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Abstract

The Geometry of Hilbert Schemes on Projective Space
by
Ritvik Ramkumar
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor David Eisenbud, Chair

In this thesis we study singularities of Hilbert schemes and show that there are many
(components) of Hilbert schemes that are smooth or mildly singular and use them to
explore phenomena in birational geometry and commutative algebra. Specifically, we
study the Hilbert scheme compactification of a pair of linear spaces, describe all the sub-
schemes parameterized by this component and show that it is a smooth Mori dream space.
We study Hilbert schemes with two Borel-fixed points and prove that they are reduced,
and that their irreducible components have normal and Cohen-Macaulay singularities.
We study the Hilbert scheme of points on a threefold and extend results on the Hilbert
scheme of points of a surface to this case; we also provide bounds on the dimension of
this Hilbert scheme. Finally, we generalize the Hilbert and Quot schemes to construct the
fiber-full scheme, which is a fine moduli space that controls all the cohomological data of
a variety instead of just the Hilbert polynomial.
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Chapter 1

Introduction

“Algebraic geometry seems to have acquired the reputation of being esoteric,
exclusive, and very abstract, with adherents who are secretly plotting to take
over all the rest of mathematics. In one respect this last point is accurate.”

— David Mumford [72]

A characteristic of algebraic geometry is that the set of varieties of a given type is often
itself an algebraic variety in a natural way. For example, associating a plane curve with
its defining equation, up to scalars, identifies the family of plane curves of a given degree
with a projective space. Explicitly, a plane curve of degree d in the complex projective
plane corresponds to the vanishing locus of a homogeneous polynomial of degree d in

three variables. The collection of these polynomials, up to scalars, can be identified with

the projective space PP where D = (“}?) — 1. Studying the geometry of certain loci

in PP directly leads to a deeper understanding about the geometry of the plane curves
themselves.

This correspondence can be vastly generalized. To each closed subvariety of a projective
variety, one can associate a numerical invariant called the Hilbert polynomial. For instance,
in the case of a plane curve of degree d, the Hilbert polynomial is P(t) = dt + 1 — (%;!). In
1961, Grothendieck [39] constructed the Hilbert scheme which is a projective variety that
parameterizes all subvarieties in a given projective variety with a fixed Hilbert polynomial.
Ithas applications in algebraic geometry: itis used in constructing other moduli spaces and
in the study of deformations of curves in birational geometry. It also appears in other areas
such as representation theory, combinatorics, symplectic geometry and mathematical
physics.

Unfortunately, it does have some major drawbacks. It was shown by Vakil that Hilbert
schemes, in general, satisfy “Murphy’s law”, i.e., every singularity of finite type over
k appears on some Hilbert scheme [96]. However, this result does not decide whether
most Hilbert schemes are singular or only some specially constructed (points on) Hilbert
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schemes are singular. For example, every Hilbert scheme in projective space contains a
generically smooth component and there are many smooth or mildly singular components
of Hilbert schemes. Even the very singular ones are important: the Hilbert scheme of
points on a Calabi-Yau threefold plays a significant role in the computation of Donaldson-
Thomas invariants.

In this thesis we find and study (components of) Hilbert schemes that have well-
behaved singularities. This thesis is broadly divided into three parts:

(i) Chapter 3, Chapter 4, Chapter 5: We study singularities of classical Hilbert schemes
and show that there are many (components) of Hilbert schemes that are smooth
or mildly singular and use them to explore phenomena in birational geometry and
commutative algebra.

(ii) Chapter 6: We initiate a detailed study of the Hilbert scheme of points on a threefold
and extend results on the Hilbert scheme of points of a surface to this case.

(iii) Chapter 7: We generalize the Hilbert and Quot schemes to construct the fiber-full
scheme, which is a fine moduli space that controls all the cohomological data of a
variety instead of just the Hilbert polynomial.

We will now provide some background and details regarding the aforementioned topics.

1.0.1 Smooth components of Hilbert schemes

The cases when the Hilbert scheme is smooth or has smooth components has been well
studied. Early on these smooth components were used to solve numerous enumerative
problems [29] and recently, with major advances in the minimal model program [9],
they are also a source of examples with rich birational structure. Fogarty [30] proved that
Hilb”(P2) is smooth and Arcara, Bertram, Coskun and Huizenga [5] proved that it is a Mori
dream space and described the stable base decomposition of its effective cone in numerous
cases. Piene and Schlessinger [79] showed that Hilb3t+1(P3) has two smooth components
that meet transversely and described the points of the component corresponding to twisted
cubics explicitly. Chen [15] proved that the component corresponding to the twisted cubics
is the flip of Mg o(P%, 3) over the Chow variety. Avritzer and Vainsencher [95] proved that
the component corresponding to elliptic quartics in Hilb* (P3) is smooth and isomorphic
to a double blow up of Gr(1, 9); Gallardo, Huerta and Schmidt [34] computed its effective
cone. Chen, Coskun and Nollet [16] showed that the component corresponding to a pair
of codimension two linear spaces meeting transversely is smooth and isomorphic to a
blowup of Sym?(Gr(n — 2, n)). They also completely worked out its Mori theory. It is thus
very interesting to find components of Hilbert schemes that are smooth and describe their
birational geometry.

In Chapter 3 we show that the component of the Hilbert scheme parameterizing a pair
of linear spaces meeting transversely is smooth and isomorphic to successive blowups of
a product of Grassmannians. This generalizes the classical case of the Hilbert scheme of a
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pair of skew lines in [16]. In Chapter 4 we study the birational geometry of this component
of the Hilbert scheme. In particular, we completely describe the effective and nef cones
and prove that it is a Mori dream space. This provides new examples of Mori dream
spaces.

1.0.2 Measuring the complexity of Hilbert schemes

The global geometry of Hilbert schemes is not well understood. The earliest results in
this direction were obtained by Hartshorne [46], who showed that Hilb” (P") is connected,
and Fogarty [30], who proved that Hilb” (P?) is smooth. Later on, Reeves and Stillman
[83] showed that every Hilbert scheme of projective space contains a smooth Borel-fixed
point. As a consequence, Hilbert schemes with a single Borel-fixed point are smooth
and irreducible, and Staal [89] completely classified these Hilbert schemes. In fact, most
Hilbert schemes or components of Hilbert schemes that are very well understood have few
Borel-fixed points. For example, the twisted cubic compactification Hilb**!(P"), which
has two smooth components that meet transversely [79], has three Borel-fixed points.

Thus, by restricting the structure of the Borel-fixed points one might obtain many
smooth or mildly singular (components of) Hilbert schemes. In Chapter 5, we investigate
the singularities of Hilbert schemes from this perspective. It turns out that if we allow
at most two Borel-fixed points then the Hilbert scheme has at most two components.
Moreover, the components are smooth or have normal, Cohen-Macaulay singularities.
We also provide an explicit description of these singularities as cones over certain Segre
embeddings.

1.0.3 The Hilbert scheme of points on a threefold

The Hilbert scheme of d points in P”, denoted by Hilb?(P"), parameterizes closed zero-
dimensional subschemes of P" of degree d. We have already seen that Hilbd(PZ) is
smooth and has a rich history from the perspective of birational geometry. It also has
connections to other areas of mathematics, such as knot theory [35,75], representation
theory [73], symplectic geometry [6] and combinatorics [41]. By contrast, the Hilbert
scheme is singular for n > 3 and very little is known about its geometry. The case of
Hilb?(P?) is of particular interest, since it lies at the boundary between the smooth cases
n < 2 and the cases n > 4 which are believed to be wildly pathological [55]. In fact,
Hilb“?(P3) is known to be rather special, as it admits a super-potential description — it is
the singular locus of a hypersurface on a smooth variety [7]. For d < 11, Hilb?(P?) is
irreducible [23], and its general point parametrizes configurations of d points in P3; in
particular, the Hilbert scheme is of dimension 3d. However, larrobino [52,53] proved that
Hilbd(P3) is reducible for d > 78. In general, the dimension of Hilbd(P?’) is unknown.
Basic questions about the dimension of tangent spaces to Hilb?(P?) are also wide open.
Over forty years ago, Briancon and larrobino [10] established an upper bound for the
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dimension of Hilb”(P%), and stated a conjecture regarding the largest possible dimension
of its tangent spaces.

In Chapter 6 we initiate a detailed study of the tangent space to Hilb?(P3). For points
parametrizing monomial subschemes, we consider a decomposition of the tangent space
into six distinguished subspaces, and show that a fat point exhibits an extremal behavior
in this respect. This decomposition is also used to characterize smooth monomial points
on the Hilbert scheme. We prove the Briangon-larrobino conjecture up to a factor of
%, and improve the known asymptotic bound on the dimension of Hilb?(P3). We also
provide a self-contained proof of a parity theorem that was previously established using
Donaldson-Thomas theory.

1.0.4 Refining the Hilbert scheme by controlling cohomology

When studying embedded varieties and their moduli, one is led to studying loci inside the
Hilbert scheme that can be defined using certain cohomological data. This can be done
by fixing all the cohomological data of 0, as seen in the works of Martin-Deschamps and
Perrin in the study of curves in P? [65], or it can be done by enforcing the vanishing of
certain cohomology groups, giving the arithmetically Cohen-Macaulay and Gorenstein
loci [28,49,56-58]. For this reason it is useful to express these loci as a fine moduli
space of some functor. However, trying to show that the natural functor associated to the
cohomological data is representable is much more subtle since (local) cohomology groups
are, in general, not finitely generated.

In Chapter 7 we show that by fixing all the cohomological data, not just the Hilbert
polynomial, the corresponding functor can be represented by a scheme which we call the
fiber-full scheme. This provides a generalization of the Hilbert and Quot schemes and has
the added benefit of having fewer irreducible components than the Hilbert scheme. As
an example, we show that all the smooth Hilbert schemes are in fact fiber-full schemes.
Numerous applications of the fiber-full scheme can be found in [20].

1.0.5 Concluding remarks

In the appendix we show that one of the Hilbert scheme components from Chapter 3 has
radius bigger than 1. This has been included in the thesis because, to our knowledge, no
such example has appeared in the literature. Chapter 3 and 4 are reproduced from [81],
Chapter 5 is from [80], Chapter 6 is from [82] and is joint work with Alessio Sammartano,
and Chapter 7 is from [19] and is joint work with Yairon Cid-Ruiz.



Chapter 2

Preliminaries

“I can illustrate the second approach with the same image of a nut to be
opened. The first analogy that came to my mind is of immersing the nut in
some softening liquid, and why not simply water? From time to time you rub
so the liquid penetrates better, and otherwise you let time pass. The shell
becomes more flexible through weeks and months-when the time is ripe,
hand pressure is enough, the shell opens like a perfectly ripened avocado! A
different image came to me a few weeks ago. The unknown thing to be
known appeared to me as some stretch of earth or hard matrl, resisting
penetration... the sea advances insensibly in silence, nothing seems to
happen, nothing moves, the water is so far off you hardly hear it... yet it
finally surrounds the resistant substance.”

— Alexander Grothendieck [68]

In this chapter we introduce the Hilbert scheme and go over some of the structural
results on Hilbert schemes in projective space.

Notation 2.0.1. Let T be a locally Noetherian scheme and X a quasiprojective scheme over
T with 0(1) a very ample line bundle on X over T.

Definition 2.0.2. The Hilbert functor is a contravariant functor
Hilb,, T {locally Noetherian schemes over T} — {Sets}
defined as follows
e For any locally Noetherian T-scheme B,

Hile/T(B) = {Z C X Xt B, closed and flat over B}.

e For any morphism of locally Noetherian T-schemes, ¢ : B — B’ we obtain morphism

Hilb, (') — Hilby (B), Z > Z xp B.



CHAPTER 2. PRELIMINARIES 6

Let B be a connected locally Noetherian T-scheme and Z C X Xr B a closed, flat
subscheme. Let 711 : Z — X and 72 : Z — B be the two projections. Then for any closed
point b € B it is well known that the Euler characteristic

Py(t) := x(07,(t)) = x(Oz, ®a, T (O(1)))

is a polynomial in t when Z;, = 7, (b) is the closed fiber [47]. Thus for any polynomial

P

P € Q[t] we can define a subfunctor of the Hilbert functor, denoted by Hilb as follows

X/T’
Hilby, ;(B) = {Z € Hilby ,(B) : P, = P forall b € B}.

Theorem 2.0.3 ( [39]). Let X be projective over T. Then for any polynomial P € Q[t], the functor
Hilb§ /7 is representable by a projective T-scheme Hﬂbi s1- Moreover, Hilb, ;. is represented by

Hilbyr = | | Hilb} ;.
PeQlt]

For an open subscheme U < X, the functor Hilb,, . is represented by an open subscheme
Hﬂbu/T c HﬂbX/T

Example 2.0.4. If T = Spec(k) then the k-points of Hilb”(X) corresponds to subschemes
of X with Hilbert polynomial P. Given a subscheme Y C X we denote its k-point in the
Hilbert scheme by [Y]. The tangent space to [Y], considered as a k-point of the Hilbert
scheme, is the k-vector space

Ty Hilb” (X) = HY(X, Ayx) = Homg, (Fy/x, Ox)
where .4y x is the normal sheaf of Y in X.

The Hilbert scheme has two natural generalizations. For a more thorough discussion
of these and the Hilbert scheme, see [87].

Remark 2.0.5. Let Py, ..., Px be a sequence of Hilbert polynomials. Consider the functor

Hilbl;(l/’%"Pk : {locally Noetherian schemes over T} — {Sets}

that maps

B {(Z1,...,Z): Zi C Zi;1and Z; € Hﬂbfg/T(B) for all i}.

If X is projective over T, then HilbI;(1 /TP" is represented by a projective scheme called the
nested Hilbert scheme.
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Remark 2.0.6. Let .Z be a coherent sheaf on X. The Quot functor is defined to be

Quot( Z/x/T " {locally Noetherian schemes over T} — {Sets}

B +— {coherent quotients g : .# Xt B — ¢ : ¢ is flat over B} /~

If X is projective over T, then Quot is represented by a projective scheme called the

FZ/X|T
Quot scheme. Analogous to the Hilbert scheme, this decomposes into a disjoint union
of Quot schemes indexed by the Hilbert polynomial. We recover the Hilbert scheme by

taking .# = 0. One can also define nested Quot schemes similar to Remark 2.0.5.

An equivalent interpretation of the Hilbert scheme Hilb" (P") is that it parameterizes
saturated homogeneous ideals of k[x, . . ., x, ] with a fixed Hilbert polynomial. To define
homogeneous one needs a grading on the polynomial ring, and implicit in the latter
statement is the fact that the polynomial ring is standard graded with degx; = 1. It is
quite common to come across polynomial rings that are multigraded, and thus it is useful
to have a scheme that parameterizes ideals in such rings with a fixed Hilbert function.
Haiman and Sturmfels in [42] showed that such a scheme does indeed exist.

Remark 2.0.7 ( [42]). Let S = k[xi,...,x,] be a polynomial ring. We can identify a
monomial x* € S with its exponent vector u € N". A grading of S by an abelian group A
is a semigroup homomorphism deg : N — A. This induces a decomposition

S = @ Sq, satistying S, -Sp C Spup,
acA

where S, is the k-span of all monomials x* whose degree is equal to a. Note that for any
other k-algebra R we get an induced grading on R ® S. Given a function i : A — N we
define a functor H ’; : k algebras — Sets that maps

R — {I € R ® S homogeneous : (R ® S),/1, is locally free of rank h(a) for all a}

There is a quasiprojective scheme H!, called the multigraded Hilbert scheme, that
represents the functor H Z If the grading is positive i.e., the only monomial of degree 0 is
x?, then the scheme is projective.

Remark 2.0.8. The multigraded Hilbert scheme recovers the Hilbert scheme of projective
space if we take the Hilbert function to be the Hilbert polynomial in sufficiently high
degree. More precisely let P be a Hilbert polynomial, let m be its Gotzmann number
Remark 2.0.13 and let S be standard graded with deg(e;) = 1 for all i. Let A = Z and

h :Z — N is given by
ni) = P.(z) ifi>m
dimy(S;) else.

Then the natural map H é’ — Hilb” (P") is an isomorphism.
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There is still a local relation between the multigraded Hilbert scheme and Hilb” (P")in
many cases.

Theorem 2.0.9 (Comparison Theorem [79]). Let X C P" be a subscheme with ideal Ix =

(f1,-.., fs) where deg f; = d; satisfying, (k[xo, ..., xn]/Ix)e = HO(OX(e))for e=di,...,ds.
Then there is an isomorphism between the universal deformation space of Ix and that of X; the
latter is an analytic neighbourhood of Hilb(P") around [X]. In particular,

Tir, Hilb(P") = H°(P", N pn) = Hom(Ix, S/Ix)o.

Remark 2.0.10. Let S = K[xo, ..., x,]. With notation as in the above Theorem, consider
the following exact sequence in local cohomology [26, Corollary A1.12],

0 — HY(S/Ix) — S/Ix — HY(P", 0x) — HL(S/Ix) — 0.

If we show that H (S/Ix), = 0fore = e1,...,e,and i = 0,1, then the Comparison theorem
would apply. Here are two instances in which this is true

(i) The depth of S/Ix is at least 2 [26, Corollary A1.13].

(ii) The Castlenuovo-Mumford regularity of the ideal Ix is min {ey, ..., e} [26, Propo-
sition 4.16]. Note that reg(Ix) = reg(S/Ix) + 1.

We will be primarily interested in HilbI;( ;v Where X =P*and T = Spec(k). So we will
fix that once and for all.

Notation 2.0.11. We use S to denote the polynomial ring k[xo, ..., x,]and m := (xg..., xy)
to denote its maximal ideal. We denote the monomial x;°--- x;" by x*. We use S, to
denote the subspace of monomials of degree d. The support of a monomial is the set of all
variables that divide the monomial. By lexicographic ordering we will mean the standard
lexicographic ordering on S with xg > x1 > -+ > x,.

All ideals are assumed to be saturated unless otherwise specified. We use Px(t) or
Ps/1(t) to denote the Hilbert polynomial of the subscheme X = Proj(S/I) € P". We
sometimes call this the Hilbert polynomial of I.

We denote Hilbgn by Hilb” (P"). In this case, we use [[] or [X] where X = Proj(S/I) €
P" to denote the corresponding point on the Hilbert scheme.

We begin our study of Hilb” (P") by determining when it is non-empty. Equivalently,
determining when is P a Hilbert polynomial of some closed subscheme of P".

Theorem 2.0.12 ( [37]). A polynomial P € Q|t] is a Hilbert polynomial if and only if there exists
an integer partition A = (A1, ..., Ay) with Ay > -+ > Ay, > 1 for which

P=Pp, :Z(t;/\izl) 2.1)

i=1

This is called the Gotzmann decomposition of P.
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Remark 2.0.13 ( [37]). The value m in the above theorem is called the Gotzmann number
and is an upper bound on the Castelnuovo-Mumford regularity of any saturated ideal I
with Hilbert polynomial P.

The dimension of the subscheme with Hilbert polynomial P, is A1 — 1. In particular, if
the closed subscheme is proper and non-empty we have 1 < Ay < n.

Notation 2.0.14. We use A to denote the tuple (11, Ay, ..., A;) of weakly decreasing positive
integers and call it an integer partition. We use P, to denote the Hilbert polynomial Eq. (2.1)
associated to A. Hilbert schemes are indexed by partitions A and we will do this by writing
them as Hilb™ (P").

Although we stated Gotzmann’s result, Macaulay was the first one who classified
Hilbert polynomials. He did this by constructing a special monomial ideal called the
lexicographic ideal. A monomial ideal L C S is a lexicographic ideal if, for all integers
j, the homogeneous component of I; is the k-vector space spanned by the dimy I; largest
monomials in lexicographic order.

Theorem 2.0.15 ( [63]). For an integer partition A = (A1, ..., Aw), there is a unique saturated
lexicographic ideal, denoted by L(A), with Hilbert polynomial Py. Let a; be the number of parts in
Aequal to j forall j € N. If n > Ay we have

. ap+1 ay ,.ap-1+1 n A.0n—-1 |, , 493 az+1 An 0 0n-1 |, 402 ai
L(A) := (xy"", xy"x; s X" X X, ax 0, Xy X x2,x" ). (2.2)

e[tk [tk —my
P_kzzo (k+1)_( k+1 )l

where m; = )" a;. This is called the Macaulay decomposition of P.

Finally,

Example 2.0.16 (Hypersurfaces). We will now briefly explain why the Hilbert scheme
parameterizing hypersurfaces is isomorphic to a projective space. It can be shown that
Z C P" is a hypersurface of degree d if and only if the Hilbert polynomial of Z is P, with

A=mie,
d .
n+t n+t—d t+n—i
=) () 20
Thus we have a well defined, bijective morphism

P(S;) — Hilb™(P"), (f) — [f].

To check that this is an isomorphism it suffices to show that

dim Tj¢ Hilb" (P") = dim P(S,) = (” d* d) -1
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since this would imply Hilb™ (P") is smooth. By Theorem 2.0.9 we have
Tjf) Hilb™ (P") = Hom(f, S/ f) = Hom(f, S/ f)o.

It is now straightforward to check that the map f +— x¢ is well defined for all x* € (S/f ).
Thus dim (Hom(f, S/f)o) = dim(S/f)s = (”;d) — 1, as required.

The first major result on the structure of Hilbert schemes of projective space was
obtained by Hartshorne, who showed that the Hilbert schemes are always connected in
characteristic 0. Pardue extended this to all characteristics.

Theorem 2.0.17 ( [46,77]). A non-empty Hilbert scheme Hilb™* (P") is connected.

This theorem is proved by showing that any point on the Hilbert scheme can be joined
to the lexicogrpahic point [L(A)] by a chain of rational curves.

To prove that the Hilbert scheme is connected the authors study the Borel-fixed points
of the Hilbert scheme. Given a matrix A = (a;;);j € GL(n + 1), the map on variables
x; + ), a;jxj induces an action on the set of ideals of S with Hilbert polynomial P. Thus,
the group GL(1 + 1) acts on Hilb” (P") and so does its subgroup, B, of upper triangular
matrices. A closed point (resp. ideal) is said to be Borel-fixed if it is fixed by the subgroup
B.

Since Borel-fixed points are fixed by the set of diagonal matrices, they must be defined
by monomial ideals. A monomial ideal I C S is said to be strongly stable if for any
monomial m € I divisible by x; we have mi—; € I for all i < j. The relation between these

two concepts is given by the following theorem.

Proposition 2.0.18 ( [69, Proposition 2.3] ). If char(k) = 0 a monomial ideal I C S is Borel-fixed
if and only if I is strongly stable.

This combinatorial criterion can be extend to all characteristics (Definition 3.4.1).
It turns out that the lexicographic point, which is Borel-fixed, is a special point on the
Hilbert scheme.

Theorem 2.0.19 ( [83]). Let A be an integer partition. The lexicographic point [L(A)] is a smooth
point on the Hilbert scheme Hilb™ (P") and the component it lies on is called the lexicographic
component.

Moreover, any subscheme Z parameterized by the general member of the lexicographic compo-
nent may be described as follows: Choose a flag

Pn 2 Pi1+1 2 . 2 Pi1+1

Within each Pii*! choose a generic hypersurface of degree a j (if aj, =1, choose P'* 2 P2*1 in the
above flag and skip the choice of a hypersurface for a;,). Finally choose ag generic points in P".
Then Z is the union of the chosen hypersurfaces and points.
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Now that we have a distinguished component on each Hilbert scheme, it is possi-
ble to refine Hartshorne’s proof of the connectedness of the Hilbert scheme. To each
Hilbert scheme Hilb” (P"), one can associate an incidence graph as follows: to each irre-
ducible component we assign a vertex, and we connect two vertices if the corresponding
components intersect. Define the distance d(C, D) between two components C,D to
be the number of edges in the shortest path linking the corresponding vertices. Let
rp = max{d(C, D) : C a component of Hilb” (P")}, and define the radius of the Hilbert
scheme to be

rad(Hilb” (P")) = min{rp : D a component of Hilb” (P")}.

