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ABSTRACT OF THE DISSERTATION 

 

NMR study of triangular lattice antiferromagnet Ba3CoSb2O9 

 

By 

 

Tong Zhou 

University of California, Los Angeles, 2014 

Professor Stuart Brown, Chair 

 

 

Triangular lattice antiferromagnet has been an intensely studied topic in condensed 

matter physics for decades, and there are a sea of relevant theory papers, researching 

every detail of the triangular lattice system with antiferromagnetic interaction. In 

contrast, the experimental work has been largely limited by the difficulty in 

synthesizing high quality materials with triangular lattice. The Ba3CoSb2O9 compound 

thus has its own significance because it possesses a spin-1/2 triangular plane that is 

almost isotropic, which makes it a good research subject to experimentally verify many 

theoretical predictions. The fact that this compound has a saturation field of roughly 

30T makes it possible for the exploration of the whole H-T phase diagram. The 

magnetization measurements on this compound revealed the existence of an up-up-

down phase, which is of primary interest for the study of triangular lattice 



iii 
 

antiferromagnet, and the thermodynamics data sketched the H-T phase diagrams for 

both B//ab and B//c directions. However, these measurements were based on bulk 

properties and are not enough to determine the details of spin configuration. The nuclear 

magnetic resonance (NMR) experiment has the advantage as a local probe technique, 

and it can help discover the spin orientation by detecting the interaction of nuclear spins 

with nearby electron spins. 

 

Our NMR experiment was conducted in UCLA for low field (<12T) measurements and 

in NHMFL for high field (13T<B<31T). We started with the paramagnetic state 

measurements to sort out different NMR lines, decide the orientation of the sample, and 

measure the basic NMR parameters. Then we took NMR spectra in the magnetic state 

under various external fields for both directions. The analysis of the field dependence 

spectra were combine with the theoretical predictions to check the consistency, and thus 

we can decide the correct phases in the magnetic state, as well as the field evolution of 

the spin configurations. The spin lattice relaxation rate measurements were used to 

decide the phase boundary, and help to reproduce the phase diagram by the 

thermodynamics measurements. 
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Chapter One  

Introduction of the Heisenberg Model and the 

triangular lattice antiferromagnet 

 

The Heisenberg Model for a spin system can be described by the Hamiltonian 

H = −
1

2
∑ 𝐽𝑖𝑗𝑺𝒊 ∙ 𝑺𝒋

𝑖𝑗

 

In this equation, 𝐽𝑖𝑗  is the exchange energy between two spins, and 𝐽𝑖𝑗 = 𝐽𝑗𝑖  is 

symmetric. The 1/2 corrects double counting. 𝑺𝒊 and 𝑺𝒊 are the spin operators. 

 

1.1 The ferromagnetic ground state 

 

If any 𝐽𝑖𝑗 is non-negative (𝐽𝑖𝑗 ≥ 0), then the ground state happens when all the 

spins are aligned to the same direction, which we define as the z-direction. The 

proof is shown below. 

 

We first define the total spin operator 𝐒 = ∑ 𝑺𝒊𝒊 , and similarly 𝑆𝑧 = ∑ 𝑆𝑖
𝑧

𝑖 . Then 

we realize S is compatible with H, because 



 

2 
 

[𝑆𝑧 , H] = [𝑆𝑧 , −
1

2
∑ 𝐽𝑖𝑗𝑺𝒊 ∙ 𝑺𝒋

𝑖𝑗

] = [𝑆𝑧 , −
1

2
∑ 𝐽𝑖𝑗(𝑆𝑖

𝑥𝑆𝑗
𝑥 + 𝑆𝑖

𝑦
𝑆𝑗

𝑦
+ 𝑆𝑖

𝑧𝑆𝑗
𝑧)

𝑖𝑗

]

= −
1

2
∑ 𝐽𝑖𝑗[𝑆𝑘

𝑧, 𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦
𝑆𝑗

𝑦
+ 𝑆𝑖

𝑧𝑆𝑗
𝑧]

𝑖𝑗𝑘

= −
1

2
∑ 𝐽𝑖𝑗(𝑆𝑖

𝑥[𝑆𝑘
𝑧 , 𝑆𝑗

𝑥] + [𝑆𝑘
𝑧 , 𝑆𝑖

𝑥]𝑆𝑗
𝑥 + 𝑆𝑖

𝑦
[𝑆𝑘

𝑧, 𝑆𝑗
𝑦
] + [𝑆𝑘

𝑧 , 𝑆𝑖
𝑦
]𝑆𝑗

𝑦

𝑖𝑗𝑘

+ 0)

= −
1

2
∑ 𝐽𝑖𝑗(𝑆𝑖

𝑥𝛿𝑘𝑗𝑖𝑆𝑗
𝑦

+ 𝛿𝑘𝑖𝑖𝑆𝑖
𝑦
𝑆𝑗

𝑥 + 𝑆𝑖
𝑦
𝛿𝑘𝑗(−𝑖)𝑆𝑗

𝑥

𝑖𝑗𝑘

+ 𝛿𝑘𝑖(−𝑖)𝑆𝑖
𝑥𝑆𝑗

𝑦
) = 0 

Similarly, we can prove [𝑆𝑥 , H] = 0, 𝑎𝑛𝑑 [𝑆𝑦 , H] = 0, so S is indeed compatible 

with H, and we can find the simultaneous eigenstates of H, S2, and Sz. 

 

We can denote the state with all spins aligned with z-direction as ψ =

|S, S〉
1
|S, S〉

2
… |S, S〉

𝑁
. Here since all spins are taking their maximum z-

components, the eigenvalues for all 𝑆𝑖
𝑧 (𝑖 = 1,2, … 𝑁) are just S, which is the total 

spin. 

 

To show that ψ is an eigenstates of H, we first rewrite H as  

H = −
1

2
∑ 𝐽𝑖𝑗𝑺𝒊 ∙ 𝑺𝒋

𝑖𝑗

= −
1

2
∑ 𝐽𝑖𝑗(𝑆𝑖

𝑥𝑆𝑗
𝑥 + 𝑆𝑖

𝑦
𝑆𝑗

𝑦
+ 𝑆𝑖

𝑧𝑆𝑗
𝑧)

𝑖𝑗

= −
1

2
∑ 𝐽𝑖𝑗 (

𝑆𝑖
+ + 𝑆𝑖

−

2
 
𝑆𝑗

+ + 𝑆𝑗
−

2𝑖
+

𝑆𝑖
+ − 𝑆𝑖

−

2𝑖
 
𝑆𝑗

+ − 𝑆𝑗
−

2
+ 𝑆𝑖

𝑧𝑆𝑗
𝑧)

𝑖𝑗

= −
1

2
∑ 𝐽𝑖𝑗(

𝑆𝑖
+𝑆𝑗

− + 𝑆𝑖
−𝑆𝑗

+

2
+ 𝑆𝑖

𝑧𝑆𝑗
𝑧)

𝑖𝑗

 

Then H|ψ〉 = −
1

2
∑ 𝐽𝑖𝑗𝑖𝑗 (

1

2
𝑆𝑖

+𝑆𝑗
−|ψ〉 +

1

2
𝑆𝑖

−𝑆𝑗
+|ψ〉 + 𝑆𝑖

𝑧𝑆𝑗
𝑧|ψ〉).|ψ〉 is the 
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fully polarized state so it cannot be further increased. Thus  𝑆𝑖
+𝑆𝑗

−|ψ〉

= 𝑆𝑖
−𝑆𝑗

+|ψ〉 = 0 , and 𝑆𝑖
𝑧𝑆𝑗

𝑧|ψ〉 = 𝑆2|ψ〉. H|ψ〉 = −
1

2
𝑆2 ∑ 𝐽𝑖𝑗𝑖𝑗 |ψ〉, and 

the expectation value is −
1

2
𝑆2 ∑ 𝐽𝑖𝑗𝑖𝑗  

 

Now let us consider an arbitrary state |φ〉 = |S, 𝑚1〉|S, 𝑚2〉… |S, 𝑚𝑁〉 , 

which is generally not an eigenstates of H. The expectation value is straightforward 

to calculate, 〈φ|H|φ〉 = −
1

2
∑ 𝐽𝑖𝑗𝑖𝑗 (

1

2
〈𝜑|𝑆𝑖

+𝑆𝑗
−|𝜑〉 +

1

2
〈𝜑|𝑆𝑖

−𝑆𝑗
+|𝜑〉 +

〈𝜑|𝑆𝑖
𝑧𝑆𝑗

𝑧|𝜑〉) = −
1

2
∑ 𝐽𝑖𝑗𝑖𝑗 (0 + 0 + 𝑚𝑖𝑚𝑗) = −

1

2
∑ 𝐽𝑖𝑗𝑖𝑗 𝑚𝑖𝑚𝑗  

 

If all  𝐽𝑖𝑗 ≥ 0 , then for any I, j, we have  𝐽𝑖𝑗𝑆
2 ≥ 𝐽𝑖𝑗𝑚𝑖𝑚𝑗 , and 

therefore  −
1

2
𝑆2 ∑ 𝐽𝑖𝑗𝑖𝑗 ≤ −

1

2
∑ 𝐽𝑖𝑗𝑖𝑗 𝑚𝑖𝑚𝑗 . Note that |φ〉  is arbitrary, which 

means the fully polarized state |ψ〉 has the lowest energy level and is the ground 

state of the so-called fully ferromagnetic Heisenberg model. 

  

1.2 Heisenberg Antiferromagnetic Model and Marshall’s Theorem 

 

In the Hamiltonian  H = −
1

2
∑ 𝐽𝑖𝑗𝑺𝒊 ∙ 𝑺𝒋𝑖𝑗 , if some 𝐽𝑖𝑗  are negative, then the 

argument in the previous section does not stand correct and the ferromagnetic state 

is generally not the ground state. Practically the rigorous solution of the ground 

state cannot be obtained 

 



 

4 
 

In the context of magnetism study, one sensible and important simplification of the 

Heisenberg Model is the biparticle system. In bipartite systems, all sites can be 

divided into two disjoint subsets A and B, so that 𝐽𝑖𝑗 = 0 𝑖𝑓 𝑖, 𝑗 ∈ 𝐴 𝑜𝑟 𝑖, 𝑗 ∈ 𝐵. So 

the interaction only exists between particles from different subsets. 

 

An important example of biparticle systems is a square lattice with only nearest 

neighbor interaction. Fig 1 shows how a two-dimensional square lattice looks when 

it only has nearest neighbor interactions. 

 

Figure 1 Two dimension square lattice with only nearest neighbor interaction. 

 

 In 1948, Louis Néel first proposed the antiferromagnetic state, or the Néel 

State [2], in which neighboring spins in a system have opposite orientations. In 

terms of our biparticle system shown in Fig.1, spins in Subset A are aligned and 

point to the same direction, whereas spins in Subset B are also aligned but point 

oppositely to the spins in Subset A. Furthermore, if we assume spins in both subsets 

are fully polarized, that seems to a reasonable guess of the ground state. We can 

write it as 



 

5 
 

|ψ〉 = ∏ |𝑆, 𝑆〉
𝑖

𝑖∈𝐴

∏ |𝑆, −𝑆〉
𝑗

𝑗∈𝐵

 

Then we have 

H|ψ〉 = −
1

2
∑ 𝐽𝑖𝑗(

1

2
𝑆𝑖

+𝑆𝑗
−|ψ〉 +

1

2
𝑆𝑖

−𝑆𝑗
+|ψ〉 + 𝑆𝑖

𝑧𝑆𝑗
𝑧|ψ〉)

𝑖𝑗

 

|ψ〉is an eigenstates of 𝑆𝑖
𝑧𝑆𝑗

𝑧, and the first term is zero, because spins in Subset 

A cannot be increased and spins in Subset B cannot be decreased. However, |ψ〉 

is not an eigenstates of the second term, so it cannot be an eigenstates of H, and 

certainly not the ground state. 

 

Relevant to the Heisenberg antiferromagnetic model on a biparticle system, there 

is a rigorous statement known as Marshall’s Theorem: for the Heisenberg model 

on a bipartite lattice with sublattices of equal size and 𝐽𝑖𝑗 ≤ 0  for all i ∈

A and j ∈ B or i ∈ B and j ∈ A and every pair of sites i, j is connected by a string 

of bonds with 𝐽𝑘𝑙 ≠ 0, the ground state |𝜓0〉is non-degenerate and is a singlet of 

total spin: 𝐒|𝜓0〉 = 0, where 𝐒 = ∑ 𝑺𝒊𝑖  

 

We should notice that with Marshall’s Theorem, the ground state is not uniquely 

defined because there could be many total-spin singlet states. There are also no 

preferred orientation of the spin system, so we cannot find any magnetic ordering 

just from Marshall’s Theorem. 

 

It is not a trivial job to find the exact ground state solution of the Heisenberg 
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Antiferromagnetic Model. In reality, the first rigorous solution was the contribution 

of Hans Bethe, who formulated the famous “Bethe ansats” in 1931 [1] to approach 

the one-dimensional Heisenberg model with spin-1/2. In a 1-D model, the spins 

form a chain and each spin can only take either up or down direction. In 1971, 

Rodney Baxter worked out the exact solution to the 1D XYZ model. However, this 

solution is extremely complex, and it indicates even more complex approach to the 

2D and 3D cases. Up to now, no one has successfully solved exactly the Heisenberg 

antiferromagnetic model in higher than one dimension system. 

 

1.3 The classical limit and long range antiferromagnetic ordering 

 

We have seen that the ground state of quantum Heisenberg model is only easy to 

solve when all 𝐽𝑖𝑗 ≥ 0. When this is not true, it is difficult to get a rigorous solution. 

Even if we consider the Heisenberg Antiferromagnetic Model in the context of 

biparticle system, we cannot identify a Néel state or other kinds of 

antiferromagnetic ordering from it.  

 

Experimentally, the antiferromagnetic long range ordering has been discovered 

first by neutron scattering measurements. To explain this antiferromagnetic state, 

one important method is to solve the Heisenberg Antiferromagnetic Model for the 

ground state by a classical approximation. In the classical approximation, we 
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replace the spin operator 𝑺𝒊  by real three-component vectors with the 

magnitude |𝑺𝒊| = 𝑆, and the Hamiltonian can be written as: 

H = −
1

2
∑ 𝐽𝑖𝑗𝑺𝒊 ∙ 𝑺𝒋

𝑖𝑗

 

The classical approximation works better when the spin S is large and when the 

dimensionality is higher. For example, it works better for three dimension than 2 

dimension. 

 

Now we can try to minimize H under the condition |𝑺𝒊| = 𝑆. We will consider the 

model on a Bravais lattice {𝑹𝒊}  and assume 𝐽𝑖𝑗  is only a function of the 

separation |𝑹𝒊 − 𝑹𝒋|, so 𝐽𝑖𝑗 = 𝐽𝑗𝑖 = 𝐽(|𝑹𝒊 − 𝑹𝒋|) = 𝐽(𝛥𝑅). Since the spins are just 

real vectors, we can define the Fourier transform 

𝑺𝒒 =
𝟏

√𝑵
∑ 𝒆−𝒊𝒒∙𝑹𝒊𝑺𝒊

𝒊

 

𝑺𝒊 =
𝟏

√𝑵
∑ 𝒆𝒊𝒒∙𝑹𝒊𝑺𝒒

𝒒

 

where N is the number of sites, and the sum on q run through the first Brillouin 

zone. Inserting this into H, we have 

H = −
1

2𝑁
∑ ∑ 𝐽(Δ𝑅)𝒆𝒊𝒒∙𝑹𝒊𝒆𝒊𝒒′∙𝑹𝒋𝑺𝒒 ∙ 𝑺𝒒′

𝑖𝑗𝑞𝑞′

= −
1

2𝑁
∑ ∑ 𝐽(Δ𝑅)

Δ𝑅

∑ 𝑒𝑖(𝒒+𝒒′)∙𝑹𝒊𝑒𝑖𝒒∙𝚫𝑹

𝑅𝑖𝑞𝑞′

𝑺𝒒 ∙ 𝑺𝒒′  

We notice that ∑ 𝑒𝑖(𝒒+𝒒′)∙𝑹𝒊
𝑅𝑖

 is actually the Fourier transform of a δ-function 

∑ 𝑒𝑖(𝒒+𝒒′)∙𝑹𝒊

𝑅𝑖

= 𝑁𝛿𝒒+𝒒′,𝟎 
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Plugging this in we get 

H = −
1

2
∑ ∑ 𝑒−𝑖𝑞∙Δ𝑅𝐽(Δ𝑅)𝑺𝒒 ∙ 𝑺−𝒒

Δ𝑅𝑞

= −
1

2
∑ 𝐽(𝑞)𝑺𝒒 ∙ 𝑺−𝒒

𝑞

 

where we have defined 𝐽(𝑞) = ∑ 𝑒−𝑖𝑞∙Δ𝑅𝐽(Δ𝑅)Δ𝑅 . To minimize H, there should be 

a wavevector Q that 𝐽(𝑄) has to assume a global maximum. We expect that when 

H is minimized, 𝑆𝑄 ≠ 0 𝑎𝑛𝑑 𝑆−𝑄 ≠ 0, but for all other q ≠ ±Q, 𝑆𝑞 = 0. 

 

If Q=0, then 𝑺𝒊 =
𝟏

√𝑵
∑ 𝒆𝒊𝒒∙𝑹𝒊𝑺𝒒𝒒 =

𝟏

√𝑵
𝑺𝑸 for all the spins, and we actually obtain 

a homogeneous spin polarization, the ferromagnet. 

 

If Q ≠ 0, we can consider the normalization on 𝑺𝒊: 

𝑆2 = 𝑺𝒊 ∙ 𝑺𝒊 =
1

𝑁
∑ 𝑒𝑖(𝒒+𝒒′)∙𝑹𝒊

𝑞𝑞′

𝑺𝒒 ∙ 𝑺𝒒′

=
1

𝑁
(2𝑺𝑸 ∙ 𝑺−𝑸 + 𝑒2𝑖𝑸∙𝑹𝒊𝑺𝑸 ∙ 𝑺𝑸 + 𝑒−2𝑖𝑸∙𝑹𝒊𝑺−𝑸 ∙ 𝑺−𝑸) 

Recall that we are minimizing H under the condition |𝑺𝒊| = 𝑆, so the right-hand 

must be independent of 𝑹𝒊 . The last two terms then have to be zero. We thus 

obtain 𝑺𝑸 ∙ 𝑺𝑸 = 𝑺−𝑸 ∙ 𝑺−𝑸 = 0. 𝑺𝑸  is generally complex since it is a Fourier 

transform, and since 𝑺𝒊 is real, we have 𝑺−𝑸 = 𝑺𝑸
∗ . 

