

[
αr(t)− m(t)

r(t)
k1

]
(4.35)

ẏ(t) = k2
m(t)

r2(t)
− αy(t) (4.36)

m(t) = M(t) [kg [σ(t)− σh] + fh] (4.37)

σ(t) =
ρPr(t)2

M(t)R
(4.38)

where k(t) = 1
P
y(t)− 1, k1 = RE[Gh−1]Gh

Pρ
and fh = α.

4.4 Stability analysis of the ODE system

4.4.1 Linearization of state equations

The stability of vascular growth is characterized by the stability of the ODE system we
obtained in previous section. To analyze its stability, we examine the nature of the lin-
earized system about the homeostatic state. Namely, we assume the vessel is initially in its
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homeostatic state before G&R is introduced by whatever cause. Mass density and vessel
radius in the initial homeostatic state are denoted Mh and rh respectively. Strictly speak-
ing, as shown later, there is no “homeostatic state” for mass density M(t) and r(t) because
asymptotic stability does not hold for M(t) and r(t). However, for convenience, we use the
term “homeostatic state” to denote the asymptotic values Mh and rh.

Based on (4.38), the homeostatic value of circumferential stress σh is

σh =
ρPr2

h

MhR
. (4.39)

Substituting homeostatic values into (4.32) yields

ρPrh
Mh

= E [Gh − 1] . (4.40)

Combining (4.39) and (4.40) and observing Gh = rh
R

, we obtain an alternate expression for
σh

σh = E [Gh − 1]Gh . (4.41)

Similarly, substituting homeostatic values into (4.31) yields the homeostatic value for the
extended state y(t)

yh =
REG2

hMh

ρr2
h

. (4.42)

We next consider perturbation of the system around the homeostatic values above

M(t) = Mh + ∆M(t) (4.43)

r(t) = rh + ∆r(t) (4.44)

y(t) = yh + ∆y(t) (4.45)

σ(t) = σh + ∆σ(t) (4.46)

with
∆M

Mh

,
∆r

rh
,

∆y

yh
,

∆σ

σh
� 1 . (4.47)

To obtain the linearized equations, it is convenient to first obtain the first order approxima-
tion of ∆σ

∆σ(t) = σ(t)− σh

=
ρP

R

[
[rh + ∆r]2

Mh + ∆M
− r2

h

Mh

]
≈ ρP

R

[
2rh
Mh

∆r − r2
h

M2
h

∆M

]
. (4.48)
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Therefore, the linearized state equation for mass density M(t) is obtained as

˙∆M = Ṁ = Mkg∆σ

≈ [Mh + ∆M ]kg
ρP

R

[
2rh
Mh

∆r − r2
h

M2
h

∆M

]
≈ kg

ρP

R

[
2rh∆r −

r2
h

Mh

∆M

]
. (4.49)

Similarly, we can obtain the linearized state equations for vessel radius r(t) and generalized
stiffness y(t) as

∆̇r ≈ 1

kh

[[
2α− 2kgr

2
hρP

RMh

]
∆r +

[
−αrh
Mh

+
kgr

3
hρP

M2
hR

]
∆M

]
(4.50)

∆̇y ≈ −2k2Mh

r3
h

[
α− kgρPr

2
h

RMh

]
∆r − k2

r2
h

[
α− kgρPr

2
h

RMh

]
∆M − α∆y (4.51)

where kh = 1
Gh−1

and k2 =
G2
hER

ρ
.

Equations (4.49)–(4.51) describe the time evolution of the linearized variables (∆M,∆r,∆y).
We will first consider the linear stability of the subsystem for (∆M,∆r). This is reasonable
since the dynamics of ∆r and ∆M are decoupled from the dynamics of ∆y. Also, the time
evolution of mass density M and vessel radius r are of paramount interest.

Based on (4.49) and (4.50), the linearized state equations for ∆r and ∆M become[
∆̇r
˙∆M

]
=

[
A B
C D

]
×
[

∆r
∆M

]
(4.52)

where

A =
1

kh

[
2α− 2kgr

2
hρP

RMh

]
, (4.53)

B =
1

kh

[
−αrh
Mh

+
kgr

3
hρP

M2
hR

]
, (4.54)

C =
2kgρPrh

R
, (4.55)

D = −kgρPr
2
h

RMh

. (4.56)

4.4.2 Stability of the linearized state equations

To determine whether G&R is stable, we need to first find the eigenvalues of system matrix.
Let the characteristic polynomial for the system be equal to zero∣∣∣∣A− λ B

C D − λ

∣∣∣∣ = λ2 − [A+D]λ+ [AD −BC] = 0 . (4.57)
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It can be verified that AD − BC = 0 based on (4.53)–(4.56). Therefore, the corresponding
eigenvalues are

λ1 = A+D, λ2 = 0 . (4.58)

This means [∆r,∆M ] = [0, 0] is a degenerate fixed point of the linearized system.

Theorem 4.4.1. (Neutrally Stable Fixed Point) Consider an autonomous dynamical system
ẋ = Ax with system matrix

A =

[
A B
C D

]
(4.59)

whose eigenvalues are λ1 and λ2. Let τ = Tr(A) = A+D, ∆ = det(A) = AD −BC. If

∆ = 0, τ < 0 (4.60)

then λ1 < 0 and λ2 = 0 and there exists a line of neutrally stable non-isolated degenerate
fixed points passing through x = 0. A neutrally stable fixed point denotes a fixed point which
is Lyapunov stable but not attracting.

Based on Theorem 4.4.1, the neutrally stabilizing condition for the linearized system
(4.52) at the fixed point (∆r,∆M) = (0, 0) is A+D < 0, i.e.

kg >
αRMh

ρPr2
h

[
1

1 + EMh

2ρPrh

]
. (4.61)

However, since the fixed point is degenerate, stability of the hemostatic state for the nonlinear
system cannot be inferred [121].

4.4.3 Avoiding the degeneracy condition

In order to avoid the degenerate fixed point problem encountered above, the 3-state linearized
system is reconsidered

d

dt

 ∆r
∆M
∆y

 =


1
kh

[
α− kgρPr2h

RMh

] [
2∆r − rh

Mh
∆M

]
kgρPrh
R

[
2∆r − rh

Mh
∆M

]
−k2Mh

r3h

[
α− kgρPr2h

RMh

] [
2∆r − rh

Mh
∆M

]
− α∆y

 . (4.62)

It can be observed that there is a linear relation between derivatives of ∆r and ∆M ,

∆̇r = B1
˙∆M (4.63)

where

B1 =

[
α− kgρPr2h

RMh

]
R

khkgρPrh
, (4.64)
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which in fact is responsible for the degeneracy observed above. Note that B1 is positive if

kg <
αRMh

ρPr2
h

. (4.65)

We can now integrate the derivative relation (4.63) from 0 to t to obtain

∆r(t) = B1∆M(t) +B2 , (4.66)

where constant B2 only depends on initial conditions

B2 = ∆r(0)−B1∆M(0) . (4.67)

By eliminating ∆r using the relations above, the 3-state system (∆r,∆M,∆y) is reduced to
a 2-state system of (∆M,∆y)

d

dt

[
∆M
∆y

]
=

[
kgρPrh
R

[
2B1 − rh

Mh

]
∆M + 2kgρPrh

R
B2

B3
˙∆M − α∆y

]
, (4.68)

where the constant B3 is defined as

B3 = −
k2

[
α− kgρPr2h

RMh

]
MhR

kgρPr2
h

. (4.69)

The linear system (4.68) is nonhomogeneous because of the constant term 2kgρPrh
R

B2 on
the right hand side of the first equation. It can be shown that the above nonhomogeneous
system is neutrally stable in the sense that the state variables (∆M,∆y) remain bounded,
while exponential stability cannot be obtained due to the nonhomogeneous term. However, in
order to extend the stability conclusion from the linearized system to the original nonlinear
system, exponential stability of the linearized system should be obtained. Therefore, we
homogenize the linear system by taking the time derivative of the first equation in (4.68),
yielding a homogeneous 2-state system for ( ˙∆M,∆y) as

d

dt

[
˙∆M

∆y

]
=

[
kgρPrh
R

[
2B1 − rh

Mh

]
0

B3 −α

]
×
[

˙∆M
∆y

]
. (4.70)

The eigenvalues for the system matrix in (4.70) are

λ1 =
kgρPrh
R

[
2B1 −

rh
Mh

]
, λ2 = −α . (4.71)

Therefore the linear system is exponentially stable if and only if

kgρPrh
R

[
2B1 −

rh
Mh

]
< 0, α > 0 (4.72)
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By substituting (4.64) in to the inequalities above, the exponentially stability condition is
given by

kg >
αRMh

ρPr2
h

[
1

1 + EMh

2ρPrh

]
, kcr, α > 0 , (4.73)

where kcr denotes the critical value for the growth feedback constant kg to ensure stability.

Theorem 4.4.2. (Lyapunov’s Indirect Method) Consider an autonomous nonlinear system
ẋ = f(x) with linearized system about x = 0 (without loss of generality) as ẋ = Ax, where

A = ∇f(x)|x=0 (4.74)

is the system matrix for the linear system. If the eigenvalues of matrix A satisfy

Re(λi) < 0, ∀ i = 1, 2, ... , (4.75)

(i.e the linearized system is exponentially stable), then the nonlinear system ẋ = f(x) is
locally exponentially stable about x = 0.

Based on Theorem 4.4.2, for the nonlinear system (4.34)–(4.38) describing vascular
growth, the 2-state system ( ˙∆M,∆y) is locally exponentially stable, i.e., locally Ṁ → 0
and y → yh exponentially.

It can be noted that the stabilizing condition (4.73) for ( ˙∆M , ∆y) is the same as the one
in (4.61) derived from the degenerate linear system for (∆M , ∆r). (The additional criterion
α > 0 from considering ∆y is automatically satisfied by definition.) However, the above
analysis is necessary to establish exponential stability for the linear system, which enables
the extrapolation of the stability properties to the original nonlinear system. On the other
hand, we would like to establish the behavior of the mass density M , as opposed to its
time derivative Ṁ . This can be achieved however by noticing that, due to local exponential
stability of ˙∆M , there exist constants a > 0 and b > 0 such that

‖ ˙∆M‖ ≤ be−at, ∀ t > 0 (4.76)

within a local neighborhood. To obtain a norm estimation of mass density M(t), we first
integrate ˙∆M from 0 to t

∆M(t) = ∆M(0) +

∫ t

0

˙∆Mdt . (4.77)

Taking the norm for the above equation and applying the triangle inequality gives

‖∆M(t)‖ ≤ ‖∆M(0)‖+

∫ t

0

‖ ˙∆M‖dt

≤ ‖∆M(0)‖+ b

∫ t

0

e−atdt

= ‖∆M(0)‖+ b
1− e−at

a

≤ ‖∆M(0)‖+
b

a
. (4.78)
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Reapplying the triangle inequality, an estimation of the norm of M(t) for the nonlinear
system can be obtained as

‖M(t)‖ = ‖Mh + ∆M(t)‖ ≤ ‖Mh‖+ ‖∆M(t)‖ ≤ ‖Mh‖+ ‖∆M(0)‖+
b

a
≤ C <∞ . (4.79)

Similarly, if we construct the 2-state system of (∆̇r,∆y) and apply the same analysis above,
we can obtain

‖r(t)‖ <∞ (4.80)

under the same stabilizing condition given by (4.73).

4.4.4 Asymptotic stability for wall tension σ(t)

By taking the time derivative of (4.38), we can obtain the linearized ODE for the time
evolution of wall tension deviation

d

dt
∆σ(t) =

ρP

R

[
2r(t)

M(t)
ṙ(t)− r2(t)

M2(t)
Ṁ(t)

]
≈

[
1

kh

[
2α− 2kgr

2
hρP

RMh

]
− kgρPr

2
h

RMh

]
∆σ

= [A+D]∆σ , (4.81)

which implies that stability criteria (4.73) also ensures the exponential stability for wall
tension deviation, i.e.

lim
t→∞

∆σ(t) = 0 . (4.82)

4.4.5 Summary of stability conclusions

When the following stability conditions are satisfied,

kg >
αRMh

ρPr2
h

[
1

1 + EMh

2ρPrh

]
, kcr, α > 0

the states r(t), M(t), y(t) and σ(t) for the nonlinear system (4.34–4.36) have the following
stability behavior about the homeostatic states

‖r(t)‖ <∞ ⇒ r(t) is neutrally stable ;

‖M(t)‖ <∞ ⇒ M(t) is neutrally stable ;

y(t)→ yh ⇒ y(t) is asymptotically stable ;

σ(t)→ σh ⇒ σ(t) is asymptotically stable , (4.83)

Thus, stability analysis shows that even when the stability criteria (4.73) is satisfied, only
σ and y will converge to corresponding homeostatic values while M and r will only stay
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bounded but not necessarily converge to the original homeostatic values. This matches
observations in [13, 134] that in stable aneurysm expansion cases, only wall tension σ is able
to recover the homeostatic value, while the geometry and mass density do not return to the
original homeostatic states.

4.4.6 Extension to nonlinear constitutive relations

A linear constitutive relation for the vessel wall was considered above. Alternatively, we
here assume a nonlinear Fung-type exponential constitutive relation, i.e. the strain energy
density function is given by

Ŵ (λn(τ)(t)) =
c2

4c3

{
exp

[
c3

(
λn(τ)(t)

2 − 1
)2
]}

. (4.84)

This type of constitutive relation is commonly used to describe the mechanical properties of
vascular constituents (e.g. collagen and smooth muscle fibers). In the homeostatic state, the
stretch ratio of the fiber, λn(τ)(t), is equal to Gh. Therefore, it can be represented as

λn(τ)(t) = Gh + ∆λ , (4.85)

where ∆λ is a small perturbation for the stretch ratio. Substituting the above equation into
the nonlinear constitutive relation (4.84) yields

Ŵ (λn(τ)(t)) =
c2

4c3

{
exp

[
c3

(
[Gh + ∆λ]2 − 1

)2
]}

=
c2

4c3

{
exp(c3

[
G2
h − 1

]
)− 1

}
+ c2 exp(c3

[
G2
h − 1

]
)Gh

[
G2
h − 1

]
∆λ

+c2 exp(c3

[
G2
h − 1

]
)G2

h(∆λ)2 +O((∆λ)3) . (4.86)

The relation between ∆λ and the strain in the fiber direction is

∆λ = λn(τ)(t)−Gh = (1 + ε)−Gh = ε− (Gh − 1) , (4.87)

where ε is the fiber strain. Using the above, we can rewrite the strain energy density function
in terms of ε,

Ŵ (λn(τ)(t)) ≈
c2

4c3

{
exp(c3

[
G2
h − 1

]
)− 1

}
+ c2 exp(c3

[
G2
h − 1

]
)Gh

[
G2
h − 1

]
(ε− (Gh − 1))

+ c2 exp(c3

[
G2
h − 1

]
)G2

h(ε− (Gh − 1))2

=Λ1 +R0ε+
1

2
Etanε

2 , (4.88)
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where

Λ1 =
c2

4c3

{
exp(c3[G2

h − 1])− 1
}

+c2

{
exp(c3[G2

h − 1])− 1
}
Gh(Gh − 1)2 , (4.89)

R0 = c2

{
exp(c3[G2

h − 1])− 1
}

(−G3
h +G2

h −Gh) , (4.90)

Etan = 2c2

{
exp(c3[G2

h − 1])− 1
}
G2
h . (4.91)

Substituting (4.88) into the force balance equation (4.16) yields

Pr(t) =R
∂W (t)

∂r(t)

=R

∫ t

0

m(τ)

ρ
q(t− τ)

{
R0

∂ε

∂r(t)
+ Etanε

∂ε

∂r(t)

}
dτ

=R

∫ t

0

m(τ)

ρ
q(t− τ)

{
Etan

G2
h

r(τ)2
r(t)− (Etan −R0)

Gh

r(τ)

}
dτ . (4.92)

Taking time derivative of the above equation yields

P ṙ(t) =R

{
m(t)

ρ

[
Etan

G2
h

r(t)
− (Etan −R0)

Gh

r(t)

]
+

∫ t

0

m(τ)

ρ
q(t− τ)Etan

G2
h

r(τ)2
ṙ(t)dτ

−α
∫ t

0

m(τ)

ρ
q(t− τ)

[
Etan

G2
h

r(τ)2
r(t)− (Etan −R0)

Gh

r(τ)

]
dτ

}
. (4.93)

As before, if we define a similar extended state variable

y(t) = R

∫ t

0

m(τ)

ρ
q(t− τ)Etan

G2
h

r(τ)2
dτ , (4.94)

the differential equation for radius r(t) can be obtained as

ṙ(t) =
m(t)

r(t)

REtan

[
Gh − Etan−R0

Etan

]
Gh

Pρ
+

1

P
y(t)ṙ(t)− αr(t) , (4.95)

which is similar to the differential equation for the linear material (4.32). After this, we can
follow a parallel path to the stability analysis presented in the sections above and obtain a
similar stabilizing criteria for nonlinear material

kg >
αRMh

ρPr2
h

[
1

1 + EtanMh

2ρPrh

]
, kcr, α > 0 .

