
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Analysis of Nanopore Data using Hidden Markov Models

Permalink
https://escholarship.org/uc/item/8341m6kv

Authors
Schreiber, J.
Karplus, K.

Publication Date
2015-02-03

DOI
10.1093/bioinformatics/btv046

Supplemental Material
https://escholarship.org/uc/item/8341m6kv#supplemental
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8341m6kv
https://escholarship.org/uc/item/8341m6kv#supplemental
https://escholarship.org
http://www.cdlib.org/


BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–7

Analysis of Nanopore Data using Hidden Markov Models
Jacob Schreiber and Kevin Karplus
Nanopore Group, Department of Biomolecular Engineering, University of California Santa Cruz,
California, USA.
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Nanopore-based sequencing techniques can reconstruct
properties of biosequences by analyzing the sequence-dependent
ionic current steps produced as biomolecules pass through a pore.
Typically this involves alignment of new data to a reference, where
both reference construction and alignment have been performed by
hand.
Results: We propose an automated method for aligning nanopore
data to a reference through the use of hidden Markov models.
Several features that arise from prior processing steps and from
the class of enzyme used can be simply incorporated into the
model. Previously, the M2MspA nanopore was shown to be sensitive
enough to distinguish between cytosine, methylcytosine, and
hydroxymethylcytosine. We validated our automated methodology on
a subset of that data by automatically calculating an error rate for
the distinction between the three cytosine variants, and show that the
automated methodology produces a 2–3% error rate, lower than the
10% error rate from previous manual segmentation and alignment.
Availability: The data, output, scripts, and tutorials replicating the
analysis are available at https://github.com/UCSCNanopore/
Data/tree/master/Automation.
Contact: karplus@soe.ucsc.edu or jmschreiber91@gmail.com

1 INTRODUCTION
The use of hidden Markov models (HMMs) in analyzing
biosequence data is widespread and is the backbone of such services
as pFAM, TMHMM, and SAM-T08 (Sonnhammer et al, 1998;
Krogh et al, 2001; Karplus, 2009). These services use HMMs to
identify regions of interest in observed sequences. Briefly, HMMs
model a sequence family with emission probabilities for each
possible base or amino acid at each position of a reference. HMMs
can perform an alignment between an observed sequence and the
reference and can allow for features such as insertions or deletions
compared to the reference (Eddy, 1998).

This HMM methodology can be extended to analyze nanopore
data, which is ionic current sampled at a high frequency instead of
a sequence of characters (Timp et al, 2012). The ionic current is
the flux of ions through a tiny hole (the nanopore) in an insulating
barrier as a voltage is applied. When biomolecules pass through
the nanopore, they block the passage of ions, causing characteristic
drops of ionic current (Kasianowicz et al, 1996). More recently, both
single-nucleotide resolution (Manrao et al, 2011) and discrimination
of three epigenetic variants of cytosine (Schreiber et al, 2013; Laszlo
et al, 2013) have been achieved by using Φ29 DNAP (Lieberman

et al, 2010; Cherf et al, 2012) to mediate the movement of DNA
through a M2MspA nanopore.

The ionic current can be processed into segments, which
summarize the ionic current while a DNA molecule is held in a
particular position within the nanopore by Φ29 DNAP (Schreiber
et al, 2014). Each segment, instead of representing each nucleotide
individually, is influenced by a number of adjacent nucleotides
which corresponds to the length of the narrowest region of the
pore. For the pore M2MspA, the word length is approximately four
nucleotides.

An important task in the use of nanopore devices is decoding
the sequence of segments into information about the underlying
biosequence that generated it, which is complicated because the
DNA motor is not a perfect stepper motor and the segmentation
algorithm is not perfect. However, the combined behavior of the
enzyme, nanopore, and signal processing can be modelled with a
somewhat more complicated HMM than the simple profile HMMs
usually used in protein and DNA sequence modelling. The HMM
presented here is specific to using Φ29 DNAP with a M2MspA
pore and using our current segmentation algorithm. Different classes
of enzymes may have different features that need to be modelled,
and different segmenters may have different rates of over- or
under-segmentation.

