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Abstract: Difference-in-differences is undoubtedly one of the most 
widely used methods for evaluating the causal effect of an interven-
tion in observational (i.e., nonrandomized) settings. The approach is 
typically used when pre- and postexposure outcome measurements 
are available, and one can reasonably assume that the association of 
the unobserved confounder with the outcome has the same absolute 
magnitude in the two exposure arms and is constant over time; a 
so-called parallel trends assumption. The parallel trends assumption 
may not be credible in many practical settings, for example, if the 
outcome is binary, a count, or polytomous, as well as when an uncon-
trolled confounder exhibits nonadditive effects on the distribution of 
the outcome, even if such effects are constant over time. We intro-
duce an alternative approach that replaces the parallel trends assump-
tion with an odds ratio equi-confounding assumption under which 
an association between treatment and the potential outcome under 
no treatment is identified with a well-specified generalized linear 
model relating the pre-exposure outcome and the exposure. Because 
the proposed method identifies any causal effect that is conceivably 
identified in the absence of confounding bias, including nonlinear 
effects such as quantile treatment effects, the approach is aptly called 
universal difference-in-differences. We describe and illustrate both 
fully parametric and more robust semiparametric universal differ-
ence-in-differences estimators in a real-world application concerning 

the causal effects of a Zika virus outbreak on birth rate in Brazil.

Keywords: Difference-in-differences; Equi-confounding; Odds 
ratios; Selection bias; Generalized linear models; Extended propen-
sity score

(Epidemiology 2024;35: 16–22)

A supplementary digital video is available at: http://links.lww.com/
EDE/C90

Difference-in-differences (DiD) is a popular approach to 
account for unmeasured confounding in observational 

data. DiD is typically used when (i) pre- and postexposure out-
come measurements are available and (ii) the parallel trends 
assumption is reasonable, that is, the absolute magnitude of the 
association between the unobserved confounder and the out-
come is equal across treated and control groups and constant 
over time. Under parallel trends, an estimate of the causal effect 
of the treatment can be obtained by taking a difference between 
treated and control groups of the average change in outcome 
over time; see Caniglia and Murray1 for an introduction to DiD 
and the next Section for a brief review. Despite its popularity, 
parallel trends may not be credible for a variety of reasons; see 
the eAppendix (http://links.lww.com/EDE/C80). Therefore, the 
development of alternative identifying conditions for DiD set-
tings continues to be an active area of research.

In this article, we introduce an alternative identifica-
tion strategy for DiD settings. Specifically, as described in the 
Universal DiD Section, our approach is based on the assump-
tion that confounding bias for the causal effect of interest, 
defined as an association between exposure and the treat-
ment-free potential outcome, can be identified under a gener-
alized linear model (GLM) relating the pre-exposure outcome 
and the exposure. The proposed approach allows for investiga-
tors to proceed with a new approach in DID settings under a 
slightly different key identifying assumption (i.e., different from 
parallel trends) that, if it holds, does not require one to assume 
equal and additive effects of an uncontrolled confounder under 
models for binary or polytomous outcomes. An appeal of the 
framework is that it permits both familiar parametric models, 
as well as more robust semiparametric estimation approaches, 
namely (i) a GLM approach, followed by (ii) an extended 
propensity score approach, and finally, (iii) a doubly robust 
approach, which remain valid if either (i) or (ii) provides valid 
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inferences without a priori knowing which might be misspec-
ified. Importantly, the proposed methods can be used to iden-
tify and estimate the causal effect of a hypothetical intervention 
in the presence of unmeasured confounding, on virtually any 
scale of potential interest, including nonlinear scales such as 
quantile causal effects. For this reason, the approach is aptly 
called universal difference-in-differences, hereafter referred to 
as universal DiD. In the Application and Discussion Sections, 
we apply our methods to evaluate the causal link between a Zika 
virus outbreak and birth rates in Brazil and discuss a sensitiv-
ity analysis approach to assess the impact of a violation of key 
assumptions.