 

Let’s assume 𝑺𝑸 = 𝑹𝑸 + 𝑖𝑰𝑸, where 𝑹𝑸  and 𝑰𝑸  are real vectors. Then 𝑺−𝑸 =

𝑺𝑸
∗ = 𝑹𝑸 − 𝑖𝑰𝑸 , and  𝑺𝑸 ∙ 𝑺−𝑸 = 𝑅𝑄

2 + 𝐼𝑄
2 . We also have  𝑺𝑸 ∙ 𝑺𝑸 = 𝑅𝑄

2 − 𝐼𝑄
2 +

2𝑖𝑹𝑸 ∙ 𝑰𝑸 = 0, which gives us two equations: 

𝑅𝑄
2 = 𝐼𝑄

2 



 

9 
 

𝑹𝑸 ∙ 𝑰𝑸 = 0 

We can also explicitly write the magnitude of spin as 𝑆2 =
1

𝑁
2𝑺𝑸 ∙ 𝑺−𝑸 =

𝟐

𝑵
(𝑅𝑄

2 +

𝐼𝑄
2), and thus calculate 𝑅𝑄

2 = 𝐼𝑄
2 =

𝑁𝑆2

4
 

 

The ground state energy is 

𝐻0 = −
1

2
𝐽(𝑄)𝑺𝑸 ∙ 𝑺−𝑸 −

1

2
𝐽(−𝑄)𝑺−𝑸 ∙ 𝑺𝑸 = −𝐽(𝑄)(𝑅𝑄

2 + 𝐼𝑄
2) = −𝐽(𝑄)

𝑁𝑆2

2
 

To figure out the magnetic ordering, we reverse the Fourier transform and obtain 

𝑺𝒊 =
1

√𝑁
(𝒆𝒊𝑸∙𝑹𝒊𝑺𝑸 + 𝒆−𝒊𝑸∙𝑹𝒊𝑺−𝑸)

=
1

√𝑁
[𝒆𝒊𝑸∙𝑹𝒊(𝑹𝑸 + 𝑖𝑰𝑸) + 𝒆−𝒊𝑸∙𝑹𝒊(𝑹𝑸 − 𝑖𝑰𝑸)]

=
2

√𝑁
(𝑹𝑸 cos(𝑸 ∙ 𝑹𝒊) − 𝑰𝑸 sin(𝑸 ∙ 𝑹𝒊)) 

We can define the unit vectors 𝑹̂ =
𝑹𝑸

|𝑹𝑸|
, 𝑎𝑛𝑑 𝑰̂ =

𝑰𝑸

|𝑰𝑸|
, and rewrite 

𝑆𝑖 = 𝑆(𝑹̂ cos(𝑸 ∙ 𝑹𝒊) − 𝑰̂ sin(𝑸 ∙ 𝑹𝒊)) 

 

Now we can illustrate the long range antiferromagnetic state on a two-dimensional 

square lattice. The only constraint on the choice of 𝑹̂ and 𝑰̂ is that they have to 

be orthogonal to each other, so we can select 𝑹̂ = 𝒙̂, 𝑰̂ = −𝒚̂. Then the choice of 

𝐐 = (
𝜋

𝑎
,
𝜋

𝑎
, 0) gives us the traditional Néel state. As shown in Fig 2,  
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Figure 2 Néel State on 2D square lattice. Neighboring spins are antiparallel to each other. 

 

To show explicitly how we get this antiferromagnetic state, we insert 𝑹̂ = 𝒙̂, 𝑰̂ =

−𝒚̂ to have 

𝑺𝒊 = 𝑆(𝒙̂ cos(𝑸 ∙ 𝑹𝒊) + 𝒚̂ sin(𝑸 ∙ 𝑹𝒊)) 

 

𝑹𝒊 is the lattice vector and on the two dimension square lattice, it can be written 

as 𝑹𝒊 = (𝑚𝑎, 𝑛𝑎, 0) , where m and n are integers. The  𝑸 ∙ 𝑹𝒊 = (𝑚 + 𝑛)𝜋 , 

and 𝑺𝒊 = 𝑆(𝒙̂ cos(𝑚 + 𝑛) 𝜋 + 𝒚̂ sin(𝑚 + 𝑛) 𝜋) = 𝑆(−1)𝑚+𝑛𝒙̂, which means the 

orientation of the spins are always along x-axis and neighboring spins are pointing 

to opposite directions. The resultant antiferromagnetic ordering is visualized in Fig 

2. 

 

0 a 2a 3a

a
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1.4 Frustrated system and triangular lattice antiferromagnetic 

 

For a spin system with antiferromagnetic interactions, sometimes the spins cannot 

take the trivial Néel state because of its geometric shape. We call this a magnetic 

frustrated system. This concept was first introduced by Gérard Toulouse [3] [4] in 

1977, and it has been intensely studied for decades. 

 

One example of magnetic frustrated system is the two-dimensional triangular lattice. 

As shown in Fig 3a, in a triangle, when two spins assume opposite orientations, 

there is no trivial orientation left for the third one, which indicates a different ground 

state from the simple Néel state. Other frustrated systems include the Kagome 

lattice (Fig. 3b) and the Tetrahedron lattice. 
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Figure 3 (a) Frustration in triangular lattice. When two spins are antiparallel to each other, the third 

spin, which is also a nearest neighbor to the other two spins, does not have a well-defined orientation. 

(b) The Kagome lattice in two dimension. 

 

It has always been an interesting topic to solve the Heisenberg antiferromagnetic 

model on a geometrically frustrated system, because this may lead to many exotic 

magnetic ordering or disordered systems. 

 

The two-dimensional triangular lattice first attracted interest from physicists 

because it is a two-dimensional analog of the face center cubic structure. 

G.H.Wannier first studied it in an Ising-Model frame [5]. In the Ising model, the 

spins can only take two possible orientations, and Wannier concluded there is no 

long range magnetic at any temperature. This conclusion was verified by K. Husimi 

and I. Syˆozi [6] with a stricter quantum mechanical derivation. 
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In 1973, P. W. Anderson calculated the energy of a 120°Néel state and that of a 

“Resonating Valence Bond” state, and pointed out that the latter had a lower energy 

[7]. However, the 120°Néel state Anderson studied was only a quasi-1D lattice since 

what he calculated was actually the energy of a “railroad trestle” lattice (fig. 4).  

 

Figure 4 Railroad Trestle lattice [7], as proposed by Anderson. The system can be seen as a quasi-

1D frustrated lattice. 

 

Since the late 1980s, theorists started to be able to better estimate the ground state 

energy of a two-dimensional triangular lattice with spin-1/2, and the system was 

believed to have long-range order with the 120°state [8] [9]. The 120°state divides the 

spin system into three sublattices. Spins in each sublattice point to the same direction, 

and spins from different sublattices make 120°angle to each other. All the spin vectors 

are in the same plane. 

 

As we pointed out in Section 1.2, the difficulty of solving the two-dimensional 

Heisenberg Antiferromagnetic model is to find the simultaneous eigenstates of H and 

S. With the development of technology, especially with the progress in calculation 

power provided by computers, theorists in the 1990s tried to fully diagonalize the 

Hamiltonian of the Heisenberg model on a finite-size lattice. Up to 1999, scientists were 

able to solve the quantum Heisenberg antiferromagnetic model on triangular lattice with 
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144 sites, each occupied by a 1/2 spin [10]. These numerical calculation provided strong 

evidence that the 120°phase is the ground state of triangular lattice antiferromagnet 

(TLA) at zero field. 

 

The previous discussions are limited to zero field condition. When a magnetic field 

perpendicular to the triangular plane is turned on, the Hamiltonian becomes 

H = − ∑ 𝐽𝑖𝑗𝑺𝒊 ∙ 𝑺𝒋

𝑖𝑗

− ℎ ∑ 𝑆𝑖
𝑧

𝑖

 

If we assume an isotropic lattice, the model can be further simplified to be  

H = −J ∑ 𝑺𝒊 ∙ 𝑺𝒋

𝑖𝑗

− ℎ ∑ 𝑆𝑖
𝑧

𝑖

, 

Where J<0 to account for the antiferromagtism, and i, j run through all the nearest 

neighbors. This model, although simplified, is still not trivial to solve, but the 

introduction of the Monte- Carlo method as a way of numerical calculation can help us 

to identify many important features of the triangular lattice antiferromagnet. Seabra, et 

al thus proposed a phase diagram for the two-dimensional triangular lattice, according 

to their Monte- Carlo simulation (see Fig 5) [11].  
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Figure 5 Monte-Carlo simulation results of the classical Heisenberg Antiferromagnetic model for 

2D triangular lattice [11]. At zero temperature, there is a quantum critical point at 1/3 of the 

saturation field. The uud state only exists at finite temperature. 

 

From this phase diagram, we can see that at zero field, the ground state is the 120°state, 

and as we turning on the field, there is a quantum critical point at 1/3 of the saturation 

field. At non-zero temperature, there is a phase transition from the 120° phase to a so-

called “up-up-down” (uud) phase, which is stabilized by thermal fluctuations. The uud 

phase is featured by two sublattices with spin-up and the other sublattice with spin-

down, which gives an averaged spin magnetization 1/3 of the fully saturated value over 

a certain range of magnetic field (the magnetic plateau). I will discussed the uud phase 
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in more detail in the following section. Upon increasing the field, where is another 

phase transition from the uud phase to the “canted” phase. All the three phases in the 

phase diagram are coplanar, with all spins in the same plane perpendicular to the 

triangular surface. 

 

1.5 The up-up-down phase 

The first theoretical indication of the up-up-down phase came from a numerical 

calculation by H. Nishimori et al [12]. They proposed a Hamiltonian for the 

quantum Heisenberg antiferromagnetic model on a 2D triangular lattice with spin-

1/2 

H = 2J ∑(𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦
𝑆𝑗

𝑦
+ 𝐴𝑆𝑖

𝑧𝑆𝑗
𝑧) − ℎ ∑ 𝑆𝑖

𝑧

𝑖𝑖𝑗

 (J > 0) 

 In this Hamiltonian, A represents an exchange anisotropy. H. Nishimori et al ran 

the numerical calculation on a 12-site lattice (Fig 6a) and an 18-site lattice (Fig 6b), 

diagonalize the Hamiltonian, and found the ground state magnetization as a 

function of applied field. 

 

Figure 6 (a) 12-site lattice [12]. (b) 18-site lattice [12] 
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We cite the resultant magnetization from Nishimori’s paper [12] in Figure 7 (12-site) 

and Figure 8 (18-site). From these figures, we can see a magnetic plateau between a 

field range ℎ𝑐1 ≤ ℎ ≤ ℎ𝑐2, and the onset of the magnetic plateau ℎ𝑐1 does not strongly 

depend on the anisotropy factor A, - it is always about 1/3 of the saturation field. On 

the other hand, the size of the magnetic plateau, or the position of the second critical 

field ℎ𝑐2, obviously depends on the anisotropy of the spin system. 

 

Figure 7 12-site lattice, magnetization as a function of field. Figures from ref [12]. 
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Figure 8  18-site lattice, magnetization as a function of field. Figures from ref [12] 

 

To explain this magnetic plateau, H. Nishimori and S. Miyashita [12] proposed the 

up-up-down phase, in which the system is divided into three sublattice, with spins 

in two sublattices pointing to one direction and spins in the other sublattice pointing 

to the opposite direction. All the spins are parallel to the z-direction, which we call 

an easy-axis type of magnetic ordering. The 2:1 ratio of the spins give an average 

magnetization 1/3 of the saturated value. 
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We should notice that the result of the quantum model resembles that of the classical 

picture (fig 5) in the sense that at zero temperature in the classical phase diagram, 

we also observe a critical point at 1/3 of the saturated field. However, in the classical 

limit, up-up-down phase can only exist at non-zero temperature, while in the 

quantum picture, the quantum fluctuation help to stabilize the uud phase, and 

critical point opens up. 

 

The theoretical work on the up-up-down phase run over the experimental discovery 

by almost twenty years. The difficulty in synthesizing high-quality triangular lattice 

crystals delayed the discovery of 1/3 magnetic plateau until it was observed in 

Cs2CuBr4 [13] [14]. However, the triangular lattice of this compound is distorted, 

and in analyzing the magnetization process, physicists found that the 

Dzyaloshinskii-Moriya (DM) interaction plays an important role. The DM 

interaction is an antisymmetric exchange mechanism contributing to the total 

magnetic interaction between two neighboring magnetic spins. It was first 

postulated by Igor Dzyaloshinskii [33] and then extended by Toru Moriya [34]. In 

magnetically ordered systems, the DM interaction favors spin canting rather than 

(anti)parallel alignment with the applied field, and is thus a source of weak 

ferromagnetic behavior in an antiferromagnet. A common example of DM 

interaction is two neighboring ions interacting with each other through a third ion 

by the superexchange mechanism. In comparison to Cs2CuBr4, the Ba3CoSb2O9 

single crystal has many advantages that make it a better choice to explore the full 
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magnetic phase diagram. We will discuss this further in a later section. 

 

1.6 Triangular lattice antiferromagnet with interlayer coupling 

 

In actual experimental work, it is not easy to synthesize a pure 2D triangular lattice 

material. The best approximation is usually a compound with triangular plane 

stacking in the perpendicular direction (c-direction by convention) to form a layered 

structure. In this case, if the interlayer coupling is weak enough compare to the 

intralayer coupling, it can be a good substitute of the two-dimensional lattice. 

However, since the interlayer coupling always exists, it certainly play a role in the 

magnetic properties of the compound. R. S. Gekht and I. N. Bondarenko 

systematically explored the phase diagram of a triangular antiferromagnet with a 

layered structure from a theoretical aspect. We summarize their main results below 

[15]. 

 

The Hamiltonian is defined as 

ℋ = 2𝐽 ∑ 𝑺𝒊𝒏 ∙ 𝑺𝒋𝒏

<𝑖,𝑗>𝑛

+ 2𝐽′ ∑ 𝑺𝒊𝒏 ∙ 𝑺𝒊,𝒏+𝟏

𝑖𝑛

− 𝜇𝑯 ∙ ∑ 𝑺𝒊𝒏

𝑖𝑛

, 

where the summation with respect to <i, j> is over all the nearest pairs in the nth 

layer. The second term represent the interlayer coupling, and 𝐽′ is the interlayer 

exchange energy. The last term is the Zeeman energy, which cannot be ignored as 

the external field is not zero. The direction of field is assumed to be along c axis (or 
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z-axis), which is perpendicular to the triangular plane. 

 

To determine the magnetic order, we have to know the angle between the field the 

spin, which we label as θ. In the classical two-dimensional model, the spin lattice 

is divided into three sublattices. In the layered structure model, the periodicity of 

stacking is two, so it is divided into 6 lattices. The energy of the 6-sublattice 

structure can be written as 

 

𝐸0

𝑁
= 𝐽 ∑ 𝑺𝜶 ∙ 𝑺𝜷

𝛼>𝛽

+
2

3
𝐽′ ∑ 𝑺𝜶 ∙ 𝑺𝜶+𝟑

𝛼

−
1

6
𝜇𝐻 ∑ 𝑆𝛼

𝑧

𝛼

 

In this equation, we treat the spins as regular 3-components vectors, so it works in 

the classical limit, e.g. for large spin S. To get the equilibrium state, we just need to 

minimized the energy 

𝜕𝐸0

𝜕𝜃𝛼
= 0,

𝜕𝐸0

𝜕𝜑𝛼
= 0 

𝜃𝛼 is the angle between the α sublattice and the c-axis, and 𝜑𝛼 is the azimuthal 

angle. There are actually many solutions with different structures. R. S. Gekht and 

I. N. Bondarenko proposed nine possible structures and calculated the energy of 

each possibility. Here I will only show the results of the umbrella phase, the up-up-

down phase and the “Y” phase 

 

In the umbrella phase, as shown in Fig 9, the 6 sublattices form a non-planar 

structure with the same inclination angle 𝜃. The resultant azimuthal angle and the 

energy are  
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f(x) = {

2𝜋(𝛼 − 1)

3
,   if α = 1,2,3

(2𝛼 − 5)𝜋

3
,   if α = 4,5,6

 

𝐸0

𝑁
= −(3𝐽 + 2𝐽′)𝑆2 + (9𝐽 + 4𝐽′)𝑆2𝑐𝑜𝑠2𝜃 − 𝜇𝐻𝑆𝑐𝑜𝑠𝜃 

The saturation field  𝐻𝑠 = (18𝐽 + 8𝐽′)𝑆/𝜇 , and the equilibrium condition is 

cosθ =
H

𝐻𝑠
. Putting these substitution in to obtain 

𝐸∗

𝑁
=

𝐸0

𝑁
= −(3𝐽 + 2𝐽′)𝑆2 −

1

2
𝜇𝑆𝐻𝑠ℎ

2,   ℎ =
𝐻

𝐻𝑠
 

We denote the energy of the umbrella phase as 𝐸∗ so later we can compare the 

energy of different phases. 

 

Figure 9 umbrella phase with a 6-sublattice structure. All the sublattice magnetizations have the 

same angle with the applied field. 

 

In the up-up-down phase, as shown in Fig 10, all the 6 sublattices are in the same 

plane parallel to c-axis. Sublattice 1 and 6 have  𝜃 = π , and for the other 4 

sublattices, 𝜃 = 0 . Assuming the spin S is large, the energy of this state is 

calculated to be 
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𝐸0 = 𝐸∗ + [(1 − 3ℎ)2 +
4

3
𝑗(1 − 2ℎ + 3ℎ2)]𝐽𝑆2𝑁, 

where  j = 𝐽′/𝐽  is the ratio between interplanar coupling and the intraplanar 

coupling.  

 

Figure 10 the up-up-down phase with a 6-sublattice structure. Four sublattices are parallel to the 

applied field, while the other two sublattices are antiparallel to the field. Thus the averaged 

magnetization is 1/3 of the full magnetization. 

 

In the classical 2D triangular antiferromagnet, the ground state is the Y phase (see 

Fig 5). When there is a layered structure, the counterpart of the Y phase is shown in 

Fig 11, with antiferromagnetic interaction between adjacent layers. 𝜃1 = 𝜋, 𝜃2 =

−𝜃3 = 𝜃, 𝜃4 = 0, 𝑎𝑛𝑑 𝜃5 = −𝜃6 = 𝜒. The energy of this state (in the classical limit) 

is 

𝐸0

𝑁
= 𝐽𝑆2(cos 2𝜃 + cos 2𝜒) − (2𝐽𝑆2 +

𝜇𝐻𝑆

3
) 𝑐𝑜𝑠𝜃 + (2𝐽𝑆2 −

𝜇𝐻𝑆

3
) 𝑐𝑜𝑠𝜒

−
2

3
𝐽′𝑆2 × [1 − 2cos (θ + χ)] 

 

Minimizing the energy with respect to θ and χ to obtain the field dependence of 
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the angles: 

𝑐𝑜𝑠𝜃 =
3ℎ + 1

2
−

1

3
𝑗ℎ, 𝑐𝑜𝑠𝜒 =

3ℎ − 1

2
−

1

3
𝑗ℎ. 

 

Figure 11 the "Y" phase with 6-sublattice structure. The most prominent feature of this state is that 

two sublattices are antiparallel to each other along the direction of the applied field. 

 

Gekht and Bondarenko worked out a “jS-h” phase diagram for the ground state in the 

large-spin limit. To help the reader better understand the phase diagram, I cite Fig 1 

from ref [15] to show the 9 phases they studied. The phase diagram is shown in Fig 13. 

From the phase diagram, we can see that for non-zero interlayer coupling, the 

antiferromagnetic “Y” phase (Phase (f) in Gekht’s notation) is always the ground state 

at zero field. Approaching the saturation field, it is the umbrella phase (Phase (a) in 

Gekht’s notation) that has the lowest energy level. The up-up-down phase (Phase (c) in 

Gekht’s notation) exists for a certain range of j, and the onset of the uud phase is again 

roughly 1/3 of the saturation field. 
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Figure 12 Fig 1 from ref [15]. The possible spin-configurations for quasi-2D triangular lattice 

antiferromagnet. 

 

Figure 13 The jS-H phase diagram from ref [15] 
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Chapter Two 

Structural Properties and Preliminary Work 

on Ba3CoSb2O9 

The magnetic frustration has induced many exotic disordered ground states like the 

quantum spin liquid state, in which the spin system is prevented from ordering by the 

quantum fluctuation and remains at a liquid-like state even at the lowest temperature 

experimentalists can reach. As an example, the organic κ-(BEDT-TTF)2Cu2(CN)3 

compound has been studied intensely and is assumed to be a candidate for the quantum 

spin liquid state. On the other hand, the realization of the magnetic plateau is rare, and 

before Ba3CoSb2O9, the other compound showing this feature is the Cs2CuBr4 [37] [38]. 

However, for Cs2CuBr4, the antisymmetric Dzyaloshinshy-Moriya (DM) interaction 

plays an essential role in the magnetization process, which is not typical for the isotropic 

triangular lattice system. 

 

The discovery of the 1/3 magnetic plateau makes Ba3CoSb2O9 an important compound 

in the study of triangular lattice antiferromagnet. As mentioned, the first spin-1/2 

system that has a magnetic plateau is the Cr2CuBr4 compound, which has a distorted 

triangular lattice. In contrast, the in-plane homogeneity of Ba3CoSb2O9 is much better 

and that makes the comparison of the experimental results and the theoretical prediction 
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more meaningful. Furthermore, the nearest-neighbor exchange energy of Ba3CoSb2O9 

is only 19.5K, and the effective spin of the ground state is 1/2, the saturation field is 

thus relatively low (~30T according to the magnetization measurements [16] [17]). The 

low saturation field indicate a possibility to explore the full H-T phase diagram, which 

would make a perfect comparison to the theoretical model. 

