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Physical systems driven out of thermal equilibrium may exhibit complex behavior 

before eventually relaxing to thermal equilibrium. The prototypical non-equilibrium state 

in quantum materials is the photoexcited electron, where an electron is imparted excess 

energy and may exhibit a variety of interesting phenomena before eventually 

recombining with a hole. In nanoscale systems, quantum confinement makes the behavior 

of non-equilibrium electrons more complex and experimentally accessible. To measure 

non-equilibrium dynamics, we develop a technique for data-intensively imaging 

photoresponse that efficiently samples phenomenological parameter space. The result is a 

large set of images which we condense down to dynamical parameters that can be 

visualized and physically interpreted. Using this data intensive methodology, we explore 

the non-equilibrium physics of photoexcited electrons on multiple scales. Firstly, on the 

microscopic scale we study the interactions of excitons and electron-phonon coupling in 

TMD heterostructures. Then, zooming out to the mesoscopic scale, we observe an 

electron-hole liquid phase in MoTe2 and hot carrier regime in graphene heterostructures. 
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Finally, at the statistical scale we explore how a simple model for quieting a noisy 

antenna can decrease noise in the non-equilibrium states that power photosynthesis. In 

sum, we demonstrate that data intensive imaging is a powerful and versatile tool for 

exploring non-equilibrium dynamics of quantum materials and biophysical systems. 
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CHAPTER 1: 

MOTIVATION AND BACKGROUND 

1.1 Non-Equilibrium Physics and the Meaning of Life 

If pressed to give a one sentence definition for all of physics, I would say that 

physics is the study of the motion of matter and energy through spacetime. While this 

definition is vague, and unhelpful in determining what a physicist actually does, it has the 

advantage of being correct for almost any physics problem ones applies it to. 

Fundamentally, a physicist working in any given context will consider some situation 

where there is matter, with some energy, and determine how it evolves through some 

space over some time, or more generally, in some spacetime. This approach solves 

problems in wildly different contexts, from the first energetic moments of the universe, to 

avalanches in the mountains, to the molecular mechanisms that allow life to exist and 

human beings to contemplate the world around them. 

Condensed matter physics is not different from any other sub-discipline of 

physics, it considers how matter in many body systems evolves through a system of 

molecules arranged in some form. But more than other sub-disciplines of physics 

condensed matter is limited by the pesky concept of thermal equilibrium. While thermal 

equilibrium is a fundamental phenomenon with deep and interesting physical 

implications, it is in another sense destructive. A system that is thermally equilibrated has 

no history; it does not matter how the system reached thermal equilibrium, it has the same 

properties any path it takes. Much work in solid state physics goes into determining the 

equilibrium properties of a material, and to the layperson this might seem incongruous 
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with the definition of physics given above. After all, if thermal equilibrium depends on 

the state, not the history, of a system why is it worth studying the motion of matter and 

energy through a crystal to determine that history? Why bother determining the 

microscopic dynamics when all that matters to thermal equilibrium is the ensemble 

average? If every system inevitably ends up at thermal equilibrium, isn’t the 

determination of equilibrium properties all that matters in the end? 

But this is a pessimistic illusion, there are many things in this universe driven by 

non-equilibrium physics. Consider that in order to read this dissertation neurons in the 

reader’s brain need to fire many billions of times, and each neuronal action potential 

exists in defiance of thermal equilibrium. Thermalization would mean death to any living 

thing. Life is, in some sense, a constant struggle against returning to thermal equilibrium, 

and while no individual organism ever wins their battle against thermal equilibrium our 

continued existence means that the war goes on1. Humans take this thermal rebellion 

even more seriously than other life, not only do we exist in spite of thermal equilibrium 

we make technology that either carefully manipulates or outright defies thermal 

equilibrium and use that technology to make our non-equilibrium lives longer and better. 

The field of Condensed Matter physics is perhaps the front line in this struggle, as we 

seek to not just leverage thermal equilibrium but also generate and explore novel non-

equilibrium states. 

The study of non-equilibrium states, especially experimentally, is difficult. 

Thermal equilibrium always wins in the end, and in doing so it erases any information 

about non-equilibrium states. But recent discoveries may help unveil these states, the 
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isolation of nanoscale materials has created systems that, unprotected by the usual three-

dimensional symmetries, can be strongly driven far out of equilibrium, such that rich 

dynamics can occur and be observed before they inevitably relax. Furthermore, our 

understanding of biological systems has advanced to the point that we can begin to 

understand how energy flows through these systems and is used to power the non-

equilibrium state that is life. These systems are related at a deep level, they both are 

driven by the question of what physics occurs in an excited system prior to relaxation. 

That is, if energy is injected into a system what does it do, or what can it be made to do, 

before it ends up dissipating into thermal equilibrium? 

This dissertation is about answering this question and understanding what 

happens in non-equilibrium states. While it is not possible to understand what happens in 

every non-equilibrium state, it is possible to answer that question in a number of model 

systems in which we can explore more general concepts. Furthermore, phenomena occur 

in these model systems on several scales, the microscopic, the mesoscopic and the 

statistical scales, each of which will be explored. Equally important to the question of 

what happens in non-equilibrium systems is the question of how we know what happens. 

Physics is an empirical science, it does not matter what we think happens, it matters what 

we can empirically show happens with controlled experiments. Thus, this dissertation 

will also focus on the metrology of these systems and how to perform experiments in 

these model systems. This is especially important since the field of nanoscience in 

general, and non-equilibrium nanoscience in particular, is in its early stages and therefore 

it is important to get the metrology right to enable future discovery. With this goal we 
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embark on an attempt to image non-equilibrium dynamics in quantum materials at the 

microscopic, mesoscopic, and statistical scales. 

 

1.2 Introduction to 2D Quantum Systems 

 In 2004 the first monolayer system was isolated2. Graphene, a single sheet of 

carbon atoms in a hexagonal lattice, as shown in Fig. 1.1, was fabricated by the simple 

application of scotch-tape to graphite and remains one of the most important and 

influential two-dimensional (2D) materials in the world. The key aspect that makes 

graphene so interesting is its atomic thinness, the electrons in a single sheet of graphene 

are confined to a single layer, well below their normal de Broglie wavelength. This 

quantum confinement makes them effectively two-dimensional, fundamentally changing 

the physics that can occur in them. In the intervening years, a vast number of new 

discoveries have been made and physics that was previously only accessible in carefully 

engineered quantum wells became widely accessible3-5. 

 Since the discovery of graphene, scientists across physics, chemistry and 

engineering have developed rapidly evolving techniques to engineer novel quantum 

devices from atomically thin materials such as insulating hexagonal boron nitride (hBN, 

which has similar atomic structure to graphene) and semiconducting transition metal 

dichalcogenides (TMDs, show in Fig. 1.1b)6,7. These materials can be stacked vertically 

into van der Waals heterostructures that combine the electronic properties of the 

constituent materials in unusual ways8,9. Much recent research has focused on combining 

and engineering 2D materials to create designer properties that result from length scale 
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engineering i.e. tuning the electronic properties by structuring the critical device length 

scales at or below the electron wavelength10-14. In loose analogy to optical metamaterials, 

engineering sub-wavelength structure in these quantum metamaterials may give 

unprecedented access to quantum material properties, allowing us to engineer custom unit 

cells, topological bands, and altered excited states. Intriguingly, length scale engineering 

of these materials may also allow us to tune interactions between charge carriers in the 

materials, creating novel correlated electronic phases15-20. Notably, many of these novel 

2D properties allow for increased meta-stability and accessibility of excited states which 

gives rise to interesting non-equilibrium physics. 

 

 
Figure 1.1: Monolayer lattices of graphene, a, and transition metal dichalcogenides 

(TMDs), b. 
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1.3 Excitation and Metastability in Quantum Systems 

When energy is injected into a material system it spreads out into various 

microscopic modes until it thermalizes. For example, if one bangs a piece of metal with a 

hammer, the kinetic energy imparted initially travels through the metal as a shock wave 

but the strong bonds between the atoms disperse this pulse of energy until, after a few 

reflections, all that energy is spread out completely incoherently among the vibrational 

modes of the crystal lattice, that is until the energy becomes heat. Thus, an organized 

shock of kinetic energy becomes disorganized thermal energy, generating entropy.  

In classical systems like this, it is difficult to define what a non-equilibrium state 

is since the transition from initial organized state to the final thermalized state is 

continuous. Furthermore, at any given time the energy is usually a perturbation from the 

equilibrium properties of the material, i.e. the only difference between the deformation of 

the lattice due to the shock wave and the deformation due to random thermal motion is 

the evanescent coherence. Quantum mechanics breaks this mold. Instead of a continuous 

transition to thermal equilibrium, quantum systems have discrete states and sudden 

transitions. Perturbations to equilibrium quantum states may form quasiparticles that can 

move, interact and have physics of their own. This adds a key concept that enables non-

equilibrium physics: metastability. An excited quantum state, once created, may exist for 

a significant amount of time before relaxing to the ground state. 

The process we will use to create non-equilibrium states in this thesis is 

photoexcitation, specifically because it generates a metastable state with a long lifetime. 

When a photon is absorbed in a material it excites an electron into a higher energy 
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quantum state, from a valance band into a conduction band. This discrete transition 

creates two particles, the negatively charged electron and a positively charged hole, 

which a quasiparticle composed of the excess charge left over after an electron is 

promoted out of an atomic orbital. Eventually the electron must return to its ground state, 

that is it must recombine with a hole, with the excess energy becoming either heat or a 

photon (which will, inevitably, become heat later). But quite a bit can happen before 

recombination. If the band structure of a system has a gap or a constriction then the 

lifetime of the electron and hole may be quite long, and the electron and hole can move 

and interact in interesting ways.  

Thus, the basic process that we will be exploring is as follows: when a quantum 

material is photoexcited, creating a population of electrons and holes, what do those 

electrons and holes do before they relax. Alternatively, it is usually convenient to think 

about this problem in terms of energy; when an electron is photoexcited it gains excess 

energy, which must be shed to reach its ground state. What happens to that excess energy 

and, importantly for applications, what can be done with it? 

 

1.4 Electrons, Holes and Excitons in 2D Systems 

 When a quantum material is photoexcited, a negatively charged electron and a 

positively charged hole are created. Given the charges, and the laws of electromagnetism, 

the electron and holes experience an attractive Coulomb force. But the quantum nature of 

the system provides metastability, if there is a gap between the electron in the conduction 

band and the hole in the valence band then they cannot immediately annihilate, rather 
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they exist, strongly interacting for some lifetime before a discrete transition brings 

relaxation. Similar to how an electron and a proton interact attractively, but cannot 

annihilate due to the symmetries of quantum mechanics, and instead form a stable 

hydrogen atom, an electron and hole, if prohibited from recombining by a gap (provided 

by some symmetry of the crystal lattice) may form a bound state called an exciton, shown 

schematically in Fig. 1.2a. 

 Excitons have long been studied in condensed matter systems21 but until the 

advent of 2D materials they have largely been studied in careful engineered materials at 

very low temperatures, due to the fact that the binding energies of the exciton in a 

conventional material is very small compared to the 26 meV thermal energy scale room 

temperature. However, in 2D material systems the binding energies are significantly 

higher due to the reduced dimensionality22. Higher binding energy means it is easier to 

generate excitons and a wider variety of excitonic behavior can occur. Accordingly, 

excitons of various types have been a major topic of research in recent years23-25. 

 There are many questions that can be asked about excitons, but the focus of this 

thesis is on their out-of-equilibrium dynamics, that is once an exciton is generated what 

happens to it? There are three general options: an exciton can spontaneously recombine 

releasing a photon, and exciton can be dissociated by an electric field resulting in a free 

electron and a free hole, or an exciton can interact with another particle or quasi-particle. 

The first option, spontaneous recombination, is relatively straightforward and we will not 

focus on it aside from noting that it is not always possible; indirect excitons have 

momentum constraints and require the exciton to interact with something in order to 
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recombine. The second option, exciton dissociation, is the process which we use to 

generate a photocurrent signal in experiments. At finite electric field, excitons are 

polarized and have some probability of dissociating. The resulting electrons and holes are 

accelerated by the electric field, as shown in Fig 1.2b, they transit the device and are 

collected at the electrical contacts26-28. This is a linear process that is also straightforward. 

Therefore, the bulk of the work on excitons presented in this dissertation will focus on the 

third option, the interaction of excitons (Fig 1.2c).  

 

 

Figure 1.2: a, an exciton composed on an electron and a hole due to Coulomb attraction. 

Electric field represented with equipotential lines. b, the dissociation of an exciton in 

finite electric field, the resulting free carriers are accelerated by the field. c, interacting 

excitons. 

 

 Excitons may interact in a variety of ways, but we will focus on two prototypical 

interactions. Firstly, we will focus on interactions that result in recombination, that is 

when an exciton scatters off another body causing it to annihilate and, in the process, 

imparting energy or momentum to the other body. This broad class of processes is known 

as Auger recombination29-31. The second prototypical interaction is the exciton-phonon 

interaction, where an exciton undergoes a three-body process with a phonon, usually 
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either in absorption or recombination. Ultrathin TMD materials are 2D systems that are 

frequently favorable to the formation of excitons in significant quantities, while also 

being relatively easy to fabricate and highly controllable. Therefore, we will use TMD 

heterostructures as model systems to study the interactions of excitons. The experimental 

results and findings on exciton interactions will be presented in Chapter 4. 

 

1.5 Out of Equilibrium Mesoscale Physics in Quantum Confined Systems 

 It is a common adage in physics that a physicist counts as 1, 2, 3, N, with the 

implication that N is astronomically large. This is because while the one body and two 

body problems can usually be solved exactly, and the three-body problem can often be 

solved with approximations, above that the math begins to get prohibitively complicated 

for an exact solution. But at large N it is possible to forget about the individual bodies 

and focus on average behavior, simplifying the math once again. Solving the many body 

problem for intermediate values is mathematically difficult, usually requiring numerical 

methods if it’s possible at all. The discussion up to this point has focused on individual 

charge carriers and their interactions as two or three-body interactions. Furthermore, we 

generally assume that the carriers act as a non-ideal gas, that is that they interact with 

each other only rarely, making higher-order interactions much less likely compared to the 

rate of two or three body interactions.  This assumption is convenient, given the 

difficulties presented by higher order interactions, but like all simplifying assumptions we 

must examine and eventually relax it. 
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 There exist regimes in which we may no longer assume that charge carriers rarely 

interact. In such strongly interacting regimes not only are many body interactions much 

more common, but the behavior of a charge carrier may be driven by a series of 

interactions instead of a single discrete interaction. Keeping track of what happens to 

individual charge carriers becomes impossible, if but charge carriers interact many times, 

then what happens at the microscopic scale is not very relevant. Rather the dynamics are 

driven by energy distributing itself among the many charge carriers. The result is a phase 

that is no longer a non-ideal gas but is correlated. A simple analogy being a liquid, where 

molecules interact constantly, versus a gas, where molecules interact rarely. Since energy 

can be efficiently transmitted between charge carriers in correlated phases, and individual 

microscopic interactions are meaningless, our focus then turns to a larger scale; the 

intermediate scale between the microscopic and macroscopic, known as the mesoscopic 

scale. This is distinct from the statistical scale (which we will discuss in the next section 

and chapter 6) as we are not averaging over time or assuming an infinite ensemble, rather 

for correlated phases we simply zoom out from the microscopic scale.  

 At the mesoscale quantum confinement makes the non-equilibrium dynamics 

more accessible than they would be otherwise. Firstly, the confinement can function to 

squeeze a larger number of carriers into a smaller volume. Consider a sheet of graphene 

absorbing light, which creates a number of electrons and holes which then move within 

the system. In a 3D material the carriers could expand in three dimensions, decreasing the 

probability that any individual carrier would interact with another carrier on any given 

timescale. In 2D the volume that the carriers can expand into is significantly decreased, 
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increasing the probability of interaction. Thus, at a constant number of charge carriers the 

probability of interactions goes up in 2D systems. Quantum confinement in 2D systems 

can also lead to more long lived and more stable non-equilibrium states, allowing excited 

charge carriers to last longer and therefore interact more. 

 In this dissertation we will consider two types of mesoscale correlated states, the 

electron hole liquid in MoTe2 and hot carrier regime in graphene. The electron-hole 

liquid is a semiconductor phase where electrons, holes and excitons may condense into a 

metallic Fermi liquid, usually through the formation of distinct droplets in a gas of 

excitons32,33. This process is in direct analogy to the condensation of a gas; as the density 

of a gas increases, a phase transition occurs, and droplets begin to condense and act as a 

liquid. The electron-hole liquid was observed in many conventional semiconductors, such 

as Si and Ge, but is found at low temperature because the binding energy of the excitons 

and the liquid phase are small compared to the thermal energy scale. As discussed above 

the dimensional confinement of 2D systems means the binding energies are larger, 

opening the intriguing possibility of room temperature correlated phases. 

In graphene, though electrons and holes are not bound into metastable excitons 

they are constrained by the 2D band structure. The density of states is constricted at the 

charge neutrality point of graphene, creating a bottleneck for recombination. An electron 

that is excited by a photon from the valance band to the conduction band will interact 

with other carriers and thus begin to “fall” through the band to recombine with holes. But 

since there is a constriction, carriers may exist at higher energies for a longer timescale. 

In addition, excited carriers in graphene interact with each other on a faster timescale 
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than they interact with the lattice, that is they can exchange energy and thermalize with 

other carriers much faster than with the lattice34-38. The result of this is a “hot carriers, 

cold lattice” regime where charge carriers in graphene form a hot quasi-thermal 

equilibrium state on timescales of hundreds of femtoseconds, which then cools through 

interactions with the lattice on timescales of picoseconds. This hot carrier state is strongly 

interacting and would be understood in the mesoscale regime. 

 

1.6 Energy Transfer in Biological Systems 

 The microscopic states and macroscopic phases of non-equilibrium states exist for 

a short time before relaxing back to equilibrium. Macroscopic properties are usually 

determined by averaging over the short timescales on which these dynamics occur. This 

would represent a return to thermal equilibrium, so at first glance considering physics on 

this time averaged scale would seem to be antithetical to the study of non-equilibrium 

physics. However, what occurs on short non-equilibrium timescales affects what the 

time-averaged result will be, otherwise we would not be able to observe them. Therefore, 

we must consider non-equilibrium physics on the statistical scale, that is how non-

equilibrium physics affects the eventual statistical time-averaged properties of the 

system. In the 2D material systems we discuss, this is fairly straightforward; the 

interactions of excited states either increases or decreases the number of charge carriers 

measured at a particular location on the mesoscopic sample. However, other systems can 

have more subtle statistical effects, particularly biological systems. 
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 Nanoscale systems are not entirely artificial, biology has been generating them 

since life began on Earth. As discussed above, living organisms are non-equilibrium 

systems, and the basis of their non-equilibrium existence is large variety of nanoscale 

biomolecules, such as proteins and enzymes, that perform chemistry and manipulate 

energy. Though most of the mechanisms have complicated electro-chemical processes 

that would require detailed molecular models, we can gain insight from looking at the 

quantum processes involved and examining how the non-equilibrium physics of these 

systems effects the ability of these organisms to live. 

 We will focus on the prototypical optoelectronic biological process, 

photosynthesis. Photosynthesis occurs in molecular light harvesting complexes, and 

similar to 2D materials, when a photon is absorbed it creates an electron and hole pair 

with excess energy. The process of photosynthesis attempts to convert the energy of the 

non-equilibrium electron into useable chemical energy. To do this, photoexcitation 

energy is rapidly transferred through a molecular network before reaching the reaction 

center, where charge transfer converts excitation energy into an electrochemical potential 

gradient across the photosynthetic membrane39. This occurs within intricate networks 

despite both large variation in the external light source and internal fluctuations. A 

photosynthetic organism must regulate this noisy process, spending the least amount of 

time over or under the desired input power. In chapter 6 we will explore how the 

structure of the absorbers allows organisms to quiet a noisy photosynthetic antenna, 

demonstrating that the particular quantum structure of a non-equilibrium mechanism can 

influence the behavior of physical systems in profound ways. 
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CHAPTER 2: 

METHODOLOGY AND METROLOGY 

2.1 The Metrology of Non-Equilibrium Complexity 

The non-equilibrium states that we wish to explore exhibit complex behavior that 

poses significant measurement challenges. We access non-equilibrium physics through 

the response of a heterostructure to optical excitation, or photoresponse, which is not 

straightforward to measure or interpret. Fundamentally, thermal equilibrium reverts 

quantities to an accessible average value, therefore non-equilibrium states may involve 

more fluctuations and noise than equilibrium states. Furthermore, the two-dimensional 

nature of 2D systems removes symmetries that may protect, but also limit, quantum 

states, and the atomically thin spatial profile reduces screening and makes 2D materials 

more sensitive to external fields. In sum, this means that 2D systems tend to depend on 

more experimental variables and have more relationships between those variables. The 

result is complexity in the measurement of photoresponse. 

As nanotechnologists and materials scientists, how do we systematically assess 

complex electronic behavior that may arise in new material systems, particularly those 

with unusual synthetic properties? In solid-state physics, the answer has traditionally 

been to set up a single-parameter experiment that aims to cut through the complexity and 

capture quantum phenomena in as concise a measurement as possible. Typical 

experiments consist of well-established transport or spectroscopic measurements 

sampling over a single independent variable. Often, these measurements use 

commercially available instruments. Implicit in this approach is the assumption that all 
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other experimental parameters have negligible effect on the variable of interest. In 2D 

materials, many properties are the result of atomic thinness, which also makes them 

sensitive to external conditions, defying the assumption that other independent variables 

do not contribute to the electronic behavior. Truly comprehensive characterization using 

standard measurement approaches would require prohibitively long times, due in part to 

the measurement rate and the numerous trials required to address variations across many 

material parameters. As the complexity of 2D systems increases, new data intensive 

approaches - taking inspiration from astrophysics, high-energy physics, and biomedical 

imaging - must be developed. 

In this chapter, we lay out an elementary assessment of the most restrictive 

experimental parameter - experimental time - and discuss how multi-variable searches 

can be optimized to improve the search for correlations across experimental variables. 

Fundamentally, experimental time 𝑇 is the dominant limiting factor in measuring 

complex device behavior. Simply stated, the total time of a measurement combines the 

hardware-limited time per point 𝑡ℎ with the sample response time 𝑡𝑠, multiplied by the 

total number of data points to be measured. 

To illustrate how the total time can be evaluated for a simple experimental 

system, Fig. 2.1a shows a generic phenomenological response that depends on two 

experimental parameter dimensions, measured with single variable measurements. The 

experiment sweeps the X variable at constant Y, taking a series of line cuts through the 

experimental phase space. The time of such an experiment is 𝑇 = (𝑡ℎ + 𝑡𝑠)
Δ𝑋

𝑟𝑥

ΔY

𝑟𝑦
, where 

Δ𝑋 and Δ𝑌 are the ranges of X and Y defining the parameter space, and 𝑟𝑥 and 𝑟𝑦 are the 
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resolutions of the X and Y variables. Generalizing to an N-dimensional parameter space 

spanned by N independent variables, (𝒆1, … , 𝒆𝑁): 

𝑇 = (𝑡ℎ + 𝑡𝑠) ∏
Δ𝒆𝑖

𝑟𝑖

𝑁

𝑖=1

 (1.1) 

Here, equation 1.1 can be understood intuitively as the time spent per voxel multiplied by 

the volume of the parameter space, ∏ Δ𝒆𝑖𝑖 , divided by the voxel volume,∏ 𝑟𝑖𝑖 . For a fixed 

parameter space volume, as the voxel volume decreases (i.e. the resolution increases), the 

total experimental time will increase. 

 

 

Figure 2.1: Measurement phase space. a, represents the phase space of a hypothetical 

phenomenon that depends on two independent variables, with the observable value 

represented by a color scale. Single variable measurements are represented as dashed 

white lines with Y held constant. b, represents the phase space of a hypothetical 

phenomenon that depends on three independent variables, each point in three-

dimensional space has an observable value represented by color. The green cube in the 

upper left represents a single voxel. 
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Increasing the dimension, N, of a parameter space enforces greater limitations on 

total experimental time. To see this, Fig. 2.1b illustrates the same phenomena as Fig. 2.1a 

but in a 3D parameter space (N = 3), representing observables as colored points, and 

showing a voxel as a small green cube. Measurements of complex systems - those where 

non-trivial correlations exist between N > 1 independent variables - require significant 

values of Δ𝒆 and 𝑟 to obtain sufficient data for meaningful statistical analysis. In Fig. 

2.1b, we see that due to the dimensionality of the phase space, the number of voxels is 

exponentially larger than for a two-dimensional experiment. Comprehensive 

measurements in a N-dimensional parameter space thus require exponentially more time. 

High dimensional experimental phase spaces require making careful choices to 

minimize T while acquiring sufficient data for robust statistical analysis. Assume that, in 

general, T is large and constant, limited by experimenter (i.e., graduate student) time, 

sample lifetime or other resources. Optimizing high dimensional measurements involves 

optimizing the hardware, which decreases 𝑡ℎ, or optimizing the search of parameter space 

by making tradeoffs in Δ𝒆𝑖 and 𝑟𝑖. However, the intrinsic sample response time 𝑡𝑠 limits 

how fast a measurement can proceed, and if 𝑡𝑠 ≫ 𝑡ℎ, hardware optimization does little to 

increase measurement efficiency. Hardware optimization is application specific; it is 

discussed for the hardware used in this thesis in Sections 2.4 and 2.5.  

The greatest gains in efficiency come from tradeoffs in resolution. Ideally, the 

experimenter can reduce excessive resolution in one parameter to gain resolution in 

another parameter. Less ideally, the experimenter can choose to restrict the range of one 

or more parameter(s) Δ𝒆𝑖, or neglect certain parameters, resulting in a narrower but better 
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resolved measurement. The latter is a common strategy, but has greater likelihood of 

missing or misrepresenting phenomena occurring within a complex parameter space.  

In the large T limit, conventional single variable measurements are fundamentally 

inefficient. By their nature, single variable measurements explore one parameter, for 

example the X variable in Fig. 2.1a, with high resolution, and all other variables held 

constant, meaning 𝑟𝑥 ≪ 𝑟𝑦, 𝑟𝑧 , . . ., 𝑟𝑁. With hardware heavily optimized for only one 

variable it is difficult to effectively trade resolution in X for resolution in another variable 

and experimenters often deal with finite time by restricting Δ𝒆 or omitting parameters. 

Single variable measurements become increasingly ineffective in identifying cross 

correlations between multiple parameters as the complexity of a measurement increases 

(i.e., as N increases), as higher resolution is needed, or as the relevant ranges increase. 

Does a better understanding of multi-parameter measurement science translate 

into accelerated discovery? While this is impossible to precisely answer, we posit that 

experimentalists using only standard techniques risk falling prey to a version of the 

availability heuristic. By focusing on measurements that are easy to perform with off-the-

shelf or commercial equipment, complex phenomena that correlate across multiple 

parameters are missed or misinterpreted. Expectation bias is a danger when choosing 

parameters for new materials: an experimenter may unconsciously select the parameters 

that are most likely to conform to expectations or established models40-43. Choosing 

which variables to hold constant can easily introduce selection bias that leads to 

compelling, yet incomplete, phenomenological knowledge complicating realistic 

interpretation. Comprehensive methods are therefore significantly advantageous in the 
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search for new phenomena, particularly when a unique target system is probed using 

multiple non-standard experimental techniques. 

 

 

2.2 The Metrology of Optoelectronic Measurements on 2D Materials 

In optoelectronic materials, photo-excited electrons are promoted to high 

energies, leaving behind short-lived charge vacancies, or holes.  In this way, electrons 

promoted across a semiconductor band gap result in long-lived electron-hole pairs, while 

those excited in a semimetal may result in short-lived excitations. The timescale over 

which the electron-hole pairs recover to equilibrium is determined by energy and 

momentum relaxation processes in the material, which in turn depend on electronic band 

structure, electronic interaction strength, and electron-phonon coupling.  

In 2D semiconductors and semimetals, photoexcited electron-hole pairs may 

interact in unusual ways, giving rise to many body correlations that persist even at room 

temperature. In TMDs, charge carriers form hydrogen-like bound states with well-defined 

orbital and spin angular momentum23,24. Depending on the structure of the material, these 

strongly bound excitons may be influenced by non-trivial bands, such as topological or 

moirè bands, or have additional quantum numbers such as valley index or pseudospin10. 

In graphene, the electron-hole pairs form a rapidly evolving hot carrier distribution 

exhibiting unusual cooling pathways, with electron-electron and electron-phonon 

scattering processes competing to relax excess energy. Combining 2D semiconductors, 

2D insulators, or semimetals into van der Waals heterostructures introduces additional 

degrees of freedom, for instance allowing excitons to form with the electron and hole in 
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different materials11. All of these unique properties contribute to energy and momentum 

relaxation, giving rise to highly complex behavior over a large range of time scales, from 

femtosecond electron-electron scattering to nanosecond exciton recombination. 

These unusual electron-hole interactions in van der Waals metamaterials result in 

part from reduced dimensionality, which increases the energy scales of electronic states 

and interactions (e.g., increasing the binding energy of excitons)22. Due to electron 

confinement, 2D materials allow correlated or interacting phases to exist at higher 

temperatures than in conventional materials. Such effects are less accessible in 3D 

materials, which exhibit high symmetry due to translation invariance of the unit cell in all 

three spatial dimensions. Not only does high symmetry constrain the possible phenomena 

in many ways, it also allows the experimenter to make several assumptions about the 

behavior based on the unit cell. 2D materials inherently break several exploitable 

symmetries, expanding the space of possible phenomena and increasing the phase space 

for electronic states and interactions.  

In multiple respects the properties that make van der Waals heterostructure 

metamaterials interesting also make them difficult to measure and understand. 

Understanding electron-hole pair dynamics in 2D systems presents numerous 

experimental challenges since observable quantities - such as current, voltage, reflectivity 

or photoluminescence - are averaged in space and time. Purely electronic measurements 

only access low energy dynamics near the Fermi surface and average the electron 

dynamics over the spatial extent of the device. In the time domain, dynamics occur on 

timescales of femtoseconds to hundreds of picoseconds, and if an excitation persists 
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significantly longer than those timescales it will give only steady state equilibrium 

values. Gaining experimental information about the dynamics and testing theoretical 

models requires optical techniques with high spatial and/or temporal resolution25. 

Moreover, in van der Waals heterostructures, multiple unusual electronic effects may 

overlap. Though individual effects could be exploited for manipulating electronic 

behavior, experiments must consider and carefully control for all overlapping effects. 

Separating out individual properties requires multiple experimental variables, so that the 

property of interest can be uniquely accessed.  