We propose an automated way to align nanopore data to a
reference model using this HMM. We validate this approach using
a three-class classification problem, in which the strands contain
either a single cytosine (C), methylcytosine (mC), or hydroxy-
methylcytosine (hmC) in an otherwise-identical sequence. These
single cytosine variants have been shown to produce different ionic
current levels as they pass through the nanopore (Laszlo et al,
2013). Hand analysis of data from the DNA molecules tested in this
paper resulted in a classification error rate of approximately 10%.
(Schreiber et al, 2013). We show that this error rate can be reduced
to 2–3% using our automated methodology on a small data set.

2 MODULE STRUCTURE
A traditional character-emitting profile HMM models a reference
sequence with a linear sequence of match states, each with
probabilities for the characters dependent on the position in the
sequence. They model insertions by adding another character-
emitting state after each position and deletions by adding a silent
state at each position (Fig. 1a). Transitions between the match,
insert, and delete states indicate how an observed sequence may

c© Oxford University Press 2005. 1



Schreiber, J and Karplus, K

M

I

D

I

M

I

D

S

...

...

... M

I

D

M

I

D

E

M

I

D

I

M

I

D

S

...

...

...

S1

S2 M

I

D E1

E2

S1

S2 M

I

D E1

E2

I

S

...

...

S1

S2 M

I

D E1

E2

S1

S2 M

I

D E1

E2

S1

S2 M

I

D E1

E2

...

...

...

...

...

...

S1

S2 M

I

D E1

E2

S1

S2 M

I

D E1

E2

S1

S2 M

I

D E1

E2

b c

a

...

...

Fig. 1. An example global sequence alignment HMM. (a) The typical structure of a global sequence alignment HMM where each match represents a position
in a reference. Insertions and deletions in an observed sequence are allowed through a symbol-emitting insert state and a silent delete state, and mismatches can
be allowed for through pseudocounts on emission distribution of the match state. (b) A module structure can be made by taking slices from the global sequence
alignment HMM, and adding silent states as ports, each modelling a single symbol in the reference sequence. (c) Creating a HMM with a fork is simple with
this module format, as the modules can be attached at the ports using a small number of edges without having to change internal transition probabilities within
the modules.

be aligned to the model, with transition probabilities indicating the
likelihood of each possible transition.

We can view the HMM graph structure as composed of repeating
subunits, consisting of a match, delete, and insert state and their
associated edges. We can minimize inter-module connections by
adding silent states to act as ports for the modules, with single
transitions of probability 1 between the ports out of one module
and into the next. (Fig. 1b) These extra silent states do not add to
the computational complexity of the HMM and are automatically
optimized out by the YAHMM software we used.

Alignment to simple profile HMMs suffices for many recognition
tasks, but some classification tasks are better handled by forks
within the HMM, where the different paths chosen at the fork
determine the classification. Our module format with ports allows
complicated forking paths without needing excessive numbers of
edges. Fig. 1c shows an example fork containing two paths in an
otherwise linear sequence. Note that only four edges are required
on either side to create the fork structure. In general, 2nm edges
are needed for a module structure with n silent-state ports and a
fork with m paths, and the edges where the fork rejoins all have
probability 1, thus not adding to computational complexity. The
internal transition probabilities of each module are kept entirely
separate from the presence of a fork.

To model nanopore data, we first perform event detection on the
data, detecting all regions of ionic current which are longer than
500 ms, below 90 pA, and above 0 pA. We then segment each
event by recursively splitting at the ionic current sample which
best splits a region into two Gaussian distributions until a threshold
in probabilistic gain is reached, representing each time interval
as a segment with a mean current, a standard deviation, and a
duration (Schreiber et al, 2014). Although all three parameters carry
information, we built our HMM to model only the mean values to
match more closely the previously done hand analysis—it is likely
that using the other information would improve the alignments
slightly. Each match state in our HMM uses a Gaussian distribution
to assign emission probabilities to the segments, with parameters µ
and σ having initial values derived from a hand-analyzed reference
sequence. Insert states, which correspond to unpredicted currents,
have a uniform distribution from 0 pA to 90 pA, which are the
limits for event detection. Initial transition probabilities inside each
module were estimated by hand from a small number of events.