 

2.1 The lattice structure of Ba3CoSb2O9 

 

Figure 14 Structure of Ba3CoSb2O9 

 

The Structure of Ba3CoSb2O9 is shown in Fig 14. This compound crystallizes in a 

highly symmetric hexagonal structure, P63/mmc, which has triangular planes formed 

by the magnetic Co2+ ions in the CoO6 octahedron. These planes stack directly to one 
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another in the c-direction. A face-sharing Sb2O9 double octahedron sits right in the 

midway between two triangular layers. There are two different Ba sites in the compound, 

which I will discuss in detail in a later section. The structural parameters were first 

measured by Y Doi, et al [18], and the numbers are a=5.8413(1)Å, c=14.4283(2)Å, 

where a is the distance between two nearest Co2+ in the same plane, and c is twice the 

distance between a Co2+ and its nearest neighbor in adjacent plane. 

 

The effective spin moment of Co2+ in a hexagonal structure was studied by M. E. Lines 

[19] and H. Shiba [20]. According to the Hund’s rule, the free Co2+ ion has 7 3d 

electrons and the total orbital and spin angular momenta are L=3 and T=3/2, 

respectively. The cubic crystal field split the 7 levels of the orbital momentum L=3 in 

to 1 orbital singlet and 2 orbital triplet, and the lowest state is a triplet T1, which is well 

separated from the others states with an energy gap. The trigonal field is taken as a 

distortion (perturbation) to the cubic field, and along with the spin-orbital coupling, it 

splits the 4T1 ground state into 6 Kramers doublets. The lowest energy doublet is 

effectively a 1/2 spin, and it is separated with the next energy-level doublet by a gap of 

the order 200-300K [21], so it is legitimate to take the effective spin of Co2+ as 1/2 

when we work at low temperature (lower than 77K). 

 

The intralayer exchange energy 
𝐽

𝑘𝐵
= 19.5𝐾, and the interlayer exchange energy 

𝐽′

𝑘𝐵
=

0.48𝐾. There is an in-plane anisotropy 
∆J

kB
= 1.02𝐾, which is small compared to J. All 

these numbers on exchange energy were measured by Susuki, et al [22]. They evaluated 
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the exchange energy from the saturation field Hs by using the relation g𝜇𝐵𝐻𝑠 = 9𝐽/2. 

The issue of the g-factors and magnetization measurements will be revisited later. 

As a short summary, the Ba3CoSb2O9 compound possesses a spin-1/2 triangular plane 

with a layered structure. There is a weak interplanar coupling and a small intraplanar 

anisotropy, which makes it a good simulation of the two-dimensional triangular lattice. 

The fact that the exchange energy is small and that the effective spin moment is 1/2 

makes the exploration of the full magnetic phase diagram possible. 

 

2.2 Preliminary data on Ba3CoSb2O9- the magnetic and thermal 

measurements 

The first indication of the magnetic ordering in Ba3CoSb2O9 came from the 

susceptibility measurements and the zero-field specific heat measurement by Y. Doi, et 

al [18]. Their results are shown in Fig 15 and Fig 15b. 
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Figure 15  (a) Temperature dependence of magnetic susceptibility of Ba3CoSb2O9 at low 

temperature. A kink is observed at about 3.6K, indicating an antiferromagnetic transition. (b) 

Temperature dependence of the specific heat of Ba3CoSb2O9. Cite from ref [18]. 

 

The Magnetic susceptibility has a broad maximum at around 6K and the sharp cusp at 

3.8K, while the specific heat data shows a “λ” shape anomaly at 3.8K. They concluded 

that there is a phase transition into a long-range antiferromagnetic state and they further 

identified the state as a 120°state with antiferromagnetic ordering between adjacent 

layers. 

 

The first experimental proof of the existence of up-up-down phase in Ba3CoSb2O9 

comes from the magnetization measurements made on a powder sample by Y. Shirata, 

et al [16]. The magnetization data after the subtraction of a temperature-independent 

Van Vleck paramagnetism are shown in Fig 16, and we can clearly see a magnetic 

plateau within the field range 0.306 <
H

𝐻𝑠
< 0.479, which agrees very well with the 

theoretical prediction from numerical calculations. 
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Figure 16 Magnetization curve corrected for Van Vleck paramagnetism [16], in comparison to the 

“higher order coupled cluster method (CCM)” calculation [23] and the exact diagonalization (ED) 

for a 39-site rhombic cluster [24] [25]. The 1/3 magnetic plateau can be observed after the correction. 

 

The H-T phase diagram of Ba3CoSb2O9 was first explored by H. D. Zhou et al [17]. 

The group did temperature-dependence magnetization and specific heat measurements 

at various fields to identify the phase transition points. The measurements were 

conducted on a piece of single crystal sample. Their main results are shown in Fig 17 

(Magnetization) and Fig 18 (Specific heat). 
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Figure 17 Temperature dependence of spin susceptibility of Ba3CoSb2O9 at different fields H//a [17]. 

For fields between 5T and 9T, two phase transitions can be observed. 

 

Figure 18 Temperature dependence of Cp/T at different fields H//a [17]. These data were used to 

plot the phase diagram. 

 

It should be noted that in the original paper of H. D. Zhou et al, the field orientation 

was labeled incorrectly [22], so what was claimed to be the H//c direction, was actually 
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H//a direction, and the phase diagram they referred to was also for H//a direction (see 

Fig 19) 

 

Figure 19 H-T phase diagram for Ba3CoSb2O9, H//a [17]. The original work by H.D. Zhou had a 

mistake in the orientation of the sample, so what they labeled as H//c is actually H//a direction. 

 

In the phase diagram, the authors used a three-sublattice notation, which means they 

did not identify the inter-plane ordering. The zero field ground state is determined to be 

the 120°phase, and in increasing the applied field, one sublattice is always antiparallel 

to the field direction, and the other two sublattices are rotating towards parallel-to-field 

direction, which results in an increase of the magnetization. A phase transition happens 

when those two sublattices become parallel to field, which is the up-up-down phase. 
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The up-up-down phase is stable for a finite range of field, and upon increasing the field, 

there is another phase transition with all the spins becoming canted. 

 

We can see that this phase diagram resembles the results of the 2D classical model in 

many aspects. I copy Fig 5 (relabeled as Fig 20) here for comparison. 

 

Figure 20 Monte-Carlo simulation results of the classical Heisenberg Antiferromagnetic model for 

2D triangular lattice [11]. 

 

However, there are two important differences between the experiment and the 2D 

classical model. First, the uud state at zero temperature is no longer just a critical 

point, and it can actually exist for a finite range of field. Second, the magnetic 
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ordering of Ba3CoSb2O9 is of an easy-plane type, while in the classical 2D model, 

it is of an easy-axis type. 

 

2.3 A summary of important structural and magnetic parameters 

The Ba3CoSb2O9 compound has a triangular lattice formed by spin-1/2 Co2+ ions. 

We define the triangular plane as the ab plane, and perpendicular to the ab plane is 

the c direction. The saturation fields for both H//ab and H//c sample orientation are 

determined by magnetization measurements (see Fig 20) [22]. The results are 

𝐻𝑠
∥𝑐 = 32.8𝑇, 𝐻𝑠

⊥𝑐 = 31.9𝑇. 
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Figure 21 Magnetization of Ba3CoSb2O9 after subtraction of the Van Vleck paramagnetism, for both 

orientations [22]. The magnetic plateau was observed for H//a direction. 

 

The g-factors for both orientations were decided by Electron Paramagnetic 

Resonance (EPR) measurements [22], and the results are 𝑔∥𝑐 = 3.87, 𝑔⊥𝑐 = 3.84. 

 

The intralayer exchange energy is evaluated by using the relation g𝜇𝐵𝐻𝑠 = 9𝐽/2, 

and the result is 
𝐽

𝑘𝐵
= 19.5𝐾. To determine the interlayer coupling and the in-plane 

anisotropy, T. Susuki et al plotted a frequency-field diagram of the collective 

Electron Spin Resonance (ESR) modes for H//c direction, and fit the results with 
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the equation: 

ℏ𝜔± = √(4𝐽′ +
9

2
𝐽) {

3Δ𝐽

4
+

(8𝐽′ + 9𝐽 − 6Δ𝐽)

2(4𝐽′ + 9𝐽 + 3Δ𝐽)2
(𝑔𝜇𝐵𝐻)2}

±
9𝐽

8𝐽′ + 18𝐽 + 6∆𝐽
𝑔𝜇𝐵𝐻 

In this equation, J and J’ are the intralayer and interlayer exchange constants, 

respectively, and ∆𝐽  is the in-plane anisotropy exchange energy defined 

as ∆𝐽(𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦
𝑆𝑗

𝑦
). The fitting results give 

𝐽′

𝑘𝐵
= 0.48𝐾, and

∆𝐽

𝑘𝐵
= 1.02𝐾. 

 

2.4 A semi-classical theory for Ba3CoSb2O9 

Our collaborators Yoshitomo Kamiya and Cristian Batista formulate a semi-

classical theory for Ba3CoSb2O9, which is an essential contribution. This section 

introduces their theoretical work. 

 

Recall that the spin-orbital coupling split the 4T1 ground state of Co2+ ions into six 

Kramers Doublets, and there is an energy gap that is much larger compared to the 

temperature we work at, so we can focus on the lowest energy doublet and write 

an effective spin-1/2 Hamiltonian 

ℋ = ∑ ℋ2𝐷
(𝑛)

𝑛

+ ℋ𝑎𝑛𝑖𝑠 + ℋ3𝐷 ,   (1) 

where 

ℋ2𝐷
(𝑛)

= 𝐽 ∑ 𝑺𝒏,𝒊 ∙ 𝑺𝒏,𝒋

<𝑖𝑗>

− 𝑔𝜇𝐵𝑩 ∙ ∑ 𝑺𝒏,𝒊

𝑖

    (2) 

Is the Hamiltonian for a 2D isotropic triangular lattice Heisenberg antiferromagnet 
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in a magnetic field on the n-th layer and <ij> Runs over the in-plane nearest 

neighbors. The other two terms, ℋ𝑎𝑛𝑖𝑠 and ℋ3𝐷, represent the in-plane anisotropy 

and the interlayer coupling, respectively. ℋ3𝐷 is a small quantity because 𝐽′/𝐽 ≈

0.025 . ℋ𝑎𝑛𝑖𝑠 = (𝐽∥ − 𝐽) ∑ 𝑆𝑛,𝑖
𝑧 𝑆𝑛,𝑗

𝑧
𝑛,<𝑖𝑗>  is also a small quantity because

𝐽∥

𝐽
≈

0.95 (𝐽∥ = 𝐽 − ∆𝐽). In calculation, we can take ℋ𝑎𝑛𝑖𝑠 and ℋ3𝐷 as perturbations 

to the 2D isotropic model, and the quantum effects can be included by considering 

the 2D limit described by ℋ2𝐷
(𝑛)

. 

 

The magnetic phase diagram of the quasi-2D system is then determined from a 

balance between the 2D zero-point energy ∆𝐸 ∝ 𝐽𝑆 and the combined effects of 

interlayer coupling  ∝ 𝐽′𝑆2  and the in-plane anisotropy  ∝ (𝐽 − 𝐽∥)𝑆
2 . The 

procedures would be first deriving the effective classical interaction that is induced 

by quantum fluctuations, and then introducing the effect of the perturbation in a 

mean-field level. 

 

We first look at the classical ground state of  ℋ2𝐷(the index n is omitted because 

we are considering an arbitrary layer), which has an accidental degeneracy in a 

magnetic field [26]. We divide the lattice into three sublattices with the unit vectors 

of the classical sublattice magnetization labeled as 𝛀𝝁=𝟏,𝟐,𝟑. The classical ground 

state is completely specified by the condition: 

𝛀𝟏 + 𝛀𝟐 + 𝛀𝟑 =
𝑔𝜇𝐵𝑩

3𝐽𝑆
   (3) 

For illustration purpose, I show the sketches of “Y”, “inverted Y”, “UUD”, ”V”, 
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and umbrella states in Fig 22. 

 

Figure 22 Representative states of the isotropic TLHAF in 2D: (a) Y; (b) inverted Y; (c) up-up-

down (uud); (d) V, and (e) umbrella states [27]. 

 

The approach applied by Y. Kamiya and C. Batista was to compute the zero-point 

energy ΔE of a given classical ground state {𝛀𝝁} by expanding the Hamiltonian 

up to quadratic order in Holstein-Primakoff bosons (linear spin waves) and 

calculating the Bogoliubov dispersion 𝜔𝒌,𝜈. The index ν = 1,2,3 denotes the three 

branches associated with the three sublattices. The result is 

ΔE({𝛀𝝁}) =
1

2
∑ ∑ 𝜔𝒌,𝜈({𝛀𝝁})

1≤𝜈≤3𝑘∈𝐵𝑍

−
3𝑁2𝐷

2
𝐽𝑆    (4) 

In this equation,  𝑁2𝐷 is the total number of sites per layer and BZ stands for the 

Brillouin zone in 2D. 

 

The zero point energy can be also written as a polynomial function 

of 𝛀𝟏, 𝛀𝟐, 𝑎𝑛𝑑 𝛀𝟑. Specifically we have the equation 

Δ𝐸({𝛀𝝁})

𝑁2𝐷
≈ 𝑔1(𝑀)𝑆2 ∑ (𝛀𝝁 ∙ 𝛀𝝁+𝟏 − 1)

1≤𝜇≤3

+ 𝑔2(𝑀) ∑ [(𝛀𝝁 ∙ 𝛀𝝁+𝟏)
2

− 1]

1≤𝜇≤3

≡ 𝑔1(𝑀)𝑆2𝐹1({𝛀𝝁}) + 𝑔2(𝑀)𝐹2({𝛀𝝁})   (5) 
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In this equation,  𝑔1(𝑀)𝑆2 and 𝑔2(𝑀) are the effective coupling constants of the 

order O(S). M = g𝜇𝐵𝐵/9𝐽𝑆  refers to the magnetization in the classical limit. 

𝐹1({𝛀𝝁}) and 𝐹2({𝛀𝝁}) are defined as 𝐹1 = 𝐹2 = 0 in the fully polarized state. 

 

To satisfy the condition of Eq (3), we have  F1 = (
9

2
) [(

𝑀

𝑀𝑠𝑎𝑡
)

2

− 1] , which is 

independent of the spin configuration  Ω𝜇 . Then we can calculate  𝑔2(𝑀)  by 

extracting the energy difference between two classical ground states X and X’ (the 

reference states), which are selected from Y/UUD/V, inverted Y, and umbrella 

states as shown in Fig 22. The expression of 𝑔2(𝑀) can be derived easily: 

𝑔2(𝑀) ≈
Δ𝐸 ({Ω𝜇

(𝑋)
}) − Δ𝐸 ({Ω𝜇

(𝑋′)
})

𝑁2𝐷 (𝐹2 ({Ω𝜇
(𝑋)

}) − 𝐹2 ({Ω𝜇
(𝑋′)

}))
   (6) 

To check the consistency of the results, different combinations of reference states 

are selected and the results are shown in Fig 23. 
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Figure 23 Field-dependence of (a) the 2D zero-point energy, and (b) the effective biquadratic 

coupling. The different estimators shown in panel (b) are the results of using different reference 

states in Eq. (6). For comparison, a functional form proposed by Griset, et al (ref [28]) is also shown. 

 

From Fig 23, we can see that the different reference states give consistent estimates 

of the same order (≈-0.01J), except for the cusp at M=Msat/3, which is generated 

by the UUD state. This observation suggests that Eq. (5) is indeed a very good 

approximation, and the negative value of  𝑔2(𝑀)  indicates that the ferro-

biquadratic coupling mimics the effect of quantum fluctuations. [28] [29] [30]. 
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Now we are in a position to take into account the effect of ℋ𝑎𝑛𝑖𝑠 and ℋ3𝐷. We 

treat the two terms in the mean-field approximation, and write the energy density 

based on a sin-sublattice structure: 

𝐸

𝑁𝑡𝑜𝑡
=

1

2
∑ ∑ [(𝐽 + 𝑔1(𝑀))𝑆2𝛀𝝃,𝝁 ⋅ 𝛀𝝃,𝝁+𝟏 + (𝐽∥ − 𝐽)𝑆2Ω𝜉,𝜇

𝑧 Ω𝜉,𝜇+1
𝑧

1≤𝜇≤3𝜉=𝑒,𝑜

+ 𝑔2(𝑀)(𝛀𝝃,𝝁 ⋅ 𝛀𝝃,𝝁+𝟏)
2
] +

𝐽′𝑆2

3
∑ 𝛀𝒆,𝝁 ∙ 𝛀𝒐,𝝁+𝟏

1≤𝜇≤3

−
𝑔𝜇𝐵𝑆𝑯

6

∙ ∑ 𝛀𝝃,𝝁

𝝃,𝝁

   (7) 

In this equation,  𝑁𝑡𝑜𝑡  is the total number of sites in three dimension,  𝜉 = 𝑒, 𝑜 

refers to even (e) and odd (o) layers, and 1 ≤ 𝜇 ≤ 3 is the sublattice index.  𝑔2(𝑀) 

is obtained by adopting the Y/UUD/V and umbrella states as X and X’ in Eq. (6), 

respectively. The spin orientations and thus the magnetic ordering are determined 

by minimizing the energy with respect to θ and φ. The definition of the two angles 

are shown in Fig 24. From the figure, we can see that θ is the angle between the 

field direction and the c-axis of the Ba3CoSb2O9 lattice. The minimization process 

can be done in principle by making the first partial derivative with respect 

to θ and φ to be zero: 

𝜕𝐸

𝜕𝜃
= 0,   

𝜕𝐸

𝜕𝜑
= 0   (8) 

 

The resultant phase diagram is shown in Fig 25. [27] To help understand the phase 

diagram and the spin configurations of the six-sublattice structure, 9 possible 

magnetic states are shown in Fig 26, including those show up in the phase diagram. 
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Figure 24 The reference system used in the calculation. a and c are the lattice axes, and z-axis is 

always parallel to the applied field. The angle between c and z axis is thus the angle between the 

crystal c-axis and the applied field. 
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Figure 25 Mean-field phase diagram parameterized by the magnetic field orientation  (θ) and 

strength (g𝜇𝐵B/J). The five different phases are demoted as low-field (LF), lower intermediate-field 

(LIF), upper intermediate-field (UIF), high-field (HF), and fully-polarized (FP) phases. 
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Figure 26 Magnetic states in 3D: the non-coplanar states in the LF, UIF, and HF phases for an 

intermediate value of 0<θ<π/2 are similar to (d), (b), and (c), respectively, but they are deformed 

because of the competition between the external magnetic field and the anisotropy. 

 

Since our experiment focused on the B//c (field perpendicular to the triangular plane) 

and B//ab (field in plane) directions, it is necessary to make a short summary about the 

phase diagram. 

 

For the B//c direction, the ground state at low field is the umbrella, which is a non-

coplanar phase, and all the six sublattices have the same angle θ with the applied field. 

As the field increasing, there is a phase transition, after which the magnetic state 

becomes (b), which is a coplanar phase. Then there is another phase transition and the 

phase near the saturation is the (c) phase. For this direction, the easy-plane anisotropy 

dominates the low-field regime  (B ≲ 𝐵𝑠𝑎𝑡/3) , stabilizing the umbrella state and 
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destabilizing the uud phase. 

 

For the B//ab direction, because the field is parallel to the easy plane, the spins are 

always parallel to the ab-plane, so the phase sequence only contains coplanar phases. 

The zero field ground state is the (d) phase, which is actually the 120°state with 

antiferromagnetic interlayer arrangement, so nearest spins between adjacent layers have 

opposite directions. As the field going up, four sublattices start to move towards z-

direction (the field direction, see Fig 26(d)), and finally the up-up-down phase is built 

up, which is stabilized by quantum fluctuation. On further increasing the magnetic field, 

the UUD phase undergoes a second-order phase transition to a high field (b) phase. 

Finally, as for B//c, the model predicts a first-order phase transition from (b) to (c).This 

phase transition could be related to the experimental observation of magnetization that 

around M= (3/5)Msat, there is a tiny jump in M(B) [22]. 

 

We can do a quick check of the validity of this semi-classical model. Since we can 

calculate the orientations of each sublattice as a function of field, we can try to 

reproduce the results of magnetization measurements. The results are shown in Fig 27 

and Fig 28 for B//c and B//ab, respectively. 
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Figure 27 Normalized magnetization B//c. The red curve is the magnetization from the theoretical 

calculation, and the black points are digitized from Fig 2 in ref [22]. 