 

2.3 The Multi-Parameter Dynamic Photoresponse Microscopy Technique 

We describe a technique, called Multi-Parameter Dynamic Photoresponse 

Microscopy (MPDPM), that efficiently measures the optoelectronic response of van der 

Waals heterostructures. Utilizing diffraction limited optics, ultrafast lasers and scanning 

mirror optics, MPDPM excites the sample with a high intensity optical probe that drives 

the sample away from equilibrium, thus accessing correlated states, resolving short 

timescales, and producing high signal-to-noise photoresponse. The optical components 

are automated and controlled by an integrated, fully automated Data Acquisition (DAQ) 

program that simultaneously controls all other experimental parameters (such as applied 

voltage, magnetic field, temperature etc.). Such centralized control allows for efficient 

tradeoffs between parameters when exploring a large sample phase space. This technique 

acquires data rapidly, densely and systematically with respect to many experimental 

variables, resulting in high dimensional data arrays. The end result of MPDPM is a large 
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set of photoresponse images spanning all relevant experimental variables that will ideally 

capture all the complexity of device's phase space. Although the data sets are more 

complex than in conventional measurements, these large and complex data sets can be 

efficiently handled through careful data analysis, described in Chapter 3. 

The sections below discuss MPDPM as it applies to photocurrent measurements 

of van der Waals heterostructures, the experiments discussed in this dissertation. 

However, the technique is fairly general and could apply to a large variety of 

applications, thus it is useful to discuss what defines an MPDPM measurement in 

general, separate from a different data intensive technique. The core aspects of the 

technique are reflected in the acronym, Multi-Parameter Dynamic Photoresponse 

Microscopy, is designed to work with microscopy (of some form) that measures the 

photoresponse dynamics (that is the response of a sample to some local photo-excitation) 

in a multi-parameter view, in other words spanning several possible experimental 

variables. The multi-parameter nature of the measurements will require a sophisticated 

data handling and analysis procedures and will usually involve processing the data to 

reduce the dimensionality of the data set, as discussed in Chapter 3. 

 

2.4 MPDPM Optics 

MPDPM uses a local ultrafast optical probe to perform space-time resolved 

photocurrent and reflectance measurements. Incident light focused to the diffraction limit 

can resolve micron sized in-plane features, and the high incident intensity under a 

diffraction limited beamspot increases the signal and can drive the system well out of 
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equilibrium. Using a scanning diffraction limited beamspot also allows light reflected 

back through the optics to be focused onto a single pixel detector, with much higher 

signal to noise than a CCD. The dynamics of charge carries often occur on timescales of 

order femtoseconds to picoseconds, so excitation by a continuous wave laser gives only 

equilibrium, steady state values, washing out the dynamics. Therefore, the optical probe 

must be localized in time as well as space. Ultrafast pulsed lasers can generate pulses on 

the order of the dynamics, giving access to phenomena that occur on those relevant 

timescales. In addition, the high peak pulse intensity increases the fluence of incident 

light, driving the system harder and increasing the signal. 

To generate an optical probe that is local in space and time, we combine the 

techniques of scanning beam photocurrent and reflectance microscopy with ultrafast 

optical two-pulse measurements44,45. A schematic of the optical system is shown in Fig. 

2.2. We use a Coherent MIRA 900 OPO ultrafast laser which generates 150 fs pulses 

with controllable wavelength from 1150 nm to 1550 nm at a 76 MHz repetition rate. The 

output of the laser is split into two paths by a 50/50 beamsplitter and a translation stage is 

used to controllably introduce a path length difference. The two beams are then 

recombined, and the path length difference splits a single laser pulse into two sub-pulses 

separated by a time delay, Δ𝑡. 

The recombined beam is fed into scanning beam optics which consist of rotating 

mirrors and a system of two lenses that focus the beam onto the back of an objective lens. 

The objective lens is set at the focal length of the second lens such that, as the scanning 

mirror rotates the beam remains focused onto the same position on the back of the 
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objective but arriving at different angles. The objective lens focuses the light down into a 

diffraction limited beamspot where the position of the beamspot depends on the incident 

angle. As the scanning mirror rotates, the beamspot moves over a large area of the sample 

without aberration, allowing for quick, high-resolution scanning. Many conventional 

optoelectronic measurements keep the optics fixed and translate the sample. While 

simple, this technique is too slow to sample phase space in a time efficient way. When 

focused, the laser beamspot spatial profile is an Airy disk, which can be approximated 

using a Gaussian point spread function. Fig. 2.3a shows the measured photoresponse of 

an absorber smaller than 1 𝜇m using a wavelength of 1200 nm. The data is fit well by a 

Gaussian function (black line) with full width at half maximum of 1.67 𝜇m, indicating 

that our system is at the diffraction limit. 

 

 
Figure 2.2: Schematic diagram of the principle components of the optics. 
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Figure 2.3: Characterization of the ultrafast optics. a, photoresponse to an absorber 

smaller than the diffraction limit. Black line is a fit to a Gaussian function with a full-

width-half-max of 1.67𝜇m taken at 𝜆 = 1200 nm. b, two pulse autocorrelation which is 

proportional to the pulse width at the sample. 

 

To fully enclose our focusing optics inside the vacuum chamber, we use a 

Gradient Index of Refraction (GRIN) lens as an objective. A GRIN lens is a single small 

cylinder of glass with the index of refraction varied radially. Lacking the many interfaces 

of a conventional objective, a GRIN lens does not disperse laser pulses as dramatically as 

a traditional objective. Fig. 2.3b shows the autocorrelation of the reflected intensity due 

to two overlapping laser pulses, near Δ𝑡 = 0. The autocorrelation width is approximately 

three times the pulse width. Our autocorrelation pattern is 570 fs wide, indicating that our 

pulses are 190 fs long at the sample, only 27% off the 150 fs laser specification. Low 

dispersion allows us to measure short timescales and gives high peak pulse intensity. 

However, a GRIN lens also has downsides compared to a traditional objective lens. 

When well aligned, the power throughput of the GRIN lens is very high, however the 
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process of aligning the optic over the sample under vacuum introduces systematic 

uncertainty into the laser power. Also, the field of view for a GRIN lens is typically 

smaller than a traditional objective lens, which is no problem for micron sized samples, 

but can limit applications in some large area samples. MPDPM can be performed using a 

traditional objective lens at the cost of increased pulse dispersion and therefore decreased 

time resolution and peak pulse intensity. 

 

 

Figure 2.4: Schematic cross section of the scanning optics and the optical cryostat. 

 

2.5 Apparatus and Cryostat 

To perform experiments, we used a customized optical cryostat to control the 

sample environment to the maximum extent practical. Fig. 2.4 schematically details our 

specific scanning optics and the customized Janis Research ST-3T-2 optical cryostat 
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(pictured in Fig. 2.4a) that we use in our experiments. The sample sits in vacuum on a 

sample stage, which can controllably vary the temperature from 4 K to 420 K. The 

sample stage is in the center of a 3 Tesla superconducting magnet. The sample is 

electronically probed using four probe needles which contact conductive pads on quartz 

chip carriers that are wire-bonded to fabricated titanium-gold contacts on the sample. 

There is also a specialized probe-arm that holds the GRIN lens (bonded to a ferrule) on a 

cantilever near the center of the sample stage, so that it can be focused and re-positioned 

by moving the probe arm. Fig. 2.4b shows the center of the cryostat, with an example 

sample on the sample stage, the GRIN lens is illuminated with green light. 

 

 

Figure 2.5: Photographs of the optical cryostat. a external view and scanning beam 

optics circa 2015. b detail of the sample stage, probe arms and GRIN lens (illuminated). 

 

The sample is electronically contacted through the probe needles that connect to 

gold pads on the sample. The electrical connections are routed through a switchbox, 

which grounds all connections to the sample when not in use. We then amplify the 
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electrical signal using a current pre-amplifier, and usually a lock-in amplifier, then 

measure the current resulting from the incident laser light, or photocurrent. We also 

measure the reflectance of the sample by measuring the intensity of the light that is 

reflected from the sample with a near-infrared photodiode. Signal is acquired by a 

National Instruments PCIe-6323 Data Acquisition card, run with the integrated data 

acquisition system discussed below. 

 

2.6 Integrated Data Acquisition System 

The goal of MPDPM is to time-efficiently sample as large of a parameter space as 

possible, using as many experimental parameters as are relevant and practical. To do this 

efficiently requires the ability to optimize the measurement time, as described in equation 

1.1. The optics described in section 2.4 are designed to allow fast scanning and other 

hardware components to be optimized to work as rapidly as possible, decreasing 𝑡ℎ to a 

lower bound given by maximum hardware speed and amplifier time constants. 

Furthermore, the high signal-to-noise ratios can minimize 𝑡𝑠 to its intrinsic limit. Well-

designed optics improve the time efficiency of the experiment “for free.” However, the 

largest increases in efficiency come from the ability to made tradeoffs in resolution. 

Optimal utilization of the optics and effective tradeoffs requires an integrated Data 

Acquisition (DAQ) system that automates all hardware components through one 

program. Such an integrated DAQ can control all hardware components at their optimum, 

in parallel, with minimal human input. The software allows the experimenter to choose 

the ranges and resolutions of various parameters in a scan in an intelligent manner, 
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making appropriate tradeoffs. Finally, such a DAQ system allows data to be gathered 

densely, systematically, and repeatably, in a format that allows advanced data analysis. 

 

 

Figure 2.6: Data Flow between the various experimental hardware and software 

components showing the main functions of the hardware controllers, DAQ software, and 

Data Analysis Toolbox. 

 

We developed an integrated DAQ program using a set of python modules that 

interface with equipment drivers and control all hardware components simultaneously 

with the maximum amount of automation possible. Our experimental setup can scan a 

beam in two dimensions, while applying voltages to the sample under various optical 

conditions. In addition, the optical cryostat that contains our samples can control the 

temperature of the sample and apply a magnetic field. Each of these components requires 

specialized hardware, which were designed and selected to allow for full automation. The 
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flow of data is shown schematically in Fig. 2.6. The main hardware components of the 

optics and controllers, shown in the upper left, are controlled with feedback to the DAQ 

software, which is represented in the lower left. From the user interface, any of the 

hardware components can be changed or scanned, varying some output over a given 

range. If one or two of the components is set to scan, the rest will be held constant.  

From the user interface the experimenter can define which parameters form the 

axes of a two-dimensional scan and define the scan's resolution in those parameters. The 

result is an array of data, or “data plane.” The experimenter can select a third parameter 

to scan over and the software will take successive 2D scans as a function of that 

parameter, constructing a 3D “data cube” out of many data planes stacked along the third 

axis. These data planes or data cubes form a “run”, the discrete unit of MPDPM image 

data. In addition to the data, each run saves all possible control parameters, on the order 

of a hundred individual parameters, of the hardware and software to ensure consistency 

and repeatability. Each run is assigned a unique run number and the files for that run are 

saved to disk in a data archive. To efficiently take many runs, the software allows the 

user to repeat a run varying another parameter, taking data cubes as a function of this 

fourth parameter. Put together, the runs form a four dimensional “data hypercube,” 

sampling a large volume of parameter space. This allows the experimenter to, with full 

control over the ranges and resolutions of all parameters, efficiently and fully 

automatically sample a four-dimensional parameter space. These fully automatic 

measurements can run for hours or days, collecting data with no human input needed. 
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2.7 hyperDAQ Software Design 

 The integrated DAQ system described in Section 2.6 is the key piece of software 

that enables MPDPM measurements to be performed. While analysis software (discussed 

in Chapter 3) is also important, it is more flexible and forgiving; analysis can be 

performed different ways and poorly designed data analysis will hamper the project but 

can be overcome. This is not true of the DAQ software, if it is not carefully designed 

MPDPM will not work or will take a prohibitively long time. In MPDPM, the limits of 

the DAQ software are fundamentally the limits of the experiment, therefore it is worth 

getting right. This section discusses the design of the DAQ software in detail. It is not 

presented as it was developed; the DAQ software was developed and improved in many 

iterations, and two major re-designs, over the course of five years, beginning in 2015 and 

continuing through 2020. Each time a significant improvement was made to the DAQ 

software, it opened up new experimental avenues and uses of MPDPM. The latest version 

of the DAQ software, hyperDAQ version 2.0, is discussed here it it’s complete form 

following an upgrade in January 2020 which took special care to incorporate the lessons 

learned from previous experience, to make the design robust and extensible and to make 

it accessible for use in a wide range of experiments. 

 When designing integrated DAQ software there are several key considerations to 

ensure the software can meet the demands of MPDPM. Firstly, it must be able to 

accommodate a large volume of data. What qualifies as a high volume of data depends 

heavily on a given experiment, but in terms of MPDPM theory this means that the 

acquisition and processing time of the DAQ software should never significantly increase 
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the total time 𝑇, described in equation 2.1. Secondly, the software should be versatile in 

the manner in which it takes data; in that it can make the necessary tradeoffs to optimize 

the total experimental time 𝑇. Third, the DAQ system needs to be as automated as 

possible, which will require controlling a variety of disparate equipment. Fourth, the data 

generated needs to be fully traceable; given the variety of the equipment that may be 

automatically controlled in MPDPM it is important that all metadata is saved with the 

data. Finally, the design needs to be extensible, because MPDPM can be used in so many 

ways, and the software requires careful design, it is necessary to have the DAQ be 

adaptable to many different types of experiment and when it cannot be adapted, be 

extended to include new functionality. 

 At its core, hyperDAQ is a python based object-oriented platform that allows for 

equipment control and data gathering from a Graphical User Interface (GUI). The 

hyperDAQ program should be thought of as a library of data acquisition code designed to 

be expanded and adapted to new experiments rather than a discrete program. The key to 

understanding how hyperDAQ works is to understand that the program is object oriented, 

components are objects that pass data and commands between each other. These objects 

may occur within several threads, each of which performs a key function of the program.  

Fig. 2.7 illustrates the key data relationships between the objects. In the figure, the 

left column illustrates the various hardware control code, which is third party software 

that controls the hardware at a low level. Most hardware comes with drivers that can be 

used, but hyperDAQ can also communicate with hardware directly through serial ports. 

The objects that interface with these drivers (or serial ports) are in the control thread 
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(serial ports may have their own threads however commands related to scanning are still 

sent from the control thread.) The most important object is the Card Controller which 

interfaces with the data acquisition card. It executes a scan of the system outputs and 

queues data from the analog inputs for processing. During a scan, the card control or 

control thread may use the device controller objects to execute parts of the scan as well.  

 

 

Figure 2.7: Flowchart showing the key data-centric relationships between objects within 

the hyperDAQ software. Does not fully illustrate all potential connections, only 

important connections. 

 

Data acquired by the card is passed into the processing thread, where it is 

processed by the Data Images, which contain the primary imaging data. This data may be 

displayed on the GUI. When the scan is saved, the data is accessed by the File Writer 
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object. The File Writer not only saves the data from the Data Image objects but also the 

status of all the hardware within hyperDAQ, the scan specification and all changeable 

software and equipment parameters to ensure reproducibility. 

Finally, there is the GUI Thread which contains a tkinter main loop that displays 

the data and controls using the python tkinter software. Its main function is to setup scans 

(in 2, 3 or more dimensions) and display the primary data as it comes in. In addition, for 

each hardware controller beyond the card there is also an interface, which displays 

current status and may be used to send commands to the hardware when not scanning. 

These hardware interfaces are displayed as subframes within the GUI. From the user 

interface, shown in Fig. 2.8, the user can setup various MPDPM runs, view the status of 

the equipment and see the imaging data in real time.  

 Beyond this general data flow, hyperDAQ objects need to be setup in response to 

the particular needs of a given experiment. To do this hyperDAQ uses a working 

directory structure as illustrated in Fig. 2.9. The primary hyperDAQ code is contained 

within the “hyperdaq” subfolder, which is setup as a python package and tracked with the 

version management software git. The core of a given hyperDAQ program is the Main 

File, this is the file where all of the various hyperDAQ objects are instantiated and the 

program is started. The objects are drawn from two sources, either the main hyperDAQ 

code located within the hyperdaq package or any custom code that the user might like to 

use. In addition, there is that parameters.py file, this contains all the parameters and other 

information that hyperDAQ needs to be run a given experimental system and provides 

important metadata. The main file defines objects for all the hardware that an instance of 
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hyperDAQ controls, and can be modified to add in new equipment and change the 

configuration and functionality of hyperDAQ. A properly setup hyperDAQ instance then 

performs scans and when appropriate will save them as files. To ensure that data is easily 

accessible each scan (or 3D data cube) is assigned a unique run number with a specific 

form, and all metadata is saved, see section 3.4 for details.  

 

 

Figure 2.8: The user interface of the hyperDAQ software. The left column contains the 

controls for setting up a customized scan and an area to record information that cannot be 

automatically recorded. The middle column displays the status of the system, information 

about the runs it is executing and small interfaces for several external pieces of hardware. 

The right column displays data from two inputs, in this case the reflection image (top) 

and the photocurrent. 
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Figure 2.9: The working directory structure of the hyperDAQ software, showing the 

relationship between the various modules. Dashed boxes indicate directories, and the 

solid boxes indicate python files. 

 

The hyperDAQ software satisfies all of the designed constraints mentioned above. 

First, it can scan hardware and acquire and process data at a rate faster that is hardware 

limited. Second, from the user interface the user can customize a scan to sweep (almost) 

any of the experimental variables in manner desired at any possible resolution. 

Furthermore, while hyperDAQ typically performs measurements in a standard recti-linear 

fashion (e.g. raster scanning with linear sampling) it is designed such that it can be 

extended to perform non-traditional types of scanning as appropriate. Third, it is designed 

to automate hardware to the maximum extend feasible so long as the equipment has, at a 

minimum, a serial port interface. Fourth, it saves all metadata, including the values in the 
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parameter file with the data. Finally, hyperDAQ is specifically designed to work with a 

wide variety of experiments, and to be simple to add in customized code. 

 

 

2.8 Long Measurements and System Stability 

Given the maximally automated nature of the hyperDAQ and the multi-parameter 

nature of MPDPM some measurements may span days or weeks running fully 

automatically and be composed of hundreds of runs. For these longer measurements the 

main concern is laser stability, as any variation in the optics will cause the image location 

to drift. To counter this, careful attention must be paid to the alignment of the optics to 

avoid any geometrical aberration and the laser should be run continuously for several 

days prior to any long imaging measurement to stabilize its performance. When the 

system is stable, the main source of drift is thermal expansion of the various optical 

components; therefore, precautions should be taken to make the temperature and airflow 

of the lab as consistent as practical during the measurements. 

Even with the extra considerations for stability there will inevitably be some drift 

in the images, which must be corrected for in the data. There are multiple options for drift 

correction dependent on the particular measurement, for example when the laser power is 

approximately constant throughout the measurement and the drift is small, the best 

method is usually to re-orient the data based on the reflection image. To find the 

correction for a given reflection image we use an algorithm that shifts the image by an 

integer number of pixels and calculates the difference between that image and the first 

image in the data set. By brute force, the algorithm determines the shift that produces the 
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minimum difference and uses that as the correction. This allows for correction that is 

accurate to the pixel resolution.  

 

 
Figure 2.10: Drift correction in a 53-hour imaging measurement. a top and middle are 

reflection images taken first and last; bottom is the last reflection image corrected. b 

shows the applied drift correction (in microns) as a function of time. 

 

As an example, Fig. 2.10 shows the drift correction over time for a 53-hour long 

imaging measurement taken on the WSe2MoSe-2 sample. In Fig. 2.10a we see the first 

and last images in the data set, and then the last image with the correction applied. The 
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correction removes some information near the edges, however the images were taken 

with a significant margin around the active area of the sample to prevent the drift 

correction from removing any important information. Fig. 2.10b shows the drift 

correction as a function of time over the 53 hour span of the measurement, critically we 

see that the drift random walks, as we would expect from thermally dominated drift, and 

that over the course of 53 hours it only shifts by about 3 microns (approximately 10 

pixels), an acceptable level of drift that can be corrected for without harm to the data. 

 

2.9 Data Taking Process 

Each run that is acquired in an MPDPM measurement samples some amount of 

parameter space. Typically, a single sample will require hundreds of runs to fully 

examine its parameter space. The most common scan is a rectangular scan of the 2D 

scanning mirrors, which moves the laser beamspot spatially over the surface of the 

sample, observing the photoresponse. These spatial scans are designed to be high 

resolution with variable speed, so that resolution in space can be traded-off for resolution 

in other variables when needed while still spatially imaging. Depending on the 

measurement, the laser can be scanned in two dimensions, scanned along a line in a 

single spatial dimension or held spatially fixed. The automated multi-parameter nature of 

the process allows for long sets of runs to be measured together, for example a large 

imaging data set may run for several hours with no human input. Such long runs are 

usually run overnight, or over a weekend in order to optimize experimenter time. 
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The process of acquiring data from any given sample goes through several phases. 

Normally an experiment begins with an exploratory phase, which measures a new sample 

a set of relatively low-resolution runs over all possible parameters in order to determine 

the relevant parameters for a sample and the ranges that they vary over. During the 

exploratory phase it is important to be agnostic with respect to any expectations or 

hypothesis, so as to not bias the measurement. To this end it is usually helpful to define 

what range of parameters to explore over prior to the measurement and to stick to that 

plan during the exploratory phase, however this is not always practical as unexpected 

results frequently arise. After the exploratory phase has identified the significant 

behavior, a high-resolution set of data cubes is taken to densely sample the full parameter 

space, commonly spatial scans as a function of two parameters, generating a large set of 

images that is usually the main result. Finally, if any unusual or interesting features are 

seen in that data set, some high-resolution scans are taken to finely characterize those 

features, often continuing until the sample dies or degrades beyond usefulness. This 

process does not always proceed linearly in those phases, for example low temperature 

measurements are often done over a small window of time and after room temperature 

measurements due to practical concerns over the cost and difficulty of using cryogen. 

During the data taking process, the workflow is driven by on the fly data analysis. 

When a run is taken it is assigned a run number and saved with meta-data which is all 

linked to the run number. Data is taken and recorded in the lab notebook and visualized 

using a set of visualization scripts that correspond to each type of measurement. These 

visualizations are also included in the digital lab notebook and are used to direct the 
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course of data taking as new features are noticed. As with the overall analysis process, it 

is important to not rely on any one type of visualization as they all have advantages, 

disadvantages and potential biases. The process of handling, analyzing and visualizing 

this data is described in Chapter 3. 
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CHAPTER 3: 

DATA HANDLING, ANALYSIS, AND VISUALIZATION 

3.1 The Data Analysis Process 

The data is only as good as what you can do with it. This simple concept takes on 

a special meaning when it comes to data intensive measurements, not only does the 

complexity of the data analysis increase there are a larger variety of pitfalls that can 

distract, obscure or confuse the interpretation of the data. This chapter describes all that is 

involved in turning raw data from a data intensive MPDPM measurement into a useable 

result. There are three primary steps to this process: handling, analysis and visualization. 

Data handling is the process of making the data available in useable form, analysis is the 

process of extracting information from the data, and visualization is the process of putting 

that information is a visual medium suited for human understanding. 

In this chapter we discuss each step, starting with considerations that must be 

satisfied, then turn to a practical discussion of how to perform each step, along with 

discussion of problems that may arise at the scale of an MPDPM measurement. The 

concepts and process described in this chapter will be used implicitly and explicitly 

throughout all the discussion of the data and physics in later chapters. Example data will 

be taken from several different measurements that will be discussed later on.  

 

3.2 Data Handling Concerns 

The MPDPM technique is a powerful tool for taking data in versatile ways, at 

high volume, using a variety of disparate equipment. However, the experimental 
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flexibility, the scale of data, and variety of the equipment involved demands careful 

handling of the data. Data Handling is a catch-all term for all the steps that are needed to 

ensure that data is useable. In experimental physics this can mean a variety of things, but 

in terms of “tabletop” experiments, i.e. those performed on the level of a single research 

group, the main concerns are as follows. Retrieval; data must be stored in a way where it 

can easily and efficiently be accessed. Replicability; steps must be taken to ensure that 

any experiment could, theoretically at least, be replicated using the same or similar 

equipment. Calibration; data must be turned from hardware values to real units. This 

often involves generating calibration data which must also be well documented and easily 

accessible. Processing; data must often be manipulated before it is useful, which can take 

many forms, for example, filtering out noise or correlating image sets. Packaging; if a 

measurement that is composed of many runs, the runs must be grouped together into a 

single unit, or package, for analysis and visualization. Care must be taken that the 

different runs can be directly compared. Documentation; all experiments need to be well 

documented, with metadata that allows any data referenced in the notebook to be easily 

accessed. Traceability; All the above steps must themselves be well documented such 

that not only can the data be replicated, but the entire process used to develop a result or 

visualization can be replicated if needed. 

MPDPM works by transforming a problem of experimental phase space into a 

problem of data analysis. Therefore, there are some significant data handling 

considerations specific to an MPDPM measurement, as follows. Experiments usually 

involve multiple hardware sources, or even multiple experimental setups and a project 
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will span many different measurements. The geometric nature of the phase space 

sampling is important in MPDPM data analysis and must be preserved. Measurements 

are often handled “on-the-fly” during the limited sample lifetime. Furthermore, 

inconsistent data handling or ill-considered visualizations can lead to confusion and 

wasted time. Data analysis often involves multiple passes through the data with different 

types of visualization scripts which may occur months or years after the measurement. 

Overall, data handling practices break down into two categories: implicit and 

explicit data handling. Implicit data handling is all the steps of the data handling process 

that occur “behind the scenes” and work best when they are automated with well 

documented and traceable code so that the user does not have to modify them very often, 

thus reducing the chance for errors. Explicit data handling is all the data handling that is 

specific to a given experiment and needs to be modified by the user as they go through 

the data analysis and visualization process. This will usually be handled through scripting 

and will overlap with the visualization procedures discussed below. 

 

3.3 Data Handling Policy 

To satisfy all the considerations in the previous section, it is important that good 

data handling practices are used when working with MPDPM data. It is essential that 

experiments are well documented and have a carefully considered data handling policy 

that is applied consistently. The section details the data handling policy developed for the 

Gabor Lab. While the general practices have been followed for essentially all of the 

research discussed in this dissertation, the policy did not exist as currently constituted 
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during much of the research. The policy is presented in its finished form and any 

significant deviations from it will be noted when data is presented.  

The data handling policy is as follows, with the major principles in italics. 

Traceable, well tested code, such as the Gabor Lab Toolbox, should be used to perform 

all implicit data handling. Any deviations from the established data handling code must 

be well documented. Code that is developed to process data in a new way must be 

documented as well. The data handling components of the Gabor Lab Toolbox are 

specifically designed for this and should be used whenever practical (see section 3.5 for 

information on the Gabor Lab toolbox). Calibration data needs to be traceable. Any 

calibration that is applied to the data needs to be kept, organized so that it can be applied 

consistently, and the code that applies it should be traceable. Data sets must retain 

metadata throughout the data analysis process. For hyperDAQ measurements this means 

that the run number is used to refer to the data and all the information in the log file is 

retained. When data from multiple runs is packaged together to generate a data set, none 

of the metadata should be lost (through redundant metadata may be consolidated). A 

digital lab notebook needs to document all significant data or analysis. Any significant 

analysis that manipulates the data in a novel way should be similarly documented.  

Scripts where data is processed and visualized in any nonstandard way need to be 

retained. Code that significantly manipulates the data or performs any step in the data 

handling process should never disappear. 

The data handling policy results in the following workflow. Each project has a 

project folder that contains all the data analysis and visualization scripts for a given 
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project, this folder should have a descriptive name and the code in it should be retained. 

When data is acquired it is documented with its metadata in a digital lab notebook which 

records both the narrative of how the data was taken and includes basic visualizations. 

These visualizations often change frequently during data acquisition, as the data is looked 

at in new ways. Therefore, the run number and all relevant variables are directly included 

in the visualization, in addition data is normally accompanied by written descriptions of 

how the data was taken and why, what the visualization shows, and what the visualization 

tells you. The principle being that just from the notebook someone else should be able to 

fully understand and recreate a given experiment. 

 

3.4 Experimental Metadata and Traceability 

Metadata is information about a given piece of data, in MPDPM measurements 

taken with the hyperDAQ system there are two main pieces of metadata, a run number 

and a log file. To ensure it is easily accessible each scan (or data cube) is assigned a 

unique run number with a specific form, containing several strings of information 

separated by underscores, for example, SYS_2019_10_02_15. The first string is the 

“System Prefix” which identifies the experimental system where the scan was performed. 

The next three strings are the date on which the scan was taken as 

YEAR_MONTH_DAY and finally the scan number is indicated. For example, a run 

number of CBA_2020_01_23_32 was the 32nd scan taken by the “CBA” system on 

January 23rd, 2020. 
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For a given run number several files will be saved. A data file will be generated 

for each Data Image object defined within hyperDAQ and a log file will be generated 

containing all the scan information, including the status of all hardware and the contents 

of parameters.py, to ensure replicability. Each file is saved under a file name that is the 

run number and one additional string of information; their “extension” indicating what 

they are. For example, a 2D scan with two data images designated ‘pci’ and ‘rfi’ 

(standard hyperDAQ conventions for photocurrent and reflection data respectively) 

would generate three files: CBA_2020_01_23_32_pci.dat, CBA_2020_01_23_32_rfi.dat, 

CBA_2020_01_23_32_log.log, where the “.dat” files are numerical arrays of data and the 

“.log” file is the log file containing the scan information. In addition, to keep it organized 

and easy to find from the run number, the hyperDAQ software will save these files in 

subfolders organized by date, for example the above example file would be located in the 

folder DATADIR/2020/2020_01/2020_01_23. 

 

3.5 Software Toolbox 

 The nice thing about implicit data handling is that it is largely automatic, the 

hyperDAQ software generates and data and packages it with the metadata, and code can 

be written to load the data consistent with the data handling policy. So long as an 

experimentalist uses the code consistently and correctly most of the implicit data 

handling will be followed. In addition to hyperDAQ, the main tools for implicit data 

handling are contained in the Gabor Lab Toolbox. 
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The Gabor Lab Toolbox (GLT) is a package of code that contains useful functions 

and classes for working with data. This includes data handling code, tools for making 

visualizations and a variety of other useful functions. Furthermore, the GLT was written 

to give a consistent codebase for the Gabor Lab and act as a jumping off point for lab 

members to develop their own custom toolboxes, containing code that they use frequently 

that adds onto the functionality in the GLT. The custom toolbox has much the same 

structure discussed below and mainly adds functionality on top of the GLT code. As with 

the data acquisition code, the toolbox was developed in stages over several years, and is 

discussed here in its completed form. 

The GLT is divided up into modules. The GLT modules for data handling are: 

gaborlab.mpdpm, gaborlab.calibration, and gaborlab.utilities. Most of the time, these 

modules will automatically perform the implicit data handling and all that will be 

required in a visualization script is to load data using a Run or DataSet object from 

gaborlab.mpdpm. The GLT modules for visualization of data are: gaborlab.display, 

which contains functions that assist in generating visualizations and gaborlab.processing, 

which contains functions that filter or transform data in various useful ways. Finally, the 

GLT modules for the analysis and modeling of the data are gaborlab.fitting, 

gaborlab.math, and gaborlab.physics. Where gaborlab.fitting contains code for fitting the 

data, gaborlab.math contains a variety of useful mathematical code and gaborlab.physics 

contains various physical constants and functions useful for model building. 