The proposed methods are a special case of a more 
general approach proposed by Park and Tchetgen Tchetgen.2 
This article serves as an introductory resource on universal 
DiD methods for an epidemiology audience, with a significant 
emphasis on utilizing parametric models, interpreting identi-
fying assumptions, and offering practical guidelines for imple-
mentation and evaluation in practical settings. Specifically, this 
article focuses on applying well-established GLMs and pro-
pensity score weighting methods to the universal DiD frame-
work, thereby easing their adoption in epidemiologic studies. 
Readers interested in more technical details can consult.2

NOTATION AND A BRIEF REVIEW OF DID
Consider a study in which pre- and postexposure out-

comes Y0 and Y1 are observed; let Y a
t  denote the potential 

outcome at time t ∈ {0, 1} under a hypothetical intervention 
that sets a binary exposure/treatment A to a value a ∈ {0, 1}.  
Following a standard DiD model,3 suppose that the treat-
ment-free potential outcome is generated from the following 
model for t = 0, 1:

Y a=0
t = h(Ut, t),

h(u, t) = u + βT t,
Ut = β0 + βAA + εt, (DiD Model)
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Here, εt is an unobserved error at time t that is independent 
of time or treatment, and Ut  is therefore also unobserved. 
Note that allowing Ut  to depend on t accommodates the fac-
tors predicting Y0 to be distinct from those predicting Y1. In 
(DiD Model), Y a=0

t  is a deterministic function of Ut  (in fact 
a linear function of the latter), but the exposure mechanism  
of A given Ut  is unrestricted. In terms of the distribution of 
Ut , (DiD Model) assumes that the conditional distribution 
of εt given A is either stable over time given A or indepen-
dent of A at each time; DiD strictly only requires that εt does 
not depend on A and t in a manner that they interact on the 
additive scale. Finally, (DiD Model) implies rank preserva-
tion which rules out any additive interaction between A and 

U1 in causing Y1. In the Universal DiD Section, we present an 
alternative structural model compatible with (Universal DiD 
Model), thus allowing for heterogeneity of the causal effects 
of A with respect to U1, that is, h is allowed to be unrestricted.

(DiD Model) implies that 
E(Y a=0

t |A = a) = β0 + βAa + βT t + E(εt|A = a), which fur-
ther implies the so-called parallel trends assumption:

E
(
Y a=0

1 − Y a=0
0 |A = 1

)
= E

(
Y a=0

1 − Y a=0
0 |A = 0

)
. (1)

Expression (1) states that, on average, the trajectory of the 
potential outcomes under an intervention that sets the expo-
sure to its control value, is equal between exposed and unex-
posed groups. Hence, under no unmeasured confounding of 
the average additive effect of A on Y a=0

0  and Y a=0
1 , respec-

tively, both lefthand and righthand sides of the display above 
would be zero. This gives an alternative interpretation of 
parallel trends as an assumption of additive equi-confound-
ing bias, such that the confounding bias for the effect of A on 
Y a=0

1  though not null, is equal to the confounding bias for the 
causal effect of A on Y a=0

0  on the additive scale.4 Note that the 
latter is empirically identified under consistency and no causal 
anticipation assumptions, which we now state:

Assumption 1a Consistency: Yt = Y a=A
t  almost surely 

for t = 0, 1
Assumption 1b No Causal Anticipation: Y a=1

0 = Y a=0
0

almost surely.
It is then straightforward to deduce iden-

tification of the additive average causal effect of 
treatment on the treated (ATT) for the follow-up out-
come Y1, that is, ψATT = E

(
Y a=1

1 − Y a=0
1 |A = 1

)
 

= E (Y1 − Y0|A = 1)− E (Y1 − Y0|A = 0) , justifying DiD.
Despite its popularity, parallel trends has several lim-

itations: (i) it can be violated when dealing with naturally 
constrained outcomes such as binary or count variables, (ii) 
it restricts the exposure mechanism and time-varying prop-
erties of the outcomes, and (iii) it is scale-dependent; see the 
eAppendix (http://links.lww.com/EDE/C80) for details. In the 
next section, we describe an alternative to parallel trends that 
accommodates (i)–(iii).

UNIVERSAL DID

Identification via Odds Ratio Equi-confounding
We introduce a parametrization for a unit’s contribution 

to the likelihood for the potential outcome Y a=0
t  conditional 

on A and observed baseline covariates X , assuming indepen-
dent and identically distributed (i.i.d.) sampling. Let

ht(y, x) = f (Y a=0
t = y|A = 0, X = x) (2)
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The function ht (y, x), referred to as a baseline density, 
represents the conditional distribution of the potential 
outcome Y a=0

t  given X  and A = 0  (i.e., baseline treat-
ment), and the function βt(y, x) is the log of the general-
ized odds ratio function5,6 where βt(yref, x) = 0, with yref  
a user-specified reference value; without loss of gener-
ality, we take yref = 0. Thus, βt(y, x) encodes the associ-
ation between Y a=0

t  and A, evaluated at y given X = x . 
Therefore, βt (y, x) = 0 for all y encodes no unmeasured 
confounding given X = x , while βt (y, x) � =0 quantifies 
the degree of unmeasured confounding bias at a distri 
butional level.