Our HMM (Fig. 2) has a more complicated module than the
standard modules for profile HMMs, in order to capture variations in
the signals due to both signal-processing limitations and non-ideal
behavior of the Φ29 DNAP motor moving the strand through the
pore. Ionic current traces giving examples of what is being modelled
by the various additions to the modules are shown color coded below

2



Nanopore HMMs

40 ms70

60

50

40

30

50

40

30

20

250 ms

25 ms 25 ms

50

45

40

35

30

50

45

40

35

30

25

20

15

55

50

45

40

35

30

b c

d e

f

S1

S2

S3

S4

S5

S6

S7

E1

E2

E3

E4

E7

M1

I

D

SS SE

M2

B

M4M3

E5

E6

S1

S2

S3

S4

S5

S6

S7

E1

E2

E3

E4

E7

E5

E6

U

a

500 ms

Fig. 2. The repeating structure of an HMM that incorporates features specific to DNA translocation by Φ29 DNAP. (a) The two modules that form the repeating
structure, of which the left represents one position in a PSSM, and the right represents two adjacent positions in the reference profile. Five new features are
proposed in comparison to the typical global sequence alignment HMM; (b) in teal, inserts can now transition back to the match state they came from, to allow
for a segment to be split by a transient spike, (c) in magenta two match states, one with a low-probability self loop and one with a high-probability self loop,
to handle oversegmentation, (d) in orange, the possibility of a backslip with an exponentially decreasing probability with the number of positions slipped, (e)
in green, handling for undersegmentation by including a state with parameters derived from the two adjacent states that were to be modelled, and lastly (f)
in blue the possibility of repeateded single-position backslips, usually associated with a temporary stall in the incorporation of a nucleotide on the part of the
Φ29 DNAP motor.

the HMM module. The features that pertain to the signal processing
and noise spikes in the nanopore are useful in all nanopore HMMs,
but those that model Φ29 DNAP behavior on the M2MspA pore
may need to be modified for different pores and other DNA motors.

The segmenter can oversegment, breaking an interval of current
into multiple segments, even though the DNA is not advancing to
the next nucleotide, or undersegment, failing to distinguish current
values that correspond to different positions on the DNA strand.
Oversegmentation is fairly rare, but tends to occur in bursts with
either one or many segments. To approximate this distribution, we
used two match states (M1 and M2 in magenta in Fig. 2), each with
a self-loop. One models the initial peak of the distribution, while the
other models the long tail. Undersegmentation is also fairly rare, and

is modeled by creating a new state U (green in Fig. 2) corresponding
to two adjacent match states, with intermediate µ and σ values. We
treated it as a separate module for convenience in creating the HMM,
since its emission values depend on two adjacent positions in the
sequence. The extra silent states are optimized out by the YAHMM
software, so this notational convenience does not cost us anything.

Nanopore signals often have unexplained short blips, where the
current goes momentarily high or low before returning to the same
mean current. These may be electronic artifacts or caused a small
molecule transiting the nanopore along with the DNA. We model
them by including a low-probability edge from the insert state I
back to the silent state before the match states (teal in Fig. 2). A
possible improvement to this model would be to include a special

3



Schreiber, J and Karplus, K

“blip” insert state that modeled duration as well as mean, given the
short duration of these blips.

The Φ29 DNAP enzyme often slips backwards due to the tension
applied by the voltage across the nanopore. The backslips are
modeled by edges to and from silent state B (orange in Fig. 2). Note
that the transitions along this bottom path are right-to-left instead of
left-to-right.

We also occasionally observe a rapid flicker, switching back and
forth between the current values of two adjacent states. We believe
that this results from the enzyme repeatedly attempting and failing
to incorporate a nucleotide. The match states M3 and M4 (blue
in Fig. 2) correspond to flickers with the previous and next state
respectively.