Data runs are the base unit of MPDPM data, and the data is packaged into runs by 

hyperDAQ, and a run number and log file provide the metadata for a given run. To keep 
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all of the data and metadata together, and be consonant with pythons object-oriented 

design, the GLT treats a single run as an object. Each Run object loads the data on 

instantiation, and it can be accessed through several key attributes of a Run object: 

Run.log: a dictionary of all the values in the log file. Run.axes: a list of numpy arrays 

giving all the axes values. Run.units: a list of the units (as strings) of all the axes. 

Run.data: a dictionary of the data images. Finally, Run.shape: the shape of the data 

images. Runs also contain several functions to make the calibration, processing, re-

scaling and stabilization of the data simple and efficient. The Run objects handle the 

implicit data handling and provide the basis for the complex data analysis and 

visualization discussed below. 

 

3.6 Hierarchical Analysis of MPDPM Data Sets 

MPDPM generates large sets of images varying across several experimental 

variables, requiring sophisticated analysis to extract and visualize results. While the 

analysis of these sets will vary based on the specific sample, in this section we will give a 

general procedure to hierarchically exploit data geometry in order to condense a 

multivariate data set down to a manageable amount of processed data. Fig. 3.1 illustrates 

this process for a hypothetical four-dimensional (hypercubic) data set. The raw data is a 

set of datacubes spanning three dimensions (𝒆1, 𝒆2, 𝒆3), incremented along a fourth 

dimension 𝒆4. Each datacube is processed to map out a dynamical parameter that 

represents the behavior of the datacube along one axis (in this case 𝒆4). There are 

multiple possible projections and representations, and although not all are useful the 
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possibility space should be explored. Image analysis is used on the dynamical maps to 

identify key features that are then collected into a single visualization. In this hypothetical 

case ellipses enclosing the “bright” photoresponse are visualized as contours. Ideally, this 

visualization will represent the evolution of some physically interesting quantity within 

the four-dimensional parameter space. 

 

 

Figure 3.1: Schematic of the hierarchical data analysis of a hypothetical four-

dimensional data set. 

 

To illustrate this process in a van der Waals heterostructure device, Fig. 3.2 

presents data and analysis from a graphene on boron nitride on graphite (GBNGr) stacked 

heterostructure photocell, detailed in Appendix A1.2. When photoexcited, a Fermi-Dirac 

distribution of hot carriers rapidly forms in the graphene layer and the exponential tail of 

this hot distribution may extend into the valence band of the boron nitride, resulting in 

interlayer photocurrent between the graphene and graphite (this physics is discussed in 

detail in Chapter 5). To measure this interlayer photocurrent, the graphene contacts were 

set at a fixed voltage, and current was collected and measured from the graphite  
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Using MPDPM on the GBNGr sample, we obtain an imaging data set that is a 

good example of the hierarchical analysis: photocurrent data cubes composed of 25 

spatial scans at varying laser power, repeated as a function of voltage (applied to the top 

graphene) in 2 mV increments from -20 mV to 30 mV, for a total of 625 spatial 

photocurrent images, sampling a four dimensional parameter space (two spatial 

dimensions, laser power and voltage). Following the general procedure, we will condense 

the data by fitting it to a phenomenological power law that describes the sample's 

behavior, identify a physically interesting nodal feature in the resulting non-linearity 

maps, and visualize the sample's behavior by tracking that node as a function of space. 

The GBNGr data is instructive because it has very distinct features in the non-linearity 

dynamical parameter, making analysis straightforward, but this approach can easily be 

adapted to other experiments and MPDPM data sets without such clear spatial features. 

 

3.7 Dynamical Fitting 

 After the data set is acquired and processed, the next step is to extract fitting 

parameters that can represent the dynamics occurring in the system. The data points are 

fit to a phenomenological law using a non-linear least squares fitting algorithm. The 

phenomenological law can be any function that parameterizes the data well. For 

photocurrent systems, we most commonly we use equations 𝐼 ∝ 𝑃𝛾 and 𝐼 ∝ 𝑒−Δ𝑡/𝜏, for 

the photocurrent (I), versus laser power (P) or versus two pulse delay Δ𝑡, respectively. 

Phenomenological parameters, such as 𝛾 and 𝜏, are extracted from these curve fits. These 

parameters should be dynamical quantities, so that they can represent changes in the 
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underlying physics. For example, 𝛾 is related to the non-linearity of the photoresponse, 

similarly 𝜏 is the characteristic timescale of a process. Changes to 𝛾 or 𝜏 indicate a 

change to the character of the photoresponse, not simply a re-scaling of the data, making 

these parameters very useful proxies for the underlying physical phenomena. Important 

considerations when selecting dynamical a function and parameter are discussed in detail 

in section 3.11 along with the process for fitting. 

 

 

Figure 3.2: Hierarchical analysis of a set of datacubes from the GBNGr dataset. a, shows 

an example photocurrent image and b shows the 𝛾 map from a single datacube. c, is a 

schematic showing how the data is fit and processed into a workable visualization. 

 

 The dynamical fitting parameters are used to condense the data. For the GBNGr 

sample the raw data consists of a set of photocurrent images as a function of power, one 

such image is shown as a colormap in Fig. 3.2a. These images are correlated together, 

then the data at each point in space is curve fit along the power axis to the power law 𝐼 ∝

𝑃𝛾. The power law describes the data well in this case, and the parameter 𝛾, acts as an 

index of the non-linearity, a useful dynamical quantity. The fitting gives a map of the fit 
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parameter 𝛾 as a function of space, such as that shown in Fig. 3.2b. The processed 𝛾 

image condenses the dynamics of the whole three-dimensional set of photocurrent images 

into a two-dimensional map. The entire GBNGr data set is four dimensional, with data 

cubes taken as a function of laser power at various values of applied voltage. Fig. 3.2c 

shows how the data set is processed, all of the data cubes in the set are processed into 𝛾 

images, giving a three-dimensional set of 𝛾 images representing the sample non-linearity 

as a function of voltage. The resulting set of 𝛾 maps can then be analyzed using image 

analysis to condense them into a single visualization. 

 

3.8 Image Analysis  

Once processed, image analysis is used to identify, and algorithmically extract, 

physically interesting features from the processed images. Identified features can be 

projected onto the spatial axes (or taken as a function of some other variable). This 

further reduces the dimensionality, usually giving a result that is visualizable as data 

mapped in space, or even as a function of a single variable, which human intuition is 

more suited to handle. The algorithm used to perform image analysis is the most 

application specific component of the process, as the ability to quantitatively pick a 

feature out of an image depends highly on what features are present. However, there are 

many well established image processing algorithms, and a researcher with a solid 

foundation in programming and signal processing should be able to find a solution 

without much trouble.  
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Figure 3.3: Schematic of image analysis for the GBNGr dataset. a, shows the processing 

from photocurrent maps to 𝛾 map representing a single datacube, then the edge features is 

isolated from each 𝛾 map. b, The result of the image analysis, the edge maps overlaid on 

an image of the sample, physics can be determined from this visualization by interpreting 

the edge features as a node in the sample electrochemical potential. 

 

The GBNGr data provides a clear example of how to use image analysis to 

identify interesting features from image data. In the processed 𝛾 maps there are distinct 

regions with different 𝛾 values. The higher values of 𝛾, (the green and yellow areas on 

Fig. 3.2b) are separated from the lower values of 𝛾 and the background (blue and dark 

purple areas) by a sharp boundary. The boundary is a physically interesting feature, 

because it indicates a node in the photocurrent versus power, which evolves as a function 

of applied voltage due to the internal electronic properties of the sample. We use a 

Laplace filter, a common image processing filter used for edge detection, to identify this 

feature. This is performed on each 𝛾 map at different values of applied voltage. The 

image analysis process is shown schematically in Fig. 3.3a, the raw datacubes yield maps 

of 𝛾 condensing the four-dimensional data set down into a three-dimensional data set. 
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Then the edge feature is extracted from each 𝛾 map, forming a highly condensed set of 

images showing only the feature of interest. 

From the condensed data, which can be correlated to physical features of the 

sample, we can now develop an interpretation of the MPDPM data set. Fig. 3.3b shows 

the node versus applied voltage overlaid on an optical image of the GBNGr 

heterostructure sample. The edge is a node in the photocurrent, implying that charges 

excited at that location do not experience any force that would drive a current. This 

means that, on the node, the internal electrochemical potential of the sample is zero. Fig. 

3.3b shows how the internal electrochemical potential of the sample is modified by an 

externally applied electric field. Of particular note, is the dipole-like feature in the top 

center of the nodal pattern which lies on top of an electrically floating metal contact. It 

has been predicted that a floating contact would modify the internal potential of graphene 

in a dipole pattern46. Similar MPDPM measurements can be used to further image the 

internal potential of conductors47. 

It would have been difficult to observe this data without using MPDPM. No 

single image, or dependence of a single parameter, contains a clear experimental 

signature of changing electrochemical potential. Only by sampling several experimental 

variables, observing the changing dynamics, and picking the right feature out of the 

complex photoresponse, could we identify this. In addition, there is no reason that the 𝛾 

node was the only interesting feature in the data set. 
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Figure 3.4: Diagram of the composition of a visualization script using the 

display.figure_inches tool, where the orange text are quantities passed to the tool to 

layout the figure in a cartesian grid, simple geometry can then be used for the layout. 

 

 3.9 Visualization Scripting 

Visualization scripts are used to load, process and visualize the data, usually 

performing the explicit data handling. The basic structure of a visualization script is as 

follows. First relevant code is imported, then the data is loaded using a Run object from 
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gaborlab.mpdpm, and the data attributes are given readable names. Then, the figure is 

defined and composed using code from gaborlab.display. Lastly the data is displayed, 

using some code from gaborlab.display but mostly standard matplotlib commands. Most 

of the display and axes manipulations are simply done with matplotlib, however certain 

matplotlib functions are used frequently enough a certain specific way that they can are 

encapsulated into functions in gaborlab.display for simplicity.  

The most useful feature of gaborlab.display is the class display.figure_inches 

which assists in the composition of figures (that is, laying out the figures is a useful 

manner). Composition is a major area where someone can waste a lot of time and still 

end up with a bad visualization. The display.figure_inches object was designed to make 

composition easier by taking a geometric approach to the layout of figures. It generates 

axes (of various types) based on standard cartesian coordinates, allowing the user to use 

geometry to layout their figure. From the figure_inches object each call to 

figure_inches.make_axes creates a new panel with a geometric argument [left, bottom, 

width, height]. In the script various quantities of the grid, such as the width and height of 

the panels, the margins, and the intervals between panels are defined. Then, by adding 

together the quantities in the right way they are laid out in a grid. Fig. 3.4 shows an 

example of what can be generated with this tool, diagramming in orange the various 

geometric quantities that are added together to make coordinates. On top of a basic grid, 

various more complicated layouts can be made, such as creating an axis that spans two 

grid spaces, or make that axis have two y-axes (colored blue and red). A large variety of 
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figure layouts can be accomplished with this simple grid style, and other geometries can 

be used if they can be defined using coordinates. 

 

3.10 Visualization of Multi-Dimensional Data 

One of the major challenges of MPDPM is how to visualize multidimensional 

data. Human vision and intuition are geared towards two dimensional depictions of data, 

which is best with one dependent and one independent variable48-50. MPDPM data is 

often multi-dimensional meaning it has two or more independent variables, complicating 

visualization. Developing a consistent way to visualize the data can prevent a researcher 

from becoming overwhelmed by the volume of data and provide a platform for deeper 

forms of data analysis, but care must be taken as some visualizations can inhibit 

understanding. Many possibilities should be explored and carefully considering how to 

present data in a presentation or paper, however that occurs after much consideration and 

with some understanding of what the data means. Such polished visualizations are 

usually a waste of time during the data acquisition and analysis process where scripting 

must be flexible. This discussion will focus on how to display multi-dimensional data in 

an exploratory context, both as the data is coming in and during initial analysis. 

The use of matplotlib’s colorscales in MPDPM is a good example of how the 

limitations of human perception influences visualization. Colorscales are important when 

working with images but, when looking at small differences, color is one of the worst 

ways to represent data because the complexities of how human perceive color can lead to 

perceived differences where there are none51,52. Human perception of color is neither 
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uniform nor consistent, meaning that the perceived difference between two points depend 

heavily on what colorscale is used and perception of color is influenced by the colors of 

areas around them. If carelessly visualized, a researcher combing through a large set of 

images may waste time pursuing differences in contrast that appear to be significant but 

aren't. Thus, the selection of a colorscale is never an insignificant choice. 

There are multiple options for colorscales that will display data while minimizing 

the adverse effects of human color perception, Fig. 3.5 shows several colorscales. Fig. 

3.5a is the classic “rainbow” colorscale, simply to illustrate the problems inherent in such 

a colorscale. Firstly, compared to the others significantly less detail can be seen. 

Secondly, the rainbow colorscale seems to form rings around the prominent photocurrent 

areas, this banding is not due to any feature of the data but rather the non-linearity of 

human color perception. It is clear that such a colorscale should not be used.   

A marginally better colorscale is a simple sequential colorscale, like that shown in 

Fig. 3.5b, which is a single color with varied lightness. The monochromatic nature 

reduces issues with color perception but limits the amount of available contrast. An 

alternative that uses more colors is a perceptually uniform colorscale, such as that shown 

in the Fig. 3.5c, much more detail can be seen because this scale is engineered to smooth 

out the non-linearities in human color perception allowing it to safely span many colors, 

thus increasing its contrast. Another option is to notice that the photocurrent shown is 

largely organized into lobes of positive and negative photocurrent and select a diverging 

colorscale that goes between two colors and is white in the middle, such as Fig. 3.5d. 

This is probably the best colormap for this type of photocurrent but may not be applicable 
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to all situations. It is also important to note that to make a diverging colorscale work it is 

usually necessary to guarantee that zero is in the center of the colorscale. No matter 

which type of colorscale is used they all have difficulty discerning small differences in 

the data and transitions between types of behavior. Therefore, there is a rule of thumb 

when using colormaps to view data: if an interesting effect in the data is not obvious from 

a colormap, a colormap should not be the only visualization used. 

 

 
Figure 3.5: Comparison several different types of colorscale, all showing the same data. 

a is the rainbow colorscale, to demonstrate the problems associated with colorscales. b a 

single color sequential colorscale. c a perceptually uniform colorscale. d a diverging 

sequential colorscale. 
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There are numerous ways to represent two-dimensional data that aren’t 

colormaps. A good example is a waterfall line plot, where data is represented as a series 

of dense colored line cuts, and leverage the human perception of distance, which is much 

more consistent than the human perception of color. Fig. 3.6 compares a colorscale and a 

waterfall line plot, the colorscale only really shows the behavior at large voltage and 

powers, features near zero voltage are washed out. Therefore, in the right panel we plot 

horizontal line cuts with power represented as color, from this we can see the nuances of 

the low voltage behavior. Another option for representing the data is to use a fit, provided 

you know what the dependence of the data is, fitting will be discussed in section 3.11. 

 

 
Figure 3.6: Comparison of a colormap, a, to a waterfall line plot, b for the same data. 

 

 Representing three-dimensional data sets (e.g. data cubes or series of scans) adds 

an additional level of complexity, given that it becomes difficult to view all the data at 

once (at least in high resolution). There are several options for representing this data, all 
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of which have advantages and disadvantages. The most simple and intuitive way to 

represent a data cube is a tile plot, which simply displays all of the component images in 

a series, an example of this representation is Fig. 3.7 which shows all the component 

images of a datacube. This sort of visualization displays all the data and is very useful 

when looking for spatial changes or when looking at a large number of images. However, 

there are situations in which this type of visualization would not work, particularly when 

working with non-spatial maps or when the spatial features do not change much. 

 

 
Figure 3.7: A tile plot representation of spatial photocurrent data, showing all images in 

a datacube (taken on sample GBNG-2) in a sequence of images. 
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Alternatives include movies and interactives. A movie would display the images 

in a timeseries, but while this may be useful when formally presenting the data it is 

usually only useful when the feature that is changing is obvious, in which case it isn’t 

really any more useful than a series of images as shows above and has the downside that 

it is difficult to include in a notebook. Another alternative is an interactive, where, for 

example, a single image is displayed and there is an interactive control that lets the user 

select that image from the cube. While they can be used to pick out high resolution 

images and add them to the lab notebook, it is also limited. The main alternative to follow 

the general MPDPM procedure and lower the dimension of the data using a fit, as 

discussed in section 3.6. 

Moving beyond three-dimensional data sets adds the additional complication that 

they are necessarily spread across many different runs. To satisfy the data handling policy 

and provide for easy access to a set of images gaborlab.mpdpm contains the DataSet 

object which takes a list of run numbers (from a local datasets.py file, see the 

documentation) and processes all of them into a single unified object, which most of the 

same attributes as an individual Run object. The series of runs in a data set can be a series 

of 2D scans, resulting in a 3D set, or a series of 3D data cubes resulting in a 4D data set. 

The most basic option is to display all the images in much the same way, but with the 

axes of the plot representing two of the 4D axes.  

Fig. 3.8 shows a tile plot representation of a four-dimensional imaging data set, it 

is different from the datacube tile plot in that the images are arranged along the non-

spatial axes. This representation shows the data in its full glory, from all the images the 
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user can visually pick out large scale trends in the data. This is an excellent starting point; 

however, finer analysis will require the use of the MPDPM data analysis process, 

reducing data down through fitting. At or above four dimensions it becomes increasingly 

difficult to visualize raw data in a human compatible fashion. 

 

 

Figure 3.8: A tile plot representation of a four-dimensional set spatial photocurrent 

images, showing all images in a datacube (taken from sample MoSe2WSe2-2) laid out 

over the two non-spatial axes. 
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3.11 Fitting of Data and the Visualization of Fit Parameters 

The final tool that is essential to working with multi-dimensional data sets (or any 

data set) is the ability to apply a fit to the data. Fitting is important in most applications of 

science, but essential in MPDPM data analysis where fitting is used to reduce an un-

representable amount of data into a digestible plot in a publication or presentation.  

The first, and most crucial, decision about a fit is what fitting function should be 

used. The user should look at the data and get a sense of the functional form that the data 

follows. Fig. 3.9a shows a line scan over the active area of a sample as a function of laser 

power. To examine this data, we simply take the average along the x-axis over the active 

area. Looking at the data we notice the key character of the data, firstly it is 

monotonically increasing and non-linear. That informs several potential fitting functions, 

the most obvious of which would be a polynomial such as a parabola. However, as we 

will discuss below, a polynomial is not a good choice to fit this data. There are two key 

concepts to keep in mind when selecting a fitting function. 

The first concern when choosing a fitting function is that a fitting function should 

depend on at least one dynamical parameter. A dynamical parameter is a parameter which 

reflects the underlying dynamics of the system and is not simply a rescaling of the data. 

We want to use a parameter to represent the behavior of the fitted data and it is hard to 

see that any of the parameters in a polynomial do that, for example in a parabola, 𝐼(𝑃) =

𝐴𝑃2 + 𝐵𝑃 + 𝐶, the parameters would be A, B and C but let’s suppose that we represent 

the data using the parameter A. What does A mean? An increase in A rescales the data 

but nothing fundamental about the system changes. Furthermore, A or B could be 
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negative, and even if they are not negative for a given fit the possibility doesn’t reflect 

the monotonic characteristic of the data. Therefore, it’s hard to see what A would actually 

represents because A is not dynamical.  

 

 

Figure 3.9: A simple line scan (taken on sample GBNG-2) fit to a power law. 

 

The second concern when choosing a fitting function, is that a fitting function 

should have the minimum number of free parameters, each of which should be distinct. 

With a function like a polynomial there is a temptation to add additional free parameters, 

i.e. if a parabola doesn’t fit well, one might add a cubic or quartic term to the equation. 

This would make the polynomial fit better, but it doesn’t actually add anything. The way 

the fitting algorithms work adding more free parameters can, and often does, improve the 

fit superficially, meaning that the fit will more closely resemble the data even if the 
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improvement isn’t meaningful, a phenomenon known as overfitting. Consider adding a 

cubic term to the parabola above, 𝐼(𝑃) = 𝐷𝑃3 +  𝐴𝑃2 + 𝐵𝑃 + 𝐶. Fitting to this will 

improve the fit artificially, but this improvement isn’t meaningful. To see why, consider 

that if we fit the same function to similar data that is slightly more super-linear, the fitting 

could reflect the increased current scale by increasing A or by increasing D, with no way 

to determine which is better. In practice, what would happen is that the values of A and D 

would become inconsistent, fitting them to slightly different data (even if only different 

due to noise) would give significantly different values, because from the perspective of 

the fitting algorithm they both rescale the current, thus the algorithm can trade value in 

one for value in the other to further improve the resemblance to small features of the data. 

Thus, whatever meaning that the parameter A had is diluted when D is introduced. 

Given these concerns, what fitting function should we use for the above data? 

Well we want a function that monotonically increases, is non-linear, and is simple, 

requiring only a few distinct parameters to capture a range of behavior. This points to a 

power law function, 𝐼(𝑃) = 𝐴𝑃𝛾 + 𝐼0. There are only three parameters, each of which 

have different units and do different things, and there are no obvious opportunities to add 

more parameters and overfit. Furthermore, γ is a dynamical parameter, its value is an 

index of the non-linearity the data exhibits. If γ < 1 the system is sublinear, if γ > 1 the 

system is super-linear, and any notable change in value, for example going from 2 to 3 

indicates a significant change in the underlaying behavior, not just a re-scaling of the 

data. If we apply a power law fit to the data, we get a single number, 𝛾 = 2.28, that 

represents the behavior of the sample with respect to power. The power law is one of the 
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more common fitting parameters we use in MPDPM. The other option for selecting a 

fitting function would be to get it from a model of the data, but this comes along later in 

the process, in the exploratory phase use a simple and common fitting function with 

dynamical parameters, such as a power law. 

 

 

Figure 3.10: Representing a scan with a fit. a, photocurrent data, b the 𝛾 parameter of the 

power law function, acting as an index of the non-linearity of the sample. 

 

When fitting MPDPM data sets, a single fit like that shown above is rarely 

sufficient, rather the whole Run or Set needs to be fit consistently. Performing such fits 

over multi-dimensional data quickly runs into several problems that the GLT has tools 

designed to solve. The main principle is to fit Runs (or Sets) as object, preserving the 

object orientation and allowing all the details of the fitting to take place behind the scenes 

such that the user can perform large fits quickly without getting lost in the details. The 

class that fits a cube is fitting.FittedData which takes a run and fits it along an arbitrary 
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axis. Let’s return to the data shown in Fig. 3.6, while the waterfall plot gives an idea of 

the trends of the data, the dynamics of that data can be represented by fitting to a power 

law and looking at the dynamical parameter γ. Thus, that data can be represented as 

shown in Fig. 3.10. This fitted representation gives a lot of insight that the waterfall plot 

does not, in it we observe two regimes and the points where the power law behavior 

breaks down (at the nodal points) can be identified. 

A more advanced application of fitting involves fitting a data cube (or set) to 

represent, in two dimensions, what is happening in three dimensions. In this case it is 

even more important that the fitting function have a good dynamical variable, because the 

visualization will not include all of the data, and the user is relying on the fit to accurately 

represent it. Fig. 3.11a shows the γ parameter for a data cube, taken on a sample with a 

square geometry. However, it is apparent that there are features in the gamma map that 

do not correlate with anything. We see this in a vertical line near the left edge, the bright 

yellow edge around the green square and the several noisy green bands in the 

background. From knowledge of the system we know that this device is approximately 

square, and the image is larger than the sample size. These spurious features are due to 

noise in the system, the FittedData object fits at every point in the cube regardless of how 

well the fit works or how much signal there is at a given point. To deal with this we need 

to filter the γ result to include only significant points. Fig. 3.11b shows the 𝛾 data where 

points with fractional uncertainty greater than 10%, i.e. 𝜎𝛾/𝛾 > 0.1, are filted out. Thus, 

only the green square is present, which is the response of the sample.  
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Figure 3.11: Non-linearity of a square sample (GBNG-3) representing a photocurrent 

datacube with a power-law fit. a, the 𝛾 parameter of the power law function, raw output 

of the fitting algorithm. b, the 𝛾 parameter of the power law filtered to include only point 

with low uncertainty. 
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CHAPTER 4: 

THE MICROSCOPIC SCALE 

4.1 Excitons in 2D systems at the Microscopic Scale 

One of the fundamental and widely studied non-equilibrium excitations is the 

exciton. A bound state of an electron and a hole, an exciton is a quasi-particle comparable 

to a metastable hydrogen atom that can be used to study a variety of physics.  As 

discussed in Chapter 1, excitons have higher binding energies in 2D materials, making 

them far easier to generate. TMDs in particular are conducive to excitons and we will use 

TMD heterostructures as a platform to study the interactions of excitons. These 

interactions are fundamentally microscopic, involving two, three or four body scatting. In 

the high exciton density limit, a strongly interacting phase can emerge where the 

individual microscopic interactions cease to be meaningful. This limit is discussed in 

Chapter 5 on the Mesoscale, in this chapter we will focus exclusively on the low-density 

limit where the exciton physics is dominated by few-body interactions. 

There are two broad interactions we want to study, Auger recombination and the 

exciton-phonon interaction. In this chapter, we will use the graphene-MoTe2 

heterostructure as a model system to study Auger recombination and the MoSe2-WSe2 

heterostructure as a model system to study the exciton-phonon interaction.  

 

4.2 Auger Recombination and Biexcitons in 2D Systems 

Photo-excited electrons and holes in semiconductors lose energy through rapid 

collisions, the types of collisions can vary but the common process is known as Auger 
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recombination. Auger recombination is a relaxation process in which an electron and hole 

recombine by transferring energy to a third particle53,54. The usual assumption is that 

Auger recombination is a three-particle process between an exciton and a free carrier. 

This is the case in conventional electron transport: a free charge carrier collides with an 

electron-hole (e-h) pair, and only one charge carrier escapes. In low dimensional 

materials, this picture is expected to change slightly, allowing Auger processes to occur 

as two-particle processes, that are strongly enhanced compared to bulk materials due to 

relaxation in momentum conservation and strong spatial confinement55.  

At sufficiently high-density excitons can collide to form short-lived biexcitons - 

molecular-like complexes of two e-h pairs bound by the Coulomb force56-58. This is in 

strong contrast to conventional semiconductor materials (for example Si or Ge), in which 

biexcitons are highly unstable and exhibit very low binding energy59. In the limit that 

colliding exciton pairs are strongly bound, Auger recombination is a two-particle process: 

two excitons collide, and only one exciton escapes.  

The biexciton process would normally compete with other Auger processes, 

particularly the exciton-free carrier three body process. However, the Graphene-MoTe2 

model system we use covers the MoTe2 with graphene which has been shown to 

neutralize charge inhomogeneity in TMDs and reduce the influence of trionic states60. 

This suggests that three-body free carrier Auger recombination may be reduced in this 

system and two-body biexciton Auger recombination may be dominant. Thus, the goal of 

understanding the dynamics is to determine whether two or three body Auger processes 

dominate. In the following sections on the Graphene-MoTe2 heterostructure we develop a 
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simple yet comprehensive model that accounts for the complex photocurrent behavior 

resulting from ultrashort pulses complementing strong evidence that 2-particle Auger 

processes (exciton-exciton annihilation) dominate the infrared photoresponse. 

 

 
Figure 4.1: Schematic of measurements on the GMoTe2 sample. Inset shows the power 

of the pulsed laser as a function of time, not to scale. 

 

4.3 Photocurrent from Graphene-MoTe2 Heterostructures 

 The first model system we will consider is the Graphene-MoTe2 Heterostructure, 

specifically the GMoTe2 sample (detailed in appendix A1.3), which has a “graphene 

sandwich” structure with graphene on the top and bottom and in the middle a 9 nm thick 

flake of MoTe2. In this system the graphene layers are mostly inactive and are used as 

transparent contacts which collect local current. The broad area of overlap, combined 

with the relative thickness, and thus high absorption, of the MoTe2 means that this system 

generates a large amount of signal that is proportional to the number of excitons, making 
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it an excellent platform for understanding exciton dynamics in a TMD. Fig. 4.1 shows the 

basic experiment, an ultrafast pulsed laser locally injects light into the system, exciting 

electrons and holes which may form excitons. The graphene on the top and bottom is 

electronically contacted, and we measure the photocurrent as a function of the interlayer 

voltage 𝑉𝑖, the location of the beamspot and the properties of the laser including power 

and two-pulse delay, Δ𝑡. Here we will consider the MoTe2’s excitonic behavior, though 

under strong excitation it exhibits a collective e-h liquid phase on the mesoscale, which 

will be discussed in chapter 5.  

 We begin by examining the photocurrent dependence of several relevant 

variables, with the laser at 𝜆 = 1200 nm. Fig. 4.2 shows the photocurrent behavior in the 

low excitation regime. Figs. 4.2a and b show the spatial photocurrent and an image of the 

device; we observe that the photocurrent is large and fairly uniform inside the 

heterostructure area (outlined in white), falling off outside the heterostructure area within 

a margin on the order of the beamspot width. From Fig. 4.2c we see that the device has a 

linear photoresponse as a function of interlayer voltage, slowly increasing in scale with 

laser power. The observed photoresponse, along with an examination of the laser 

wavelength and temperature dependence in other samples, is fully consistent with the 

picture absorbing at the A exciton of the MoTe2 and getting photocurrent from 

dissociating excitons (for a discussion of laser absorption see appendix A2.1)61. The inset 

to Fig. 4.2c shows the mechanism of photocurrent generation, excitons are polar and 

when an electric field is applied the exciton has some probability of dissociating into an 

electron and hole which are collected at the top and bottom graphene. 
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Figure 4.2: Photocurrent characterization of the GMoTe2 heterostructure. a, the 

photocurrent as a function of space and b an optical image of the same space. The 

heterostructure overlap is outlined in white. c, the photocurrent versus interlayer voltage 

as a function of laser power.  
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 To measure the dynamics of the excitons we will examine the dependence of the 

photocurrent upon two parameters that affect the density of excitons. First, we look at the 

power dependence of excitons, as the laser power affects the number of excitons created 

under constant absorbance. Fig. 4.3a shows the one-pulse infrared photocurrent with the 

laser fixed in the center of the sample and the laser power varied. The power dependence 

is accurately described using a power law relationship, 𝐼 ∝ 𝑃𝛾 (red dashed line) where γ 

= 0.44 quantifies the sub-linearity of the photocurrent. Fig. 4.3b shows the photocurrent 

versus the two-pulse delay, Δ𝑡, for several low values of power. Importantly, when 

consider the two pulse at relatively low power. At short pulse delays and high powers, i.e. 

Δ𝑡 < 30 ps and 𝑃 > 5 mW, the photoresponse approaches the highly interactive regime at 

high powers washing out the dynamics we are interested in this chapter.  