 

Figure 28 Normalized magnetization B//ab. The red curve is the magnetization from the theoretical 

calculation, and the black points are digitized from Fig 2 in ref [22] 
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We can see that for B//c direction, the “kink” feature at about 12T is correctly captured 

by the theoretical calculation, and for B//a direction, the uud phase is simulated 

correctly both in the onset field and the width of the uud phase, so the theoretical 

calculation of the magnetization agrees with the experimental data very well, which is 

a strong support for the validity of the semi-classical model. 

 

Before closing the theory section, it is useful to comment on the g-tensor anisotropy. 

Recall that 𝛥𝐽 = 𝐽 − 𝐽∥ > 0 is the coefficient of anisotropic exchange interaction in the 

layer defined as 𝛥𝐽(𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦
𝑆𝑗

𝑦
), which indicate that it takes lower energy cost to 

align a uniform magnetization component along the c-axis. In other words, the easy-

plane exchange anisotropy implies that it is easier to polarize spins along the “hard” 

axes (the c-axis). The Zeeman energy required to fully polarize the spins is 

ℎ𝑠𝑎𝑡,3𝐷
⊥ ≡ 𝑔⊥𝜇𝐵𝐵𝑠𝑎𝑡,3𝐷

⊥ = (9𝐽 + 4𝐽′)𝑆   𝑓𝑜𝑟 𝐵 ⊥ 𝑐   (9) 

ℎ𝑠𝑎𝑡,3𝐷
∥ ≡ 𝑔∥𝜇𝐵𝐵𝑠𝑎𝑡,3𝐷

∥ = (3𝐽 + 6𝐽∥ + 4𝐽′)𝑆   𝑓𝑜𝑟 𝐵 ∥ 𝑐   (10) 

It is easy to see ℎ𝑠𝑎𝑡,3𝐷
⊥ > ℎ𝑠𝑎𝑡,3𝐷

∥  𝑖𝑓 𝐽 > 𝐽∥. If we put in the numbers from ref [22]: 

𝐽∥
J

≈ 0.95,
J′

J
≈ 0.025, 𝐵𝑠𝑎𝑡,3𝐷

⊥ = 32.8𝑇, 𝐵𝑠𝑎𝑡,3𝐷
∥ = 31.9𝑇, 

We obtain 

𝑔∥/𝑔⊥ ≈ 0.93 

In fact, 𝑔∥ < 𝑔⊥ is a rather generic property expected for the pseudospin-1/2 of the 

Kramers doubles in Co2+ ions with easy-plane exchange anisotropy [21]. However, the 

EPR measurements give 𝑔∥ = 3.87, 𝑔⊥ = 3.84, 𝑎𝑛𝑑 𝑔∥/𝑔⊥ ≈ 1.01 [22], which is still 
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controversial at the moment. It is possible that there could be a dynamical shift of the 

measured g-values because of short-range ordering effects that should still be present 

at the temperature of the EPR measurements, T=20K, which is comparable to J. EPR 

measurements at high enough temperature or field will be very helpful to settle this 

issue. 
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Chapter Three  

NMR shift of Ba3CoSb2O9 

The magnetization and specific heat measurements play an important role in sketching 

the phase diagram, because it is quick and straightforward to see the phase transition 

points. However, these measurement results cannot serve as direct evidence of magnetic 

ordering, and it is almost impossible to look into the details of spin configurations. In 

contrast, the nuclear magnetic resonance (NMR) experiment, as a local probe technique, 

has the advantage of detecting the local magnetic environment of a certain nucleus, and 

thus is capable of exploring the spin orientations and the magnetic ordering. 

 

3.1 Starting point: magnetic resonance of a single nucleus 

Considering a free nucleus with non-zero spin S, the application of a magnetic field 𝑯 

would produce an interaction energy  −𝝁 ∙ 𝑯 , and from the aspect of quantum 

mechanics, we write it as a simple Hamiltonian 

ℋ = −𝝁 ∙ 𝑯 

If we define the direction of the applied field as z-direction, the Hamiltonian can be 

simplified to 

ℋ = −γℏ𝐻0𝐼𝑧 , 
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where  γ  is called the gyromagnetic ratio, and  ℏ  is the Planck’s constant. The 

eigenvalues of this Hamiltonian is simply −γℏ𝐻0𝑚, where m is the eigenvalues of 𝐼𝑧. 

Then the allowed energy levels are 

E = −γℏ𝐻0𝑚,   𝑚 = 𝐼, 𝐼 − 1, … , −𝐼 

In total there are (2I+1) energy levels. The energy levels for a spin-3/2 nucleus (e.g. Na 

or Cu) are illustrated in Fig 29. The levels are equally spaced by γℏ𝐻0. 

 

Figure 29 Energy levels for spin-3/2 nuclei in a magnetic field 

 

The split of energy levels shown in Fig 29 is called the Zeeman Effect. To detect the 

presence of such a set of energy levels, one would need induce a transition between 

energy levels. If we choose to use electromagnetic waves to achieve this, then from a 

quantum mechanical view, the energy of photons should be exactly equal to the energy 

difference between levels: 

ℏ𝜔 = 𝛥𝐸, 

where  𝜔 = 2𝜋𝑓  is the angular frequency of the EM wave, and  𝛥𝐸  is the energy 

difference between the initial and final energy levels. 
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In actual experimental work, we usually use oscillating magnetic field to induce the 

transition, which can be explicitly written as a perturbation Hamiltonian: 

ℋ1 = −𝛾ℏ(𝐻𝑥𝐼𝑥 + 𝐻𝑦𝐼𝑦) = −
1

2
𝛾ℏ𝐻1(𝐼+𝑒−𝑖𝜔𝑡 + 𝐼−𝑒𝑖𝜔𝑡), 

where 𝐻𝑥 = 𝐻1𝑐𝑜𝑠𝜔𝑡, 𝐻𝑦 = 𝐻1𝑠𝑖𝑛𝜔𝑡. 𝐼+ 𝑎𝑛𝑑 𝐼− are ladder operators defined as 𝐼+ =

𝐼𝑥 + 𝑖𝐼𝑦, 𝐼− = 𝐼𝑥 − 𝑖𝐼𝑦. 

 

From the knowledge of quantum mechanics, we know that 𝐼+ 𝑎𝑛𝑑 𝐼− only have matrix 

elements between an eigenstates |m〉and |m±1〉, which implies the selection rule that 

the transition can only happen between adjacent energy levels (Δm = 1). Then we have 

ℏ𝜔 = 𝛥𝐸 = γℏ𝐻0Δ𝑚 = γℏ𝐻0 

ω = γ𝐻0 

This frequency is called the Larmor frequency, which is also the resonance condition.  

 

It is worthwhile to point out that in the resonance condition ω = γ𝐻0, the Planck’s 

constant has disappeared, which indicate that a classical approximation is possible for 

describing the system. In fact, the classical picture is not only possible, but also quite 

useful in understanding the NMR experiment. 

 

In the classical picture, we can imagine the nuclear spin to be a magnet, which is in the 

magnetic field H. The field produces a torque on the magnet, which tends to line up the 

magnet to the same direction of the field. However, if the magnet possess an angular 
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momentum, it will not move towards the direction of the field. Instead, like a gyroscope, 

it would proceed about the field. 

 

To be more accurate, as shown in Fig. 30, the field H produce a torque on the magnetic 

moment μ of the amount 𝝁 × 𝑯. The angular moment is related to the magnetic moment 

by 𝑱 = 𝛾𝝁, and the simply from the relation between torque and angular momentum we 

know 
𝑑𝑱

𝑑𝑡
= 𝝁 × 𝑯, so we obtain the equation: 

𝑑𝝁

𝑑𝑡
= 𝝁 × (𝛾𝑯)     (3.1) 

 

Figure 30. Illustration of a magnetic moment in an external field. 

 

Now we should consider the effect of an oscillating EM field, which is easy to generate 

in the lab by connecting a solenoid to EM wave generator. We first notice that in the 

sense of NMR experiment, having an EM field  𝑯𝟏 = 2𝐻1𝒙̂𝑐𝑜𝑠𝜔𝑡  is equivalent to 

having a field rotating about the lab reference frame z-axis at an angular frequency 𝜔. 

To justify this, we can write (also see Fig 31) 

𝑯𝟏 = 𝑯𝑹 + 𝑯𝑳, 

where 𝑯𝑹 and 𝑯𝑳 are rotating fields about z-axis, with opposite direction: 
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𝑯𝑹 = 𝐻1(𝒙̂𝑐𝑜𝑠𝜔𝑡 + 𝒚̂𝑠𝑖𝑛𝜔𝑡) 

𝑯𝑳 = 𝐻1(𝒙̂𝑐𝑜𝑠𝜔𝑡 − 𝒚̂𝑠𝑖𝑛𝜔𝑡) 

If we take 𝑯𝑹 a field rotating about z-axis with angular frequency 𝜔, then 𝑯𝑳 can be 

simply taken as a rotating field with angular frequency – 𝜔. One can show that at 

frequency near  𝜔 , the  𝑯𝑳  can be neglected, and we reach the conclusion that the 

oscillating field 𝑯𝟏 is equivalent to a rotating field about the z-axis. 

𝑯𝟏 = 𝐻1(𝒙̂𝑐𝑜𝑠𝜔𝑧𝑡 + 𝒚̂𝑠𝑖𝑛𝜔𝑧𝑡) 

Now we can consider a spin under the combined effect of a static external field H0 and 

a rotating field H1. Rewrite Eq. (3.1) to get 

𝑑𝝁

𝑑𝑡
= 𝝁 × 𝛾[𝑯𝟎 + 𝑯𝟏(𝑡)]    (3.2) 

Calculation about Eq. (3.2) can be made much easier if we solve it in a rotating 

reference frame. We should assume the angular velocity of the rotating frame relative 

to the laboratory frame is 𝛚 = (0, 0, 𝜔𝑧), which means it rotates about z-axis of the lab 

frame at the same frequency as 𝑯𝟏. We further assume that 𝑯𝟏 is always on the x’-axis 

(we label the axes of the rotating frame as x’, y’, and z’=z) of the rotating frame, so 

𝑯𝟏 = 𝐻1𝒙′̂   (3.3) 

We also know from the knowledge of analytical geometry that 

𝑑𝝁

𝑑𝑡
=

𝜕𝝁

𝜕𝑡
+ 𝝎 × 𝝁   (3.4) 

Substituting Eq. (3.3) and Eq. (3.4) into Eq. (3.2) to obtain 

𝜕𝝁

𝜕𝑡
=

𝑑𝝁

𝑑𝑡
− 𝝎 × 𝝁 = 𝝁 × 𝛾[𝑯𝟎 + 𝑯𝟏(𝑡)] − 𝝎 × 𝝁 = 𝝁 × 𝛾[𝐻0𝒛̂ + 𝐻1𝒙′̂] + 𝝁 × 𝝎

= 𝝁 × [(𝜔𝑧 + 𝛾𝐻0)𝒛̂ + 𝛾𝐻1𝒙′̂]    (3.5) 
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By convention, we define ω = −𝜔𝑧 and rewrite EQ.(3.5) as 

𝜕𝝁

𝜕𝑡
= 𝝁 × 𝛾 [(𝐻0 −

𝜔

𝛾
) 𝒛̂ + 𝐻1𝒙′̂] = 𝝁 × 𝑯𝒆𝒇𝒇      (3.6) 

where 

𝑯𝒆𝒇𝒇 = (𝐻0 −
𝜔

𝛾
) 𝒛̂ + 𝐻1𝒙′̂ 

Physically Eq. (3.6) means in the rotating reference frame, the spin moment act as if in 

a static magnetic field 𝑯𝒆𝒇𝒇. When the resonance condition is satisfied, 𝜔 = 𝛾𝐻0, and 

the effective field in the rotating frame is just an “𝐻1” field in the x’-direction, and the 

spin would proceed about the H1 direction. 

 

3.2 The behavior of nuclei in a solid and the detection of NMR spectrum 

In real world, it is usually not possible to isolate a single nucleus for research. A 

common studying area is the behavior of an ensemble of nuclei with a certain lattice 

structure, for example, a solid. 

 

Recall Fig 29 and the Zeeman splitting. If we have an ensemble of nuclei with the same 

total spin S in an external field H0, and each could occupy one of the (2S+1) energy 

levels. In equilibrium, the population on each energy level is determined by the 

Boltzmann relation 

𝑁𝑚 ∝ 𝑒−𝐸𝑚/𝑘𝐵𝑇 

where 𝑘𝐵 is the Boltzmann constant, and T is the temperature. 
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When an electromagnetic pulse at the resonant frequency is applied to the system, every 

spin of the system, except those already in the highest level absorbs the energy of a 

photon and jump to a higher energy level, which causes an imbalance of the system. 

After the effect of the pulse, the spin system needs to go back to its equilibrium state, 

which requires the exchange of energy. The channels of energy exchange can be various, 

for example the interaction between nuclei, the interaction between nuclei and nearby 

electrons, and the interaction between nuclei and the lattice. We call this process 

relaxation. 

 

In the classical picture, let’s consider the case discussed in the last section, which is 

when the effective field in always on the x’-direction of the rotating frame. As shown 

in Fig 31, a spin that is originally parallel to z-direction would rotate about x-axis, and 

after the effect of the pulse, the spin makes some angle θ with the z-direction, and it 

now possess both z-component and a component in the xy plane. Both components will 

decay after the pulse, and the time dependence of the spin magnetization follow the 

Bloch’s equations [31]. 
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Figure 31. Illustration of a nuclear spin being tilted by an H1-field. 

 

𝑑𝑀𝑧

𝑑𝑡
= −𝛾𝑀𝑦𝐻1 +

𝑀0 − 𝑀𝑧

𝑇1
     (3.7a) 

𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦ℎ0 −

𝑀𝑥

𝑇2
     (3.7𝑏) 

𝑑𝑀𝑦

𝑑𝑡
= 𝛾(𝑀𝑧𝐻1 − 𝑀𝑥ℎ0) −

𝑀𝑦

𝑇2
      (3.7𝑐) 

In these equations, ℎ0 = 𝐻0 + 𝜔𝑧/𝛾.  

 

We can immediately notice that these equations imply that the relaxation time of Mz, 

which is T1, is different from the relaxation time of the in-plane components, which is 

T2. Usually we call T1 the spin-lattice relaxation time, which is the characteristic time 

for the energy exchange between nuclei and the lattice, which can be taken as an energy 

reservoir. On the other hand, the decay of the transverse components conserves energy, 

and there is no need of an energy transfer to a reservoir. One possible mechanism for 

the T2 process in a solid is that each nucleus spin produce a field to the nearby nuclei, 

which could either add or oppose the external field. As a result, each nucleus has a 
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different precession rate. If at time t=0, all the nuclei are in phase, then after a certain 

time τ, they would get out of step, and the averaged magnetization is thus reduced.  

 

If we solve the Bloch’ Equations, we can obtain 

𝑀𝑋(𝑡) = (𝜒′𝑐𝑜𝑠𝜔𝑡 + 𝜒′′𝑠𝑖𝑛𝜔𝑡)𝐻𝑋0    (3.8) 

with  

𝜒′ =
𝜒0

2
𝜔0𝑇2

(𝜔 − 𝜔0)𝑇2

1 + (𝜔 − 𝜔0)2𝑇2
2      (3.8𝑎) 

𝜒′′ =
𝜒0

2
𝜔0𝑇2

1

1 + (𝜔 − 𝜔0)2𝑇2
2      (3.8𝑏) 

𝜒′  and  𝜒′′  represent the real and imaginary parts of the NMR spectrum in the 

frequency space, and they both have the form of Lorentzian Function. In real 

experiment, this NMR spectrum in the frequency regime is what we look for. 

 

In the classical picture, one obvious way of obtaining the spectra is that we apply a 

pulsed H1 field to the nuclear system, which tilts the nuclear spin exactly to the xy-

plane. In other words, the pulse makes the nuclei rotate by 90 degrees, and we call this 

pulse the π/2 pulse (or 90°pulse). Then we can measure the induced magnetization in 

the xy-plane with a detection coil. This method is called a Free Induction Decay (FID) 

detection, which is both simple and straightforward.  

 

However, as we mentioned before, different nuclei feel different local fields, and thus 

they proceed in different rates. If we just send aπ/2 pulse (with H1 field along +x-

direction) to the system, what we should expect in the rotating reference frame is that 
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right after theπ/2 pulse (t=0), all the nuclear spins are knocked to the xy-plane (Fig 32a). 

Specifically, the +y-direction. Since the pulse has finished, the spins start proceed about 

the z-axis in the laboratory frame. After a certain time t0 (t0<T2), the spins “fan out” 

(Fig 32b) because of the different procession rate. In the rotating frame, we can see a 

distribution of spins in the xy-plane. Now imagine at time t=t0 we apply another pulse 

with double duration and assume the H1 field is +y-direction (Fig 32c). This is called a 

π pulse, and since it has twice the length of the π/2 pulse, it rotates the spin about y-axis 

by 180 degrees. In the rotating frame, it results in that the spins in the front of the fan 

now fall behind, and the spins at the back of the fan now lead (Fig 32d). Then after 

another time t0, all the nuclear spins will collapse to the +y-direction (Fig 32e). This 

phenomenon is called the spin echo, and it is first discovered by Erwin Hahn [32].  

 

There are many advantages related to using a spin echo rather a FID. For example, the 

FID signal reflects an inhomogeneous effect from the distribution of local fields and 

thus create much uncertainty in calculating the NMR shift. On the other hand, the spin 

echo effectively reduce the inhomogeneity and provide a more accurate measure of the 

shift. Moreover, in actual experimental work, there is usually a dead time right after the 

applied pulse, during which the data are meaningless. An FID signal starts right after 

the pulse, so it is surely affected by the dead time. In contrast, when we use spin echo, 

the signal is pushed further away from the pulses (see Fig 33), and therefore the dead 

time effect is eliminated. 



 

61 
 

 

Figure 32 Illustration of spin echo sequence. (a) A pi/2 pulse knocks the spin to y-axis. (b) The 

transverse components of nuclear spins fan out in the xy-plane. (c) Applying a pi pulse along y-axis 

to the nuclear spin system. (d) The spins are flipped by 180⁰ around the y-axis. (e) The transverse 

components refocus to y-axis again and forms an echo. 

 

 

Figure 33 Illustration of spin echo sequence. 
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3.3 The quadrupolar interaction term and the satellites 

 

The interactions a nuclear spin experiences in a solid can be summarized as the 

following Hamiltonian 

ℋ = ℋ𝑧 + ℋ𝑄 + ℋ𝑛−𝑛 + ℋ𝑒−𝑛     (3.9) 

The first term is the Zeeman term, and the second term is due to the electric 

quadrupole effects. The third and the fourth terms are the nucleus-nucleus 

interactions and the electron-nucleus interactions, which I will discuss in later 

sections. In this section, we will focus on the quadrupolar interaction. 

 

The electric quadrupole interaction comes from the energy given by electric field 

felt by the nucleus. In our study (Ba3CoSb2O9) as well as many other cases, we can 

write a simplified Hamiltonian with the assumption of a field with axial symmetry. 

If we consider the applied magnetic field to be in the z’-axis, which in general not 

the same as z-axis (the principle axis of the lattice structure), then the Hamiltonian 

including the Zeeman and Electric Quadrupolar interaction can be written as 

ℋ = −𝛾𝑛ℏ𝐻0𝐼𝑧′ +
𝑒2𝑞𝑄

4𝐼(2𝐼 − 1)
(3𝐼𝑧

2 − 𝐼2)    (3.10) 

In this equation, e is the electron charge, and q is the nuclear charge. Q is called the 

Quadrupole moment, which is the property of the nucleus. The axes z, z’, x, and x’ 

are defined as shown in Fig 34. 
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Figure 34 x’-axis lie in the plane containing z’ and z. 