The four match states in each module initially have the same
underlying distributions—they all represent the same position being
read in the nanopore, and the separation into different states handles
the different transition probabilities. However, the underlying
distributions are not tied, meaning that distributions can deviate
from each other after training.

3 CLASSIFICATION OF METHYLATION STATUS
The nucleotide cytosine (C) undergoes a methylation cycle as a
part of biological cell regulation. During the cycle, cytosine is
enzymatically converted to methylcytosine (mC), then to hydroxy-
methylcytosine (hmC), formylcytosine, or carboxylcytosine by Tet
proteins (Shinsuke et al, 2011). Our group has previously shown
that DNA nanopores can distinguish between a single C, mC, or
hmC present in a CG dinucleotide using hand feature extraction and
classical machine learning methods with an estimated error rate of
2% to 10% depending on the context of the flanking nucleotides
(Schreiber et al, 2013). The 5′-CCGG-3′ context had the highest
error rate, at 10%.

Briefly, all three DNA hybrids (see Supp. Fig. 1) are added to the
well of solution above the nanopore. These hybrids are composed
of the template strand to be read, a hairpin primer with a free
3′ hydroxyl, and a blocking oligomer designed to allow enzyme
binding to the template strand, but block access to the 3′ hydroxyl.
When the DNA-enzyme complex reaches the nanopore, the 5′ end
of the template threads through the nanopore, and the blocking
oligomer is pulled off one nucleotide at a time by the voltage
using the enzyme as a wedge—moving the template strand through
the porin. This causes the unzipping fork seen in Fig. 3. When
the blocking oligomer is fully removed, the 3′ hydroxyl becomes
available to the enzyme, and strand replication begins, pulling the
template strand back up through the nanopore one nucleotide at a
time, at which point the second reading of the cytosine occurs, as
well as the reading of the label and the remainder of the strand. The
sequence of the template strand is a poly-3′-CAT-5′ sequence, with
a 3′-CCGG-5′ 4mer inserted into it, and labels consisting of either
an abasic residue, ’GG’ dinucleotide, or no modification 9 residues
downstream from the 4mer insertion.

We validated our automated methodology on new data collected
for this difficult 5′-CCGG-3′ context. The data was collected from
running a mixed pool of strands through the nanopore. The strands
bore a single C, mC, or hmC at the target CG dinucleotide and the
corresponding downstream label in an otherwise identical sequence.
The first 27 events were identified by hand (5 C, 11 mC, and

hmC

C

mC

hmC

C

mC

X

T

CAT

a. Unzipping b. Synthesis c. Label

Fig. 3. The general structure of the hidden Markov model used, which
models 54 segments. (a) The first 18 segments arise as Φ29 DNAP unzips
the blocking oligomer on the hybrid, during which time the cytosine
variant passes through the nanopore once. (b) The remaining segments
arise as Φ29 DNAP performs synthesis on the growing daughter strand,
pulling the cytosine variant back up through the nanopore, and (c) later the
corresponding label. The label name refers to the sequence inserted into
the repeating CAT background sequence, with an abasic residue denoted
by an ’X’ corresponding to hmC, a thymine reside corresponding to an
unmodified cytosine, and an unmodified CAT trinucleotide indicated a
methylated cytosine.

11 hmC) and used to create initial profiles for the three cytosine
variants. These events were not used in any further analysis.

The profiles from the hand-curated sequences were merged to
create an HMM with three forks (Fig. 3), with each fork containing
three paths. The first fork models the three cytosine variants (C,
mC, hmC) passing through the nanopore during unzipping (Fig. 3a),
the second the cytosine variants during synthesis (Fig. 3b), and
the third the labels (designated X, T, or CAT) passing through the
nanopore (Fig. 3c) (Schreiber et al, 2013). Each fork merges before
the next fork splits in order to ensure that the calls for each fork are
approximately independent of each other.

