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Abstract

Cytochrome c oxidase (CcO) is a large membrane-bound hemeprotein that catalyzes the reduction 

of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in 

their active sites, CcO has a unique binuclear center (BNC) composed of a copper atom (CuB) 

and a heme a3 iron, where O2 binds and is reduced to water. CO is a versatile O2 surrogate 

in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO 

complexes of bovine CcO (bCcO) revealed that photolyzing CO from the heme a3 iron leads to 

a metastable intermediate (CuB-CO), where CO is bound to CuB, before it escapes out of the 

BNC. Here, with a pump-probe based time-resolved serial femtosecond X-ray crystallography, we 

detected a geminate photoproduct of the bCcO–CO complex, where CO is dissociated from the 

heme a3 iron and moved to a temporary binding site midway between the CuB and the heme a3 

iron, while the locations of the two metal centers and the conformation of Helix-X, housing the 
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proximal histidine ligand of the heme a3 iron, remain in the CO complex state. This new structure, 

combined with other reported structures of bCcO, allows for a clearer definition of the ligand 

dissociation trajectory as well as the associated protein dynamics.

Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in 

the inner membrane of mitochondria. It reduces dioxygen to two water molecules by 

accepting four electrons from cytochrome c and four protons from the negative side of the 

mitochondrial membrane. At the same time, it harnesses the chemical energy derived from 

the dioxygen reduction chemistry to translocate four protons from the negative to positive 

side of the membrane for the production of the electrochemical proton gradient required 

for ATP synthesis by ATP synthase.1 To accomplish this complex task, CcO possesses 

four redox active centers, CuA, heme a, and a binuclear center (BNC) formed by a copper 

atom (CuB) and the heme a3 iron,2 where O2 binds and is reduced to water. The dioxygen 

reduction reaction catalyzed by CcO has been extensively studied and is well-understood.3–7 

In contrast, the O2 binding dynamics preceding the oxygen chemistry remains elusive as it is 

technically challenging to monitor the fleeting O2 complex.

Carbon monoxide (CO), like O2, is an excellent ligand for hemeproteins, but unlike O2, 

it forms nonreactive complexes with them. Furthermore, when CO is bound to a heme 

iron, it is readily dissociable by a short pulse of visible light, making it a versatile tool for 

the investigation of ligand dissociation and rebinding dynamics.8,9 Time-resolved Fourier-

transform infrared spectroscopic studies at ambient temperatures showed that photolyzing 

CO from the heme a3 iron in the BNC of bovine CcO (bCcO) in free solution leads to the 

formation of a characteristic CuB-CO intermediate (Figure 1A), where the photolyzed CO is 

coordinated to the CuB, in less than 1 ps.10–14 The photolyzed CO subsequently disociates 

from CuB and escapes out of the BNC in ~1.5 μs11,15 to generate the ligand-free reduced 

species (R). By extension, it is believed that the bimolecular binding reaction of CO, as well 

as O2, follows the same trajectery, but in a reverse order, with CuB as a temporary ligand 

stopping point.6,16–18 In addition to the CuB-CO intermediate, transient UV–vis absorption 

spectroscopic data suggest that a geminate photoproduct, where CO has been photolyzed 

from heme a3 iron but not yet coordinated to CuB, is formed immediately following CO 

photodissociation.11,15 This proposed intermediate, however, has never been experimentally 

identified.

Crystallographic studies of the bCcO–CO complex showed that X-rays from synchrotron 

light sources, like visible light, can photolyze CO from heme a3.19 To prevent the X-ray 

induced radiation damage, we employed serial femtosecond crystallography (SFX)20 to 

determine the structure of the intact bCcO–CO complex.19 With SFX, the diffraction 

patterns of randomly oriented microcrystals suspended in an aqueous jet, which intersects 

the femtosecond pulses from an X-ray free-electron laser (XFEL), are sequentially collected 

and then merged for structural determination. As the radiation damage processes do not 

occur until after the termination of each ultrashort laser pulse, radiation damage-free 

structures can be obtained under native-like conditions at ambient temperatures.20 The 

comparison of the SFX structure of the bCcO–CO complex with that of the ligand-free 

protein (R) (Figure 1B) shows that CO dissociation leads to the displacement of the CuB-
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H240 moiety toward the heme a3 and the movement of the heme a3 iron-H376 moiety 

away from the CuB center. The structural changes to the BNC are associated with a 

conformational transition in the [380–383] fragment of Helix-X (housing H376), from an 

open to a closed conformation,21 and a ~ 120° flip of the S382 side chain.