These functions parametrize the condi-
tional density of Y a=0

t  given (A = a, X = x) as 
f (Y a=0

t = y|A = a, X = x) ∝ ht(y, x)exp{βt(y, x)a}; here, ∝ 
stands for the lefthand side being proportional to the righthand 
side for fixed a and x, with proportionality constant equal to 
the normalizing constant 

∑
y ht (y, x) exp {βt (y, x) a} < ∞ 

for all a and x, ensuring that the lefthand side is a proper 
density or probability mass function, and the symbol 

∑
y 

may be interpreted as an integral if y is continuous. This 
likelihood parametrization can in principle be used to repre-
sent any proper likelihood function one might encounter in 
practice, that is, the above formulation is fully unrestricted 
(or nonparametric).5,6 Under consistency and no anticipa-
tion, f

(
Y a=0

0 = y|A = a, X = x
)
= f (Y0 = y|A = a, X = x) 

for a = 0, 1 and 
f
(
Y a=0

1 = y|A = 0, X = x
)
= f (Y1 = y|A = 0, X = x) , 

respectively, establishing identification of β0(y, x), h0(y, x), 
and h1(y, x) from equations (2) and (3). In contrast, identifi-
cation of f

(
Y a=0

1 = y|A = 1, X = x
)
 and β1 (y, x) cannot be 

obtained without an additional condition because Y a=0
1  is not 

observed for units with A = 1. Our approach relies on the key 
assumption:

Assumption 2 Odds Ratio Equi-confounding: 
β0 (y, x) = β1 (y, x) for all (y, x).

The assumption states that the degree of con-
founding captured on the log-odds ratio scale is stable 
over time, an assumption first considered by Park and 
Tchetgen Tchetgen,2 which they refer to as odds ratio 
equi-confounding. Under this assumption, it follows that 
f
(
Y a=0

1 = y|A = 1, X = x
)
∝ h1(y, x)exp {β0 (y, x)}, establishing  

nonparametric identification of f
(
Y a=0

1 = y|A = 1, X = x
)
  

in the sense that β0 (y, x), f (Y0 = y|A = 0, X = x), and 
f (Y1 = y|A = 0, X = x) are unrestricted. Furthermore, one 
may identify the additive ATT with the expression:

ψATT = E (Y1|A = 1)

−E

ï
E [Y1exp {β0 (Y1, X )} |A = 0, X ]

E [exp {β0 (Y1, X )} |A = 0, X ]
|A = 1

ò

 (4)

as we demonstrate in the eAppendix (http://links.lww.com/
EDE/C80).

We briefly review examples of special interest where 
universal DiD yields intuitive alternatives to DiD when paral-
lel trends is violated. Suppressing X , the ATT satisfies:
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 (5)

Here, the crude estimand is the difference between the con-
ditional means of the outcome in treated and control groups 
in the postexposure period. The debiasing term is the dif-
ference between the ATT and the crude estimand, reflecting 
unmeasured confounding bias. If there is no unmeasured 
confounding the bias term vanishes and, consequently, the 
crude estimand identifies the ATT. Otherwise, suppose that 
Y a=0

t |(A = a) ∼ N
(
µt (a) ,σ2

t

)
. Then, the parallel trends and 

odds ratio equi-confounding assumptions in this model imply 
that the bias term is equal to µ1(1)− µ1(0) = µ0(1)− µ0(0) 
and σ−2

1 {µ1(1)− µ1(0)} = σ−2
0 {µ0(1)− µ0(0)}, respec-

tively, and the corresponding debiasing terms are as follows:

(Parallel trends)
⇒ Debiasing term = µ0(1)− µ0(0),
(Odds ratio equi-confounding)

⇒ Debiasing term =
σ2

1

σ2
0

{µ0(1)− µ0(0)} .