After excluding the 27 events used for constructing the initial
model, 423 more events were automatically detected, segmented,
and reduced to a sequence of means of the ionic current segments.
Because we expect the HMM approach to handle oversegment-
ation better than it handles undersegmentation, extra preprocessing
was done to reduce the probability of undersegmentation. This
preprocessing consisted of calculating the Viterbi path of each
sequence in the untrained HMM, and splitting segments that aligned
to an undersegmentation state U (the splitting was done by the same
segmenter as the initial segmentation, just forcing a further split in
the segment, rather than using the normal termination condition).
The align-and-split-undersegmented-segments process was repeated
until either the number of undersegmentation states in the path did
not decrease from the previous iteration, or none were present.

In previous hand analysis, we distinguished between on-pathway
events, which consist of Φ29 DNAP moving a DNA strand moving
in a stepwise manner through the nanopore and terminating with
the complex dissociating from the nanopore at the end of synthesis,
and off-pathway events, where either something is passing through
the nanopore that is not DNA, or the Φ29 DNAP has stalled in
some manner. Our analysis consists of two classification tasks:
deciding which events are on-pathway and then classifying the
cytosine variant for the on-pathway events. We use the same HMM
in diffferent ways for the two tasks.

In order to filter and classify events, we calculate anm×mmatrix
T for a model with m states, where Ts,t is the expected number of
transitions from state s to state t given the input event, as calculated
by the forward-backward algorithm. The score of each path at a fork
Sp is calculated as the minimum number of expected transitions to

4



Nanopore HMMs

the magenta states SE shown in Fig. 2 for the modules on the path
p:

Sp = min
i∈p

∑
s

Ts,SEi
(1)

Observed sequences that match a path in its entirety score high,
while observed sequences that omit segments in the path will have
a lower score. Soft classification of the cytosine residue is done by
normalizing the Sc values for the three paths {C,mC, hmC} of
the synthesis fork. We do not use the path taken at the unzipping
fork for classification or for filtering, to allow a direct comparison
to previous work where only synthesis data was used, even though
using the information in the unzipping fork might improve the
classification.

To distinguish between on-pathway events and off-pathway
events, a filter score F is calculated as

F =
∑

c∈{C,mC,hmC}

Sc

∑
l∈{X,T,CAT}

Sl (2)

which requires that a path c has high probability at the cytosine
synthesis fork, and a path l has high probability at the label fork,
but does not require that the paths match.

To determine the accuracy of our soft calls, we compute a
soft accuracy score A as the dot product between the score of a
cytosine variant path and its corresponding label, normalized by the
filter score for that event, which can be loosely interpreted as the
probability that an alignment path through the HMM takes a path
with consistent cytosine and label choices:

A =
(SC , SmC , ShmC) · (ST , SCAT , SX)

F
(3)

For the data in our experiments, the accuracy A is usually near
1 (a clearly correct call) or 0 (a clearly incorrect call), with few
ambiguous results (see Fig. 6).

The 423 events were split into three sets: 207 (49%) in a training
set, 89 (21%) in a cross-training set, and 127 (30%) in a test set. The
test set was set aside and all training and model development done
on the training and cross-training sets.

The first step of training was to determine a threshold for the filter
score to remove off-pathway events from training. For a variety
of thresholds ranging from 0.01 to 0.9, events in the training set
that scored higher than the threshold were used for 10 iterations of
Baum-Welch training, with edge pseudocounts equal to the initial
probability of that edge.

The events in the cross-training set were then scored using the
trained model and sorted by filter score, so that F (Crossi) ≥
F (Crossi+1). We define cumulative average soft call accuracy on
the cross-training set as

Acci =
1

i

j∑
j=1

A(Crossj) (4)

All the thresholds produce similar plots of average accuracy (Fig. 4),
indicating a robustness of the HMM training to inclusion of some
off-pathway events in the training set. The thresholds F ≥ 0.1 and
F ≥ 0.05 had the highest areas under the curve and were very close
to each other, and so 0.1 was chosen for subsequent training due to
its better performance on good events (those with high filter scores).