 

 
Figure 4.3: Photocurrent dynamical fits in the low power regime. a, the photocurrent as a 

function of laser power, the red dashed line is a fit to a power law 𝐼 ∝ 𝑃𝛾, 𝛾 = 0.44. b 

photocurrent as a function of two pulse time delay, Δ𝑡, and power. Points are data and 

solid lines are fits to a symmetric exponential function 𝐼 ∝ 𝑒−|𝑡|/𝜏. 
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 In the two-pulse dependence we see that the photocurrent is strongly suppressed 

near Δ𝑡 = 0 ps where the two pulses overlap but increases rapidly as the pulses become 

well separated (Δ𝑡 > 50 ps). The photocurrent is fit by a symmetric exponential function 

(solid lines), 𝐼 ∝ 𝑒−|𝑡|/𝜏, where the parameter 𝜏 represents the timescale on which 

photoexcited charge carriers linger in the sample. Again, we see a sub-linear dependence 

on density; two well separated pulses should double the current of a single pulse, but if 

those carriers are in the system when the second pulse arrives the result is less than 

double the current of a single pulse. The sub-linear behavior is comprehensive, 

dominating the photoresponse below the strongly interacting regime. To understand the 

charge carriers in this regime we develop a model for the sub-linear power dependence. 

 

4.4 Exciton Interactions and the Rate Equation Model 

We attribute the power law behavior 𝐼~𝑃1/2 in the GMoTe2 sample to 2-particle 

Auger (exciton-exciton) annihilation: nonradiative decay of one e-h pair provides excess 

kinetic energy to the second e-h pair. After optical excitation by an ultrashort pulse, 

electron-hole pairs in MoTe2 form a high-density gas of interacting charge carriers. In the 

absence of an electric field, photo-excited electrons and holes dwell within the junction 

sufficiently long to allow for two-body electron-hole annihilation. At finite electric field, 

dissociated electrons and holes transit the device and are collected at the graphene 

contacts26-28. Due to Coulomb and phonon-mediated scattering, free electrons and holes 

escape with velocity 𝑣 =  µ𝐸 =  µ
2(𝑉𝑖−𝜙0)

𝐿
, where 𝜇 is the mobility, 𝐿 is the MoTe2 

thickness, and 𝜙0 is the built-in potential (𝜙0 = - 41 mV for device shown in this work, 
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based on the voltage dependence in Fig. 4.2c). The time required for liberated charge 

carriers to escape the photocell junction 𝜏𝑒𝑠 can be tuned by the interlayer voltage 𝜏𝑒𝑠 =

𝐿2 ⁄ 4𝜇(𝑉𝑖 − 𝜙0) 27. 

In order to understand the dynamics, we model the influence of excitons, and 

exciton-exciton annihilation, using a basic rate equation to model the electron hole pair 

density in the sample as a function of time, 𝑁(𝑡):  

𝑑𝑁

𝑑𝑡
= 𝐺(𝑡) −

𝑁

𝜏𝑒𝑠
− 𝛼𝑁2  (4.1) 

At instantaneous time, the electron hole pairs generated by the exciting laser form into 

excitons with a generation rate G(t). Some of the excitons dissolve creating free carriers 

that are pulled out of the system and are observed as photocurrent. The linear term, 

− 𝑁 𝜏𝑒𝑠⁄ , accounts for this, where 𝜏𝑒𝑠 is the timescale of carriers escaping the system. 

Some excitons interact with each other, forming higher order states (such as biexcitons) 

or annihilating. The quadratic term, −𝛼𝑁2,  accounts for this where α is the overall rate 

of two-body interactions. Solving this equation accounts for the observed behavior. This 

model assumes a 2D sample, and 𝑁 is the two-dimensional electron hole density, but can 

be used to model non-monolayer quasi-2D systems such as the sample used in this work, 

with a thickness of 9 nm. 

Equation 4.1 describes the dynamics for recombination dominated by two-body 

Auger recombination, indicative of biexcitons. To proceed we solve this equation for 

pulsed excitation. It is common in the literature to work with similar rate equations in the 

steady state limit, i.e. 𝑑𝑁 𝑑𝑡⁄ = 0, however we use a pulsed laser where the steady state 
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limit is not valid. For a discussion of the steady state solution and a comparison to the 

pulsed solution derived below see appendix A2.2.  

In the pulsed case, the laser deposits energy into the sample on the timescale of 

the pulse width, in our case ~190 fs, which is significantly faster than the observed 

dynamics. We assume that excitons initially form on a similar timescale. After the laser 

pulse, 𝐺(𝑡) = 0 as the system returns to equilibrium. Thus the dynamics are determined 

by equation. 4.1 with 𝐺(𝑡) = 0 and the initial condition 𝑁(𝑡 = 0) = 𝑁1 , where 𝑁1 is the 

initial number of carriers from a single pulse, proportional to laser power. After that the 

density rapidly decays (Fig. 4.4a insets) according to the integrated eqn. 4.1: 

𝑁(𝑁1, 𝑡) =
𝑁1𝑒−𝑡

𝜏𝑒𝑠⁄

1 + 𝑁1𝛼𝜏𝑒𝑠(1 − 𝑒−𝑡
𝜏𝑒𝑠⁄ )

 (4.2) 

This gives the instantaneous density, but the observed quantity is the photocurrent arising 

from exciton dissociation, thus, to find the photocurrent from a single pulse, 𝐼𝐼, we 

integrate the linear term of equation 4.1:  

𝐼𝐼(𝑃) ∝  ∫
𝑁(𝑁1, 𝑡)

𝜏𝑒𝑠

∞

0

𝑑𝑡 =
1

𝛼𝜏𝑒𝑠
ln(1 + 𝑁1𝛼𝜏𝑒𝑠) (4.3) 

Fig. 4.4a shows this solution, plotting equation 4.3 as a function of laser power 

(proportional to 𝑁1). The insets to Fig. 4.4a plot equation 4.2 for low and high power, the 

integrated area under the curves generates the values for the main plot. 

The dynamics gets more complicated in the two-pulse picture but can still be 

treated with this model. When a second pulse arrives - delayed by Δ𝑡 - newly excited 

excitons combine with those excited by the first pulse (Fig. 4.4b). The photocurrent 

counts the number of carriers that escape the photocell and is determined by the time-
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integrated dynamics of both pulses (Fig. 4.4b insets). The two-pulse photocurrent 𝐼𝐼𝐼(Δ𝑡) 

is then written as: 

𝐼𝐼𝐼(Δ𝑡) ∝  
1

𝛼𝜏𝑒𝑠
ln[1 +  𝑁1𝛼𝜏𝑒𝑠(1 − 𝑒

−
Δ𝑡
𝜏𝑒𝑠)] + 

1

𝛼𝜏𝑒𝑠
ln(1 +  𝑁2𝛼𝜏𝑒𝑠) (4.4) 

where the exciton population immediately following the second pulse is 𝑁2 =  𝑁1 +

𝑁(𝑁1, Δ𝑡) (shown in Fig. 4.4b). When the delay time is much longer than the escape time 

(Δ𝑡 >> es), Equation 4.4 reduces to the one-pulse photocurrent II:  

𝐼𝐼𝐼(Δ𝑡 → ∞) ≈  2𝐼𝐼 ∝  
1

𝛼𝜏𝑒𝑠
ln(1 +  𝑁1𝛼𝜏𝑒𝑠) (4.5) 

as shown in Fig. 4.4a. 

 

 

Figure 4.4: a, the solution of Eqn. 4.1 for a single laser pulse as a function of laser 

power, (Eqn. 4.3) and, b, for two pulses as a function of two pulse time delay, Δ𝑡 (Eqn. 

4.4). The photocurrent is proportional to the integral of the number of excitons versus 

time, shown in the insets, which is initially driven to a maximum value proportional to 

laser power, then exponentially decays. 
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4.5 Two-Body Auger Recombination in MoTe2 

 The exciton-exciton annihilation model exhibits excellent qualitative and 

quantitative agreement with the time-resolved photoresponse of the GMoTe2 sample. At 

long Δ𝑡, equation 4.5 indicates that the two-pulse photocurrent is twice that of a single 

ultrafast pulse 𝐼𝐼𝐼 ≈ 2𝐼𝐼. By normalizing 𝐼𝐼𝐼(Δ𝑡)/2𝐼𝐼, the two-pulse photocurrent should 

collapse at long time delays and be nearly independent of laser power. Fig. 4.5a shows 

the photocurrent as a function of Δ𝑡 normalized by the photocurrent at Δ𝑡 → ∞ (obtained 

through fitting to a symmetric exponential). The data is shown as colored points and fits 

to equation 4.4 are shown as solid lines. We observe that for all subcritical powers the fits 

are in good agreement with the data.  

In addition, we see that when plotted as 𝐼𝐼𝐼/2𝐼𝐼 all of the data collapses onto 

roughly the same line, indicating that our model fully captures the dynamics of the 

photocurrent as a function of Δ𝑡 and laser power. Similar models can be formulated that 

include three body terms, or treat excitons and free carriers as different species, however 

all of these models are both more complicated and demonstrate less qualitative and 

quantitative agreement with the data. Therefore, we conclude that the dynamics of Auger 

recombination in the GMoTe2 sample is dominated by two-body collisions, indicative of 

biexcitons. Furthermore, the remarkable agreement with an analytic model means that we 

can use the fits to the data to extract numerical parameters characterizing this interaction. 

Parameters 𝛼 and 𝜏𝑒𝑠 can be obtained by fitting equation 4.4 to a data set that 

varies in both power and Δ𝑡. To help the fitting algorithm optimize without extraneous 

fitting parameters we divide the data by its long Δ𝑡 value (obtained from a simple 
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exponential fit) and fit that normalized data to 𝐼𝐼𝐼/2𝐼𝐼. In addition, this function is 

difficult to fit due to the near degeneracy of 𝛼 and 𝜏𝑒𝑠, which are always found as the 

product 𝛼𝜏𝑒𝑠, except in the exponential factor 𝑒−Δ𝑡/𝜏𝑒𝑠. Thus, only measurements that 

have high data density in Δ𝑡 can fit distinct values of 𝛼 and 𝜏𝑒𝑠. Given the above, we fit 

to the normalized data shown in Fig. 4.5a.  

 

 

Figure 4.5: a photocurrent vs. Δ𝑡, normalized by 𝐼(𝑡 → ∞), as a function of power 

(points) fitted to the two-body model (solid lines). b, photocurrent versus delay, with a 

biexciton model fit, showing the model breaking down at high powers (>5 mW) and short 

delay, |Δ𝑡| < 50 ps, e.g. at high exciton density. 

 

Since the fit values at each power were mostly consistent between all the different 

values of power and we average them to obtain the final values of 𝛼 = (5.62 ±

0.52) 𝑥 10−6 cm2/s and the escape time at zero applied voltage of 𝜏𝑒𝑠 = 86 ± 2 ps. In 

addition, for simplicity this data was fit with the assumption of 100% absorption, i.e. 

A=1. Realistically, 𝐴~10% (see the discussion of absorption in appendix A2.1) but 
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imperfect absorption does not essentially change the fitting, except that the value of 𝛼 

must be divided by A, i.e. 𝛼(𝐴) = 𝛼100%/𝐴, for A < 1.  

All models have limits to their validity and the two-body Auger recombination 

model begins to break down as the density of excitons rises above a certain threshold. 

Fig. 4.5b shows three traces of photocurrent versus Δ𝑡 (points) fit to the two-body model 

(solid lines) at three different values of power. We see that the 3 mW and the 5 mW 

photocurrent fit well to the two-body model, but that the model breaks down on the 7 

mW photocurrent at |Δ𝑡| < 50 ps. This is because at high power and short Δ𝑡 the density 

of excitons becomes so large that many-body effects are not negligible and begin to 

dominate the charge carrier dynamics. Not coincidentally, 5 mW is the critical threshold 

(at Δ𝑡 = 0) in laser power for a phase transition to a strongly interacting state, which will 

be discussed in Chapter 5. 

 

4.6 Phonons and Interlayer Excitons in 2D Heterojunctions 

 Having explored the interactions involved in Auger recombination let us turn to 

the other prototypical interaction of excitons, the exciton-phonon interaction. As 

discussed in Chapter 1 when electrons and holes form an exciton, they can be prohibited 

from recombining by momentum constraints. Such excitons are called indirect excitons 

because they require an indirect transition, that is a transition between two points in k-

space that have different momenta. Due to the conservation of momentum indirect 

excitons fundamentally require a three-body interaction in order to form or recombine. 

The third body, besides the electron and the hole, is often a quantized vibrational mode of 
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the lattice, i.e. a phonon. That makes indirect excitons an ideal system to study the 

interactions between electrons and phonons. 

 

 

Figure 4.6: Schematic of the MoSe2 -WSe2 heterostructure that is the key component of 

the MoSe2WSe2-1 and MoSe2WSe2-2 samples. 

 

 There are multiple types of exciton that can occur in 2D systems, here we will 

focus on the interlayer exciton. An interlayer exciton is an exciton that occurs in a layered 

heterostructure where the electron and the holes are localized in different layers, a 

configuration which gives them a great variety of interesting physics10,11. Specifically, in 

our desire to study the electron phonon interaction interlayer excitons have two key 

properties, firstly a strong out of plane electric dipole moment that makes them highly 

controllable by external voltages. Secondly, the interlayer exciton is highly localized; by 
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definition the interlayer exciton occurs at the interface between two materials, and if the 

materials are atomically thin then there are only a few layers for the electron and hole to 

exist in. Such a boundary condition means that the electron and hole are localized to only 

a few unit cells and are thus more sensitive to any changes on that same scale, such as the 

deformation due to a vibrating lattice. 

 

 
Figure 4.7: Two interlayer excitonic transitions, a direct and b indirect, of interest. 

Planes represent Brillion zones of TMD materials, with the high-symmetry points K and 

Γ marked. 

 

 The material system we will be using to study this is a stack of monolayer MoSe2 

and bilayer WSe2, shown schematically in Fig. 4.6. This system is known to have a type 

II band alignment which enables electron-pair multiplication across an atomically sharp 

interface62. In this system we expect that there are two interlayer excitons relevant to our 

study the first is a higher energy (~1.3 eV) direct exciton corresponding to a transition 

between the 𝐾 point of the WSe2 valance band and the 𝐾 point of the MoSe2 conduction 
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band, as shown in Fig. 4.7a 63,64. Secondly, we expect a lower energy (~1.0 eV) indirect 

transition between the Γ point of the WSe2 valance band and the 𝐾 point of the MoSe2 

conduction band, as shown in Fig. 4.7a62. Being indirect the Γ → 𝐾 phonon involves a 

third body, usually expected to be a phonon. Thus, we proceed with investigating the 

photoresponse of this exciton, with the 𝐾 → 𝐾 exciton useful for comparison. 

 

 
Figure 4.8: MoSe2WSe2-2 sample schematic, a, and band diagram, b. The MoSe2WSe2-1 

sample used at low temperature is consistent except that it uses the Si substrate as the 

gate connected to VG. 
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4.7 The Photocurrent Parameter Space of MoSe2-WSe2 Heterostructures 

In this dissertation we will use two MoSe2-WSe2 samples to explore the 

photocurrent parameter space in search of the interlayer exciton. The fabrication and 

basic characterization of these samples, referred to as MoSe2WSe2-1 and MoSe2WSe2-2 

is discussed in detail in appendix A1.4. Fig. 4.8a shows the MoSe2WSe2-2 

heterostructure schematically, indicating contacts used to apply an inter-layer voltage 

VSD, and apply a gate voltage VG to the graphene backgate (sample MoSe2WSe2-1 is the 

same, except with a Si backgate.) Current I is measured on the WSe2 contact and 

includes photocurrent and dark current, the photocurrent, IPC, is extracted wither with a 

lock-in amplifier or by subtracting the known dark current. As shown schematically in 

Fig. 4.8b, at equilibrium a WSe2-MoSe2 heterostructure forms a type II semiconductor 

interface: i.e., the energy difference between the highest WSe2 valence band and lowest 

MoSe2 conduction band is larger than the conduction (valence) band offsets between 

WSe2 and MoSe2. By applying a gate voltage VG to the graphene electrode, we precisely 

control the charge carrier density in the heterostructure, carefully tuning the chemical 

potential 𝜇𝑐. It is across this gap that we excite the interlayer exciton with energy EIX. 

To characterize the indirect (Γ → 𝐾) exciton we measure the photocurrent 

spectrum at low temperature. Fig. 4.9 shows the interlayer photocurrent vs. EPH and VG 

for the MoSe2WSe2-1 device, measured at low temperature (T = 20 K). Strikingly, 

equally spaced photocurrent peaks are strongly pronounced below the interlayer e-h pair 

excitation energy EIX. This highly unusual behavior is highlighted in Fig. 4.9a, which 

shows IPC vs. EPH and VG at lower photon energies. In the range EPH = 0.85 - 1.05 eV, we 
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observed a set of evenly spaced photocurrent maxima, which increase in amplitude as 

EPH increases. These peaks occur only in a narrow range of gate voltage near VG = -5.0 V. 

The highest energy peak occurs at EPH = 1.02 eV, and line traces of IPC vs. EPH (Fig. 4.9b) 

show additional regularly spaced peaks at energies below the dominant resonance. To 

characterize these oscillations in the photocurrent response we take the second derivative 

of photocurrent with respect to EPH and calculate the Fourier transform, shown in Fig. 

4.9c.  The Fourier transform reveals that the oscillations consists of a primary component 

at Δ𝜀 = 30 meV and a weaker secondary component at 22 meV. 

Unexpectedly, the same oscillations occur when the direct (𝐾 → 𝐾) exciton is 

characterized. When EPH was tuned between 1.24 eV and 1.40 eV (Fig. 4.9d), we 

observed a sequence of photocurrent peaks that occur only near VG = -5.0 V. While the 

strongest peak occurs at EPH = 1.31 eV, it is only slightly stronger than several equally 

spaced maxima at higher and lower photon energy. By calculating the Fourier transform 

of the second derivative (Fig. 4.9e), we find a clear periodic component at Δ𝜀 = 30 meV.   

 The low temperature measurements on the MoSe2WSe2-1 sample were taken 

using a standard spectroscopy approach, that is sampling a two-dimensional phase space, 

due to the difficulty of working at low temperature. However, there are a variety of other 

variables at play; the geometry of the sample and interlayer voltage VSD also directly 

influence the photoresponse, and optical parameters such as laser power must be explored 

to understand if they influence the system. Given the number of parameters and the 

potential complexity, data intensive imaging is required to fully characterize this 

parameter space thus we proceed with the MPDPM methodology discussed in chapters 2. 
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Figure 4.9 Photocurrent spectroscopy on the MoSe2WSe2-1 sample at low temperature 

(T≈20 K). a, the photocurrent spectrum (EPH vs VG) near the indirect (Γ → 𝐾) exciton. b 

line cuts of the photocurrent spectrum and c the Fourier transform of the second 

derivative of the photocurrent, showing two distinct modes at 22 meV and 30 meV. d, the 

photocurrent spectrum (EPH vs VG) near the direct (𝐾 → 𝐾) exciton. e line cuts of the 

photocurrent spectrum and f the Fourier transform of the second derivative of the 

photocurrent, showing a distinct mode at 30 meV. Photocurrent shown is a modulation on 

top of a significantly larger dark current contribution which is subtracted off. 
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 To begin, we data intensively sample the voltage parameter space. Fig. 4.10a 

shows a set of 2000 photocurrent images versus VG and VSD with the laser wavelength at 

1250 nm (1.0 eV). This is dataset is spatially consistent, i.e. corrected for spatial drift, 

and in the tile plot format we see the large-scale behavior of the device. Zooming in on a 

subset of the images in Fig. 4.10b and superimposing the heterostructure area of the 

sample we see that the majority of the photocurrent originates outside the heterostructure, 

mainly from the semiconductor-metal interface at the device contacts. However, near VG 

= 0 V we observe distinct and spatially uniform photocurrent originating from the 

heterostructure area, consistent with our expectation of photocurrent from an interlayer 

exciton near charge neutrality. 

 To verify that the photocurrent from the heterostructure is due to the interlayer 

exciton we take a similar set of spatial photocurrent maps at a fixed value of VSD = -0.35 

V and varying the laser wavelength, shown in Fig. 4.11a. Again, we identify the 

heterostructure region and consider the average photocurrent originating in that spatial 

area. The heterostructure responsivity, e.g. the photocurrent divided by the power, is 

shown in Fig. 4.11b left, and we see a bright stripe near VG = 0 V. We  average between 

VG = 0.0 V and VG = 0.4 V (right side of Fig. 4.11b) and observe a resonance in photon 

energy peaked at 0.96 eV, very close to our expectation of a 1.0 eV interlayer exciton 

though slightly shifted from the exciton seen in Fig. 4.9 due to a different electrostatic 

environment. Being able to confidently detect the excitonic photocurrent from the 

heterostructure we are able to explore the voltage dependence in more depth. 
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Figure 4.10: a, data intensive imaging of the MoSe2WSe2-2 sample in the VSD versus VG 

parameter space. b, a series of photocurrent images showing the heterostructure area. 
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Figure 4.11: a, data intensive imaging of the MoSe2WSe2-2 photocurrent versus 

wavelength and gate voltage. b, processed responsivity (photocurrent divided by laser 

power) from the heterostructure regions and c, the averaged responsivity (points) fit to a 

Lorentzian function (grey line). 
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In Fig. 4.12a we plot the average heterostructure photocurrent versus VSD and VG 

observing a bright feature of positive photocurrent near VG = 0 as a function of increasing 

VSD. To proceed, we will look at the photoconductance, that is 𝑑𝐼𝑃𝐶/𝑑𝑉𝑆𝐷, which we plot 

in Fig. 4.12b. We observe a bright feature corresponding to the main feature, but we also 

see a number of small oscillations in the conductance. To further visualize these 

oscillations, we take the second derivative 𝑑2𝐼𝑃𝐶/𝑑𝑉𝑆𝐷
2 , shown in Fig. 4.12c, where we 

see strong oscillations in the photocurrent. Observing these oscillations with respect to 

VSD we want to compare them to the oscillations observed at low temperature with 

respect to EPH. To proceed we must calculate the shift in energy shift across the 

heterostructure from a change in VSD.  

 

 

Figure 4.12: a heterostructure photocurrent, b the derivative of photocurrent with respect 

to VSD, and c the second derivative of photocurrent with respect to VSD. 
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From the photocurrent data (Fig. 4.13a) we plot the VG-dependent characteristics 

taken at several VSD values (Fig. 4.13b). We extract the gate voltage values of the 

photocurrent peaks VG
*, and plot VG

* as a function of VSD (Fig. 4.13c). In addition to 

increasing the electric field across the MoSe2-WSe2 interface, the effective interlayer 

voltage ∆𝑉𝐼 ∝  ∆𝑉𝑆𝐷 contributes to charging the individual layers, giving rise to a 

depletion capacitance. At charge neutrality, the charge density 𝑛 = 0 and the change in 

gate voltage ∆𝑉𝐺 is related to a change in interlayer voltage Δ𝑉𝐼 by simple capacitive 

coupling ∆𝑉𝐼 = −(𝐶𝐺/𝐶𝐼)∆𝑉𝐺, where  𝐶𝐼 and 𝐶𝐺 are the capacitances per unit area for the 

interlayer depletion region and due to the bottom gate, respectively. From a linear fit to 

the data (red line in Fig. 4.13 c) we find that changes in VSD are indeed proportional to 

changes in VG: ∆𝑉𝑆𝐷 = −𝛽∆𝑉𝐺 ≈ −2.1∆𝑉𝐺. Thus, along the diagonal line in Fig. 4.13a, 

the interlayer electric field increases while maintaining precise charge neutrality. 

Remarkably, when the device is tuned to charge neutrality, I-VSD characteristics 

are highly asymmetric, similar to a diode. In forward bias (VSD > 0 V), the dark current 

increases exponentially (Fig. 4.13d), while in reverse bias the dark current is highly 

suppressed, consistent with van der Waals heterostructure p-n junction behavior65. We fit 

the dark I-VSD characteristic to the usual diode equation 𝐼 = 𝐼0(exp(𝑒𝑉𝑆𝐷 𝛼𝑘𝐵𝑇⁄ ) − 1)), 

where 𝐼0 is the reverse bias saturation current, 𝑘𝐵𝑇 = 26 meV is the thermal energy at 

room temperature, and 𝛼 ≥ 1 is a phenomenological constant that relates changes in the 

interlayer electric field energy to a reduced voltage 𝑒𝑉𝑆𝐷 𝛼⁄  66. The diode equation (red 

line in Fig. 4.13d) shows excellent agreement with the data, giving 𝛼 = 1.8.  
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Figure 4.13: Determining electronic characteristics of the MoSe2WSe2-2 sample. a, the 

heterostructure photocurrent. b, line cuts of the heterostructure photocurrent versus VSD 

with maxima shown as points. c, locations of the maxima versus VSD. Red line in a and c 

is the linear relationship between VSD and VG. d, dark current as a function of VSD (blue 

points) fit to the Shockley diode equation (red curve). 
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Figure 4.14: Oscillations in the room temperature data. a, the second derivative of the 

heterostructure photocurrent with respect to VSD scaled by 1/𝛼𝛽. b, the photocurrent 

second derivative averaged between VG = -0.3 and VG = 0.4. c, the Fourier transform of 

the data in b. d, the two-dimensional Fourier transform of the data in a. Blue dashed lines 

mark the peak frequency at 1/(30 meV). 

 

 The above fitting characterizes the electrostatic properties of the data, next we 

calculate the energy change due to an effective interlayer voltage 𝑉𝐼. Writing the energy 

change as ∆𝐸 = �⃗� ∙ �⃗⃗� = 𝑒𝑑 𝑉𝐼 𝛽𝑡𝑇𝑀𝐷⁄  where |𝑝|⃗⃗⃗⃗ = 𝑒𝑑 is the dipole moment of the 

interlayer exciton with length 𝑑 which we approximate as the heterostructure thickness. 

Then we relate changes in the interlayer electric field energy to the reduced voltage 

𝑒𝑉𝑆𝐷 𝛼⁄ , giving ∆𝐸 ≈ 𝑒 𝑉𝐼 𝛽⁄ = 𝑒 𝑉𝑆𝐷 𝛼𝛽⁄ . Using the relationship ∆𝐸 = 𝑒 𝑉𝑆𝐷 𝛼𝛽⁄  to 

rescale VSD, in Figure 4.14a we plot the derivative of the photoconductance 𝑑2𝐼𝑃𝐶/𝑑𝑉𝑆𝐷
2  

as a function of effective energy. Fig. 4.14b shows 𝑑2𝐼𝑃𝐶/𝑑𝑉𝑆𝐷
2  averaged between VG = -

0.3 and 0.4 V to get a clear signal. We observe significant oscillations as a function of 



 

 

98 

∆𝐸. To obtain the period of oscillations we take the Fourier transform of 𝑑2𝐼𝑃𝐶/𝑑𝑉𝑆𝐷
2  

(Fig. 4.14c). Like the low temperature photocurrent spectra, voltage-dependent 

oscillations correspond closely to 30 meV. We can also take the two-dimensional Fourier 

transform of all the 𝑑2𝐼𝑃𝐶/𝑑𝑉𝑆𝐷
2  data, shown in Fig. 4.14d in which we observe a broad 

peak centered at 30 meV. The broadness of this peak relative to the peaks in Fig. 4.9 c 

and f is due thermal broadening at room temperature, despite this the room temperature 

peak is consistent with the low temperature oscillations. 

 

4.8 The Phonon Modes of MoSe2-WSe2 Heterostructures 

 To understand the oscillations in the photocurrent data we examine the phonon 

modes of this system, which Raman measurements tell us strongly active near 30 meV 

(see appendix A1.4). We use DFT calculations performed by our collaborators in Dr. 

Roger Lake’s laboratory which were calculated using the Vienna ab initio simulation 

package (VASP) in the projected-augmented-wave method66-70. The dispersion of the 

phonon modes, and their density of states, is shown in Fig. 4.15 where the faded blue bar 

marks 30 meV, but is broadened by 𝑘𝑏𝑇 to represent the range of energies that would be 

consistent with the 30 meV mode observed in the data at T = 20 K. From this we see that 

there are multiple strongly active modes with bands near 30 meV.  

Each of the 26 bands in the dispersion corresponds to a particular mode of atomic 

vibration; next we explore what each of these modes corresponds to and which are most 

likely to affect the data. Fig. 4.16 visualizes the results of the DFT calculation for specific 

bands, showing a representative sampling of the phonon modes from the dispersion near 

30 meV. The phonons mainly consist of in-lane vibrations, E2g modes, with some out-of-
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plane vibrations, A1g modes. This tells us that there are many optical phonons, especially 

in-plane modes, near the energy of the oscillations we observe. However, not all these 

phonons could result in the photocurrent oscillations. 

 

 
Figure 4.15: left, dispersion of DFT calculated phonon modes, and, right, phonon 

density of states, for the MoSe2 (green line), WSe2 (blue line) and heterostructure (black 

line). Blue bar shows 30 meV with thermal broadening of kbT for T = 20 K.  

 

By making some basic observations about our data we identify candidate phonon 

modes which may be related to the photocurrent oscillations. In the low temperature data, 

Fig. 4.9, we see sharp peaks at 30 meV across two different exciton transitions, that is 

involving transitions at different locations in the Brillion zone (𝐾 → 𝐾 and Γ → 𝐾). 

Therefore, if a phonon is responsible for these oscillations, we expect that it has an 
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energy of approximately 30 meV at both the 𝐾 and Γ points. In Fig. 4.17 we plot the 

seven phonon modes that are near 30 meV at the Γ point. We observe that most have a 

significantly different energy at the 𝐾 point, except for two which are marked as blue 

lines. These bands corresponds to two nearly degenerate phonon modes, corresponding to 

the vibrations highlighted in Fig. 4.16 with the blue bars. We see that in these modes the 

tungsten and selenium atoms move oppositely in plane along either in-plane axis. 

 

 
Figure 4.16: Visualization of optical phonons in the heterostructure along with their 

spectroscopy classification. Modes marked with the blue band correspond to nearly flat 

bands that are consistent with the oscillations observed in the photocurrent data. 

 

Having identified candidate phonon modes that may correspond to the 30 meV 

oscillation, we observe two critical properties that will guide the formulation of a model. 

Firstly, we note that these bands are almost flat, meaning they have nearly the same value 

at every wavevector. This would imply that they are not constrained by momentum; that 

a 30 meV phonon in these modes can have almost any quasi-momentum. Secondly, we 
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note that these phonon modes are localized on the same scale as the interlayer exciton. 

The interlayer exciton fundamentally has the electron localized in the WSe2 layer, which 

vibrates in these modes. This implies that this phonon mode is vibrating the lattice over a 

significant part of the exciton wavefunction.  

 

 
Figure 4.17: DFT calculated phonon modes zoomed in on modes that are near 30 meV at 

the Γ point. Blue lines are the candidate phonon modes. 