Therefore, universal DiD reduces to standard DiD if σ2
1 = σ2

0, 
that is, the scale of the outcome at t = 0 matches that at t = 1; 
however, universal DiD is more flexible than DiD in the sense 
that if σ2

1 � =σ2
0, universal DiD rescales the standard DiD debi-

asing term µ0 (1)− µ0 (0) of the crude estimate to account 
for a potential difference of scales between t = 0 and t = 1. 
Additionally, the eAppendix (http://links.lww.com/EDE/C80) 
provides analogous comparisons on multiplicative and odds 
ratio scales.

At this juncture, it is instructive to consider a structural 
model for odds ratio equi-confounding analogous to (DiD 
Model), which we adopt following.2 Suppressing covariates, 
consider the following model:
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(Universal DiD Model)

In (Universal DiD Model), the relationship between Y a=0
t  and 

Ut  is unrestricted, while the exposure mechanism of A given 
Ut  is assumed not to depend on time. In addition, (Universal 
DiD Model) assumes that the conditional distribution of Ut  
evaluated at u given (A = 0, Yt) is stable over time but oth-
erwise unrestricted. Unlike (DiD Model), (Universal DiD 
Model) is scale-invariant in that any monotone transformation 
of an outcome that satisfies (Universal DiD Model) remains 
in the model. Of note, unlike (DiD Model), (Universal DiD 

http://links.lww.com/EDE/C80
http://links.lww.com/EDE/C80
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Model) is agnostic about the presence of an additive interac-
tion between the treatment and Ut . In the eAppendix (http://
links.lww.com/EDE/C80), we establish that (Universal DiD 
Model) implies odds ratio equi-confounding. There, we also 
describe alternative data generating processes for odds ratio 
equi-confounding that may be of independent interest.

For estimation and inference, one may posit GLMs for 
the outcome process by specifying parametric models for 
�

�

��� ��
 and βt(y, x). The parameters for these functions can 

be estimated by standard maximum likelihood theory, which 
can be easily performed using off-the-shelf software, such as 
geex package in R.7 As this approach essentially amounts to 
methods previously described by Wooldridge8 and Taddeo et 
al9 details are relegated to the eAppendix (http://links.lww.
com/EDE/C80). An alternative semiparametric approach that 
obviates the need to specify a likelihood for the outcome pro-
cess is given next.

Universal DiD Estimation via Extended 
Propensity Score Weighting

In many real-world applications, GLMs for the out-
come can be misspecified, particularly when the distribution 
of the outcome, such as zero-inflated or truncated outcomes, 
poses significant challenges for maximum likelihood estima-
tion approaches developed under standard GLM framework. 
To resolve this issue, we provide an alternative approach that 
uses an extended propensity score model. The approach gener-
alizes the standard propensity score model for the treatment10 
to accommodate unmeasured confounding by incorporating the 
treatment-free potential outcome in the propensity score model.

The approach is motivated by the invariance property of 
odds ratios, which provides the following alternative interpre-
tation of βt(y, x) to that given in equation (3), namely

βt (y, x) = log

®
Pr

(
A = 1|Y a=0

t = y, X = x
)

×Pr
(
A = 0|Y a=0

t = 0, X = x
)
´

®
Pr

(
A = 0|Y a=0

t = y, X = x
)

×Pr
(
A = 1|Y a=0

t = 0, X = x
)
´

⇔ log
πt (y, x)

1 − πt (y, x)
= δt(x) + βt (y, x) ,

δt(x) = log
Pr

(
A = 1|Y a=0

t = 0, X = x
)

Pr
(
A = 0|Y a=0

t = 0, X = x
) .

where the function πt (y, x) = Pr
(
A = 1|Y a=0

t = y, X = x
)
 

is referred to as the extended propensity score function. This 
alternative obviates the need for specification of a model 
for ht (y, x). Specifically, under odds ratio equi-confound-
ing, one can posit a model for the log-odds ratio functions as 
β1 (y, x) = β0 (y, x) = αᵀ

0 S0(y, x) where S0(y, x) is a user-spec-
ified sufficient statistic for the confounding odds ratio parame-
ter. For instance, let S0(y, x) = (y, yxᵀ)ᵀ, that is, the log-odds 
of the extended propensity score have a linear relationship in 
y given x, with the corresponding parameter α0. Also, spec-
ify a parametric model for δt(x), say δt(x) = (1, xᵀ)ηt, with 
similar interpretation. Then, (η0,α0) can be estimated via a 

standard logistic regression of A on (1, X , S0 (Y0, X )). Next, 
η1 can be identified as the solution to the population moment 
equation:
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 (6)
Therefore, η1 can be estimated using the empirical analogue 
to the above equation. Propensity score weighting universal 
DiD estimation of the ATT based on the estimated extended 
propensity score follows from the following identifying 
expression:

ψATT = E (Y1|A = 1)

−
E [(1 − A) Y1exp {(1, Xᵀ)η1 + αᵀ

0 S0(Y1, X )}]
E [(1 − A) exp {(1, Xᵀ)η1 + αᵀ

0 S0(Y1, X )}]
.
 (7)

A proof of this claim is included in the eAppendix (http://
links.lww.com/EDE/C80).

The proposed GLM-based and propensity score weight-
ing universal DiD methods rely on (i) modeling the associ-
ation between covariate and outcome in a GLM, and (ii) 
modeling the association between covariate and treatment in 
the extended propensity score model. However, this might 
introduce a concern that such modeling might introduce spec-
ification bias. To address this, we construct a doubly robust11–13 
estimator for the ATT, in the sense that the estimator is con-
sistent and asymptotically normal if the conditional odds ratio 
function encoding the association between the treatment-free 
potential outcome and the treatment is correctly specified con-
ditional on covariates, and either (i) the outcome conditional 
models for baseline and follow-times, or (ii) the treatment 
mechanism conditional on the treatment-free potential out-
come at its reference value at baseline and follow-up, but not 
necessarily both, are correctly specified. Details of the doubly 
robust approach can be found in the eAppendix (http://links.
lww.com/EDE/C80). Furthermore, to enhance the robustness 
of the odds ratio function specification particularly for con-
tinuous exposure, a flexible yet simple approach might be to 
posit a model for a discretized version of the outcome, similar 
to a histogram estimator of a density. In brief, the approach 
involves converting the outcome into M  dummy variables 
based on the 100(m/M) th percentiles (m = 1, 2, . . . , M − 1) 
of the empirical distribution of pre-exposure outcome values. 
Using this discretized outcome, one then can specify the odds 
ratio function in the universal DiD framework; see the eAp-
pendix (http://links.lww.com/EDE/C80).

APPLICATION: ZIKA VIRUS OUTBREAK IN 
BRAZIL

In 2015, a Zika virus outbreak occurred in Brazil, result-
ing in more than 200,000 cases by 2016.14 Zika virus infection 
during pregnancy can affect fetal brain development and lead 
to severe brain defects such as microcephaly.15 Consequently, 
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previous investigators16,17 conjecture that the Zika virus epi-
demic might have resulted in a decrease in the birth rate, 
attributed to individuals’ tendency to postpone pregnancy or 
increase the likelihood of abortion due to the fear of Zika 
virus-related microcephaly.

We illustrate universal DiD with a reanalysis of a study 
of the effects of an outbreak of Zika virus on birth rate in Brazil 
originally published in Taddeo et al.9 Our study required no 
ethics approval as the dataset is publicly available and does not 
contain any personal information. Specifically, we consider 
2014 and 2016 as pre- and postexposure periods, respectively, 
and municipalities in the northeastern state Pernambuco and 
those in the southernmost state Rio Grande do Sul as study 
units. According to a report from the Brazilian Ministry of 
Health,18 the epidemic was more severe in the northeastern 
region of Brazil compared with the southern region. In addi-
tion, out of 1248 microcephaly cases that occurred in Brazil 
as of November 28, 2015, 646 (51.8%) cases were reported 
in Pernambuco,19 whereas less than 10 cases of Zika-related 
microcephaly were reported in Rio Grande do Sul.20 Based on 
the information, individuals in northeastern states may have 
been more concerned about Zika virus-related microcephaly 
than those in southern states, which could have contributed 
to a possible decrease in the birth rate in northeastern states. 
In contrast, individuals in southern states in Brazil may have 
experienced minimal behavioral changes compared with those 
in other regions, as these states were least impacted by the 
Zika epidemic. Moreover, given the substantial geographical 
separation of over 2000 kilometers between the 2 regions, it is 
plausible that the behavioral influence stemming from the Zika 
virus outbreak in Pernambuco had limited spillover effects on 
the population in Rio Grande do Sul; see Taddeo et al9 for a 
related discussion. Therefore, we categorize Pernambuco as 
the treated group and Rio Grande do Sul as the control group.