We identify any component D for which rad(Hilb” (P")) = rp as a center of the graph. By
studying the lexicographic component in relation to other components Reeves established

Theorem 2.0.20 ( [84, Theorem 7]). Consider the Hilbert scheme Hilb” (P") and let d =
deg P be the dimension of the parameterized subschemes. Then the distance from any
component to the lexicographic component is at most 4 + 1. In particular, the radius of
the Hilbert scheme is at most 4 + 1.

Now that we have some understanding of the topological structure of these Hilbert
schemes, the next natural thing to study would be its singularities. We have already seen
that the Hilbert scheme parameterizing hypersurfaces in P” is smooth. In particular, the
Hilbert scheme of P! is smooth. The next result generalizes this to a surface.

Definition 2.0.21. The symmetric product of a scheme X is the categorical quotient
Sym?(X) := X?/S; where S; acts naturally on X9 by permutation.

Theorem 2.0.22 ( [30]). The Hilbert scheme Hilb® (P2) is smooth and irreducible. IfP =4dis
constant, then the Hilbert-Chow morphism

Hilb!(P?) — Sym?(P?),  [Z] > ' deg(62,)[p]

is a crepant! resolution of the symmetric product of a surface.

Remark 2.0.23 ([64]). Let S = k[x, y] and assume that it is graded by an abelian group A.

Then for any function & : A — N the multigraded Hilbert scheme Hilbg is smooth and
irreducible.

It is natural to wonder if one can make more general statements about the smoothness
of Hilbert schemes. We state two more instances of this without going into any details:

e If a subscheme Z C P" is a locally complete intersection and H'(Z, .47 /pr) = 0 then
[Z] is a smooth point in the Hilbert scheme [39].

LA resolution of singularities ¢ : Y > Yis crepant if 9*Ky = Ky
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e If Z C P" is an arithmetically Cohen-Macaulay subscheme of codimension 2 or
an arithmetically Gorenstein subscheme of codimension 3, then [Z] is a smooth
point [28,58].

However, it turns out that Hilbert schemes are very far from being well-behaved in general.
Define an equivalence relation on pointed schemes by: If (X,p) — (Y, q) is a smooth
morphism, then (X, p) ~ (Y, q). We call the equivalence classes singularity types, and will
call pointed schemes singularities (even if the point is regular). We say that Murphy’s
Law holds for a moduli space if every singularity type of finite type over Z appears on
that moduli space.

Theorem 2.0.24 ( [96]). The Hilbert scheme of non-singular curves in projective space satisfies
Murphy’s law. The Hilbert scheme of surfaces in P* satisfies Murphy’s law.

On the other hand all hope is not lost, there might be still be many smooth Hilbert
schemes or smooth components of Hilbert schemes. Here is a simple lemma that reduces
to checking singularities at the Borel-fixed points.

Lemma 2.0.25. The Hilbert scheme Hilb” (P") is reduced or smooth if and only if it is reduced
or smooth at all the Borel-fixed points, respectively. Moreover, an integral component, H, of the
Hilbert scheme is normal, Cohen-Macaulay, Gorenstein or smooth if and only if it is normal,
Cohen-Macaulay, Gorenstein or smooth at all the Borel-fixed points on H, respectively.

Proof. Given a k-point [Z] € Hilb” (P"), write B(Z) for the orbit of Z under B. By the

Borel fixed-point theorem the closure, B3(Z), contains a Borel-fixed point. Assume that
the Hilbert scheme is reduced at all the Borel-fixed points. Since the reduced locus is

open, a non-empty open subset of B(Z) is also reduced. Thus, some element of B(Z) is
also non-reduced. Since B acts by automorphisms, Z must be a reduced point. The same
proof works for smoothness as the smooth locus is also open.

The action of B restricts to any irreducible component of the Hilbert scheme. Since the
normal, Cohen-Macaulay and Gorenstein loci are all open, the proof given in the previous
paragraph also proves the second statement. |

By Theorem 2.0.19 the lexicographic point is smooth. Thus, if the Hilbert scheme has
a single Borel-fixed point then it must be smooth. Staal recently classified all the Hilbert
polynomials for which this is true.

Theorem 2.0.26 ( [89]). Let A = (A1, ..., Aw) be an integer partition. The Hilbert scheme
Hilb™ (P") has a unique Borel-fixed point if and only if

(i) n>Arand Ay > 2,
() A=@)orA=m"2,A_1,1) wherer >2andn > A,_1 > 1.

In all of these cases the Hilbert scheme is smooth.
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In Chapter 5 I take the next step and classify the singularities of Hilbert scheme with
two Borel-fixed points. Part of my results were used in the recent classification of all the
smooth Hilbert schemes by Skjelnes and Smith.

Theorem 2.0.27 ( [88]). Let A = (A1, ..., Aw) be an integer partition. The Hilbert scheme
Hilb" (P") is smooth if and only if

@) n=2>1,

(i) n > Ayand Ay, > 2,
(i) A =1)orA=m"2,A,_1,1)wherer >2andn > A, > 1,
(iv) (n"572,A5*2 1) wherer =3 >s > 0andm —1> Ar_s_p > 3,

(v) (n"7572,25%4 1) wherer =5 > s >0,

(vi) (m+1)orr=0.
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Chapter 3

Pair of linear spaces - Smoothness

In this chapter we show that the component of the Hilbert scheme that parameterizes
a pair of linear spaces meeting transversely is smooth. We accomplish this by showing
that the component is isomorphic to successive blowups Sym?(Gr(n — k, n)). We classify
the subschemes parameterized by this component and show that this component has a
unique Borel-fixed point.

Let k be an algebraically closed field with chark # 2 and let d > ¢ > 2. Let X be
the union of an (n — c¢)-dimensional plane and an (n — d)-dimensional plane meeting
transversely in P". The Hilbert polynomial of X is

n—c+t n—d+t n—c—d+t
ot = (") (T

There is an integral component of Hilb n-cn-a (P"),denoted H) ., orHu—cn-q(P"), whose

general point parameterizes X (Proposition 3.1.2).

n

We begin with the natural rational map

E:Gr(n —c,n)xGr(n—d,n)--»>H"

n—c,n—d’

(A, A') = [IAIA/]. (31)

If c = d, the rational map is ©;-equivariant where &, is the group of order 2. It acts on
Gr(n — ¢, n)? by interchanging the two factors and acts trivially on Hi—c n—c-

Definition 3.0.1. For each 1 < i < c define an incidence variety
[ ={(A,A):codimpr(ANA)<d-1+i} CGr(n—c,n)xXGr(n—d,n).

Note that Z is defined on the open subset where the two planes meet transversely. If
X spans P" (when n > ¢ + d — 1) then this open set is precisely the complement of I'..
Moreover, in this case, E is also defined on the complement of I'._; (Lemma 3.1.3).

In this thesis we will only be considering the case when ¢ = d. The case when ¢ # d
can be found in [81]. By explicitly resolving E and studying the induced morphism, we

obtain
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Theorem 3.0.2. Let k > 2and n > 2k — 1. The component ”HZ_k ne
E induces an isomorphism

; 1s smooth and the map

Blf, | -+ Bl Sym? Gr(n — k, n) — H ok
where T'; is the strict transform of I';/S,.
If n <2k -1, the morphism H! ,  — Gr(2n —2k +1,n) that sends a scheme to its

linear span is smooth; the fiber over a point A is H,—k n—k(A).

Historically, Harris [44] suggested that ’H? . = Blf, Sym2 Gr(1,3) and that Hilb%+2 p3

is the union of ] , and another smooth component meeting transversely. The authors

n
n-2,n-2

meets exactly one other component in Hilb"n202 P, A major step in the proof of these
statements was a computation of an analytic neighbourhood of a point in the intersection
of the two components using the tangent-obstruction theory for the Hilbert scheme [16,
Proposition 2.6]. Unfortunately, for general c,d there are many, sometimes singular,
components meeting H)' __, (Remark 3.4.17). Thus a description of a neighbourhood of
a point in the intersection of all these components is most likely intractable. Our proof of
Theorem 3.4.7 circumvents this by using the explicit construction of E and studying the
induced map on tangent spaces.

In Chapter 5 we will study the idea that the complexity of a Hilbert scheme can be
measured by their number of Borel fixed points. In line with our reasoning, we have the
following result:

of [16] generalized this and proved that A ~ Blf, Sym? Gr(n — 2, n) is smooth and

n
n—c,n—d

Theorem 3.0.3. The component H has a unique Borel fixed point.

We also give a complete description of all the subschemes parameterized by H!' .

In light of Theorem 3.4.7, it is enough to consider the case n > 2k — 1. A double structure
on an integral subscheme Z C P" isa subscheme Z’ C P" such that Z/_, = Z and deg(Z’) =
2deg(Z). A double structure is said to be pure if it has no embedded components.

Theorem 3.0.4. Let n > 2k — 1. Let Z be a subscheme parameterized by HZ—k,n—k' Then Z
is a pair of planes meeting transversely, or there exists a sequence of integers 1 < i; < --- <
i, < k and a flag of linear spaces A! C A% C --- C A" C P" with codimps(A®) = (k + i, — 1)
for each ¢, such that

(i) If iy > 1 then Z is a union of two planes meeting along A! with embedded pure
double structures on A foreach 1 < ¢ < r.

(ii) If i1 = 1 then Z is a pure double structure on Al with embedded pure double
structures on Af for each2 < ¢ < r.

Notation 3.0.5. For the rest of the chapter k will denote an algebraically closed field with
char(k) # 2
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3.1 Dimension and generic smoothness

Let X denote the union of an (1 — c)-plane and (n — d)-plane meeting transversely in P".
Although we are primarily interested in the case of ¢ = d, the results in this section hold for
general ¢, d. Itis clear that X is parameterized by an open subset of Gr(n—c, n)xGr(n—d, n)
of dimension c¢(n — ¢ + 1) + d(n — d + 1). If we show that the tangent space to [X] on its
Hilbert scheme has dimension c(n — ¢ + 1) + d(n — d + 1), it will follow immediately that
there is an irreducible component of Hilb rcn-d (P") whose general member parameterizes
X and whose natural scheme structure is reduced.

Since X is projectively equivalent to Z = V(xo, ..., Xc—1) U V(Xy—d41, - . ., X), it suffices
to compute the tangent space to [Z] on its Hilbert scheme. For the rest of this section we
fix Z and P(t) = PZ—c,n—d(t)'

fZ~P"cuP"isa disjoint union of linear spaces, it is smooth; this occurs if and
only if n < ¢ +d — 1. In this case we have a splitting of normals sheaves

Nz pon = Non—e pn @ Npn-ajpn = Opc(1) ® 08, _,(1).

Thus we obtain, h%(P", A7 pr) = c(n—c+1)+d(n—d+1) and h}(P", A7pr) = 0. It follows
that [Z] is a smooth point on its Hilbert scheme [48, Theorem 1.1c]. If n > ¢ +d —1, we will
explicitly compute the tangent space to [Z] using Theorem 2.0.9 Since n > ¢ + d — 1, the
depth of S/I7 is at least 2 and it follows from Remark 2.0.10 that the comparison theorem
applies for Z.

Lemma 3.1.1. We have dimy Tjz) Hilb” (P") = c(n —c + 1) + d(n — d + 1).

Proof. We only need to consider the case n > ¢ + d — 1. Moreover, it suffices to show that
the tangent space dimension is at most c(n —c + 1) + d(n —d + 1). In particular it is enough
to show that any ¢ € Hom(Iz, S/Iz)o can be written as

n—d n
Pp(xixj) = Z aéxpcg + Z béx]'Xg (3.2)
=0 {=c

forany0 <i<c-1landn—-d+1 <j < n with some constants, aé,b; e k.

Let us first show that ¢(x;x;) is supported on {x;xq, ..., XiX,_4,XjXc,...,XjXn}. Let
i,j be any integers satisfying 0 < i < c—-landn—-d+1 < j < n. Choose j* such
thatn —d+1 < j' < nmandj # j. Since ¢ is an S-module homomorphism we have,
xjrp(xixj) = xj@(xixj). This implies that x; divides every non-zero monomial in ¢(x;x;)
that is not annihilated by x;. in S/Iz. It follows that ¢(x;x;) is supported on

C={xpx;:0<p<c-1,0<g<n-dfU{xjx,...,xjxn}.

Similarly, choose i’ such that 0 < i” < ¢ —1and i’ # i. Then the equality x;¢(x;x;) =
xi@(xx;) implies x; divides every monomial in ¢(x;x;) that is not annihilated by x;. Once
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again we see that ¢(x;x;) is supported on
C'=A{xixo,..., Xixpq} U{xpxg:c<p<nn-d+1<qg<n}

Thus ¢(x;x;) is supported on C N C’ = {x X0,y XiXp—d, XjXc, - - x]xn}
For any i, j, write p(x;ix;) = 2,2, a Txixe + Ze Cb ]x]xg with b ], ek Using the
relation x;@(x;x;) = xjp(x;xjy) we see that b, b= =b, “I' for each ¢ and all j,j’. Using the

relation x ¢ (x;x;) = x;p(x/x;) we obtain al,] =a, "J for each ¢ and all i i,i". Thus ¢ is of the

form described in Eq. (3.2). O

We immediately deduce the following.

Proposition 3.1.2. There is an integral component olele (P"), denoted H)' endO" Hy—cn-a(P"),

whose general point parameterizes an (n — c)-plane and an (n — d)-plane meetzng transversely in
PTI

In the introduction we defined a rational map (Eq. (3.1))

E:Gr(n—c,n)xGr(n —d,n) --» H"

n—c,n—d’

(A, N) > [Ialn].

This map is well defined along the locus where A, A" meet transversely, because in this
situation IpInr = Ip N Ix. In many cases, E is in fact defined on a slightly larger open set.

Lemma 3.1.3. Let n > ¢ + d — 1. The rational map E extends to the complement of I'._1.

Proof. We need to show that = is defined along I'c \ I'c—;. Up to projective equivalence,
an element of I'; \ I'c_1 is of the form V(xg, ..., xc.—1) U V(x0, X, ..., Xcrd—2). It suffices to
show that | = (xo, ..., xc-1)(x0, X, ..., Xc+d—2) has Hilbert polynomial P(t). It follows by
inspecting the minimal generators of | that for any t > 1, (S/]); is spanned by

xok[Xcqa-1,-. ., Xnli-1 @ @ xik[Xi, . oo Xeo1, Xeqd—1, -, Xnlic1 @ K[xe, o, X0 ]
Thus the Hilbert polynomial of S/] is
n—c—d+t\ S(n-d—i+t n—c+t
PR

Using the "Hockey-Stick" identity this simplifies to

(n—c+t)+(n—d+t)_(n—c—d+t):P(t).
t t t
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Lemma 3.1.4. Let n > c + d — 1 and consider the open set
V=(Gr(n—-c,n)xGr(n—d,n))\ T'cc1 C Gr(n —c,n) X Gr(n —d, n).
The morphism Ely : V — H_ . is injective if ¢ # d and two-to-oneif ¢ = d.

Proof. Assume E|y(A, A') = Ely(A, A') = [Y] for some scheme Y. Observe that InIx
is a saturated ideal. Indeed, up to projective equivalence, A U A’ = V(xo,...,Xc-1) U
V(xe, ..., Xc—qg—2,x;) with i € {0,c —d — 1}. In both cases, IpIx is clearly saturated. Thus
we have Iy = Izl and taking nilradicals we obtain

Inon = In NIy = VIp NIy = Iy = Iy,

Similarly, I3z, = Iy, Equating the two expressions we have A U A’ = AUA’. The
conclusion now follows. m]

. n
3.2 Coordinates for ”Hn_k’n_k
This section is devoted to an analysis of H)' , ;. The first major goal of this section
is to prove that H} , _ is smooth. We start with the case when the pair of planes
parameterized spans P". We construct a bijective morphism from a non-singular variety
to HZ—k,n—k and deduce this is an isomorphism by proving its differential is injective
(Theorem 3.4.7). For the case where the pair of planes do not span P", we construct a
certain fibration to reduce to the case where they do span (Corollary 3.4.8).
Letn >2k—1and &y = Gr(n — k,n)?>. Foreach1 <v <k —1,let X, = Blr, - - - Blr, &
and let 1, : &, — A) be the blow-up morphism. The map given in Eq. (3.1) induces a

rational map

E: X1 =Blr,, -+ Blr, Gr(n —k,n)* - H_ (3.3)

defined away from the strict transforms of the exceptional divisors. In order to study the

structure of % ;. we will begin by extending E to a morphism on &j_1.

For each ordered basis E = {eg,...,e,} of S; we obtain an affine neighbourhood

U[E = Spec k[ai,]', bi’j]kstrz

o<i<k_1 Of X0 such that the k-points of Ug correspond to

n n n n
(A(a), A(b)) := (V(eo + Z ag,jej, ..., ek-1+ Z ax-1,jej), V(eo + Z bojej, ..., ex-1+ Z bx-1,jej)).
= =k = =k
(3.4)

It is clear that as E ranges over all ordered basis of Si, the set of Ug cover Xp. In
particular, it suffices to extend = along each n;}l(ll[g) in a compatible way. For notational
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convenience we may assume E = {xo,...,x,} and let Uy = Ug. Observe that the locus
I'; N Up is cut out by the ideal generated by the v X v minors of the matrix

aok—box -+ aou—Dbon
M — . .

Ak-1k —br-1k "+ Ak-1,n — bk—1n

Thus n;}l(uo) is obtained by blowing up Uy along the strict transforms of the ideal
generated by the v X v minors of M forv =1, ...,k — 1, in that order.

Proposition 3.2.1. Foreach 1 < v < k —1, there exists non-singular affine open subsets U, C X,
such that the following hold.

(i) We have U, C Blr,nu, ; Uy-1 € X%

(i) On the open set U,, the matrix 10(M) is row equivalent to the matrix

(v) (v) (v) (v) (v) (v)
Ar-edy (TO,k - T(),n—zH—l Tk—v,k) e Ar- Ay (TO,n—v - TO,n—v+1 Tk—v,n—z)) 0 e 0 0
(v) () () (v) (v) (v)
Ao Ao (Tk—v—l,k - Tk—v—l,n—v+1Tk—v,k) R (Tk—v—l,n—v - Tk—v—l,n—v+1 Tk—v,n—v) 0 o 0 0
(v) (v)
Ay-e Aka—v,k Apee /\ka—v,n—v Ay
. : : 0
(2) (2) (2)

AlAsz—Z,k T Al/\sz—Z,n—v AlAsz—Z,n—erl e /\1/\2 0

(1) (1) (1) (1)
Mk o ML MO o MG M

where
(i-1) (i-1) (i-1) .
= — ;= . L= . . ) . <1< K-
M =ax-1y — br—1,n and A; Tl P P SR foreach2 <i <k-1.

(iii) The strict transform of I'y41 on Uy, is cut out by

(T(v) _ T(U) T(U) ')OSiSk—U—l.

ij in-v+1"k-v,j’k<j<n-v
(iv) T'y1 N U, is non-singular and the blowup along this locus is given by

Blr,.,nu, Uy := Proj k[UU][Y}(jH)]iJ /(Koszul Relations).

Proof. We begin with the definition of U;. Since I'1 is cut out by (a;,; — b; j);,j on U, it is
a non-singular subscheme and we have Blr, 7, Up = Projk[Up] [Tl.(})],-, j/(Koszul relations).

We define U; = D(Tk(i)1 L)
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Let M, denote the matrix appearing in item (ii). We will prove items (i) - (iv) inductively
starting with v = 1. Item (i) is true for v = 1 by construction. On the open set U, the

Koszul relations simplify to a;; — b;; = AlTl.(}) ; here we have set Tk(i)l , = 1. Substituting

this into the matrix 77(M) and subtracting appropriate multiples of the bottom row from
every other row, we obtain the matrix

ey D)) 1) M1
Al(To,k - TO,nTk—l,k) o Al(TO,n—l — Ty, Tk—l,n—l) 0
M] — . . .
1) 1) 1) 1) 1) 1)
Al(Tk—z,k - T{c—Z,nTk—l,k) Al(Tk—Z,n—l - lTk—Z,nTk—l,n—l) 0
AlTlc(—)l,k o AlTk(—)l,n—l A1

This proves item (ii) for v = 1. The ideal generated by the 2 X 2 minors of M is /\%(Tl.(}) -
TOTD .)8Si5k_2 Thus the ideal of the strict transform of I'; is (Ti(}) — TOTM yosi<k-2

in "k-1,j/0<j<n-1" in “k-1,j/0<j<n-1"
Since this ideal is generated by a regular sequence, the blowup along it is non-singular
and equal to Blr,ny, U := Proj k[LIl][Ti(j)]i,j /(Koszul relations). This proves item (iii) and
(iv) forv = 1.
Now assume items (i) - (iv) have been proved for some 1 < v < k — 2. Define
Uy = D(T(U+1) U); equivalently let Tk(ii)l,n— = 1. Then the Koszul relations on this

k-v-1,n— v
open simplify to Tl(;’) - T;(IZ:Z)_U +1Tk(f)v J
M,, it is straightforward to row reduce the matrix so that it becomes M,.1. Items (i) - (iv)
will follow immediately as explained in the previous paragraph. |

= Aps1 Tl.(?ﬂ). Once we substitute this into the matrix

Remark 3.2.2. It follows from Proposition 3.2.1 that a set of algebraically independent
coordinates on Uj_q is

{bij}kstn U {T(j) 0<i<k-1

) (i) y1<i<k-1 (k)
0<i<k—1 i,n—j+1}1£j£k—l U{Ay, ..., A1} VAT ) 1 U {TO i }ijSn—k+l

k—i,jlk<j<n—i )

. (k) _ 4(k-1) (k-1) (k-1) .
with To,j = To,j - TO,n—k +2T1,]. for all j.

Proposition 3.2.3. Let n > 2k — 1. The rational map E in Eq. (3.3) extends to a morphism

s n
uk_l 7_[n—k,n—k'

Proof. We will use a to denote the tuple (a;);; and similarly use b and T® to denote
their corresponding tuples. Moreover, we will use A(a) to denote the (n — k)-plane
corresponding to a as in Eq. (3.4). Foreach0 <i < k-1lety; = x; + Z}“:k bijx;j. At the
moment, & maps

(a, b, T(l), ey T(k)) = [IA(a)IA(b)] (35)

= [(yo + Z(ao,]’ —boj)Xj, ..., Yk-1+ Z(ﬂk—l,j = bik-1,))x)) (Yo, - - -, Yk-1)
(= (=
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and this is undefined along the strict transforms of the exceptional divisors. Although
we may express a in terms of b and {T®},,, we will still describe formulas in terms of a as
it simplifies the exposition.

Observe that a minimal set of generators for I5(,) is given by the rows of [Idkx k| M ] zt
where z = [yo Ykl Xgooce xn] is a row vector. Applying row operations to
[Idkxk | M ] will produce different minimal sets of generators. In particular, applying the
row operations we did to M to get My_; (Proposition 3.2.1 (ii)) to the matrix [Idkxk | M ]
we obtain a new set of generators ay, ..., ax-1 of [5,) where

k=1-p n—(k-1-p)
_ () (k=p)
ap_yp_ZTpn]+1yk] Z Al"'Ak—prJ xj for O0<p<k-1
j=1 j=k

and

k-1 n—(k-1) )

@0 =Yo = Z T()(]r)l jr1Yk=j Z Av-- Ak—lTo(,j)xj

j=1 j=k
with T(k) T(k 2 TO(I; 1£+2T1(I; Y for all j. By construction, Tk( )vn o = 1foralll <o <
k—1.

For 0 < p < g < k — 1 define the following "cross terms"

ky kg
_ z: () 2: (k= q) 2: (7 z: (k= P)
ﬁp,q =\Ypr— Tpn ]+1yk j [y APl‘? Yq— an ]+1yk ] T,
j: j:

Ak—g+1 - Ak—p ifp>0

Where kP = k -1- p for all p and AP,EI = {/\k_q+1 . '/\k—l lf p =0.