To comprehend the protein dynamics associated with the CO dissociation reaction, here we 

sought to employ a time-resolved SFX method, using an OPO laser as the pump beam (to 

photolyze CO from the bCcO–CO complex) and a XFEL as the probe beam to determine 

the structure of the photoproduct populated at 100 ns following the initiation of the reaction. 

The plate-like bCcO–CO microcrystals (~20 × 20 × 4 μm3 in size) were prepared with a 

previously reported protocol.19 A slurry of the microcrystals was loaded in a gastight syringe 

and injected into the XFEL beam as a thin (4 μm) solution jet in a vacuum chamber22 

(see Material and Methods in the Supporting Information). Each OPO laser pulse (with a 

width of ~8 ns) was timed at 100 ns before the XFEL pulse (with a width of ≤40 fs). The 

wavelength and pulse energy of the OPO laser were set at 492 nm and 60 μJ, respectively, to 

ensure that the CO was completely photolyzed. The serial diffraction patterns were collected 

for 85 min, among which 16,520 indexable patterns were merged and analyzed.

The initial structure was solved with molecular replacement using the structure of ligand-

free reduced bCcO (PDB ID: 7THU) as the search model. In the FO-FC difference map 

contoured at 6 σ (see inset-i in Figure 2A), clear ligand electron density is evident between 

CuB and heme a3; in addition, there is no residual electron density connecting the ligand 

density to the heme a3 iron (even when the map is contoured at 3σ), indicating that CO is 

completely photolyzed and that there is no geminate CO recombination (which is in good 

agreement with free solution reactions).23 As the C and O atoms are indistinguishable in the 

current data, the ligand electron density was arbitrarily modeled with the atom closer to the 

iron assigned as the C atom (inset-ii). The final structure was refined to a resolution of 2.8 Å 

(PDB ID: 8GBT, see Supporting Information Table S1).

The structural data reveal that upon photodissociation the CO rotates ~90° with respect to 

its center of mass, such that it lies parallel with the heme a3 plane, midway between CuB 

and the heme a3 iron (Figure 2A). It is stabilized by sandwiching between heme a3 and 

CuB, as well as by H291, H240 and V243, via either van der Waals and/or electrostatic 

interactions (see Figure S1 in the Supporting Information). The CuB-H240 and heme a3 

iron-H376 moieties, as well as the conformation of Helix-X, remain unperturbed, indicating 

that the proten matrix does not relax to the ligand-free R state until later during the reaction.

The current structure is distinct from that of the photoproduct reported by Shimada et 

al. (PDB ID: 5X1B),24 derived from a different pump–probe experiment, where CO is 

photolyzed from the heme a3 iron and coordinated to CuB (Figure 2B). With respect to 

the CO complex, the CuB atom moved toward the heme a3 by 0.5 Å, while the heme a3 

iron atom moved away from the heme plane by 0.2 Å, resulting in the contraction of the 

CuB-heme a3 iron distance from 5.3 to 5.0 Å, but Helix-X remained in the CO-complex 

(open) state. The structural features of the two photoproducts, combined with the reaction 

scheme illustrated in Figure 1A, suggest that the intermediate reported in this work is the 

long-suspected primary geminate photoproduct, while the Shimada structure is the CuB-CO 
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intermediate. It is important to note that the two photoproducts are distinct from that 

generated during X-ray diffraction data collection induced by constant synchrotron light 

illumination (PDB ID: 5WAU)19 (see Figure S2 in the Supporting Information), as the latter 

represents a unique photostationary state, instead of a true reaction intermediate.

The availability of the structures of the two reaction intermediates of bCcO, combined 

with the equilibrium structures of the CO-complex and ligand-free R state, allows us to 

define the ligand dissociation trajectory and the associated protein dynamics, as depicted 

in Figure 3. The heme a3 iron-CO bond scission first leads to the rotation of the CO to a 

new orientation parallel with the heme a3 plane (step 1, indicated by the green arrow in 

Figure 3A), while the CuB-H240 and heme a3 iron-H376 moieties and Helix-X remain in 

the CO-complex (open) state. Subsequently, CO further rotates toward CuB to establish a 

coordination bond with it (step 2, blue arrows). It triggers the relaxation of the BNC to a 

ligand-free R-like conformation, resulting in a 0.3 Å contraction of the CuB-Fe distance, 

while the conformation of Helix-X remains unperturbed. Finally, CO dissociates from 

CuB and escapes out of the BNC (step 3, red arrows), which is accompanied by a 0.2 Å 

re-expansion of the CuB-Fe distance and a structural transition of Helix-X to the equilibrium 

R (closed) conformation, thereby completing the reaction.