 

4.9 The Electron-Phonon Interaction in MoSe2-WSe2 Heterostructures 

 Having clearly identified the 30 meV oscillation in the data and the properties of 

candidate phonon modes we develop a physical picture for how electron-phonon 

coupling can give rise to robust oscillations in the photocurrent. Fig 4.18 summarized the 

main experimental results, showing the 30 meV oscillation that is robust across several 
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different regimes. To be consistent with the data for all three measurements a model must 

have an effect that occurs with respect to changes in energy from either EPH or changes in 

the interlayer voltage ∆𝐸 = 𝑒 𝑉𝑆𝐷 𝛼𝛽⁄  and that it must be independent of which excitonic 

transition occurs, acting on either the lowest energy indirect Γ → 𝐾 transition or the direct 

𝐾 → 𝐾 transition. To develop and model that satisfies these constraints we use the two 

key features of the 30 meV phonon modes that we identified in the previous section. 

 

 
Figure 4.18: Summary of the 30 meV oscillations from multiple experiments. a and b 

taken from figure 4.9 c,f showing the exciton transition they measure. c, shows the 

voltage mode from figure 4.14d. In all cases there is a bright mode at (30 meV)-1 marked 

with a blue dashed line. 

 

 To begin, we consider what happens when a phonon is localized on the same 

scale as the electron wavefunction. An exciton is confined to exist within the material 

that hosts it, in the case an interlayer exciton it is even more confined than normal as the 
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electron and hole must exist in different materials. In a stacked van der Waals 

heterostructure that means that the exciton is highly localized, having a vertical extent 

approximately equal to the thickness of the heterostructure. Thus, an optical phonon, like 

the candidate phonon, is vibrating the lattice over a large amount of the exciton 

wavefunction. Therefore, the exciton experiences a potential that is oscillating in time at 

the frequency of the phonon.  

To model the effect of a time varying potential on the exciton we follow the basic 

formalism that is used when considering the effect of a time varying electric potential in 

electronic transport (the Tien-Gordon effect) or an optically applied potential, (Floquet 

states)71,72. In either case, the answer comes from simple and general statements about the 

quantum mechanics of periodic time varying potential, regardless of the source of that 

potential. In the absence of time-variation, the time-dependent wavefunction of an 

electron with energy E is given by: 

Ψ(𝒓, 𝑡) = exp [−
𝑖

ℏ
𝐸𝑡] 𝜓(𝒓) (4.6) 

Where 𝜓(𝒓) is the time-independent wavefunction, and the rest is a time varying phase 

related to the energy. This time varying phase is not observable, any observable quantity 

will integrate it out, and is usually not considered. The presence of a time-varying 

potential, 𝑉(𝑡), modifies this phase as such: 

Ψ(𝒓, 𝑡) = exp [−
𝑖

ℏ
𝐸𝑡 −

𝑖𝑒

ℏ
∫ 𝑉(𝑡′)𝑑𝑡′

𝑡

] 𝜓(𝒓) (4.7) 

However, despite the shift in phase, if the potential is spatially symmetric the phase 

remains unobservable. Intuitively, this means that no matter what is happening to an 
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electron in instantaneous time, if the spatial potential is uniform, it’s motion will not be 

affected, thus no observable quantity will be affected. However, the un-observability of 

this phase depends on spatially symmetry, if there is a spatially variable potential this 

phase becomes relevant. Intuitively, if there is a potential difference across the 

wavefunction, then the electron can move at any instantaneous time, thus it matters what 

is happening to the electron wavefunction as a function of time. 

 In our system the electron and hole that make up an exciton experience both a 

time varying potential and a symmetry breaking spatial potential (in addition to the 

normal spatial potential provided by the crystal). The longitudinal optical phonon vibrates 

the lattice underneath the electron providing a potential, 𝑉(𝑡) = 𝑉0sin(Ω𝑡) where Ω is the 

frequency of the phonon. Furthermore, as we calculated in section 4.7 there is a potential 

difference ∆𝐸 = 𝑒 𝑉𝑆𝐷 𝛼𝛽⁄  across the heterostructure, i.e. across the exciton 

wavefunction. This spatially varying potential is what allows the charge neutral exciton 

to dissociate and produce observable photocurrent, thus if it is related to the time varying 

phase, that could result in more or less photocurrent. 

 In summary, our system has all the necessary pieces for this phase to have an 

observable effect. If we put the potential on the exciton, 𝑉(𝒓, 𝑡) = Δ𝐸(𝒓) + 𝑉0sin(Ω𝑡), 

into equation 4.7 and series expand the phase factor, we expect that the interlayer 

excitons have a time-dependent wavefunction given by:  

Ψ(𝒓, 𝑡) = ∑ 𝑎𝑛 exp [−
𝑖

ℏ
(𝐸𝐼𝑋 + 𝑒𝑉𝑆𝐷 𝛼𝛽⁄ − 𝑛ℏΩ )]

∞

𝑛=−∞

𝜓𝐼𝑋(𝒓) (4.8) 
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Where EIX is the energy of the interlayer exciton given by the bands and 𝜓𝐼𝑋 is the time 

independent wavefunction of the interlayer exciton. From equation 4.8 we see a 

wavefunction made up of a mixture of components with energy 𝐸𝐼𝑋 + 𝑒𝑉𝑆𝐷 𝛼𝛽⁄ − 𝑛ℏΩ, a 

difference in energy which could have observable consequences. 

Even given this shift in the wavefunction, any effect would normally be difficult 

to observe since the energy of a phonon mode, ℏΩ, would normally depend on 

wavevector of the phonon, creating a severe momentum constraint. With that constraint 

any shift in energy would be disorganized, with many phonon energies contributing and 

resulting a wide dispersion likely unobservable from the broad spectrum normally 

observed for excitons.  Fortunately, we identified that the candidate phonon modes have 

flat bands. In other words, those phonons will have approximately 30 meV of energy 

regardless of their wavevector. Therefore, the momentum constraint is relaxed, and the 

absorption of a photon depends only on the conservation of energy. Thus, absorption will 

occur, and an exciton will be produced, when the photon energy equals the energy of a 

component of the exciton wavefunction given by equation 4.8, thus the condition for 

absorption is: 

𝐸𝑃𝐻 = 𝐸𝐼𝑋 + 𝑒𝑉𝑆𝐷 𝛼𝛽⁄ − 𝑛ℏΩ (4.9) 

Therefore, as either EPH or VSD is varied the photon energy will come into or go out of 

resonance with some component of the wavefunction. Since the components are evenly 

spaced in energy and there is no phonon momentum constraint, this resonance should 

result in peaks periodically spaced by ℏΩ = 30 meV and this should happen everywhere 

in the Brillion zone no matter what 𝐸𝐼𝑋 is. In other words, this phonon-assisted absorption 
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process satisfies all the properties of the photocurrent oscillations that we observed from 

Fig. 4.18. Therefore, we conclude that the photocurrent oscillation are the result of strong 

exciton-phonon coupling in this system. 

 

4.10 Conclusions: Controlling Excitons Unveils Interactions 

 In this chapter we explored the behavior of excitons in two model heterostructures 

containing TMDs and observed rich interactions between both the exciton and the lattice, 

and between excitons and other excitons. The diverse phenomena occurring in these 

systems at room temperature, and our ability to observe them through optical excitation, 

demonstrates that non-equilibrium excitons are more complex and more experimentally 

accessible in 2D materials. Furthermore, this chapter shows the usefulness of the data-

intensive approach and how it can unveil subtle interactions from a parameter space filled 

with complex signal. The ability to observe and image these non-equilibrium excitons 

with a high degree of data density also gives a much greater degree of control for non-

equilibrium states in these systems. This control is important, not simply because it 

allows us to explore these states, but also because we may be able to use it for scientific 

and technological applications in the future. 
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CHAPTER 5: 

THE MESOSCOPIC SCALE 

5.1 Correlated Phenomena at the Mesoscale 

 In the previous chapter we studied the non-equilibrium physics of excitons and 

their interactions with other excitons, leading to Auger recombination, and with 

vibrations of the lattice, i.e. phonons. This explored physics on the Microscopic Scale, 

that is we focused on the two or three body interactions of the excitons, or the effect of 

local lattice vibrations on a single exciton. Implicit in this was that interactions were 

confined to that scale, and that a few single discrete interactions determined their 

properties. But this assumption begins to break down at high density, if we increase the 

number of charge carriers in a constant volume they need to interact more. Eventually 

they start interacting so much that it’s useless to consider what happens to a single 

electron or hole, rather we think about the properties of a phase consisting of many 

correlated electrons and holes. To do this we need to zoom out from the microscopic 

scale and study what happens at the mesoscopic scale. 

 There are two strongly interacting non-equilibrium phases that we will examine 

here, the electron-hole liquid in MoTe2, and the hot carrier regime of graphene. In MoTe2 

the density of excitons can be increased to the point that the dynamics undergo a phase 

transition to a strongly interacting phase. In graphene excited charge carriers couple to 

each on a faster timescale than they couple to the lattice, resulting in a “hot carrier, cool 

lattice” phase where a population of high energy carriers can exist for several 

picoseconds before in cools. 
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5.2 The High-Power Behavior of the Graphene-MoTe2 System 

 In the first half of chapter 4 we detailed the interactions of excitons in a 

Graphene-MoTe2 heterostructure, concluding that the dynamics are dominated by two-

body Auger recombination of biexcitons. In this picture, the excitons are essentially in a 

non-ideal gas phase, that is they interact with the container they are in and occasionally 

interact with each other. In this chapter we will discuss the breakdown of this limit, 

where excitons are densely packed and their dynamics become driven by numerous 

interactions, that is when it no longer makes sense to think about two-body or three-body 

interactions, but rather many-body physics takes over. Experimentally, this will 

correspond to the high-density limit which can be achieved by increasing the power of 

laser pulses. Thus, we will return to the GMoTe2 sample (details in appendix 1.3) and 

explore the high-power parameter space. 

 We begin by examining the spatial power dependence of the GMoTe2 sample. At 

long Δ𝑡 the sample exhibits a photocurrent response that is spatially simple; it is 

maximized in the center of the sample and near the edges falls on, as shown as both color 

and height in Fig. 5.1a. This spatial profile expected due to the shape of the gaussian laser 

beamspot, and as we vary the power we see that the scale of the photocurrent increases 

but the profile does not change. This is further confirmed when we examine the non-

linearity of the spatial photocurrent. From a large set of photocurrents images, the 

interlayer photocurrent vs. optical power is fit to 𝐼 ∝ 𝑃𝛾 at each point in space, giving the 

spatial non-linearity 𝛾(𝑥, 𝑦), shown in Fig. 5.1b, which we see if mostly uniform over the 

area of the sample. In this regime, the spatial non-linearity 𝛾 does a good job of capturing 
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the dynamics of the system, i.e. those discussed in Chapter 4, thus following the MPDPM 

process we use the 2D maps of 𝛾 to represent the behavior of the sample from a 3D set of 

images as a function of power. 

 

 

Figure 5.1: a Photocurrent images for increasing laser power; at room temperature, 

wavelength  = 1200 nm, and time delay Δ𝑡 = 120 ps. With photocurrent shown as both 

height above a plane and color. b, the power dependence versus space represented by the 

power law exponent, 𝛾(𝑥, 𝑦) where the dashed line outlines the graphene-MoTe2 

heterostructure region. Scale bars are 3 μm and circles indicate the full width at half 

maximum (FWHM) of the diffraction-limited beamspot. 

 

 We want to explore the high exciton density regime, and there are two parameters 

we could tune to achieve high density. We could increase the density by increasing the 

power of the laser, and thus the carriers generated per pulse. Alternately, we could 

increase the density by decreasing |Δ𝑡| thus causing carriers from the two pulses to 

overlap, increasing the instantaneous density of carriers (as shown schematically in the 

Fig. 4.4b insets). Given that 𝛾 extracted from the power dependence is a good dynamical 
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parameter, we want to watch 𝛾 as a function of Δ𝑡 to see if the dynamics change as the 

pulses overlap. Fig. 5.2 shows the spatial 𝛾 map as a function of Δ𝑡, reduced from a four-

dimensional data set of spatial images versus power and two pulse delay. 

 

 
Figure 5.2: Spatial 𝛾 maps versus two-pulse delay Δ𝑡. Represents the laser power versus 

Δ𝑡 parameter space. In the bottom right panel, the scale bars is 3 μm and the circle 

indicates the FWHM of the diffraction-limited beamspot. 

 

Strikingly, when the time delay between laser pulses is very short, MPDPM 

reveals highly anomalous photoresponse. At long time delay (Δ𝑡 > 30 ps) the spatial non-

linearity is highly uniform over the sample area. But in the center row of Fig. 5.2, |Δ𝑡| ≤ 

30 ps, we see a bright feature emerge in the center of the sample the non-linearity 

increases. At Δ𝑡 = 0.2 ps, the power law behavior collapses near the center, resulting in a 

pronounced ring of sublinear photoresponse (𝛾 ~ 0.5). The area of power law suppression 

significantly exceeds the beam spot size, indicating a global change in photoresponse. 
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This behavior is not a permanent change of device response. Instead, we observe 𝛾 

suppression only at short time delay, while the ordinary photoresponse is recovered as 

soon as the laser intensity is reduced. In the following, we examine the space-time 

evolution of the MoTe2 photoresponse, and extract detailed dependence of the spatial 

photocurrent features on optical power, interlayer voltage, and time delay.  

 

 
Figure 5.3: a, spatially resolved photocurrent maps. Dashed line indicates location of 

photocurrent line profiles. b, photocurrent gradient magnitude |∇𝐼|. Photocurrent was 

measured at various powers (labeled) and Δ𝑡 = 0.2 ps. The contour |∇𝐼| ≈ 0 encloses the 

photocurrent ring (red contour in the image at P = 12.2 mW). Scale bars 5 𝜇m, circles 

indicate the beamspot FWHM. 
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In Fig. 5.3a we decompose the photocurrent image set measured at ∆t = 0.2 ps 

(center image in Fig. 5.2) and examine the constituent photocurrent maps. At low optical 

powers, the photocurrent magnitude increases rapidly and monotonically as seen before 

in Fig. 5.1a. For P > 5 mW, however, the photocurrent at the center of the device 

suddenly decreases, forming a photocurrent ring of bright photoresponse. The 

photocurrent ring grows rapidly with increasing optical power. To see the ring expansion 

more clearly, Fig. 5.3b shows the magnitude of the spatial photocurrent gradient |∇𝐼|, 

which visualize the local slope of the spatially resolved photocurrent landscape. At P = 5 

mW, a clear edge begins to emerge and grows into a well-formed ring.  

 

 
Figure 5.4: Photocurrent ring volume fraction (red data) vs. laser power, from the maps 

in Fig. 5.3. Volume fraction is the ratio of the volume enclosed by the |∇𝐼| ≈ 0 contours 

to the active photocell volume (area). Peak-to-valley distance ℓ (purple data) vs. optical 

power extracted from photocurrent line cuts in a. Red (purple) dashed lines are linear fits 

to volume fraction (ℓ2) vs. optical power above P = 5 mW. 
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Remarkably, the anomalous photocurrent ring appears abruptly with increasing 

optical power. To quantify the ring feature, we note that in the gradient maps in Fig. 5.3b 

the ring feature corresponds to a contour where the gradient is zero, i.e. where the 

photocurrent stops increasing and starts to decrease. To pick out this contour we use an 

iterative algorithm, which starts at the edges of the photocurrent and at each iteration uses 

the gradient vector as a “force” to accelerate the points of the contour. This will cause the 

contour to “climb” the photocurrent, shrinking inwards as it moves up along the gradient. 

If there is no dip feature the contour will shrink until it has zero size at the maximum. If 

there is a dip feature, then the contour will get stuck along the edge of the dip, because 

the gradient is zero at that point. Eventually the contour converges either to zero or to a 

stable finite size. One such contour is shown in red in the bottom left of Fig. 5.3b.  

 

 
Figure 5.5: Spatially integrated photocurrent versus laser power at a Δ𝑡 = -100 ps and b 

Δ𝑡 = 0.2 ps. Dashed line indicates the level that the Δ𝑡 = 0.2 ps trends to. Blue shaded 

area is the same as in Fig. 5.4. 
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Fig. 5.4 shows the power dependence of the ring volume (red points) as a fraction 

of the total heterostructure volume obtained by dividing the area in the contour by the 

sample area. At a critical power PC = 5 mW, we observed a nearly discontinuous growth 

rate of the volume fraction. Above the transition P > PC, the photocurrent ring, and thus 

volume fraction, expands linearly with optical power. To confirm this result we can also 

look at line cuts (for example the white dashed line in Fig. 5.3a lower left) and find the 

distance between the dip and the maximum, which we call ℓ. Taking ℓ2, purple points in 

Fig. 5.4, we see that it follows the same linear trend as the volume fraction. 

The sharp transition at PC also manifests as a sudden deviation from power law 

behavior. Fig. 5.5 shows the spatially integrated photocurrent vs. power measured along 

the dashed line in Fig. 5.3a lower left. Fig. 5.5a shows the integrated photocurrent at Δ𝑡 = 

-100 ps, and we observe sublinear but monotonically increasing power dependence, 

consistent with the behavior discussed in chapter 4. Fig. 5.5b shows the integrated 

photocurrent at Δ𝑡 = 0.2 ps. The photocurrent increases rapidly at low power and exhibits 

ordinary sublinear growth, but above P = PC, the spatially integrated photocurrent 

remains nearly constant as power increases. Thus, the abrupt formation and expansion of 

the photocurrent ring corresponds directly to the collapse of power law behavior observed 

in Fig. 5.2. For |Δ𝑡| > 0.2 ps the same behavior occurs at higher PC since the pulses 

become separated in time and the effect of each individual pulse is weaker than when 

they are combined. 
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Figure 5.6: The dynamics electrons and holes in a TMD as a function of increasing 

charge carrier density 

 

5.3 Modeling the Photoresponse of an Electron Hole Liquid 

The anomalous photoresponse at room temperature is reminiscent of the gas-to-

liquid phase transition of electron-hole (e-h) pairs in conventional semiconductors - such 

as Si, Ge, GaAs, and CdS - at low temperatures32,33,73,74. At low laser power, 

photoexcitation generates a gas of electrons and holes, many of which will form excitons. 

Enhanced Coulomb interactions bind electrons and holes into excitons with nanometer-

scale Bohr radius 𝑎𝐵. The charge carrier density increases with laser power until exciton-

exciton interactions become comparable to interactions within an individual exciton pair. 

Below the power threshold for the phase transition PC, ordinary two-body exciton-exciton 

annihilation processes dominate the optoelectronic properties, as discussed in chapter 4. 

At the critical laser power PC, the electron-hole population merges into a non-

equilibrium many-body phase (Fig. 5.6). The density of electrons, holes and excitons N 

becomes so large that the average spacing between pairs is nearly equal to the exciton 

radius. At PC = 5 mW, the mean exciton-exciton separation, which we estimate to be axx 

= 1-3 nm in MoTe2 (see appendix A2.3), is very close to the Bohr radius aB = 2.3 nm 
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extracted from magneto-optical measurements75. Once axx ~ aB, the electron-hole (e-h) 

population reaches the critical density NC ~ 0.5/nm3 e-h pairs. This density NC, which is 

determined by the renormalized minimum energy per electron-hole pair, remains constant 

in the liquid phase. Above the phase transition, the renormalization of the energy per e-h 

pair results in a suppression of photon absorption within the e-h liquid76,77. The resulting 

e-h liquid exhibits a fixed e-h pair density NC, is highly polarizable in an applied electric 

field, and forms a sharp, stable boundary that separates it from the gas phase32,33,73. 

 

 
Figure 5.7: a, calculated spatially resolved photoresponse of the electron-hole condensate 

showing the suppression of photocurrent in the center of the sample above the critical 

power 𝑃𝑐. b, photocurrent line profiles measured across the center of the sample for 

increasing power; T = 297 K, Δ𝑡 = 0.2 ps. 

 

We attribute the anomalous photoresponse in the GMoTe2 sample to an electron-

hole liquid phase, the properties of which are readily revealed through MPDPM. First, the 

liquid phase is characterized by highly unusual ring-like interlayer photoresponse, which 
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results from fast interlayer transit of liberated electrons and holes near the edge of the 

droplet. At the surface of the device, the excitation laser forms a diffraction-limited 

Gaussian beam spot with a full width at half maximum of 1.67 microns at 𝜆 = 1200 nm. 

When the local maximum power of the Gaussian beam exceeds the critical power 

threshold PC, an electron-hole liquid droplet forms near the center of the beam spot. The 

observed photocurrent results from electrons and holes outside of the electron-hole liquid 

droplet as the recombination rate goes up inside the droplet, meaning that carriers inside 

the droplet do not contribute to the photocurrent. The characteristic ring shape then arises 

from the convolution of the beam spot with a sharply bound region of suppressed 

absorption (see appendix A2.4 for detailed calculation). Fig. 5.7a and 5.7b compare the e-

h liquid model to interlayer photocurrent line traces as a function of increasing power 

(measured along the dashed line in Fig. 5.3a). The e-h liquid model in Fig. 5.7a shows 

excellent agreement with the photocurrent line profiles, indicating that the interlayer 

photocurrent is suppressed in the region of the anomalous phase.  

Once the critical density NC is reached, energy added to the e-h liquid contributes 

exclusively to expansion. We see this in both ℓ2 which is the effective radius of the 

photocurrent ring, and in the volume fraction which both exhibit a sudden onset then 

linear expansion. From the data, we conclude that the state leading to suppressed 

photoresponse exhibits a well-defined volume that is highly localized, which increases as 

the number of electron-hole pairs (proportional to the power) increases. We thus deduce 

that, similar to a conventional incompressible liquid, the condensate density NC remains 

fixed, and a linear increase of e-h pair density yields a linear increase in liquid volume. 
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Figure 5.8: a, spatial line cuts of the photocurrent as a function of interlayer voltage 𝑉i; 

t = 0.2 ps.  b, photocurrent ring peak-to-valley distance ℓ2 vs. interlayer voltage, where 

0 is the built-in potential of the GMoTe2 heterostructure. 

 

5.4 Signatures of the Electron Hole Liquid 

In addition to the spatial profile, there are other signatures of the electron hole 

liquid that we can look for in the MPDPM data. The e-h liquid phase is polarizable and 

can be dissociated with interlayer voltage. Fig. 5.8a shows spatial photocurrent line cuts 

as a function of voltage, where the size of the e-h liquid droplet can be tracked via ℓ. For 

interlayer voltages Vi above the built-in potential 0 = -41 mV (extracted from the data in 

Fig. 4.2c), ℓ2 decreases approximately linearly as voltage increases (Fig. 5.8b). When the 

total interlayer voltage exceeds the critical voltage eVC = e(Vi – 0) > 45 meV, electrons 

and holes become ordinary e-h pairs. Above the critical interlayer voltage VC, spatially 

uniform photocurrent re-emerges as the 2D liquid dissociates in the electric field.  
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Figure 5.9: a, photocurrent vs. Δ𝑡 for increasing optical power, with laser is fixed at the 

center of the device. Solid lines are exponential fits to the data at each power. b, power 

law exponent 𝛾 as a function of Δ𝑡, extracted by fitting the data in a to 𝐼 ∝ 𝑃𝛾. Solid 

black line is an exponential fit with a characteristic timescale 𝜏 = 22 ps. 

 

Though a single pulse at high enough power could form the e-h liquid, two-pulse 

measurements can also reveal rich dynamic transition between the electron-hole liquid 

and gas phase. Fig. 5.9a and 5.9b show the time-resolved photocurrent and photocurrent 

nonlinearity . When the laser is fixed at the center of the device, the photocurrent vs. ∆t 

exhibits remarkably different power dependence between short and long Δ𝑡. At short ∆t, 

the photocurrent at the center of the device decreases with increasing power above PC. 

This extreme sublinear photoresponse is fully consistent with power law collapse 

associated with the liquid phase onset. At long time delay, the photocurrent exhibits 

ordinary sublinear photoresponse. We fit  vs. ∆t to an exponential decay (black line Fig. 

5.9b) to extract the charge density persistence time  = 22 ps. The timescale in the 

presence of the liquid is significantly smaller than the 86 ps recombination timescale 
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determined in Section 4.5, which is consistent with our expectation that the 

recombination rate goes up inside the liquid. At and above the 5 mW threshold, for 

|Δ𝑡|  > 𝜏, the pulses are independent and each is insufficient to drive the phase transition 

producing only a gas of ordinary e-h pairs. For |Δ𝑡| < 𝜏 the combined charge density 

produced by the two pulses is sufficient to cause the gas-to-liquid transition causing a 

suppression of the photocurrent. 

 

5.5 Implications of Room Temperature Electron-Hole Liquid 

In quasi-2D TMDs, the large binding energy and strong Coulomb interactions 

combine to allow for an exotic e-h liquid phase diagram at room temperature, suggesting 

new device applications that harness electronic fluids at room temperature74. The gas-to-

liquid phase transition is set by the energy difference E between the average energy per 

e-h pair in the gas phase and the reduced energy per e-h pair in the liquid phase. When 

E is large compared to thermal energy at room temperature (𝑘𝐵𝑇 = 26 meV), the liquid 

is stable against thermal fluctuations. From the interlayer voltage dependence (Fig. 5.8), 

we estimate that ΔE ∼ 𝑒𝑉𝐶 ∼ 45 meV, approximately twice the thermal energy at room 

temperature. While this renormalization is comparable to conventional 2D electron 

systems, the e-h pair binding energy (~102 meV) in TMDs is several orders of magnitude 

larger75-79. Electrons and holes in the liquid phase move independently from another 

within the confined liquid volume, yet they are not able to escape without sufficient 

excess energy. Such stable collective excitations - potentially exhibiting very high 
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mobility - could have applications in very high-power, high frequency Terahertz sources 

and detectors that can be manipulated with both electronic and optical control. 

 

 
Figure 5.10: a, Schematic of the Graphene-hBN-Graphene heterostructure (samples 

GBNG-1,2,3), encapsulating layers semi-transparent. b, a GBNG sample contacted in the 

tunneling configuration, encapsulating layers omitted. 

 

5.6 The Graphene-hBN-Graphene Heterostructure System 

 Despite being the first 2D material isolated and having the simplest composition, 

graphene continues to be an interesting material system to study in a variety of 2D 

materials research contexts. In optoelectronics, an interesting and important property of 

the graphene is the hot carrier regime, where carriers are optically excited and strongly 

couple to other carriers and couple more weakly to the lattice via electron-phonon 

interactions. The result is that a short time after light is absorbed, on the order of 

hundreds of femtoseconds, there is a population of electrons that has thermalized among 

itself, but not with the lattice, and is in a quasi-thermal equilibrium with an electronic 

temperature in the thousands of Kelvin, orders of magnitude larger than the lattice 
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temperature34-38. This state then cools relatively slowly for several picoseconds before 

coming into equilibrium with the lattice. Much work has gone into understanding the 

cooling pathways that allow the graphene to relax and the photo-multiplicative 

interactions that occur during thermalization and cooling80-83. 

 

 
Figure 5.11: Resistance data for all three devices in the region of the Dirac point. a, the 

resistance of the top graphene, gated by the bottom. b, the resistance of the bottom 

graphene gated by the top. 
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 This hot-carrier state exists on the mesoscopic scale, in that it is characterized by 

strong interactions of many charge carriers rather than the dynamics of individual 

carriers. Therefore, what we are interested in studying on this scale is not the collisions of 

the carriers but rather what the collective phase of hot carriers can do. To study the hot 

carrier phase, we explore a heterostructure composed of two sheets of graphene separated 

by a thin layer of hBN, as shown in Fig. 5.10a. This system is known to produce 

photocurrent between the graphene layers when photoexcited due to Fowler-Nordheim 

tunneling, direct tunneling, and tunneling due to thermal effects believed to be the result 

of the hot carrier phase84. We aim to explore this system in the low voltage regime while 

optically exciting well below the gap of the hBN, thus preventing Fowler-Nordheim and 

direct tunneling and leaving only hot-carrier tunneling. 

 Three graphene-hBN-graphene (GBNG) heterostructures will be explored in this 

chapter. The details of these devices can be found in appendix A1.6, but they all have the 

same basic structure; two sheets of monolayer graphene separated by hBN in the range of 

7 to 10 nm thick. The ideal system will have identical graphene layers, with the only 

differences due to applied voltages, however due to the realities of fabrication this is 

difficult to achieve. For symmetry, the key is to encapsulate both layers in hBN, as shown 

with semi-transparent layers in Fig. 5.10a and have the fabrication of the graphene layers 

be highly clean and free of wet chemistry to keep the layers as close to their intrinsic 

properties as possible. Fig. 5.11 shows the resistance of the devices near their Dirac 

points. We see in the top row that GBNG-1 is highly asymmetric, with the top layer 

exhibiting a Dirac peak, but no observable peak in the same range for the bottom layer. 
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This is due to the fact that the bottom layer rests directly on the SiO2 substrate, which 

significantly degrades its quality compared to the top layer on hBN. The second device, 

GBNG-2, has both layers encapsulated with hBN but is geometrically imperfect, with part 

of the bottom graphene electrostatically screened by the Si substrate, likely resulting in 

the split Dirac peak in the bottom graphene. GBNG-3 is the most symmetric, with the 

Dirac peak in both layers being near zero and near to the other. 

 

5.7 Interlayer-Tunneling Photocurrent Parameter Space 

 We measure the GBNG samples contacted in the tunnel configuration, shown in 

Fig. 5.10b, which measures the current, I, that passes through the hBN as a function of 

the interlayer voltage Vg applied to the bottom layer. In this section, we discuss the 

photocurrent parameter space in the tunneling configuration which consists of spatial 

dependence, laser power, pulse delay and Vg with the laser wavelength fixed at 1200 nm. 

First, we examine the spatial dependence, which is fairly straightforward; in the tunneling 

configuration the heterostructure region exhibits spatially uniform photocurrent, the 

magnitude and sign of which depends on Vg, as shown in Fig. 5.12 for GBNG-3. Given 

the uniformity all subsequent data shown in this section was taken using spatial line 

scans, i.e. scanning the laser beam in one spatial dimension over the heterostructure area 

and averaging the photocurrent from the heterostructure for clarity. Spatial scans were 

taken between line scans to ensure that the laser remained centered on the heterostructure. 
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Figure 5.12: Spatial photocurrent maps of the heterostructure area of GBNG-3 in the 

tunneling configuration as a function of Vg (labeled). Spatial photocurrent is similarly 

uniform in the tunneling configuration for GBNG-1 and GBNG-2. Color near the edges in 

the upper left images are due to spatial drift correction. 

 

Next we examine the photocurrent dependence as a function of the incident laser 

beam. Fig. 5.13a shows the power dependence of each sample and we observe that it is 

well described by a power law, 𝐼 ∝ 𝑃𝛾, (red line) where 𝛾 is the key dynamical 

parameter. We note that 𝛾 is significantly higher in the high-symmetry device GBNG-3. 
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Fig. 5.13b shows the photocurrent as a function of two-pulse delay, Δ𝑡. We see that it is 

well described using two symmetric exponential timescales, i.e. 𝐼 ∝ 𝑒−|𝑡|/𝜏𝑓  + 𝑒−|𝑡|/𝜏𝑠 

where 𝜏𝑠 and 𝜏𝑓 are fast and slow timescales. The fast timescale 𝜏𝑓 is approximately the 

width of the autocorrelation pattern (see section 2.4) indicating it comes from the pulses 

overlapping and is not significant. The slow timescale, 𝜏𝑠, is approximately 2 ps in all the 

devices indicating a population of excited carriers exists within the device for several 

picoseconds after initial photoexcitation. Data shown in Fig. 5.13 was taken at arbitrary 

values of Vg; though the dynamical parameters 𝛾 and 𝜏𝑠 vary a small amount as function 

of Vg the overall behavior is consistent across the Vg ranges discussed below. 