Note that our convention implies A1 = 1. Extend E to U_1 by mapping

@b, TV, .., T®) > [In@Wo, - - Yk-1) + (Bp.g)o<p<qek-i]
n n
X+ Z aij,j Xi+ Z bi,j + (5P/Q)0§p<qsk—1 :
=k =k

0<i<k-1
Note that Eq. (3.6) extends the original rational map given in Eq. (3.5). Indeed, Eq. (3.5)
is defined away from the strict transform of all the the exceptional divisors; this is the
locus where A1, ..., Ar_1 # 0. In this case we have

(3.6)

0<i<k-1

kp kq
() (7)
(yOI"'ka—l)IA(a) = yP_ZT] —]+1yk j ab] yq _ZTq]n ]+1yk_j al’ :Al'..Ak_qﬁp'q'
j=1 j=1

(3.7)
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Thus B, € Ir@) (Yo, - .., ¥k-1) and Eq. (3.5) and Eq. (3.6) coincide.

To show that the image of Eq. (3.6) is well defined, it is enough to show that the
Hilbert polynomial of an ideal | = Ix@)Iam) + (Bp,q)o<p<q<k-1 in this image is pZ—k,n—k(t)'
In Lemma 3.2.5 we define a term order > on S for which

in.] = (xo, ..., xk—l)Z + (xpxn—kq)OSp<qSk—1-

Since there is a flat degeneration from | to in. ] it suffices to show in. ] has the desired
Hilbert polynomial. It is easy to see that (S/in.]); is spanned by

k-1

@ xik[xp, ., Xpoprivt)i-1 @ K[xk, ..., ]
i=0

Using this and the Hockey-Stick identity we deduce that Hilbert polynomial of S/in. | is
n—k+t +k1 n—=2k+i+t\ (n—k+t N n—k+t\ (n-2k+t - p" 0.
t—1 B t t t —kn—k
i=0
O
Prior to proving Lemma 3.2.5 we need the following auxiliary result.

Lemma 3.2.4. The ideal Ixa)Iam) + (Bp,q)o<p<q<k-1 in the image of Eq. (3.6) is projectively
equivalent to an ideal of the form

(Xp + Ly kXn—k,Josp<k—-1(X0, - - -, Xk=1) + (XpXn—k, = tp,g¥q¥Xn-k,Josp<q<k-1,  (3.8)
with i € kand pyq = fg—g41 -~ pr—p forany 0 < p < q < k.

Proof. Applying the projective transformation that maps x; > x; — X5 bijxjif i <k -1

and fixes the other x;, we may assume b = 0. For each 0 < i < k — 1 let 7; denote the map

k—i—1 (j)
T.

that sends x; — x; +Z in—j+1

equals,

xk-j and fixes the other i. Itis clear that 74— 0 - -0 7o(I)

n—kp

k- k- k-
Xp + Z At “Ak‘f’Tp(,j p)xj) (x0, .., xk-1) + (xp (Z T( 9 )— ApaXg (Z T( P ))
j=k 0<p<k-1 p<q

ForeachO <i <k-1lety; =A;. If TO(];.) = ( for all j then let ujx = 0. If not, choose the

largest index ¢ for which T(k) # 0 and let g = T(k).

Foreach1l <i < k- 1C0n51der the map 7,,—, ,that maps X,—k;, = Xn—k; —Z” k-1 T(k Dy Xj

and fixes the other x;. As we range over all i, we obtain maps 7, ..., Ty—(x-2)- If pi = 0let
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(f—l T(k)

Tn—-(k—1) be the identity; else let 7,,_(;_1) denote the map that sends xy > x;, g, — ﬁ > i=k Lo, 7

Xn—k, > X¢ if £ < n — ko, and fixes the other x;.
Using the fact that TZ(I;__’,Z = 1 on the open set Uy_1, it is straightforward to check that
Tp—(k-1) © *** Tn © Tg—1 © - - © To(I) is of the desired form. O

Lemma 3.2.5. Let > denote the lexicographic ordering on S with terms ordered by xo > x1 >
e > Xpo1 > Xp > Xpo1 > cc0 > Xk Let [ = In@)Iaw) + (Bp,g)o<p<q<k-1 denote the ideal in the
image of Eq. (3.6). Then we have

in.] = (xo, ..., %k-1)" + (XpXu_k, o<p<gk-1
Proof. Let ]’ denote the ideal in Eq. (3.8). We will first show that
ins ] = (xo, ..., Xk-1)" + (XpXn—k, Jo<p<q<k-1- (3.9)

Let yp,q = (xp + lp kXn-k,)xg for 0 < p < g < k—1and 6p,4 = XpXn—k, — Lp,q¥XqXn—k,
for0 < p <q <k-1 Sinceinsypq = xpXq and in 6y 4 = XXk, to prove Eq. (3.9), it is
enough to show that G = {y} 4, 6p,4}p,q is a Grobner basis for J. Note that G generates |’
because for p < g we have

(xq + Hq,kxn—kq)xp = (xp + Hp,kxn—kp)xq + [Jq,k(xpxn—kq - Hp,qqun—kp) (3.10)
= Vpa t+ Hgk0pq € (G).
Notice that yy 4114,k = pip,x and this will be used repeatedly in the rest of the proof.
Givena, b € Swedenote their S-pairby R(a, b) = (m;b)a—(m;“ )b with h = ged(ins (a), ins (b)).

To show that G forms a Grobner basis we need to show that there is a standard expression
for the S-pairs in terms of elements of G with no remainder [50, Section 2.2-2.3].

Case 1. The standard expression of R()p,,q1, Vp,,q,): Let b = ged(insyp, 4., i05Vp, ,0,)
and we may assume p; < p2. If h =1 then p; < p, and we have

R(Vpl,qlf sz,qz) = XpaXq2Vp1,91 — Xp1Xq1YVpage
= Hp1,kXpaXgaXn—ky Xq1 = Hpa kXp1Xq1 Xn—ky, Xq2
= _‘upz,kxmxfhém,m'
This is obviously a standard expression with no remainder. If i = x,, then p; = p; or
p1 = go2; in the latter case we still have p1 = p; as our assumptions imply p1 < p2 < g».

Thus in both the situations we obtain R(Yp,,q1, Vpa,q2) = Xg2Vp1,q1 — X1 Vprge = 0. If b = xg
we have either g1 = g2 or g1 = p2. If g1 = g2 then as shown above we obtain

R(Vp1,q17 Vpag2) = XpaVpran = Xp1 Voo = Hpy kX py Xn-ky, Xq1 = Hps kXpy Xn—ky, Xq1 = ~Hps, kXq10p1 ps-

Similarly, if q1 = p2 we obtain R(Yp,,q1, Vpoq2) = Xq2Vprp2 = Xp1Vpogz = —Hpa,kXg20p1,py (if
p1 = p2 thisisjust 0). If h = Xpi X thenwehavep1 = g1 =p2=qaorp1 =p2 < g1 =gz in
either case R(Vp,,41, Vp,42) = 0.
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Case 2. The standard expression of R(0p,,4;,0p,,q,): Let h = ged(ins 0y, 4,,1i0506p, 4,)
and assume p1 < pp. If h =1 we have p1 < pp and g1 # g2. Then we obtain
R(6p1,91, 0ps,00) = XpyXn—ke, Op1,q1 = Xp1Xn—ky, Op2 g0
= “Hpi,g1 XpaXn—kg, Xq1 Xn—ky, T Hp2,q2Xp1 Xn—ky; Xq2 Xn—k,,
= Upo,g ¥ g2 Xn—kg, Oprpa = XpoXn—ky, (Hpr,g1 Xqn ¥n—kg, = bpr,palp, g2 X2 Xn—ky, )
‘upz,%x%xn—kqléplfpz - (upllmxpzxn—kplém,% if g1 < 2
Hp2,q2X g2 Xn—ky, Op1,pa + Hp1,g2Xp2Xn—ky, Oga,n if g2 < q1.

Each of the above cases is a standard expression in terms of G with no remainder *. If
h = Xn-k,, We have g1 = g2 and p1 < p2. Then we obtain

R(épwhl 6?2#2) = xpzépllﬁn - xpl(SPz,CIZ
= _Mpl,qzxplehxn—kpl + [Jpz,qzxplxthxﬂ—kpz
= Plpz,ﬂnxtnépl,m'

If h = x,, we have p1 = p» and wlog we may assume g1 < g2. Then we have

R(6p1,q1/ 0p,q.) = Xn—kg, Op1,q1 — xn—kqlépl,qz
= ~Up1,q1 Xn—q2Xq1 Xn—ky, + Hp1,q2Xn—kg, Xq2Xn—k,,
= —Hp1,g1Xn—ky, O41,42-

Finally if h = x, x4k, we have p1 = p2 < q1 = q2 and thus R(bp,,q,, 0p,,4,) = 0.
Case 3. The standard expression of R(yp, 4,, 0p,,q,): Let b = ged(insyyp, 4,,i050p,,4,)

and note that i € {1, xp,, x4, }. If h = x», we have p1 = p> and using Eq. (3.10) we obtain
R(Vp1,q170pa) = Xn—kg, Vpra1 — Xq10p1,42
= Up1,kXn—kg, Xn—ky, Xq1 + Up1,02Xq1 Xn—k,, X g,
Hp1,q2Xn—kp, Va2,m if g1 2 g2

Hp1,q2Xn—ky, V1,2 + Hp1 kXn—k, Oq1,q. i g1 < qa.

Both these cases are standard expressions with no remainder. If i = x,, then q1 = p> and
we obtain,
R(?’Pl,!h/ 6P2A]2) = xn—qu Vpip2 xpl(spz,th
= le,kxn—qu xn—kp1 xpz + P‘Pz,thxplxn—kpz x‘h

= Xn—kg, Vp1,92 ~ xP16P2,112'

f pp,g # 0 then insR(6p,,4,,0py) = Hps,q2Xp1 Xn—ky Xg2Xn—k,,- ~ This is greater or equal to
in (Xg, Xn—k,, Opy,p,) and ins (Xp, Xn—k, Ogy,0,)-
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Finally consider the case /1 = 1. If we further assume p, < p; and g, < p; we have

R(yplfql’ 61"2/‘72) = Xp2Xn—ke, V1. ~ xplx‘hélﬂzﬂh
= HprkXpaXn—kgy Xn—kp Xq1 + Hp2,q2Xp1 X1 X g2 Xn—ky,
= HprkXn—kg, Xg1Opa,p1 F Hpy kXn—key X1 Xp1 Xn—ky, + Lp,g2Xp1 X1 X Xk,

= Up1 kXn—kg, Xp2Opa,p1 + Hpa,ga Xn—kp, Xq1 V2,01

This is a standard expression with no remainder. We omit the other cases as their proofs
use Eq. (3.10) and are very similar. We have now shown that G is a Grobner basis for J’.
Since |’ and in. ]’ have the same Hilbert function (as graded S-modules) and ] is
projectively equivalent to J’, | and in. ]’ have the same Hilbert function. On the other
hand, (xg,...,xx-1)*> C ins] and XpXn-k, = in>(Bp,q) € in>J. Thus in.] 2 in.J". Since
these ideals have the same Hilbert function they must be equal, completing the proof. O

Remark 3.2.6. For the rest of the paper, > will always denote the term order from
Lemma 3.2.5 and k, will always denote k — 1 — p.

The following Lemma sheds some light on the structure of the subschemes in the

image of the morphism, Ux-1 — H, _, .

Lemma 3.2.7. Let | = Iz)Iawp) + (Bp,q)o<p<q<k-1 denote the ideal in the image of the morphism
given by Eq. (3.6). Then the following statements are true
(i) The ideal | is saturated.

(i) Ifall the A; are non-zero and T # 0 then ] is the ideal of a pair of (n — k)-planes meeting
transversely.

(i) Ifall the A; are non-zero and T = 0 then ] is the ideal of a pair of (n — k)-planes meeting
along an (n — 2k + 1)-plane.

(iv) Let € be the smallest index for which Ay = 0. Then we have
] = Ia@Iaw) + (Bp,g)osp<qg<k—t

and /] is the ideal of a pair of (n — k)-planes meeting along an (n — k + 1 — £)-plane.

Proof. Item (i) follows from the fact that depth, (S/]) > depth, (S/in.]) > 1 where m =
(x0,-..,xn). The first inequality is [50, Theorem 3.3.4] and the second inequality is true
because xj is a non-zero divisor on S/in. J.

Notice that A(a) and A(b) meet along a (1 — k + 1 — {)-plane precisely when the matrix
M (Proposition 3.2.1 (ii)) has rank ¢ — 1. As a consequence items (ii), (iii) and the second
half of (iv) follow immediately. The other half of item (iv) follows from Eq. (3.7) as it shows
Bp.g € In@law) forany g > k — L. O
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Proposition 3.2.8. Let n > 2k —1. Then E induces a surjective, GL(n + 1)-equivariant morphism

: X_1/S2 = Bly,_, - - - Blp, Sym? Gr(n — k, n) — Hy i

8s]

Moreover, the quotient Xy_1 /S, is non-singular.

Proof. In Proposition 3.2.3 we showed that E extends to a map from Uj_;. We will now
explain how the same argument gives a morphism on all of n;il(llo). Consider a pair

Y=LY= ) L Yil)

with y! an ordered k-subset of {0, ..., k—1} and y? an ordered (k —1)-subset of {k, ..., n}.
For any such y we can define a sequence of open sets U7, .. ., UZ_l such that

1) u? =D ) € Blr,ny, Up and let T = T,
yl’Yl /] L]
2) For v > 1, the strict transform of I',+1 on UZ,/ is cut out b
y

(1 -1

i€{0,... k=11\{y1,-.., 1}

jetk N\ ¥ v3)
(3) Forv > 1, thelocusI',41 N llz,/ is non-singular and

Bl U = Projk[U) ][nyj'(”)]i,]- /(Koszul Relations).

I-‘v+1ﬁ

(4) For v > 1, we have U] = D(T;’%’l(;%) C Bl r UL,
Due to symmetry, the proof of Proposition 3.2.1 also establishes the above statements
(note that Uy_; = UZ_l withy! =(k-1,k=2,...,00and y>=(n,n—1,...,n —k +2)). It
follows that {UZ_1 }y is an affine cover of n,:ll(uo) with the natural gluing maps. We omit
an explicit description of the gluing maps as they will never be used.

To construct the U} and verify statement (2), we would have to row reduce M in a
way analogous to Proposition 3.2.1 (each y corresponds to a different sequence of row
redutions). We will omit an explicit description of the matrix, but the corresponding
lambdas are

’ _1) YI(Z_]') YI(Z_l) .

A =ay>—b, . and AV =770 7707 foreach 2 < i < k-1.
Lo nm vyl VY vy

As in the proof of Proposition 3.2.3 we can choose a minimal generating set, aé’ PR 0‘;:—1

of I5(a) where
k-1-p

Y _ } : v.(j) 2 : 4 y gv.k-p)_

a, = 1 = T 1+ AT - A T X

p yyk—p . YL ,y?y)’j ' ; . 1 k—p VL,;J J
j=1 jelk,..., n}\{y1 ..... Vk—1—p}
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for0<p <k-1and

k-1

- _ y:j)
ay =Yy Zl Tyi,y?yy} + Z A

i jedk, e Y2 V2 )

’—‘*<

AV TV(k)
k-1 V

with T;’l’(]k) T Ak=1) T)fl/(kz—l)Tyl,(k—‘D_
k? Vi VY1 Yiadd
For 0 < p < g < k —1 we may define analogous "cross terms"

k=1-p
Y vA)) V(k 9y
= — T T
Bra =Yy, Z i, || Z; 7 Xj
j=1 jetk .t \{y3,.-., yk_l_q}

k-1-q

Y v.j) y (k= p)

Ap q yyi_q B Z Tyi—q’)/]zyy]l Z Tyk p ] .
j=1 je{k,..n\{y3,..., y%flfp}
Thus we obtain a morphism
Eyr (@b, TV, TRy 5 [y Iaw) + (Bh g o<p<qei-] - (3.11)

This is well defined as any ideal in the image of Z;;» is still projectively equivalent to an

ideal in Eq. (3.8) (the proof of Lemma 3.2.4 works ;/irith straightforward modifications).
As explained in Proposition 3.2.3, _,uy will also extend the original rational map given

by Eq. (3.5), for each y. Thus for any y Y, _,uy and & _,uyf agree on an open subset of

LIY N Uy By uniqueness of extensions, they will agree on all of Uy N LIY . Gluing

all these maps gives us a morphism 77, 1(l,lo) — M Kk

As mentioned in the beginning of the section, Gr(n — k, n)? is covered by open sets of
the form Ug where € ranges over all ordered bases of S;. Since assuming £ = {xo,..., X}
was purely notational, all the discussion in this section applies verbatim to n;}l(llg). In

particular, we obtain a morphism on each n;ll(l,lg) that extends the original rational map
given by Eq. (3.5). Thus we can glue all these maps to obtain a morphism Z : A} —
?{Z k,n—k
Let 3, = {1, ¢} be the group on two elements and consider its natural on Gr(n — k, n)?
given by interchanging the two factors. Since each of the I'; are &, stable, the action
extends to the blowup AXj_;. If we consider the trivial action of S, on Hn Kk then
our construction shows that & is &;-equivariant. Thus, we get an induced morphism
X1/ G2 — My
Since chark # 2 and g fixes a divisor (the strict transform of the exceptional divisor of
A1), the Chevalley-Shephard-Todd theorem [74, Theorem 7.14] implies that the quotient
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is non-singular. Note that
Xi-1/S2 = (Blr,_, - -+ Blr, Gr(n — k,n)?)/S; ~ Blg,_, -+ Bl, Sym® Gr(n — k, n).

Since Z is dominant and &j_; is projective, E is surjective.

The natural action of GL(1+1) on P” induces an action on Gr(n—k, n)? and on Ho ke
Since the I'; are stable under this action, it extends to an action on Xj_1. To show that =
is GL(n + 1)-equivariant we need to show that for any ¢ € GL(n + 1) the two morphism:s,
Eog: X1 = Hy_ ., givenby w — E(gw) and g0 B : Xy — H) ;. given by

w +— ¢B(w) are identical. For any (A, A’) in the open set Gr(n — k, n)?\ T'x C Xj_1; we have
gE(w) y (A, N) p ( )7\
Eog)(A,AN)=E(g(A),g(N)) = g(A)UgA) = g(AUN) = (g0 E)A,A).

Thus E o ¢ and ¢ o E must agree on all of X_;. It follows that E is also GL(n + 1)-
equivariant. O

Corollary 3.2.9. Let n > 2k — 1. Any subscheme parameterized by H) ., is minimally cut
out by k? quadrics.

Proof. By the discussion in Proposition 3.2.8 we may reduce to considering subschemes
cut out by ideals in the image of morphism (Eq. (3.6)). Let | denote any such ideal and note
that ], as presented, is generated by quadrics. By Lemma 3.2.7 (i), ] is saturated and thus is
the ideal of its corresponding subscheme. Therefore it suffices to show that dimy ], = k2.
Since S/J and S/in-] have the same Hilbert function we have dimy J>» = dimy(ins ), = k?
(Lemma 3.2.5). O

Remark 3.2.10. The analogue of Lemma 3.2.7 holds verbatim for ideals in the image of
Eq. (3.11). The analogue of Lemma 3.2.5 is as follows: Let | be any ideal in the image of
Eg. (3.11) and let >, denote a lexicographic ordering on S for which

X,1 > X
k

>...> >
y 17 X} X

2> > X2 >Xp, > >X
Vi1 14 1 ) h h

)/k7 n—2k+2"°

Y
We may choose any h; so that {hy,..., hy—oks2} = {k,...,n}\ {y%, e, yi_l}. Then we
have

in, J = (xo, ..., Xk-1)" + (¥y1 X2 Jo<p<qsk-1

3.3 An analysis of &

We split the proof of the injectivity of Z into two steps. Here is the first step.

Lemma 3.3.1. For any Y, the restriction 2 : UZ_l /G2 — M, ., isinjective.
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Proof. It is evident from our construction that UZ_l is &,-stable and thus the quotient
U;’_l /€2 is well defined. Without loss of generality we may assume Uz_l = Uk_1. To prove
the Lemma it suffices to show that for any Z,Z € Uy_; satisfying E(Z) = E(Z), we have
7 =27or g(Z) 7 where where g is the non-identity of S,. Let 7 = (5,5,"1"(1), e ,T(k))
and Z = (a, b, TO,. ., T®) be their coordinates on U_;. The "betas" and "lambdas"
correspondmg to Z are denoted by B; ,jand A; respectively, and the ones corresponding to
7 are denoted by ﬁl,] and A;.

We have A(a) U A(f)) = E(Z)req = E(z)red = A(d) U A(B) After possibly replacing
7,7 by g(Z), §(Z) respectively, we may assume i = 4 and b = b. Thus to prove that Z
is injective, we need to now show that Z = Z. Since & is GL(n + 1)-equivariant we may
apply a projective transformation and assume b=b=0. For simplicity we leta := a = a.

By Lemma 3.2.7, E(Z)red = E(Z)req is a pair of (n — k)- planes meeting along an (n — k +
1 {)-plane forsome1 < ¢ < k+1. If ¢ € {k, k+1} then Z,Z lieinan open set along which
E was already shown to be two-to-one (Lemma 3.1.4). Thus we may assume ¢ < k —1. By
Lemma 3.2.7 it is also the smallest index for which Ay = 0 and, symmetrically, the smallest

index for which )A\g =0. B _ .
Using Lemma 3.2.7 (iv) we get Z(Z) = [Ix@)Ia0)+H(Bp,q)o<p<g<k—e]and E(Z) = [Ix@)Ia)+
(Bp,g)o<p<q<k-¢]. Using Lemma 3.2.7 (i) we have the equality

In@lao) + Bp.o)osp<gsi—t = InawIa©) + (Bp.g)osp<q<it-
I claim that (ﬁp,q)05p<qsk_g = (,@p,q)OSp<qsk_g. Assume BM = a + w with a € I5,)Iz() and
w € (ﬁp,q)05p<q5 k—¢ such that a, w are linearly independent and homogenous of degree 2.
Since A; = Ay = 0, the construction in Proposition 3.2.3 implies

In@Ia@) = (a0, .., ak-1)(x0, -+ ., Xk-1) € (X0, -+, Xk—1, Xn—42, - -+, X)(X0, -+, Xk—1)
and
(Bpa)osp<qsi—t, Bp,osp<gsi—t € (X0, -+, Xk-1)(Xk, -+, Xn—g41)-
This implies &« = 0 and we obtain B = (Ep,q)0§p<q§k_[ = (ﬁp,q)()qusk_g. The proof will
be complete once we the show that the coordinates from Remark 3.2.2 of Z coincide with
those of Z.
It follows from the proof of Proposition 3.2.1 that the coordinate TZ(?) admits a formal

expression

Aiio(a,b,A1,..., A
7o) - Aol Sl ) (3.12)
L] ASH G
with A; j ; a polynomial in a,b, Ay,..., Ay and €1, ..., €, > 1. Similarly, each A, admits a
formal expression

Bi,]',v(a,b, A, oo, Ap1)
o

Ay = (3.13)
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with B; j » a polynomialina, b, Ay,...,Ay—1and €1, ..., €51 2 1.

(1) ii = A; foralli < ¢: We clearly have /A\l =Ak-1n = A1. Since /A\U #0forallv <?¢-1
we can inductively apply Eq. (3.13) to obtain

n Bj,]',z;(a, 0,;\1, .. ,/A\U_l) Bi,]',v(a, 0, Zl, e /iv—l) -
/\U = = — = /\TJ'

1 €1 T €v-1 €1 ... F€v-1
/\1 T Ay—l A]. /\U—l

(ii) Tl.(?) = Ti(?) forallv < {—1andall i, j: Analogous to item (i) above, where we instead
use Eq. (3.12) to conclude

’1,\"(0) j,]',v(a, 0, ;‘1, P ,iv) _ Ai,]',y(a, 0, ;\1, P 7\ ) ’T‘(v)

1,] 2e1 e JE€1 J€ 1,]
Al.../\vv /\l...AUU

(iii) T(v) T(;)) forall k =1 > v > ¢ and all relevant i, j (those appearing as coordinates
in Remark 3.2.2: Let r, s be any integers such that 0 < r < s < k — ¢ and assume
Brs = D0<p<q<k-t cp,qﬁp,q for some constants ¢, 4 € k. Let p” = min{p : ¢, ; # 0} and
q" =max{q : ¢y 4 # 0}. Then

XrXn—k, = in>(frs) = in> Z CpaPpa | = Cp g Xp Xn—k, -
0<p<g<k-{

It follows that f, ; = B, s. Equating the terms supported on x, we obtain

n—ks —ks
Z T(k s) Z T—. (k— s)
j=k j=k

It follows that fs(l;_s) = Ts(’;._s) for all k < j < n — ks. Similarly, equating the terms

supported on x,_k, we obtain fr(]z i+ Tr(],z i+ foralll <j <k,.