As the pre- and postexposure outcomes, we use birth 
rates in 2014 and 2016, respectively, where the birth rate is 
defined as the total number of live births per 1000 persons. 
We treat birth rate as a normally distributed variable in the 
parametric GLM formulation. We focus on 673 munici-
palities with complete data on the pre- and postexposure 

outcomes and treatment, where 185 municipalities belong to 
Pernambuco and 488 to Rio Grande do Sul. To further address 
variation across municipalities due to population differences, 
we further adjusted for population size, population density, 
and proportion of females as covariates. The crude mean dif-
ference E(Y1|A = 1)− E(Y1|A = 0) = 3.384 births per 1000 
persons, indicating that Pernambuco showed a higher birth 
rate than Rio Grande do Sul in 2016 despite the Zika virus 
outbreak.

Based on the proposed approach, we obtained estimates 
of the additive ATT; see the eAppendix (http://links.lww.com/
EDE/C80) for details on the specific steps used for estimation. 
The baseline densities for the outcomes are specified to follow 
normal distributions Y a=0

t |(A = 0, X = x) ∼ N(µt(x),σ2
t ) 

where µt(x) is specified as µt(x) = (1, xᵀ)τt. Therefore, under 
an odds ratio parametrization, the odds ratio function is rep-
resented as β0(y, x) = (y, yxᵀ)α0. Maximum likelihood esti-
mators of (τ0, τ1,σ2

0,σ2
1,α0) are obtained by maximizing the 

log-likelihood function of the pre-exposure data, i.e., (Y0, A, X )

, and the postexposure data under control, i.e., (Y1, A = 0, X ),  
implemented with geex.7 The extended propensity score is 
specified as πt(y, x)/{1 − πt(y, x)}
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�. Again, maximum likelihood  
estimators of (η0,α0) are obtained by maximizing the log-like-
lihood function of the pre-exposure data using the same 
software. We can then estimate η1 by solving the empirical 
analogue of (6) with the estimated odds ratio function using 
the same software. Using these specifications, we obtain six 
estimates from GLM-based, propensity score weighting, and 
doubly robust universal DiD approaches. We compare these 
estimates to those derived under parallel trends obtained from 
att_gt function implemented in did R package.21

The Table 1 summarizes the data analysis results. The 
GLM-based and propensity score weighting universal DiD 
estimates show the largest and smallest effect estimates of 
−1.487 and −0.831 births per 1000 persons, respectively. In 
addition, effect estimates under parallel trends are of a similar 
value as those obtained from the universal DiD approaches, 
and the corresponding confidence intervals (CI) overlap with 
each other. Compared with the crude estimate of 3.384 births 

TABLE 1. Summary of Data Analysis

Estimator 

Statistic

Estimate SE 95% CI 

Universal DiD under odds ratio equi-confounding GLM-based –1.487 0.340 (–2.153, –0.821)

Propensity score weighting –0.831 0.377 (–1.570, –0.091)

Doubly robust –0.974 0.342 (–1.645, –0.303)

Standard DiD under parallel trends GLM-based –1.171 0.151 (–1.467, –0.875)

Propensity score weighting –1.091 0.143 (–1.371, –0.811)

Doubly robust –1.124 0.159 (–1.435, –0.813)

Values in “Estimate” column represent the additive ATT of the Zika outbreak on the birth rate within the Pernambuco region, that is, the difference between the observed average 
birth rate of Pernambuco to a forecast of what it would have been had the Zika outbreak been prevented. Values in “SE” and “95% CI” columns represent the standard errors (SEs) 
associated with the estimates and the corresponding 95% CIs, respectively. The reported values are expressed as births per 1000 persons.
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per 1000 persons, the negative effect estimates suggest the 
presence of substantial confounding bias. This analysis pro-
vides compelling evidence that the Zika virus outbreak led to 
a decline in the birth in Brazil, corroborating similar findings 
in the literature,9,16,17 and further indicating that parallel trends 
and odds ratio equi-confounding estimates are of similar mag-
nitude (noting that CI are wider for universal DiD under odds 
ratio equi-confounding than for standard DID under parallel 
trends) and thus, estimates of the magnitudes of effect are not 
particularly sensitive to the specific nature of equi-confound-
ing assumption used for causal identification.