It is important to note that in free solution reactions CO was able to migrate to the CuB 

site within 1 ps following the photolysis from heme a3.25,26 The current data indicate that 

the reaction taking place in the microcrystals is at least 4 orders of magnitude slower. It is 

in agreement with our previous data showing that the oxygen reaction catalyzed by bCcO 

is ~10,000-fold slower in crystalline states as compared to that in solution phases.27 They 

indicate that the crystal lattice constrains certain protein motions required for the protein 

to cross the activation energy barriers and call for computational studies to delineate the 

structural factors underlying the activation processes.

The overall protein structural transition induced by CO dissociation in bCcO is comparable 

to that in myoglobin (Mb), a model system considered as the hydrogen atom of biology.28 

Mb is a small water-soluble protein that contains a heme b group embedded in the protein 

matrix. The heme iron is coordinated by a histidine residue (H93) from Helix-F on the 

proximal side (equivalent to H376 in Helix-X in bCcO), and a diatomic ligand, such as 

O2 or CO, on the distal side, which is stabilized by another histidine residue (H64) from 

Helix-E (in place of the CuB moiety in bCcO). Photodissociation of CO from the Mb-CO 

complex leads to a geminate photoproduct, where CO rotates and translates to a nearby 

docking site, such that it lies parallel with the heme plane as in bCcO, within the distal heme 

pocket.29 It is accompanied by the displacement of the heme iron out of the heme plane, as 

well as the concurrent movement of (i) the proximal H93 and the associated Helix-F away 

from the heme, and (ii) the distal H64 and the associated Helix-E toward the heme.30–32 

These structural changes near the active site then propagate to the rest of the protein matrix 

through a global protein relaxation in a quake-like motion to establish the final equilibrium 

ligand-free structure.30–32

Despite the similarities, the protein dynamics associated with CO dissociation in bCcO is 

much less cooperative compared to that in Mb. The dissociation of CO from the heme iron 
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in bCcO, like that in Mb, first leads to the formation of a geminate photoproduct, with 

CO bound to a docking site within the distal heme pocket, but it does not introduce any 

immediate structural changes to the heme or the protein matrix surrounding it. The presence 

of CuB in the BNC in bCcO reroutes the CO migration pathway, rendering an additional 

CuB-CO intermediate. It is not until the CO dissociates from CuB that the proximal Helix-X 

relaxes to the final equilibrium in the R state.

The unique CO dissociation-induced protein dynamics in bCcO is accompanied by transient 

contraction of the BNC (see Figure 3B), which plausibly plays an important role in guiding 

the unidirectional movement of the ligand out of the BNC, thereby accounting for the lack 

of geminate recombination in the reaction, in contrast to the ~40% geminate recombination 

in the Mb reaction.30 This characteristic protein plasticity in bCcO is conceivably critical for 

coupling the oxygen chemistry occurring in the BNC to proton translocation.

In summary, the data presented here provide the first direct evidence of the geminate 

photoproduct of bCcO. The definition of its structure, combined with a previously reported 

CuB-CO structure (PDB ID: 5X1B),24 enables us to define the ligand dissociation trajectory, 

as well as the associated protein dynamics, more clearly for the first time. It offers 

exciting experimental blueprints for the computational interrogation of the energy landscape 

associated with the ligand migration reaction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CcO cytochrome c oxidase

bCcO bovine cytochrome c oxidase

Mb myoglobin

BNC binuclear center

CO carbon monoxide

SFX serial femtosecond crystallography
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GDVN gas dynamic virtual nozzle

LCLS Linac Coherent Light Source
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Figure 1. 
Proposed CO dissociation mechanism of bCcO (A) and the associated structural transition 

(B). The conformational changes induced by dissociation of CO from the CO complex (PDB 

ID: 5W97, gray) to generate the ligand-free R species (PDB ID: 7THU, green) are indicated 

by the arrows. The lower right inset shows the expanded view of the [380–383] fragment; 

the arrows indicate the rotation of the backbone carbonyl groups. The side chains, except 

that of S382, are not shown for clarity.
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Figure 2. 
Structure of the geminate photoproduct of bCcO determined in this work (PDB ID: 8GBT, 

green) (A) with respect to the reported CuB-CO intermediate structure (PDB ID: 5X1B, 

cyan) (B). The structure of the CO complex (PDB ID: 5W97, gray) was shown as a 

reference in each panel to illustrate the CO dissociation induced structural changes, as 

indicated by the arrows. Inset (i) and (ii) show the FO-FC difference map and the 2FO-FC 

map (with CO modeled in) of the BNC contoured at 6 and 2 σ, respectively.
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Figure 3. 
CO dissociation reaction trajectory in bCcO. (A) Schematic illustration of the 3-step reaction 

and (B) changes in the critical interatomic distances during the reaction.
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