Note that the effective difference between the stabilizing criteria for a linear material versus
a nonlinear material comes by replacing the material stiffness E with Etan.
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4.4.7 Extension to multiple component directions

Here we extend our framework from a single constituent model to a multiple constituent
model were constituents are aligned in different directions. Assume that each constituent
family is indexed by k and the angle between the constituent family direction and the cir-
cumferential directions is defined as αk ∈

[
−π

2
, π

2

]
. Since our model only considers the radial

expansion of the vessel wall, we seek an effective stiffness caused by the multiple constituents.
Assume the strain in the circumferential direction is ε. Due to the fact that all constituents
deform together in a constrained mixture model, the strain in vascular constituent family k
can be computed as

εk =

√
(1 + ε)2 + tan2 αk −

√
1 + tan2 αk√

1 + tan2 αk
=

ε

1 + tan2 αk
+O(ε2) . (4.96)

The stress in the constituent family k can be computed as

σk = Eεk ≈
Eε

1 + tan2 αk
, (4.97)

Therefore, force in the vascular constituent family k is

fk = AkEεk , (4.98)

where Ak is the cross-section area of the constituent family k. We can represent the multiple
constituents by an effective constituent in the circumferential direction by the following
equivalency relation

∑
k

(AkEεk) cosαk =
∑
k

fk cosαk = f = Ee

(∑
k

Ak

)
ε. (4.99)

Therefore, an effective stiffness Ee can be obtained as

Ee =

∑
k
Ak cosαk
1+tan2 αk∑
k Ak

E . (4.100)

Because Ak is proportional to the mass density of each constituent family, Mk, the effective
stiffness can be rewritten as

Ee =

∑
k
Mk cosαk
1+tan2 αk∑
kMk

E . (4.101)

After this point, we can apply the same formulas derived for the single constituent model
and obtain similar stability conclusions.
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4.5 Numerical Experiments

The stability analysis and derived stability criteria presented above are, strictly speaking,
applicable in the case of infinitesimal perturbations to the system. To understand how well
these theoretical results hold in the context of large deviations, we must perform numerical
integration of the original system. Therefore, in this section we simulate the vascular expan-
sion based on the system of nonlinear differential equations (4.34–4.38). Material constants
and geometric constants used in the simulations are listed in Table 4.1. All simulations were
done within Simulink. In all simulations, pathological G&R is triggered by introducing 50%
initial uniform mass loss of vascular constituents as in [13, 41].

Based on the stabilizing criteria (4.73) and the given G&R parameters listed in Table
4.1, the critical value of the growth feedback constant is kcr = 2.1 × 10−6. The stabilizing
condition (4.73) indicates that radial expansion is stable when kg > kcr while the radial
expansion is unstable when kg ≤ kcr. To test this, four scenarios of pathological G&R are
simulated with different values of the growth feedback constant: Case (1) kg = 1.5 × 10−6,
Case (2) kg = 3.0× 10−6, Case (3) kg = 5.0× 10−6, Case (4) kg = 7.0× 10−6. For these four
cases, the time evolution of the state variables for vascular expansion, mass density M(t),
vessel radius r(t), generalized stiffness y(t) and wall tension σ(t), were recorded and plotted
in Figure 4.1.

The simulation results show that when kg > kcr (Case 2–4), vascular expansion is stable.
In these three stable cases, we observed that generalized stiffness y(t) and wall tension σ(t)
converge to the corresponding homeostatic states asymptotically while mass density M(t)
and vessel radius r(t) only exhibit neutral stability, i.e., the values of the states remain
bounded. In Case 1, where kg < kcr, vessel radius r(t) and wall tension σ(t) both increase
unboundedly, which indicates unstable vascular expansion. Also observed is that the larger
the value of kg, the faster the states converge to the steady states.

We also simulated four cases with increased stiffness E to study the influence of vessel
stiffness on vascular expansion. The value of stiffness was increased to E = 3.8 × 106 Pa
while all other parameters remained unchanged. For this value of E, the critical value for the
growth feedback constant is kcr = 1.0× 10−6. Four scenarios were considered, with Case (1)
kg = 1.5×10−6, Case (2) kg = 3.0×10−6, Case (3) kg = 5.0×10−6, Case (4) kg = 7.0×10−6,
and the time course of the four state variables are plotted in Figure 4.2. For the elevated
value of stiffness E, all four cases satisfy the stabilizing condition kg > kcr and all four cases
obtain stable vascular expansion, including the case of kg = 1.5× 10−6 that was unstable for
the normal value of stiffness E.

Lastly, we simulated four cases considering an increase of vascular constituent decay
constant α = 4.6. This corresponds to an increase of turnover rate of vascular constituents,
e.g., collagen and smooth muscle. For this scenario, the critical value for the growth feedback
constant was kcr = 4.1 × 10−6. The time evolution of the four state variables for Case (1)
kg = 1.5×10−6, Case (2) kg = 3.0×10−6, Case (3) kg = 5.0×10−6, Case (4) kg = 7.0×10−6

are plotted in Figure 4.3. With the elevated value of the decaying constant, Cases (3) and
(4) satisfies the stabilizing criteria while Cases (1) and (2) do not. Figure 4.3 shows that
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Table 4.1: Mechanical, geometric and G&R kinetic constants [11, 138]

α = 2.3 E = 1.9× 106Pa P = 13332 Pa rh = 0.0075 m
Gh = 1.05 Mh = 1.0904 kg/m2 σh = 1.01× 105 Pa ρ = 1050 kg/m3

only in Cases (3) and (4), vessel radius remains bounded and wall tension converges to the
homeostatic value, while in Case (1) and (2) G&R results in unbounded vascular expansion.
Case (2), which is stable under the normal conditions, is destabilized due to elevated decaying
constant α.
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Figure 4.1: Time evolution of vessel properties (M(t), r(t), y(t) and σ(t)) using various
values of growth feedback constant kg from solving the nonlinear evolution equations. The
corresponding critical value for the growth feedback constant is kcr = 2.1× 10−6.
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Figure 4.2: Time evolution of vessel properties (M(t), r(t), y(t) and σ(t)) using various
values of growth feedback constant kg for increased arterial stiffness E. The corresponding
critical value for the growth feedback constant is kcr = 1.0× 10−6.

4.6 Discussion

While prior works [41, 7, 107, 134] have focused on computationally investigating vascular
expansion based on the constrained mixture theory of vascular G&R, we herein provide an
analytical study of the stability properties of this model. Under appropriate assumptions, the
constrained mixture model was used to develop a nonlinear ODE system governing vascular
growth, and stability criteria (4.73) were derived for growth about the homeostatic state in
terms of G&R kinetic parameters, geometric quantities and material properties.

To obtain stability conclusions for the nonlinear system about the homeostatic state,
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Figure 4.3: Time evolution of vessel properties (M(t), r(t), y(t) and σ(t)) using various
values of growth feedback constant kg for increased decay constant α. The corresponding
critical value for the growth feedback constant is kcr = 4.1× 10−6

we first linearized the nonlinear equations. The resulting linearization was shown to be
degenerate, failing to determine the stability of the original nonlinear system. Indeed, the
neutral stability property of vascular G&R observed in prior theoretical [30, 31] and compu-
tational [134] studies is due to this degeneracy, however stability properties for the original
(nonlinear) system had not previously been clarified. To address this problem, we consider
the 2-state subsystem (∆M,∆y), in which ∆r was eliminate due to its linear dependence
on ∆M . While the resulting equation for ∆M was non-homogenous, it was homogenized by
taking its time derivative. The resulting dynamics for ( ˙∆M,∆y) were made exponentially
stable by requiring the eigenvalues to be negative, by which local exponential stability of the
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mass density rate ˙∆M and generalized stiffness ∆y for the nonlinear system were established.
Using the local exponential stability of ˙∆M and the triangle inequality, neutral stability of
the mass density M(t) for the nonlinear system was established. Similar arguments imply
that the vessel radius r(t) is neutrally stable and wall tension σ(t) is exponentially stable for
the nonlinear system.

When converting the integral equation (4.21) for the vessel radius r to a non-delayed
ODE, we derived an extended state y defined by (4.31). The meaning of y is discussed here.
Consider the vascular force in the circumferential direction

Tθ(t) = Pr(t) = R

∫ t

0

m(τ)

ρ
q(t− τ)E

[
Gh

r(t)

r(τ)
− 1

]
Gh

r(τ)
dτ . (4.102)

Now take the first variation of the above equation corresponding to a snapshot of the G&R
process. Since q(t) is a known function of t and time is fixed when taking the variation, δq
and δt are both equal to zero. The only two functions that have non-zero first variation are
δTθ and δr, and therefore, the equation is reduced into the following form

δTθ = δ

[
R

∫ t

0

m(τ)

ρ
q(t− τ)E

[
Gh

r(t)

r(τ)
− 1

]
Gh

r(τ)
dτ

]
= R

∫ t

0

m(τ)

ρ
q(t− τ)Eδ

[
Gh

r(t)

r(τ)
− 1

]
Gh

r(τ)
dτ

= R

∫ t

0

m(τ)

ρ
q(t− τ)E

G2
h

r2(τ)
dτ · δr

= y(t) · δr . (4.103)

Therefore, the extended state y can be defined as the ratio of variations of stress and strain
in circumferential direction, multiplied by a constant R

h
,

y =
δTθ
δr

=
δTθ/h

δr/R

R

h
=
δσθ
δεθ

R

h
. (4.104)

This implies that y physically represents a generalized stiffness resisting radial expansion for
the mixture of vascular constituents. In our study we only consider one species of vascular
constituents aligned in the circumferential direction for simplicity of exposition. However,
we note that within one constituent family, constituents produced at different times τ form
a mixture of constituents that possess different natural configurations. We demonstrated in
Sec. 4.4.7 that it is straightforward to extend the theory to a mixture model with multiple
species in the current setting, however cases of asymmetric expansion would require more
involved analysis of the associated kinematics.

The derived stability criteria for the nonlinear system were verified by numerical simula-
tions. As shown in Figure 4.1, for the three cases (Case 2-4) satisfying the derived stability
criteria, only the generalized stiffness y and the wall tension σ converge to their homeostatic
values, while vessel radius r and mass density M only remain bounded (they do not converge
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to specific homeostatic values). These results from numerically integrating the nonlinear evo-
lution equations are consistent with the stability conclusions obtained from the presented
theoretical analysis. When the system is stable, only y and σ exhibit local exponential sta-
bility while r and M exhibit neutral stability. It is interesting to note that these convergence
behaviors match with prior observations from computational studies in idealized [13, 12] and
patient-specific [134] geometries, where less restrictive modeling assumptions were employed
than those used to develop the theoretical model herein. Moreover, we note that while the
theoretical analysis only implies local stability properties about the homeostatic state, the
numerical experiments considered large deviations from the homeostatic state; nonetheless
identical stability properties were observed as predicted by the theoretical model.

For the numerical experiments, pathological G&R was triggered by introducing an initial
mass loss to the vessel wall. This caused an immediate weakening of vessel, as reflected
in the initial drop of the generalized stiffness y (see Figure 4.1c). However, for the three
stable cases (Case 2-4), after the initial drop due to mass loss, the generalized stiffness y
recovered back to the homeostatic value. This is because when kg > kcr, thickening of vessel
wall caused by stress mediated growth is fast enough to compensate the natural expansion
caused by the initial mass loss and natural turnover of vascular constituent. On the other
hand, for Case 1, kg ≤ kcr, and the stress mediated growth (feedback) is not strong enough
to compensate for the weakening of the vessel and natural turnover. Therefore, expansion
proceeds with continuous increase of vessel radius r and wall tension σ.

Based on the stabilizing criteria (4.73), the stability of vascular expansion depends on
growth parameters (kg, α) and material properties (E, ρ). To understand how these factors
influence the stability behavior, we first increased the material stiffness E holding all other
parameters at their nominal values. The simulation results (Figure 4.2) show that, when
stiffness E is doubled, all four values of the feedback growth constant kg are stable, including
the case kg = 1.5×10−6, which was originally not stable. This can be seen from the definition
of the critical value kcr

kcr ,
αRMh

ρPr2
h

[
1

1 + EMh

2ρPrh

]
. (4.105)

When material stiffness E increases, kcr decreases and stabilizing criterion will be easier to
satisfy. This result, that increased arterial stiffness may have a stabilizing effect, matches
observations in [31, 101]. We note however that in previous clinical studies [34, 98], it has
been observed that increased wall stiffness correlates with the occurrence of aortic aneurysm.
However, increased vessel wall stiffness may be a consequence of the disease than a direct
cause. Alternatively, other factors such as multidirectional expansion and biochemical effects
may be at play in vivo that are not considered in the present modeling.

We also sought to understand the influence of growth parameters (kg, α). The constant
α defines the rate of vascular constituent turnover. When α was increased, the results in
Figure 4.3 demonstrate a destabilizing behavior. Namely, Case 2 (kg = 3.0× 10−6) that was
stable for the nominal parameter set led to unstable expansion. Again, this trend can be
anticipate from (4.105). As α is increased, the critical value for the feedback growth constant
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also increases, and the cases of kg = 1.5×10−6 and kg = 3.0×10−6 fail to satisfy the stabilizing
condition. Prior studies [102, 1] have observed increased collagen turnover in abdominal
aortic aneurysms and ruptured abdominal aortic aneurysms. Additionally, [37] found that
the collagen turnover is significantly more rapid in patients with risk factors for aneurysm
formation/rupture, such as smoking or hypertension. These observations are consistent
with the theoretical and computational analyses here that increased decay constant α can
destabilize the vascular G&R process.