 The primary data-intensive exploration in the interlayer photocurrent versus 

interlayer voltage Vg, which is shown in Fig. 5.14. From Fig. 5.14a we see that the 

photocurrent monotonically increases as a function of Vg and crosses through zero near 

where the top gate Dirac point is in Fig. 5.11a. The differences in behavior are more clear 

when we examine the differential photoconductance, shown in Fig. 5.14b, where in all 

three cases we observe that at large positive and negative Vg the photoconductance 

increases. In the symmetric GBNG-3 sample we see that photoconductance is minimized 

when the current goes to zero, however in the asymmetric sample GBNG-1 we see a large 

peak in the photoconductance near zero, with the intermediately symmetric sample, 

GBNG-2, exhibiting a smaller, but clear, peak in the photoconductance. 
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Figure 5.13: Photocurrent dynamic behavior. a, power dependence and b, Δ𝑡 dependence 

in tunnel configuration. Blue points are data, red is a fit to a dynamical function. Scans 

were taken at values of Vg and laser power that give good signal to noise, variations in Vg 

may cause minor changes in the values of 𝛾 and 𝜏, but overall behavior is consistent 

across the power-Vg or delay-Vg parameter space. 
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Figure 5.14: Photocurrent, a, and photoconductance, b, versus Vg for all three samples in 

the tunneling configuration. Colorscale indicates the incident laser power and power 

scales are consistent across rows. 
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5.8 The Hot Carrier Model of Tunneling 

The photoexcitation of graphene forms a hot carrier non-equilibrium phase with a 

wide thermal distribution. The formation of the hot carrier state is described in the 

literature and Fig. 5.15 identifies how the distribution of photoexcited carriers evolves as 

a function of time34,37. When photons are absorbed at t = 0 the resulting electrons and 

holes are in a specific narrow set of states located at half the photon energy above and 

below the charge neutrality point. These carriers undergo two-body collisions and intra-

band scattering that thermalize the population of carriers.  A few hundred femtoseconds 

after the light is absorbed a thermal Fermi-Dirac distribution of holes is formed, which 

persists for up to a few picoseconds before the distribution cools and the system relaxes 

back to equilibrium.  

The hot carrier picture is consistent with the dynamics we see in Fig. 5.13. From 

the power dependence we observe an increase in the number of absorbed carries due to 

an increase in power leads to a superlinear response. Then in the time dynamics a 

superlinear response is observed while the laser pulses are separated by ~2 ps. If the 

second pulse adds carriers on top of those dwelling in the system, we would expect to see 

a superlinear response, i.e. more photocurrent than that generated by two separated 

pulses. Therefore, the presence of a ~2 ps superlinear timescale indicates that hot carriers 

dwell in the system for approximately that length of time. 

In graphene double layer structures interlayer charge transfer through the 

hexagonal Boron Nitride (hBN) can occur due to direct tunneling, Fowler-Nordheim 

tunneling, or thermal effects84. Fundamentally, all these processes can occur due to the 
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specific band alignment between the graphene and hBN layers. Fig. 5.16 shows the basic 

band alignment between graphene and hBN, where the edge of the hBN valance band is 

𝑈0 ≈ 1.3 eV away from the charge neutrality point (CNP) of the graphene, with the gap 

between the CNP and the hBN valance band being 3.5 eV85. In the direct tunneling case, 

holes excited below -𝑈0 can pass directly into the hBN valence band and conduct through 

the hBN. In the Fowler-Nordheim case the band-gap edge acts as a barrier modulated by 

a large interlayer voltage, allowing for tunneling of sub-barrier carriers at high voltage. In 

the thermal case sub-barrier holes can be excited by thermal processes to reach energies 

lower than the barrier and conduct through the hBN valance band. 

 

 
 

Figure 5.15:  Schematic of the formation of a hot carrier state in graphene within a few 

hundred femtoseconds, resulting in a thermal distribution of charge carriers (right).  

 



 

 

131 

In this chapter, we wish to isolate the interlayer current due to thermal effects in 

order to study the mesoscale hot carrier state. Our measurements excite the system with 

photon energy of 1.03 eV (1200 nm), absorbed holes initially have an energy equal to 

half the photon energy, making direct tunneling from carriers initially above the barrier  

impossible and preventing Fowler-Nordheim tunneling except at extremely high voltages 

which are not used in this work. Therefore, in our interlayer photocurrent data is the 

result of thermal effects. In the time before the hot carrier state cools there is an 

exponential tail of the distribution that, if the distribution is sufficiently hot, may extend 

below -𝑈0, as shown in Fig. 5.16. Holes with energy below where some carriers may 

conduct into the hBN valance band and be observed as interlayer photocurrent. 

 

 
Figure 5.16:  Schematic of tunneling of hot carriers due to the tail of the hot carrier 

distribution extending into the valance band of the hBN.  
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The carriers below the barrier -𝑈0 contribute to the interlayer current and can be 

calculated by integrating the carrier distribution below the barrier. Defining the 

distribution of holes as 1 − 𝑓𝐹𝐷(𝐸, 𝜇, 𝑇𝑒) where 𝜇 is the chemical potential and 𝑇𝑒 is the 

effective electronic temperature of the carrier distribution, then the current from the ith 

layer of graphene is proportional to: 

𝐼𝑖 ∝ ∫ 𝜌(𝐸)[1 − 𝑓𝐹𝐷(𝐸, 𝜇𝑖, 𝑇𝑒)]𝑑𝐸
−𝑈0

−∞

 (5.1) 

Then taking the approximation that near the barrier 1 − 𝑓𝐹𝐷(𝐸, 𝜇, 𝑇𝑒) ≈ 𝑒−(𝜇−𝐸)/𝑘𝐵𝑇𝑒 and 

using the graphene density of states 𝜌(𝐸) = 2|𝐸| 𝜋𝑣𝐹
2⁄  we can integrate by parts and get 

𝐼𝑖(𝜇𝑖) ∝ ∫ 𝐸𝑒
−

𝜇𝑖−𝐸
𝑘𝐵𝑇𝑒 𝑑𝐸

−𝑈0

−∞

= 𝑘𝐵𝑇𝑒(𝑈0 + 𝑘𝐵𝑇𝑒)𝑒
−

𝜇+𝑈0
𝑘𝐵𝑇𝑒  (5.2) 

Both layers can contribute charge carriers and the interlayer current I is the difference 

between the two layers, 𝐼 = 𝐼𝑡𝑜𝑝 – 𝐼𝑏𝑜𝑡𝑡𝑜𝑚.  

Once the hot carrier state forms, it cools within a few picoseconds, thus the 

tunneling photocurrent for a given laser power will not equal the current calculated from 

a single temperature. Despite this, we expect that the largest contribution will come from 

the highest temperature the carrier distribution reaches, which is related to the incident 

laser power, and should not complicate the voltage dependence. Thus, we expect 

qualitative agreement between the carrier tunneling model and power dependent 

photoconductance, with a full model of the cooling required for quantitative agreement. 

 Using equation 5.2 we can calculate what we expect from the tunneling 

photocurrent. We start with the simplest possible situation, two identical sheets of 

graphene that absorb the same amount and are thus heated to the same constant electronic 
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temperature. Fig. 5.17a and 5.17b shows the simulated photocurrent and 

photoconductance as a function of electronic temperature and applied voltage Vg, which 

in the simple tunneling configuration should shift 𝜇 in each layer symmetrically. 

Comparing this to Fig. 5.14 we see that it qualitatively resembles the GBNG-3 data from 

the highly symmetric device, and the increase in conductance at large positive and 

negative values of Vg for all devices. 

 

 
Figure 5.17:  Simulated tunneling photocurrent, a, and photoconductance, b, from two 

symmetric graphene layers with constant electronic temperature, shows as color. 

 

 Non-uniform temperature profiles may explain the photoconductance features at 

low voltages. From Fig. 5.14b we see that for devices GBNG-1 and GBNG-2 there is a 

peak in the photoconductance near Vg = 0 that is largest for the asymmetric device 

GBNG-1. The calculation in Fig. 5.17 assumed that electronic temperature was 

independent of Vg, but this assumption is likely unrealistic. The hot carrier distribution is  

limited by the density of states of the graphene near the Fermi level. When the graphene 
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is at or near the charge neutrality point the density of states at the Fermi level is very 

small and a constant number of carriers would be pushed further away from the Fermi 

level due to limited states. Essentially the density of states creates a bottleneck for 

cooling that results in a higher effective temperature. Both theoretical calculations and 

measurements of the temperature of hot carriers in graphene suggest that effective 

electronic temperature is highest when the graphene is charge neutral, though predicted 

temperature profiles may differ based on models of the cooling mechanisms37,86. 

 We modify the tunneling model shown in Fig. 5.17 to feature a non-uniform 

temperature profile. Fig. 5.18 shows the same simulation with a temperature profile, 

shown in the Fig 5.18a inset, which increases from the base temperature Te as a gaussian 

function centered at Vg = 0. Fig 5.18b shows the resulting photoconductance and we see a 

peak in the photoconductance near Vg = 0 and the overall profile agrees qualitatively with 

the conductance profiles of GBNG-1 and GBNG-2 as shown in Fig. 5.14b. Thus, a simple 

model in accordance with the hot carrier tunneling literature can qualitatively reproduce 

the observed photocurrent behavior in the tunneling configuration. Quantitative 

agreement would require a detailed dynamical model of the hot electron cooling process 

in each, likely different, graphene layer. Such a model is beyond the scope of this chapter 

and would require a different type of measurement. 

 The hot carrier phase is an interesting optoelectronic effect for both scientific 

interest and potential technological applications. The tunneling measurements discussed 

in the preceding sections established the existence and influence of the hot carrier phase, 

but are the simplest measurement possible with this system. Another measurement would 
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be to apply an in-plane voltage to the graphene to examine the intralayer thermal effects 

and to measure at variable lattice temperature to explore questions about the various 

cooling mechanisms proposed in the literature, many of which are strongly temperature 

dependent. Technologically, one could imagine complex optoelectronic devices where 

hot carriers can be steered around the device for technological purposes or thermometry. 

 

 
Figure 5.18:  Simulated tunneling photocurrent, a, and photoconductance, b, from two 

symmetric graphene layers with temperature profiles as shown in the a inset. 
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5.9  Conclusions: Correlated Mesoscale Non-Equilibrium States 

 In this chapter we observed two mesoscale non-equilibrium phases, the electron-

hole liquid and the hot carrier state in graphene. Notably, neither of these phenomena are 

exotic low-temperature effects that occur in extreme conditions; both occur at room 

temperature with optical excitations on the order of milliwatts. This underscores a critical 

point, in 2D materials these mesoscale interacting phases occur under relatively normal 

conditions because reduced dimensionality increases the accessibility of non-equilibrium 

mesoscale phases. This enables us to scientifically study these phases more easily and 

puts them within reach of technological applications. Furthermore, we see that data 

intensive imaging played an important role in studying these phases, allowing us to 

separate the mesoscale phases out of the normal optoelectronic behavior of these systems. 
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CHAPTER 6: 

THE STATISTICAL SCALE 

6.1 Biosystems as Model Systems in the Statistical Scale 

 Statistical mechanics provides the connection between the microscopic and 

mesoscopic dynamics we have explored in previous chapters and the macroscopic world 

of human existence. Therefore, to connect our understanding of physics to human 

existence it is important to consider how non-equilibrium states can affect time-averaged 

quantities, that is, when phenomena on the microscopic and macroscopic scales are 

viewed on the statistical scale. With electrons and holes in 2D heterostructures this is 

simple, the dynamics will increase or decrease observable quantities such as 

photocurrent. But there is more to the statistical behavior of non-equilibrium states than 

this, and an excellent place to understand the subtleties of this is biosystems. 

 Biological life is an intricate non-equilibrium state, it occurs because many tiny 

molecular systems conspire to manipulate energy, expel entropy, process information, 

assemble structures and perpetuate themselves. Given that the interruption of these 

mechanisms, that is a return to thermal equilibrium, means death to an organism, 

evolution has resulted in sophisticated and robust molecular machinery, much of which 

exists on the nanoscale and involves moving around excitation energy. Therefore, we 

look to biosystems as models and attempt to understand, not necessarily the details of 

these mechanisms, but rather how the overall structure of the systems allows the non-

equilibrium processes to influence what happens to the organism on the statistical scale. 
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6.2 Photosynthesis in a Noisy Environment 

In photosynthesis, light energy harvesting begins with the absorption of sunlight. 

Photoexcitation energy is rapidly transferred through an antenna network before reaching 

the reaction center, where charge transfer converts excitation energy into an 

electrochemical potential gradient across the photosynthetic membrane39. Even in the 

presence of dynamic light conditions, rapidly fluctuating molecular structure, and highly 

intricate energy transfer pathways87-89, the light-to-electron conversion process exhibits 

near unity quantum efficiency. The delicate interplay of quantum effects with molecular 

mechanisms of energy management, e.g., non-photochemical quenching90-92, has been 

explored across diverse phototrophs93-96. Yet, the elementary connection between highly 

robust light energy harvesting and energetic fluctuations is not well established. 

Transforming noisy inputs into quiet outputs is a general design challenge in 

network architectures including multi-national energy grids, auditory and visual neural 

networks, and nanoscale photocells for next generation optoelectronics97. While network 

inputs exhibit statistical fluctuations (e.g., rapid changes in sunlight absorbed by a leaf or 

solar panel), network outputs may demand a steady rate of energy for optimal 

performance (e.g., constant power from the grid). Statistical fluctuations—arising from 

environmental variations and internal processes—fundamentally limit the throughput 

efficiency of any network. If the flow of energy (power) into a network is significantly 

larger or smaller than the flow out of the network required to optimally match the output 

demand, the network must adapt or be structured in such a way as to reduce the sudden 

over- or under-flow of energy. When the network fails to manage fluctuations, the results 
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may be destructive, such as photo-oxidative stress in photosynthetic light harvesting or 

explosive damage to transformers due to fluctuations in the grid.  

In this chapter, we examine the relationship between light harvesting organisms 

and their light environments, seeking to understand this using a simplified model. Such 

models aim to reduce a complex problem into a form for which calculations become 

more feasible. A famous example of such a model was devised by Watson and Lovelock 

to explain global temperature stability in the presence of biofeedback, known as the 

parable of Daisyworld98. Here, we ask whether there exists a simple network topology 

with passive noise reduction, and which requires no external assistance to function 

optimally. Remarkably, we find that such characteristics may emerge in exceedingly 

simple networks, and we show that carefully routed energy flow within a simple network 

architecture results in a robust system that inherently quiets internal noise. 

 

6.3 The One-Channel Noisy Antenna 

The premise of the model we construct is to achieve an optimal tradeoff between 

minimal noise in energy throughput versus robustness in a noisy environment. To 

understand why the two are antagonistic, consider the case of a single input node A that 

absorbs at wavelength 𝜆𝐴 with power 𝒫𝐴. To minimize throughput noise the absorption 

rate has to match the output rate Ω, i.e. 𝒫𝐴 = Ω. Such an architecture has no ability to 

regulate against external fluctuations. Any change in the ambient conditions alters 𝒫𝐴 

away from the optimal design. Thus, to gain any ability to adapt the absorber should be at 

a different power, i.e.  𝒫𝐴 ≠ Ω, which in turn introduces noise.  
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To construct a minimal model, we first consider the case of a single input node. 

For 𝒫𝐴 > Ω the absorbing channel switches on and off with probability 𝑝𝐴 such that on 

average input matches output: 

𝑝𝐴𝒫𝐴 = Ω  (6.1) 

This randomness gives rise to fluctuations. The input node is on some of the time 

injecting more power than is needed and off at other times leaving the network idle. The 

level of fluctuation is quantified by the standard deviation, which is the square root of the 

variance. As is conventional, throughout the following, we use the terms variance, 

fluctuations, and noise interchangeably. The variance, 𝜎2 is 

𝜎2 = 𝑝𝐴(𝒫𝐴 − Ω)2 + (1 − 𝑝𝐴)Ω2 (6.2) 

Using Eq. 6.1 in we simplify the variance to 

𝜎2

Ω2
=

𝒫𝐴

Ω
− 1 (6.3) 

As anticipated, any mismatch between input and output power results in noisy 

throughput. Any external changes that lower 𝒫𝐴 to approach the value of Ω in turn 

becomes beneficial (𝜎2 approaches zero), while an increase cannot be regulated against.  

 

6.4 The Two-Channel Noisy Antenna 

Given the inability of the One-Channel model to regulate against any external 

fluctuation while operating in its lowest noise configuration we seek a model that will 

balance the antagonism between regulating external fluctuations and reducing internal 

noise while resembling the observed structure of real phototrophs. To do this we 

construct a model that employs generalizations of networks to extract essential aspects of 
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photosynthetic light harvesting (Fig. 6.1a). A simple network of nodes (points at which 

lines intercept) connected by links (connecting lines) represent physical objects: 

excitation energy levels and intermolecular transfer events within the antenna system, 

respectively. In photosynthesis, light enters the antenna through a large number of 

pigment molecules, each of which is a member of a small set of distinct molecular 

species (e.g., chlorophyll a and b). Our model considers the advantage in having light 

entering the network through two classes of absorbing excitation energy levels, nodes A 

and B, which can absorb powers 𝒫𝐴 and 𝒫𝐵. 

 

 
Figure 6.1: Two-channel model schematic. a, schematic of a photosynthetic antenna 

reduced into a network with two input nodes A and B with input rates 𝒫𝐴 and 𝒫𝐵, and 

output O with rate Ω. Energy is absorbed by molecules a and b (at rates 𝒫𝐴 and 𝒫𝐵) and is 

transferred to the output as usable energy.  b, schematic two-channel antenna absorption 

spectra (yellow and red) and incident blackbody light source (grey). The quantities 𝜆0, 

Δ𝜆, and 𝑤 are, the center wavelength, distance between peaks, and width of the 

absorption peaks respectively. 
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Thus, a strategy based on a minimum of two input nodes straddling Ω is a natural 

next step. An implicit requirement is that the variations at the two input nodes be 

correlated. How to satisfy this condition depends sensitively on the nature of the external 

power spectrum from which the energy is being drawn. Below we derive the basic 

mathematical properties of such a model and demonstrate that a two-channel model can 

reduce the variance relative to a one-channel model. Then in subsequent sections we will 

discuss its statistical behavior in a variety of cases (section 6.5) and determine how to 

calculate the optimal two-channel noisy antenna for a given light spectrum (section 6.6) 

and then we will compare that to real biological systems. 

Consider two input nodes at wavelengths 𝜆𝐴 and 𝜆𝐵 (Fig. 6.1b) with power 𝒫𝐴 >

𝒫𝐵. We further set 𝒫𝐴 > Ω > 𝒫𝐵 as suggested by the argument above. At any given time 

only one of three possibilities occur: 1) power input from node A with probability 𝑝𝐴, 2) 

power input from node B with probability 𝑝𝐵, 3) no power absorbed with probability 1 −

𝑝𝐴 − 𝑝𝐵. We explicitly exclude the fourth possibility of power input from both nodes 

simultaneously, as such a process has input power that is much larger than the output, i.e. 

𝒫𝐴 + 𝒫𝐵 ≫ Ω. This would add large fluctuations without any benefit in robustness due to 

the fact that the ambient power spectrum has a maximum, thus resulting in an upper 

bound on large fluctuations above Ω. The matching of input and output power gives the 

following relationship: 

𝑝𝐴𝒫𝐴 + 𝑝𝐵𝒫𝐵 = Ω . (6.4) 

The variance is 

𝜎2 = 𝑝𝐴(𝒫𝐴 − Ω)2 + 𝑝𝐵(𝒫𝐵 − Ω)2 + (1 − 𝑝𝐴 − 𝑝𝐵)Ω2 . (6.5) 
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Using Eq. 6.4 and Eq. 6.5, the variance simplifies to 

𝜎2

Ω2
= (

𝒫𝐴

Ω
− 1) − 𝑝𝐵

𝒫𝐵

Ω
(

𝒫𝐴 − 𝒫𝐵

Ω
) . (6.6) 

When the second input node is absent, 𝑝𝐵 = 0 and we recover the single node result. 

Adding a second node reduces noise for a given 𝒫𝐴. 

To find an optimal solution, one has to ensure that Eq. 6.4 is satisfied with the 

generic constraint that all probabilities must lie between 0 and 1, i.e. 0 ≤ 𝑝𝐴 ≤ 1, 0 ≤

𝑝𝐵 ≤ 1 and 0 ≤ 𝑝𝐴 + 𝑝𝐵 ≤ 1. A consequence of these restrictions is that the optimization 

process is rather nontrivial, as it is not possible to vary the probabilities and input powers 

independently. To make further progress we use the inequality 𝑝𝐴 + 𝑝𝐵 ≤ 1. Thus 

𝑝𝐵 ≤ 1 − 𝑝𝐴                            (6.7) 

≤ 1 − (
Ω − 𝑝𝐵𝒫𝐵

𝒫𝐴
) . (6.8) 

Multiplying both sides by 𝒫𝐴 and solving for 𝑝𝐵 gives 

𝑝𝐵 ≤
𝒫𝐴 − Ω

𝒫𝐴 − 𝒫𝐵
 . (6.9) 

Substituting the inequality in Eq. 6, we note that 

𝜎2

Ω2
≥ (

𝒫𝐴

Ω
− 1) (1 −

𝒫𝐵

Ω
) . (6.10) 

Since 0 < 𝒫𝐵 < Ω, the least noise occurs when the input node exactly matches the output 

and generically goes up as it gets smaller. For a fixed 𝒫𝐴 this is equivalent to the 

statement that the noise increases as the bandwidth, Δ = 𝒫𝐴 − 𝒫𝐵, increases. Eq. 10 gives 

a key insight: An optimized network in an environment with correlated external 
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fluctuations has 𝛥 just large enough to quiet the noisy inputs. Increasing 𝛥 further adds 

to the internal noise. 

Before further progress is made, we remark on several important conclusions. 

From Eq. 6.10 we can deduce that there is always a residual, which varies continuously 

with Δ. If the wavelengths 𝜆𝐴 and 𝜆𝐵 are far apart, the power spectrum in between need 

not be smooth and the fluctuations at each are in general uncorrelated. On the other hand, 

if 𝜆𝐴 and 𝜆𝐵 are close to each other, it is possible to create a robust network that adapts to 

smooth variation and correlated noise. Thus, one needs to find the region of the power 

spectrum that provides the largest bandwidth for adaptation (i.e. large Δ) with small Δ𝜆 =

𝜆𝐴 − 𝜆𝐵. The larger the value of Δ = 𝒫𝐴 − 𝒫𝐵, the larger the available window for Ω to 

be within the bounds 𝒫𝐴 > Ω > 𝒫𝐵 in order to lower noise. It follows therefore that the 

upper limit of external fluctuations that the network can regulate against is Δ. 

To understand the design parameters of the model, we must first ask: under what 

circumstances does the two-channel model give lower noise than the one channel model? 

At first look, equation 6.10 seems to imply that the second channel always suppresses the 

variance when compared to equation 6.3. But this comparison only holds if you compare 

a one channel model with input power 𝒫𝐴 = 𝒫𝐴
𝐼 to a two-channel model where the higher 

input power, 𝒫𝐴 = 𝒫𝐴
𝐼𝐼, is the same as the one-channel model, i.e. 𝒫𝐴

𝐼𝐼 =  𝒫𝐴
𝐼. But this is 

only one possible comparison. How do we meaningfully compare the one-channel and 

two-channel models? It’s always possible to pick a value of  𝒫𝐴
𝐼 that gives a lower 

variance than any given two-channel model (ignoring whether that value is stable against 
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external fluctuation), so asking if there is a one channel model that is better than a given 

two-channel model is not useful. 

The two-channel model defines an operable range of power 𝒫𝐴 > Ω > 𝒫𝐵 and 

attempts to regulate fluctuations for values of Ω within that range. Thus, to compare the 

one-channel and two-channel models we ask if - for a given one channel model - there is 

a two-channel operable range that improves the variance. More precisely: for a given one 

channel model defined by 𝒫𝐴
𝐼 and Ω is there a two-channel model with range 𝒫𝐵 < 𝒫𝐴

𝐼 ≤

 𝒫𝐴
𝐼𝐼 that has a lower variance for the same output Ω? To compare the one and two 

channel models we examine their respective variances in the parameter space with 

ordering 𝒫𝐵 < Ω < 𝒫𝐴
𝐼 ≤  𝒫𝐴

𝐼𝐼. For a quantitative measure to compare the internal noise 

of the models we subtract the one channel variance (equation 6.3) from the two-channel 

variance (equation 6.6, re-written in terms of the width of the operable range Δ), giving: 

Σ =
𝜎𝐼𝐼

2 −  𝜎𝐼
2

Ω2
=  (

𝒫𝐴
𝐼𝐼

Ω
− 1) − 𝑝𝐵

Δ

Ω
(

𝒫𝐴
𝐼𝐼 − Δ

Ω
) − (

𝒫𝐴
𝐼

Ω
− 1) (6.11) 

When Σ < 0 the two-channel model has a lower variance. For a given one channel 

model, i.e. fixed 𝒫𝐴
𝐼 and Ω, Σ varies within the parameter space (𝑝𝐵, 𝒫𝐴

𝐼𝐼, Δ).  

Fig. 6.2a shows Σ for (𝒫𝐴
𝐼𝐼, Δ) and arbitrarily chosen 𝑝𝐵 = 0.5, 𝒫𝐴

𝐼/Ω = 1.5. The 

yellow region is where Σ ≥ 0 and darker colors indicate Σ < 0 where the two-channel 

model is advantageous. However, not all of this parameter space is allowed in the two-

channel model or satisfies our ordering 𝒫𝐵 < Ω < 𝒫𝐴
𝐼 <  𝒫𝐴

𝐼𝐼. Therefore, we introduce 

constraints to the parameter space of Σ. Fig. 6.2b shows the meaningful parameter space, 

which is bounded by the constraints (shown as colored lines). The first constraints come 
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from ordering, 𝒫𝐴
𝐼𝐼/Ω >  𝒫𝐴

𝐼/Ω (blue line) and 𝒫𝐵 < Ω < 𝒫𝐴
𝐼 or equivalently Δ/Ω >

𝒫𝐴
𝐼/Ω − 1 (orange line). Then we have constraints that come from the two channel 

definition 𝒫𝐴
𝐼𝐼 > Ω > 𝒫𝐵, which requires that 𝒫𝐴

𝐼𝐼 Ω⁄ > Δ/Ω, (red line) and Δ/Ω >

𝒫𝐴
𝐼𝐼 Ω⁄  − 1 (green line). Furthermore, equation 6.9 limits the probability 𝑝𝐵 which 

translates to the constraint that Δ Ω⁄ ≥ (𝒫𝐴
𝐼𝐼 Ω⁄  − 1)/𝑝𝐵 (magenta line). 

 

 
Figure 6.2: a, calculation of Σ in the unconstrainted parameter space (𝒫𝐴

𝐼𝐼, Δ) for 𝑝𝐵 =
0.5 and 𝒫𝐴

𝐼/Ω = 1.5. Darker colors indicate the two-channel model has a noise advantage 

over the one channel model. b, the meaningful parameter space of Σ that satisfies all the 

constraints of the model and the ordering, constraints shown as colored lines. 

 

 Examining the parameter space of Σ reveals that there is a window in which the 

two-channel model has lower internal noise than the one channel model. Fig. 6.3 explores 

the full parameter space of Σ by showing (𝒫𝐴
𝐼𝐼, Δ) for several values of 𝑝𝐵 (constant along 
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columns) as a function of various one channel models 𝒫𝐴
𝐼/Ω (constant along rows). 

Examining the limits of 𝑝𝐵 we observe that for small 𝑝𝐵 ≤ 0.1 there is little advantage, 

and for 𝑝𝐵 ≥ 0.9 the parameter space that satisfies equation 9 is extremely narrow. This 

is expected given that in either limit the model barely uses one of the channels and is not 

very different from the one channel model. Looking at moderate range of probability, 

0.3 ≤ 𝑝𝐵 ≤ 0.7, we see that for any given set of parameters there is a window of 

advantage in which Σ < 0 and that it generally grows larger as 𝒫𝐴
𝐼 Ω⁄  increases, which is 

to say, as the one channel variance increases there is more room to improve. Therefore, 

we conclude that if you have a noisy one channel antenna there is a two-channel antenna 

that will have lower internal noise for the same output. What we do not see in this 

parameter space is an absolute minimum in which the two-channel model is always best. 

Rather, for any given one channel model there is a range of possible two channel models 

which improve upon it. 

 

6.5 The Discrete Noisy Antenna Model 

By analyzing the stochastic flow of excitation energy, we can characterize the 

antenna network by statistical averages (power throughput) and fluctuations in the rate of 

energy flow. We take the two-channel model described in section 6.4 and generate a 

discrete simulation in order to understand how the model operates under different 

arrangement of absorbers (see appendix 2.5 for details). 
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Figure 6.3: Calculation of Σ in the constrained parameter space (𝒫𝐴

𝐼𝐼, Δ) for arbitrary 

values of 𝑝𝐵 (constant across columns) and 𝒫𝐴
𝐼/Ω (constant across rows). 

 

Since the absorbed solar power rarely matches exactly the rate of optimal output, 

a finely tuned network is that which most effectively balances minimizing the internal 

noise with robustness against external noise. Noise in the antenna arises from two main 
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sources: inherent mismatch between inputs and output, which may arise due to fast 

dynamics in the protein structure and the corresponding electronic properties, and 

dynamic external light conditions. In photosynthesis, an over-powered antenna will 

produce excess energy that can drive deleterious back-reactions99,100. Conversely, a light 

harvesting network in an under-powered state produces non-optimal output, since the rate 

of energy transfer out of the network is fixed by electrochemical processes101. Over long 

periods of time, the degree to which the light harvesting network is over- or under-

powered is measured by the mean-squared deviation (i.e., noise) of the total input power 

(through 𝒫𝐴 and 𝒫𝐵) from the optimal output power at Ω as shown in Fig. 6.4. 

 

 
Figure 6.4: Simulated average excitation energy (left) as a function of time within a 

noisy antenna composed of 10 sets of a and b molecules. Time averaged histogram of the 

internal energy (right). The antenna is subject to internal (fast) and external (slow) 

fluctuations. Over long timescales the time averaged histogram resembles a normal 

distribution (black line). 