10 20 30 40 50 60 70

0.5

0.6

0.7

0.8

0.9

1.0

0.01
0.02
0.05
0.1
0.2
0.5
0.75
0.9

Filter Threshold

Top N Events Used

S
o

ft
 C

a
ll

 A
cc

u
ra

cy

80

Fig. 4. Accuracy measurements using the cross-training set with different
thresholds on F of events used to train from the training set. A range of filter
thresholds were used on F calculated by the untrained model on the training
set to determine which events to use for training. The accuracy of using the
trained model on a cross-training set is shown. While all thresholds seem to
perform similarly, those above 0.5 seem to perform worse than those under
it, indicating some contamination of the model by off-pathway events in the
training set when too high a threshold is used.

To analyze the structure of the HMM, the events from the training
set with F ≥ 0.1 were used to train the model and events from
the cross-training set was characterized using it. Both the untrained
and trained model are included in the supporting information.
The average expected number of transitions to each insert, delete,
backslip, and undersegmentation state was calculated across the
HMM using the same transition matrix T (Fig. 5). Three interesting
phenomena are shown: (1) a large number of inserts at position
9 indicating that we are probably missing a state here or that
the enzyme commonly stalls at this position, (2) a large number
of backslips at position 17 followed by an increase in deletes at
positions 18 and 19, which is where the enzyme’s catalytic activity
begins, indicates that our hand-selection of the sequence of states
here may be poor, and (3) a high prevalance of all non-match
states at the end of the HMM, due to strands dissociating from the
nanopore at different times after the majority of the daughter strand
has been replicated. We decided not to change the structure of the
HMM, despite this analysis of possible improvements, as the HMM
had already been evaluated on the test set, which can only be used
once.

We evaluated the HMM method by training an HMM on the
combined training and cross-training sets and computed the mean
cumulative soft call (MCSC) accuracy on the test set. The filter score
F was calculated for each of the 296 events in the combined training
set using the untrained HMM, and events with F < 0.1 were
removed, leaving 135 events. The HMM was trained on these events
using a maximum of 10 iterations of Baum-Welch training with edge
pseudocounts equal to the initial probability of the transitions. All
events in the test set were scored, and both MCSC accuracy Acci
and filter score F on the test set were plotted vs. rank of filter score
F (Fig. 6a).

In hand analysis of similar data, 26% of all detected events
were chosen as on-pathway. If we set a threshold on F to select
the top 26% of events as on-pathway, we get an accuracy of
approximately 98%, compared to a hand accuracy of approximately
90% (Schreiber et al, 2013). Note: this improvement may in part

5



Schreiber, J and Karplus, K

Insertions

Deletions

Backslips

Undersegmentation

0.4

0.8

1.2

0.0

0.5

1.0

0.0

0.8

1.6

0.1

0.2

0.3

0.0

10 20 30 40 50

10 20 30 40 50

10 20 30 40 50

10 20 30 40 50

A
ve

ra
g

e
 E

xp
e

ct
e

d
 N

u
m

b
e

r 
o

f T
ra

n
si

ti
o

n
s 

P
e

r 
E

v
e

n
t

Position In Pro!le

Unzipping Synthesis Label

0.0

Fig. 5. The expected number of deletions, insertions, backslips, and undersegmentations in each position across the HMM. Each value is calculated by
summing the transition matrix calculated using the forward-backward algorithm for each respective state in each module in the HMM. Three phenomena of
note are (1) the spike of inserts at position 9, indicating either our need to include another state, or a location that the enzyme is likely to stall briefly at, (2) the
spike of backslips at position 17 followed by increased deletes at position 18 and 19, indicating that the observed sequences had a slight preference to align to
states before position 17 than positions 18 or 19, and (3) the general uptick of these occurances at the end of the sequence, indicative that the end of the strand
may be ambiguous due to variable dissociation times.

reflect reversion to the mean, as the context chosen was the one
with the worst results in the hand analysis, so new data would
likely not be as difficult. But overall results from all contexts in
the hand analysis had only 93.6% accuracy using the best classifier,
and our new results are better even than that. It is not clear whether
the improvement comes from better selection of on-pathway events
than hand curation or from better alignment and classification, but
either way there is much less risk of unconscious confirmation bias
with the automated method. The automated method tends to call
off-pathway events as hmC with a random label, perhaps because
the hmC path is closest to the mean ionic current, allowing noise to
align to it better (Supp. Fig. 2).