 

It is easy to see that 

𝐼𝑧 = 𝐼𝑧′𝑐𝑜𝑠𝜃 + 𝐼𝑥′𝑠𝑖𝑛𝜃     (3.11) 

Substituting Eq. (3.11) into Eq. (3.10) we obtain 

ℋ = −𝛾𝑛ℏ𝐻0𝐼𝑧′

+
𝑒2𝑞𝑄

4𝐼(2𝐼 − 1)
[3𝐼𝑧′

2 𝑐𝑜𝑠2𝜃 + 3𝐼𝑥′
2 𝑠𝑖𝑛2𝜃

+ 3(𝐼𝑧′𝐼𝑥′ + 𝐼𝑥′𝐼𝑧′)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − 𝐼2]    (3.12) 

Recall that we have axial symmetry, so the diagonal elements of  𝐼𝑥′  and  𝐼𝑦′ 

should be the same. 

〈m|𝐼𝑥′
2 |𝑚〉 = 〈m|𝐼𝑦′

2 |𝑚〉 =
1

2
〈m|𝐼2 − 𝐼𝑧′

2 |𝑚〉

=
1

2
[𝐼(𝐼 + 1) − 𝑚2]    (3.13) 

By expressing 𝐼𝑥′ =
1

2
(𝐼′+ + 𝐼′−), it is obvious that 𝐼𝑥′  does not have diagonal 

elements.  𝐼𝑧′ , on the other hand, is diagonal in the first order, so we have no 
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contribution from (𝐼𝑧′𝐼𝑥′ + 𝐼𝑥′𝐼𝑧′) in the first order. The energy levels can be then 

written as 

𝐸𝑚 = −𝛾𝑛ℏ𝐻0𝑚 +
𝑒2𝑞𝑄

4𝐼(2𝐼 − 1)
(
3𝑐𝑜𝑠2𝜃 − 1

2
) [3𝑚2 − 𝐼(𝐼 + 1)]    (3.14) 

 

One thing we should notice from Eq. (3.14) is that m comes into the quadrupolar 

term in the quadratic form, so +m and –m energy levels have the same correction. 

For spin-3/2, which is the case of Ba nuclei, the shift of energy levels are shown in 

Fig 35a. Accidentally the magnitude of the shift is the same for all the energy levels 

in the first order, because |[3 (
1

2
)

2

−
3

2
(

3

2
+ 1)]| = |[3 (

3

2
)

2

−
3

2
(

3

2
+ 1)]| = 3 . 

Now the energy differences between levels are different, and transitions between 

levels can be induced by photons of different energies, corresponding to different 

NMR frequencies. For spin-3/2, we would expect three NMR lines (satellites) (Fig 

35b), and by convention we also call the middle one the central transition line.  

 

Figure 35 The energy levels of a 3/2 spin in a magnetic field are split by the electric field gradient. 
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If we looked at Eq. (3.14) further, we can easily notice that the transition between 

m=1/2 and m=-1/2 requires exactly the Zeeman energy  𝛾𝑛ℏ𝐻0 , but for other 

permitted transitions (m ↔ m ± 1), the energy exchange is different from the 

Zeeman energy. If we consider the transition between m and (m-1), we can directly 

calculated from Eq. (3.14) that 

∆E = 𝛾𝑛ℏ𝐻0 +
𝑒2𝑞𝑄

4𝐼(2𝐼 − 1)
(
3𝑐𝑜𝑠2𝜃 − 1

2
) (−6𝑚 + 3), 

which is linearly related to quantum number m. So in principle we can define a 

quadrupole frequency 𝜐𝑄, which is the frequency distance between neighboring 

satellites. Take spn-3/2 as an example, we should expect 3 NMR signals at 

frequency 𝜐0 − 𝜐𝑄 (
3𝑐𝑜𝑠2𝜃−1

2
) , 𝜐0, 𝑎𝑛𝑑 𝜐0 + 𝜐𝑄 (

3𝑐𝑜𝑠2𝜃−1

2
), respectively, where 𝜐0 

is the Zeeman frequency. 

 

3.4 The identification of NMR lines in Ba3CoSb2O9 

 

Our Nuclear Magnetic Resonance (NMR) measurements were conducted on a 

30mg single crystal sample of Ba3CoSb2O9, which was synthesized by H. D. Zhou 

et al using the traveling-solvent floating-zone method [17]. The dimension of the 

sample is approximately 4𝑚𝑚2 × 1.2𝑚𝑚 thickness. A picture of the sample is 

shown in Fig 36. 
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Figure 36 A picture of the Ba3CoSb2O9 single crystal sample 

 

The experiments took place in two laboratories. All the measurements under fields 

below 12T were done in the Department of Physics, UCLA, and measurements 

under higher field (13.5T-30.4T) were in the National High Magnetic Field Lab 

(NHMFL) in Tallahassee, FL. 

 

The sample sits inside an NMR coil, which was mounted on a single axis piezo-

driven rotator (Attocube ANRv51/RES). The relative rotation angle was 

determined by a resistive sensor built into the rotator. The absolute value of the 

angles was obtained by observing the variation of the NMR frequencies, which I 

will discuss in detail later. 
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Now we should review the lattice structure of Ba3CoSb2O9. There are two different 

Ba sites in the compound- Ba(1) and Ba(2), and the number of Ba(2) sites is twice 

as many as Ba(1) sites. There are two Ba isotopes available for NMR detection, 

135Ba and 137Ba, both with spin-3/2. The other Ba isotopes are either not stable or 

have a zero spin. The natural abundance of 135Ba and 137Ba are 6.59% and 11.32%, 

respectively. In summary, there are in total 4 different Ba nuclei to study, and it is 

easy to work out the relative intensity of NMR signals (take the intensity of 135Ba(1) 

as 1). 

Nuclei 137Ba(2) 137Ba(1) 135Ba(2) 135Ba(1) 

Relative intensity 3.4 1.7 2 1 

 

Since Ba nuclei is of spin-3/2, the electric quadrupolar effect splits its NMR signal 

into three lines- one central line and two satellites. This means we should expect 

12 NMR lines in total for Ba nuclei. The Co and Sb nuclei also have non-zero spin, 

but we did not see their NMR signal. Possible reasons could be too fast spin-lattice 

relaxation rate (Co) and too broad and thus too weak signals (Sb). 

 

As the first step of the experiment, we did frequency sweep measurements and sum 

up the Fourier transform of the signal to get the spectra. The measurements were 

done under field B=8.4524T and temperature T=6K, where according to the phase 
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diagram by H. D. Zhou [17] the sample is in the paramagnetic state. The results for 

both B//ab (field in plane) and B//c (field out of plane) are shown in Fig 37. 

 

In determining the NMR lines, we considered the Zeeman frequency (𝜔0 = 𝛾𝐻0) 

relative intensities of different Ba signals, and the fact that the two satellites should 

be roughly symmetric on each side of the central transition signal. 

 

 

Figure 37 NMR spectra obtained by summing up the Fourier transform results of spin-echo signals 

at equally spaced frequencies. Different peaks are attributed to different Ba nuclei by considering 

the relative intensities and the frequency shift. The low frequency peaks were not measured due to 

the limitation of the tuning range of the RF circuit. 
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The reader may have noticed from Fig 37 that the relative positions of 137Ba(1) and 

137Ba(2) central transition signals are different for B//ab and B//c. That is mainly 

because of the second order (in 𝜐𝑄) quadrupolar frequency, which is a correction 

to the Zeeman frequency. For spin-3/2, which is the case of 137Ba and 135Ba, the 

second order correction can be written as 

𝜐2𝑛𝑑 =
3𝜐𝑄

2

16𝛾𝐵
(1 − 𝑐𝑜𝑠2𝜃)(1 − 9𝑐𝑜𝑠2𝜃)    (3.15) 

In this equation,  𝜐𝑄 is the quadrupole frequency, 𝛾 is the gyromagnetic ratio, B 

is the external field, and 𝜃 is the angle between the external field the c axis of the 

crystal. Eq. (3.15) assumes that the principle axis is just the c-axis of the crystal. 

To better understand the angle dependence of the second order quadrupolar 

frequency, I graph the function (1 − 𝑐𝑜𝑠2𝜃)(1 − 9𝑐𝑜𝑠2𝜃) in Fig. 38. We should 

notice from Fig 38 that this function takes local maximum at 0 degree and 90 

degrees, which corresponds to B//c and B//ab directions, respectively. This is 

important for the experiment, because it means we can accurately rotate the sample 

to B//c or B//ab direction by following the central transition signals of Ba nuclei 

and locate the sample where we have the local maximum of frequency.  
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Figure 38 Functional shape of (1 − 𝑐𝑜𝑠2𝜃)(1 − 9𝑐𝑜𝑠2𝜃) 

 

As I mentioned before, the labeled orientation of the sample was problematic 

initially, so we need to identify the correct orientations by NMR experiments. One 

straightforward observation to make is the distance in frequency between satellites 

that belong to the same nucleus. For spin-3/2 nuclei, the frequency difference 

between the lowest-frequency satellite and the highest-frequency satellite 

is |2𝜐𝑄 (
3𝑐𝑜𝑠2𝜃−1

2
) |. For B//c (𝜃 = 0), it is 2𝜐𝑄, and for B//ab (𝜃 = 90°), the value 

is half (𝜐𝑄). In Fig 37, if we look at the satellites of 137Ba(2), which has the strongest 

signal and the largest 𝜐𝑄, we can easily see that the distance between two satellites 

is only half for B//ab, compared to B//c direction. Which is an obvious evidence of 
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the orientation. The quadrupolar frequencies 𝜐𝑄 for different nuclei then can be 

taken by reading the distance between satellites of the corresponding nuclei. 

 

To further verify the orientation and for completeness of an NMR study, we did a 

rotation study on 137Ba(2) central transition and graphed the central transition 

frequency as a function of angle from c-axis. Theoretically, the angle variation 

should conform to 

𝜐 = 𝛾𝐵(1 + 𝐾𝛼𝑠𝑖𝑛2𝜃 + 𝐾𝑐𝑐𝑜𝑠2𝜃) +
3𝜐𝑄

2

16𝛾𝐵
(1 − 𝑐𝑜𝑠2𝜃)(1 − 9𝑐𝑜𝑠2𝜃)     (3.16) 

where 𝐾𝛼 and 𝐾𝑐 are shifts from the Zeeman frequency, which were determined 

by the local maxima positions. 

The results are shown in Fig 39 
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Figure 39 NMR frequency of the 137Ba(2) central transition vs. θ for B=8.4524T and T=6K 

 

We can see from Fig 39 that the experimental data (the blue and red points) agree 

with the theoretical curve (the black line) very well, which solidifies our 

interpretation of the sample orientations. 

 

3.5 The NMR shift 

 

Recall Eq. (3.9) 

ℋ = ℋ𝑧 + ℋ𝑄 + ℋ𝑛−𝑛 + ℋ𝑒−𝑛     (3.9) 

We have discussed the Zeeman term ℋ𝑧 and the quadrupole term ℋ𝑄. The third 

term ℋ𝑛−𝑛 is the interaction between nuclear spins, and it can be simply taken as 
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the interaction between the nuclear moment μ and the dipolar field created by the 

other nuclear spins in the lattice 

ℋ𝑛−𝑛 =
𝜇0

4𝜋
∑ [

𝝁 ∙ 𝝁𝒊

𝑟𝑖
3 −

3(𝝁 ∙ 𝒓𝒊)(𝝁𝒊 ∙ 𝒓𝒊)

𝑟𝑖
5 ] ,

𝑖

     (3.17) 

where 𝝁𝒊 is the magnetic moment of a nuclear spin at displacement 𝒓𝒊 from the 

moment  μ, and the sum runs through the whole lattice. The nuclear magnetic 

moment is in the order of a nuclear magneton, which is 𝜇𝑁 = 5.05 × 10−27𝐽/𝑇, 

and the magnetic moment of an electron is in the order of a Bohr magneton, which 

is  𝜇𝐵 = 9.27 × 10−24𝐽/𝑇 . We can see that the nuclear magnetic moment is 3 

orders of magnitude smaller than the electron magnetic moment, so the magnetic 

dipolar interaction between nuclei is not important in shifting the NMR frequency. 

In our research, we basically ignored the ℋ𝑛−𝑛 term in studying the NMR shift. 

 

The last term in Eq. (3.9)  ℋ𝑒−𝑛 is often called the hyperfine interaction, which 

represents the coupling between the nuclear spin and the electron. This term is 

important because it reveals the state of electrons in a lattice, especially those near 

the nuclei, and it is the reason why NMR can serve as a local probe technique. By 

studying the hyperfine interaction, or the hyperfine shift of the NMR signal, we 

can identify the arrangement of electron spins in a lattice and detect the existence 

of magnetic orderings. 

 

The hyperfine interaction can be summarized as 
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 ℋ𝑒−𝑛 =
𝜇0

4𝜋
𝛾𝑒ℏ ∑ [−

𝝁 ∙ 𝑳𝒊

𝑟𝑖
3 +

𝝁 ∙ 𝑺𝒊

𝑟𝑖
3 −

3(𝝁 ∙ 𝒓𝒊)(𝑺𝒊 ∙ 𝒓𝒊)

𝑟𝑖
5 −

8𝜋

3
𝝁

𝑖

∙ 𝑺𝒊𝛿(𝒓𝒊)]     (3.18) 

 

The first term in Eq. (3.18) is from the coupling of nuclear spin and the electron 

orbital angular momentum, and the shift caused by this orbital term is usually 

called the chemical shift. In most real materials, the expectation value of the orbital 

angular momentum 𝑳𝒊 is zero under the crystal field, and that causes the quenching 

of the orbital term. 

 

The second and the third term together is the magnetic dipolar interaction, which 

is caused by the magnetic dipolar field of an electron spin at the nuclear site. The 

fourth term is the Fermi contact term, which relates to the direct interaction of the 

nuclear dipole with the electron spin dipoles and is only non-zero if the electron 

wave function has a finite spin density a the position of the nucleus. This contact 

interaction can be divided into an isotropic part and an anisotropic part with an 

angle dependence~
3𝑐𝑜𝑠2𝜃−1

2
, where θ is the angle between the direction of the 

nuclear spin and the displacement vector starting from the electron to the position 

of the nucleus. 

 

Taking into account of the NMR shift shown in Eq. (3.18), we can write the NMR 

central transition frequency as 
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υ = γB(1 + K𝛼) +
3𝜐𝑄

2

16𝛾𝐵
(1 − 𝑐𝑜𝑠2𝜃)(1 − 9𝑐𝑜𝑠2𝜃),     (3.19) 

where K𝛼 is the hyperfine shift, and 𝛼 denotes the two orientations (B//c or B//ab). 

A closer observation of Eq. (3.18) reveals that the direct dipolar interaction and the 

contact part are proportional to the electron spin susceptibility χ, while the orbital 

term is independent of χ. This means we can write the hyperfine shift K as a 

function of the electron spin susceptibility χ 

𝐾𝛼(𝑇) = 𝐾𝛼
0 + 𝐴𝛼𝜒𝛼(𝑇),     (3.20) 

In this equation, 𝐾𝛼
0 is the orbital shift, which is temperature-independent, and 𝐴𝛼 

is called the hyperfine constant. To determine the orbital shift and the hyperfine 

constant, we can measure the total shift 𝐾𝛼 at some different temperatures, and 

find out the corresponding susceptibility at the same temperatures. Then we can 

plot the results in a K − χ plot with T to be the implicit variable. In such a plot, the 

y-intercept is the orbital shift, and the slope is the hyperfine constant. We did this 

for 137Ba(1) and 137Ba(2) central transitions on both field orientations, and the 

resultant K − χ plots are shown in Fig 40. 
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Figure 40 K − χ plots for both Ba sites at B=8.4524T. The temperature ranged from 10K to 50K. 

 

From the fitting lines to the K − χ plot, we first notice that the orbital part (y-

intercept) is almost zero, so we will assume the orbital part is negligible in further 

analysis. A summary of the hyperfine constants are shown in the following table 

Nuclear site 𝜈𝑄(MHz) 𝐴∥𝑐(G/𝜇𝐵) 𝐴⊥𝑐(G/𝜇𝐵) 

137Ba(1) 2.72 -156 -612 

137Ba(2) 15.4 -1313 -752 

135Ba(1) 1.75 -156 -612 

135Ba(2) 9.8 -1313 -752 

Table II NMR parameters for the Ba nuclear sites/isotopes 
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The hyperfine environment for the same site with different Ba isotopes is exactly 

the same, so from now on, we do not consider the 135Ba(1) and 135Ba(2) nuclei, and 

in fact, our experiment focused on the central transitions of 137Ba(1) and 137Ba(2). 

 

The total field at a Ba site can be written as 𝐵 = 𝐵0 + 𝐵ℎ𝑓 + 𝐵𝑚𝑎𝑐𝑟𝑜, where 𝐵0 is 

the applied external field, 𝐵ℎ𝑓 is the hyperfine field, and 𝐵𝑚𝑎𝑐𝑟𝑜 is macroscopic 

field. The macroscopic field includes the Lorentz field and the demagnetization 

field, which relates to the geometry of the sample. The sum of these two fields can 

be written as 

𝐵𝑚𝑎𝑐𝑟𝑜 =
𝜇0

3
(𝑀 −

𝐷

4𝜋
𝑀),    (3.21) 

where  𝑀  is the bulk magnetization of the sample, and D is called the 

demagnetization factor, which takes value between 0 and 1. It is straightforward to 

see that the macroscopic field is proportional to the magnetization, and thus takes 

larger value at larger external field. In our experiment, the largest field reached was 

30.4T, where 𝐵𝑚𝑎𝑐𝑟𝑜 is calculated to be around 40G, and that is smaller than the 

line width of the NMR signal. In other words, we can neglect this term in our 

analysis without affecting the identification of magnetic ordering. 

 

Now we are in a position to step further in the analysis of the hyperfine constants. 

For 137Ba(1), we can directly calculate the dipolar field by an electron at the nuclear 

site, using the equation: 

𝐵𝑑𝑖𝑝 = ∑
𝜇0

4𝜋
(
3𝒓𝒊(𝒎𝒊 ∙ 𝒓𝒊)

𝑟𝑖
5 −

𝒎𝒊

𝑟𝑖
3 )

𝑖

,     (3.21) 
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where the sum is over all electron spins, and the magnitude of  𝒎𝒊  is taken to 

be 1𝜇𝐵, so that the resultant 𝐴𝑑𝑖𝑝 is in the unit T/𝜇𝐵 or G/𝜇𝐵. The sum in Eq. (3.21) 

actually does not converge, so in practice, we have to do the calculation within a 

finite size sphere. The result by choosing a 50a-radius (a is the lattice constant) 

sphere is  𝐴𝑑𝑖𝑝
∥𝑐 = 750𝐺/𝜇𝐵,  and  𝐴𝑑𝑖𝑝

⊥𝑐 = −375𝐺/𝜇𝐵 . Further expansion of the 

sphere only changes the results in the order of 1𝐺/𝜇𝐵 . Now we can write the 

following equations, 

𝐴𝐵𝑎(1)
∥𝑐 = 𝐴𝑖𝑠𝑜

∥𝑐 + 𝐴𝑎𝑛𝑖𝑠𝑜
∥𝑐 + 𝐴𝑑𝑖𝑝

∥𝑐 = −156𝐺/𝜇𝐵 

𝐴𝐵𝑎(1)
⊥𝑐 = 𝐴𝑖𝑠𝑜

⊥𝑐 + 𝐴𝑎𝑛𝑖𝑠𝑜
⊥𝑐 + 𝐴𝑑𝑖𝑝

⊥𝑐 = −612𝐺/𝜇𝐵 

𝐴𝑎𝑛𝑖𝑠𝑜
⊥𝑐 = −

1

2
𝐴𝑎𝑛𝑖𝑠𝑜

∥𝑐  

𝐴𝑖𝑠𝑜
∥𝑐 = 𝐴𝑖𝑠𝑜

⊥𝑐  

Solving these equations we obtain 𝐴𝑖𝑠𝑜
∥𝑐 = 𝐴𝑖𝑠𝑜

⊥𝑐 = −460𝐺/𝜇𝐵, 𝐴𝑎𝑛𝑖𝑠𝑜
⊥𝑐 = 223𝐺/𝜇𝐵, 

and 𝐴𝑎𝑛𝑖𝑠𝑜
∥𝑐 = −446𝐺/𝜇𝐵. In fact, the hyperfine constant is a tensor, which can by 

represented by a matrix 𝔸𝐵𝑎(1). For the analysis of 137Ba(1), because the nucleus 

sits at a highly symmetric position, it is reasonable to assume the matrix is diagonal. 