 

Fig. 6.5 shows the behavior of three noise regimes within the antenna network: 

over-tuned, fine-tuned, and poorly tuned. For simplicity, Fig. 6.5 shows examples where 

Ω = (𝒫𝐴 + 𝒫𝐵)/2, but the model is valid for the whole parameter space discussed in 
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section 6.4. While the light conditions are identical for all three cases (grey lines Figs. 

6.5a), we can examine how the noise changes with different absorption characteristics. 

When the absorbing peaks are spaced too closely (Fig. 6.5a top), the inherent antenna 

noise can be strongly reduced, and in the limit that 𝒫𝐴 = Ω = 𝒫𝐵 there are negligible 

fluctuations in the rate of energy flow (Fig. 6.5b top left). This lower bound to the 

internal noise cannot be reached in natural photosynthetic antennae, where protein 

dynamics will always drive fluctuations of intermediate excitation energy transfer events. 

Rather, the over-tuned antenna noise is directly proportional to, and thus dominated by, 

changes in the varying light spectrum (Fig. 6.5b top right). As shown in Fig. 6.5c top, in 

the presence of random external fluctuations, the distribution of time spent in an over- or 

under-powered state is flat. In the over-tuned antenna, the average input rarely matches 

the optimal output.  

A poorly tuned antenna (Fig. 6.5a bottom) is similarly deficient. If the absorbing 

peaks are well separated, the antenna spends most of the time over- or under- powered. 

When the power sources 𝒫𝐴 or 𝒫𝐵 are significantly greater or less than the power sink 

(𝒫𝐴 >> Ω >> 𝒫𝐵), the noise (as evidenced by a histogram of the excitation energy) in the 

poorly-tuned antenna becomes broader as the absorbing peaks become more separated 

(Fig. 6.5c bottom). When viewed over long times, the poorly tuned antenna spends too 

little time outputting the optimal power Ω.  

The finely tuned antenna absorbs at specific positions on the spectrum that give 

rise to robust light harvesting even in the presence of both varying light conditions and 

substantial internal noise. When compared to the over- and under-tuned cases, the finely 
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tuned antenna allows for intermediate internal noise levels (Fig. 6.5b middle) yet delivers 

a narrow distribution of power centered at the optimal output Ω (Fig. 6.5c middle). 

Robustness in light harvesting is thus the ability to output - on average - the optimal rate 

Ω, yet simultaneously allow for internal noise. 

 

 

Figure 6.5: a, Absorption peaks for two absorbers a and b overlaid on an ideal blackbody 

solar spectrum (T = 5500 K, grey line) for three cases: top, two closely spaced absorbers; 

middle, two absorbers separated to optimize the noisy antenna; bottom, two widely 

separated absorbers. b, simulated excitation energy vs. time for a two-channel antenna 

with three different values of Δ, comparable to the cases shown in a. Left side shows the 

excitation energy time traces without external fluctuations. Right side includes random 

external fluctuations. c, histograms of time spent in over- (red) and under-powered (blue) 

states for the three series in b. top, the distribution is flat and favors no value. middle, the 

distribution is a sharply peaked normal distribution that favors Ω. bottom, the 

distribution is normal, but wider than in the middle panel. 
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6.6 Calculation of an Optimal Noisy Antenna in Diverse Light Environments 

Tuning only the absorption characteristics, our goal is to find a network that 

spends the least amount of time in a state for which the input power is too large or too 

small compared to the output of the network, thus maximizing power conversion 

efficiency (Fig. 6.4). Within our mathematical model, probabilities pA and pB couple the 

inputs of the network 𝒫𝐴 and 𝒫𝐵 to the output Ω: pA𝒫𝐴 + pB𝒫𝐵 = Ω. From this expression, 

we first evaluate the variance of the average distribution pA𝒫𝐴 + pB𝒫𝐵. Minimizing this 

variance yields the optimal values of 𝒫𝐴 and 𝒫𝐵 to quiet the antenna. We then input the 

local spectral irradiance to a model optimization function, Δ𝑜𝑝(𝜆0, Δ𝜆, 𝑤), the maxima of 

which determine the optimal absorption characteristics for noise-cancellation (for a 

detailed derivation of Δ𝑜𝑝 see appendix A2.6). The optimization function computes the 

spectral positions for which the peaks are as close as possible on the light spectrum 

(favoring reduced internal noise), yet the difference in the absorbed power  = 𝒫𝐴 – 𝒫𝐵 is 

maximized (supporting robustness against external variations). This condition is 

equivalent to maximizing the derivative of the light spectrum with respect to wavelength, 

thus resulting in absorption peaks in regions of steepest slope (see appendix A2.6). The 

absorption spectra, and thus the excitation transitions, are tuned so that the time averaged 

sum of input excitation energy is sharply peaked at the output rate (Fig. 6.5c middle).  
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Figure 6.6: a-c, Structure of LHC2, LH2 and the green sulfur bacteria chlorosome d, 

absorption spectrum of LHC2 (blue) overlaid on the terrestrial solar spectrum (light 

grey). e, absorption spectrum of the LH2 complex overlaid on the solar spectrum 

measured below a canopy of leaves (light grey). f, absorption spectra of 

bacteriochlorophyll c (blue) and e (green) compared to the calculated solar spectrum at 2 

m depth of water (light grey). g-i, predicted ideal absorption peaks from optimizing Δ =
𝒫𝐴 − 𝒫𝐵 for the full solar spectrum, solar spectrum attenuated through canopy, and solar 

spectrum attenuated through seawater. Photosynthetic absorption peaks are identified 

with dashed lines. 
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For three prototypical photosynthetic antennae, the light harvesting complex 

(LHC2) of green plants, the light harvesting complex (LH2) of purple bacteria, and the 

Bacteriochlorophyll (BChl) c and e pigments of green sulfur bacteria, the natural 

absorption spectrum (Figs. 6.6d,e,f)102-105 can be compared to that predicted by our model 

(Figs. 6.6g,h,i) (see appendix A2.7 for full optimization details), which takes as input the 

local irradiance spectrum, shown as solid grey lines in Figs. 6.6d,e,f. The absorption peak 

positions and spectral separation predicted under light conditions in air106, under canopy, 

or under seawater107,108 (colored lines Fig. 6.6g,h,i) show striking agreement with the 

absorption spectra of these three phototrophs. Using only the external light spectrum and 

the linewidth w, the predicted peak center position 0 and separation  reproduce the 

measured absorption peaks with an average error of 2.1% (Table 6.1). 

 The noisy antenna model also reproduces a remarkable general feature of 

photosynthetic light harvesting observed across all three prototypical phototrophs. 

Photosynthetic pigments do not absorb at the maximum solar power. Instead, all three 

considered phototrophs exhibit pairs of closely spaced peaks in regions where the 

spectrum shows a steep rate of change with respect to wavelength. Photosynthetic plants 

look green because their antenna complexes absorb light across the visible spectrum 

including the blue and red portions yet reflect green wavelengths (Fig. 6.6d). Purple 

bacteria are aquatic phototrophs109. They have adapted to sunlight that is filtered through 

the canopy of trees and floating aerobic phototrophs (grey line Fig. 6.6e, sunlight 

measured through three leaves of various ash trees from on the UCR campus) and use a 

light harvesting complex in which bacteriochlorophyll dominates light absorption away 
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from the visible, including green (Fig. 6.6e). Green sulfur bacteria are a geographically 

diverse group of bacteria that are adapted to solar light shining through seawater to 

depths where it is anaerobic110. They do not absorb the peak intensity of this attenuated 

light spectrum, instead absorbing in the region of steepest spectral rate of change. 

 

Peak Name Actual Value in 

nm [eV] 

Calculated Value 

in nm [eV] 

Relative % 

Error   

Reference 

Chl a 1 428 [2.90] 429 [2.89] 0.23 [0.34] 102 

Chl b 1 440 [2.82] 459 [2.70] 4.32 [4.26] 102 

Chl b 2 652 [1.90] 620 [2.00] 4.91 [5.26] 102 

Chl a 2 660 [1.88] 656 [1.89] 0.61 [0.53] 102 

LH2 band 1 801 [1.55] 783 [1.58] 2.25 [1.94] 103 

LH2 band 2 857 [1.45] 851 [1.46] 0.70 [0.69] 103 

BChl c 1 431 [2.88] 426 [2.91] 1.16 [1.04] 104 

BChl e 1 461 [2.69] 462 [2.68] 0.22 [0.37] 105 

BChl e 2 655 [1.89] 688 [1.80] 5.04 [4.76] 105 

BChl c 2 740 [1.68] 728 [1.70] 1.62 [1.19] 104 

Table 6.1. Absorption peak data versus model calculation for Chlorophyll (in an LHC2 

complex), the LH2 complex and Bacteriochlorophyll. 

 

 

6.7 Natural and Artificial Experiments Based on the Noisy Antenna Model 

The qualitative and quantitative agreement that we see between the model and the 

spectra of real phototrophs, obtained using only the light environment, underscores the 

potential of this model to generate testable predictions. Underwater phototrophs provide 

an excellent natural experiment to test the predictive strength of our model since the solar 

spectrum is highly variable as a function of depth111. Fig. 6.7a shows the light spectrum at 
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various depths below the seawater surface. The light intensity is attenuated as depth 

increases, particularly in the red and infrared, due to absorption and scattering in 

seawater. By comparing the absorption spectra of sub-surface marine phototrophs, such 

as green sulfur bacteria, to those predicted by quieting a noisy antenna, we can explore 

whether the natural photosynthetic absorption spectrum matches our model predictions 

for the relevant phototroph’s preferred depth. 

From the solar light spectra shown in Fig. 6.7a we calculate an optimization 

parameter op as a function of  and 0. op is a function modified from the calculation 

of  = 𝒫𝐴 – 𝒫𝐵 such that its maxima quiet a noisy antenna (see appendix A2.6). Fig. 6.7b 

shows an example color map of the magnitude of op at a depth of 1 m and w = 15 nm. 

Two maxima clearly emerge in the color plot near 0 = 400 and 750 nm. These maxima 

identify the wavelength characteristics of a finely tuned antenna under seawater. By 

extracting the value of  and 0 at the maximum in , we obtain the characteristic 

absorption spectra of the quiet antenna as a function of seawater depth (Fig. 6.7c-f). We 

find that quieting a noisy antenna under 2 m of seawater accurately reproduces the 

absorption spectrum of green sulfur bacteria. Although highly adaptable, green sulfur 

bacteria are known to thrive at 1-2 m below the surface112, coinciding with the conditions 

for which their light harvesting antenna is finely tuned for solar power conversion. 
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Figure 6.7: a, solar spectrum in air and attenuated by various depths of water (labelled). 

b, optimization landscape calculation of op versus center wavelength 𝜆0 and the peak 

separation Δ𝜆 for solar spectrum under 1 meter of seawater (w = 15 nm). Red points 

identify two equally favorable maxima, corresponding to a set of peaks on either side of 

the spectral maximum. c-f, ideal absorption peaks predicted from the solar spectrum at 

each depth. Panel d shows the peaks extracted from the calculation in b, color coded blue, 

green, orange, red in order to track peak locations with depth. 

 

Moreover, our findings could lead to comprehensive laboratory experiments, in 

which the light environment is carefully controlled while the absorption spectrum of 

adaptable model organisms is monitored. The simplest version of such a measurement 
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would be to control the light environment by, for example, placing a controlled 

containers of Green Sulphur bacteria at variable depths and examining their growth rates, 

directly testing the result of Fig. 6.7. But moving beyond naturally occurring solar 

spectra, one could create controlled solar spectra and expose photosynthetic organisms to 

it, watching how they adapt. On the biological control side, mutant photosynthetic 

bacteria with different light harvesting spectra and exposed to a controlled spectrum they 

are not adapted for to observe the effect on the organisms. In any case, this model 

provides a jumping off point for potentially fruitful experiments. 

 

6.8 Conclusions: Biophysics of Non-Equilibrium States 

The remarkable degree to which we are able to reproduce photosynthetic 

absorption spectra is a surprising result, indicating an underlying organizing principle for 

light energy harvesting systems: Fluctuations fundamentally limit the efficiency of 

networks and must be avoided. Phototrophs must balance environmental inputs to sustain 

steady production and storage of fuel under remarkably different environmental 

conditions. Phototrophs across many photosynthetic niches may have adapted to build 

fluctuation-cancelling light harvesting antennae onto which other active mechanisms for 

reducing fluctuations can be added (e.g, non-photochemical quenching). Although the 

connection of our model to natural antenna systems requires detailed quantum models, 

our framework gives new insight into how extinction coefficients, delocalization lengths, 

and radiative rates conspire to reduce noise in natural antennae. By developing noise-

cancelling antennae as a technological foundation, natural and artificial energy harvesting 
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networks - from bacteria thriving underwater to extended power grids - could be adapted 

to efficiently convert noisy inputs into robust outputs. 

Furthermore, this design principle in biological systems tells us the fluctuations 

and noise in non-equilibrium systems can be determined from their structure without 

difficult to acquire molecular details. This structural approach to noise suppression could 

apply to a wide variety of biosystems which must operate under significant noise. The 

fact that we are able to determine the optimal structure of a photosynthetic organism from 

only information about its light environment and absorber width suggests that properties 

of systems with highly complicated energy flow may be determined by simple dynamics.  
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CHAPTER 7: 

CONCLUSION 

7.1 Exploring the Physics of Non-Equilibrium Systems 

 The prototypical quantum transition, the excitation of an electron from a bound 

orbital to a free carrier, is a non-equilibrium system with a wide variety of phenomena on 

many scales. In the first chapter, we defined non-equilibrium states and identified the key 

physical properties that allow them to exist and to be more accessible in nanoscience. In 

chapter 2, we identified the challenges involved in measuring non-equilibrium states and 

how to overcome them with carefully considered high volume data acquisition. Then in 

chapter 3, we identified how to take a large set of photoresponse images and process it to 

extract key dynamical features which give insight into non-equilibrium phenomena. This 

defined an approach to measuring non-equilibrium systems that transforms one of the 

challenges of measuring these systems, the multi-dimensional complexity, into an asset, 

allowing for a comprehensive view of the parameter space requiring few assumptions. 

 Having established this process for handling the complexity of non-equilibrium 

systems we set out to explore non-equilibrium physics at multiple scales in multiple 

model systems. Chapter 4 begins this exploration at the microscopic level, considering 

interactions between individual charge carriers. This is explored in two types of TMD 

heterostructure. The first model system made of MoTe2 with current gathered by 

transparent graphene gates which matched two-body Auger recombination in a non-ideal 

gas of excitons. Then we explored the interaction between non-equilibrium interlayer 
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excitons and the lattice, observing extremely strong electron phonon coupling in a 

MoSe2-WSe2 heterostructure. 

 Having explored the individual interactions of photoexcited charge carriers we 

then explored their collective interactions. Zooming out spatially to the mesoscopic scale, 

in chapter 5 we explored phases where charge carriers strongly interact, both in the 

electron-hole liquid phase in MoTe2 and the hot carrier phase in graphene-hBN 

heterostructures. From these we observe how the two-dimensional nature of these layered 

systems makes these interacting electron phases more accessible and able to occur under 

common laboratory conditions, such as at room temperature. Then we averaged over time 

to the statistical scale, and in chapter 6 observed the subtle effects that the quantum 

structure of an absorber can have on quieting the noise introduced by non-equilibrium 

states in varying environmental conditions. From this we established that the physics of 

non-equilibrium states can have profound effects on the biology of living organisms and 

that simple physics models can generate testable predictions even in very complex 

biological networks by considering the average statistical behavior. 

 

7.2 Lessons Learned 

Adam Savage, on the television show Mythbusters, famously quipped “the only 

difference between screwing around and science is writing it down.” While this quote 

was a joke there is some truth to this, and much of what a scientist does could reasonably 

be described as “screwing around” with a sample, experiment or theory in order to make 

it work. The difference between an amateur fiddling around, and science, is that at the 
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end of the day a scientist attempts to learn something and improve their work in the 

future. More fundamentally, the entire scientific method revolves around testing ideas 

and then attempting to learn from those tests. Thus, it is important that at the end of a 

seven year long undertaking, we determine what we learned from performing the 

research presented in this dissertation. 

The most important thing to understand is that the research presented in this 

dissertation bears only a passing similarity to the research as it was performed day by 

day. Scientific data or models are rarely presented as they were discovered; actual 

research is a messy process with lots of false starts, and much of the data gathered isn’t 

explicitly useful in the end. Rather, the physics discussed here was pieced together from a 

variety of clues in the data, often long after the data was acquired. But one of the 

advantages of the data intensive approach is that it increases the amount of data that we 

have to draw from, even if that data does not seem very useful the moment it was taken, it 

may be useful down the road. Therefore, we learned that it is a good idea to invest in 

systematically gathering lots of data, so that you have more to work with later. A great 

deal of time was spent developing the data acquisition system discussed in chapter 2 and 

the analysis process discussed in chapter 3, but it was very much worth the time 

investment as it allowed us to get so much more out of the samples that we had and to 

consistently go back and compare our models to data, rather than wishing we had more or 

different data. 

Furthermore, an important lesson in science is intellectual humility, particularly 

when planning experiments in new material systems. Sweeping exploratory searches are 
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often derided as “fishing expeditions,” the implication being that they are higher risk and 

less useful than more focused measurements based on careful knowledge of the system, 

and more that any “accidental” discovery is not as worthwhile as a result as an 

experiment that confirms an existing hypothesis. Setting aside the objection that we are 

essentially fishing in a pond stocked with fish, i.e. that we knew there was interesting 

physics in these materials due to the literature and had good motivation to explore each 

material system, there is an unhelpful arrogance in assuming that one knows what 

happens in a material before we have tested it. Science is empirical, it does not matter 

how convincing your hypothesis seems, if it disagrees with experiment it is wrong. The 

human mind has a consistently terrible track record of hypothesizing about the natural 

world. It can take a physicist years of work to develop intuition for a physical 

phenomenon, and that intuition can easily be wrong. Furthermore, there is a 

psychological component, if one approaches an experiment believing they know the 

result, they can bias themselves and their conclusions about the outcome or miss findings.  

Many important scientific discoveries were unexpected when they were first 

observed, and the research presented here is no exception. In particular, the electron-hole 

liquid described in chapter 5 was unexpected as such phases were thought to exist only in 

low temperature 2DEGs. This should not be dismissed as “accidental” with the 

implication that it was dumb luck. This discovery was the culmination of a lot of work to 

perform these types of experiments and required a great amount of effort to construct a 

definitive model from the data. The fact that we did not know it could happen beforehand 

did not reduce the amount of work required to obtain this result or its importance.  
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When approaching a new sample, we generally measure the system agnostic to 

any particular hypothesis, exploring parameter space as if we didn’t know what we know 

in order to avoid biasing ourselves. Afterwards we may go back and examine any 

interesting dependence we find in more detail or attempt to test specific hypotheses. That 

is to say, exploring unknown parameter space and testing a specific hypothesis are not 

antagonistic goals, one can look for new result as well as test expectations. The advantage 

of doing your measurements in a data intensive manner is that you can both look for what 

you expect and have the maximum chance of finding something unexpected if it exists. 

Science is not a straightforward path, and one should not assume that they know anything 

in advance even if they suspect it, rather it is advantageous to find a way to discover 

whatever is out there and remain flexible. 

 

7.3 The Future 

 The future of research into nanoscale systems, both engineered and biophysical, is 

full of possibility. The subject is young and has rich systems to explore with many open 

questions. In this work, we have established the power of data-intensive measurements 

and MPDPM in exploring these systems, now it is time to implement these lessons. Being 

open about data intensive measurements and publishing information and code enabling 

data intensive experiments could shift the experimental paradigm in many related areas of 

research, not just nanoscale physics, but cellular and molecular biology and the 

characterization of newly engineered devices. The techniques discussed in chapters 2 and 
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3 are not tied to any particular type of 2D system and could be highly fruitful in other 

research contexts. 

The various non-equilibrium states discussed in this dissertation also merit further 

investigation. The extremely strong electron-phonon coupling discussed in chapter 4 

would provide a strong platform for investigations into this fundamental interaction in 

solid state physics. The electron-hole liquid discussed in chapter 5 raises many interesting 

questions: what materials can it occur in, how does the sample thickness affect its 

properties, what is its effective viscosity or surface tension? Lastly the results of chapter 

6 on the statistical scale in biophysics were largely theoretical, with the empirical 

component coming from comparisons to naturally occurring phototrophs. But the 

structural principle described there is deep enough that it deserves to be thoroughly 

investigated, and controlled laboratory experiments could reveal it in far greater detail. 

Moving beyond photosynthesis, there are a great many biological processes that must 

function well in a noisy environment, the design principle of quieting a noisy antenna 

could be generalized to quieting noisy systems of many kinds. If the design principle is 

half as successful in explaining other processes as it was in predicting photosynthetic 

structure, then it could give enormous and fundamental insights into biological life, the 

ultimate non-equilibrium system. 
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APPENDIX 1: 

SAMPLE INFORMATION 

A1.1 Sample Information and Metadata 

This appendix contains information and metadata on the various samples used 

throughout this dissertation. Each sample is given an identifier that abbreviates the names 

of its active materials that is italicized, for example a sample that is composed of 

graphene and WSe2 would be called GWSe2 and is referred to as such throughout the 

dissertation. This appendix will contain basic information about the composition of the 

samples, their characterization, and any special information about them. The samples will 

be listed in the order they are introduced in the text. 

All samples were prepared using an exfoliation and a dry transfer stacking process 

by various members of the QMO Lab. The fabrication process has been developed over 

time allowing increasingly clean and sophisticated samples to be fabricated, a detailed 

description of the process can be found in the dissertations of Dennis Pleskot and 

Fatemeh Barati113,114. The component materials were exfoliated from high quality bulk 

crystals onto Si/SiO2 substrates. The heterostructure was assembled in a custom-built 

transfer microscope using a well know dry transfer technique developed by Gomez et 

al.115 Polydimethylsiloxane (PDMS)/polypropylene carbonate (PPC) stamps were used to 

pick up and controllably deposits the exfoliated flakes on top of each other. Titanium-

gold (Ti/Au) electrical contacts were fabricated onto the devices using electron beam 

lithography. The person who fabricated a given sample and any variations from the 

standard process will be noted below. 
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A1.2 Graphene-hBN-Graphite Heterostructure Sample 

 The GBNGr sample discussed in Chapter 3 was fabricated by Dennis Pleskot and 

is composed of graphene on stacked on hexagonal boron nitride stacked on graphite, as 

shown in Figure A1.2.1. Electrical contacts were fabricated onto the graphene (on the 

top) and graphite (on the bottom), notably this sample contained electronical contacts on 

top of the heterostructure region, resulting in a more complex spatial photocurrent 

response. While this complex contact response provided a good example of the MPDPM 

data analysis discussed in chapter 3, in most samples we avoid contacts on the 

heterostructure to not contaminate signals with contact photocurrent. 

 

 

Figure A1.2.1: Optical Image of the GBNGr sample with component materials shown. 

Dashed black line outlines the graphene and dashed blue line outlines the heterostructure. 
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A1.3 Graphene-MoTe2 Heterostructure Sample 

 The GMoTe2 sample discussed in chapters 4 and 5 was fabricated by Dennis 

Pleskot out of graphene and exfoliated MoTe2 flakes using the standard dry transfer 

method. The resulting heterostructure is shown in Figure A1.3.1. AFM measurements 

were performed using a Digital Instruments Nanoscope IV with a silicon cantilever in 

tapping mode to confirm the layer thicknesses and observed that the top graphene, 

MoTe2, and bottom graphene layers display thicknesses of 5.88 nm, 8.96 nm, and 13.8 

nm, respectively. Raman spectroscopy was used to confirm the identity and approximate 

thickness of the materials. 

 

 

Figure A1.3.1: Optical Image of the GMoTe2 sample. Outlined area is the approximate 

extent of the heterostructure. 

 

 



 

 

179 

A1.4 MoSe2 - WSe2 Heterostructure Samples 

 In chapter 4 we discuss two samples composed of stacked monolayer MoSe2 and 

bilayer WSe2, which were fabricated by Fatemeh Barati using mechanical exfoliation of 

WSe2 and MoSe2 flakes from bulk crystal onto prefabricated contacts. These contacts 

were fabricated on a Si wafer coated with 290nm-thick SiO2. The heterostructure devices 

are assembled using a highly customized, temperature-controlled transfer microscope 

following the dry transfer process with special consideration to minimize the 

contamination of the interface. The dry pick-up transfer process was performed such that 

the two layers has no intentional contact to polymer films to preserve interface quality 

and was followed by two annealing processes to remove any contaminates. 

 

 

Figure A1.4.1: Optical image of the MoSe2WSe2-2 sample with material outlines. 
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Two devices were fabricated and used,  MoSe2WSe2-1 was the first iteration was 

used for low temperature measurements, it uses an Si backgate instead of a graphene 

backgate but is otherwise consistent. The second sample  MoSe2WSe2-2, show in in 

Figure A1.4.1, was the second iteration and featured a graphene backgate. It was used for 

all the room temperature measurements. 

Devices were characterized using Raman, photoluminescence (PL), and 

photocurrent (PC) spectroscopy. As shown in Figure A1.4.2a, the Raman spectrum of the 

heterostructure (black line) exhibits peaks that are also evident in the MoSe2 (green line) 

and WSe2 (blue line). When comparing Raman peaks in the heterostructure region to 

those in the constituent layers, we observed negligible shift of the peak positions as a 

function of energy, consistent with previous work62. Importantly, among the various 

vibrational resonances, the most prevalent features in the Raman spectrum of the 

heterostructure occur at energies of 29, 31, and 32 meV. 

Photoluminescence measurements reveal signatures of bound interlayer electron-

hole (e-h) pairs, or excitons, at the WSe2-MoSe2 interface. Figure A1.4.2b compares the 

PL as a function of photon energy EPH from MoSe2 (green line), WSe2 (blue line), and the 

heterostructure region (black line). The heterostructure exhibits similar spectral features 

to the individual layers, yet with a strong suppression of the lowest energy peak of WSe2, 

consistent with ordinary behavior due to charge redistribution at the interface. 
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Figure A1.4.2: Optical characterization of the MoSe2WSe2-2 sample. a, Raman and, b, 

photoluminescence spectra are consistent across both MoSe2WSe2-1. 

 

A1.5 Graphene-hBN-Graphene Samples 

In chapter 5 we discuss the behavior of three graphene-hBN-graphene (GBNG) 

heterostructures which were fabricated by Jacky Wan. The heterostructures are 

designated GBNG-1, GBNG-2, and GBNG-3 and images are shown in Figure A1.5.1. The 

heterostructures were assembled through the normal dry transfer method with the 

variation that GBNG-2 and GBNG-3 were transferred onto prefabricated gold contacts 

allowing them to be stacked in an inverted order with the contacts underneath the 

materials and better coverage of the hBN. The prefabricated contacts allowed the 

graphene layers to be fully encapsulated inside hBN in the heterostructure region. 

The order of the samples shows the consistent improvement in the fabrication and 

quality of the devices, which can be observed in the electronic characteristics shown in 

Figure 5.11. The first sample GBNG-1 had the bottom graphene resting on the SiO2 
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substrate which significantly degrades its quality compared to hBN encapsulated 

graphene. The second device, GBNG-2, has both graphene layers encapsulated with hBN 

but is geometrically imperfect, with part of the bottom graphene electrostatically screened 

by the Si substrate. The final device, GBNG-3 has fully encapsulated graphene in an 

electrostatically perfect geometry, resulting in a GBNG pixel with a clean spatial 

photoresponse. The hBN layers range from 7 to 10 nm, except for the bottom layers in 

GBNG-2 and GBNG-3 which were much thicker, ~50 nm. In all cases steps were taken to 

minimize the wet chemistry the graphene was exposed to and keep the layers as close to 

intrinsic as possible. 

 

 
Figure A1.5.1: Optical images of the GBNG samples. Outlined areas identify materials, 

blue outlines are for graphene, green outlines are for hBN, and dark to light outlines are 

top to bottom of the heterostructure stack. 
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APPENDIX 2: 

CALCULATIONS 

A2.1 Estimate of Laser Absorption in MoTe2 

To consider the density of charge carriers generated by laser excitation in the 

GMoTe2 sample we must first estimate what percentage of incident light is absorbed by 

the sample and converted into electron hole pairs. For a thick sample, on-resonance 

absorption is extremely high, approaching unity, however there are two complications. 

Firstly, ultrafast pulsed lasers are spectrally broad, meaning not all of the laser is on the 

resonance peak. Secondly, our laser is peaked at 1.03 eV (1200 nm) and the A exciton is 

peaked at 1.08 eV. The A exciton peak itself has a spectral width of approximately 50 

meV61. Therefore, to estimate our laser’s absorption we consider a gaussian absorption 

peak with 100% absorption at 1.08 eV and a 50 meV full width at half maximum 

(FWHM). Comparing the FWHM of our laser (~20 meV) to this distribution we see that 

our laser’s spectrum has between 3% absorption and 24% absorption but is peaked at 9% 

absorption. From this we conclude that on the order of 10% of the laser is absorbed. 

 

A2.2 Steady State Solution to the Exciton Rate Equation Model 

For a continuous wave (CW) laser the excitation is constant and the current settles 

into a steady state. Though we do not use a CW laser in this work, this limit is still useful 

to consider. As discussed in Chapter 4, excitons generated by a laser undergo Auger 

recombination, which we model with Equation 4.1. In the steady state case, 𝑑𝑁 𝑑𝑡⁄ → 0, 

and 𝐺(𝑡) is a constant, 𝐺0, that is proportional to the laser power. Thus Eqn. 4.1 is: 
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𝐺0 =
𝑁

𝜏𝑒𝑠
+ 𝛼𝑁2 (𝐴2.2.1) 

Which can be solved as 𝑁 = [√1 𝜏𝑒𝑠
2 + 4𝛼𝐺0⁄  − 1/𝜏𝑒𝑠]/2𝛼. In general, the population 

of charge carriers that becomes photocurrent is small compared to the population of 

excitons, meaning that the linear term in Eqn. 4.1 can be neglected, i.e. 1/𝜏𝑒𝑠 ≪ 𝛼. 

Assuming that, 𝑁 ≈ √𝐺0/𝛼. If we equate 𝑁 with the steady state photocurrent and 𝐺0 

with laser power, then we see that the laser power should follow 𝐼 ~ 𝑃1/2. 

 Our data tends towards the steady state form 𝐼 ∝ 𝑃1/2 at long Δ𝑡 and high 

interlayer voltage. We can see that our model satisfies this limiting case by expanding 𝐼𝐼 

from Eqn. 4.3 to second order, in which case 𝐼𝐼(𝑁1) ≈ 𝑁1 −
1

2
𝛼𝜏𝑒𝑠𝑁1

2, assuming 

𝑁1𝛼𝜏𝑒𝑠 < 1. We can also expand the steady state current around a non-zero power 𝑃0, 

𝐼𝑠𝑡𝑒𝑎𝑑𝑦 ∝ √𝑃 = √(𝑃 − 𝑃0) + 𝑃0 ≈ √𝑃0 [
3

8
+

3

4
(

𝑃

𝑃0
) −

1

8
(

𝑃

𝑃0
)

2

]. If we equate 𝑃/𝑃0 with 

𝑁1 we see that to second order both the model and the steady state limit have the same 

basic structure of 𝐼 ~ 𝑃 − 𝑃2, meaning that 𝛾~
1

2
 is a generally good approximation in the 

single pulse limit. 