(iv) ]':0(1;) = TO(I;.) forall k < j < n -k +1: Combining Bo1 = fo,1 and the equality of
coordinates in (iii) we obtain

k=2 0 n—(k-1) o k=2 " n—(k-1) ®

A i _ 7 T .
Ao | x _ZTM _in¥ To % = Ao |xi - ZTl,n—j+lxk_j To; % |-
j=k '

Since Ag1 =1 =14¢1, equating the coefficients of the monomials containing x; gives
the desired result.
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(V) )A\i = A;foralli > ¢+1: Foreach {+1 < i < k—1we have Ek_i,k_l'+1 = ﬁk_l',k_i+1. Note
that Ay_; k—i+1 = A; and Ax_; k—i+1 = A;. Using the equality of coordinates in (iii), the
expression fi—; k—i+1 = Pk—i k—i+1 reduces to

i-2 n—i+1 n—i+1
> ‘ () (1) () 7(i)
Ai| X—iv1 = ZTk i+1,n— ]+1xk ])( Z Tk 1]x]> - A (xk i+1 = ZTk i+1,n ]+1 )( Z Tk z]

i=1 =k i=k
Equating the coefficients of xx—_;+1x,—i+1 gives the desired result. O

Lemma 3.3.2. The fiber of 2 over the point [(xo, . .., xk-1)* + (xpxn_kq)0<p<qgk_1] consists of a
single element.

Proof. Let | denote the ideal (xo, ... ,Xk—1)? + (x,,xn_kq)0<p<qsk_1. Let X € Uk_1 be the
point with all the coordinates of Remark 3.2.2 equal to 0. We clearly have E(X) = []].
Now assume Z € Xj_1 such that E(Z) = [J]. Since Jreq = (X0,...,Xk_1), we must have
Z € n;}l(uo). In particular, Z € UZ_l for some y. By Remark 3.2.10 we have

2 . —_ .
(xOI vy xk—l) + (xy}(ipxyiiq)()ﬁp<q£k—l = 1n>y‘:‘(z) = 1n>y] = ]

Comparing the monomial generators of the two ideals we deduce that yi_p = p for all
0 < p < k—2; this forces y% = k —1. But then we also obtain y,";_q =n—ky=n—-(k-gq)+1

forall1 < g <k —1. Thus Uz_l = U1 and by Lemma 3.3.1, Z = X or g(Z) = X for the
non-identity ¢ € S;. Since E(Z)red = E(X)red = V(x0, ..., Xk—1) we must have g(Z) = Z
thus Z = X. O

Proposition 3.3.3. Let n > 2k — 1. The morphism B X /G, — HZ_k .y 1s injective.

Proof. LetY,Z € Xk 1 such that Z(Y) = E(Z). Since E(Y)red = E(Z)rea We may assume
wlog that Y, Z € w1, (Up). We may also assume wlog that Y € Uj_1. By Lemma 3.3.1 we

only need to show that Z € Up_1. Let £ > 1 be the maximal value such that Z € U 1 with
yi =k—iand y? =n—i+1foralli < {. We need to show that ¢ = k (then automatically,

yi = 0). For the sake of a contradiction, assume that ¢ < k. Our method is to compare
certain initial ideal degenerations of Z(Z) and Z(Y).

Let w be any integral weight order corresponding to > [24, Section 15]. For any ¢ € k*
let g; € GL(n + 1) denote the automorphism that maps x; — t~%@y;. Since each gt just
scales the coordinates the following facts are immediate

(1) gt induces an action on Ap and extends to all the blowups &.
(2) g fixes U;’ and also fixes any closed subset of the form V(".Iglj’(g)).

(3) For each ¢ let ¢y : Xx_1 — Ay denote the blowdown map. Then ¢ is GL(n + 1)-
equivariant and thus ,(g¢) = g:(¢¢).
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LetYy = lim;—,0 g:(Y)and Zy = lim; ¢ g¢(Z). Using [24, Theorem 15.17] and Lemma 3.2.5
we obtain

E(Yo) = lim gHEY)) = in B(Y) = (xo, ..., Xk-1)* + (XpXn—k, Jo<p<gk-1-

Similarly, 2(Zo) = (xo, ..., Xk-1)* + (XpXn—k,Jo<p<g<k-1 = Z(Yp). By Lemma 3.3.2, Zo = Yp.
Using the notation in item (3) and our assumption on ¢, Y¢(Z) and ¢¢(Y) are k-points
of Projk[Ug-ﬂ[Ti(?] /(Koszul) € &;. By maximality of ¢ we have Tk(f)(, e We(Z)) =0

ie. ¢y(Z) lies in V(Tk(f)e,n—ul)' Then by item (2) we still have 1,(g:(Z)) = g:(V¢(2)) €

V(Tk(e)e 1—¢+1)- Thus the limit ¢¢(Zo) also lies in there. But this contradicts the fact that

T(‘})M 11 (We(Y0)) = Tk([)gn 1+1(Y0) # 0 (since Y lies in Ug-1). Thus ¢ = k and we have
Z,Y € U1, as required. O

Remark 3.3.4. It follows that the preimage E71(Z) is a single point precisely when Z ¢4 is an
(n—k)-plane. This occurs precisely when Z is generically non-reduced, see Theorem 3.4.13.

3.4 Smoothness of H”_k ok

We begin by showing that H  , has a unique Borel-fixed point. We begin with a
combinatorial criterion for Borel flxed points in arbitrary characteristic [24, Section 15].

Definition 3.4.1. Let I C S be a monomial ideal and p a prime number. The ideal I is said
to be 0-Borel-fixed if for any monomial generator m € I divisible by x;, we have i—;m €l

for all i < j. The ideal I is said to be p-Borel-fixed if for any monomial generator m € I
divisible by ¥ but no higher power of x;, we have (3£)*m € I forall i < jand a <, B (this
] X

means that each digit in the p-base expansion of « is less than or equal to each digit in the
p-base expansion of f).

Note that a 0-Borel-fixed ideal is always p-Borel-fixed for any p.

Proposition 3.4.2. [24, Theorem 15.23] Let chark = p > 0. Then I C S is Borel-fixed if and
only if it I is p-Borel.

In our situation, chark = p > 0 with p # 2. Let I be a saturated p-Borel-fixed
ideal parameterized by H) , .. Since I is a monomial ideal generated by quadrics
(Corollary 3.2.9) and p # 2, the condition a <, B in Definition 3.4.1 reduces to the

condition a < . In particular, I is always 0-Borel.
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Proposition 3.4.3. Let n > 2k — 1. Consider the ideal

k-1
L gk = Z xXi(xi, o, Xokoa—i) = (X0, . - ., Xk—1)* + (XpXok-1-q)o<p<q<k-1-
i=0

Then [I"_, . |is the unique Borel-fixed pointon H , .

Proof. As noted above, Borel-fixed ideals in %7, are the same as 0-Borel-fixed ideals.

Since I”_ . 18 projectively equivalent to (xo, - L Xk1)? + (xpxn—kq)OSp<qsk—1z it lies in
H_ Kk’ Tt also clear that IZ—k,n—k is Borel-fixed. Let B be any saturated 0-Borel-fixed
ideal on ’HZ_k,n_k. Then it is of the form B = }{_ xi(xj,...,x,) withn —1 > a9 > a1 >
.+ >a. > €. Since VB = (xo, ..., xe) has codimension k, we obtain € = k — 1.
Arguing as in the end of the proof of Proposition 3.2.3 we see that the Hilbert polyno-
mial of Bis ("7} ') + X7 (""/~%?). Equating this with the Hilbert polynomial of I"_

-1 k,n—k
we have

kz_in—2k+i+t _kz_i t+n—a; -2

: t—1 4 t—1 '

i=0 =0
Since the set {('"}*") }sen is a Q-basis for Q[t], we obtain a; = 2k — i — 2 for all i; therefore
B=1" O

n—k,n—k"

Lemma 3.4.4. Let I be a (saturated) ideal parameterized by H' Then the Castelnuovo-

n—k,n-k’
Mumford regularity of I is 2 and Ty Hilb -+ P" = Homg(I, S/1)o.

Proof. Since I is generated by quadrics, the regularity is at least 2. Up to projective
equivalence, we may assume [ is as described by Eq. (3.8). By [50, Theorem 3.3.4] we
have also reg(I) < reg(inI). Note that in.I is projectively equivalent to I , _ and the
regularity of a 0-Borel ideal is the highest degree of a minimal monomlal generator [50,
Corollary 7.2.3]. Thus reg(I) < reg(I’_, ) = 2, as required. The description of the
tangent space follows from Remark 2.0.10 and Theorem 2.0.9. ]

Definition 3.4.5. Let C denote the pre-image of [I” in Xx_1 (Remark 3.3.4) and let C

denote the image of C in Xx_1/S,.

n—k,n— k]
_ By constructing curves passing through C and C we will now show that the differential
dZ; is injective. This is a major portion of the proof of Theorem 3.4.7.

Lemma 3.4.6. Let n > 2k — 1. The differential duC Tz (Xk-1/S2) — Tjpr
injective.

n
n—k - k]Hﬂ—k,n—k 15
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Proof. Note that we have a factorization

Te X1 —— Tp(Xk-1/S2)

\ 1

T[Ig_kln_k],HZ—k,n—k
By non-singularity we also have dimy Tr Xx-1 = dimy Tz(Xx-1/S2). Thus to show that i) z
is injective it suffices to establish the following two facts

(1) dE¢ : Te X1 — Typn

1H! has a 1 dimensional kernel
n—k,n—k n—k,n—k

(2) The exists € Tz(Xk-1/3Sz) for which diz(a)) does not lie in the image of d=;.

We begin with item (1). Let ' = (k- 1,k —2,...,0) and y*> = (k,k +1,...,2k = 2).
Then C is the point 0 on UZ_l (Proposition 3.2.8). As in Remark 3.2.2 a set of coordinates
on UZ_l isN =AM U---UNMN;5 where

_ [}, AkSjsn _ (V) 0sisk-1-j _ Y\ 1<i<k-1
M = i} ocick-1/ Np = {Ti,k—1+j}15jsk—1 , Nz= {Tk—i,]' k+i<j<n’

J(k
No= {0, A Ns =T hacagjen.

For each n € N we define a curve D, : Speck[t] — UZ_l,
n = t and all the other coordinates in V to 0.

Let ¢ : Speck|[t]/(t?) — Speck[t] be a first order deformation of the origin. Since X1
is non-singular the set {D;; o t},ex is a basis for TgLIZ_1 = Tr Xk—1. We need to study the
dimension of {dZ¢(D;, o t)};,. Since dZ¢(D; o 1) = (E o D;) o 1 we begin with an explicit
description of each E o D,,. The items below follow directly from the construction of the
map (Eq. (3.11)).

passing through 0, by setting

(i) If n = b;; € N1 then E o Dy(t) is

0<p<q<k-1

2
(x()/ ceey xi—ll xi + txj/ xi+1/ sy xk—l) + (xpx2k—1—q)p¢i

+(x; + txj)(xk, - .., Xok-2-i)-

(ii) Ifn = Tilykf(_fiﬂ. € Ny then B o Dy (t) is

0<p<q<k-1
(X0, ..., Xk-1)* + (xpxzk—1—q)p¢f<q + (i = txp—)(Xg, - oo, Xok—2-i).

(iif) If n = Tky_’f]? € N3 then B o D, (t) is

0<p<g<k-1
(x0, ., Xk-1)* + (xprk—l—q)q¢Z_? + (X0, - -y Xk—ic1)(Xko147 + £X).



CHAPTER 3. PAIR OF LINEAR SPACES - SMOOTHNESS 35

(iv) Ifn= AZY with i > 1 then E o Dy(t) is

0<p<q<k-1
(x0, -+, xk-1)” + (Xp X251~ D gy h—i pmivt) T Fh=iXhri=g = EXkoin1 Xperiz1)-

(v) Ifn= Ai’ then E o D,(t) is

7 > >
(x0, -+, Xk—2)(X0, - -+, Xk=1) + (Xg—1 + £X8)Xk—1 + (XpX2k—1-g)0<p<g<k—1-

(vi) If n = To)j]f(k) € N then E o D, (#) is

0<p<g<k-1
(X0, .-+, Xg-1)* + (xpxzk—l—q)(plz#q(oll) + (xox2k—2 — tx1Xj).

LetI =1/ , . and under theinclusion® < Hilb"n-n-+ P, we may identify
TinMy .k W1th a subspace of Hom(I, S/I)o (Lemma 3.4.4). We can explicitly describe
this identification using [48, Proposition 2.3]. In particular, by re-indexing, we obtain

k<j<n i+1<j<k-1 i+1<j<n
span, {d=:(D, ot = span —Xi=— Uixi— U{—xi—
pamy {dZ¢(Dy © 1) }renqunsun; = spany { ]8xi} { ]8x1} { 8x1}

0<i<k-1 ) 0<i<k—2 k<i<2k-2
i+1<j<n

= Span Xi— .
P k{ ]axi}OsisZk—z

These are the trivial deformations i.e. the ones induced by a change of coordinates. For
i €{1,...,k—2} let A; be the derivation that maps x;xox—2-; — Xi+1X2k—1—; and other
generators to 0. Let Ax_; denote the derivation that maps xi_l — xr_1Xr and the other
generators to 0. Fori € {2k —1,...,n} let A; to the derivation that maps xgxor—2 — x1x;.

Then we have

spany {dE¢(Dy o 1)} penquns = Spank({Ai}lsisk—l U {Ai}ok-1<i<n)-

Notice that the derivation A_; is a scalar multiple of x5 a . Thus to prove (1) it suffices
1
to show that the set {xJ%}E)J;iZZZ {Aiti<i<k— U {AI}Zk—lSZSn is linearly independent.

Assume we had a linear combination

0
Z ei,jxja— + Z €A =0mod I (3.14)
0<i<2k-2 Yi sk
i+1<j<n 2k—1<i<n

with some constants €ij, €i € k. Assume €y, 5 # 0 for some p < g. Since XpXok-2-p € I we
may evaluate Eq. (3.14) at x,x2¢-2-p to obtain

Z €p,jXjXok—2-p + Z €2k-2-p,jXjXp + Q =0 mod I (3.15)
p+l<j<n 2k-1-p<j<n
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where
Dimok_1 €iX1%i if p=0,2k-2,
Q= €pXp+1X2k-1-p ifl<p<k-2,
0 ifp=k-1

€2k—2-pX2k-1-pXp+1 ifk <p<2k-3.

Observe that the monomial x;x2¢-2-, does not appear in the support of Q. Thus, in the
left hand side of Eq. (3.15), the monomial x,x2¢-2-, appears with a coefficient of €, 4 if
p # k — 1 and a coefficient of 2¢, 4 if p = k — 1. In either case, the coefficient is non-zero.
But this is a contradiction as x;x2¢-2-p ¢ I. Thus we have €, ; = 0 for all p, q. Evaluating
Eq. (3.14) at xpx2r—2-p we see that €, = 0 for every p € {1,..., k —2}. Finally, evaluating
Eq. (3.14) at xgx2x—» we obtain )}, ; €;x1x; = 0 mod I. Since x1x; ¢ I forall i > 2k -1,
we must have that €; = 0 for all i. This completes the proof of item (1).

Let A € Hom(I, S/I)y denote the derivation that maps xx_1xx — xi and all the other
generators to 0. By evaluating at x;_1xy it is easy to see that A does not lie in the span of

i+1<j< .
{xjaixi};;izz;g U {Ai}1<i<k—2 U {Ai}2k-1<i<n. Consider the curve C : Speck[t] — HZ—k,n—k

given by
t (X0, ..., Xk—2)(Xo, ., Xko1) + (x5 — £X7) + (XpX2k-1-¢)o<p<q<k—1

This is well defined because for any given s € k, C(s) is the point in UZ_l with /\i/ = —24/s,
bk-1x = Vs and all other coordinates equal 0. It is also clear that C o ¢ corresponds to the
derivation A. Thus to prove item (2) it suffices to find a curve C’ : Speck[t] — Xj_1/S2
passing through C for which d;E(C" o 1) = Co .

Let Z denote the image of C and let Z’ denote the pullback £71(Z) C Xj_1/S;. I claim
that 2|z : Z’ — Z is an isomorphism. Since Z is non-singular, Z’ is Cohen-Macaulay and
E is bijective, the morphism Z|z is flat. It is clear that a finite flat degree 1 morphism is
an isomorphism. Thus C’ = EE} o C : Speck[t] — AXk_1/3; is the desired curve. O

We are now ready to prove the main Theorem.

Theorem 3.4.7. Let n > 2k — 1. The component H' , . is smooth and isomorphic to

k
Xi-1/S2 = Blg,_ ---Blp, Sym? Gr(n — k, n).

Proof. Proposition 3.2.8 and Proposition 3.3.3 together show that Z is bijective and Xi_1/S;
is non-singular. Since Z is GL(n + 1)-equivariant, C (Definition 3.4.5) is the unique Borel-
fixed point on &j_1/S,. By Borel’s fixed point theorem, the closure of the Borel orbit of any
point in Xj_1/S; contains C. Thus to show that E is an isomorphism, it suffices to show
that it is an isomorphism in a neighbourhood of C. By the proof of [45, Theorem 14.9], this
is equivalent to showing that d2; : Tz (Xs-1/S2) — T, 0 Hy ¢ i is injective. This is
precisely the content of Lemma 3.4.6. ’ O
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When the pair of planes do not span P", we obtain the following fibration

Corollary 3.4.8. Let n < 2k —1. The morphism p : H _ =, — Gr(2n -2k +1, n) that sends

a scheme to its linear span is smooth; the fiber over a point A is Hy—k n-k(N).

Proof. Recall that the linear span of a subscheme Z C P" is the linear space V/(H(P", Iz(1))) €
P". Let Y — Al be a flat family such that for t # 0, )} is a disjoint pair of (n — k)-planes.
It is clear that for any ¢ # 0O, the linear span of )} is a (2n — 2k + 1)-plane. By upper
semicontunity, the limit ) also lies in a (2n — 2k + 1)-plane, which we denote by A. Thus
W defines a point in H k,n—k(A) and by Corollary 3.2.9, we see that the linear span of )
is all of A. It follows that the linear span of any subscheme parameterized by H,,— ,—(P")
is of dimension 2n — 2k + 1.

For each ordered basis E = {ey, ..., e,} of S we obtain an open neighbourhood Ug =
Spec k[ﬁ]]éggz_sf: of Ag = Ve, ..., e2k-2-n) in Gr(2n—2k+1, n). Thek-pointf = (f; ;)i ;
is identified with

n n
V(eo + Z foj€j, -+, e2k—2-n+ Z fok—2-n,j€j)-

j=2k-1-n j=2k-1-n

LetE = {e;};, ' = {e}; be ordered bases of S;. The isomorphism A — A given by map-
ping e; — e’ for all i induces an an isomorphism g e : Hy—k,u—k(AE) — Hu—,n-k(Ap).
Define the following

o Xf = Hn—k,n—k(A[E) X UE,
o Xep = Hu—in-k(Ap) X (Ug NUp) C Af,
o o =Yg Xid: XAgp — Ap .

It is clear that (p[Ell[E, = QF E, PFF” © PEE = QEE on App N Ag g7 and @ p (X N AEEr) =
Xp g N X pr. Thus the set of schemes {Xg}f glue to a smooth scheme X’ (Theorem 3.4.7).

For each E we obtain a natural morphism gg : Ug — GL(n + 1) such that for any f,
gE(f) is the map that sends ¢; — e; + Z?:Zk—l—n fi,jej if i < 2k —2 —n and fixes the other
coordinates. Thus we may define a map

/Hn—k,n—k(A[E) X Ug — Hn—k,n—k(Pn)/ (X/ f) = g[E(f)(X)

These maps glue toa morphismIT: & — [ , . By the first paragraph, ITis a bijective
morphism. It is also clear that the differential to IT is injective at all points. As noted in
Theorem 3.4.7, this implies that Il is an isomorphism. By construction, there is a smooth
fibration p : X — Gr(2n — 2k + 1, n) of the desired form. O

Theorem 3.4.9. H" . has a unique Borel-fixed point.
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Proof. By Proposition 3.4.3 we my assume n < 2k —1. If X is Borel-fixed then its linear span
V((Ix)1) is also Borel-fixed. Thus X lies in the fiber p~}(V(xo, ..., Xpk-2-n)) = Hi’:{zﬁi
Moreover, the Borel action on H_,  restricts to the Borel action on this fiber. By

Proposition 3.4.3 this fiber has a uniqﬁe Borel-fixed point; thus X is unique. |

We now turn our attention to the subschemes parameterized by H! , .. Since we

are going to describe these subschemes up to projective equivalence, we may assume
n > 2k — 1 (Corollary 3.4.8). We begin with two Lemmas that will aid in the proof of
Theorem 3.4.13.

Lemma 3.4.10. Let | = (xq, ..., X5_1)> + (xpxn_kq - yp’q.qun_kp)ogp<qSk_1 with y; € k and
Hp,q = Wk—g+1-- " pk—p forany 0 < p < g < k. If all the u; are non-zero then the subscheme
defined by | is Cohen-Macaulay; in particular, it has no embedded components. Moreover, the
subscheme defined by | is double structure on V(xo, ..., Xk-1).

Proof. Applying the change of coordinates that maps x, +— i, xx, forallp < k —1 and
fixing the other coordinates, we may assume p,, = 1 for all p,q. If n > 2k -1, the
variables xi, ..., x,_; form a regular sequence as they do not appear in the support of the
generators of J. Thus we may quotient by the ideal (x, ..., x,—x) to reduce to the case
n = 2k —1; in this case n — k, = k + p. Since Proj(S/]) is supported on V(xo, ..., xx-1), it
suffices to verify the Cohen-Macaulayness on the open sets D(xx), ..., D(x2k-1).

On the open set W = D(xx) we may set x; = 1. Then for all j # 0 we have x; —
X0Xk+j = —(X0Xk+j — Xjxk) € Jlw and this implies ]|y = (x%, X1 = X0Xk41,«++, Xko1 — X0X2k—1)-
Since xg, . .., X2k—1 forms a regular sequence on (S/])|w, Proj(S/])|w is a Cohen-Macaulay
subscheme of dimension k — 1. The argument for the other open sets is the same.

Since the Hilbert polynomial of Proj(S/J) is P;’_k,n_k(t), its degree is 2; thus it is a
double structure on the linear space V(xo, . .., Xx-1) O

Remark 3.4.11. More generally, (x¢,, ..., Xe,)? + (xpxn_kq - [Jp,qqun—kp)elSp<qS€z is Cohen-
Macaulay for any 0 < €1 < €2 < k — 1, assuming y; # 0 for all i.