Moreover, in the analysis of 137Ba(1), we only consider the two nearest Co2+ 

electrons in adjacent layers. When calculating the hyperfine field using the 

hyperfine tensor, we have 

𝑩𝒉𝒇 = 𝔸𝐵𝑎(1) ∙ (𝑺𝒐 + 𝑺𝒆),     (3.22) 

where 𝑺𝒐, 𝑺𝒆 are the spin magnetic moments for the odd layer electron and the 

even layer electron, respectively. Since there are two nearest neighbors, the 
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hyperfine constants should be divided by two, and the hyperfine tensor can be 

written as 

𝔸𝐵𝑎(1) = (
−0.0306 0 0

0 −0.0306 0
0 0 −0.0078

) 𝑇/𝜇𝐵 

The reason we write up the hyperfine matrix is that once we have an assumption 

of the electron spin orientations, we can test it by calculating the hyperfine field 

using Eq. (3.22) and compare the result to the experimental data. This procedure 

would be essential in figuring out the magnetic ordering. 

 

The hyperfine matrix for 137Ba(2) is more complex than that of 137Ba(1), because 

Ba(2) has three nearest neighbors and it is at a lower symmetry position. We can 

recall from the lattice structure that Ba(2) is above the triangular layer by 0.0888c, 

where c = 14.4283Å  is the lattice constant. The projection of Ba(2) into the 

triangular plane is right in the middle of a triangle. Our coordinate system is shown 

in Fig 41, with the origin in the middle of the triangle, and the three nearest Co2+ 

electron spins sit at each corner of the triangle. 



 

80 
 

 

Figure 41 The coordinate system and the positions of the three nearest electrons. 

 

We first notice that within an error of 5%, the hyperfine constants of 137Ba(2) can 

be divided simply to the isotropic contact part and the direct dipolar part, and the 

contact part has the value 

𝐴𝐵𝑎(2)
𝑖𝑠𝑜 = (−952 ± 33)𝐺/𝜇𝐵 

In the matrix form, we can write it as a diagonal matrix 

𝔸𝑖𝑠𝑜 = (
−952 0 0

0 −952 0
0 0 −952

) G/μB 

 

The direct dipolar interaction can also be written in matrix form by looking at the 

geometry. In our calculation, we only consider the nearest neighbors. In the lattice 

structure, the Ba(2) is not in the triangular plane and its coordinates 

is (0, 0, 0.0888c). The coordinates of the three electrons are 



 

81 
 

 (−
1

2
a, −

√3

6
a, 0), 

 (
1

2
a, −

√3

6
a, 0), 

(0,
√3

3
a, 0), 

The field by a magnetic dipole is B =
μ0

4π

3𝐫(𝐦∙𝐫)

r5
−

𝐦

r3
, where 𝐦 is the magnetic 

moment. The hyperfine matrix related to the dipolar interaction has the following 

form, 

𝔸𝑑𝑖𝑝 =
μ0

4π

1

r3
(

3rx
2 − 1 3rxry 3rxrz

3rxry 3ry
2 − 1 3ryrz

3rxrz 3ryrz 3rz
2 − 1

) ,    (3.23) 

where rx, ry, and rz are the three normalized components (𝑟𝑥
2 + 𝑟𝑦

2 + 𝑟𝑧
2 = 1) of the 

displacement vector pointing from the electron to the nuclei, and r is the magnitude 

of that displacement vector. For the three nearest electron spins of 137Ba(2), the 

displacement vectors are obtained by direct calculation. 

𝒓𝟏 = (
1

2
𝑎,

√3

6
𝑎, 0.0888𝑐) 

𝒓𝟐 = (−
1

2
𝑎,

√3

6
𝑎, 0.0888𝑐) 

𝒓𝟑 = (0, −
√3

3
𝑎, 0.0888𝑐) 

The lattice constants a=5.8413Å, c=14.4283Å are used in these expressions. 

 

Next we can calculate the dipolar interaction matrices for each electron spin and 

the results are 
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𝔸𝟏
dip =

μ0

4π

1

r3
(

0.9662 1.1352 0.8625
1.1352 −0.3446 0.4980
0.8625 0.4980 −0.6216

)     (3.23𝑎) 

 

𝔸𝟐
dip =

μ0

4π

1

r3
(

0.9662 −1.1352 −0.8625
−1.1352 −0.3446 0.4980
−0.8625 0.4980 −0.6216

)     (3.23𝑏) 

𝔸𝟑
dip =

μ0

4π

1

r3
(

−1 0 0
0 1.6216 −0.9960
0 −0.9960 −0.6216

),     (3.23c) 

where 

μ0

4π

1

r3
= 198G/μB 

As a verification of the results, let us calculate the total hyperfine coupling matrix 

in the paramagnetic states, when all the electron spins are in the  

A⃡ = A1
dip

 ⃡         + A2
dip

 ⃡         + A3
dip

 ⃡         + A⃡ iso = (
−767 0 0

0 −767 −394
0 −394 −1321

) G/μB 

We can realize that the diagonal elements are simply the hyperfine constants for 

B//ab and B//c directions. 

 

When not in the paramagnetic states, the calculation of hyperfine field is different 

because the electron spins may point to different directions. A general way of 

calculating would be 

𝐵𝑙𝑜𝑐 = ∑ 𝔸𝒊
dip ∙ 𝒎𝒊

3

𝑖

+ 𝔸iso ∙
1

3
∑ 𝒎𝒊

3

1

,     (3.24) 

where 𝒎𝒊 is the magnetic spin moment at position i. 
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Chapter 4 

NMR spectra in the magnetic state 

 

In Ba3CoSb2O9, the susceptibility and specific heat measurements clearly show 

phase transitions into antiferromagnetic state [17] [18]. The theoretical phase 

diagram proposes various magnetic ordering at different fields and temperatures 

[11]. The neutron scattering experiment group [18] even claimed the ground state 

magnetic ordering at zero field. However, we are the first group that actually 

explored the phase diagram in a vast range of field and temperature to figure out 

the magnetic order and the evolution of electron spin orientations on this quasi-2D 

triangular lattice. 

 

In this chapter, we will repeatedly refer to the different magnetic orderings, so it is 

convenient to have them clearly labeled at the start of this chapter. The discussion 

may include 9 possible magnetic states, and all of them are graphed in Fig. 42. 



 

84 
 

 

Figure 42 Magnetic states in 3D with a 6-sublattice structure 

 

4.1 The spectrum in the up-up-down state 

 

The up-up-down (uud) state (Fig. 42f) is the most interesting part of the study of 

triangular lattice antiferromagnetic state. This state is featured by the spin 

configuration that among the 6 sublattices, four spins point parallel to the field, and 

two spins point antiparallel to the field, and very importantly, this configuration is 

stable for a finite range of field. In other words, within a certain range of field, the 

spin configuration of the lattice is field-independent, and we ought to see the 

signature of that in the NMR spectrum. 
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In the uud phase, the Ba(1) site splits into two different magnetic environment, As 

shown in Fig 43. 

 

Figure 43 Ba(1) sites in the uud state. The field is parallel to the triangular plane. There are two 

types of local environment for Ba(1), one seeing two nearest electron spins both parallel to the field, 

the other seeing two nearest spins antiparallel to each other. The population of these two different 

Ba(1) sites has the ratio of 1:2, and thus split the Ba(1) line into two parts. 

 

The previous research has proved that the uud phase only happens when the 

external field is parallel to the triangular plane [22], so the directions of the electron 

spins are perpendicular to the c-axis of the lattice. One portion of the Ba(1) sites 

sees two nearest electron spins both parallel to the field, while the other Ba(1) sites 

have one neighbor parallel and one antiparallel to the field. The ratio of the two 

Ba(1) sites is 1:2, which makes the total number of “up spin” twice as many as the 

“down spin”. To calculate the hyperfine field at the Ba(1) site, we use 𝐵𝐵𝑎(1)
ℎ𝑓

=

𝔸⃡  𝐵𝑎(1) ∙ (𝒎𝒆 + 𝒎𝒐), where 𝒎𝒆 and 𝒎𝒐 are the magnetic moments of the even 
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and odd layer spins, respectively. In the uud state, the magnetic moment is 

simply 𝒎𝒊(𝑖 = 𝑒, 𝑜) = (±𝑚0, 0, 0), where  𝑚0 = 1.92𝜇𝐵  is the full moment of 

Co2+ [22], the “+” sign means parallel, and the the “-” sign means antiparallel to 

the field. Now it is clear that the hyperfine fields are different for the two types of 

Ba(1) sites. The one with two spins pointing to opposite directions should have 

basically zero hyperfine field, while the one with two parallel spins should have a 

negative hyperfine field due to the negative hyperfine constants. Consequently, the 

Ba(1) NMR spectrum should split into two lines, and the line splitting should be 

constant in the uud state. 

 

Experimentally, we did a field-dependent spectra study and a temperature-

dependent spectra study, as shown in Fig 44. 

 

Figure 44 Part of the phase diagram for B//ab direction. The red lines show the range we covered in 

experiment. 
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The field dependent measurements (the vertical line) was done in about 1.55K, 

which is the base temperature of the our cryostat, starting from 4.5T, which is in a 

low-field phase, and ending at 11.9T, which is the highest field we can reach in 

UCLA. The temperature dependent measurements (the horizontal line) was at 

11.5T, starting from 6K, which is in the paramagnetic state, and ending at 1.55K, 

which is in the uud state. 

 

The field-dependent NMR spectra are shown in Fig 45. The relative frequency Δυ 

is defined as  Δυ = υ − γ𝐵0 −
3𝜐𝑄

2

16γ𝐵0
, where  υ  is the actual frequency, γ =

4.732MHz/T is the gyromagnetic ratio for 137Ba, and 
3𝜐𝑄

2

16γ𝐵0
 is the second order 

quadrupole frequency. In fact, after the subtraction of Zeeman frequency and the 

second order quadrupole frequency, what is left should be the hyperfine frequency, 

so Δυ = γ𝐵ℎ𝑓.  
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Figure 45 NMR spectra at 1.6K, B//ab, 137Ba(1). The red dotted line is where the signal is in the 

paramagnetic state. 

 

We first observe that in the uud state (B=10T, 10.5T, 11.5T, and 11.9T), we have 

two NMR lines for Ba(1), and the intensity ratio is 1:2, which is consistent with 

the prediction of uud phase. The peak with higher intensity is at almost zero 

hyperfine frequency position, which is theoretically correct for the Ba(1) site that 

has two nearest spins facing opposite directions. The splitting between the two 
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peaks is small at 4.5T, and it obviously opens up as the field increasing. However, 

starting from 10T, the line splitting barely changes as we further increase the field.  

 

The line splitting in the uud phase is measured to be 760kHz, while the theoretical 

calculation using the measured hyperfine constant is 556kHz. The discrepancy here 

comes from the uncertainty of hyperfine constants. The way we obtain the 

hyperfine constant is fitting the data on a K − χ plot linearly and taking the slope 

of the fitting result as the hyperfine constant. This method is certainly not perfect 

since we only have 4 points. The line splitting in the uud state thus has an 

uncertainty because it is proportional to the hyperfine constant. To justify the 

consistency between theoretical calculation and the experimental results, I use the 

760kHz line splitting to calculate the hyperfine constant, and take that result as the 

slope of a straight line, and then watch if this straight line fit the K − χ plot data in 

a reasonable way. The result is shown in Fig 46. 
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Figure 46 the K − χ plot for 137Ba(1) with B//ab. The red points are experimental data points, and 

the blue line has the slope that derives the correct uud phase line splitting. The error bars on the red 

points are 5% uncertainties. 

 

From Fig 46 we can see that when we assume a slope that gives the experimental 

line splitting in the uud state, the fitting to the hyperfine data is reasonable within 

a 5% uncertainty, so it is justified to say the uud state line splittings from the 137Ba(1) 

NMR spectra agree with the theoretical calculation very well. We have also plotted 

the line splitting as a function of field (Fig 47), which shows clearly the existence 

of the plateau. Another thing we should notice from Fig 47 is that the transition 

from the low field phase to the uud phase is at about 10T, which is roughly 1/3 of 

the saturation field (31.9T from ref [22]). 
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Figure 47 Line splitting of 137Ba(1) as a function of field. The theoretical line (green) is normalized 

so that the uud phase splitting fits the experimental data. The red points are taken from the 

experimental data. 

 

The line splitting of 137Ba(1) can serve as a measure of the order parameter, and its 

temperature dependence as well as the relevant spectra are shown in Fig 48. These 

temperature dependent spectra were taken at 11.5T. As expected for the uud phase, 

the line splitting does not change much in the low temperature region. As we 

increasing the temperature, the ordered moment reduces sharply around the 

transition point. 
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Figure 48 (a) NMR spectra of the 137Ba(1) central transition for different temperatures at B=11.5T, 

B//ab. (b) Temperature dependence of the ordered moment amplitude in the uud phase. 

 

The 137Ba(1) spectra function as a solid evidence of the existence of the uud state 

when the field is parallel to the triangular plane. However, it leaves the field with 

an in-plane freedom, and we are not able to tell the in-plane orientation of the field 

just from the Ba(1) measurement. On the other hand, the theory about triangular 
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lattice antiferromagnet provides no indication about the in-plane field direction. To 

figure this out, we need to analyze the spectra of 137Ba(2). 

 

Recall Eq. (3.24) for the calculation of local field at the Ba(2) site, 

𝐵𝑙𝑜𝑐 = ∑ 𝔸𝒊
dip ∙ 𝒎𝒊

3

𝑖

+ 𝔸iso ∙
1

3
∑ 𝒎𝒊

3

1

,     (3.24) 

The dipolar interaction tensor has off-diagonal elements, so the in-plane field 

direction is important in calculation. Assuming the angle between the field and the 

a-axis of the lattice to be  θ , then an “up” spin has the coordinate 

representation  (𝑚0cosθ, 𝑚0sinθ, 0) , and the “down” spin 

is −(𝑚0cosθ, 𝑚0sinθ, 0). As an example of calculation, we assume there is a Ba(2) 

with “up” spin in position 1 and 2, and “down” spin in position 3, then the 

calculation of the local field should be 

𝐵𝑙𝑜𝑐 = 𝔸𝟏
dip ∙ (

𝑚0cosθ
𝑚0sinθ

0

) + 𝔸𝟐
dip ∙ (

𝑚0cosθ
𝑚0sinθ

0

) + 𝔸𝟑
dip ∙ (

−𝑚0cosθ
−𝑚0sinθ

0

) + 𝔸iso

∙
1

3
(

𝑚0cosθ
𝑚0sinθ

0

) 

The values of the matrices have been calculated in Eq. (3.23abc). 

 

In the uud state, there are six possible different Ba(2) sites, distinguished by the 

spin orientation and the chirality of the three nearest neighbors, as shown in Fig 49. 
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Figure 49 spin orientations in the uud state. Θ is the angle between the “up” spin and the a-axis of 

the lattice. 

 

If we calculate the hyperfine field for each of the six Ba(2) sites and plot the result 

as a function of angle θ, we obtain Fig 50. We notice that there are three different 

local fields with equal intensity, and they all vary as a sine wave with different 

phases. In Fig 51a, we have the spectrum of 137Ba(2) central transition in the uud 

state (B=11.5T T=1.6K). We can see three peaks, corresponding to the three 

different hyperfine fields. Two peaks at the high frequency side are close to each 

other, and they are both near the zero-shift frequency. Referring to Fig 50, we notice 

that this means the angle θ is near 30°or 90°, where we have two peaks close to 

each other near the zero local field, and another peak at lower frequency (higher 

local field). It is worth mentioning that the lattice belongs to space group P63/mmc, 

where the number “6” means the lattice structure has a 6-degree rotational 

symmetry. When we rotate the lattice by “360°/6=60°”, the physics property should 

conserve. Then it makes sense to see 30° line positions is the same as 90°. In the 

National High Magnetic Field Lab, we measured a spectrum under the condition 

T=2K, and B=13.25T with the field in plane, which is also in the uud state. For that 

measurement, the field direction is almost the same because we wired the NMR 
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coil the same way as it was in UCLA. The result is shown in Fig 51b. The low 

frequency part of the 137Ba(2) spectrum is so close to the 137Ba(1) signal that they 

overlap each other, but it is still distinguishable. The high frequency part of 137Ba(2) 

spectrum is now a single peak, which indicates that the field is almost right at 30° 

from a-axis. 

 

Figure 50 Angle dependence of the local field for 137Ba(2). The three lines come from Ba(2) sites 

with three different local environments. 
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Figure 51 137Ba(2) spectra. (a) was taken in UCLA, and (b) was taken in NHMFL. 

 

This 137Ba(2) NMR spectrum analysis result has been verified by X-ray diffraction 

experiment, which directly tested the lattice axis orientation of the sample. This X-

ray diffraction measurement was done in the Chemistry Department of UCLA by 

Dr. Saeed Khan. 

 

4.2 The low field phase at B//ab 

 

The field dependent 137Ba(1) spectra shown in Fig 45 include the low field data we 

obtained in UCLA. The spectra exhibit several features. First, we have two 137Ba(1) 

peaks with a 1:2 intensity ratio. Second, the peak at higher frequency (lower shift) 

has more intensity than the other one. Third, the splitting between the two peaks 

increase as the field increasing (see Fig 47), and the extrapolation of the line 

splitting to zero field gives zero splitting. Moreover, the high frequency peak does 
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not stay at the same hyperfine frequency as we increasing the field, and it does 

have a field dependence. 

 

The classical 2D triangular lattice has the 120°state as the ground state at zero field, 

so it is reasonable to assume the low field phase of Ba3CoSb2O9 is some 

resemblance of the 120°state. However, since this compound has a layered 

structure, we would have to consider the magnetic ordering in the context of 6-

sublattice structure. There are several candidates for the low field phase, which are 

shown in Fig 52. 

 

Figure 52 Possible low field phases for Ba3CoSb2O9 at B//ab 

 

Among the three candidate phases, (d) and (e) were shown in Fig 42. The (Y) phase 

is not in Fig 42 because it is not stable under the theoretical model we are using. 

The three possible states all satisfy the condition that under zero field they resemble 

the 120°phase and the net magnetization is zero.  
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The (d) phase is what we propose in the phase diagram (Fig 25). It states that at 

zero field the spins in adjacent layers have opposite orientations, which is 

intuitively correct if we consider the interlayer coupling to be antiferromagnetic. 

As turning on the field, four sublattices start to get aligned with the field, while the 

other two approach the antiparallel direction. A Ba(1) site seeing 1(e) and 1(o) as 

the nearest neighbor would have a larger negative hyperfine field than that of the 

Ba(1) sites seeing 2(e) and 2(o) (or 3(e) and 3(o)) as the nearest neighbors. 

Therefore the Ba(1) site split and the NMR line at lower frequency (larger shift) 

has half intensity of the line at higher frequency (smaller shift). The spins 2(e) and 

2(o) (or 3(e) and 3(o)) do not necessarily orient antiparallel to each other at any 

field, and that is why the high frequency NMR peak does not stay at zero-shift 

frequency. As we further turning up the field, the phase (d) eventually evolves into 

the uud phase with a continuous phase transition. Fig 47 has shown the field 

dependence of the line splitting for 137Ba(1) spectra. The theoretical and the 

experimental results agree to each other quite well. To further verify the correctness 

of phase (d), we calculated the averaged magnetic moment of each pair of 

sublattices using the equation 

𝒎𝒊,𝒕𝒉𝒆𝒐𝒓𝒚 =
1

2
(𝒎𝒊,𝒐 + 𝒎𝒊,𝒆), 𝑖 = 1,2,3    (3.25𝑎) 

The sublattice magnetic moment  𝒎𝒊,(𝒐,𝒆)  can be calculated theoretically if we 

know the orientation of the spins, and that information is provided by Y. Kamiya 

and C. Batista, who calculated the field dependence of the spin orientations for all 

6 sublattices. 
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Experimentally, we took the shift of each peak of 137Ba(1) spectra, convert it to 

local field (hyperfine field) unit, and calculated the corresponding magnetic 

moment by 

𝒎𝒆𝒙𝒑 =
𝑩𝒉𝒇

𝐴𝐵𝑎(1)
⊥𝑐     (3.25𝑏) 

We can then compare the theoretical results and the experimental values. It is also 

instructive to compare the first moment of NMR spectra to the published 

magnetization data. The first moment of 137Ba(1) is taken by calculating the weight 

average of frequency of the absorption spectrum. The result of the comparison is 

shown in Fig 53. We can see both the first moment and the sublattice magnetization 

agree very well between the theoretical and the experimental results, and the first 

moment of the experimental spectra also align with the magnetization data. The 

continuous transition from (d) phase to the uud phase happens around 10T, and the 

magnetic plateau is obvious. 