While we assumed (mean) blood pressure to be constant in our analysis, we here con-
sider the effect of increased blood pressure (hypertension) on the stability of vascular G&R.
Based on the stabilizing criterion (4.105), an increase of mean blood pressure P will cause
a decrease of the critical value kcr, which indicates that hypertension acts as a stabilizing
factor. However, this is inconsistent with evidence that hypertension is a risk factor for
aneurysm growth and rupture [24]. It is important to notice that (4.40) holds true only
when P denotes the pressure producing the homeostatic hoop stress σh when M = Mh and
r = rh. Let us denote the homeostatic pressure as Ph. In order to study the influence of
mean blood pressure on the stability of vascular expansion, we need to consider a deviation
from the homeostatic pressure. Thus, for a general pressure P in (4.21), we assume

P = Ph + ∆P (4.106)

where ∆P is a small pressure deviation and Ph = E[Gh−1]Mh

ρrh
based on (4.40). Note that we

here only consider a constant change of pressure, i.e. ∆P is independent of time. After the
same procedure of linearization, the 3-state linear system equation becomes

d

dt

 ∆r
∆M
∆y

 =


1
kh

[
α− kgρPhr

2
h

RMh

] [
2∆r − rh

Mh
∆M + rh

Ph
∆P
]

kgρPhrh
R

[
2∆r − rh

Mh
∆M + rh

Ph
∆P
]

−k2Mh

r3h

[
α− kgρPhr

2
h

RMh

] [
2∆r − rh

Mh
∆M + rh

Ph
∆P
]
− α

[
∆y − k2Mh

r2hPh
∆P
]
 (4.107)

If we set the new deviation variable for generalized stiffness y(t) as

∆y , ∆y − k2Mh

r2
hPh

∆P , (4.108)

a similar 2-state homogeneous system can be obtained with respect to ( ˙∆M,∆y) by making
use of the same linear relation (4.66)

d

dt

[
˙∆M

∆y

]
=

[
kgρPhrh

R

[
2B1 − rh

Mh

]
0

B3 −α

]
×
[

˙∆M
∆y

]
. (4.109)
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Note that the coefficient matrix of the above 2-state system is the same as that of (4.70),
except the pressure P is now replaced by the homeostatic pressure Ph. Therefore, the same
stabilizing condition is obtained as follow

kg >
αRMh

ρPhr2
h

[
1

1 + EMh

2ρPhrh

]
, kcr, α > 0 . (4.110)

Substituting Ph = E[Gh−1]Mh

ρrh
into the above inequality yields

kcr =
α

EGh

[
Gh − 1

2

] ≈ 1.732
α

E
(4.111)

which is independent of the pressure deviation ∆P . Therefore, from the linear analysis, the
stability of vascular G&R is independent of mean blood pressure.

However, the above does not imply that blood pressure does not affect solution behavior.
Note that B1 > 0 if

kg <
αRMh

ρPr2
h

=
α

EGh [Gh − 1]
≈ 19.048

α

E
� kcr . (4.112)

We here assume the normal range of the value for kg is around kcr, which is much less than
19.048 α

E
. Therefore, B1 is always positive. Based on the linear relation between ∆r(t) and

∆M(t) in (4.66), and the second equation of (4.107) ,

d

dt
∆M = λ1∆M +

kgρPhrh
R

[
2B2 +

rh
Ph

∆P

]
, (4.113)

where

λ1 =
kgρPhrh

R

[
2B1 −

rh
Mh

]
= 2EGh [Gh − 1]

[
Gh −

1

2

]
[kcr − kg] . (4.114)

The solution to the above equation is

∆M(t) = B4e
λ1t +

kgρPhrh
−λ1R

[
2B2 +

rh
Ph

∆P

]
, (4.115)

where B4 is a constant that depends on the initial condition. Based on the linear relation
(4.66), the solution for radius change ∆r(t) is

∆r(t) = B1B4e
λ1t +

B1kgρPhrh
−λ1R

[
2B2 +

rh
Ph

∆P

]
+B2 . (4.116)

The stability of the solution is determine by the exponential term eλ1t. Since ∆P does not
influence λ1, it does not influence the stability of the system. However, ∆P does influences
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the particular solutions for ∆M(t) and ∆r(t). Therefore, ∆P will cause a shift of the steady
states (if they exist), but not the stability of the system.

In the case of stable vascular G&R (kg > kcr, λ1 < 0),

∆M(t→ +∞) =
kgρPhrh
−λ1R

[
2B2 +

rh
Ph

∆P

]
, (4.117)

∆r(t→ +∞) =
B1kgρPhrh
−λ1R

[
2B2 +

rh
Ph

∆P

]
+B2 . (4.118)

Therefore, if ∆P increases, it will cause the final mass density to increase. Indeed, vascular
mass density needs to increase in order to balance the increased pressure and maintain the
homeostatic stress σh. Also (4.108) shows that increased ∆P causes an increased shift of ∆y.
This also corresponds to the fact that the overall stiffness of the vascular mixture needs to
increase to compensate for the increased pressure. Similarly, due to the positiveness of B1,
increased ∆P will cause the increased shift of the final steady state radius. In comparison
with prior studies, it has similarly been shown that hypertension (i.e., increased ∆P ) does
not change the stability of expansion, however it does increase the thickness (proportional
to mass density) of vessel wall [132, 21] and the final size of the aneurysm. Also based on
the first equation of (4.107), hypertension increases the vessel expansion rate ∆̇r, which
is consistent with prior clinical findings [67], regardless of whether the expansion is stable
or not. The analysis above considers only the direct influence of hypertension on stability
of vascular G&R. However, hypertension may change stability through other factors not
considered here. For example, [89] indicate that collagen turnover in aorta and arteries are
increased under hypertension. This corresponds to increased of α in our analysis, which is a
destabilizing factor for vascular G&R.

4.7 Conclusion

A theoretical study of the stability properties of vascular G&R was presented. A system
of nonlinear ordinary differential equations was obtained from the integral equations of the
constrained mixture theory for G&R. Degeneracy of the linearized state equations about the
homeostatic state results in a “neutral stability property” for vascular growth and remodeling
previously observed in prior computational studies, and renders linear stability analysis
inconclusive. To resolve this problem and extend the stability conclusions to the original
nonlinear system, we were able to construct a two-state sub-system to apply Lyapunov’s
indirect method. Based on stability analysis for the nonlinear system, we derived a stabilizing
condition for radial expansion in terms of material properties (E, ρ), G&R parameters (kg, α),
geometry (R, rh). The neutral stability shows that, in the stable expansion case, only wall
tension σ and generalized stiffness y exhibit convergence to the corresponding homeostatic
values while vessel radius r and mass density of vascular constituents only remain bounded
without converging to any specific values. The derived theoretical stability criteria were
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demonstrated to hold broadly in numerical studies were deviations from the homeostatic state
were large. Additionally, we studied the effect of increased stiffness E and increased decay
constant α on the stability of radial expansion. Both the theoretical analysis and numerical
simulations showed that increased stiffness has a stabilizing effect of vascular expansion while
an increased turnover rate of vascular constituents has a destabilizing effect. Finally, the
effect of hypertension on the stabilizing criteria was studied. This analysis showed that while
increased blood pressure may cause a shift of the final steady states, it does not influence
the stability properties of the model.
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Chapter 5

Improving the Convergence of the
Iterative Ensemble Kalman Filter by
Resampling

5.1 Introduction

The Kalman filter provides optimal estimation for linear dynamics with Gaussian noise [79]
and has been widely used in engineering applications. There have been several variants of this
classic method aimed to improve its generality and efficiency. The extended Kalman filter
(EKF) [81] and unscented Kalman filter (UKF) [78] were introduced to better address state
estimation for nonlinear systems, and the ensemble Kalman filter (EnKF) [38, 15, 16] was
proposed to reduce computational cost by utilizing ensemble-based covariances. The iterative
ensemble Kalman filter (IEnKF) [76] was developed to handle nonlinear inverse problems
and leverage the computational efficiency of utlizing ensemble-based methods. The IEnKF
has since been applied to highly nonlinear inverse problems in areas such as turbulence [80,
125], geophysics [108] and biomedical engineering [124]. Performance analyses of the IEnKF
can be found in [104, 103, 85].

Despite its broad applicability, the IEnKF can suffer from poor convergence and stability.
A major reason the IEnKF can fail to provide accurate estimation is due to a progressively
diminished estimation (shrinking) of the covariance. The objective of the work herein is
to provide a mathematical explanation of the covariance shrinking effect observed with the
IEnKF, and based on that, propose a new method to improve its convergence without covari-
ance inflation. To achieve these goals, we first motivate the need for iterations in application
of EnKF to nonlinear inverse problems, from a constrained optimization point of view in
Section 5.2. Then in Section 5.3.1 and Section 5.3.2, we explain the reason that standard
IEnKF does not converge in terms of “early stopping”, which is a result of the interplay
between covariance shrinkage and the effect of the nonlinearity of the forward model. In
Section 5.4.1 and Section 5.4.2, we show that the “early stopping” can be prevented and
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convergence can be improved by adding an ensemble resampling step with first and second
moments kept unchanged. In Section 5.4.3, different resampling distributions are compared
and the influence of higher order moments (particularly kurtosis) on the convergence of
IEnKF is discussed.

5.2 The IEnKF Method

Consider a system described by a known forward model

x = F (θ) (5.1)

where x ∈ Rn is the system state and θ ∈ Rp are the model parameters. Assume we have
knowledge of the system state through observations

y = Hx+ ε (5.2)

where y ∈ Rm and ε represents measurement error. Without loss of generality, we assume
the observation operator H is linear. If H is nonlinear, the nonlinearity can be absorbed into
the nonlinearity of the forward model F (·) by redefining the state variable x.

The inverse problem seeks to estimate θ from observations y. This estimation can be
performed using the IEnKF, which employs a two-stage iterative estimation process. The first
stage entails an ensemble-based Kalman update, and the second stage entails a subsequent
prediction to ensure an overall update that is consistent with the forward model. This
two-stage process is iteratively repeated until convergence, as review below.

5.2.1 Update stage

Assume we have a set of prior ensembles for θ and x:{
θ̂

(j)
t

}J
j=1

and
{
x̂

(j)
t

}J
j=1

.

Index (j) denotes an ensemble member, J is the number of ensembles, and index t denotes

the iteration number in what will be an iterative update process. The hat notation (̂·) denotes
a prior estimate which has not incorporated the information from obervations yet. Based on
the misfit between observations and reconstructed output (i.e, y

(j)
t −Hx̂

(j)
t ) an ensemble-based

Kalman update is used to produce posterior ensembles for θ and x:

θ
(j)
t = θ̂

(j)
t + Cθ̂tx̂tH

T
(
HCx̂tx̂tH

T + Γ
)−1
(
y

(j)
t −Hx̂

(j)
t

)
, (5.3a)

x
(j)
t = x̂

(j)
t + Cx̂tx̂tH

T
(
HCx̂tx̂tH

T + Γ
)−1
(
y

(j)
t −Hx̂

(j)
t

)
, (5.3b)
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where Cθ̂tx̂t , Cx̂tx̂t are the discrete covariance matrices derived from the prior ensembles:

Cθ̂tx̂t =
1

J

J∑
j=1

(
θ̂

(j)
t −

¯̂
θt

)(
x̂

(j)
t − ¯̂xt

)T
,

Cx̂tx̂t =
1

J

J∑
j=1

(
x̂

(j)
t − ¯̂xt

)(
x̂

(j)
t − ¯̂xt

)T
. (5.4)

The bar notation (̄·) denotes ensemble mean. For each ensemble member j, the observation

y
(j)
t is drawn from a normal distribution N (ȳ,Γ), where Γ denotes the covariance of the

observation error ε (see [76] for details).

5.2.2 Prediction stage

The Kalman update (6.19) may generate posterior estimates θ
(j)
t and x

(j)
t that no longer

satisfy the forward model (5.1). Therefore, a prediction is used to apply the forward model
to the current posterior parameter estimates to generate prior states for the next iteration

step. Namely, the prior ensembles for the next step
{
θ̂

(j)
t+1

}J
j=1

and
{
x̂

(j)
t+1

}J
j=1

are obtained

by setting

θ̂
(j)
t+1 = θ

(j)
t , (5.5a)

x̂
(j)
t+1 = F (θ

(j)
t ) . (5.5b)

5.2.3 Iterative process

The results of (5.5) are plugged back into (6.19), with t← t+ 1, and the process is repeated
until some stopping criterion is satisfied, e.g., the innovation becomes less than some user-
defined error tolerance (tol):

‖ȳ −Hxt‖2 < tol where xt = F (θt) (5.6)

where ȳ is the mean of the observation ensemble
{
y

(j)
t

}J
j=1

, which is independent of t. Here,

the overall estimation of the unknown parameters at step t is computed as the posterior
ensemble mean

θ̄t =
1

J

J∑
j=1

θ
(j)
t , (5.7)
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Note that when the forward model F (·) is linear with respect to θ, the prediction step (5.5)
is not necessary, because

x
(j)
t = x̂

(j)
t + Cx̂tx̂tH

T
(
HCx̂tx̂tH

T + Γ
)−1
(
y

(j)
t −Hx̂

(j)
t

)
= F θ̂

(j)
t + FCθ̂tx̂tH

T
(
HCx̂tx̂tH

T + Γ
)−1
(
y

(j)
t −Hx̂

(j)
t

)
= Fθ

(j)
t . (5.8)

However, when F (·) is nonlinear, the posterior estimates θ
(j)
t and x

(j)
t from (6.19) will not

satisfy (5.1) in general, which is why an iterative estimation process is needed. It is the
convergence of this iterative process for nonlinear problems that is the focus of this chapter.

5.2.4 Example

Here we introduce an example that demonstrates the potential problem with convergence of
the IEnKF for nonlinear systems. Consider the following forward model:[

x1

x2

]
= F (θ) =

[
exp(−(θ1 + 1)2 − (θ2 + 1)2)
exp(−(θ1 − 1)2 − (θ2 − 1)2)

]
, (5.9)

with observation operator
H = [−1.5,−1.0] . (5.10)

Assume observation data is available with mean ȳ = −1 and uncertainty Γ = 0.01.
Figure 5.1a and 5.1b show, respectively, the solution path for θ in parameter space, and

the solution path for x in state space, during progressive iterations of the IEnKF. It can
be observed in Fig. 5.1a that the parameter estimate does not converge to a solution where
‖ȳ −HF (θt)‖2 = 0. In Figure 5.1b the prior mean and posterior mean are sequentially
plotted at each iteration. It can be observed that the solution oscillates between these two
means. In particular, the update stage makes the solution approach ‖ȳ −Hxt‖2 = 0 shown
in red, and the prediction stage makes the solution approach the dotted region where the
forward model (5.1) is satisfied. This example demonstrates that although innovation is not
minimized, further iterations of the IEnKF will not a) improve the estimation of θ, or b)
enable the state estimate to converge to a value that simultaneously satisfies the forward
model and minimizes misfit with the observations. These two phenomena will be considered
more rigorously in the next section.