 

A2.3 Mean Distance Between Electron-Hole Pairs at PC 

To calculate the average distance between the charge carriers at the critical point of 

the phase transition, we must find the density at the critical power PC. The number of 

photons incident on the sample by a single pulse of the laser is given by 𝑁 =

𝐸𝑝𝑢𝑙𝑠𝑒(𝑃)/ 𝐸𝑝ℎ𝑜𝑡𝑜𝑛(𝜆) =  𝜆𝑃 ℎ𝑐𝑅⁄ . Where 𝑅 = 75 MHz is the repetition rate of the laser, 
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𝜆 = 1200 nm is the laser wavelength, and 𝑃 is the power of the laser beam. The density of 

electrons and holes generated by a single pulse is 𝑛 = 2𝐴𝑁 𝑉⁄  . Where 𝐴 is the 

percentage of light absorbed by the sample (see section A2.1), and V is the total volume 

containing the electron-hole population. The average distance between charge carriers, 

𝑑𝑎𝑣𝑔, is then given by 
4

3
𝜋𝑑𝑎𝑣𝑔

3 =  
1

𝑛
 which gives the average spacing between electron-

hole pairs  

𝑑𝑎𝑣𝑔 =  √
3

8𝜋

𝑉

𝐴𝑁

3

 ≈ 1.4 × 10−4 √
𝑉

𝐴𝑃

3

  (𝐴2.3.1) 

To estimate 𝑑𝑎𝑣𝑔, we must estimate the volume 𝑉 in which the electron-hole population 

undergoes condensation. This volume depends on how fast the electron hole liquid forms, 

thus we can only place bounds on it. For the lower bound, the phase transition occurs 

quickly relative to the timescale of diffusion and the volume is a cylinder with diameter 

equal to the FWHM of the beamspot and height equal to the sample thickness. Therefore 

𝑉𝑚𝑖𝑛 = 𝜋(1.67 𝜇𝑚)2(9nm) = 0.08 𝜇m3 which at the critical power of 𝑃𝑐 = 5 mW gives 

an average distance of 𝑑𝑎𝑣𝑔 = 0.35 nm/√𝐴
3

. For the upper bound, carriers fully diffuse 

into the total volume of the sample prior to condensation. The area of the sample can be 

estimated from Figure 4.2 which gives an area of 66 𝜇m2, therefore 𝑉𝑚𝑎𝑥 = 5.94 𝜇m3 

which gives an average distance of 𝑑𝑎𝑣𝑔 = 1.48 nm /√𝐴
3

. Assuming 10% absorption in 

MoTe2 the lower bound is 0.8 nm and the upper bound is 3.2 nm. Thus, we conclude that 

at the critical point, charge carriers are separated by an average of 1-3 nm. This value is 
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similar to values of the exciton Bohr radius determined through magneto-optical 

measurements of MoTe2
75. 

 

A2.4 Modeling the spatially resolved photoresponse of an electron hole liquid 

To calculate the spatial distribution of the photocurrent we need to model what 

happens when a laser pulse illuminates the sample. At the surface of the sample the laser 

is a diffraction limited beam spot with a spatial profile that can be approximated as 

𝑃(𝑥) =  𝑃0 exp(−𝑥2/2𝜎2). Below the critical threshold, 𝑃𝐶, the photoresponse obeys a 

power law 𝐼 ∝ 𝑃𝛾. Thus for 𝑃0 ≤ 𝑃𝑡ℎ the observed photocurrent is given by taking the 

convolution of the Gaussian beam and the photocell profile (working in one dimension 

for simplicity but this can easily be generalized to two dimensions): 

𝐼(𝑥) =  ∫ [𝑃(𝑥 − 𝑥′)]𝛾𝑓(𝑥′)𝑑𝑥′
∞

−∞

 = ∫ 𝑃0
𝛾

𝑒
−

𝛾(𝑥−𝑥′)
2

2𝜎2 𝑓(𝑥′)𝑑𝑥′
∞

−∞

 (𝐴2.4.1) 

where 𝑓(𝑥) is a function describing the profile of the sample, 𝑓(𝑥) = 1 on the sample 

and zero otherwise. 

To calculate the spatial photoresponse in the electron hole liquid regime we consider 

the case where, for 𝑃0 > 𝑃𝑡ℎ an electron hole liquid droplet will form near the center of 

the beamspot. Once the droplet forms it can absorb nearby charge carriers and the e-h 

droplet size should increase linearly as the laser power is increased, thus the size of the 

droplet 𝑙 is given by 𝑙 = 𝐿0(𝑃0 − 𝑃𝑡ℎ). Where 𝐿0 is a free parameter that tunes the rate of 

expansion of the droplet. Since charge carriers inside the droplet recombine reapidly, the 
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part of the beam spot that the droplet is under does not contribute to the observed 

photocurrent, thus the current is modeled by: 

𝐼(𝑥) = ∫ 𝑃0
𝛾

𝑒
−

𝛾(𝑥−𝑥′)
2

2𝜎2 𝑓(𝑥′)𝑑𝑥′
−𝑙

−∞

+  ∫ 𝑃0
𝛾

𝑒
−

𝛾(𝑥−𝑥′)
2

2𝜎2 𝑓(𝑥′)𝑑𝑥′
∞

𝑙

 (A2.4.2) 

The observed photocurrent is the convolution of the photocurrent due to gas-phase 

electron-hole pairs and the photocell active area profile; the volume of the liquid droplet 

does not contribute to the observed photocurrent, resulting in photocurrent suppression.  

 

A2.5 Discrete Toy Model of Two-Channel Noisy Antenna 

In chapter 6, we discussed tuning of the noisy antenna in terms of time spent over- 

and under-powered. To visualize the noise behavior under different choices of input 

parameters, we calculate the power throughput within a finite system of absorbers as the 

sum of the absorption events within discrete timesteps. By implementing our model using 

random trials in the discrete limit, detailed below, we can illustrate how the correct 

choice of Δ reduces the sensitivity to external noise while incurring the minimum 

increase in internal noise. The results of this calculation, shown in Fig. 6.4 and 6.5, 

provide intuitive visualization for a key statement of our analytical model: An optimized 

network in an environment with correlated external fluctuations has Δ just large enough 

to quiet noisy inputs. Increasing Δ further adds to the internal noise. 

To explore the analytical model of Section 6.4 within a computationally discrete 

case, we consider a light harvesting network consisting of a small number of absorbing 
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molecules falling into two classes - a and b - that undergo discrete absorption events. 

This illustrative computation considers a group of 10 absorbing pairs, which was chosen 

as an order of magnitude estimate within any physically relevant light harvesting 

network. Our model corresponds to a simplistic network of absorbers with a direct 

coupling to the output set by a single rate for each of the a or b type absorbers, similar to 

that shown schematically in Figure 6.1. Since the absorbers are simply connected within 

the network, the number of absorbing pairs sets the noise level.  

At each timestep, the molecules will absorb either 𝒫𝐴, with probability 𝑝𝑎, absorb 

𝒫𝐵 with probability 𝑝𝑏, or absorb nothing with probability 1 − 𝑝𝑎 − 𝑝𝑏. The probabilities 

are set by the equilibrium condition, 𝑝𝐴𝒫𝐴 + 𝑝𝐵𝒫𝐵 = Ω under the symmetric condition 

Ω = (𝒫𝐴 + 𝒫𝐵)/2 for simplicity. There is a range of possible values of 𝑝𝑎 and 𝑝𝑏 that 

obey the equilibrium condition. To set the values we define a free parameter 0 ≤ 𝜙 ≤ 1 

such that 𝑝𝐵 = 𝑝𝐵
𝑚𝑖𝑛𝜙 + 𝑝𝐵

𝑚𝑎𝑥(1 − 𝜙) where 𝑝𝐵
𝑚𝑖𝑛 and 𝑝𝐵

𝑚𝑎𝑥 are the minimum and 

maximum values of 𝑝𝐵; from there 𝑝𝐴 is set by the equilibrium condition. For the 

calculations shown in Fig. 6.4 and 6.5, 𝜙 = 0.05 was used, but all values of 𝜙 give 

fundamentally similar results.  

The inputs to this calculation are the values of 𝒫𝐴, 𝒫𝐵, and Ω. To simulate 

external fluctuations in the light environment we add a slowly varying random fluctuation 

on top of 𝒫𝐴 and 𝒫𝐵, i.e. 𝒫𝐴 → 𝒫𝐴 + 𝒫𝐴𝛿𝑃 and 𝒫𝐵 → 𝒫𝐵 + 𝒫𝐵𝛿𝑃 for some random 

fluctuation 𝛿𝑃 that changes every 20 timesteps.  The output of the calculation is the sum 

of the energy absorbed from all the absorbing pairs, which gives the excitation energy of 

the system for that timestep. Due to the equilibrium condition, we expect that the average 
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output should be 10Ω, which we see when 𝛿𝑃 = 0 (in the figures, 10Ω is re-nomalized to 

Ω for simplicity). This calculation simulates excitation energy as a function of time, 

exhibiting fast stochastic noise and noise due the random external fluctuations. The 

histogram of this timeseries is what we show in Fig. 6.5c to illustrate the tuning of the 

model as a function of Δ.  

 

A2.6 Optimization Parameter for the Two-Channel Noisy Antenna 

In chapter 6, we discussed tuning of the noisy antenna and the key conclusion is 

that a two-channel model with a finite window in Δ is better at suppressing internal noise 

as compared to a one channel model. On the other hand, to protect against external 

variability, i.e. the fluctuation in the power spectrum incident on the antenna, Δ needs to 

be as large as possible. Our next step is to determine how these two contradictory 

properties are best satisfied and develop a quantitative way to find the optimal parameters 

for a Noisy Antenna in a given light environment. We start with a careful examination of 

the properties of the power bandwidth Δ. 

To determine Δ, and the wavelengths of the input nodes for optimization, a more 

realistic model for absorption is needed. Unlike the ideal model described in section 6.4, 

where all the absorption happens at two fixed wavelengths, absorbers generically operate 

in a narrow window centered at the 𝜆𝐴 and 𝜆𝐵 as shown in Fig. 6.1b. The absorption of 

the two channels as a function of wavelength, 𝑎(𝜆) and 𝑏(𝜆), are parameterized by 

gaussian functions:  
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𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) =  
1

𝑤√2𝜋
exp {−

[𝜆 − (𝜆0 + Δ𝜆 2⁄ )]2

2𝑤2
 } (A2.8.1) 

𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤) =  
1

𝑤√2𝜋
exp {−

[𝜆 − (𝜆0 − Δ𝜆 2⁄ )]2

2𝑤2
 } (A2.8.2) 

where 𝜆0 is the center wavelength between the two absorbing peaks, Δ𝜆 is the separation 

between the peaks and 𝑤 is the width of the peak functions (i.e. the standard deviation). 

Note that 𝜆𝐴 = 𝜆0 + Δ𝜆/2 and 𝜆𝐵 = 𝜆0 − Δ𝜆/2. For narrow absorbers, i.e. 𝑤 ≪ Δ𝜆, the 

precise parametrization - such as Gaussian, Lorentzian, or equivalent - does not change 

the principal conclusions. The input powers, 𝒫𝐴 and 𝒫𝐵, are obtained in the usual way by 

integrating the product of the absorption with the irradiance of the solar spectrum, 𝐼(𝜆). 

In other words, 𝒫𝐴 = ∫ 𝑎(𝜆)𝐼(𝜆)𝑑𝜆 and 𝒫𝐵 = ∫ 𝑏(𝜆)𝐼(𝜆)𝑑𝜆. From these simple 

definitions, the difference in the absorbed power is given by 

Δ(𝜆0, Δ𝜆, 𝑤) = ∫[𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆 . (A2.8.3) 

Eq. A2.8.3 gives a key parameter as Δ sets the scale of correlated external fluctuations 

that the noisy antenna is robust against. This suggests a strategy for how to calculate the 

ideal absorbers for a given solar spectrum. 

To insulate from external fluctuations, the first order optimization is a search for 

the largest value of Δ in the parameter space (𝜆0, Δ𝜆, 𝑤). However, this will not quiet a 

Noisy Antenna as there is a spurious maximum that must be considered, yet discounted. 

In the case of large Δ𝜆, peak a could sit on the maximum of 𝐼(𝜆) and peak b could be on 

the far edge of 𝐼(𝜆). In this scenario 𝒫𝐴 is maximized, and 𝒫𝐵 is effectively zero, thus Δ 

is the maximum possible. But this case is clearly outside the window in Δ where the two-
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channel model is able to reduce internal noise, in fact, this is the most extreme version of 

the poorly tuned case illustrated in the bottom panels of Fig. 6.5. 

Fortunately, the apparent, but spurious maximum is automatically accounted for 

when realistic architecture of the network is implemented. The integrated power that is 

absorbed at a given wavelength is transferred to the output node with a finite transition 

probability, which in turn is proportional to the energy at which the absorption occurs. 

The energy corresponding to each absorber is 𝐸𝐴,𝐵 =  ℎ𝑐/𝜆𝐴,𝐵, where h is Planck’s 

constant and c is the speed of light. If one channel has a significantly larger energy it will 

be preferred over the other, resulting in the poorly tuned case similar to the single input 

node scenario.  

Put together our design considerations for the optimization of the Noisy Antenna 

are as follows: (1) The two-channel model is advantageous only for a finite range of Δ =

𝒫𝐴
𝐼𝐼 − 𝒫𝐵

𝐼𝐼 within a parameter space defined by 𝒫𝐴
𝐼𝐼 and 𝑝𝐵. (2) The larger the range Δ, the 

better the system can protect against external fluctuations. (3)The typical wavelength of 

absorption of the two channels should not be too different. The strategy we adopt to 

implement these considerations is to determine the operable range for which the 

absorbers are close in energy (Δ𝜆 𝜆0⁄ ≪ 1) and then determine an optimization function 

that gives the maximum possible Δ within this constrained subspace of parameters. 

We can estimate the operable range through careful analysis of Eq. A2.8.3 with 

the line shapes specified in Eq. A2.8.1 and A2.8.2: 

Δ(𝜆0, Δ𝜆, 𝑤) = ∫[𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆 (A2.8.4) 
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= ∫  
1

𝑤√2𝜋
[exp {−

[𝜆 − (𝜆0 + Δ𝜆 2⁄ )]2

2𝑤2
 } − exp {−

[𝜆 − (𝜆0 − Δ𝜆 2⁄ )]2

2𝑤2
 } ] 𝐼(𝜆)𝑑𝜆 (A2.8.5) 

 

=   
2

𝑤√2𝜋
exp {−

𝛥𝜆2

8𝑤2} ∫ exp{−
(𝜆 − 𝜆0)2

2𝑤2
} sinh {

Δ𝜆(𝜆0 − 𝜆)

2𝑤2 } 𝐼(𝜆)𝑑𝜆 . (A2.8.6) 

To make further progress, we invoke empirical, but generic, facts of the spectral 

irradiance function to evaluate Eq. A2.8.6. Specifically, we first recognize that the 

spectrum 𝐼(𝜆) is bounded both in magnitude, with a single maximum, and is limited to a 

finite window in wavelength. Combining this with the exp{−(𝜆 − 𝜆0)2/2𝑤2} factor in 

the integrand of Eq. A2.8.6, we conclude that Δ(𝜆0, Δ𝜆, 𝑤) is determined by the behavior 

of the integral near 𝜆0. Importantly, expanding Eq. A2.8.6 in the vicinity of 𝜆0 

Δ =  
2

𝑤√2𝜋
exp {−

𝛥𝜆2

8𝑤2
} ∫ dλ exp {−

(𝜆 − 𝜆0)2

2𝑤2
} sinh {

Δ𝜆(𝜆0 − 𝜆)

2𝑤2
} 

× [𝐼(𝜆0) + (𝜆 − 𝜆0)
𝑑𝐼

𝑑𝜆
|

𝜆0

+
1

2
(𝜆 − 𝜆0)2

𝑑2𝐼

𝑑𝜆2
|

𝜆0

+ ⋯ ] (A2.8.7) 

we see that all even derivatives in the expansion vanish since sinh is an odd function in 

𝜆 − 𝜆0. The leading contribution to the integral comes from the first derivative of 𝐼(𝜆). 

Therefore 𝜆0 is in the vicinity of the inflection points of 𝐼(𝜆). This yields the intuitive 

result that maximizing the term puts 𝜆0 in the vicinity of the inflection points of 𝐼(𝜆).  

The natural scale for Δ𝜆 is 2√2𝑤 appearing in the leading exponential multiplying the 

integral. While an integration over all 𝜆 is not very meaningful, given that the expansion 

is only valid near 𝜆0, doing so yields 

Δ = Δ𝜆 ∑(2𝑤2)𝑛𝐿𝑛

1
2 (−

𝛥𝜆2

8𝑤2
)

𝑑2𝑛+1𝐼

𝑑𝜆2𝑛+1
|

𝜆0

∞

𝑛=0

(A2.8.8) 
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where 𝐿𝑛
𝑘 (𝑧) is the Laguerre Function which are polynomials in 𝑧 with the highest power 

going as n. For negative z they are also positive definite. Thus, as n increases each 

successive term adds higher powers of  
𝛥𝜆2

8𝑤2  with the sign determined by the (2n+1)th 

derivative evaluated at 𝜆0. As anticipated, for Δ𝜆 < 2√2𝑤 successive terms become 

smaller and smaller allowing for a finite value of Δ consistent with the two channel 

antenna model. Therefore, we take Δ𝜆 ≤ 2√2𝑤 as the operable bandwidth that satisfies 

our design considerations discussed above. 

To perform a parameter search for the values of 𝜆0 and Δ𝜆 that quiet a Noisy 

Antenna we want a quantity that satisfies our design considerations, i.e. one maximized 

in the operable bandwidth while also maximizing power bandwidth within that range. As 

before, we start by considering Δ as our optimization parameter. Fig. A2.8.1a shows two 

sets of peaks, the blue peaks are when Δ𝜆~2√2𝑤 and the green peaks when Δ𝜆 is the 

maximum possible i.e. with one peak on the spectral maximum and one on the edge of 

the spectrum. Evaluating Eq. A2.8.3 involves integrating over the peaks, as indicated by 

the shading of the area under the curves, and the result is show in Fig. S2.8.1b where Δ is 

maximized when Δ𝜆 is the maximum possible. As expected, simply maximizing Eq. 

A2.8.3  will not quiet a noisy antenna, but it provides a framework to do so.  

To develop a better optimization parameter, we integrate Eq. A2.8.3 with 

modified bounds of integration: 

Δop(𝜆0, Δ𝜆, 𝑤) = ∫  [𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆
𝜆0+𝑚

𝜆0−𝑚

 (A2.8.9) 
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where m is an open parameter that sets a bound to the vicinity of 𝜆0. In other words, we 

are only considering the local contribution to the integral within an interval 2m wide, 

around a point 𝜆0. As Δ𝜆 increases, the peaks will fall outside the operable bandwidth 

and not contribute to the integral. This is shown schematically in Fig. A2.8.1c, where 

only the 2m interval, indicated by the shading, is integrated and the wide peaks at Δ𝜆𝑚𝑎𝑥 

are excluded. The result is shown in Fig. A2.8.1d where we see that the optimization 

parameter Δ𝑜𝑝 is maximized on the ideal bandwidth, and as Δ𝜆 → Δ𝜆𝑚𝑎𝑥 the 

optimization parameter Δ𝑜𝑝 → 0 because green peaks are outside the bounds of 

integration. The choice of m is somewhat arbitrary, so long as the interval excludes the 

poorly tuned case and contains the maxima of the peaks when Δ𝜆 = 2√2𝑤, then a change 

in m will not significantly change the location of the maxima. For computational 

convenience we choose m = 2w without loss of generality, and write   

Δop(𝜆0, Δ𝜆, 𝑤) = ∫  [𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆
𝜆0+2𝑤

𝜆0−2𝑤

 . (A2.8.10) 

Equation A2.8.10 is the integral used to calculate all results within this work. Section 

A2.7 discusses this optimization for all of the spectra shown in Fig. 2. 

From this analysis we can make two basic predictions about the model that can 

then be verified against real photosynthetic spectra. First, since the leading contribution 

comes from the first derivative of 𝐼(𝜆) we expect Δop from Eq. A2.8.10 is maximized in 

the vicinity of the inflection point of the spectrum as a function of 𝜆0. We see that all of 

our optimizations, shown below in section A2.7, have maxima on the spectral inflection 

points. In addition, in all prototypical phototrophs shown in Fig 6.6, we find absorption 
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peaks near inflection points in their solar spectra. Second, since we have shown that 

Δ𝜆~2√2𝑤 is the operable bandwidth, then if the difference between the spectral 

minimum and maximum is of order 2√2𝑤 or less there are no optimal peaks because that 

section of the spectrum is not wide enough. In the case of the purple bacteria, shown in 

Fig. 6.6e,h, the left side of the spectrum rises from near zero at 700 nm to the spectral 

maximum at 750 nm, but this rise takes place over a range less than 2√2𝑤 ≈ 70 nm. We 

subsequently do not observe any peaks in the purple bacteria spectrum on the left side of 

the spectral maximum, consistent with our model. 
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Fig. A2.6.1: a shows two pairs of absorption peaks over an ideal blackbody solar 

spectrum (grey line). The green peaks have the maximum peak separation, Δ𝜆𝑚𝑎𝑥 and the 

blue peaks have the ideal bandwidth Δ𝜆 = 2√2𝑤. b, the calculation of Eq. A2.8.3 for the 

ideal blackbody in the parameter space (𝜆0, Δ𝜆), Δ is maximized at Δ𝜆𝑚𝑎𝑥. c, shows the 

absorption peaks again but limits the integrated area to an interval 2m wide around 𝜆0, 

indicated by the shading, as in Eq. A2.8.9. d, the calculation of Eq. A2.8.10 for the ideal 

blackbody in the parameter space (𝜆0, Δ𝜆) with 𝑚 = 2𝑤, maximized at Δ𝜆 = 2√2𝑤. 
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A2.7 Optimization of the Noisy Antenna in Diverse Light Spectra 

 Taking the model discussed in chapter 6, and the optimization parameter derived 

in appendix A2.6, we perform the optimization for all the spectra described in chapter 6. 

In order to find the optimum peaks shown in Fig. 6.6g,h,i we use Eq. A2.8.10 to calculate 

Δ𝑜𝑝 for the parameter space defined by (𝜆0, Δ𝜆, 𝑤) using the solar spectrum in three 

distinct niches as an input. The solar spectrum is input as 𝐼(𝜆), and we find the absorption 

peaks that correspond to the maxima of Δ𝑜𝑝. We first start with the solar spectrum at the 

surface of the Earth, shown as the grey line in Fig. 6.6d. Figure A2.9.1a shows the 

calculation of Δ𝑜𝑝(λ0, Δλ, 𝑤 = 13 nm) for the solar spectrum (low pass filtered to 

eliminate high frequency spectral noise), and we examine this parameter space to 

determine the model prediction shown in Fig. 6.6g.  

As discussed in appendix A2.6, for a smoothly varying, singly peaked spectrum, 

like that of a blackbody, there would be two clear maxima at the inflection points on 

either side of the spectral maximum. However, the complexities of real spectra make this 

optimization non-trivial. Examining Fig. A2.9.1a we see several local maxima on each 

side of the spectral maximum. This abundance of maxima is due to fine features of the 

solar spectrum, which absorbers with 𝑤 = 13 nm are too narrow to average over. Figure 

A2.9.2 performs this calculation for arbitrary 𝑤. We see that at values of 𝑤 > 20 nm, the 

calculation is not as sensitive to fine features and shows only two maxima of Δ𝑜𝑝, which 

occur when 𝜆0 is near the inflection points on either side of the spectral maximum and 

the peak separation is Δ𝜆~2√2𝑤. 
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Fig. A2.7.1: The full model optimization of Δ𝑜𝑝(λ0, Δλ), at a given width w, for a given 

solar spectrum (left) and the resulting peaks compared with the solar spectrum (right) for 

a,b the terrestrial solar spectrum, c,d the canopy-attenuated solar spectrum and e,f the 

solar spectrum under 2 meters of seawater. 
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Fig. A2.7.2: Model optimization of the solar spectrum at the surface of the Earth for 

variable w. The axes of each individual panel are the same as the axes in Figure A.2.9.1a. 

 

In photosynthesis, w is fixed by the intrinsic absorption of the absorbing pigment 

molecule, which is 13 nm for the LHC2. Lacking any way to calculate a priori the ideal 

𝑤, we use 𝑤 = 13 nm as an input to our model for chlorophyll and pick out optimal 

parameters by following the basic model prediction. Therefore, we search for maxima of 

Δ𝑜𝑝 on either side of the spectral maximum, shown in Fig. A2.9.1a by the purple and red 

points. Notably in Fig. A2.9.1a we see two bright peaks in Δ in the 400-450 nm range, 

these peaks are degenerate for the purpose of our model and we pick the one closer to the 
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spectral maximum, see the discussion below. The purple and red points correspond to 

two pairs of peaks, which are shown on top of the solar spectrum in Fig. A2.9.1b. As 

expected, the center wavelength of these peaks lies in the neighborhood of the maximum 

slope of the spectrum, and near the ideal bandwidth Δ𝜆 ~ 2√2𝑤 ~ 37 nm.  

All of the results presented in Fig. 6.6 were calculated by choosing the spectral 

width of the relevant photosynthetic pigment, and then finding the maximum in 

Δ𝑜𝑝(λ0, Δλ). The optimizations for the terrestrial solar spectrum, the solar spectrum under 

leaves and the solar spectrum under two meters of water are shown in Figs. A2.9.1a,c,e 

respectively. These optimizations generate the results shown in Fig. 6.6g,h,i. 

 The characteristic spectrum under canopy (Fig. 2.9.1c,d) confirms an interesting 

feature of the noisy antenna model: for optimal noise cancellation, the peak separation 

should be Δ𝜆~2√2𝑤. For the optimization shown in Fig. 2.9.1d only one pair of peaks is 

shown, corresponding to the red maximum in Fig. 2.9.1c on the right-hand side of the 

spectral maximum. The maximum on the left-hand side of the spectral maximum is 

shown as a purple point, however this maximum does not correspond to a fine-tuned case, 

due to the fact that the left-hand side of the spectrum rises too sharply. The left side of the 

spectrum rises from near zero at 700 nm to the spectral maximum at 750 nm, but this rise 

takes place over a range less than 2√2𝑤, the operable bandwidth. Thus, for the optimum 

peaks on the left side, one peak will be near the maximum, and the other will be near the 

edge, which is the poorly tuned case. Therefore, we do not expect to see a pair of left-side 

peaks. Indeed, if we look at the absorption spectrum of BChl a (Fig. 6.6e), we see only a 

pair of right-side peaks, which correspond well with the peaks found in Fig. 2.9.1d. In 
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other words, on each side of the spectrum the range between the edge of the spectrum at 

the maximum is the available bandwidth in which an absorbing pair could exist. In order 

to have a fine-tuned noisy antenna, the operable bandwidth must be less than the 

available bandwidth. In this case, the available bandwidth is approximately 50 nm and 

the ideal bandwidth is 2√2𝑤 = 71 nm, therefore fine-tuned peaks can’t exist. 

In the optimizations for the various solar spectra, shown in Figs. A2.9.1, we see 

that there are multiple peaks of Δ𝑜𝑝, meaning that there are multiple solutions for a given 

solar spectrum. Furthermore, in the optimization for the solar spectrum (Fig. A2.9.1a) 

and underwater (Fig. A2.9.1e) we do not pick out the largest peaks in Δ𝑜𝑝 for the peaks 

on the left side of the spectral maximum. To explain this, we must examine the peaks on 

the left side of the solar spectrum in more detail.  

Figure A2.9.3 shows the model optimization for two slightly different solar 

spectra. Fig. A2.9.3a shows the Δ calculation for the NREL data of the extraterrestrial 

solar spectrum106. This is the data we use for our terrestrial results to avoid any 

atmospheric features of the solar spectrum, which are usually variable and would 

themselves be a source of external fluctuation. Fig. A2.9.3b shows the Δ𝑜𝑝 calculation for 

a similar NREL spectrum taken at the surface of the Earth (Direct Circumsolar spectrum 

from the Air Mass 1.5 measurement). Comparing the spectra (black lines) we see that 

there are some small differences between the spectra, but they have the same large-scale 

features. From the colored line traces of Δ𝑜𝑝 we see, as in Fig. A2.9.2, that at small w 

there are always two prominent peaks, one near 400 nm and the other near 440 nm, and 

that as w increases, they merge together into a single peak near 425 nm. In Fig. A2.9.3a 
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the 400 nm peak is clearly larger, but in Fig. A2.9.3b they are nearly the same for some 

values of w. Thus, there are two clear peaks in this wavelength range, and their relative 

amplitudes depend on fine features of the solar spectrum that can vary with atmospheric 

conditions, i.e. the raw amplitudes are not particularly meaningful. In other words, for the 

purposes of the model these two peaks are degenerate. 

 

 
Fig. A2.7.3: a, the Δ𝑜𝑝 optimization for the NREL Extraterrestrial solar spectrum. 

Colored lines show Δ𝑜𝑝 for variable w at Δ𝜆 = 2√2𝑤, compared with the solar spectrum 

(black line, arb units). b, the Δ𝑜𝑝 optimization for NREL Direct Circumsolar solar 

spectrum, which is attenuated by Earth’s atmosphere. Colored lines show Δ𝑜𝑝 for variable 

w at Δ𝜆 = 2√2𝑤, compared with the solar spectrum (black line, arb. units). 

 

Given two degenerate peaks in the optimization, how do we choose which 

solution to include in the model prediction? Given that the two solutions are equal from 

the perspective of the model, we look at how the peaks line up with the data. When 

compared to multiple measurements in the literature the solution corresponding to the λ0 

~ 400 nm peak exhibits a large and systematic error when compared with all of the 
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measurements. In contrast, the λ0 ~ 440 nm peak lines up well with the measured data 

across multiple values reported in the literature. Therefore, we conclude that nature uses 

the λ0 ~ 440 nm peak. This analysis works equally well when applied to the left side 

peaks of the underwater spectrum for Green Sulphur Bacteria, which is expected given 

that the structure of the left side of the solar spectrum is largely unaffected by water (see 

Fig.6.7). There are several potential hypotheses for why the λ0 ~ 440 nm peak is selected, 

the simplest being that if the two peaks are approximately equally advantageous for 

quieting a noisy antenna, nature might select the one with higher power throughput. But 

testing these hypotheses is beyond the scope of this work. From the perspective of our 

model there are two degenerate solutions for the left side of the solar spectrum and nature 

seems to use the one closer to the spectral maximum. 

 