 

100 
 

 

Figure 53 Magnetization vs. magnetic field. The solid, dashed lines are from magnetization results, 

and the theoretic model, respectively. The data points are derived from the NMR spectra: circles are 

the first moment of the full 137Ba(1) spectrum, properly normalized, and the triangles are associated 

to the hyperfine shifts of the two Ba(1) local environments. 

 

The (e) phase is very similar to the (d) phase in that it assumes antiferromagnetic 

interaction between layers, but it also has major flaws that it cannot be the correct 

low field phase. We first notice that the NMR peak resulting from 1(e) and 1(o) 

should have zero-shift, however, it also has the lower intensity, which contradict 

the experimental results. The 1(e) and 1(o) pair do not change with field, which 

means at any field, we should have a zero-shift NMR peak for 137Ba(1), but from 

both the spectra (see Fig 45) and the sublattice magnetization plot (Fig 53), we 

realized this is not true since the peak near zero-shift certainly has a field 

dependence. Furthermore, when we put the (e) and the uud phase together, we 
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would find that there is no “smooth” way for the spin system to evolve from the (e) 

phase to the uud phase. In other words, a continuous phase transition is not 

plausible. 

 

Phase (Y) has its foundation when the interlayer coupling J’ is sufficiently small 

compared to the intralayer coupling J (see ref. 15 Fig 6). However, at zero field, 

the line splitting still exists. For example, the Ba(1) site having 1(e) and 1(o) as 

nearest neighbors feels a different local field from the Ba(1) site seeing 2(e) and 

2(o) as the nearest neighbors. 

 

4.3 The high field phases and the phase diagram of Ba3CoSb2O9 with 

B//ab 

 

The high field (B≥13.25T) 137Ba spectra were taken in NHMFL in a dc resistive 

magnet at temperature T=2K. The spectra of both 137Ba(1) and 137Ba(2) are shown 

in Fig 54. The proposed phases are listed besides the spectra with corresponding 

colors. 

 

If we look at the spectrum at 14.5T, we observe three peaks, which are labeled as 

a, b, and c in the plot. Peak “a” is purely 137Ba(1) signal, corresponding to the 

137Ba(1) nucleus that has two “up” spin as nearest neighbors. Peak “b” is a 
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combination of 137Ba(1) signal and 137Ba(2) signal, and the 137Ba(1) portion of :b” 

comes from the nucleus seeing one “up” and one “down” spin as the nearest 

neighbors. Peak “c” is purely 137Ba(2) signal, which was a double peak when we 

look at the spectrum at 11.5T (see Fig 51a). The reason these two peaks merge is 

that in NHMFL, the applied field is closer to 30°from a-axis (refer to Fig 50). 
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Figure 54 137Ba central transition absorption spectra at varying applied magnetic fields for B//ab. 

Spectra recorded in each of the accessed phases is distinguished by color, with the baseline offset 

according to the field strength. 

 

As the field going up, there is a phase transition at about 15.5T, signified by the 

fact that the line splitting of 137Ba(1) spectrum starts to shrink after 15.5T, which 
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means it is no longer the uud phase. The change in the 137Ba(2) spectrum is also 

obvious. After 15.5T, Peak c gets broader a lot, and then starts to split. After the 

splitting, the left peak moves quickly towards Peak b with increasing field and 

merge into Peak b completely after 21.5T.The right part of Peak c also moves 

towards Peak b but much slower, and we can still distinguish it at the highest field 

we reached, 30.4T, which is very close to the saturation field for B//ab direction 

(31.9T, see ref [22]). 

 

The phase sequence is predicted to be uud state → canted coplanar phase (b) → 

coplanar phase (c). Theorists calculate the field dependence spin orientations for 

all six sublattices, so it is straightforward to calculated the line splitting of 137Ba(1) 

central transition spectrum and compare it to the experimental result, as a first 

check. The comparison is shown is Fig 55. 
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Figure 55 Line splitting of 137Ba(1). The blue points come from low field (<12T) measurements in 

UCLA, and the red points come from the high field (>13T) measurements in NHMFL. The green line is 

the predicted line splitting from calculation. 

 

In Fig 55, the experimental line splitting is taken by measure the frequency 

difference of two 137Ba(1) peaks. The line splitting in the uud state is the same for 

the experimental results in UCLA and in NHMFL, which proves the reproducibility 

of the measurement, and reassures the legitimacy of normalizing the theoretical 

line splitting in the uud state to the experimental value. In Fig, 55, the plateau 

feature is an obvious observation. The plateau area ends at about 15.15T 

experimentally, and the decreasing of line splitting afterwards is correctly predicted 

by the theory. Another phase transition happens at about 21.17T, featured by a jump 
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in the line splitting. The theory agrees with the data in the transition field very well, 

and the discontinuity is more substantial. However, the theoretical results work best 

for the ground state as close to zero temperature as possible, so considered that the 

experiment was done at 2K, it is natural that thermal effect suppresses the changes 

in line splitting. In general, the theoretical line splitting correctly describes the 

experimental results. 

 

137Ba(2) has more complex local environment than 137Ba(1), and part of 137Ba(2) 

line is mixed with 137Ba(1) line, which further makes it hard to do a quantitative 

comparison. However, a semi-quantitative comparison is quite instructive. The 

calculation basically repeat what we did in the uud state since the spin orientations 

for all sublattices are ready to use. Generally, each Ba(2) has three nearest 

neighbors, and in the triangular lattice, there are 6 possible local environment, 

similar to what we have seen in Fig 49 for the uud state. The difference is that these 

6 possibilities do not necessarily collapse to three NMR lines as in the uud state. A 

direct calculation of the local fields gives the results as shown in Fig 56. This plot 

shows the local fields of 137Ba(2) in the applied field range between 10T and 22T, 

which includes the uud state and the (b) state. In this figure, we can identify some 

important features of 137Ba(2) spectra. 

 

Since we have 6 different Ba(2) sites in the magnetic state, we can divide the total 

intensity of 137Ba(2) central transition spectrum into 6 parts. In the uud state, 4 parts 
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of the intensity appears in the high frequency (low negative shift) side of the 

spectrum, and two parts of the intensity sit on the low frequency (high negative 

shift) side of the spectrum. This has been verified by the 137Ba(2) spectra shown in 

Fig 51. After the phase transition from uud state to the (b) phase, Fig 56 shows that 

the high frequency peak of 137Ba(2) split into two peaks with equal intensity, and 

one of the split peak moves towards the high negative shift side when increasing 

the field. Finally that peak merge with the low frequency (high negative shift) peak 

of 137Ba(2), as well as the 137Ba(1) spectrum. The field dependence evolution 

correctly mimics what we observe from the experimental data, which in turn serves 

as strong evidence that the theoretical phase diagram (see Fig 25) for B//ab is 

correct for the region below 22T. 

 

Figure 56 137Ba(2) local fields in the intermediate field range. There are 6 possible local 

environments for Ba(2) and they are equally weighted. 
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The high field spectra are more difficult to analyze because the signals of 137Ba(1) 

and 137Ba(2) central transitions entangle each other. However, we can still find 

some convincing clue about the magnetic state. 

 

The theoretical prediction claims that the high field phase is phase (c) in Fig 42. 

 

Fig 42c 

 

In this phase, Ba(1) sites seeing 1(o)1(e) or 2(o)2(e) as nearest neighbors should 

have larger negative shift than those seeing 3(o)3(e) as nearest neighbors, so we 

should expect the low frequency peak of 137Ba(1) central transition to have twice 

intensity as the high frequency peak. As a contrast, in phase (b) the low frequency 

peak has half intensity as the high frequency peak. If there were no Ba(2) signal, 

we would expect an “intensity flip” before and after the phase transition field 

22.17T. It is unfortunate that the high frequency part of 137Ba(1) spectrum merges 

with the 137Ba(2) spectrum, and to compare the intensity, we need a prediction 

including both 137Ba(1) and 137Ba(2). To analyze the ratio of intensity, we first 

notice that the Ba(2) sites are twice as many as the Ba(1) sites, so the total intensity 

of 137Ba(2) central signal is twice as much as that of 137Ba(1). Let us assume the 

total intensity of 137Ba(1) is 3, and total intensity of 137Ba(2) is 6. We pick up 14.5T, 

16.6T, 20.5T, and 23.5T as the representative fields for our analysis (see Fig 57). 
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Figure 57 B//ab, spectra at selected fields. The vertical black lines shows the starting and ending 

frequency between which we calculated the intensity. 

 

When B=14.5T, the system is in uud state. The spectrum has 3 peaks. The left one, 

labeled as “a”, contains 1/3 of 137Ba(1) central transition signal, so its intensity is 

1. The middle peak, labeled as “b”, contains 2/3 of 137Ba(1) and 1/3 of 137Ba(2), so 

its intensity is 4. The right peak, labeled as “c”, contains 2/3 of 137Ba(2) signal, so 

its intensity is 4. The ratio of these three peaks is thus 1:4:4. 
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When B=16.6T, the system is in the canted coplanar (b) phase, and the spectrum 

has 4 peaks. The left one, denoted as “a”, contains 1/3 of 137Ba(1) central transition 

signal, so its intensity is 1. The middle peak, denoted as “b”, contains 2/3 of 137Ba(1) 

and 1/3 of 137Ba(2), so its intensity is 4. The right two peaks, denoted as c1 and c3, 

each contains 1/3 of 137Ba(2) signal, son each has an intensity 2. The ratio of 

intensity is thus 1:4:2:2. 

 

When B=20.5T, the system is still in phase (b), but the middle two peaks collapse 

and we can see in general three parts of a spectrum. The left one, denoted as “a”, 

contains 1/3 of 137Ba(1) central transition signal, so its intensity is 1. The middle 

part, denoted as “b”, contains 2/3 of 137Ba(1) and 2/3 of 137Ba(2), so its intensity is 

6. The right peak, denoted as “c”, contains 1/3 of 137Ba(2), so its intensity is 2. The 

ratio of intensity is thus 1:6:2. 

 

When B=23.5T, the system is in phase (c). The left peak, denoted as “a”, has 2/3 

of 137Ba(1) central transition signal, so its intensity is 2. The middle part, denoted 

as “b”, contains 1/3 of 137Ba(1) and 2/3 of 137Ba(2), so its intensity is 5. The right 

peak, denoted as “c”, contains 1/3 of 137Ba(2), so its intensity is 2. The ratio of 

intensity is thus 2:5:2. 

 

The intensity of each part of the spectra can also be measurement from the 

experimental data directly, and the results are shown in Table III 
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 Observed intensity Expected result 

B(T) a b c a b c 

14.5 1.1 3.9 4.1 1 4 4 

16.6 1.1 4.1 1.8+2 1 4 2+2 

20.5 1.2 5.8 2.1 1 6 2 

25 1.8 5.2 1.9 2 5 2 

Table III 

 

From the table, we can see that the experimental intensity is in good agreement 

with the expected results. The increase in relative intensity for Peak a from 20.5T 

to 25T supports the phase transition from Phase (b) to Phase (c). 

 

As a summary to this section, I list in Fig 58 the phase sequence for B//ab as the 

field increasing from zero to the saturation field. 

 

 

 

 

 

Figure 58 Phases for B//ab. From low field to high field. 
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4.4 NMR results of the “new phase transition” 

In 2013, N. Fortune claimed a new phase transition for B//ab at temperature lower 

than 700mK, according to the heat capacity measurement. [35] The phase boundary 

is about 6.5T, which comes from the local maximum of field dependent specific 

heat data (Fig 59). 

 

Figure 59 Thermodynamic measurement results by N. Fortune [35]. The phase transitions at about 

10T and 15T are well defined by the local maximum of specific heat. However, the new “phase 

transition” at 6.5T is ambiguous. 

 

The significance of the new “phase transition” is quite weak that we can barely 

identify it. This transition was not observed when temperature is higher than 

700mK. To verify the existence of this phase transition, we measured field 

dependent NMR spectra for 137Ba(1) central transitions at 100mK, which should 
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be very sensitive to the change in local magnetization. However, the results show 

that the sublattice magnetizations reproduce exactly what we obtained at 1.6K, as 

illustrated in Fig 60. This means across the supposed phase boundary at about 6.5T, 

there is no change in the local magnetization for Ba(1), and a phase transition is 

not plausible just by looking at the spectra data. IN a later chapter, we will see that 

a field dependent spin-lattice relaxation rate result does not confirm the new “phase 

transition” either. 

 

Figure 60 Sublattice magnetizations normalized. The red lines are theoretically calculated 

magnetizations. The green points (Haidong) and black points (Susuki) are experimental results of 

magnetization. The light blue points come from NMR measurements at 1.6K, and the magenta 

points come from NMR measurements at 0.1K. 
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4.5 Spectra analysis for B//c direction 

 

 

Figure 61 (a) 137Ba(1) central transition spectra with applied field B almost parallel to c-axis (15⁰ 

misalignment). The dotted black line shows the spectrum at 11T when B//c as a comparison. (b) The 

experimental phase diagram from the magnetization data, and TN is decided by NMR T1 

measurements. (c) Comparison of NMR first moments and sublattice magnetizations taken from 

137Ba(1) spectra with the magnetization data. Red lines are calculated from theoretical model, and 

the black line is the actual data taken by H.D. Zhou [17] 

 

In Fig 61(b), the low field phase diagram of Ba3CoSb2O9 with B//c is plotted. The phase 
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below 12T is predicted to be the umbrella phase, where all the sublattice spins make 

the same angle with c-axis, so the Ba(1) central transition should be just a single NMR 

line. The initial NMR experiment was done with 15⁰ misalignment from c-axis, so we 

can see from Fig 61(a) that the Ba(1) spectrum starts to show some structure above 10T. 

This feature can be precisely captured by our theoretical model, as shown in Fig 62. 

 

Figure 62 Theoretical prediction of the line splitting for 137Ba(1) central transition. When well 

aligned with B//c, the line splitting only appear after the 12T phase transition. When there is 

misalignment, the line splitting starts earlier in field. 

 

According to the theoretical prediction, when the field is exactly parallel to the c-axis 

of the sample, we should expect a single Ba(1) line starting from zero field till the phase 

transition field (~12T). However, when there is a misalignment (13.5⁰ for example), the 

line splitting appears earlier in field because of the distortion of umbrella phase. We did 

not expect the 15⁰ misalignment at the beginning of the experiment, but it turns out to 

be another validation of the theoretical model we are using. This feature is also verified 

by a rotation study shown in Fig 63. 
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Figure 63 137Ba(1) central transition spectra with different angles from c-axis, B=11.5T, T=100mK. 

 

In Fig 63, we are at a field (B=11.5T) very close to the transition field (~12T), and the 

137Ba(1) spectra obviously have two peaks at 15⁰ and 10⁰. The line width is getting 

much narrow and only has a single peak we well aligned. The low field spectra with 

good alignment (B//c) are shown in Fig 64, and we just see a single line up to 11.9T, 

which is consistent with the umbrella phase. 
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Figure 64 137Ba(1) central transition spectra, T=100mK, B//c 

 

In the theoretical phase diagram shown in Fig 25, the high fields’ phases are assumed 

to be the canted coplanar phase followed by the (c) phase. For B//c, Ba(1) and Ba(2) 

signals are well separated, so it is more straightforward to analyze the spectra. In Fig 

65, the spectra of Both 137Ba(1) and 137Ba(2) central transitions are plotted. 
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Figure 65 137Ba central transition spectra at various fields. Different colors label different phases 

proposed by the theoretical model. 

 

In Fig 65, we can see that the Ba(1) spectra have two separated lines from 17.5T to 

21.5T, which is consistent with the canted coplanar phase (b). Above 21.5T, the 

structure in Ba(1) spectra disappears and we can see only a single line. There are two 
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possibilities for this change. There could be a phase transition at 21.5T that results in a 

single Ba(1) for the high field phase, or there is no phase transition and the sensitivity 

of our experiment is not enough to resolve the two peaks of Ba(1) spectra above 21.5T. 

If we look at the line splitting of Ba(1) as a function of magnetic fields (Fig 66), we can 

immediately notice that it already deviates from the theoretical prediction, since we do 

not observe the “jump” a the transition field. On the contrary, the experimental line 

splitting decreases at a faster rate above 21.5T, which might indicate a phase transition 

but different from the prediction in Fig 25. 

 

Figure 66 Ba(1) spectral lime splitting vs applied field for B//c, extracted from the data shown in 

Fig 65. The red dashed line is the theoretical prediction for line splitting, and the green line is an 

extrapolation of Ba(1) splitting if no phase transition occurs. The blue lines above 24T denote an 

estimate of the minimum splitting that can be resolved due to the spectral linewidth. 
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When we look at the Ba(2) spectra in Fig 65, we also notice that below 21.5T, the 

spectra look complex, with multiple contributions. Above 21.5T, the spectra start to be 

clean in the sense that we can see only two peaks. This is another indicator for a phase 

transition at 21.5T. However, for a perfectly aligned B//c direction, we expect the Ba(2) 

spectra to be symmetric due to the time-reversal symmetry, which is obviously not the 

case in our data. So right now I have to leave this question unresolved, and more input 

from both theory and experiment is needed to figure out the problem. 
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Chapter Five  

Spin-lattice Relaxation measurements on 

Ba3CoSb2O9 

From the perspective of statistical physics, in equilibrium, the number of nuclear 

spins residing on a specific energy level 𝐸𝛼 is proportional to e−𝐸𝛼/𝑘𝐵𝑇. When the 

nuclear spin system absorbs energy from an outside source, the population of spins 

on each energy level would deviate from its equilibrium value. Afterwards, the 

nuclear system would try to go back to equilibrium and spins at higher energy level 

would try to jump back to low energy level. The jump can be done only by energy 

exchange with the environment, which is typical the lattice or the nearby electron 

spins. This process is called the spin-lattice relaxation. The significance of the 

relaxation process is that it provides a way of observing the dynamic properties of 

the lattice or electron spins, so it constitutes an essential part for a complete NMR 

study. 

 

5.1 General theories of spin-lattice relaxation 

First we consider a transition from energy level α to energy level β, as shown in 

Fig 67. 
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Figure 67 For illustration purpose, a nuclear spin jump from energy level α to energy level β. 

 

The number of the transitions per unit time from level α to level β can be calculated 

by the product of finding a spin in energy level α times the probability of the 

transition, and it can be written as 𝑝𝛼𝑊𝛼𝛽. 

 

To describe the collective behavior of the whole nuclear spin system, we use an 

alternative way to interpret the different population at different energy levels. 

Instead of saying how many spins are in a specific energy level, we state that the 

spin system has an energy 𝐸𝑎 with probability 𝑝𝑎. Then the normalization requires 

∑ 𝑝𝑎

𝑎

= 1     (5.1) 

The average energy of the system is 

𝐸̅ = ∑ 𝑝𝑎𝐸𝑎

𝑎

     (5.2) 

The advantage of this interpretation is that the nuclear spin system does not 

necessarily obey the Maxwell-Boltzmann statistics. It also holds true for systems 

obeying Fermi-Dirac or Bose-Einstein statistics, and we only need to consider the 

statistics when expressing the wave function of the system. 
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The spin-lattice relaxation is essentially the exchange of energy, so we should 

calculate the rate of energy change for the nuclear spin system. Using Eq (5.2) we 

obtain: 

𝑑𝐸̅

𝑑𝑡
=

𝑑

𝑑𝑡
∑ 𝑝𝑎𝐸𝑎

𝑎

= ∑ 𝐸𝑎

𝑑𝑝𝑎

𝑑𝑡
𝑎

     (5.3) 

As discussed at the beginning of this section, we have 

𝑑𝑝𝑎

𝑑𝑡
= ∑(𝑝𝑏𝑊𝑏𝑎 − 𝑝𝑎𝑊𝑎𝑏)

𝑏

     (5.4) 

In Eq (5.4), 𝑝𝑏𝑊𝑏𝑎 represents the probability per unit time that the lattice induces 

a transition of the nuclear spin system from  b to a , and  𝑝a𝑊a𝑏  represents the 

probability per unit time that the lattice induces a transition of the nuclear spin 

system from  a to b . By subtracting the latter from the former, we obtain the 

probability per unit time for energy level α due to the transition between a to b, 

and the sum over all the possible b states gives the total probability per unit time. 