5.3 Early Stopping of the IEnKF

In this section, we describe why the standard IEnKF leads to poor convergence when applied
to nonlinear inverse problems. We first demonstrate how sequential Kalman updating alone
affect the covariance matrices and resulting Kalman operator. We then demonstrate how the
full IEnKF procedure, involving both Kalman update and prediction, affects the covariance
matrices and Kalman operator.
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Figure 5.1: Convergence of the IEnKF applied to the model problem demonstrating (a)
parameter and (b) state values do not converge to the desired solution (the red locations).

5.3.1 Shrinking covariance

If we ignore the prediction stage (5.5) and only consider the Kalman update (6.19), it can
be shown that the covariance matrix CHx̂,θ̂ resulting from two sequential Kalman updates is

CHx̂t+1,θ̂t+1
=
(
I −HCx̂t,x̂tHT

(
HCx̂t,x̂tH

T + Γ
)−1
)
CHx̂t,θ̂t , (5.11)

where I denotes the identity matrix. The above equation can be further simplified as

CHx̂t+1,θ̂t+1
= PtCHx̂t,θ̂t , (5.12)

where Pt is the shrinking matrix defined as

Pt
.
= I −HCx̂t,x̂tHT

(
HCx̂t,x̂tH

T + Γ
)−1

= Γ
(
HCx̂t,x̂tH

T + Γ
)−1

. (5.13)
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Note that the observation uncertainty usually takes the form Γ = αI with α > 0. Thus, the
Frobenius norm of CHx̂t+1,θ̂t+1

can be upper-bounded in the following manner∥∥∥CHx̂t+1,θ̂t+1

∥∥∥
F

=
∥∥∥PtCHx̂t,θ̂t∥∥∥F

≤ α

λmin (HCx̂t,x̂tH
T ) + α

∥∥∥CHx̂t,θ̂t∥∥∥F
≤

t∏
τ=1

α

λmin (HCx̂τ ,x̂τH
T ) + α

∥∥∥CHx̂1,θ̂1∥∥∥F . (5.14)

If there exists an uniform lower bound δ > 0 such that

λmin
(
HCx̂τ ,x̂τH

T
)
> δ, ∀τ = 1, 2, ... , (5.15)

then ∥∥∥CHx̂t+1,θ̂t+1

∥∥∥
F
≤
(

α

δ + α

)t ∥∥∥CHx̂1,θ̂1∥∥∥F . (5.16)

Therefore, CHx̂t,θ̂t or Cθ̂t,Hx̂t will approach to zero as the iteration number increases, i.e.,

lim
t→+∞

∥∥∥CHx̂t,θ̂t∥∥∥F = 0 . (5.17)

Similarly, it can be shown that Cx̂t,Hx̂t will also converge to a zero matrix as t increases,
unless (5.15) is violated. By checking the Kalman update (6.19), it can be noted that the
convergence of Cθ̂t,Hx̂t and Cx̂t,Hx̂t to zero matrices will cause the Kalman gains

Kt = Cθ̂tx̂tH
T
(
HCx̂tx̂tH

T + Γ
)−1

, (5.18)

K ′t = Cx̂tx̂tH
T
(
HCx̂tx̂tH

T + Γ
)−1

, (5.19)

to approach to zero as t increases. This implies that further iterations will not update the
parameter estimation θt, regardless of the innovation ‖ȳ −Hxt‖. This early stopping is one
of the main reasons for which the IEnKF fails to converge. It was observed in our example
problem in §5.2.4 (Figure 5.1a).

5.3.2 Effect of forward model nonlinearity

We now consider the prediction step (5.5) and show how the nonlinearity of the forward
model affects the convergence of the IEnKF. First, consider the prior ensembles for the
current step {

θ̂
(j)
t

}J
j=1

and
{
x̂

(j)
t

}J
j=1

.
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The mean of the prior ensembles can be computed as

¯̂
θt =

1

J

J∑
j=1

θ̂
(j)
t , (5.20)

¯̂xt =
1

J

J∑
j=1

F
(
θ̂

(j)
t

)
=

1

J

J∑
j=1

F
(

¯̂
θt

)
+∇F

(
¯̂
θt

)(
θ̂

(j)
t −

¯̂
θt

)
+O

(∥∥∥θ̂(j)
t −

¯̂
θt

∥∥∥2
)

= F
(

¯̂
θt

)
+∇F

(
¯̂
θt

) 1

J

J∑
j=1

(
θ̂

(j)
t −

¯̂
θt

)
+O

(∥∥∥θ̂(j)
t −

¯̂
θt

∥∥∥2
)

= F
(

¯̂
θt

)
+O

(∥∥∥θ̂(j)
t −

¯̂
θt

∥∥∥2
)
, (5.21)

where ¯̂xt is computed using Taylor expansion. Define the Kalman gain for the θ update at
step t as

Kt
.
= Cθ̂tx̂tH

T
(
HCx̂tx̂tH

T + Γ
)−1

, (5.22)

so that the Kalman update equation becomes

θ̂
(j)
t+1 = θ

(j)
t = θ̂

(j)
t +Kt

(
y

(j)
t −Hx̂

(j)
t

)
. (5.23)

The mean of the prior ensemble for θ at step t+ 1 can be computed as

¯̂
θt+1 =

1

J

J∑
j=1

θ̂
(j)
t+1 =

1

J

J∑
j=1

θ
(j)
t =

¯̂
θt +Kt

(
ȳ −H ¯̂xt

)
, (5.24)

Combining (5.20), (5.21), (5.23), (5.24), we can obtain the deviation of each ensemble mem-
ber to its ensemble mean at the next step t+ 1 as

θ̂
(j)
t+1 −

¯̂
θt+1 = θ̂

(j)
t −

¯̂
θt −Kt

(
Hx̂

(j)
t −H ¯̂xt

)
+Kt

(
y

(j)
t − ȳ

)
, (5.25)

x̂
(j)
t+1 − ¯̂xt+1 = F

(
θ̂

(j)
t+1

)
− F

(
¯̂
θt+1

)
+O

(∥∥∥θ̂(j)
t+1 −

¯̂
θt+1

∥∥∥2
)

= ∇F
(

¯̂
θt+1

)(
θ̂

(j)
t+1 −

¯̂
θt+1

)
+O

(∥∥∥θ̂(j)
t+1 −

¯̂
θt+1

∥∥∥2
)

= ∇F
(

¯̂
θt+1

)(
θ̂

(j)
t −

¯̂
θt −Kt

(
Hx̂

(j)
t −H ¯̂xt

)
+Kt

(
y

(j)
t − ȳ

))
+O

(∥∥∥θ̂(j)
t+1 −

¯̂
θt+1

∥∥∥2
)
. (5.26)
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Multiplying (5.26) with H yields the deviation of the reconstructed output Hx with its
ensemble mean:

Hx̂
(j)
t+1 −H ¯̂xt+1 = H∇F

(
¯̂
θt+1

)(
θ̂

(j)
t −

¯̂
θt −Kt

(
Hx̂

(j)
t −H ¯̂xt

)
+Kt

(
y

(j)
t − ȳ

))
+O

(∥∥∥θ̂(j)
t+1 −

¯̂
θt+1

∥∥∥2
)
. (5.27)

Define a new state vector that includes the model parameter and the reconstructed output
that centered with respect the corresponding means

z
.
=
[
θ − θ̄, Hx−Hx̄

]T
, (5.28)

and combine (5.25) and (5.27) to yield the following update equation for z

ẑ
(j)
t+1 = Atẑ

(j)
t + At∆

(j)
y,t + Λ

(j)
t , (5.29)

where the evolution matrix

At
.
=

[
I −Kt

H∇F
(

¯̂
θt+1

)
−H∇F

(
¯̂
θt+1

)
Kt

]
, (5.30)

∆
(j)
y,t

.
=

[
0

y
(j)
t − ȳ

]
, ∆

(j)
t

.
= O

(∥∥∥θ̂(j)
t+1 −

¯̂
θt+1

∥∥∥2
)
, Λ

(j)
t

.
=

[
0

∆
(j)
t

]
. (5.31)

Therefore the evolution equation of the covariance matrix of ẑ can be obtained from (5.29)

Cẑt+1,ẑt+1 = AtCẑt,ẑtA
T
t + AtC∆y,t,∆y,tA

T
t + AtCẑt,Λt + CΛt,ẑtA

T
t + CΛt,Λt , (5.32)

where

Cẑt+1,ẑt+1 =

[
Cθ̂t+1,θ̂t+1

Cθ̂t+1,Hx̂t+1

CHx̂t+1,θ̂t+1
CHx̂t+1,Hx̂t+1

]
, (5.33)

C∆y,t,∆y,t =

[
0 0
0 Cyt,yt

]
=

[
0 0
0 Γ

]
. (5.34)

Note that in obtaining (5.32) we have used that the observations y are independent of the
new state z, i.e. ∆y,t is independent of ẑt and Λt. To understand how different terms in
(5.33) evolve, (5.32) is re-written in the matrix form below:[

Cθ̂t+1,θ̂t+1
Cθ̂t+1,Hx̂t+1

CHx̂t+1,θ̂t+1
CHx̂t+1,Hx̂t+1

]
= At

[
Cθ̂t,θ̂t Cθ̂t,Hx̂t
CHx̂t,θ̂t CHx̂t,Hx̂t + Γ

]
ATt

+ At

[
0 Cθ̂t,∆t

0 CHx̂t,∆t

]
+

[
0 0

C∆t,θ̂t
C∆t,Hx̂t

]
ATt

+

[
0 0
0 C∆t,∆t

]
. (5.35)
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The properties of the matrix At are critical to the evolution of the covariances. Thus the
eigen-problem for At is solved here first. To simplify the notation, At is re-defined as

At
.
=

[
I −Kt

H∇F
(

¯̂
θt+1

)
−H∇F

(
¯̂
θt+1

)
Kt

]
=

[
Idθ×dθ a
b ba

]
, (5.36)

and the characteristic equation for At is given by

det(At − λI) = det ((1− λ)Idθ×dθ) det
(
ba− λIdy×dy − b ((1− λ)Idθ×dθ)

−1 a
)

= (1− λ)dθ−dyλdy det
(
λIdy×dy − (Idy×dy + ba)

)
= 0 , (5.37)

where dθ and dy are the dimensions for the hidden model parameter θ and the observed output
y respectively. Solving the equation above yields the three different kinds of eigenvalues (the
multiplicities are not necessarily equal to one):

λ1 = 0 , (5.38)

λ2 = λ(I + ba) = λ
(
I −H∇F

(
¯̂
θt+1

)
Kt

)
≈ λ

(
Γ
(
HCx̂tx̂tH

T + Γ
)−1
)
, (5.39)

λ3 = 1 . (5.40)

There are two key points worth clarifying here: (1) λ2 are the eigenvalues of the matrix

Γ
(
HCx̂tx̂tH

T + Γ
)−1

which satisfy 0 < λ2 < 1; (2) λ3 represent the insufficiency of the
observation and only show up when dy < dθ which is usually the case in real applications
as the observation is usually limited, and this scenario will be the focus for the rest of this
chapter.

5.3.2.1 Convergence of Cθ̂,θ̂ and Cθ̂,Hx̂

Based on Eq. (5.35), the update equation for Cθ,θ can be obtained

Cθ̂t+1,θ̂t+1
= Cθ̂t,θ̂t − Cθ̂t,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,θ̂t . (5.41)

Note that θ̂t is a vector of dimension dθ. For each scalar entry of θ̂t, the evolution equation
is

Cθ̂st+1,θ̂
s
t+1

= Cθ̂st ,θ̂st − Cθ̂st ,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,θ̂st , (5.42)

where the superscript s denotes that θ̂st is scalar. Since the second term on the right hand

side of the above equation is non-negative, the sequence
{
Cθ̂st ,θ̂st

}∞
t=1

is a monotone decreasing

sequence that all elements are bounded below (θ̂st ≥ 0). Thus the sequence is convergent
based on monotone convergence theorem. This indicates that the incremental term must
converge to zero, i.e.

lim
t→∞

Cθ̂st ,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,θ̂st = 0 ⇒ lim
t→∞

Cθ̂st ,Hx̂t = 0,∀s = 1, ..., dθ , (5.43)
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which is equivalent to
lim
t→∞

Cθ̂t,Hx̂t = 0 . (5.44)

This further indicates the convergence of Cθ̂t,θ̂t as

lim
t→∞

∥∥∥Cθ̂t+1,θ̂t+1
− Cθ̂t,θ̂t

∥∥∥
F

= 0 , (5.45)

and the sequence of Cθ̂t,θ̂t lies in a complete space (based on the Cauchy Convergence Crite-
rion). However, this does not mean that the Cθ̂t,θ̂t will converge to zero (In real applications,
we only require the covariance of Cθ̂,θ̂ to decrease below a preset tolerance for true conver-
gence [76]). And in the case of dy < dθ, Cθ̂t,θ̂t will not converge to zero. This is related to
the eigenvalue λ3 = 1 for the evolution matrix At. To see this, the eigenvector of the matrix
At for λ3 = 1 is solved,

(At − λ3I) z =

[
0 a
b ba− I

] [
zθ
zHx

]
= 0⇒ zHx = 0 . (5.46)

Therefore, the eigenvector v3 corresponding to λ3 = 1 lies in the subspace of θ and has zero
component in the Hx direction. The evolution matrix At plays a key role in shrinking the
covariances Cθ̂t,θ̂t , Cθ̂t,Hx̂t and CHx̂t,Hx̂t because 0 < λ1, λ2 < 1. However it does not have
the variance shrinking effect in the direction of the eigenvector v3 corresponding to λ3 = 1
(violating the contraction requirement). Therefore, due to the non-shrinking direction v3 lies
in the subspace of θ, the sequence of Cθ̂t,θ̂t will converge, but will not converge to 0.