Lemma3.4.12. Let0 < €1 < €3 < k—1andlet J(€1,€2) = (Xey, - - -, x62)2+(xpxn_kq)€1§p<q§62.
Then we have a primary decomposition

€2

](61/ 62) = ﬂ(x(—:]/ ey xj—ll x]zl xj+1/ ey x€21 xn—kj+1/ ey xﬂ—kgz)'

j=€1

Proof. For the first statement we proceed by induction on €;. The base case €; = €7 is
vacuous and by induction we may assume

](61/ €+ 1) = [(xeli ey x€2)2 + (xpxn—kq)€1ﬁp<qS€2 + (x€2+1/ xn—k52+1)] N (x€1/ ey x€2/ x§2+1)-

The conclusion now follows from the fact that if I; = (my,...,m;), I = (my,...,m;,) are
monomial ideals then Iy NI = (Iem(m;m;) : 1 < i <iy,1 < j < id). O



CHAPTER 3. PAIR OF LINEAR SPACES - SMOOTHNESS 39

Theorem 3.4.13. Let n > 2k — 1. Let Z be a subscheme parameterized by H) .. Then Z is
a pair of planes meeting tmnsversely, or there exists a sequence of integers 1 < 11 < -<i, <k
and a flag of linear spaces A € A2 C --- € A" C P" with codimpr(A?) = (k + i — 1) for each ¢,
such that

(i) If iv > 1 then Z is a union of two planes meeting along Al with embedded pure double
structures on A’ foreach 1 < € < r.

(ii) If i1 = 1 then Z is a pure double structure on A' with embedded pure double structures on
A foreach2 < € < r.

Proof. 1t suffices to compute a primary decomposition of the ideal
] = (xp + Hp,kxn—kp)OSpsk—l(xOI e, Xgo1) + (xpxn—kq - [lp,qqun—kp)OSp<qsk—1

in Eq. (3.8). Let Pg = (x, + yp,kxn_kp)%psk_l, Py = (x0,...,xk-1) and 6,5 = XpXn—k, —
p,qXgXn-k, foreach0 < p < g < k—1. Lemma 3.2.7 (ii) implies that all the y; are non-zero if
and only if ] is the ideal of a pair of (n —k)-planes meeting transversely. So we may assume
some of the y; are zero. Let i1 < --- < i, be all the indices i for which y; = 0. Setip = 0
and i,41 = k + 1. Lemma 3.2.7 (iv) 1mp11es V] =Bo NPy and | = PPy + (0p,q)o<p<q<k—iy-
For each2 < ¢ < r + 1 define

{ = 0r---rrk—iy k—ip+1s -7 Ak—ipq p,q)k—ig+1<p<q<k—i;_q
P = (x Xk—i,) + (x X Y+ (6p 0) p<q +

(xk—i[_1+1/ ey Xk=1s Xn—ip_ 1427+ -+ s x?’l)'

I claim that ] = Bo NPy N --- N P,41 (note that if y; = 0 then Py = P41). We begin
with the inclusion, ] € P N --- N P,4q. It is enough to show that PPy and 6, 4 lie in
BoN---NP,41 for 0 < p < g < k —1i1. Observe that

BoPB1 = ((x0, - -+, Xk—iy) + (Xp + php kXn-k, k-ir+1<p<k-1)(X0, - - -, Xk-1)

Clearly, (xo, ..., xk-i;)(x0,...,xk-1) € B, for all j. We also have, x,, x,— k, € B;j for all
k—i1+1 <p < k landallj. Thus PBoP1 € PoN---NP,4q. Itisclearthatd, , € 3300 NP, 41
if there is some ¢ such that k —i; +1 < p < g < k —i,_;. If this was not the case, then there
is some ¢ such that p < k—i, < q. This implies 6, 4 = XpXn—k, and this lies in (xy, . . ., xk_i].)
ifj </forin (xn_ij_1+2, ..., Xp)if j > {; in either case, 6, ; € B;. Thus 6,4 € PoN--- NP1
and we have the desired containment.

To get the other containment it suffices to show that BoN- - -NP,,1 has the same Hilbert
function as J. We have

in.] Cins (%O [ARERNA gBr+1) - in>(%0 N %1) NinsPo N -+ - N ins Py, (3.16)
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Our goal is to show all these containments are equalities. Using Eq. (3.10) we have

Bo NP1 = ((x0, - -+, Xk—iy) + (Xp + pp kXn—k, Jk—ir+1<p<k—1) N (X0, - - -, Xk-1)
= (%0, -+, Xk—iy) + (Xp + Wp kXn-k, Jk—iz+1<p<k—1 N (Xk—ig+1, - - - , Xk=1)
= (%0, + ++, Xk—iy) + (Xp + Wp kXn-k, Jk—iy +1<p<k—1(Xk—ir+1, - - - , Xk-1)
= (X0, Xk=iy) + ((Xp + Pp kXn—k,)Xg)k-i+1<p<q<k-1 + (Op,g)k-i+1<p<q<k-1-

Then the proof of Lemma 3.2.5 immediately implies
in. (Bo N PB1) = (X0, .-+, Xk—y) + Xkoiya1, - -, Xk-1)? + (Xp Xk, Doy +1<p<g<k1-
Similarly for ¢ > 2
ins By = (X0, . .+, Xk—ip) + (Ckmigst, - - - Xkmip)? + (XpXnok, kmip1<p<gkoivr+
(Xkipoi+1s - - - s Xke1s Xnig 42 - - - Xnr)-

Using Lemma 3.4.12 we see that in. (o N P1) NinsPo N -+ - Nin. P41 equals

r+1 k—i{_l

2
ﬂ m (xO/ sy xj—]/ x]'/ xj+1/ e Xk=1, xn—k]-+1/ D /xn)'2
(=1 j=k—ip+1

Applying Lemma 3.4.12 once again we see that this intersection is just J(0,k — 1) N
(xo, - -, xk—1). But this ideal is precisely (xo, . .., xx-1)* + (xpxn_kq)o<p<q§k_1 =in.J. Thus
all the containments in Eq. (3.16) are equalities and this shows that | has the same Hilbert
function as Py N --- NP,

We are left with showing B, is a primary component for all £ > 2. Going modulo
the linear forms it suffices to show that (xg_i+1, ..., Xk=i_,)* + (Bp,q)k—is+1<p<q<k—is, 1S @
primary component. This is the content of Lemma 3.4.10 and Remark 3.4.11. m|

Corollary 3.4.14. Up to projective equivalence, there are exactly 2% schemes parameterized by
H! :
n—k,n—k

Proof. By Corollary 3.4.8 we may assume n > 2k — 1. It suffices to consider ideals | as
described in Eq. (3.8). Let ¢ denote the projective transformation that maps x, > up kxp
if uyr # 0and 0 < p < k — 1 and fixes the other coordinates. For a fixed p, note that if
ppk % 0then g, # 0and pp 4 # 0 for all p < g. Thus after applying ¢ we may assume
that the non-zero p; are equal to 1. In particular, for each subset W C {1,...,k} we
obtain an ideal parameterized by % , . by setting y; = 0if i € W and 1 otherwise;

this gives at most 2¢ distinct ideals. On the other hand, since projective transformations
preserve the dimensions of the embedded structures, each of the 2* ideals are projectively
inequivalent. m|

2If j = k the ideal (xo, . . ., Xj-1, x]Z, Xjtls s Xk=1) Xnkjsys -/ Xy) is equal to (xo, . .., Xk-1).
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Example 3.4.15. We can now determine when there is a specialization Z ~»» Z’ in HZ—k,n— .
For any subscheme Z € HZ—k,n—k let Wz = {e€1,...,€,} be the set of dimensions of the
embedded components of Z; if Z is generically non-reduced include n — k in that set. Then
there is a specialization Z ~» Z’ if and only if Wz C Wz

Here is a diagram of specializations for Hg,z' The non-reduced structures on points,

lines and planes are represented by shadings.

(i) (iv)

() - \
" (vii)
v "Il — ]

L

Remark 3.4.16. In [94], Vainsencher uses the map E : Blr, Blr, Gr(2, 5)2 — Hg , to compute

the degree of a family of rational cubic fourfolds in P°. However, he does not prove the
smoothness of 7 ,.

(vii) ‘

Remark 3.4.17. In [16] it was shown that H ,

Hilb"-24-2(P") and that this component is smooth. We will give two examples to show
that these statements are false in general.

The component Hgg will meet the component whose general member parameterizes a
pair of 2-planes meeting at a point union an isolated point. It will also meet the component
whose general member parameterizes a quadric union an isolated line.

In Chapter 5 we will see that Hilb"-21(P") is a union of H'_,, and a component

)», whose general point parameterizes a line meeting an (1 — 2)-plane union an isolated
point. Moreover, ) is singular and its singularity is a cone over the Segre embedding of
P! xP"2 s PZ(n—l)—l.

meets exactly one other component in
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Chapter 4

Pair of linear spaces - Birational
Geometry

In this chapter we prove that when char(k) = 0, the Hilbert scheme of a pair of linear spaces
is a Mori dream space. The main idea is to use our explicit description of E obtained in
Chapter 3 and the classification of ideals to completely describe the effective and nef cones
of HI'_ Kk We also determine the pairs (k, ) for which the component is Fano.

Notation 4.0.1. For the rest of the chapter k will denote an algebraically closed field of
characteristic 0. A, will always denote an m-dimensional linear subspace of P"*. We begin
with a description of the divisors.

Definition 4.0.2. Let Y be a smooth projective variety with CI(Y) finitely generated. Then
Y is a Mori dream space if the Cox Ring of Y is finitely generated over k. The Cox ring of

Y is defined to be
@ HO(Y, Oy (X m;D;))

meZk

where Dy, ..., Dy are chosen to generate CI(Y).

Definition 4.0.3. Letn > 2k—1. Foreach1 < i < k—1and a choice of a flag of linear spaces
{Ai-1 € Agk-1-i}, let D; denote the divisor class of the locus of subschemes Z € H _, ,

for which the linear span of A;_1 U (Z N Agk-1-;) has dimension less than 2k —i — 1. Let
Dy denote the divisor class of the locus of subschemes that meet a fixed Ay_;.

Definition 4.0.4. Let n > 2k — 1. Let N; denote the divisor class of the locus of generically
non-reduced subschemes in HZ—k,n—k' For each 2 < i < k — 1, let N; denote the divisor
class of the locus of subschemes with an embedded (n — k + 1 —i)-plane. If n = 2k -1
let Ni denote the divisor class of the locus of subschemes with an embedded point. If
n > 2k — 1 let N denote the class of the closure of the locus of pairs of planes meeting

transversely, where the intersection of the two planes meets a fixed Ap_;.
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Here are the results when the pair of planes span P".

Theorem 4.0.5. Let k > 2 and n > 2k — 1. The component H; _, _, is a Mori dream space and
we have,

Eff(H)_; ) =(N1,...,Nx) and Nef(H;_, ) =(D1,...,Dg).
Moreover, H7 _, _ is Fano if and only if either k = 3and n =5, or k # 3and n € {2k — 1, 2k}.

To state the results when the pair of planes do not span P”, it is more convenient to use
dimension instead of codimension to index the component. In particular, the component

parameterizing subschemes that do not span P" are of the form #_, | withn > 2k —1.

Definition 4.0.6. Letn > 2k—1. Foreach1 < i < k—1and a choice of flag { A, _pk+i € Au—i},

let D denote the divisor class of the locus of subschemes Z € ’HZ Lk-17 for which the linear

span of Apok+i U(Ay—i N Z) has dimension less than n —i. Let D,’( denote the divisor class
of the locus of subschemes meeting a fixed A,_x. Let F denote the divisor class of the
locus of subschemes whose linear span meets a fixed A, _.

Definition 4.0.7. Let n > 2k — 1. Let N] denote the divisor class of the locus of generically
non-reduced subschemes in 7—[;‘ Lk-1" For each2 <i <k, letN l’ denote the divisor class

of the locus of subschemes with an embedded (k — i)-plane.
Here are the results when the pair of planes do not span P".

Theorem 4.0.8. Let k > 2 and n > 2k — 1. The component H;' is Fano and thus a Mori

dream space. Moreover we have,

k=1,k-1

Eff(H}'_,, )= (N],...,Nj,F) and Nef(H],, )=(D},...,Dj,F).

Analogous results for H,_. ,—q with ¢ # d can be found in [81].

4.1 Divisors when the pair of planes span P"

In this section we study the Picard group of H'  , for n > 2k — 1. We give an explicit

description of the divisors D;, N; (Remark 4.1. 6 Remark 4.1.9) and describe equations for
their pullback along E|y, ;.

Notation 4.1.1. We will use A to denote the coordinate T( ) _ks1 ONUk—1 from Remark 3.2.2.
This convention will simplify the formulas for the equatlons we will obtain.

The proofs of Theorem 3.4.13 and Lemma 3.2.4 give explicit equations for the various
loci of embedded structures.
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Lemma 4.1.2. Let n > 2k — 1 and let Z be a subscheme parameterized by Z(Uy—1). Then
(i) Z is a pair of planes meeting transversely if and only if A1, ..., Ax_1, T® £ 0.
(ii) Z has an embedded (n — 2k + 1)-plane if and only if T®) = 0.
(iii) Foreach2 <i < k —1, Z has an embedded (n — k + 1 — i)-plane if and only if A; = 0.
(iv) Z is generically non-reduced if and only if A; = 0.
Definition 4.1.3. Consider the sequence of blowups

Vg1 Yr-2 1

X1 — Xy — -+ — A

For each i, let E; denote the strict transform in Xj_; of the exceptional divisor of ;. Let
E denote the strict transform of T'y.

Lemma 4.1.4. Let n > 2k — 1. Then Nl(’HZ_k i)
equivalence and numerical equivalence for divisors coincide.

= CI(H" o) = Z¥. In particular, linear

n—k,n—

Proof. Since H) = Xx—1/S; is a smooth rational variety, its class group is torsion free.
In particular, N'(Xy_1/S;) = Cl(&Xx-1/Sz). Thus it suffices to prove that Cl(Xy_1/S2)q :=
Cl(Xi-1/S2) ® Q is isomorphic to Q. By [31, Example 1.7.6] we have Cl(X;_1/S2)q =
Cl(Xk_l)Sz. Let E1 o and Eg be the strict transform, in Xx_1, of Ox,(1,0) and Ox,(0, 1),
respectively. By [47, Theorem 8.5], C1(Xk-1)q is freely generated by Eq, ..., Ex_1, E1,0, Eo,1.
Since &, fixes E; and interchanges E1 o with Ey 1, it follows that

Cl(Xi1)g’ = spang{E1, ..., Ex1,E o+ Eon} =~ QF. O

Definition 4.1.5. Let (X))"™ = Ap \ I'x denote the open subset of Xj consisting of pairs of
(n — k)-planes such that the two planes in the pair meet transversely. We say that a pair
of (n — k)-planes meets another plane A transversely, if each plane in the pair meets A
transversely.

We now describe D; as a scheme theoretic image under E.

Remark 4.1.6. Foreach1 < i < k—1 considera flag F; = {Aj_1 € Agk-1-i}. Let W; C (Xp)™
be the open subset consisting of pairs of planes that meet Apr_;—; transversely. Let D;
denote the (scheme theoretic) closure of

{Z e W; : dimg span(Aj—1 U (Z N Agk-1-i)) < 2k =1 -}

in Xyp. Then D; is the image of the strict transform of f)i under the map E.

Similarly, given a plane A¢_1, let Dy be the scheme theoretic closure of
{Z € (X)) : Z N Arq # 0}

in Xyp. Then Dy is the image of the strict transform of ﬁk under the map E.
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Lemma 4.1.7. The loci D; are divisorial. For 1 < i < k — 1 let D; be defined by the flag
Ai—l = V(-xi—ll Xitlseees xn) c AZk—i—l = V(xk/ ey xn—k,'_zl xn—ki - xn—ki_l)- (41)

Then E*(D;) N Ug_q is cut out by Tl(_kl_ ;)—ki + Tl(_kl_ Q_kiﬂ(,’:l:lzi_l + Aglir-

Proof. Assume 1 <i < k —1 and let D; be defined by the flag Eq. (4.1). To show that D; is
a divisor, it suffices to show that f)i N W; is a divisor in W; (notation from Remark 4.1.6).
By symmetry;, it is enough to show that 15,~ N W; N Uy is a divisor in W; N Uy.

Given a point (A(a), A(b)) € W; N Up we have (A(a) U A(b)) N Agk—1—; = PUQ for a pair
of (k —1—i)-planes, P and Q. For each n — k;y1 < j < n let p; (respectively q;) denote the
point in P (respectively Q) obtained by setting x; = 1 and x; = 0 for all other { > k (there
are no such points for i = k — 1). Explicitly,

pj=(-agj:-++:—ax1,;:0:---:0:1:0:---:0)
gj =(=boj:-+-:=bg-1;:0:---:0:1:0:---:0).
Let p,,—, (respectively g,-k;) denote the point in P (respectively Q) obtained by setting
Xn—k; = Xn—k;, = 1 and xy = 0 for all other £ > k. Explicitly,
Pr—k; = (=A0,n—k; = A0 n—k;y * =+ —Ak—1n—k; — Ak=1n-k;; :0:-+-:0:1:1:0:---:0)
Gn-k; = (=bon-k; = bon—k; . * * t =bk—1n—k; = bk—1n-k;; :0:---:0:1:1:0:---:0).

Foreach ¢ € {0,...,i—2,i}letry =V (xq,..., Xe—1, X041, -+, Xn)-

By construction we have, P = span(p—x;, - - -, Pn), Q = span(gnk;, - --,qn) and Aj_1 =
span(ro, ..., ri—2, 1i). It follows that the points in span(A;—1 U ((A(a) U A(b)) N Agk—1—-;)) are
in the row span of the matrix

[Guki = Gn Pake =+ Pn To - ria 7]

In particular, 151- N W; N Uy is the locus where the matrix has rank less than 2k — i. Let
€1,; = aj,j — b;; and apply the row operation

Gnk, Gn—k; = Pu—k; = 21(€Ln—k; + €1Ln—k;1 )71
Tn—kir Qn—kiss — Pr—kig — 21 €Ln—kisy 11
dn n — Pn — Zl €1,nll
pn_ki pi’l—ki
: — :
Pn Pn
Fi-2 ria
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and swap the i-th column and (i — 1)-st column. It follows that the locus is cut out by the
determinant of the submatrix

€i-1n-k; + €i-1n-k;y €i+ln—k; T €itln-kiy *°° €k-1,n-k; t €k=1,n—k; 4
ei-l,i’l-ki+1 €i+1,1/l—k,'+1 e ek—l,n—ki+1
€i—1,7’l—ki+2 €i+1,n—ki+2 e €k-1,n-kin

€i-1,n €i+l,n T €k-1,n

Thus f)i N W; N Uy is a divisor and this determinant also cuts out f)i N Up.
The strict transform of this determinant cuts out 2*(D;) N Uk—;. Pulling back this
matrix to Uy_1 and column reducing as in Proposition 3.2.1 we obtain

k—i k—i
Ay - 'Ak—i(Ti(—l,;)—ki + 'Ti(—l/:”l)—ki—l) * e e % %
0 Ar Agsic :
0 0
: e T % %
0 te 0 AqAdry
0 ... 0 0 A

The strict transform of its determinant is T ") + Tk .
i—-1,n—k; i-1,n—ki_1

e Ifi > 1wemay use Proposition 3.2.1 (ii) to rewrite Tl(_kl_ 2_ o = Ak—it1 +T1(_k1_ ;)_ ' Tz‘(];_—lZ-,l .
e If i = 1 we may use Remark 3.2.2 to rewrite TO(I;__llz g = At To(];_—liz +2T1(];__112 NE

In either case, &*(D;) N Uk-1 is cut out by the desired equation. Lastly, Dy is a divisor since
Dy is the Weil divisor associated to Ox,(1,1) € Pic Ap = 72 O

Corollary 4.1.8. Let 0 < j <i. For1 <i < k —1let D; be defined by the flag

Ai—l = V(xj/ xi+1r cecy le) g AZk—i—l = V(xk/ cecy xn—k]'_zl xn—kj - xn—k]‘_lr xn—k]'+1/ cecy xn—ki)l
(4.2)

and let Dy be defined by the plane
Ax_q = V(xj + Xp—kjs Xkes oo s Xn—kjogs Xn—kjsrr -+ - s Xp).

Then E*(D;) N Uk_q is cut out by a polynomial in the coordinates of Remark 3.2.2 that is linear in
Ak—j.

1if j =0then kj_1 = k-1 = k is still consistent with our convention, see Remark 3.2.6
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Proof. Assume i <

k—1and j # 0. Imitating the proof of Lemma 4.1.7 we see that

E*X(D;) N Ug_q is cut out b T*=D 7= T express this in terms of our desired
y jn— kj jm—kj- p

coordinates we will use the relation T;fg Tp(g / +1Tk([)l p + Aps1 Tg; D which is true for any

g <n-kyandanyp < k—{and{ < k-1 (proof of Proposition 3.2.1). Repeatedly applying
this relation we obtain the following expressions

k-j-1
(k i _ () (0)
]n —k; Z Ak-is1 - /\ﬂ-}n £’+1Tk t,n—kj +/\k_i+l'“/\k_f
{=k—i
and
k—j-1
k— 14 ! k—
T+ = ézk] i AT T+ Ao AT (4.3)
i

forany g < n—k;. Thus T].U;_i), as a polynomial in the coordinates of Remark 3.2.2, is linear
in Ax_j for all g < n — k;. This implies £*(D;) N U1 is linear in Ay_;.
Assume i < k —1and j = 0. Most of the argument from the previous paragraph still

i)

applies in this case. In particular, %(D;) N Uk—1 is cut out by T(k T TO(I;__ZI)( and we have

k- ! ! k-
Ty = Z AVSRTRRERY Vo /Y /R VIRTERRRY VY f (44)
{=k—i

forallg < n—k+1 = n—ko. Notice that TO(I;_D T(k) TE D TED for allg <n-k+1land

0n—k+271,
TO(I;) 11 = M (Remark 3.2.2). Substituting this into Eq. (4.4) we see that T(k hooprk

k+l 0,n— I
linear in Ag.

Finally assume i = k. The locus of points (A(a), A(b)) € Uy meeting Ax_; is clearly cut
out by (a jn—k; = (b, n—k s — 1). The pullback of this equation to Ux_1, which coincides with
the strict transform, defines Z*(Dy). If j # 0 we can use Eq. (4.3) to deduce that

k-j-1
() 7O
(aj,n—kj_l)(bj,n—kj ]n —k; + Z A+ Ay T]n /41 k t,n—k; + M "'/\k_]'—l)(b]'/n_kj—l).

This expression is linear in Ax_;. If j = 0 we can argue in the previous paragraph and
deduce linearity in Ax. This completes the proof. |

Here is an alternate description of N;.

Remark 4.1.9. Foreach1 <i < k-1, let N; = E(E;). If n = 2k — 1 we let Ny = E(Ey). If
n > 2k — 1, let Ny denote the closure in Xp, of the locus of pairs of planes in A" where
the intersection of the two planes meets a fixed Ax—1. Then Ny is the image of the strict

transform of Nj under E.
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" "

In the next lemma we abuse notation and use "=" to mean equality as divisor classes.
Lemma 4.1.10. Let n > 2k — 1. The loci N; are divisorial. Moreover, we have
(i) E*(N1) = 2E;.
(i) E*(N;)=E;for2<i<k-1
(iii) Ifn =2k —1 then E*(Ng) = Ex and E*(Ny) N Uj—1 is cut out by Ay.

(iv) Ifn > 2k — 1 let Aog—1 = V(xk, ..., Xy—k) be the plane defining Ni. Then E*(Ni) N Uk—1
is cut out by Ax.

(ii) and the first half of (iii) follow from the fact that = is a finite, degree 2 map branched
along Nj (although not phrased this way, it is part of the proof of Proposition 3.2.8),
see [31, Chapter 1.7]. The rest of item (iii) is a consequence of Lemma 4.1.2 (ii).

Now assume n > 2k — 1 and let Nk be as in Remark 4.1.9. To show that Ni is a
divisor it is enough to show that Ne N X" N Uy is a divisor in X" N Up. Given a point
(A(a), A(b)) € Xgr" N Uy, the intersection of the two planes is A(a) N A(b) = V({Z?zk(ai,j —
bij)xj,Yi}to<i<k-1). Thus the locus of points in X(;‘r" N Uy satisfying (A(a)NA(b)) N Agx—1 # 0
is cut out by the determinant of

Proof. Assume 1 < i < k —1. Remark 4.1.9 implies that the N; are divisors. Items (i),

A0,n—k+1 — bon—k+1  *+ Ak=1n—k+1 — Dk=1,n—k+1

aon — bO,n ce Ak-1n — bk—l,n

Column reducing as in Proposition 3.2.1 (ii) and taking the strict transform gives item
(iv). O

4.2 Effective and nef cones

This section is devoted to the proof of Proposition 4.2.12. For the rest of the section we
will assume n > 2k — 1. We begin by constructing two families of curves and computing
their intersection numbers with D; and N;.