In the eAppendix (http://links.lww.com/EDE/C80), we 
provide additional data analysis results for a more flexible 
discretized odds ratio function. The universal DiD estimates 
using discretized odds ratio are much closer to each other than 
those reported in the Table 1, demonstrating less model depen-
dence, with substantially tighter CI.

Additional sensitivity analyses inspecting the extent to 
which empirical findings are sensitive to violation of identify-
ing assumptions are given in the eAppendix (http://links.lww.
com/EDE/C80).

DISCUSSION
In this article, we have described universal DiD as an 

alternative to standard DiD that can accommodate outcomes of 
any type and causal effect estimands possibly defined on non-
linear scales. For universal DiD inference, we have described 
three alternative approaches targeting the average effect of 
treatment on the treated, the first involves modeling the pre- 
and postexposure outcome process, while the second involves 
positing a model for the extended propensity score, and the 
third carefully combines both approaches to produce an esti-
mator which possesses a desirable double robustness property 
of remaining unbiased for the treatment effect, if either out-
come model or treatment model is correctly specified.

While standard DiD relies for validity on parallel 
trends, the validity of universal DiD invokes an assumption 
of odds ratio equi-confounding, that the degree of confound-
ing bias encoded with an odds ratio association between the 
treatment and the treatment-free potential outcome at fol-
low-up is exactly equal to that with the pre-exposure out-
come. Realistically, this assumption might not hold exactly in 
all applications but can often be expected to be approximately 
correct if the time between the pre-exposure and postexpo-
sure outcomes is not too large, so that, though changing, the 
magnitude of confounding bias may be expected to evolve 
smoothly over time at a relatively slow rate. From this perspec-
tive, similar to unconfoundedness (a structural assumption 
that rules out unmeasured confounding), odds ratio equi-con-
founding can be logically understood as a structural condi-
tional independence assumption about the distribution of Ut  
over time while accommodating the potential for unmeasured 
confounding. This interpretation provides a natural anchoring 
from which a sensitivity analysis can be initiated. Specifically, 

one might entertain a sensitivity analysis to the odds ratio 
equi-confounding assumption in which the odds ratio func-
tion β1 (y, x) is set to β1 (y, x) = β0 (y, x) + ∆(y, x) where 
∆(y, x) is a user-specified nonidentifiable sensitivity function 
that encodes a potential departure from this assumption. One 
would then proceed by repeating the proposed analyses and 
reporting various updated estimates of the causal effect of 
interest over various choices of ∆, thus providing an eval-
uation of the sensitivity of inferences to possible violations 
of the odds ratio equi-confounding condition; see the eAp-
pendix (http://links.lww.com/EDE/C80) for details of such a 
sensitivity analysis and an application to the Zika study.

Although many DiD methods, including universal 
DiD, are developed assuming no interference,22 it is import-
ant to acknowledge that interference may be plausible in 
various applications, particularly in the context of infec-
tious diseases. For example, in our data analysis, inter-
ference could have occurred if the Zika virus outbreak in 
Pernambuco had resulted in substantial changes in behav-
ior among individuals in Rio Grande do Sul. Hence, to 
properly use DiD methods, it is crucial in practice to assess 
the possibility of interference in the context in view. In the 
event that interference becomes a concern, one might con-
sider DiD methods that are explicitly designed to account 
for interference.23,24 In addition, given its relevance in epi-
demiological applications, this article has mainly focused 
on the additive ATT, and the comparison between odds 
ratio equi-confounding and parallel trends. Nonetheless, 
odds ratio equi-confounding has the capacity to accommo-
date nonlinear treatment effects, such as quantile treatment 
effects on the treated, as long as the treatment effect in view 
is uniquely defined as the solution to a moment equation. 
As a result, comparing odds ratio equi-confounding and 
identifying assumptions for nonlinear treatment effects in 
DiD settings could provide useful insights. We refer inter-
ested readers to Park and Tchetgen Tchetgen2 for details.

An important potential generalization of universal DiD 
concerns settings where richer longitudinal data might be 
available for each unit. In such settings, one might be able to 
leverage past outcomes to either validate or relax odds ratio 
equi-confounding; a possibility we plan to explore in the 
future. In addition, in panel data settings, staggered treatment 
initiation might occur, in which case various generalizations 
of odds ratio equi-confounding might be possible, thus effec-
tively extending recent developments under parallel trends to 
handle such complex study designs.25–27
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