Cθ̂t+1,Hx̂t+1
= Cθ̂t,Hx̂t − Cθ̂t,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,Hx̂t

+ Cθ̂t,∆t
− Cθ̂t,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,∆t (5.47)

5.3.2.2 Convergence of CHx̂,Hx̂

Based on Eq. (5.35), the evolution equation for CHx̂,Hx̂ can be derived as

CHx̂t+1,Hx̂t+1

= H∇F
(

¯̂
θt+1

)(
Cθ̂t,θ̂t − Cθ̂t,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,θ̂t

)(
H∇F

(
¯̂
θt+1

))T
+H∇F

(
¯̂
θt+1

)(
Cθ̂t,∆t

− Cθ̂t,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,∆t

)
+
(
C∆t,θ̂t

− C∆t,Hx̂t (CHx̂t,Hx̂t + Γ)−1CHx̂t,θ̂t

)(
H∇F

(
¯̂
θt+1

))T
+ C∆t,∆t , (5.48)

and by applying Eq. (5.25), the above equation can be simplified to

CHx̂t+1,Hx̂t+1 = H∇F
(

¯̂
θt+1

)
Cθ̂t+1,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
+H∇F

(
¯̂
θt+1

)
Cθ̂t+1,∆t

+ C∆t,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
+ C∆t,∆t . (5.49)
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Because Cθ̂t,Hx̂t is equal to zero in the steady state based on Eq. (5.44), a steady state
condition of the nonlinear term ∆t can be derived

Cθ̂t,Hx̂t = E
(
θ̂t − ¯̂

θt, H∇F
(

¯̂
θt

)(
θ̂t − ¯̂

θt

)
+ ∆t−1

)
= Cθ̂t,θ̂t

(
H∇F

(
¯̂
θt

))T
+ Cθ̂t,∆t−1

= 0 , (5.50)

which is equivalent to

Cθ̂t,∆t−1
= −Cθ̂t,θ̂t

(
H∇F

(
¯̂
θt

))T
. (5.51)

This is the stationary condition for the nonlinear term. Substituting the stationary condition
(5.51) into Eq. (5.49) yields

CHx̂t+1,Hx̂t+1 = H∇F
(

¯̂
θt+1

)
Cθ̂t+1,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
−H∇F

(
¯̂
θt+1

)
Cθ̂t+1,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
−H∇F

(
¯̂
θt+1

)
Cθ̂t+1,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
+ C∆t,∆t

= −H∇F
(

¯̂
θt+1

)
Cθ̂t+1,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
+ C∆t,∆t . (5.52)

The nonlinear term ∆t = O
(∥∥∥θ̂t+1 − ¯̂

θt+1

∥∥∥2
)

as a random variable can be decomposed into

two parts: (a) a term that is correlated with θ̂t+1 and (b) a term that is uncorrelated

∆t = βT θ̂t+1 + γt+1 (5.53)

where β can be obtained by using standard linear regression and applying Eq. (5.51):

β =C−1

θ̂t+1,θ̂t+1
Cθ̂t+1,∆t

=C−1

θ̂t+1,θ̂t+1
Cθ̂t+1,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
=−

(
H∇F

(
¯̂
θt+1

))T
, (5.54)

and the covariance of ∆t can be computed as

C∆t,∆t = βTCθ̂t+1,θ̂t+1
β + Cγt+1,γt+1

= H∇F
(

¯̂
θt+1

)
Cθ̂t+1,θ̂t+1

(
H∇F

(
¯̂
θt+1

))T
+ Cγt+1,γt+1 (5.55)
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Therefore, Eq. (5.52) can be reduced to the following simple form in the steady state.

CHx̂t+1,Hx̂t+1 = Cγt+1,γt+1 (5.56)

where γt represents the uncorrelated component of the nonlinear effect and it cannot be
reduced by usual Kalman iterations. Intuitively, this can also be directly observed from Eq.
(5.35) as the nonlinear term C∆t,∆t on the right hand side that is not shrunk by At acts
directly to the entry corresponding to CHx̂,Hx̂.

In conclusion, the take home message here is that: for the iterative ensemble Kalman
filter described by the update step (6.19) and the prediction step (5.5),

• Cθ̂t,Hx̂t will converge to zero matrix as t increases.

• CHx̂t,Hx̂t will not converge to zero because of the nonlinearity effect of F (θ).

• Cθ̂t,θ̂t will not converge to zero matrix because the insufficiency of observations.

5.3.2.3 Example

We return to the example in §5.2.4 to demonstrate the above conclusions. Figure 5.2 plot the
evolution of the norms of the various covariance matrices, Kalman gain and innovation. The
covariance matrix Cθ̂t,Hx̂t converges to zero in relatively few iterations. Consequently, Cθ̂t,θ̂t
stops updating. CHx̂t,Hx̂t oscillates and fails to converge due to the nonlinearity. The Kalman
gain converges to zero, and the innovation fails to improve with subsequent iterations. This
example demonstrated a typical situation that standard ensemble Kalman filter fails due to
early stopping of the Kalman updates. The numerical simulation results are consistent with
the theoretical analysis above.

5.3.3 Steady-state

In §5.3.2, we focused on the transient behavior of the various covariance matrices and their
relation to the “early stopping” of the IEnKF in nonlinear problems. In this section, the
steady-state behavior of the IEnKF is studied as well as the effect of observation uncertainty
Γ.

Let t = f denote the iteration number where θt is effectively unchanged with further
iterations. Denote the (fixed) ensemble for θ at this step (and beyond) as{

θ
(j)
f

}J
j=1

. (5.57)

There is no need to distinguish between the prior and posterior ensemble of θ as they are
assumed the same for t ≥ f . Therefore, the prior ensemble of the state x will be{

x̂
(j)
f

}J
j=1

=
{
F
(
θ

(j)
f

)}J
j=1

, (5.58)
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and will not change with respect to t since
{
θ

(j)
f

}J
j=1

is fixed. The mean of the prior ensemble

for x is

¯̂xf =
1

J

J∑
j=1

F
(
θ

(j)
f

)
. (5.59)

The mean of the posterior ensemble of x is

x̄f =
1

J

J∑
j=1

x
(j)
f

=
1

J

J∑
j=1

(
x̂

(j)
f + Cx̂f x̂fH

T
(
HCx̂f x̂fH

T + Γ
)−1
(
y

(j)
t −Hx̂

(j)
f

))
= ¯̂xf + Cx̂f x̂fH

T
(
HCx̂f x̂fH

T + Γ
)−1 (

ȳ −H ¯̂xf
)
. (5.60)

based on the relation between prior and posterior state estimation Eq. (6.19b). Therefore
the final difference (i.e., oscillation magnitude) of the prior and posterior mean of the state
x is

x̄f − ¯̂xf = Cx̂f x̂fH
T
(
HCx̂f x̂fH

T + Γ
)−1 (

ȳ −H ¯̂xf
)
. (5.61)

Left multiplying the above by H,

Hx̄f −H ¯̂xf = HCx̂f x̂fH
T
(
HCx̂f x̂fH

T + Γ
)−1 (

ȳ −H ¯̂xf
)
, (5.62)

gives the oscillation magnitude of the reconstructed output. We can also obtain the relation
between the output reconstruction error of the prior mean and posterior mean:

Hx̄f − ȳ = Γ
(
HCx̂f x̂fH

T + Γ
)−1 (

H ¯̂xf − ȳ
)
. (5.63)

It can be seen from Eq. (5.62) and (5.63) that the relative magnitudes of Γ and CHx̂f ,Hx̂f
determine the steady-state oscillation magnitude and mean output reconstruction error.
Based on the derivations above, the following summarizes the steady-state behavior of the
standard IEnKF:

• The prior and posterior ensembles of the parameter θ will approach to a fixed ensemble{
θ

(j)
f

}J
j=1

.

• The estimate for the system state x will oscillate between a prior and posterior ensemble
that both are fixed with respect to t. The oscillation magnitude of the prior and
posterior means is given by (5.62).

• The larger the uncertainty in the observation, Γ, the smaller the oscillation magnitude,
Hx̄f −H ¯̂xf ;

• The larger the uncertainty in the observation, Γ, the larger the final mean output
reconstruction error, Hx̄f − ȳ.
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5.3.4 Example

Figure 5.3 plots the convergence of the system state for different observation uncertainties
Γ = 0.1 and Γ = 0.0001. It shows that the oscillation magnitude is smaller in the case of
Γ = 0.1 than that for Γ = 0.0001. The intuition behind this is that when the observation
uncertainty Γ is smaller, the magnitude of the Kalman filter is larger. Therefore, the Kalman
updates tend to be larger. It can also be shown that when Γ is smaller, the posterior after each
Kalman update is closer to the line of ȳ−Hx = 0. This is because when the observation has
less uncertainty, the reconstructed output Hx is more likely to approach to the observation
ȳ.

5.4 The Ensemble Resampling Method

We herein propose an Ensemble Resampling Method (ERM) to prevent early stopping of
IEnKF by resampling of the parameter ensemble. We provide a mathematical foundation
for this approach by, first, showing that resampling perturbs the covariance shrinkage and
consequently prevents the Kalman gain Kt from approaching to zero in the early iterations,
and second, proposing a condition to ensure the deviation of the Kalman gain caused by the
resampling remains small and asymptotically converges to zero. This condition ensures that
the resampling not only prevents the early stopping, but also maintains the correct Kalman
update direction. Finally, the influence of the higher order moments on the convergence of
IEnKF is discussed.

5.4.1 Perturb Covariance Shrinkage with Resampling

To prevent early stopping of IEnKF, we need to prevent Cθ̂t,Hx̂t (or Kalman gain Kt) from
approaching to zero before the innovation is minimized. It is achieved by resampling the

posterior ensemble of the parameter,
{
θ

(j)
t

}J
j=1

. This is equivalent to add a random deviation

∆
(j)
r,t to the jth posterior ensemble member before assigning to the prior ensemble member

of the next step:

θ̂
(j)
t+1 = θ

(j)
t + ∆

(j)
r,t = θ̂

(j)
t +Kt

(
y

(j)
t −Hx̂

(j)
t

)
+ ∆

(j)
r,t . (5.64)

Derivations similar to (5.26) and (5.27) yields a similar evolution equation for the extended
state z

ẑ
(j)
t+1 = Atẑ

(j)
t + At∆

(j)
y,t + Λ̃

(j)
t , (5.65)

except the additional term Λ̃
(j)
t now takes a different form

Λ̃
(j)
t

.
=

[
∆

(j)
r,t

∆̃
(j)
t

]
, ∆̃

(j)
t := ∆

(j)
t +H∇F

(
¯̂
θt+1

)
∆

(j)
r,t , (5.66)
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which includes both the effects from the nonlinearity, ∆
(j)
t , and the resampling process,

∆
(j)
r,t . From the evolution equation (5.65), the evolution equation for the covariances can be

obtained in the following form:[
Cθ̂t+1,θ̂t+1

Cθ̂t+1,Hx̂t+1

CHx̂t+1,θ̂t+1
CHx̂t+1,Hx̂t+1

]
= At

[
Cθ̂t,θ̂t Cθ̂t,Hx̂t
CHx̂t,θ̂t CHx̂t,Hx̂t + Γ

]
ATt

+ At

[
Cθ̂t,∆r,t

Cθ̂t,∆̃t

CHx̂t,∆r,t CHx̂t,∆̃t

]
+

[
C∆r,t,θ̂t

C∆r,t,Hx̂t

C∆̃t,θ̂t
C∆̃t,Hx̂t

]
ATt

+

[
C∆r,t,∆r,t C∆r,t,∆̃t

C∆̃t,∆r,t
C∆̃t,∆̃t

]
. (5.67)

Note that, due to additional deviation caused by resampling, ∆r, the fourth irreducible term
has non-zero contributions to all four entries of the covariance matrix, i.e. none of Cθ̂,θ̂, Cθ̂,Hx̂
and CHx̂,Hx̂ will converge to zero unless the nonlinear effect ∆t and the resampling deviation
∆r,t both approach to zero. Therefore the Kalman gain Kt will not approaches to zero in the
early stage to cause early stopping of Kalman updates. The Kalman updates will be equal
to zero only when the innovation ȳ −Hx̂ approaches to zero.

5.4.2 Small Deviation Condition for the Kalman Gain

It has already been shown in Section 5.4.1 that adding a resampling process between the
update step and the prediction step can help to prevent the early stopping of Kalman filter
updates by perturbing the covariance shrinkage via resampling. However, to ensure conver-
gence of IEnKF, we also need to make sure the update “direction” is correct after resampling,
i.e. the change of the Kalman gain is small after the resampling process. This is achieved by
keeping the mean and covariance unchanged during the resampling process. The idea will
be shown below.

For simplicity of notation, we define the parameter and state before resampling as random
variables θt and xt, the parameter and state after resampling as random variables θr,t and
xr,t, and the difference caused by resampling as

∆r,t = θr,t − θt . (5.68)

The relation between parameter and state is

xt = F (θt) , xr,t = F (θr,t) . (5.69)

During the resampling process, the first and second moments of the parameter θ are keep
unchanged, that is,

E (θr,t) = E (θt) = θ̄t, V ar (θr,t) = V ar (θt) = σ2
t . (5.70)
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From this, the expectation and variance of ∆r,t can be obtained as

E (∆r,t) = E (θr,t)− E (θt) = 0 , (5.71)

V ar (∆r,t) = V ar (θr,t) + V ar (θt) = 2σ2
t , (5.72)

where independence of θr,t and θt is applied. The updates of iterative Kalman filter is
determined by the innovation y −Hx and the Kalman gains

Kt = Cθ̂tx̂tH
T
(
HCx̂tx̂tH

T + Γ
)−1

,

K ′t = Cx̂tx̂tH
T
(
HCx̂tx̂tH

T + Γ
)−1

, (5.73)

which depend on the covariance matrices Cθ̂tx̂t and Cx̂tx̂t . The Kalman gain basically defines
the “direction” of the updates. Therefore, in order to do correct updates, we need to make
sure the Kalman gain is computed properly even after the resampling process. To see this, the
differences of the covariances,

∥∥Cθr,t,xr,t − Cθt,xt∥∥ and
∥∥Cxr,t,xr,t − Cxt,xt∥∥, need to be checked.

Theorem 5.4.1. Considering the iterative ensemble Kalman filter defined by the update step
(6.19) and the prediction step (5.5), if the mean and variance of the parameter θ are kept
unchanged during the resampling process described by (5.64), i.e.

E (θr,t) = E (θt) = θ̄t, V ar (θr,t) = V ar (θt) = σ2
t .

then the deviations of the covariances have the following upper bounds∥∥Cθr,t,xr,t − Cθt,xt∥∥ ≤ 2
√

2Mσ2
t , (5.74)∥∥Cxr,t,xr,t − Cxt,xt∥∥ ≤ 2

√
2M2σ2

t , (5.75)

where the constant M is a uniform upper bound for the gradient of the forward model mapping
F (θ), i.e.