If instead of taking a cumulative average, we use a moving-
window average, we can see that the events with a high filter score
are all classified correctly and that ones with a low filter score are
mostly classified incorrectly (worse than random calls) (Fig. 6b).
The filter score does a good job of distinguishing classfiable on-
pathway events from unclassifiable off-pathway ones, and the HMM
does a good of classifying the on-pathway events.

To ensure that our estimation of accuracy was not just a lucky
train-test split, further 5-fold cross-validation was performed. The
events were divided randomly into five sets, and an HMM was tested
on each set after being trained on the the events in the other four that
had F ≥ 0.1. The 5-fold cross-validation was repeated 10 times,
shuffling the order of events each time, and the mean and range are
shown in Fig. 7. The mean accuracy is 97% when using the top 110
events (26%) by filter score, which is consistent with the accuracy
reported by the pure train-test split.

The full pipeline of event detection, segmentation, and classifica-
tion is fast. The process of detecting 52 events, segmenting them,

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100 120

1.0

0.8

0.6

0.4

0.2

0.0

S
o

ft
 C

a
ll

 S
c

o
re

Event26%

a

b

MCSC

Filter Score

0.0

Fig. 6. Soft call accuracy measurements using the trained model on testing
data. (a) The MCSC accuracy and filter scores are shown plotted for each
event, ordered by their filter score. The MCSC accuracy represents the
accuracy expected using events with this filter score or higher. As more
events are included, the accuracy goes down. The top 26% of events (to
the left of the red line) give ≈98% accuracy. (b) Soft call accuracy for each
event is plotted, sorted by the filter score just as in part a. Only a few events
have a soft call accuracy between ≈0 and ≈1, and sorting by filter score
gives good discrimination between events with high accuracy and those with
low accuracy. The orange line is the rolling mean using a 31-event window
with 15 events on each side, and indicates the expected soft call accuracy of
events with that filter score.

6



Nanopore HMMs

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300 350 400

M
e

a
n

 C
u

m
u

la
ti

v
e

 S
o

ft
 C

a
ll

Top N Events

Top 26%

Fig. 7. The mean and range of cumulative soft call accuracies when running
5-fold cross validation 10 times. The mean is shown by the blue line, and the
shaded area represents the maximum and minimum accuracy when using
the top N events by filter score. The red line indicates using the top 26%
of data (the fraction of similar data selected as on-pathway in hand-curated
experiments), which gives a mean accuracy of 97%.

preprocessing the data using the untrained model, and scoring each
event using the trained model took ≈48 seconds on a Intel Core
i5-3470 CPU clocked at 3.2GHz for ≈461 seconds of event data,
or ≈0.9 seconds per event that on average lasted ≈8.5 seconds.
This makes the entire process a little over 9× faster than real time.
Running just forward-backward on all 423 preprocessed events,
calculating a filter score and a soft call score, took ≈95 seconds on
≈2736 seconds of data, making that component by itself ≈ 29×
faster than real time. Training the HMM using 10 iterations of
Baum-Welch on 155 events takes≈700 seconds, making it unlikely
to be consistently faster than real time, but training is usually not
required to be done in real time.

4 CONCLUSION
The complexities of nanopore data have made hand curation of data
popular, leading to questions of unconscious bias in data selection.
By modeling many of these complexities explicitly with HMMs, we
were able to build an automated classifier with performance at least
as good as with previous hand-curated data sets.

In addition to the typical insertions and deletions of profile
HMMs, we modeled the backslipping and enzyme stalling that
are common occurrences when using an enzyme motor, and we
incorporated segmenter-specific features, such as oversegmentation
and undersegmentation, that are independent of the attributes of the
DNA motor enzyme.