Substituting Eq (5.4) into Eq (5.3) to get 

𝑑𝐸̅

𝑑𝑡
= ∑(𝑝𝑏𝑊𝑏𝑎 − 𝑝𝑎𝑊𝑎𝑏)𝐸𝑎

𝑎,𝑏

=
1

2
∑(𝑝𝑏𝑊𝑏𝑎 − 𝑝𝑎𝑊𝑎𝑏)(𝐸𝑎 − 𝐸𝑏)

𝑎,𝑏

     (5.5) 

 

It is useful to define a spin temperature β =
1

kT
, where k is the Boltzmann constant. 

Then we can also write 

𝑑𝐸̅

𝑑𝑡
=

𝑑𝐸̅

𝑑𝛽

𝑑𝛽

𝑑𝑡
     (5.6) 

We realize the probability per unit time is a function of spin temperature β 

𝑝𝑎 =
𝑒−𝛽𝐸𝑎

𝑍
     (5.7) 
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where Z is the partition function of the nuclear spin system. Then we can write 

𝑑𝐸̅

𝑑𝛽
=

𝑑

𝑑𝛽
∑ 𝑝𝑎(𝛽)𝐸𝑎

𝑎

     (5.8) 

When the spin temperature  𝛽  is so high that  β𝐸𝑎 ≪ 1 , we can find a good 

approximation of the partition function Z by expanding 𝑒−𝛽𝐸𝑎  in the power series 

of β𝐸𝑎, and only keep the leading terms: 

Z = ∑(1 − β𝐸𝑎 +
𝛽2𝐸𝑎

2

2!
+ ⋯ )

𝑎

     (5.9) 

It is straightforward to see that when the temperature T is infinitely large, the 

partition function Z just equals the total number of states, and we can denote it 

as 𝑍∞. To further simplify the problem, we measure the energy 𝐸𝑎 in a reference 

frame that the trace of the Hamiltonian is zero, which means 

Trℋ = ∑ 𝐸𝑎

𝑎

= 0     (5.10) 

Then the first order term in Eq (5.9) is zero, and if we further neglect the second 

and higher order terms, we reach the approximation that 

Z = 𝑍∞     (5.11) 

Then 

𝑑𝐸̅

𝑑𝛽
=

𝑑

𝑑𝛽
∑ 𝑝𝑎(𝛽)𝐸𝑎

𝑎

=
1

𝑍∞

𝑑

𝑑𝛽
∑ 𝑒−𝛽𝐸𝑎𝐸𝑎

𝑎

= −
1

𝑍∞
∑ 𝐸𝑎

2𝑒−𝛽𝐸𝑎

𝑎

= −
1

𝑍∞
∑ 𝐸𝑎

2(1 − 𝛽𝐸𝑎 + ⋯ )

𝑎

≅ −
1

𝑍∞
∑ 𝐸𝑎

2

𝑎

     (5.12) 

In the last step, we expand  𝑒−𝛽𝐸𝑎  and make the approximation under high 

temperature limit. Furthermore, 



 

125 
 

𝑑𝐸̅

𝑑𝑡
=

𝑑𝐸̅

𝑑𝛽

𝑑𝛽

𝑑𝑡
= −

𝑑𝛽

𝑑𝑡

∑ 𝐸𝑎
2

𝑎

𝑍∞
     (5.13) 

From Eq (5.7) we immediately have 

𝑝𝑎 = 𝑝𝑏𝑒𝛽(𝐸𝑏−𝐸𝑎)     (5.14) 

To continue our calculation, we have to figure out the transition probability 𝑊𝑏𝑎. 

To do this, we assume the spin system is in thermal equilibrium with the lattice, 

and  𝑝𝑎  is re-written as  𝑝𝑎
𝐿 , where L stands for “lattice”. The detailed balance 

requires 

𝑝𝑏
𝐿𝑊𝑏𝑎 = 𝑝𝑎

𝐿𝑊𝑎𝑏 

which gives the result 

𝑊𝑏𝑎 = 𝑊𝑎𝑏

𝑝𝑎
𝐿

𝑝𝑏
𝐿 = 𝑊𝑎𝑏𝑒𝛽𝐿(𝐸𝑏−𝐸𝑎) 

Now we are in a position to calculate 
𝑑𝐸̅

𝑑𝑡
 from Eq (5.5) 

𝑑𝐸̅

𝑑𝑡
= ∑(𝑝𝑏𝑊𝑏𝑎 − 𝑝𝑎𝑊𝑎𝑏)𝐸𝑎

𝑎,𝑏

=
1

2
∑(𝑝𝑏𝑊𝑏𝑎 − 𝑝𝑎𝑊𝑎𝑏)(𝐸𝑎 − 𝐸𝑏)

𝑎,𝑏

=
1

2
∑ 𝑝𝑏𝑊𝑏𝑎[1 − 𝑒(𝛽−𝛽𝐿)(𝐸𝑏−𝐸𝑎)](𝐸𝑎 − 𝐸𝑏)

𝑎,𝑏

 

By expanding the exponential term to the first order, we further obtain 

𝑑𝐸̅

𝑑𝑡
≅

1

2
∑ 𝑝𝑏𝑊𝑏𝑎(𝐸𝑎 − 𝐸𝑏)2

𝑎,𝑏

(𝛽 − 𝛽𝐿) 

We can also expand 𝑝𝑏 =
𝑒−𝛽𝐸𝑏

𝑍
=

𝑒−𝛽𝐸𝑏

𝑍∞
 to the leading term and simply get 𝑝𝑏 ≅

1

𝑍∞
, which allows us to further simplify the results 

𝑑𝐸̅

𝑑𝑡
≅

1

2𝑍∞
(𝛽 − 𝛽𝐿) ∑ 𝑊𝑏𝑎(𝐸𝑎 − 𝐸𝑏)2

𝑎,𝑏

= −
𝑑𝛽

𝑑𝑡

∑ 𝐸𝑎
2

𝑎

𝑍∞
 

Finally we can write 
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𝑑𝛽

𝑑𝑡
= (𝛽𝐿 − 𝛽) [

1

2

∑ 𝑊𝑏𝑎(𝐸𝑎 − 𝐸𝑏)2
𝑎,𝑏

∑ 𝐸𝑎
2

𝑎
] =

𝛽𝐿 − 𝛽

𝑇1
     (5.15) 

Here we define T1 as 

1

𝑇1
=

1

2

∑ 𝑊𝑏𝑎(𝐸𝑎 − 𝐸𝑏)2
𝑎,𝑏

∑ 𝐸𝑎
2

𝑎
      (5.16) 

We should notice that in obtaining the result Eq (5.16), we assume a single spin 

temperature for the nuclear spin system, so the system relax with a single 

exponential function. However, the rate equation Eq (5.5) does not exclude the 

cases for multiple relaxation times. 

From Eq (5.16), we notice that the key to solve for the relaxation time if to find the 

characteristics of the transition rate 𝑊𝑏𝑎, and we will show an example in the next 

section for spin-3/2 system. 

 

5.2 NMR methods for T1 measurement 

A spin-1/2 nucleus in a homogeneous environment relaxes with a single 

exponential, and the functional form depends on the details of the experiment. The 

most commonly used techniques are the “Inversion-Recovery” and the 

“Saturation- Recovery” methods. 

 

The “Inversion- Recovery” method is illustrated in Fig 68 in the classical picture. 

The measurement starts from equilibrium state, and in the rotating reference frame, 

the nuclear spin takes +z direction initially (Fig 68(a)). A π pulse is then applied to 

the system, which inverts the spin to –z direction (Fig 68(b)). After a time t, the 
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spin recovers by a certain amount (Fig 68(c)). The z-component amplitude of the 

recovered spin is a function of the waiting time t 

M(t) = 𝑀0 (1 − 2𝑒
−

𝑡
𝑇1)    (5.17) 

We can intuitively verify the correctness of Eq (5.17) by noticing that M(0) =

−𝑀0 𝑎𝑛𝑑 𝑀(∞) = 𝑀0. To measure the amplitude M(t), we can either use the FID 

detection or an echo detection. From Fig 68(d) to Fig 68(f) describes a commonly 

used echo pulse sequence. If we repeat the same experiment with different delay 

time t, we can fit our data with the function form (5.17) and obtain T1 from the 

fitting result. The graphic appearance of Eq (5.17) is shown in Fig 69. 

Experimentally, we select a reasonable number of delay times equally spaced 

logarithmically ranging from two orders of magnitude smaller than T1 to 10 times 

T1. To make sure the initial condition is the same for each experiment, we always 

wait long enough (10T1) before every measurement.  
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Figure 68 (a) In equilibrium, the nuclear spin take value M0 in the z-direction in the rotating frame. 

(b) After a pi-pulse, the spin is inverted to –M0. (c) after some waiting time t, the spin recovers to a 

certain amplitude, the direction could be either +z or –z. (d) Apply a pi/2 pulse which knocks the 

spin to the xy plane. (e) Waiting a time τ, the nuclear spins fan out in the xy plane. (f) Apply a pi-

pulse and wait the same time τ, and then the spins refocus, forming an echo. 

 

Figure 69 The graph of M(t) = 𝑀0 (1 − 2𝑒
−

𝑡

𝑇1). The red point labels where t=T1 point is. 

10
-2

10
-1

10
0

10
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t/T
1

M
/M

0

t=T
1



 

129 
 

 

The “Inversion- Recovery” method becomes time-consuming when T1 is very long, 

and the typical time cost when using this method is 100 times T1. Another 

shortcoming of the “Inversion- Recovery” method is that when the H1 field is 

limited by the experimental setup, the pi-pulse would be very long, which limit the 

bond width of the measurement. In both cases, a so-called “Saturation- Recovery” 

method is used. The graphic illustration of this method is shown in Fig 70. 

 

Figure 70 (a). In equilibrium, the nuclear spin take value M0 in the z-direction in the rotating frame. 

(b) After several pi/2-pulses, the spin is uniformly distributed in the space and the effective spin is 

zero (c) after some waiting time t, the spin recovers to a certain amplitude, the direction could be 

either +z or –z. (d) Apply a pi/2 pulse which knocks the spin to the xy plane. (e) Waiting a time τ, 

the nuclear spins fan out in the xy plane. (f) Apply a pi-pulse and wait the same time τ, and then the 

spins refocus, forming an echo. 
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In the “Saturation- Recovery” method, a “saturation comb” is applied to the nuclear 

spin system first. The comb constitutes several pi/2 pulses separated by a time 

interval t0 much larger than T2 but much smaller than T1. The idea is that after each 

pi/2 pulse, the spin is knocked to the xy plane, and after time t0, the spins totally 

go out of phase and randomly distributed in the xy plane, while the z-component 

of the spins do not recover. After several pi/2-pulses, the spins then distributed 

uniformly all over the space, which we call “saturated”. This saturated state serves 

as the initial condition for each measurement. The advantage of the “Saturation- 

Recovery” method is that we do not have to wait a long time between 

measurements, since the full recover of z-component is not necessary for creating 

the “saturation”. Moreover, when H1 field is low and the pi/2 pulse is too long to 

conduct a reasonable experiment, we can use a shorter pulse for the saturation comb 

and we can still achieve to start from an almost saturated initial condition. 

 

The functional form for a “Saturation- Recovery” measurement is 

M(t) = 𝑀0 (1 − 𝑒
−

𝑡
𝑇1)    (5.18) 

We can see that when t=0, the amplitude is also zero. 

 

We should note that the “Saturation- Recovery” method is only valid for spin-1/2 

system, where we have only two energy levels, and the saturation comb only affect 

the transition between these two energy levels. For a spin-3/2 or higher spin 

systems, the electric field gradient changes the splitting between Zeeman energy 
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levels, and we end up with multiple transitions. While the saturation pulse sequence 

only affect the central transition, it changes the population on the relevant energy 

levels, which in turn induces transitions between neighboring energy levels. In this 

case, if we do not wait enough time for the system returning to equilibrium before 

each measurement, we end up with doing experiment with different initial 

conditions, and that distorted the shape of the recovery line and change the result 

of T1. 

 

5.3 Spin-lattice relaxation experimental results for B//ab 

When approaching the phase boundary of an antiferromagnetic state either by 

varying temperature or magnetic field, the quantum fluctuation provides extra 

channels for energy dissipation from the nuclear spin system, and thus enhances 

the spin-lattice relaxation rate. Usually this enhancement speeds up the relaxation 

rate by orders of magnitude, so the T1 measurements serve as a very sensitive tool 

for detecting antiferromagnetic phase transitions. In our experiment, for B//ab, all 

the phase transitions at 2K in Fig 25 were verified by T1 measurements on the 

137Ba(1) central transition, and the results are shown in Fig 71. 
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Figure 71 (a) Spin-lattice relaxation rate 1/T1 measured at 90mK, 137Ba(1) central transition, the 

high frequency peak of the spectra. (b) Spin-latice relaxation rate 1/T1 measured at 2K, 137Ba(1) 

central transition, the low frequency peak of the spectra. 

 

From Fig 71(b), we can clearly see the two phase transitions signaled by the great 

enhancement of spin-lattice relaxation rate, and the phase boundaries defined by 

the maximum relaxation rate are consistent with the fields where the NMR spectra 

have some change. In Fig 71(a), the phase transition from low field Y phase to the 

uud phase is well defined by the enhancement peak in relaxation rate, and the 

transition field 10.8T agrees with the phase diagram plotted from thermodynamics 

measurement. However, we do not see evidence for the low field phase transition 

claimed by the heat capacity measurements. Going across the supposed transition 

field 6.5T, there is no abrupt change like the high field transitions. Considering that 

the NMR spectra and sublattice magnetization are exactly the same as the 1.6K 

measurements, we conclude that there might be no phase transition in the low field 

region, or at least the transition is not sensitive to NMR measurements. 
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The temperature dependence of spin-lattice relaxation rate is also interesting in the 

sense that it detects the activation energy of the electron spin system and serves as 

a tool to decide if the elementary excitation is gapped or not. In the low-temperature 

limit, the temperature dependence of relaxation rate conforms to the exponential 

decay: 

1

𝑇1
∝ 𝑒−∆/𝑘𝑇 

where ∆ is the energy gap. When extrapolating to zero temperature, we should 

expect the relaxation rate falls to zero, which means there is no channel for energy 

exchange. This is easy to understand if we notice that the energy difference 

between nuclear spin energy levels is orders of magnitude smaller than the energy 

gap of the electron spin system, so at zero temperature, without the help of thermal 

fluctuation, energy exchange between the nuclear spin system and the lattice 

becomes impossible. 

 

Experimentally, we measured T1 at various fields in the uud phase, and the data are 

shown in Fig 72. 
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Figure 72 Temperature dependence of spin-lattice relaxation rate at various fields in the uud phase. 

The inset shows the same data with linear x-axis. 

 

From the data, we actually see that the decreasing trend of the relaxation rate slows 

down at lower temperature, which is an obvious contradiction to the gapped 

excitation assumption. From the inset, we notice that the extrapolation of spin-

lattice relaxation rate does not go to zero at zero temperature. There are two 

possibilities. First, the elementary excitation is not gapped, which would be a 

natural conclusion from the measurements results. However, this feature of 

relaxation rate may not be intrinsic to the system, and it may be the effect of 

impurities. The recovery line of T1 measurement exhibits stretched exponential 
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feature, which indicates inhomogeneity of the sample, and the X-ray refraction 

detection shows that the quality of the sample we used is not very good. These facts 

blur the interpretation of temperature dependent T1 measurements, so we can only 

conclude that the T1 data do not support the gapped excitation, but the true nature 

of the excitation spectrum needs further research. 
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Conclusions and Open questions 

For decades, the triangular lattice antiferromagnet (TLA) remains a hot topic in 

condensed matter physics. The theoretical work on the triangular system has results 

in hundreds of papers, and the most prominent prediction is that an isotropic TLA 

system may possess an up-up-down state signaled by a plateau in the magnetization. 

On the other hand, the experimental research is largely limited by the synthesis of 

high-quality sample, especially high quality single crystals. The successful 

synthesis of Ba3CoSb2O9 single crystal is thus an important breakthrough in the 

study of TLA. This compound has an almost isotropic spin-1/2 triangular layer, 

with a relatively much weaker interplanar coupling, which makes it a good quasi-

2D triangular lattice. More importantly, the saturation field of this compound is 

only around 30T, which enables experimentalists to study the whole phase diagram. 

 

The preliminary work on Ba3CoSb2O9 focused on the magnetization and 

thermodynamic properties [16] [17] [22]. The magnetic plateau has been 

discovered by the magnetization results [16], and the full H-T phase diagram has 

been plotted according to the heat capacity results. However, these measurements 

can only reveal the existence of phase transitions. The details of the magnetic 

ordering cannot be derived from those measurements. As a local probe, the nuclear 
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magnetic resonance detection is the best candidate to finish the job. In UCLA, we 

studied the low field phases, and in NHMFL, we explored the high field phase. 

 

For B//ab, NMR spectra and relaxation rate prove the existence of 4 different 

phases, and the whole phase diagram is reproduced. The spin orientations of each 

phase are verified to be consistent with theoretical prediction. The phase 

boundaries set up by both spectra analysis and field dependence relaxation rate 

analysis agree with the results obtained from magnetization and thermodynamic 

measurements.  

 

For B//c, the low field part of the phase diagram is reproduced. The high field phase 

is still an open question and need more input from both theory and experiment. 

 

Another open question is brought up when we compare the ground state of two 

compounds with similar structures- the Ba3CoSb2O9 we have discussed, and the 

Ba3NiSb2O9 with the 6H-B structure. The Ba3NiSb2O9 compound can crystalize in 

various structures, including the 6H-A, 6H-B, and 3C phases [36]. Among these 

phases, the 6H-A compound exhibits an antiferromagnetic transition from the heat 

capacity measurements, but the 6H-B and 3C compound show no sign of long-

range magnetic ordering. The 6H-B structure of Ba3NiSb2O9 is interesting for 

comparison with the Ba3CoSb2O9 compound because they have very similar 

structure. Both have a highly symmetric hexagonal lattice with a triangular plane. 
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Two major differences between them are for the Ni compound, the electron spin is 

1 on the triangular plane, and adjacent layers are not directly stacked on top of each 

other. Instead, in Ba3NiSb2O9 with the 6H-B structure, adjacent layers are displaced 

in a way that the Ni ion in one layer projects exactly to the center of the triangle in 

the next layer (Fig 73). 

 

Figure 73 Ba3NiSb2O9 with the 6H-B structure, adjacent layers are displaced in a way that the Ni 

ion in one layer projects exactly to the center of the triangle in the next layer. Ref [36]. 

  

The NMR spectra of both Ba3NiSb2O9 and Ba3CoSb2O9 are shown in Fig 74 for 

comparison. From the spectra, we can see that the Ba3CoSb2O9 compound has narrow 

and well distinguished Ba NMR lines in the paramagnetic state, and we have shown in 

this thesis that ordered moments can be well defined at low temperature, signaling the 

existence of long-range magnetic order. On the other hand, the Ba3NiSb2O9 at 2.7K has 

a very broad NMR spectrum, indicating highly inhomogeneous local environment and 

no ordered moments in the long range. 
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Figure 74 Ba3NiSb2O9 spectrum (red) at 2.7K B//c, obtained by summing up the echo signal in the 

time domain. Ba3CoSb2O9 spectrum (green) at 6K B//c for comparison, obtained by summing up 

the echo signal in the time domain. 

 

As I mentioned in Chapter 3, there are many factors affecting the ground state of a triangular lattice 

compound, and the theoretical determination of the ground state phase diagram is far from 

sufficient in making predictions for specific materials. In the spirit of comparison study, compounds 

with similar crystal structure before different magnetic properties can provide useful information. 

We would expect more research, both experimentally and theoretically, to contribute to the 

Heisenberg antiferromagnetic model on triangular lattice. 
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