‖F ′(θ)‖ ≤M . (5.76)

Proof. Assume the forward model F (θ) considered here is continuous on the closed interval[
θt, θ̄t

]
and differentiable on the open interval

(
θt, θ̄t

)
, where θt is an ensemble member at

the step t and θ̄t is the ensemble mean. Here without loss of generality, we assume θt < θ̄t.
Then based on the mean value theorem,

xt = F (θt) = F
(
θ̄t
)

+ F ′(θη)
(
θt − θ̄t

)
(5.77)

where θη is some value in the open interval
(
θt, θ̄t

)
. Taking expectation of the above equation

yields

x̄t = E (F (θt)) = F
(
θ̄t
)

+ E
(
F ′(θη)

(
θt − θ̄t

))
. (5.78)
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Therefore the deviation of the ensemble member from the ensemble mean is

xt − x̄t = F ′(θη)
(
θt − θ̄t

)
− E

(
F ′(θη)

(
θt − θ̄t

))
. (5.79)

Making use of the upper bound on F ′(θ), we can obtain an upper bound on the variance of
the state before resampling as below

E (xt − x̄t)2 = E
(
F ′(θη)

(
θt − θ̄t

)
− E

(
F ′(θη)

(
θt − θ̄t

)))2

= E
(
F ′(θη)

(
θt − θ̄t

))2 −
(
E
(
F ′(θη)

(
θt − θ̄t

)))2

≤ E
(
F ′(θη)

(
θt − θ̄t

))2

≤M2E
(
θt − θ̄t

)2

= M2σ2
t . (5.80)

Similarly, an upper bound of the variance of the state after resampling can be obtained too,

E (xr,t − x̄r,t)2 ≤M2σ2
t . (5.81)

Because the ensemble member of the parameter before and after resampling are independent,
the mean square difference between θt and θr,t can be computed as

E (θr,t − θt)2 = E
(
θr,t − θ̄t + θ̄t − θt

)2

= E
(
θr,t − θ̄t

)2
+ E

(
θt − θ̄t

)2

= 2σ2
t . (5.82)

Applying the mean value theorem again, the difference between the states before and after
resampling is

xr,t − xt = F ′ (θζ) (θr,t − θt) , (5.83)

where θζ ∈ (θr,t, θt). Here we again assume θr,t < θt without loss of generality. Taking
expectation of the above equation, we can obtain an upper bound for the expected mean
square difference between xr,t and xt

E (xr,t − xt)2 = E (F ′ (θζ) (θr,t − θt))2

≤M2E (θr,t − θt)2

≤ 2M2σ2
t . (5.84)
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Based on (5.80), (5.81), (5.82) and (5.84) and applying Cauchy-Schwarz inequality, the upper
bounds for the differences of covariances before and after resampling are∥∥Cθr,t,xr,t − Cθt,xt∥∥

=
∥∥Cθr,t,xr,t − Cθr,t,xt + Cθr,t,xt − Cθt,xt

∥∥
≤
∥∥Cθr,t,xr,t − Cθr,t,xt∥∥+

∥∥Cθr,t,xt − Cθt,xt∥∥
=
∥∥E (θr,t − θ̄t) (xr,t − xt)

∥∥+ ‖E (θr,t − θt) (xt − x̄t)‖

≤
√
E
(
θr,t − θ̄t

)2
E (xr,t − xt)2 +

√
E (θr,t − θt)2E (xt − x̄t)2

≤ 2
√

2Mσ2
t , (5.85)

∥∥Cxr,t,xr,t − Cxt,xt∥∥
=
∥∥Cxr,t,xr,t − Cxr,t,xt + Cxr,t,xt − Cxt,xt

∥∥
≤
∥∥Cxr,t,xr,t − Cxr,t,xt∥∥+

∥∥Cxr,t,xt − Cxt,xt∥∥
= ‖E (xr,t − x̄r,t) (xr,t − xt)‖+ ‖E (xr,t − xt) (xt − x̄t)‖

≤
√
E (xr,t − x̄r,t)2E (xr,t − xt)2 +

√
E (xr,t − xt)2E (xt − x̄t)2

≤ 2
√

2M2σ2
t . (5.86)

From previous derivation, a similar variance update equation for the parameter θ can be
obtained,

Cθ̂r,t+1,θ̂r,t+1
= Cθ̂r,t,θ̂r,t − Cθ̂r,t,Hx̂r,t

(
CHx̂r,t,Hx̂r,t + Γ

)−1
CHx̂r,t,θ̂r,t , (5.87)

except that the variables here are the those after the resampling process. If the special case
where θ and Hx are all scalars, the relation is reduced to:

σ2
t+1 = σ2

t −
Cθ̂r,t,Hx̂r,tCHx̂r,t,θ̂r,t
CHx̂r,t,Hx̂r,t + Γ

. (5.88)

From the monotone convergence theorem, it can also be obtained that the sequence {σt}∞t=1 is
convergent, and we can denote the limit as σ∗. Because of the additional random disturbance
added by resampling ∆r,t, the covariance Cθ̂r,t,Hx̂r,t will not be equal to zero unless ∆r,t = 0

(i.e. σt = 0 based on Eq. (5.72)). Mathematically, this is equivalent to: there exists a
non-negative function g(·) such that∣∣∣Cθ̂r,t,Hx̂r,t∣∣∣ ≥ g (σt) > 0, ∀σt 6= 0, (5.89)
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and g (σt) = 0 only when σt = 0. Then Eq. (5.88) can be converted to

σ2
t+1 ≤ σ2

t − cg2 (σt) , (5.90)

where c > 0 is some constant to take account the effect of the denominator of the second
term on the right hand side of Eq. (5.88). Then taking limits on both hand sides of the
above inequality as t→∞ yields

σ2
∗ ≤ σ2

∗ − cg2(σ∗)⇒ g2 (σ∗) ≤ 0⇒ g (σ∗) = 0 . (5.91)

Because zero is the only stationary point of g(·), it can be obtained that σ∗ = 0, i.e.

lim
t→∞

σ2
t = 0 . (5.92)

Therefore, based on (5.85), as the iteration step t increases, the difference between Cθr,t,xr,t
and Cθt,xt will be very small and asymptotically converges to zero as t increases. Similar
conclusions hold true for the difference between Cxr,t,xr,t and Cxt,xt . This indicates that
except at the early stage of the iteration process, the change of the Kalman gains will
remain small and asymptotically converge to zero if the mean and the covariance of the
parameter ensemble are kept the same before and after the resampling process.

To verify the conclusion above, IEnKF with resampling is applied to the test example
defined in Equation (5.9) - Equation (5.10). Gaussian distribution is used as the resampling
distribution. Figure 5.4 shows the evolution of the covariances with resampling implemented.
Compared to the results without resampling, the covariance Cθ̂,Hx̂ and the Kalman gain
Kt will not approach to zero in the early stage to cause Cθ̂,θ̂ and CHx̂,Hx̂ stop updating.
Instead, all covariances converge to zero simultaneously and roughly at the same time that
the magnitude of the innovation ‖ȳ −Hx̂‖ converges to zero (see Figure 5.5). This indicates
that the “early stopping” of standard IEnKF is prevented by resampling as comparing to
the simulations without resampling where the Kalman gain Kt converges to zero before the
innovation is minimized (i.e. converges to zero).

Figure 5.4(a) also shows that Cθ̂,θ̂ converges to zero as t increases. This verifies the
argument we made in Equation (5.92), and along with Theorem 5.4.1, leads to the conclusion
that the change of the Kalman gain after resampling will remain small and asymptotically
converge to zero. This conclusion is numerically verified by results shown in Figure 5.6, i.e.
the difference of the Kalman gain before and after resampling quickly decreases, remains
bounded by a small quantity, and ultimately converges to zero as t increases.

Figure 5.7 and Figure 5.8 show the solution path with resampling implemented in the x
and θ space respectively. They both show that the “early stopping” of IEnKF is prevented
and the solutions are able to converge to the true solution. Note that there are multiple
local minima for the test problem and the solution only converges to one of them depending
on the initial condition given. More information needs to be provided if we want to pick out
a particular local minimum.

In summary, the resampling process helps to prevent the “early stopping” of iterative
ensemble Kalman filter by preventing the Kalman gain Kt from approaching to zero before
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the innovation is reduced to zero. On the other hand, Theorem 5.4.1 gives the small deviation
condition of the Kalman Gain for resampling, that is, by keeping the mean and covariance
of the parameter ensemble unchanged during the resampling process, the Kalman gain is
almost kept unchanged after the resampling to ensure the update “direction” is correct.

5.4.3 Influence of Higher Order Moments on Convergence

In Section 5.4.1 and Section 5.4.2, we have shown how to use resampling to prevent the
early stopping of iterative ensemble Kalman filter and improve its convergence. Gaussian
distribution is used during the resampling process while the first and second order moments
are kept unchanged. However, other distributions with different higher order moments can
also be used to resample the ensemble. Because it is meaningless to consider the skewness
(the third order moment) of the resampling distribution without prior knowledge, we here
mainly discuss the influence of kurtosis (the fourth order moment) on the convergence of
iterative ensemble Kalman filter. Three different resampling distributions are considered
here (see Figure 5.9):

• Uniform distribution: kurtosis = 1.8;

• Gaussian distribution: kurtosis = 3;

• Laplace distribution: kurtosis = 6.

The skewness of all the above distributions is equal to zero, and the mean and variance are set
to be the same as the ensemble before resampling. The numerical simulation results for the
above resampling distributions are shown in Figure 5.10, which yield two major take-home
messages:

• Larger kurtosis makes the convergence more oscillatory. In Figure 5.10, the main
trends of the convergence for uniform and gaussian resampling (smaller kurtosis) are
almost monotonic while the convergence for Laplace resampling (larger kurtosis) is
rather oscillatory. This is because the distribution with larger kurtosis is more likely
to generate outliers, which will reflect as more fluctuations in the ensemble mean
estimation of the parameter. However, this is not necessarily a disadvantage as this
naturally adds more mutation into the solution at each iteration and may help the
solution to jump out of the local minima and converge to the global minimum.

• Smaller kurtosis accelerates the convergence rate. It can also be observed in Figure 5.10
that Laplace resampling (with the largest kurtosis) yields the largest iteration number
for convergence (about 1200 steps). Even comparing uniform resampling and Gaussian
resampling which yield almost the same convergence iteration steps (about 600 steps),
we can find that gaussian resampling (with larger kurtosis) takes more iteration steps
to converge to the neighborhood of local minimums around (−1,−1) than uniform
resampling. This is because resampling distribution with smaller kurtosis is less likely
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to generate extreme outliers and most of the new ensembles will be near the ensemble
mean, which is in general a better estimator of the parameter value than an individual
ensemble member. Therefore smaller kurtosis tends to accelerate the convergence.

In summary, larger kurtosis for resampling distribution adds more mutations in the solution
at each step, and smaller kurtosis concentrates ensemble members more around the ensemble
mean and thus speeds up the convergence if the ensemble mean is a good estimator of the
solution. However, there is no short answer for whether smaller or larger kurtosis is good or
not. The influence of the kurtosis and higher order moments of the resampling distribution
needs to be further investigated.

5.5 Conclusion

Herein a comprehensive study of the convergence of iterative ensemble Kalman filter is
conducted and a potential method to improve its convergence was proposed. To motivate
this work, we first showed the necessity of iterations for ensemble Kalman method to apply
to nonlinear inverse problems by reformulating it as a constrained optimization minimizing
the innovation ‖y −Hx‖ while satisfying the forward model equation x = F (θ). Then the
shrinking effect of the standard Kalman iterations on ensemble covariances was studied,
and along with the nonlinearity of the forward model, was later shown to be the reason
that caused the Kalman gain to approach to zero before innovation was minimized, i.e.
the early stopping of IEnKF. To resolve this issue, we added an additional step at each
iteration to resample the parameter posterior ensemble with the mean and covariance kept
unchanged before assigning to the next iteration. The idea is to prevent early stopping by
perturbing the shrinking of the ensemble covariances while still keeping the correct Kalman
update directions. After that, we explored different resampling distributions and studied
the effect of their higher order moments on the convergence of iterative ensemble Kalman
filter. Numerical simulations are presented to reproduce the early stopping phenomenon and
demonstrate the effectiveness of the proposed resampling method.
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Figure 5.2: Evolution of the norms of the covariances, Kalman gain and innovation for the
IEnKF applied to the example in §5.2.4.
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Figure 5.3: (Left) the solution path of the ensemble mean of x when Γ = 0.1. (Right) the
solution path of the ensemble mean of x when Γ = 0.0001.
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Chapter 6

Adding Constraints to Bayesian
Inverse Problems

6.1 Introduction

Inverse problems are often ill-posed due to limited measurement data, and thus the solution
for the hidden unknown parameters are not unique. Adding additional constraints from
prior knowledge to the inverse problems can be a potential solution. However, most exist-
ing Bayesian methods can not directly take constraints into account [106]. Initial progress
has been made to incorporate constraints into certain Bayesian filters. For example, Simon
et al. [109] considered equality constraints in the standard Kalman filter by projecting the
Kalman updated solution onto the state constraint surface. Shao et al. [106] developed a
constrained sequential Monte Carlo algorithm based on acceptance/rejection and an opti-
mization strategy. Most recently, Gardner et al. [50] also considered inequality constraints
in the context of Bayesian optimization. However, the existing approaches to incorporate
constraints have been developed for each specific Bayesian filter, and most of them are based
on a linearized form of the constraints, which is limiting when constraint functions are com-
plicated and highly nonlinear. Moreover, in many complex systems, the constraints are
approximations to reality and formulating the constraint in a deterministic way may neglect
the uncertainties associated with constraint itself.

In this work, we proposed a general approach to incorporate physics-based constraints
into the Bayesian inversion framework, where uncertainty associated with the constraint
itself can also been considered. Moreover, this idea is also extended to an approximate
Bayesian approach–the ensemble Kalman filter.

6.2 Methodology

A mathematical model of system defines a forward problem that can be formulated as

x = F (θ), (6.1)
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where θ ∈ Rdθ are model parameters and x ∈ Rdx are the states of the system. The forward
operator F is nominally assumed to describe a physical system, whereby F typically repre-
sents a suite of algebraic and/or differential equations. In most cases, the model parameters
θ are uncertain or unknown, and the state variables x are largely unobservable. Therefore,
the unknown parameters and hidden states need to be inferred from observations y ∈ Rdy .
These observations indirectly and incompletely describe the state of the system, which can
be formulated mathematically as

y = Hx + ε, (6.2)

where H is a projection operator projecting the full state to the observed space and ε
represents measurement error. The standard inverse problem deals with estimating the
unknown parameters θ (or the hidden states x) based on the observations y. In practice,
approximate Bayesian inversion frameworks, such as Kalman filtering and Sequential Monte
Carlo, are used for computational efficiency.

6.2.1 Constraints in Exact Bayesian Inference

Inverse problems are typically ill-posed because the observational data is not sufficient to
uniquely determine the unknown parameters. Thus, specification of additional constraints
can be useful to regularize the inverse problem. Equality constraints can be defined with
respect to the state variables x as,

G(x) =
[
g1(x), g2(x), ..., gdg(x)

]T
= 0 , (6.3)

where gi(x), i = 1, 2, ..., dg represent different equality constraints. In many application, the
constraint only approximates reality. Thus, instead of directly imposing a hard constraint,
we assume that each constraint satisfies a zero-mean Gaussian distribution, expressed as

G(x) ∼ N (0,Σc) . (6.4)

where the Σc is a covariance matrix used to control the strictness of each constraint. Since
x is intrinsically a function of θ, the constraints can alternatively be expressed in terms of
the parameters

G(x) = G(F (θ)) ∼ N (0,Σc) . (6.5)

As such, these constraints on the parameters θ can be more naturally considered within
the Bayesian framework by imposing additional likelihood functions introduced by these
nondeterministic constraints.

Without loss of generality, both the prior and likelihood are assumed Gaussian. Namely,
the prior of the parameters θ is defined by

p(θ) =
1√

(2π)dθ |Σθ|
exp

(
−1

2
(θ − θ̂)TΣ−1

θ (θ − θ̂)
)
, (6.6)
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where θ̂ and Σθ are the prior mean and covariance, which are based on existing knowledge or
preliminary estimation. The observation data errors are also assumed to follow a zero-mean
Gaussian distribution, i.e., ε ∈ N(0,Σl), thus the likelihood of the observed data set on y is,

p(D|θ) =
1√

(2π)dy |Σl|
exp

(
−1

2
(y −HF (θ))TΣ−1

l (y −HF (θ))

)
. (6.7)

The covariance matrix Σl is obtained by estimating the sample variance of the observed data
sets D. The constraints are imposed by considering the following likelihood function,

p (G(x) = 0 | θ) =
1√

(2π)dg |Σc|
exp

(
−1

2
G(F (θ))TΣ−1

c G(F (θ))

)
. (6.8)

The likelihood of the constraints defines a fitness of a specific value of θ based on the
satisfaction of the constraints. By introducing this Gaussian-type likelihood function, we
enable a “soft” enforcement of the constraints. The strictness of the constraint can be
controlled by the diagonal variance matrix Σc,

Σc = diag{σ2
c,1, σ

2
c,2, ..., σ

2
c,dg} . (6.9)

where the variance σi represent a confidence on the accuracy of the constraint. Smaller σc,i
corresponds to a stricter constraint.