Roughly speaking, the first family of curves will fix a pair of planes and vary the
embedded structures while the second family will vary the planes and fix the embedded
structures.

Definition 4.2.1. For each 1 < j < k — 1, define the curve C; : P! = H" by
j-2

Cj(s : t) = InIn + (8Xj-1Xp—k; — EXjXnk; ) + Z Xp(Xn—kpiys -+ s Xn—k;)
p=0

with A =V(xq,...,xk-1)and A" = V(xo,..., X}, Xj+1 + Xp—k e, X1+ Xp).

17
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Remark 4.2.2. Theorem 3.4.13 shows that C;(s : t) is projectively equivalent to Eq. (3.8)
with

Lifs#0
pr=-=pp-j-1 =1, p-j =0, pp-jr1 = {8 =0
It also shows that for j < k — 2, the general member of C; is a pair of (n — k)-planes
meeting along a pencil of embedded (1 —2k + j +1)-planes and containing fixed embedded
(n — 2k + {)-planes for all 1 < ¢ < j — 1, while Cy_; is a pencil of generically non-reduced
(n — k)-planes. If (s : t) = (1 : 0),(0 : 1), the corresponding subscheme has an embedded
(n — 2k + j)-plane.

Definition 4.2.3. Let 0 < j < k —1. Let A = V(xo, ..., xx-1) and consider the pencil of
(n — k)-planes A’(s : t) = V(xo, ..., xj-1,5xj + EXp—kj, Xjs1 + Xn—k .., Xk—1 + Xy). Define

the curve B; : P! - H" , . by

17"

Bj(S 1) = IAIA’(s:t) + (xpxn—k - qun—k7)0§p<q§j—1 +(x0, .-+, xj—l)xn—k--
q F ]

Remark 4.2.4. Theorem 3.4.13 shows that Bj(s : t) is projectively equivalent to Eq. (3.8)
with

Lifs#0

, 1 :O’ 1 = e e« T :1.
lifs =0 Hk—j+1 Hk—j+2 Uk

pr=--=pr-j1=1, [Jk—j:{

If (s : t) # (1 : 0), then Bo(s : t) is a pair of (n — k)-planes meeting transversely while
Bj(s : t) a pair of (n — k)-planes with a pure embedded (n — 2k + j)-plane for j > 0.
Moreover, the embedded (1 — 2k + j)-plane is fixed along the curve.

If (s : t) = (1 : 0), the corresponding subscheme has an embedded (1 —2k + j + 1)-plane.
Note that Bx_1(1 : 0) is, more precisely, a generically non-reduced (n — k)-plane.

Before we determine the intersection numbers we need to compute a few linear spans.
We begin with notation that will be used a great deal in the following Lemmas.

Notation 4.2.5. We use C;.r(s : t) and B;.r(s : t) to denote the subschemes of P” cut out by

Cj(s : t) and Bj(s : t), respectively. Given an ideal | C S, let sat(]) denote its saturation
with respect to (xo, ..., x,) and let J(1) denote the ideal generated by the linear forms in J.

Lemma4.2.6. Let1 <i <j<k—1landlet Apg—i—1 = V(Xk, Xk+1,- -+ » Xn—k;_ps Xn—k; — Xn—k;_1)-
Forany (s : t) € PL, if i # j the linear span ofC;L(s D) N Agk—i—q is

V(xOI ey Xi1, Xk oo oy Xn—kigr Xn—k; — xi’l—kl;l)
and if i = j the linear span ofC;r(s tH) N Apg_j1 s

V(XO, cee, Xi—2,8Xi-1 — tXi, Xk, e e, Xn—kipr Xn—k; — xn—k,'_1)'
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Proof. Let A = Agi_i—1 and note that the linear span of C;.r(s : t) N Ais cut out by sat(Cj(s :

t) +1)(1). Assume i < j. It is straigthtforward to see that x(xo,...,x,) € Cj(s : t) + Iz
for every 0 < ¢ < i — 1. Thus we have

sat(Cj(s : t) +1n) 2 In+(x0,..., Xi-1) + (xi, oo, Xp—1)(Xip oo, X, X1 + Xn—kjsys - - s Xk-1 + X)
j-2
+ (ij—lxn—k]‘ - txjxn—kj_l) + Z xp(xn—kp+1l sy xn—k]‘)
p=i

= Q

Moreover, it is clear that Q(d) = (Cj(s : t) + Iz)(d) for all d > 2. Thus if we show that
Q is saturated then Q = sat(C;(s : t) + I5), and this would give the desired linear span.
If we write Q = Iz + (x, ..., xi—1) + &/, it suffices to show that quadratic portion, &', is
saturated. But notice that Q' is projectively equivalent to an ideal of the form Eq. (3.8) (for
reasons similar to Remark 4.2.2). It follows from Lemma 3.2.7 that Q is saturated. The
case of i = j is analogous. m|

Remark 4.2.7. Here are two simple facts about linear spans:
(i) If A, and A, are disjoint linear spaces in P" then dimy span(A, UA;) =p +q + 1.
(if) span(Y; U Y2) = span(span Y; U span Y>) for any subschemes Y7, Y, C P".

The first fact is clear and the second follows from the following chain of equalities,

Ivuy, (1) = (Iy; N 1y,)(1) = (Iy; (1) N Iy, (1))(D).
Lemma 4.2.8. Let1 <i < kand1 <j < k —1. We have the following intersection numbers
(i) D;-C; = 0 wheneveri # j,
(i) D;-Ci=1foralli < k—1.

Proof. Assume i > j. Since the dimension of any embedded subscheme of C]’.L(s : 1) is at

most n —2k +j +1, a generic (2k — 1 — 7)-plane will not intersect any embedded subscheme
of C;.r(s : t). If i < k, the intersection of C;(S : 1) with a generic Ayk—_1—; is a pair of skew
(k — 1 —i)-planes. Moreover, these skew planes are independent of (s : t) and thus

span(C;.f(s 1) N Agi_q) ~ P21

isindependent of (s : t). As a consequence, we may choose an (i —1)-plane Aj—1 € Aok—1—;
that does not meet the PZX~2i-1_ 1t follows from Remark 4.2.7 that

dimy span (A;—1 U (C;f(s N A1) =2k —1—-1.
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If we use the flag {A;_1 € Ag;_1-i} to define D; we see that D; - C; = 0. Similarly, if i = k
and Ak is generic we have that C]J.r(s 1) N Ag-1=0. Thus Dy - C; = 0.

Assume i < jand let Apx—i—1 = V(Xk, Xk41, - - -, Xn—k;_ps Xn—k; — Xn—k; ,)- By Lemma 4.2.6
we have that

tie - — ~ Pp2k-2i-1
Span (C] (S . t) N AZk—l—i) - V(XOI ey Xi1, Xk Xkt 1s o vy x}’l—k,;z/ xi’l—ki - xi’l—kifl) - P '

is fixed and independent of (s : t). As done in the previous paragraph, if we choose a
general A;_1 inside Ay-1-; to define D;, then D; - C; = 0. This completes the proof of item
(1).

Assume i = j and let the flag {Aj—1 € Agx—1-i} in Eq. (4.1) define D;. By Lemma 4.2.6
we have that

o . _
span (C; (s : t) N Agk_1-;) = V(x0, ..., Xi—2,8Xi-1 — tXi, Xk, Xkt1) - - s Xmkiogr Xnk; = Xn—kiy)

Thus, if t # 0, the linear span of (C;r(l )N App_i—1) UAjqis all of Apg_;j_1. If t =0, the
linear span of (C;r(l :0) N Agk—i—1) U Aj—1 is Agk—i—1 N V(x;-1). Thus D; N C; is supported
on the point Zy = C;(1 : 0).

Let C; denote the closure in Xj_; of the curve, Al «— U;_; obtained by setting
Moo Memict =1, Apminn = and all~the other coordinates pf Remark 3.2.2 to 0. Since
E(Ci)lu,_, = Ci(1 : t) it follows that Z(C;) = C;. In particular C; N E*(D;) is supported at a
unique point Zo € E7Y(Zy). Since E*(D;) is linear in A¢_i+1 (Lemma 4.1.7), it follows that
E*(D;) and C; intersect transversely at Zo. Using the push-pull formula we conclude that
Ci-D; =2,C;-D; = E,(C;i - EX(Dy)) = 1. O

Lemma 4.2.9. Let1 <i < kand 0 < j < k — 1. We have the following intersection numbers

(i) D;-Bj =0foralli < j,

(i) D;-Bj=1foralli>j.
Proof. Assume i < j and let Apx—1-; = V(Xk, ..., Xn—k; o, Xn—k; — Xn—k;,)- Arguing as in
Lemma 4.2.6 we see that

Span (A2k—1—i N B}-(s : t)) = V(XO/ e Xie1, Xk, Xkl - - -, xn—k,-,l) ~ p2k-2i-1

is independent of (s : t). Arguing as in Lemma 4.2.8 we deduce item (i).
Assume that j < i < k—1 and let {A;—1 € Apk—1-i} be the flag Eq. (4.2) defining D,;.
Then B;f(s : t) N Agk——1 is a disjoint pair of (k — i — 1)-planes defined by

<y Xg—1 T Xy,

(xOI cecy xj—ll ij + txi’l—k]‘/ xj+11 ey Xip Xitl + xn—ki+1/ ..
Xir Xkt1r- -y xn—k]‘,zl xn—k]- - xn—kj,ll xi’l—kj+11 R xi’l—ki)m

(xO/ ey xi’l—k]',Ql x?’l—kj - x?’l—kj,ll xi/l—k]‘+1l M4 xi’l—ki)-
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For t # 0, the linear span of (B;.r(s ()N Agk_i—1) U A1 is all of Apk_;_1. On the other hand
if t = 0, the linear span of (B;.r(s 1) N Agg—i—1) U Aj—1is Agg_1-; N V(x;). Thus D; N B;j is
supported at the point Zy = B;(1 : 0).

Let B j denote the closure in X1 of the curve, Al — Uj_; obtained by setting A = --- =
Ak—j-1 =1, Ak—j = t, Ak—jy2 = - -+ = A = 1 and all the other coordinates of Remark 3.2.2
to 0. Since E(l§]')|uk_1 = Bj(1: t) we have E(Ej) = B;. Thus 1§]~ N E*(D;) is supported at a
unique point Zo € E"Y(Zy). Since E*(D;) is linear in A-j (Corollary 4.1.8), it follows that
E*(D;) and B j intersect transversely at 7. Using the push-pull formula we conclude that
Bj-D; = E,B;-D; = E.(B; - E*X(D;)) = 1.

Now assume j < i = k and let Ay_1 = V(x]- + Xn—kjs Xkes -+ s Xn—kj 1 s Xn—kjurs - - - ,X,) be
the plane defining Dy. It is evident that B; N Dy is supported at the point Z11 = Bj(1: 1).
Once again, 1§]~ (defined in the previous paragraph) and Z*(Dj) will meet at a unique
point 21,1 € E71(Z11). Since 2*(Dy) is linear in A-j (Corollary 4.1.8) we see that B j meets
E*(Dy) transversely at Z; 1. Once again we conclude using the push-pull formula. O

Lemma 4.2.10. We have the following intersection numbers,

(i) Ni-Cj=0foreachl <i<k-1landall1<j<k-i-1,
() N;i-Bj=0foreachl1 <i<kandallj#+k—-ik—-i+]1,
(iii)) N; - Ck—jz1 =2foreach2 <i <k,

(iv) N1 -By-1 =2and N; - By—j =1for2 <i < k.

Proof. Item (i) and item (ii), except for the case of i = k, follow from the definition of the
N; and the description of the embedded subschemes in Remark 4.2.2 and Remark 4.2.4.
We will deal with the case of i = k in the last paragraph. For the rest of the proof let
Zo = Cr_iy1(1 : 0) and Ze = Ci_i+1(0 : 1). We will also use the curves Cr—i+1 and 1§]~
defined in Lemma 4.2.8. In particular, let Z0, 70 € Ci_i+1 be such that E(Zo) = Zop and
E(Zoo) = Zoo.

Assume 2 < i < k — 1. Since N; is the locus of subschemes containing an embedded
(n — k + 1 —i)-plane, it meets the curve Cy_;;1 at Zgp and Z. Thus Cr_i+1 meets E; at Zg
and Z... Using Lemma 4.1.10 (ii), we obtain

N; - Choiv1 = Eul(Choiz1 - E*(Ni)) = Choiv1 - Ei = (Croign - Eilz, + (Ck=is1-Ei)l5_.

Since Zg € Ux_q and E; is cut out by A;, Cr—i+1 meets E; transversely at Zo. Symmetrically,
Cr_ir1 will also meet E; transversally at 7. To see the latter statement, consider the
projective transformation ¢ € GL(n + 1) that interchanges Xj with Xj-1, interchanges
Xn—k; with Xn—k; 4 and fixes the other coordinates. It follows from the definition that
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g(Ck=i+1) = Ci-i+1 and g interchanges Zy with Z,. Since intersection multiplicity is

invariant under automorphisms of #; , = we obtain

(Ni - Chis1)lze, = (§(ND) - §(Chit1) lg(zo) = Ni - Chisalzy = (Ei - Croina)lz, = 1.

This proves item (iii) for i # k.

Since N is the locus of generically non-reduced subschemes, it meets the curve Bjy_ at
By-1(1 : 0). Using Lemma 4.1.10 (i) we obtain N; - By = = 8,(Bx_1-E*(N1)) = 2By -E1 = 2.
Similarly, using Lemma 4.1.10 we obtain N; - Bx_; = 1 for all 2 < i < k — 1. This finishes
item (iv) for i # k.

Finally, assume i = k and let Agx—1 = V(xx, ..., x,—k) be the plane defining Nj (if
n > 2k —1). By Lemma 4.1.10 (iii), (iv) we see that Z*(Ny) meets C; at Zg and possibly
also at Z, (since the latter does not lie in U_1). Moreover, E*(Ny) meets C1 transversely
at Zo. We may argue as in the previous paragraph to show that E*(Ny) also meets C;
transversely at Zo,. Indeed, the projective transformation g fixes Ny. This is clear if
n =2k -1 and the case of n > 2k — 1 follows from the fact that g fixes Apr—;. Thus
Nk - C1 = (Nk - C1)|z, + (Nk - C1)|z., = 2(Nk - C1)|z, = 2, completing the proof of item (iii).
For items (ii) and (iv) we argue similarly using the following projective transformation:
¢’ € GL(n + 1) that maps Xn—k; F> Xn-k; + Xj and fixes the other coordinates. It is
straightforward to verify that ¢’(B;) = Bj, g'(Bj(0: 1)) = Bj(1: 1) and g’ fixes Ni (since g’
tixes Agk—1). This implies

(N - Bj)lg;01) = (8'(Nx) - §'(B))) |g'(8;0:1) = Nk - Bj)|;1:1) = 0
for j # 1. Thus, we may compute E*(Ny) - B j along U_1 to obtain the desired results. O
Proposition 4.2.11. Let 1 < i < k. Then we have
e Nj = 2D — 2Dy,
® N;=2Dj_i11 — Di—ij = Di_iyp forall2 <i<k-1,
e Ny =2D; - D».

Proof. By Lemma 4.1.4, Lemma 4.2.8 and Lemma 4.2.9 we see that N'(H"_, ) is gener-

ated by {Dy, ..., D¢}. This allows us to write N; = Z’éf:l €;¢Dy for some €;, € Z. Using
Lemma 4.2.8 - Lemma 4.2.10 we obtain

e N1 -Cr=€1y=0forl <k-2,
e Ni-By1= €1,k = 2 and Ni-Brp = €1,k-1 T €1k = 0.
This immediately implies N1 = 2Dy — 2Dj_. For each 2 < i < k we obtain

o Ni-Bj=3j€r=0forj#k—ik—i+l
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k
® NiBi—i=Yy_t_iy1 €ig =land N; - Ci_it1 = € k—in1 = 2.

Ifi # k, weobtain €; y—; = =1, € k—i+1 = 2,€i k—i+2 = —1,and €; y = 0 for other ¢. If i = k we
obtain €x1 = 2, €x» = =1 and €; 4 = 0 for other ¢. This completes the proof. O

Proposition 4.2.12. Let k > 2 and n > 2k — 1. Then we have
Eff(H) ) ) =(N1,...,Nx) and Nef(H, . _.)=(Di,..., D).
Moreover, 1)\ _, . is Fano if and only if either k = 3and n = 5, or k # 3 and n € {2k -1, 2k}.

Proof. 1t is clear that the divisors Njy, ..., Nj are effective and generate N 1(7—[’;_,{ 4)- To
conclude that the effective cone is generated by Ny, ..., N, it is enough to show ‘that any
R-divisor N = Zle €iN;, with some €; < 0, is not effective. Let A; : P! — HZ—k,n—k
denote any curve such that for (s : t) # (1 : 0), Aj(s : t) is a pair of (n — k)-planes
meeting transversely while A;(1 : 0) it is a pair of (n — k)-planes with a pure embedded
(n —k +1 - j)-plane if j > 1 and generically non-reduced if j = 1. Clearly, A; - N; = 0 for
i#jand A;-N; > 0. Since N - Aj = €; < 0 and A, is not contained in the support of N,
we see that N cannot be an effective divisor.

By varying the flags it is easy to see that each of the D; is base point free; thus it is also
nef. Similar to the previous paragraph, to show that the nef cone gone is generated by
Dy, ..., Dy, it is enough to show that any R-divisor D = Zi-‘zl €;D;, with some ¢; < 0, is
not nef. If j # k,wehaveD-C]' =€ < Oandif j = k wehave D - By_1 = €x < 0. Thus D is
not nef.

We will now compute the canonical divisor of H' | using the branched cover

n—k
E: X — HZ—k,n—k' By [47, Exercise 8.5b] and [24, Exercise 10.10] we may write
k-1
Ky, , = Z((k —j+ D) —k—j+2)—1DE; - (n +1)Dy
i=1

where Dy is the strict transform of O x,(1,1) (Remark 4.1.6). Note that the canonical divisor
of Xpis Oxy(-n—1,-n—1). Let Kﬁzikﬂik =€1N1 + -+ €x_1Ny_1 + €Dy for some €; € Q.
Hurwitz’s theorem implies that Ky, , = E*(KHZ—k,n—k) + E;. Using this and Lemma 4.1.10
we obtain

k-1
2e1E1 + Z e;Ej +exDy = E*(Kyyn ) = (k(n -k +1) = 2)E1+
j=2
k-1
Z((k—j+1)(n—k—j+2)—1)Ej—(n+1)Dk.
j=2
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Leté; = (k—j+1)(n — k — j +2) — 1 and using Proposition 4.2.11 we obtain

k-1
1, -
# e = 5(61 = D@Dk — 2Dg-1) + Z €j(2Dk-j+1 — D-j = Di-j42) = (n + 1)Dy.
=

For k = 2, 3 the above expression simplifies to

Ko
Hn—Z,n—Z

= (4 - 2n)D1 + (Tl — 5)D2, K?-{,Z_3 i (7 — Zn)Dl + (Tl — 6)D2 —2Ds.

If k > 4 we can rewrite the expression as follows:

k-3
Ky = (€ =1)(Dk = Dg-1) = (n + 1)Dy + Z(Zém — €j — €j12)Dyj
=
— & Dy + (263 — €3)Dy—1 + (261 — €x—2)Dy — Ex_1D1
k-3

= (61— € —n—-2)Dr+ (26, —€3— € +1)Dy_q1 + Z(2gj+1 — & — €j42)Drj
j=2
+ (26-1 — €x—2)Dy — €x—1D1.
Since 2€j+1 - 5]- - €j+2 = —2 for all j we obtain
KHZ_kn_k =4k -5-2n)D1+ (n =2k —1)Dy —2D3 —2D4 — -+ - — 2Dy_p — Dy_1 — 2Dx.

Since the ample cone is the interior of the nef cone, we see that —Ky»  is ample if
and only if n = 3,4 and that —Ky» _ _is ample precisely whenn = 5. If k > 4, —Kyyn

, n—k,n-k
is ample if and only if n = 2k — 1, 2k. O
4.3 Mori dream space
This section is devoted to the proof of Theorem 4.3.14. We will show that H} . is Fano,
and thus a Mori dream space. By constructing a contraction from H; , _ toH .

(Proposition 4.3.11) we will also deduce that H is a Mori dream space.

n—k
Notation 4.3.1. In this section we will primarily be interested in the case when the pair of
planes do not span all of P"”. By swapping the roles of codimension and dimension, the
components we are interested in are of the form H} | |, withn > 2k - 1.

Corollary 3.4.8 states that for n > 2k — 1, the morphism p : H}! |, | — Gr(2k —1,n)
that sends a scheme to its linear span is smooth; the fiber over a point A is Hy—1 x-1(A).
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Remark4.3.2. LetW = Speck| fa,j, . - ., fu,jlo<j<2k-1 beaneighbourhood of A = V(xa, ..., xu) €

Gr(2k — 1, n) such that its k-points are identified with

2k-1 2k-1
V(x2k + Z ka,]-xj, e, Xn t Z fn,jx]').
j=0 j=0

Then the open subset p~ (W) is naturally isomorphic to W X Hy_1 x-1(A).

Lemma 4.3.3. Let n > 2k — 1. Then Nl(’;'-[;(’_1 i) = zZk1,

Proof. As explained in Lemma 4.1.4, since H;_, , , is rational and smooth, it suffices

to compute N'(H}_,, ;) ® Q which equals Pic(#}_, ) ® Q = H*(H}_, ,,Q). By

Corollary 3.4.8 we have a smooth morphism H} ,, , — Gr(2k — 1, 1) with fibers iso-
morphic to ”Hi’:lk_l. Since the base of this morphism is simply connected, we may
apply the Leray-Hirsch theorem [97, Theorem 7.33] and Lemma 4.1.4 to deduce that

Hz(HIIZ—l,k—l’ Q) = Qk+1- O

Using the fibration p and Remark 4.3.2 one can easily verify that the loci D, N, F are

divisorial. We now define the curves inside #;_, , ,; allbut two of them come from curves
2k-1 '

k-1,k-1°
Definition 4.3.4. Let A = V(xp, ..., x,). For each relevant j, let A;., B;., C]’. be the images

of Aj, Bj,C; (Definition 4.2.1, Definition 4.2.3, Proposition 4.2.12) under the inclusion
pHA) = Hi—1,k-1(A) — M}, ,_,, respectively.

lying inside H

Definition 4.3.5. Let A’ = V(xg, ..., x,) and let
A(S : t) = V(JC(), cen s Xk=1, SX2k + EXk, X2k41s - - -, x?’l)

be a pencil of (k — 1)-planes disjoint from A’. Define the curve Y; : P! — Hy 1 eq by
(s:t) = A(s : t) U N Explicitly

Yi(s 0 t) = (sxok + txk, X241, - - -, X)) + (X0, -+, X)Xk, - -+, X2k-1)-
Define the curve Y, : P! — H} | by
Yao(s : t) = (sxok + tX0, X2k41, -+, Xn) + (X1, 0 oo, Xpo1)(Xkt1, - -+ X2k—1)
+ (0, Xak)* + (X0, X26)(X1, - - ) Xk—1, X1, - - - X2k—1)-

Remark 4.3.6. Let A = V(xo, ..., Xk-1, X2k, ..., Xn) and A’ = V(xo, Xk+1, ..., Xn) be a pair
of (k — 1)-planes meeting along a point. Then we have

) 2
Ya(s i t) = In N Ia N ((x0, X2k)™, SXok + EX0, X1, o) Xkm1) Xka1s + - - ) X2k=1) X2kt 1/ - -+ » X1r)-

In particular, Y; is a pair of fixed (k — 1)-planes with a pencil of embedded points.
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Lemma 4.3.7. Y5 is a moving curve in N, i.e. its deformations span N, .