We proposed a modular structure for an HMM that handles each
of these features, making construction of new HMMs for known
sequences straightforward.

This modular structure was validated by automating the
classification of DNA strands as bearing a single cytosine, methyl-
cytosine, or hydroxymethylcytosine and calculating an error rate by
comparing the call at the cytosine to an independent downstream
marker. The results were substantially better than analysis of hand-
curated data for the same sequence context (2% error rate instead

of 10%), without the risk of unconscious bias in selection of on-
pathway events, and the whole pipeline works significantly faster
than real time.

Future areas of research include an automated way of building
HMMs to recognize known sequences and classify cytosine variants
in them. Our current HMM-building techniques require data
collected from the molecule being studied, but we should be able
to combine data from previously studied DNA molecules to predict
the mean current values needed for the states of an HMM for known
DNA sequences. These current values depend on both the pore and
the DNA motor, so need to be collected for each new enzyme-pore
combination used.

An automated base-caller HMM for sequencing unknown DNA
would be approximately twice the complexity as an HMM for a
sequence of length 4n, where n is the word length of the pore-motor
combination being used. For n = 4, such an HMM would be about
five times the size of the HMM used in this paper, and so should still
be runnable in real time.

Doing methylation calls at specified loci on a known reference
sequence can be done by extending the model used here, which had
three variable loci, allowing the methylation landscape to be probed
on a single-molecule basis. Both base-calling and methylation
calling on known references would involve using the modular
structure we proposed, attached to each other in different ways.

ACKNOWLEDGEMENT
The authors would like to acknowledge Zachary Wescoe, who ran
the nanopore experiments to produce the data analyzed in this paper.

Funding: This work was partially supported by the National Human
Genome Research Institute (grant HG006321-02)

REFERENCES
Cherf,G. et al. (2012) Automated forward and reverse ratcheting of DNA in a nanopore

at 5-Å precision, Nature Biotechnology, 30, 344-348.
Eddy,SR. (1998) Profile hidden Markov models., Bioinformatics, 14(9), 755-763.
Karplus,K. (2009) HMM-based Protein Structure Prediction, Nucl. Acids Res.,

37(Suppl.2), W492-E497
Kasianowicz,J. et al. (1996) Characterization of individual polynucleotide molecules

using a membrane channel, Proc Natl Acad Sci, 93(24), 13770-13773.
Krogh,A. et al. (2001) Predicting transmembrane protein topology with a hidden

Markov model: application to complete genomes, J. Mol. Biol., 305(3), 567-580.
Laszlo,A. et al. (2013) Detection and mapping of 5-methylcytosine and 5-hydroxy-

methylcytosine with nanopore MspA, Proc Natl Acad Sci, 110(47), 18904-18909.
Lieberman,K. et al. (2010) Processive replication of single DNA molecules in a

nanopore catalyzed by phi29 DNA polymerase, J. Am. Chem. Soc., 132(50),
17961-17972.

Manrao,E. et al. (2011) Nucleotide discrimination with DNA immobilized in the MspA
nanopore, PLoS One, 6(10), e25723.

Schreiber,J. et al. (2013) Error rates for nanopore discrimination among cytosine,
methylcytosine, and hydroxymethylcytosine along individual DNA strands, Proc
Natl Acad Sci, 110(47), 18910-18915.

Schreiber,J and Karplus,K. (2014) Segmentation of noisy signals generated by a
nanopore, Bioinformatics, (SUBMITTED).

Shinsuke,I. et al. (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine
and 5-carboxylcytosine, Science, 333(6047), 1300-1303.

Sonnhammer,E. et al. (1998) Pfam: multiple sequence alignments and HMM-profiles
of protein domains, Nucl. Acids Res., 26(1), 320-322.

Timp,W. et al. (2012) DNA base-calling from a nanopore using a Viterbi algorithm,
Biophys J. 102(10), L37-9.

7