Inequality constraints can be converted to equivalent equality constraints. For example,
a scalar inequality constraint g(x) ≤ 0 can be expressed as

max (0, g(x)) = 0 , (6.10)

and thus the corresponding likelihood can be expressed as

p (g(x) ≤ 0 | θ) =
1√

2πσ2
c

exp

(
− 1

2σ2
c

[max (0, g(x))]2
)
. (6.11)

Imposing constraints through a likelihood function can also be extended to disjunctive
constraints. For example, consider a constraint of the form g1(x) = 0 ∨ g2(x) = 0. By the
union rule of probability

p (g1(x) = 0 ∨ g2(x) = 0 | θ)
= p (g1(x) = 0|θ) + p (g2(x) = 0|θ)− p (g1(x) = 0 ∧ g2(x) = 0|θ)

=
1√

2πσ2
c,1

exp

(
−g1(F (θ))2

2σ2
c,1

)
+

1√
2πσ2

c,2

exp

(
−g2(F (θ))2

2σ2
c,2

)

− 1√
(2π)2|Σc|

exp

(
−1

2

[
g1(F (θ))
g2(F (θ))

]T
Σ−1
c

[
g1(F (θ))
g2(F (θ))

])
, (6.12)
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where Σc again defines the covariance matrix of constraints.
With the prior distribution, likelihood of the data, and likelihood of the constraints now

defined, the posterior probability distribution conditioned on the observed data D and the
constraints G(x) can be defined as

p(θ|D, G(x) = 0) =
p(D|θ)p(G(x) = 0|θ)p(θ)

p(D, G(x) = 0)

∝ p(D|θ)p(G(x) = 0|θ)p(θ) . (6.13)

Since the posterior distribution cannot be solved analytically in general, it is commonly
evaluated based on MCMC sampling.

6.2.2 Constraints in Approximate Bayesian Inference

The direct Bayesian inference based on MCMC sampling is usually intractable when the
likelihood calculation involves a computationally expensive model; instead approximate
Bayesian approaches are commonly used to provide a more computationally tractable solu-
tion. The EnKF is one such method, which is a variant of the standard Kalman filter where
the covariance matrix is replaced by Monte Carlo samples.

For EnKF, we combine the original hidden states x and the unknown parameters θ into
a new augmented state

z =
[
θT , xT

]T
, (6.14)

which will be updated during the filtering process according to the observed data D. The
initial ensemble is first obtained by sampling the prior distribution p(θ) and evaluating the
model at each ensemble member{

ẑ(j)
}J
j=1

=

{[
θ̂(j); x̂(j)

]T}J
j=1

=

{[
θ̂(j);F

(
θ̂(j)
)]T}J

j=1

, (6.15)

where J is the number of ensemble members. The probability associated with each ensemble
member is initially set to be uniform

wj , p(z = ẑ(j)) =
1

J
, j = 1, 2, ..., J . (6.16)

Then the expectation and covariance matrix of the state variables are estimated from the
ensemble as

E(ẑ) =
J∑
j=1

wj ẑ
(j) , (6.17)

C(ẑ) =
J∑
j=1

wj(ẑ
(j) − E(ẑ))(ẑ(j) − E(ẑ))T . (6.18)
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If the observed data follows a normal distribution N(ȳ,Σl), the prior ensemble can be up-
dated by the observed data D according to the Kalman update

z(j) = ẑ(j) + C(ẑ)HT (HC(ẑ)HT + Σl)
−1(ȳ −Hz(j)),

j = 1, 2, ..., J . (6.19)

The posterior ensemble
{
z(j)
}J
j=1

represents a sampling for the posterior probability distri-

bution p(z|D), with the probability associated with each ensemble member equal to

p(z(j)|D) = wj, ∀j = 1, 2, ..., J . (6.20)

Now we consider inclusion of constraints. The likelihood of the constraint G(x) = 0 to
be satisfied conditioned on each member of the posterior ensemble can be computed as

Lg(j) , p
(
G(x) = 0|z(j)

)
=

1√
(2π)dg |Σc|

exp

(
−1

2
G
(
x(j)
)T

Σ−1
c G

(
x(j)
))

. (6.21)

By Bayes theorem, the posterior probability density of each ensemble member conditioned
on the observed data D and constraints G(x) = 0 is given by

p
(
z(j)|D, G(x) = 0

)
=

1

Z
p
(
G(x) = 0, z(j)|D

)
=

1

Z
p
(
G(x) = 0|z(j)

)
p
(
z(j)|D

)
=

1

Z
wjLg

(j) (6.22)

where Z is the normalization constant defined as

Z =
J∑
j=1

p
(
G(x) = 0|x(j)

)
p
(
x(j)|D

)
=

J∑
j=1

wjLg
(j) . (6.23)

The empirical distribution for p (z|D, G(x) = 0) can be described by the posterior ensemble{
z(j)
}J
j=1

, and the associated probability mass

p
(
z = z(j)|D, G(x) = 0

)
=

wjLg
(j)∑J

p=1wjLg
(p)
, ∀j = 1, 2, ..., J, (6.24)

for each ensemble member. We here re-define the new weights for each ensemble members
as

w′j ,
wjLg

(j)∑J
p=1wjLg

(p)
. (6.25)
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The state estimation for the current iteration step is thus computed as the expectation of
the empirical posterior distribution conditioned on the data D and the prior knowledge that
G(x) = 0 according to

z̄ = E (z|D, G(x) = 0) =
J∑
j=1

p
(
z = z(j)|D, G(x) = 0

)
z(j)

=
J∑
j=1

w′jz
(j) . (6.26)

Then the estimation of the unknown parameters θ̄ can be extracted from the estimation
of the full augmented state. Also, the covariance of the parameter θ with respect to
p (z|D, G(x) = 0) can be computed as

Σθ =
J∑
i=1

(
θ(j) − θ̄

)
diag

{
w′j
}J
j=1

(
θ(j) − θ̄

)T
. (6.27)

The new prior ensemble for the next iteration step is obtained by sampling the following
normal distribution

θ̂(j) ∼ N(θ̄,Σθ), j = 1, 2, ..., J , (6.28)

to maximize the next step prior entropy [91] while keeping the mean and covariance the
same as the previous posterior distribution. The iterative process continues until a stopping
criterion is satisfied or the maximum iteration number is reached.

6.3 Results and Discussion

6.3.1 Model Test Problem

To verify the effectiveness of the constrained Bayesian inference framework described above,
a simple test case is presented here. The forward model mapping from the parameter space
Θ ⊂ R2 to the state space X ⊂ R2 is defined as[

x1

x2

]
= F (θ) =

[
exp(−(θ1 + 1)2 − (θ2 + 1)2)
exp(−(θ1 − 1)2 − (θ2 − 1)2)

]
. (6.29)

The projection matrix mapping from state space to output is given by

H = [−1.5,−1.0] , (6.30)

and thus the reconstructed output is

HF (θ) = −1.5 exp(−(θ1 + 1)2 − (θ2 + 1)2)

− 1.0 exp(−(θ1 − 1)2 − (θ2 − 1)2) , (6.31)
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Figure 6.1: Contour plot of the cost function I(θ) with respect to parameters θ = [θ1, θ2]
The red “+” denote the local minima of the cost function.

where HF (θ) ∈ R1. We consider the following constraint:

G(x) = −0.25 log x1 + 0.25 log x2 − 2 = 0 , (6.32)

which can be equivalently written in terms of θ,

G(F (θ)) = θ1 + θ2 − 2 = 0 . (6.33)

We assume the observed data follow the normal distribution N(ȳ,Σl) where the mean ȳ =
−1.0 and the covariance matrix Σl is chosen based on the uncertainty associated with data.

This model is chosen to create a simple scenario with multiple local minimums. Namely,
regardless of the prior information and constraints, we seek the model parameters that
minimize the difference between the observed output and reconstructed output, quantified
by the cost function

I(θ) = ‖ȳ −HF (θ)‖2

=
(
1.5 exp(−(θ1 + 1)2 − (θ2 + 1)2)

+1.0 exp(−(θ1 − 1)2 − (θ2 − 1)2)− 1.0
)2

. (6.34)

which has minimums at (a) θ∗ = (1, 1) ; and (b) θ on the circle defined by

(θ1 + 1)2 + (θ2 + 1)2 = log 1.5 . (6.35)

The contour plot of the cost function and the local minimums are visualized in Figure 6.1.
Here we assume θ∗ = (1, 1) is the true value of the parameter θ, and the constraint (6.33)
will help to eliminate convergence to other local minima.

The situation of multiple local minima is a common challenge in solving inverse problems,
because the observed output information is usually not enough to uniquely determine the
unknown parameters. We show below that imposing constraints can help the solution to
converge to the true value.
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Figure 6.2: (a) Sampling of the prior distribution; (b) Sample + data likelihood p(D|θ);
(c) Sample + constraint likelihood p(G(x) = 0|θ); (d) Sample + posterior distribution
p(θ|D, G(x) = 0)

θ1 θ2 x1 x2 y

True values 1 1 0 1 -1

No constraint -0.0448 -0.0722 0.1698 0.1063 -0.3610

With constraints (EXP) 0.9926 0.9449 0.0004 0.9969 -0.9976

With constraints (MAP) 0.9845 0.9698 0.0004 0.9988 -0.9994

Table 6.1: Parameters θ, states x and output y estimated using sample-based Bayesian
inference with no constraint imposed and with constraint imposed.

6.3.2 Exact Bayesian Inference

The prior distribution (6.6) is first sampled with J = 5000 samples. The mean and the
covariance matrix are set to

θ̂ =

[
0
0

]
, Σθ =

[
3 0
0 3

]
. (6.36)

The distribution of the samples is visualized in Figure 6.2(a). The trivial zero mean rep-
resents non-informative prior knowledge of θ, and the large variance defined by Σθ above
denotes large uncertainty about the prior. Ideally if better prior knowledge exists, we can
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specify a better prior here, with more accurate mean and less uncertainty. After sampling
the prior, the likelihood function of data p(D|θ) is evaluated at each individual sample point{
θ(j)
}J
j=1

. The likelihood of the data is plotted with respect to each sample in Figure 6.2(b).

The value of the likelihood is indicated by the brightness of the sample. It can be clearly
observed that the brightest regions coincide with the local minimums in Figure 6.1, which
shows the region of the highest likelihood of data . Similarly, we evaluate the likelihood
function of the constraint p(G(x) = 0|θ) at each sample, and the likelihood is visualized in
Figure 6.2(c). The region with the highest likelihood represents the form of the constraint in
(θ1, θ2) space, which is θ1 + θ2− 2 = 0. The variance for the constraint is set to be Σc = 0.5,
which controls how strict the constraint is enforced. Lastly, the posterior p(θ|D, G(x) = 0)
is evaluated at each samples, and the distribution of the sample along with the posterior
weights are plotted in Figure 6.2(d). It is clearly observed that the location with the highest
posterior density correspond to the intersection between the regions with high likelihood of
data D and high likelihood of the constraint satisfaction. This intersection region picks out
the true value of the parameter θ. Computing the weighted sum of the parameter samples{
θ(j)
}J
j=1

with respect to the posterior weights yields the final estimation of the unknown

parameter θ∗Exp =
∑J

j=1 p
(
θ(j)|D, G(x) = 0

)
θ(j) =

∑J
j=1wjθ

(j) . Or simply taking the sam-

ple θ(j) that maximize the posterior p
(
θ(j)|D, G(x) = 0

)
yields the maximum a posteriori

estimation (MAP) of the unknown parameter, i.e. θ∗MAP. Once the parameter is estimated,
the estimated value of the state variables x and output y can be computed by evaluating the
forward model F (θ∗). These estimated values are listed in Table 6.1 for the case of including
and not including constraint. It can be seen from this table that imposing the constraint
significantly increase the estimation accuracy in the case where multiple local minimums
exist.
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Figure 6.3: Different initial guesses of the unknown parameter θ (marked with red triangles)
and their corresponding converged values after 1000 EnKF iteration steps (marked with blue
circles), with no constraint imposed.
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6.3.3 Approximate Bayesian Inference

6.3.3.1 No constraint imposed.

Iterative ensemble Kalman filter estimates the unknown model parameters θ in a iterative
manner. Since the cost function I(θ) has multiple local minimums, different initial guesses
of θ will converge to different local minimums. We here define

Group I ,
{
θ∗ ∈ R2|θ∗ = (1, 1)

}
, (6.37)

Group II ,
{
θ∗ ∈ R2|(θ∗1 + 1)2 + (θ∗2 + 1)2 = log 1.5

}
, (6.38)

which represent two different local minimum regions. θ∗ represents the converged value of
the parameter after ensemble Kalman filter iterations.
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Figure 6.5: Evolution of the ensemble of the parameter θ with no constraint imposed. The
points on the red circle centered at (-1,-1) and the red point at (1,1) denote the local mini-
mums of the cost function I(θ). (a) Initial guess: θ0 = (−2,−2); (b) initial guess: θ0 = (0, 0);
(c) initial guess: θ0 = (2, 2).

Here we simulated three different cases with different initial guesses: (a) θ0 = (−2,−2);
(b) θ0 = (0, 0); (c) θ0 = (2, 2). The covariance matrix of the prior and the covariance of the
data likelihood are given as Σθ = [1, 0; 0, 1] and Σl = 0.01. The results for the three different
simulations are visualized in the parameter space of θ in Figure 6.3. It can be seen that the
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upper right initial guess at (2, 2) converges to local minimum Group I, and the other two
initial guesses both converge to local minimum Group II. The convergence processes of the
parameter θ for the three different initial guesses are plotted in Figure 6.4. It can be seen
that all converge to the corresponding local minimum groups within about 400 iterations.
The main difference is that while Case (c) converges to the local minimum (1, 1), i.e., Group
I, directly after a few iterations, Case (a) and (b) converge to θ = (−1,−1) first, which is the
center of the local minimum circle of Group II, and then shift to a local minimum on the circle
of Group II at around the 200th iteration (indicated by the “jump”). The reason behind this
is that we use the mean of the ensemble of each step as the estimated parameter value. When
the ensemble converges to the local neighborhood of Group II, the mean of the ensemble
will generally be the center of the local minimum circle because the high likely ensemble
members are roughly symmetrically distributed around the center (−1,−1). The mean of
the ensemble will gradually shift to certain points on the circle based on the distribution of
the ensemble members. The evolution of the ensemble for different initial guesses is shown
in Figure 6.5. It can be seen that the variance of the ensemble gradually decrease until all
ensemble members collapse to the corresponding local minimum.

The convergence results for the three different initial guesses are summarized here,

θ0 = (−2,−2)→ θ∗ = (−0.4080,−0.7598) ∈ Group II ,

θ0 = (0, 0)→ θ∗ = (−0.3654,−1.0421) ∈ Group II ,

θ0 = (2, 2)→ θ∗ = (0.9998, 0.9812) ∈ Group I .