Proof. The general subscheme parameterized by N, is a pair of (k — 1)-planes meeting
along an embedded point. By Corollary 3.4.8 and Theorem 3.4.13, up to projectively
equivalence, such a subscheme is cut out by

(X0, + -+ Xket, X2k -+, X)) OV (X0, Xkt -+, Xn) OV (X5, X1, -+, Xket, Xkst, - -+, %) = Yo(1:0)
In particular, the GL(n + 1) orbit of Y> covers a dense subset of N/ O

Lemma4.3.8. For all pairs of relevant indices i, j (the ones appearing in Lemma 4.2.8, Lemma 4.2.9,
Lemma 4.2.10), the intersection numbers of D!, N l’ with B;., C; are the same as the intersection

numbers of D;, N; with B, C;, respectively.

Proof. We will only verify D7 - C]'. = D;-Cjfor1 < 1i,j < k—1; the other cases are
analogous. Let A = V(xa,...,x,) be a fixed (2k — 1)-plane. Let D’ be defined by a flag
F! = {Au-2k+i € An-i}, where the flag is chosen to satisfy the following two properties:

e A is transverse to each element of the flag 7,

o Let D; C Hi-1k-1(A) be defined by the flag F; = {Ay—2k+i " A € Ap—i N A}. Then
either D; N C; = Qif i # j or D; is transverse to C; if i = j.

Let W be the open neighbourhood of A from Remark 4.3.2. The first bullet point implies
that every element of W is transverse to the flag 77. It follows that D’| -1y = W X D; and
C]’. = {A} X C;. Thus we have D - C]’. = Dj|p-w) - C]’. =D;-C;. O

Lemma 4.3.9. We have the following intersection numbers
(i) D;-Y2=N/-Y1=0forall1 <i <k,
(ii) N/-Yo=0forall1<i<k-1,

(iii) D;-Yl =1foralll1 <i<k,

(iv) F-Y1=F-Y, =1

Proof. Items (i) and (ii) are clear from the definition of the divisors.
Letl <i <k A=V(xx,...,x,)and W be as in Remark 4.3.2. We may choose a flag
F! to define D so that the following properties are satisfied:

e A is transverse to each element of the flag 7,

e D/ N Y issupported at Zg = Yi(1 : 0).
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Let W' = Speckleq, ..., €x2] € Hi-1,k-1(A) be any affine open containing the image of
Zoin Hi-1,k-1(A). Then Wx W’ is identified with an open neighbourhood of Z € ’H,Z_Lk_l.
Along this open set, Y1 is the curve obtained by setting fox x = t, fi ; = 0 for other i, j, and
€i = 0; for some constants 6; € k. On the other hand, D! = W X (D; N W’) where D; is the
divisor defined by the flag 77 N A. It immediately follows that D} meets Y7 transversely at
Zy inside W x W’; this proves item (iii).

For item (iv), we will only verify F - Y1 = 1 as the other case is similar. Let F be defined
by the (n —2k)-plane, V(xo, ..., Xk-1, Xk+1, - - . , X2k). It follows that F NY] is also supported
at Zo. Moreover, along W x W', F is cut out by the function fox x. Combining this with the
equation of Y1 along W X W’ we see that F meets Y; transversely at Z. m|

Proposition 4.3.10. Let k > 2 and n > 2k — 1. Then we have,
Eff(H)_, ) =(N{,...,N_,F) and Nef(H;_ , ) =(Dj,...,DjF).
Moreover we have,
e N/ =2D/-2D/_,,
e N/=2D, .., -D, . =D, . forall2<i<k-1,
e N/ =2D|-D}~F.
Proof. Using the intersection numbers with the curves {Ci, el C]’C, Y>} and arguing as

in Proposition 4.2.11, Proposition 4.2.12 we see that N 1(%2_1/{_1) and Nef(HZ_Lk_l) are

both generated by D, ..., DI’(,F. Using the curves {A’,... ,A;{,Yl} and arguing as in
Proposition 4.2.12, we see that N7, ..., N ,’(, F generate the effective cone.
By Proposition 4.2.11 and Lemma 4.3.8 there exists €; € Q such that

o NI =2D/ -2D]  +eiF,
e N/=2D; ,,-D, =D .,
o N/ =2D] - D} +eiF.

+¢;F forall 2<i<k-1,

Intersecting these divisors with Y7, Y> and using Lemma 4.3.9 we obtain €1, ..., €51 =0
and €, = —1. O

n 3 n
We are now ready to relate HY 1k with Ho ke

Proposition 4.3.11. There is a morphism W : H}_, ,  —> H' ,  with exceptional locus N.

Moreover, N, is a P"~2k+1_fibration over W(N 1)- Geometrically, W "forgets” the embedded points.

Proof. Given an (n + 1)-dimensional vector space V, let

T;(PV) = {(A, A) : dim(ANA) > k—i} € Gr(k —1,PV)?%
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By [59, Theorem 6.3] the Hilbert-Chow morphism induces a birational morphism,
Hi-1k-1(PV) — Sym? Gr(k — 1, PV).

Let [;(PV) denote the image of I';(PV) in Sym2 Gr(k —1,PV). Since the pullback of each
[';(PV) is N/, we obtain a morphism

Wy i M} 1 — By, ev) - Bly py) Sym® Gr(k — 1, PV).

There is an isomorphism Gr(k — 1,PV)? ~ Gr(n — k, (PV)*)? induced by map A — A*
that sends a linear space to its dual variety. This isomorphism maps I';(PV) to I'; (Defi-
nition 3.0.1) and thus maps I;(PV) to I'; after quotienting by S,. Therefore we obtain an
isomorphism

W, : Blr, py) - - BF, py) Sym® Gr(k — 1, PV) = Bl ---Blp, Sym®Gr(n — k, n)
= Hn—k,n—k((PV)*)-

Let W = W, o V. One can directly check that W*(D;) = D/ for all i and W*(N;) = N/ for
1<i<k-1

To show that W contracts Ny, it is enough to show that W contracts Y; (Lemma 4.3.7).
Using Lemma 4.3.9 we obtain W, Y5 - D; = Wy (Y2 - W*(D;)) = Wi(Y2- D}) = 0 for all i. Since
Dq, ..., Dy generates the nef-cone of ’Hﬁ_k,n_ , we must have W, Y, =0, i.e. W contracts Y>.

Conversely, let C be any curve contracted by W. If C - D] # 0 for some i, we would have
W,C-D; = W, (C- sz) # 0, proving that W does not contract C. Thus we may assume
C-D! = 0foralli. Since {D!}; UF generates the nef-cone of HZ—I,k—l we must have F-C > 0.
Using Proposition 4.3.10 we obtain N - C = —=F - C <0, i.e. C lies inside N;.

Lastly, we need to verify that N} is a P"2k+1_fibration over W(N ;). Up to projective
equivalence, it is enough to verify that the fiber of W1 over Z = V(xo, . .., Xk—1, X2k, . - . , Xn)U
V(x0, Xk+1, - - -, Xn) isisomorphic to P-2k+1 gee Example4.3.12. Let H = span, {xo, X2k, ..., X }.

Similar to the proof of Lemma 4.3.7, any subscheme parameterized by H; _, ., and sup-
ported on Z is cut out by
(X0, -+ Xke1, X2ks -+ - Xn) O (X0, X1, -+ -, Xn) O [(X1, -, ko1, Xest, - -, Xok—1) + (H) + (H”)?] (4.5)

where H’ € Gr(n — 2k +1,H) and H” C H is chosen so that H' @ H” = H. Notice that for
a fixed H’, all choices of H” give the same ideal as Eq. (4.5). It follows that the W;!(Z) is

paramaterized by Gr(n — 2k, PH) = P"=2k+1, O

Example 4.3.12. Consider X C P* cut out by (xo, x1, x4) N (x0, X3, X4) N (x(z), X1, x3,x4). This
is a pair of lines meeting along an embedded point. Let x, .. ., x; be the dual coordinates
on (P*)*. We can trace the image of X under the map W : Hy 1(P*) — Hao((P*)*) as
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follows:

Wy
(xo, x1,x4) N (xo, x3, x4) N (x5, X1, X3, x4) > (x0, X1, %4) N (X0, X3, X4)
W )
> point in M5 , corresponding to (x3, x3) N (x], x3
= (x3,x3) - (7, 3)
= (x5, x5) N0 (xF, x3) N ((x)?, xF, x3).

Proposition 4.3.13. Let k > 2 and n > 2k — 1. The component H}_, ,_, is Fano.

Proof. Using Proposition 4.3.11 and the canonical divisor in Proposition 4.2.12 we deduce
that

Ky = \II*KHZ—kn—k +(n -2k +1)N;
=W*Kyr  +(n—2k+1)(2D] - D; — F)
-3D} -2D} -2D} —---=2D;_, - D;_, —2D; —(n -2k +1)F if k > 4,
=4-3D] - D} —2D} — (n - 5)F if k=23,
—-2D] - 2D}, — (n - 3)F if k=2,
The first equality is a modification of [47, Exercise 8.5] combined with the fact that the
codimension of W(N;) in H"_, , is n — 2k + 2. It follows from Proposition 4.3.10 that
—Kygn s ample in all cases; thus H}_, , _, is always Fano. O

Here is the the main theorem of the paper:

Theorem 4.3.14. The components H; , ,_,and H} . are Mori dream spaces.

Proof. This follows immediately from Proposition 4.2.12, Proposition 4.3.11, Proposi-
tion 4.3.13 and the subsequent two facts:

(i) A smooth Fano variety is a Mori dream space [67, Corollary 4.9],

(ii) Let f : X — Y be a surjective morphism of smooth, projective varieties. If X is a
Mori dream space, then so is Y [76, Theorem 1.1]. O
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Chapter 5

Hilbert schemes with two Borel-fixed
points

In this chapter we study Hilbert schemes with two Borel-fixed points. We classify Hilbert
schemes with two Borel-fixed points and determine when the associated Hilbert schemes
or its irreducible components are smooth. In particular, we show that the Hilbert scheme
is reduced and has at most two irreducible components. By describing the singularities in
a neighbourhood of the Borel-fixed points, we show that the singularities that occur are
cones over certain Segre embeddings of P* X P. In particular, the singularities are always
Cohen-Macaulay and normal.

After the first version of this chapter was available on arXiv, Skjelnes-Smith [88] clas-
sified all smooth Hilbert schemes and described their geometry. Complementing [88],
our work may be seen as a first step towards a classification of mildly singular Hilbert
schemes. To state our results we use the Gotzmann decomposition of a Hilbert polynomial
(Theorem 2.0.12).

Theorem 5.0.1. Assume char(k) = 0. The Hilbert scheme Hilb*(P") has two Borel-fixed
points precisely in the following cases:
(i) A =(n%,1,1,1) for n > 2: The Hilbert scheme Hilb"™ (P") is smooth, and when s = 0
its general member parameterizes three isolated points.

(i) A = (n%,1,1,1,1) for n = 2: The Hilbert scheme Hilb™ (P2) is smooth, and when
s = 0 its general member parameterizes four isolated points in the plane.

(iii) A = (n%,2,2,1) for n > 3: The Hilbert scheme Hilb"*(P") is a union of two smooth
irreducible components meeting transversely. When s = 0, the general member of
one component parameterizes a plane conic union an isolated point and the general
member of the other component parameterizes two skew lines.
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(iv) A =, (d+1)7,1) withn >d+1>2and g > 2: The Hilbert scheme Hilb™ (P") is
smooth, and when s = 0 its general member parameterizes a hypersurface of degree
g in a P! union an isolated point.

(v) A =(n®,27,1) with and n > 2 and g > 4: The Hilbert scheme Hilb™ (P") is smooth,
and when s = 0 its general member parameterizes a plane curve of degree g union
an isolated point.

(vi) A =@, (d+1)7,r+1,1) withn >d +1>r+1> 2: The Hilbert scheme Hilb"*(P")
is irreducible, Cohen-Macaulay, and normal. When s = 0, the general member
parameterizes a hypersurface of degree g in a P?*! union a r-plane inside P?*!
and an isolated point; the hypersurface meets the r-plane transversely in P7*1. If
d = n — 2 the Hilbert scheme at the non lexicographic point is étale-locally a cone
over the Segre embedding P! x P"~"~1 « p2(n=7)-1,

(vil) A = (n®,(d+1)7,2,1) withn > d +1 > 2 and q > 3: The description of the Hilbert
scheme is identical to Case (5).

(viii) A = (n%,d +1,1,1) withn > d +1 > 1: The Hilbert scheme Hilb"*(P") is irreducible,
Cohen-Macaulay and normal. If s = 0 the general member parameterizes a d-plane
union two isolated points. If d = n — 2 the Hilbert scheme at the non lexicographic
point is étale-locally a cone over the Segre embedding P? x P"~! < P3"~1  In
particular, if n = 3 the Hilbert scheme, which parameterizes a line union two isolated
points, is Gorenstein.

(ix) A = (n°,d +1,2,1) with n > d +1 > 3: The Hilbert scheme Hilb™*(P") is reduced
with two irreducible components ), and )».

e Whens = 0the component ) is smooth and its general member parameterizes a
disjoint union of a d-plane union a line. If d = n—2 the component is isomorphic
to the blowup of G(1, 1) X G(n — 2, n) along the locus {(L, A) : L € A}.

e When s = 0 the component ), is normal and Cohen-Macaulay. Its general point
parameterizes a d-plane union a line and an isolated point; the d-plane meets
the line at a point. If 4 = n — 2 the component at the non lexicographic point is
étale-locally a cone over the Segre embedding P! x P"~2 < P2(*=D-1,

After the result appeared on arXiv, work of Staal [90] shows that the classification
of Hilbert schemes with two Borel-fixed points extends to positive characteristics with a
minor modification. In particular, [90, Theorem 1.1] states that for char(k) # 2 the Hilbert
scheme Hilb™ (P") has two Borel-fixed points if and only if A is as in one of the cases in
Theorem 5.0.1. If char(k) = 2 then A can be any of the cases of Theorem 5.0.1 except for case
(2). Since our deformation computations are characteristic independent (see Section 5.3
and Section 5.4), we obtain a description of the singularities in all characteristics.
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Theorem 5.0.2. Let char(k) = p. The Hilbert scheme Hilb™ (P") has two Borel-fixed points
if and only if

e p #2and Aisasin case (1) - (9) of Theorem 5.0.1, or
e p=2and Aisasin case (1) or (3) - (9) of Theorem 5.0.1.

In all of these cases the description of Hilb” *(P") is identical to the one given in Theo-
rem 5.0.1.

5.1 Resolutions of Borel-fixed ideals

We use L(A) to denote the unique saturated lexicographic ideal with Hilbert polynomial
P, (Eq. (2.2)). If the Hilbert scheme has exactly two Borel-fixed points we will use I(A) to
denote the non lexicographic Borel-fixed point.

The Eliahou-Kervaire resolution provides an explicit minimal free resolution of a
strongly stable ideal [27]. We will mostly be interested in resolutions of ideals of the
form I = xo(xg,...,xn-1) + x?(xl,...,xp) withg > 1and n -1 > p > 0. Note that I
is strongly stable in all characteristics. Following the presentation in [78, Section 2], let

0— F,1 m ﬁ Fi ﬁ Fy ﬁ) I — 0 denote the Eliahou-Kervaire resolution of I

where nel p
Fo = (@ S(—2)e3i) & (@ S(=q - Dey;
i=0 i=1

and
F=l B se3e || P st-qa-2e;|.
0<j<i<n-1 0<j<i<p

The first two differentials are given by gbo(e& = xoXi, Yo(e];) = x? x; and,

1#1(661.) = x]-e(’)‘l. — xiegj, 0<j<i<n-1
gbl(e(l)i) = xoe]; — x?e&., 1<i<p
lpl(e]h.) = xjey; — xief]., 1<j<i<p.

This presentation also allows us to explicitly describe the first two terms of the cotangent
complex [48, Chapter 3]. Let R = S/I and let

Kos := g7’ ({”DO(el*m)el*ljl - ’7”0(872]'2)‘31*2;'2}) <k,
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be the pre-image of the Koszul relations in Fy. Let 1/ : Homs(Fo,S) — Homg(Fy, S)
denote the dual of ¢1. The second cotangent cohomology, T?(R/k, R), is the cokernel of
the following map

lPV
Hompg(Fp ® R, R) ~L Homg (F1/(ker 1 + Kos), R) .

5.2 Classifying Hilbert polynomials

In this section we classify Hilbert polynomials with two Borel-fixed ideals in characteristic
0 (Proposition 5.2.10 and Proposition 5.2.11). The first step is to reduce to studying
Hilbert schemes corresponding to integer partitions A with n > A4, equivalently Hilbert
schemes parameterizing subschemes of codimension at least 2. Using the classification of
Hilbert schemes with a single Borel-fixed ideal and Algorithm 5.2.3 we obtain the desired
classification.

Lemma 5.2.1. Let A = (n°, Asi1, As, ..., Aw) be an integer partition with s > 0. Then there is
an isomorphism
Hilb™ (P") ~ P(H®(Opn (s))) x Hilb™" (P")

where A" = (As41,...,Am). This isomorphism is GL(n + 1)-equivariant and thus induces a
bijection on Borel-fixed ideals, given by I +— x3I’.

Proof. By [30, Theorem 1.4] and [30, Remark 2, p. 514] there is an isomorphism
P(H"(0pr(s))) x Hilb™ (P") = Hilb™ (P"), (£, [I]) — [fI] (5.1)

where deg P’ < n —1and
t+n t+n-—s’ , ,
= 7)1 e

Since the morphism Eq. (5.1) is given by multiplication of ideals, it is also GL(n + 1)-
equivariant. Using the well-known identity on summation of binomial coefficients we
obtain

S ftdn—i\ N [t A —i S -
- i~ _ _ - rip o
Z;( L )+i;1( o )—PA(t)—;( o )+P(t 5').

Since deg P’ < n — 1 we must have s = s” and this, in turn, implies that P" = P,.. The
desired bijection on Borel-fixed points follows from the GL(n + 1)-equivariance. m|

By Lemma 5.2.1 it suffices to classify Borel-fixed ideals in Hilbert schemes correspond-
ing to A with n > A;.
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Notation 5.2.2. For the rest of this section we will assume char(k) = 0.

We begin by briefly describing a procedure that generates all the Borel-fixed ideals in

characteristic 0. Following [21,62], we fix an order on the variables so that xo > x1 >

- > x,. This induces a partial order on monomials of a fixed degree: if x; > x; then
x;x% > xjx®. This is called the Borel order and we denote it by >p.

Let I C S be a stongly stable ideal with Hilbert polynomial P(t) and let G(I) denote
the set of minimal generators of I. Given an element x* of G(I) that is also minimal with
respect to >p one can produce a new strongly stable ideal with Hilbert polynomial P(t)+1.
This procedure is known as an expansion of I with respect to x%, and the new strongly
stable ideal is generated by

GO\ {x*PH) U{xxr, x%xp41, ..., %1}

where ¥ = max{i : x;|x%}. For our purposes, we just need the penultimate step in the
recursive algorithm.

Algorithm 5.2.3. Every saturated strongly stable ideal of S with Hilbert polynomial P(t)
is obtained from a strongly stable ideal of R = k[xo, ..., x,—1] with Hilbert polynomial
AP(t) := P(t) — P(t — 1) via a sequence of expansions. More precisely, I is obtained by
successively expanding JS c¢ times, where | is a strongly stable ideal of R with Hilbert
polynomial AP(t) and ¢ = P(t) — Pg/js(t) is a constant.

Remark 5.2.4. An alternative algorithm to generate the strongly stable ideals is presented
in [70].

Implicit in the above Algorithm is the following Lemma that will be extremely useful
for us.

Lemma 5.2.5 ( [62, Lemma 3.1, §4.2]). Let I C S be a saturated strongly stable ideal. Then we
can always expand I at a minimal generator of degree e that is minimal w.r.t to >p. Any such
expansion is strongly stable with Hilbert polynomial Pgi(t) + 1.

Remark 5.2.6. Integer partitions behave well with respect to the difference operator. If A =
(A1, ..., A, 1%) then we have A'Py = Py» where A” = (A1 =1, ..., Ay — 1). Indeed, we have

. [+ Ai—i) " (t-1+Ai—i) S [t+(Ai-1)—i
APA:Z( Ai=1 )_Z( Ai=1 ):Z( (Ai-1)-1 ):P”"
i=1 i=1 i=1

By our discussion above we see that the number of Borel-fixed points on a Hilbert
scheme Hilb"™ (P") are, to some extent, determined by the number of Borel-fixed points
on Hilb*"*(P"~1) and Hilb™*~!(P"). It turns out that by considering Hilb™~(P"), we can
greatly restrict the partitions A that could give rise to Hilbert schemes with two Borel-fixed
points.
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Lemma5.2.7. If Hilb" (P") has more than one Borel-fixed point, then Hilb™1(P") is non-empty.

Proof. Let A = (A1, A2, ..., Aw). If Hilb” *(P") has more than one more Borel-fixed point
then [89, Theorem 1.1] implies that A, =1 and m > 2. It follows that

m . m—1 .
t+A;—1 t+A;—1i
P _1: —1: :PI
A Zi:l()\i_l) Zl,: (/\i—l) A

with A’ = (A1,...,Au-1). Since A’ is an integer partition with 1 < A} < n, the result
follows. O

We can now state a necessary condition for a Hilbert scheme to have two Borel-fixed
points.

Proposition 5.2.8. Let A = (A1, A2, ..., Ay) be an integer partition with Ay < n — 1. If
Hilb™ (P") has two Borel-fixed points then A = (d + 1)7,1)or A = ((d +1)7,r +1,1)

Proof. By [89, Theorem 1.1] we may assume A,, = landm > 2. Let A’ = (A4, ..., A1) and
we have Py = Py, + 1. If the lexicographic point, L(1"), was generated in more than two
degrees then Lemma 5.2.5 would imply that Hilb™ (P") contains at least three Borel-fixed
points; a contradiction. So we may assume that L(A’) (Eq. (2.2)) is generated in at most
two degrees. Let r be the smallest integer for which a,.1 # 0 and d be the largest integer
for which a441 # 0. By assumption we have a,, = 0. If ¥ = d we must have

L(A,) = (XO, cees Xn—d-2, xflaj:l_l (52)

which implies A’ = ((d + 1)%+). If d > r we have a44.1 +1 = agp1 +az+1 = -+ =
Age1 + -+ arpp+1=a4.1 + -+ arqq. Thisimplies a,42,...,a4 =0and a,41 = 1, and we
obtain

L(A/) = (x()/ sy xn—d—Z) + xzd_*—;_l(xn_d_l, Xn—d-2,+-+, xn—r—l) (53)

and A’ = ((d + 1)%+1,r + 1), as required. O

We now turn our attention to eliminating some of the A that appeared in Proposi-
tion 5.2.8. If the Hilbert scheme Hilb™ (P") has two Borel-fixed points then they are
both on the lexicographic component. Let X; and X, denote the two Borel-fixed points.
By [84, Theorem 11] the hyperplane sections X; NV (x,) must be equal to the lexicographic
point V(L(A")) where AP, = Py. Thus, if we produce a Borel-fixed point on Hilb™ (P")
whose hyperplane section is not L(A’), then the corresponding Hilbert scheme cannot
have two Borel-fixed points. Of course, sometimes it is simpler to directly construct three
Borel-fixed ideals. We use both of these methods to obtain the following Lemma.

Lemma5.2.9. Let A = (A1, Ay, ..., Ay) be an integer partition with Ay < n—1. For the following
partitions A, the Hilbert scheme Hilb™ (P") has at least three Borel-fixed points
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G) A= 1Y withb > 4andn > 3,
(i) A= (1Y) withb > 5and n =2,
(i) A =((d+1)%,2,1) withd > 1,
(iv) A =(d+1)1,1?) withd > 1and g > 1.