The reconstructed outputs HF (θ∗) for the above cases all converge to the target value ȳ = −1
within 1000 EnKf iterations. However, with no constraint is imposed, the estimate of the
parameter θ will converge to the closer local minimum group based on where the initial
guesses are. The initial guess in the middle (0, 0) converges to the local minimum Group
II because Group II contains more local minimums than Group I, and therefore the the
solution is more likely to converge to Group II when initial guess is in the middle. More
broadly, there is no guarantee that the estimate of the parameter will converge to the the
true parameter value (1, 1).

6.3.3.2 With constraint imposed

For the local minimums in Group I and Group II, only the true parameter value (1, 1) satisfies
the constraint. We test here whether imposing the constraint can help the convergence of
the parameter estimation to the true value.

Three cases of different initial guesses are simulated with constraint imposed by re-
weighing individual ensembles based on their likelihood of satisfying the constraint (see
(6.26)). The covariances are Σθ = [1, 0; 0, 1] and Σl = 0.01, which are kept the same as
previous simulations. The covariance of the constraint used here is Σc = 2.0, which defines a
certainty about the constraint. The simulation results are shown in Table 6.2 and visualized
in Figure 6.6 (left). It can be seen that the solution converges to the true value (1, 1) when
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starting from (0, 0) and (2, 2), and the solution converges to the local minimum Group II
when starting from (−2,−2). It is interesting to note that the middle initial point (0, 0),
which originally converges to Group II, now is able to converge to the true value (1, 1).

The reason that the solution starting from the lower left initial guess (−2,−2) cannot
converges to the true value (1, 1) is because it is too far way from the true value and the
variance of the prior is not large enough to sample the parameter space near the true value
(1, 1). Therefore, even though the constraint has been imposed, the solution cannot converge
to the true value. To verify this, we simulated the three different starting locations with a
larger prior variance Σθ = [3, 0; 0, 3], while the covariance of the data likelihood Σl = 0.01
and the covariance of the the constraint Σc = 2.0 are kept the same. The simulation results
are shown in Table 6.3 and visualized in Figure 6.6 (middle), demonstrating that all the
three initial guesses lead to the true parameter value (1, 1).
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Figure 6.6: Parameter convergence results with constraint imposed. (Left) When Σθ =
[1, 0; 0, 1] and Σc = 2.0, the initial guesses at the (2, 2) and (0, 0) converge to the true local
minimum (1, 1); (Middle) When Σθ = [3, 0; 0, 3] and Σc = 2.0, all initial guesses converge to
the true local minimum (1, 1); (Right) When Σθ = [1, 0; 0, 1] and Σc = 1.0, all initial guesses
converge to the true local minimum (1, 1).

As a further test, we decreased the variance of the constraint Σc to 1.0 to see how
this influences the parameter estimation. The results in Table 6.4 and Figure 6.6 (right)
demonstrate that (contrary to original conditions in the left panel) all three initial guesses
converge to the true parameter value θ∗ = (1, 1). Thus decreasing the variance of the
constraint can also improve convergence to the true parameter value in cases where the
constraint is more certain.

6.3.4 Relation between Bayesian inference and optimization

Using Bayesian inference framework to estimate the unknown model parameters is intrin-
sically related to solving a corresponding optimization problem [8]. To see this, we write
out the posterior probability distribution of the unknown parameter θ conditioned on the
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θ0 (-2, -2) (0, 0) (2, 2)

θ∗ (-0.5685, -0.5173) (0.9839, 1.0013) (0.9837, 1.0015)

HF (θ∗) -0.9948 -0.9958 -0.9958

Group II I I

Table 6.2: Simulation results with the constraint imposed for different initial guesses with
Σθ = [1, 0; 0, 1], Σl = 0.01 and Σc = 2.0 .

θ0 (-2 , -2) (0, 0) (2, 2)

θ∗ (0.9947, 0.9962) (0.9958, 0.9943) (0.9955, 0.9942)

HF (θ∗) -0.9859 -0.9897 -0.9908

Group I I I

Table 6.3: Simulation results with the constraint imposed for different initial guesses with
Σθ = [3, 0; 0, 3], Σl = 0.01 and Σc = 2.0 .

θ0 (-2, -2) (0, 0) (2, 2)

θ∗ (0.9976, 0.9984) (0.9888, 1.0063) (0.9863, 1.0087)

HF (θ∗) -0.9888 -0.9957 -0.9962

Group I I I

Table 6.4: Simulation results with the constraint imposed for different initial guesses with
Σθ = [1, 0; 0, 1], Σl = 0.01 and Σc = 1.0 .

observed data D and the fact that the constraint needs to be satisfied,

p(θ|D, G(x) = 0) ∝ p(D|θ)p(G(x) = 0|θ)p(θ)

=
1

Z ′
exp

(
−1

2

∥∥∥Σ
− 1

2
θ (θ − θ̂)

∥∥∥2

− 1

2

∥∥∥Σ
− 1

2
l (y −HF (θ))

∥∥∥2

−1

2

∥∥∥Σ
− 1

2
c G(F (θ))

∥∥∥2
)
, (6.39)

where Z ′ is a normalization constant. As mentioned before, the final estimation of the
parameter θ can be taken as the posterior expectation E(θ|D, G(x) = 0), or as the value
that maximizes the posterior probability (MAP)

θ∗ = arg max
θ
p(θ|D, G(x) = 0) . (6.40)



CHAPTER 6. ADDING CONSTRAINTS TO BAYESIAN INVERSE PROBLEMS 107

Based on (6.39), solving the MAP estimation of θ is equivalent to the following optimization
problem:

min
θ

∥∥∥Σ
− 1

2
θ (θ − θ̂)

∥∥∥2

+
∥∥∥Σ
− 1

2
l (y −HF (θ))

∥∥∥2

+
∥∥∥Σ
− 1

2
c G(F (θ))

∥∥∥2

, (6.41)

where the three terms in the cost function from left to right represent the contributions from
the prior, the data and the constraint. Therefore using Bayesian inference to estimate model
parameters is equivalently solving an optimization problem of minimizing the miss-match
between the observed output and the reconstructed output, while penalizing based on the
prior and satisfaction of the constraints. It is easier to see the relations between different
terms if we assume all quantities are scalar:

min
θ

1

σ2
θ

‖θ − θ̂‖2 +
1

σ2
l

‖y −HF (θ)‖2 +
1

σ2
c

‖G(F (θ))‖2 . (6.42)

It can be seen that the variances of the prior, the data and the constraints define the relative
importance of each individual terms. The smaller the variance, the more important the
corresponding term is in the cost function. This is reasonable because the information
source with smaller belief uncertainty should naturally get more weight. Increasing the
variance of the prior σθ not only samples a broader region but also places more relative
weight on satisfying the constraint, which is why increasing the variance of the prior led
to convergence of all three initial guesses to the true value (see Table 6.3 and Figure 6.6
(middle)). Similarly, decreasing the variance of the constraint can also put more relative
weight on the constraint, which is verified in the results shown in Table 6.4 and Figure 6.6
(right). In the cases of multiple constraints, the variance for each constraint can be used to
tune the relative importance of the constraint.

6.3.5 Extensions

The constrained Bayesian inference approach here was developed to address non-uniqueness
of the solutions for inverse problems. However, it can also be extended as a way to solve
more general constrained optimization problems. An advantage of this approach, compared
to traditional gradient-based optimization, is that it is derivative-free and does not require
construction of the cost function gradient. Gradient information is implicitly represented by
the ensemble. This approach can also provide a potential framework to incorporate domain
knowledge in learning models to accelerate convergence and improve accuracy.

Although we assumed Gaussian distributions, this approach can be extended to non-
Gaussian distributions. This ultimately leads to a different “weighting” on the ensemble
members (see Eq. (6.25)). Applying different distributions for the constraints, prior or data
can be useful. For example, assuming a Laplace likelihood for the constraint results in L1-
regularization instead of L2-regularization in (6.41), and a skew likelihood for the constraint
will result in different strictness on either side of the constraint surface in parameter space.
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6.4 Conclusion

To address the non-uniqueness of the feasible solutions for ill-posed inverse problems due to
model complexity and lack of observation dimension, we here proposed a general method to
constrain the inverse problem in a Bayesian inference framework. The constraint is imposed
by constructing a likelihood function denoting the fitness of a solution. Then the posterior
distribution for the unknown parameter conditioned on both the observation data and the
constraint is obtained, and the final parameter estimation is given by the MAP estimation
or the posterior mean. This method was also extended to an approximate Bayesian inference
framework in terms of the ensemble Kalman filter, which was shown to lead to a re-weighing
of ensemble members based on their fitness to the constraint. Numerical simulations were
carried out to demonstrate the effectiveness of this approach for basic proof-of-concept.
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Chapter 7

Conclusions

This thesis focused on two main tasks: (1) mathematical modeling of vascular adaptation
and the homeostatic state; (2) improving data filtering methods from a Bayesian inference
perspective for nonlinear inverse problems arising from model calibration.

In Chapter 2, a computational framework to couple vascular growth and remodeling
(G&R) with blood flow simulation in a 3D patient-specific geometry was presented. Hy-
perelastic and anisotropic properties were considered for the vessel wall material and a con-
strained mixture model was used to represent multiple constituents in the vessel wall, which
was modeled as a membrane. The coupled simulation was divided into two time scales −
a longer time scale for G&R and a shorter time scale for fluid dynamics simulation. G&R
was simulated to evolve the boundary of the fluid domain, and the fluid simulation was in
turn used to generate wall shear stress and transmural pressure data that regulated G&R.
To minimize required computation cost, the fluid dynamics were only simulated when G&R
caused significant vascular geometric change. For demonstration, this coupled model was
used to study the influence of stress-mediated growth parameters and blood flow mechanics
on the behavior of the vascular tissue growth in a model of the infrarenal aorta derived from
medical image data.

In Chapter 3, a method to numerically generate vascular homeostatic state for patient-
specific geometries was proposed. First, a growth based algorithm was designed to generate
a proper residual stress distribution such that the vascular stress was equal to a prescribed
homeostatic stress distribution at physiological pressure. This method was supplemented
through supervised learning to estimate and correct residual stresses at geometrically com-
plex regions, which could be viewed as a regularization process at locations where stresses
tended to significantly deviate from homeostatic values. The framework was also extended
to include stress-driven fiber deposition through an optimization process, which defined the
distribution of the fiber alignments in the vascular homeostatic state. Numerical simulations
were conducted to test this two-stage homeostasis generation algorithm in both an idealized
cylinder and a patient-specific bifurcation geometry, yielding results that agreed favorably
with prior numerical and experimental data.

In Chapter 4, a stability analysis was conducted for governing equations of vascular adap-
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tation around vascular homeostatic state. We started from the integral state equations of
the continuum-based constrained mixture theory of vascular growth and remodeling and
obtained a system of time-delayed differential equations describing vascular growth. By
employing an exponential form of the constituent survival function, the delayed differential
equations could be reduced to a nonlinear ODE system. We demonstrated the degeneracy
of the linearized system about the homeostatic state, which was a fundamental cause of the
neutral stability observations reported in prior studies. Due to this degeneracy, stability
conclusions for the original nonlinear system could not be directly inferred. To resolve this
problem, a sub-system was constructed by recognizing a linear relation between two states.
Subsequently, Lyapunov’s indirect method was used to connect stability properties between
the linearized system and the original nonlinear system, to rigorously establish the neutral
stability properties of the original system. In particular, this analysis led to a stability crite-
rion for vascular expansion in terms of growth and remodeling kinetic parameters, geometric
quantities and material properties. Numerical simulations were conducted to evaluate the
theoretical stability criterion under broader conditions, as well as study the influence of
key parameters and physical factors on growth properties. The theoretical results were also
compared with prior numerical and experimental findings in the literature.

In Chapter 5, we provided a comprehensive convergence analysis of the IEnKF and
proposed a new method to improve its convergence. First, the need for iterations in nonlinear
inverse problems was established. Namely, the IEnKF was shown to construct a constrained
optimization problem, which solved for model parameters that minimizes the innovation
while satisfying the forward model. Second, a theoretical analysis of the standard IEnKF
was considered and the declining utility of the Kalman updates on the ensemble covariances
was revealed. Third, we demonstrated that the interaction between the nonlinearity of
the forward model and the diminishing effect of the Kalman updates resulted in “early
stopping” of the IEnKF, i.e. the Kalman gain converged to zero before the innovation was
minimized. Furthermore, the steady state behavior of the early stopping phenomenon and
its relation to observation uncertainty was demonstrated. We then proposed an approach
to prevent the early stopping by perturbing the covariance with hidden parameter ensemble
resampling. The ensemble mean and covariance were kept unchanged during the resampling
process, which guaranteed that the change of the Kalman gain at each iteration caused by
resampling maintained correct Kalman update directions. Furthermore, we demonstrated
the influence of the kurtosis of the resampling distribution on convergence. Parallel to the
above developments, a synthetic model was presented to demonstrate the early stopping
effect, and the application and merit of the proposed resampling scheme.

In Chapter 6, we proposed an approach to improve parameter estimation in ill-posed
nonlinear inverse problems by incorporating constraints in a Bayesian inference framework.
Constraints were imposed by constructing a likelihood function based on fitness of the so-
lution to the constraints. The posterior distribution of the parameters conditioned on (1)
the observed data and (2) satisfaction of the constraints was obtained, and the estimate of
the parameters was given by the maximum a posteriori estimation or posterior mean. Both
equality and inequality constraints could be considered by this framework, and the strictness



CHAPTER 7. CONCLUSIONS 111

of the constraints could be controlled by constraint uncertainty denoting a confidence on its
correctness. Furthermore, we extended this framework to an approximate Bayesian infer-
ence framework in terms of the ensemble Kalman filter method, where the constraint was
imposed by re-weighing the ensemble members based on the likelihood function. A synthetic
model was presented to demonstrate the effectiveness of the proposed method and in both
the exact Bayesian inference and ensemble Kalman filter scenarios, numerical simulations
showed that imposing constraints using the method presented improved identification of the
true parameter solution among multiple local minima.

Beyond the topics discussed in this thesis, there are several other topics that need fu-
ture research. For modeling vascular adaptation and homeostasis, we only considered the
effect of mechanical stimuli (wall tension and wall shear stress) while biochemical stimuli
also play an important role. With the help of more advanced imaging techniques (such as
PET-CT), more information about the mechanotransduction signaling cascades can be re-
vealed, which characterizes the vascular adaption at the cellular level. Inclusion of a cellular
level sub-module into the current coupled simulation framework can reveal more interesting
dynamical behavior of vascular adaptation. This will not only help us to better understand
vascular homeostasis but can also potentially provide more accurate predictions for related
disease progressions such as aneurysm growth. For the model calibration portion of the work
presented herein, the methods we developed are motivated by modeling biomedical systems
but can be extended to implementations in other fields. For example, the idea of adding
constraints via Bayesian inference framework can be combined with generic machine learn-
ing problems to either accelerate convergence rate or eliminate irrelevant local minima. The
methods to incorporate more complicated constraints such as differential equations are also
worth being studied in future works.
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