Proof. For the rest of the proof let R = k[xo,...,x,-1]. In case (1) we may use Propo-
sition 2.0.18 to verify that the following ideals are Borel-fixed with Hilbert polynomial
P)\ =b:

(xOI <oy Xn-3,Xn-2, xil’jl—l)’ (XO, -7 Xn-3, xi_Zl Xn-2Xn-1, xll/)l:i) and

(X0, -+ + ) Xty X235, Xn-3Xn—2, Xn—3Xn—1, X>_, Xn_2Xn_1, x'72).

Similarly, in case (2) we may use Proposition 2.0.18 to verify the following ideals are
Borel-fixed with Hilbert polynomial P, = b:

(xo, xi’), (xg, X0X1, xlf_l) and (xg, xgx%, xi’_z).
If we are in case (3) then consider the following Borel-fixed ideal
J=(x0, - Xn-d-3) + Xn-d—2(Xn-d2, - -, Xn-2) + (X2 _;_,)-
To see that | has Hilbert polynomial P}, it suffices to compare it to
L(A) = (X0, -+, Xpmd=2) + X2_ 4 (Cned—1, Xn—d—2, - -, Xn=3) + Xo_4_1 Xn-2(Xn-2, Xn-1).
Indeed, for j > 0 we have
J L)) = {2 g yXnmg2xh PO X g% Josesi-2

and -
—1-e
L(/\)]‘ \]] = {xn—d—zxiqx{q }OSeS]’—L
Since these two sets have the same cardinality j, it follows that Pg;;1)(t) = Ps/j(t). The
hyperplane section V(x,) N V(]) is defined by the saturated ideal

(XO/ sy xn—d—3) + xn—d—Z(xn—d—Z/ sy xn—Z) + (xi—d—l)'

Since this is different from L(d%) = (xo, ..., Xy—d—2, xf’l _4.1), the Hilbert scheme cannot have
two Borel-fixed points.
Finally, if we are in case (4) we have the following Borel-fixed ideals
L(A) = (xOI R4 xn—d—z) + xz_d_l(xn—d—ll xn—d—Zl cecy xn—Z) + (xz—d—lel—l)’
I'=(x0,..., Xp-d-3) + Xp-d—2(Xpn-d—2,...,Xn-1) + xz_d_l(xn—d—l/ Xn—d=2, -, Xn-1),

J = (X0, Xn-d=3) + Xn-d—2(Xn-d—2, - .., Xn-2, Xa_y) + (x]_, ).
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Just as we did in case (3), it is straightforward to see that the three ideals have Hilbert
polynomial P,. For instance, consider | and note that for j > 0 we have

VLY = {27 xemax T U (g

and - -
LA\ Jj = {xn_a-2XnaX)y , Xy_g_ox), }. O
We now ready to prove the main result of this section. It will turn out that the
constraints we have found on A up until this point are sufficient. We accomplish this
by studying the expansions of Borel-fixed ideals with Hilbert polynomial AP(t) (Algo-

rithm 5.2.3). Since the Borel-fixed ideals naturally fit into two distinct families, we split
the result into two Propositions.

Proposition 5.2.10. Let A = ((d + 1)7,1) with n —2 > d. The Hilbert scheme Hilb™ (P") has
two Borel-fixed points if and only if n > 2 and

(i) d=0and g =2, o0r

(i) d=0,g=3andn =2, or
(iii) d=1and q #1,3, or
(iv) d>2and q > 2.

The two Borel-fixed ideals are

I(A) = (x0, -+, Xn-d-3) + Xn-d—2(Xn-d—2, ..., Xu-1) + (X]_, ),

L(A) = (x0, -, Xp—d—2) + X1 (Xn—d1, Xn-d2, - - -, Xn-1)-

Proof. The ideals I(A) and L(A) are expansions of a lexicographic ideal

(xOI ey Xn—d-2, xZ—d—l)'

Since the latter ideal has Hilbert polynomial P((441)s), it follows from Lemma 5.2.5 that
the Hilbert polynomial of I(A) and L(A) is Py. We first show that the cases are necessary.
By [89, Theorem 1.1 (ii)] if n = 1 or g = 1 the Hilbert scheme has a single Borel-fixed point.
The remaining conditions on A follow from Lemma 5.2.9.

If we are in case (1) then the Hilbert scheme parameterizes subschemes of length three.
Any such subscheme can be realized as lim;_,0 Z; = Z where Z; a reduced union of three
points for t € Al — 0 [17]. By upper-semicontinuity, since the union of three reduced
points is contained in a P?, the subscheme Z is also contained in a P2. If Z was Borel-fixed
this implies Iz = (xo,...,x,-3) +JS with | € §" := k[x,-2, x,-1,x,] and Pg;(t) = 3.
Using Proposition 2.0.18 we see that only choices are (xo, ..., xXy-3, xi_z, Xn—2Xn-1, xrzl_l)
and (xo, ..., Xy-3, X-2, xfl_l).
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If we are in case (2) then Proposition 2.0.18 shows that (xo, x%) and (x%, X0X1, x:f ) are the
only two Borel-fixed ideals.

So we may assume that we are in case (3) or case (4) of the theorem. Let A’ = ((d +1)7)
and A” = (d7). By Algorithm 5.2.3 we begin by computing all the Borel-fixed ideals in
R :=K[xo, ..., x,-1] with Hilbert polynomial, APy = Pyr.

For d > 2 the Hilbert scheme Hilb™"” (Proj(R)) has a unique Borel-fixed point [89,
Theorem 1.1] and it is given by L(A”) = (xo,..., Xy—d-2, xZ_d_l). The lift of L(A”) to S
is just the lexicographic ideal, L(A’), with Hilbert polynomial Py = P, — 1. Thus, in
the last step of the algorithm, we only need to perform one successive expansion. Once
with the monomial x,_;_, and once with the monomial xZ giving us the two desired
Borel-fixed ideals.

The last case is if d = 1 and g # 1, 3. In this case we have

q .
PA(t):Z(t;EIl)+1:qt+2—(q;1).

i=1

—d-1

Since Al(P,) = g we compute all the Borel-fixed ideals in R with Hilbert polynomial 4. One
suchidealisI = (xq, ..., X3, xz_z) whose lift, IS, is the ideal of a plane curve of degree 4.
Thus, the Hilbert polynomial of IS is Py» and we may expand IS at x,,—3 and xz_z to obtain
the two Borel-fixed ideals. To finish, it suffices to show that if | is a Borel-fixed ideal in R
different from I then the Hilbert polynomial of the lift, | S, is bigger than P,. For such a | to
exist we must have g > 4. In particular, we will prove that Pg/js(t) > Pa(t) +1 = Py (t) +2
for all t > 0. Since | # I, we may assume that xfl_z € | and xf;‘_12 ¢ ] forsomel < { < g.
This implies that for j > 0, (R/]); is spanned by

j—degm j-degmg-¢ _j j-1 01, j=t+1
e -1 PRSP SIS PP S S

We may assume that the m; are monomials of degree strictly less than ¢ and not divisible
by x,-1 (applying the exchange property to xf;_z, we see that | contains all monomials
of degree at least ¢ supported on xo, ..., x,-2). Thus, for j > 0 the graded piece (S/]S);

contains the monomials in xZ_Z(xn_l, xy)7P for 0 < p < ¢ -1 and the monomials in
My (xp-1, X,) ~98™0 for 1 < v < g — {. This implies

-1 g-¢ (-1 g1
dimy(S/)); > Z(j—p+1)+2(j—degmv+1) > Z(j—p+1)+2(j—€+1+1).
p=0 v=1 p=0 v=1
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If we further assume ¢ < g — 1, we may rewrite the sum and obtain

(-1 q-¢
dimi(S/); = Y (j-p+D+ ) (—t+1D)+(g-0)

p=0 v=1
-1 q-1

> Ezg—p+1y+§}j—v+n+wq—@
=0 v={
"

= Di-p+D+(@-0
p=0

. q-1
= EI]+1—( ) )+(q—€)
> dimk(S/IS)]’ +2= P)\/(j) +2

as required. Finally, if ¢ = q — 1, the exchange property forces

-1
J= (X0, -, Xn-t, X2 3, Xp_3Xn—2, X1 _,).
Since g > 4, one can observe that Ps/s(t) = Ps/s(t) + 2, completing the proof. O

Proposition 5.2.11. Let A = ((d + 1)9, 7 +1,1) with d > r. The Hilbert scheme Hilb™*(P") has
two Borel-fixed points if and only if n > 2 and

(i) r=0,9=1,0r
(i) r=1,9#2,0r
(iii) r > 2.
The two Borel-fixed ideals are
I(A) = (x0, - -, Xn-d—3) + Xn-d—2(Xn-d=2, - - -, Xn=1) + X0 (Xn-d=1, Xn-d—2, - - -, Xn—r-1),
L(A) = (x0, -+ Xnodg—2) + X0 (Xnede1, Xn-d2, - Xnor—2) + X0 Xnr 1 (Xnop-1, -, Xp1)-

Proof. Since I(A) and L(A) are expansions of the lexicographic ideal (Eq. (5.3)) it follows
from Lemma 5.2.5 that their Hilbert polynomial is Py. By Lemma 5.2.9 these conditions
are also necessary; if n = 1 the Hilbert scheme has a single Borel-fixed point.

Now assume that we are in case (1), (2) or (3). Let A’ = (d+ 1)7,r +1)and A” = (d1, r).
We begin by computing all the Borel-fixed ideals in R := k[xo, ..., x,-1] with Hilbert
polynomial APy =Py

If r >2or(r,q) = (1,1) the Hilbert scheme Hilb"" (Proj(R)) has a unique Borel-fixed
point [89, Theorem 1.1] and it is given by

LA”) = (x0, -+ Xped—2) + X0 (Xn—d1, Xn-d=2, - - -, Xn—r-1)-
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The lift of L(A”) to S is just the lexicographic ideal, L(A’), with Hilbert polynomial Py, =
P, —1. Thus, to obtain all the Borel-fixed ideals we only need to perform a single expansion.
Once with the monomial x,_;_» and once with the monomial xZ_ 41 Xn-r-1, giving us the
two Borel-fixed ideals.

Similarly, if (r,q) = (0,1) the Hilbert scheme Hilb™" (Proj(R)) has a unique Borel-
fixed point [89, Theorem 1.1] and it is given by (xo, ..., x,—4-1). The lift to S has Hilbert
polynomial (t;d) = P, — 2. Thus, we begin by performing an expansion with x,,_4_1 to
obtain (xo, ..., Xp-d-2) + Xn-d-1(Xn—d-1, . - . , Xn—1). This is the lexicographic ideal L(A") and
we conclude as in the previous paragraph.

Assume r = 1 and q > 3. Then Proposition 5.2.10 (3) implies that the Hilbert scheme
Hilb"" (Proj(R)) has two Borel-fixed ideals, I” := (xo, . .., Xy-d-3)+Xn-d-2(Xn-d-2, - . . , Xn—2)+
(xZ_ 4_1) and L(A”). We first show that the Hilbert polynomial of I”S is larger than P,. We
can do this by comparing the number of generators of (I”S); to those of I(A); for j > 0. Let
€; denote the intersection of the monomials of (I”S); with the monomials of I(1);. Then
it is evident that I(1); is generated by

b
€ U {xy—a—axn1X,_ 1%, Yarb=j-2

while (I”S); is generated by

. q a b )
U {x, %5 1% arb=j—q

for all j > 0. This implies Pg/;1)(t) + j —1 = Pgprs(t) +j — g + 1. It follows that
Pg/ms(t) = Psjia(t) + (g —2) = Pa(t) + (9 — 2) > Pa(t), as required. Thus, we only need
to perform one successive expansion of the lexicographic ideal, L(A”)S = L(A”). This will
give us the two desired Borel-fixed ideals. O

Note that Proposition 5.2.10 corresponds to case (1) - case (5) in Theorem 5.0.1 while
Proposition 5.2.11 corresponds to the other cases.

5.3 Deformation Theory

In this section we compute the tangent space to the non lexicographic Borel-fixed ideal,
[I(A)], and provide a partial basis for the second cotangent cohomology group of S/I(7).
These are essential for the computation of the universal deformation space of I(1), which
we carry out in Section 5.4. The general procedure to compute the universal deformation
space can be found in [92, §3] and [79, §5].

From Proposition 5.2.10 and Proposition 5.2.11 we see that I(A) lies inside a unique
P%*2. As a consequence, any embedded deformation of the I(1) in P" can be realized as
a deformation of the I(A) in P?+2 along with a deformation of P4*2 in P". In other words,
étale locally around [I(A)] we have an isomorphism

Hilb™ (P") ~ Hilb™ (P¥*2) x AW+ (n=d-2), (5.4)
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As a consequence, it suffices to prove Theorem 5.0.1 assuming n = d — 2.

Notation 5.3.1. For the rest of this section we assume n = d — 2. We also assume A is
of the form ((d + 1)7,1) satisfying the conditions of Proposition 5.2.10, or of the form
((d +1)7,r +1,1) satisfying the conditions of Proposition 5.2.11. In the first case the
corresponding non lexicographic ideal is

I(A) = xo(x0, ..., Xp-1) + (xf)
and in the second case it is
I(A) = xp(xq, ..., %n-1) + xf(xl, e Xp—r—1)-
We start by verifying that the comparison theorem holds in all cases of interest.
Lemma 5.3.2. If A # (1*) then (S/1(A))e = HO(P", Opyoi(s/i(ay)(e)) forall e > 1.

Proof. For the purpose of this proof it will be convenient to unify notation and express
I(A) = xo(x0, ..., %p-1) + x;](xl, ey Xp)

with0 < p <n-1. Let X = Proj(S/I(1)) and assumep # n—1. Let] = (xo)+x;7(x1, s Xp)
and consider the exact sequence 0 — J/I(A) — S/I(A) — S/] — 0. The associated
long exact sequence in local cohomology of graded S-modules is

0 — HY(J/I(A)) — HY(S/I(A)) — HN(S/]) — Hh(J/I(A)) — HL(S/I(A)) — HE(S/]).

Since x,-1 and x, are nonzero divisors on S/] we have depth, (S/]) > 2. This implies
that the local cohomology groups HY(S/J) and H\(S/]) are zero. As graded S-modules,
we have J/I(A) = (S/(xo, ..., xn-1))(=1) := §(=1). The associated sheaf on P" is just the
structure sheaf of a point. Consider the following exact sequence

0 — H9(S(-1)) — S(-1) — HY(Opt(-1)) — HL(S(-1)) — 0.

For all e > 1 we have Hg(Opt(—l))e = H%(Op(e — 1)) = H(Opy) = k = S(=1).. Thus, we
have HY(5(~1)). = H}(5(~1)). =0 forall e > 1.

Combining this with the first long exact sequence we obtain H3,(S/I(A)), = H}(S/I(A)). =
O for all e > 1. The desired result now follows from using the exact sequence

0 — Hp(S/1(A)) — S/I(A) — HY(P", Ox) — Hy(S/1(A)) — 0.

The remaining case is when p = n —1 and g = 1 (we excluded the case of n = 2,49 =
2). In this case the regularity of I(A) is 2 [78, Corollary 3.1]. Thus Corollary 4.8 and
Proposition 4.16 in [26] establish that dimy(S/I(A))e = Ps/i1)(e) = Px(e) = h%(P", Ox(e))
foralle > 1. O
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The next four propositions provide a basis for the tangent space to each [I(A)]. Since
their proofs are very similar we will only provide all the details for the first one.

Definition 5.3.3. For S = K[x, ..., x,] and for ¢ > 1 define the following subsets

. . . . -1 1
(1)ﬂz{xil---xiq:1§11§zzs---quSn}\{xf,xi’ xz,...,f Xn}.

. -1 -1
(i) 77 = {xi’ xz,...,xf Xn}.

Proposition 5.3.4. Let A = (n — 1)7,r + 1, 1) be an integer partition. Assume n > 4 and either
r>2andq>1,0orr =1and q > 3. Then

dimy, Ty Hilb™ (P") = 3n — 1+ (n —r —2)(r + 1) + (” Zi; 1).

A general ¢ € Hom(I(A), S/I(A))o can be written as

2
90(950) = 4apX0Xn
@(xoxi) = aiXoXy + C1X1X; + CoXoXi + -+ CpXpXxi, 1<i<n-1
+1 .
(p(xf ) = blxox +chx1a)+€n _ 1xn_r+---€,1xfxn, 1<i<n-r-1
w€eTq
qo(xfxi) = bxoxn+ Z cwxa)+€ xxn,+ flxlxn, 2<i<n-r-1

weTUT,

N 1<i<n-r-1 .
where ag, ..., an-1,b1,...,byu—r-1,¢1,...,cn, {Co }weTuTs, And {f}}n_rSan are independent

parameters.

Proof. By Theorem 2.0.9 and Lemma 5.3.2, dimy Tjj(ay Hilb™ (P") = dimy Hom(I(A), S/I(A))o.

Let Fq L Fy ﬂ) I(A) — 0 be the beginning of the Eliahou-Kervaire resolution from

Section 5.1. We have the following exact sequence

\2

0 — Hom(I(1), S/I(A))o —> Hom(Fo, S/I(A))y —5 Hom(Fy, S/I(A))o.

Dualizing 1)1 we see that ¢ € Hom(I(A), S/I(A))o if and only if the following relations hold
in S/I(A)

P(xoxi)x; = ¢(xoxj)x;, 0<i,j<n-1
qb(xox]-)xf = qb(xij)xo, 1<j<n-r-1
qb(x?xi)xj = qb(xij)xi, 1<i,j<n-r-1

It is straightforward to check that the family described in the statement satisfies these
relations.
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Conversely, given ¢ € Hom(I(A), S/I(A))o we need to show that ¢ lies in our family.
For any i # n — 1, the relation ¢(xox;)x,-1 = ¢(xox,-1)x; implies that x; divides all
the monomials in the support of ¢(xox;) that are not annihilated by x,_;. But the only
quadratic monomial that is non-zero in S/I and annihilated by x,_; is xox,. Thus, for
i # n — 1 the image ¢(xox;) is supported on {x1x;, x2x;,..., XX, XoX,}. Since r > 2 or
g > 3, the only quadratic monomial (non-zero in S/I(A)) annihilated by x,-» is xox,.
Thus the relation ¢(xox,-2)xn-1 = P(x0Xn-1)X,—2 implies P(xox,-1) is also supported on
{x1xp-1, X2Xn-1,..., XnXn-1, X0Xn}. Analogously, we may use the relation qJ(x;]xi)xj =
gb(xi’xj)xi to deduce that qb(xfx,') is supported on {xfxn_r e, xfxn xon} Ux;7T1UxiTs.

Let p(x0xp-1) = An—1X0Xn + C2Xp—1X2 + - - - C4 Xy—1Xy, fOr some constants c;. Then for j #
n—1, therelation x;¢(x0x,-1) = x,-1P(x0x;) implies Pp(xox;) = ajxox, +CoXjX2+ - +CnXXy
for some constant a i Now assume

qb(x?xz) = bzxoxz + Z CoXow + fﬁ_rxjxn_r +o E,%xgxn.
weTIUT,

. 2 . . q _ q . .
with ¢, €7, b some constants. For j > 3 the relation ¢(x;x2)x; = ¢(x;x;)x2 implies
(p(xij) = bjxoxz + Z CoXj@ + €,]1_rx‘17xn_r + -+ Eﬁlx;]xn.
w€eTUT,

where lf ,bj are constants. Note that if j = 1 then the non-zero elements of x;T> are

{xf Xpmpyove ,xz Xn}. Thus, qf;(xf“) is also of the desired form and this completes the
proof. O

Proposition 5.3.5. Let A = (n — 1,2, 1) be an integer partition with n > 4. Then
dimy Tjy(y)) Hilb™ (P") = 6n — 6.
A general @ € Hom(I(A), S/I(A))o can be written as

(P(x%) = apXoXn
P(X0xi) = @iX0Xy + CoXoXj + C3X3X; + -+ CpXpX;, 1<i<n-—2
P(X0Xp-1) = Ap_1X0Xy + C1X1Xp_1 + C2X2Xp—1 + = + CyXpXp_q +
(p(x%) = bixox, + fi_lxlan + 0,
P(x1x;) = bixoxy +doxoxi + -+ dpXyXi + € x1x00 + lx1x,, 2<i<n-r—1

i

! U Y<i<n—2 are independent

where o, ay,...,a0y-1,b1,...,by_2,c1,...,Cun,da, ..., dyand {{
parameters.

Proposition 5.3.6. Let A = (n — 1,1, 1) be an integer partition with n > 3. Then

dimy Tjy(y)) Hilb™ (P") = 6n — 4.
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A general @ € Hom(I(A), S/I(A))o can be written as

2y _ .0 1
p(xg) = apgxoxy +agxixy
0 1
P(x0x1) = ayxoX, +a;x1xy
p(xox;) = a?xoxn + al.lxlxn + CoXoX; + C3X3X; + -+ Cpxpxi, 2<i<n-1
2 0 1
p(x7) = byxox, +bjx1xy,
p(x1x;) = b?xoxn + b}xlxn +doxoxi+ - +dyxyx;, 2<i<n-1.

where ca, ..., Cn,da, ..., du,{a), a] Yo<icn-1,{bY, b} }1<i<n—1 are independent parameters.

Proposition 5.3.7. Let A = ((n — 1)1, 1) be an integer partition where either n = 3 and q > 4, or
n>4andq > 2. Then

-1
dimy, Ty Hilb™ (P") = 2 — 1 + (” : ‘71 )

A general ¢ € Hom(I(A), S/I(A))o can be written as

2y _
p(xy) = aoxoxn
@(xoxi) = aiXoXy + C1X1X; + -+ + CpXpX;
N  _ q-1
§0(x1) = blxoxn + Z Ci,o@,

weTUT:\x;
where ay, . ..,Aa,-1,b1,¢1,...,Cn, Ci o are independent parameters.

As we will see in Section 5.4, for A = ((n — 1)7,1) the ideal I(A) corresponds to a
smooth point on its Hilbert scheme. To understand the geometry in a neighborhood of
the other [I(1)], we will need to compute its deformation space. To do this, we may exclude
the trivial deformations, those induced by coordinate changes, as they are unobstructed.
More precisely, we want to compute T'(R/k, R)y where R = S/I(A) [92, §3, p. 24]. A
straightforward computation of the partial derivatives gives the following bases for T .

Corollary 5.3.8. Let A = ((n —1)7,r + 1, 1) be an integer partition and let R = S/I(A). Assume
n > 4andeitherr > 2and q > 1,0orr = 1and q > 3. Then T (R/k, R)g is spanned by

@(xoxi) = aixox,, 0<i<n-r-1

p(xox;)) =0, n-r<i<n-1

1
p(x]") = brxox; + Z CoX1@ + by XXy + -+ Ly x] Xy
w€eTq
(p(xfxi) = bixoxz + Z CowXi, 1<i<n-r-1,

weT

where ag,...,a0,-1,b1,...,bu_r_1, f,%_r, e, 5,1 and {cy }weT; are independent parameters.
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Corollary 5.3.9. Let A = (n —1,2,1) be an integer partition with n > 4 and let R = S/I(A).
Then TY(R /X, R)y is spanned by
@(xox;) = ajxoxy, 0<i<n-2
P(x0xp-1) = ax1Xp
(P(x%) = bixoxy + dy-1X1Xp-1 + dpX1Xy
@(x1x;) = bixoxy, 2<i<n-r-1,

where a, ag, ..., an-2,b1,...,by—2,dy_1,dn are independent parameters.

Corollary 5.3.10. Let A = (n — 1,1, 1) be an integer partition with n > 3 and let R = S/I(A).
Then TY(R /X, R)y is spanned by
@ (xox;) = a?xoxn + a}xlxn, 0<i<n-1
qo(x%) = b?xoxn + b%xlxn, 0<i<n-1
@(x1x) = bx0xy, 2<i<n-1,
where a?, a}, b? are independent parameters.
Lemma 5.3.11. With notation as in Section 5.1, let F denote the Eliahou-Kervaire resolution of
I(A). Let R = S/I(A) and let f{l € Hom(Fy, R) denote the dual of e;i.
) Z’A =((n-1),r+1,1) then {xox%fji, xoxz+lf§i}i,j C T?(R/k, R)y is linearly indepen-
ent.

(ii) If)\d: gn —1,2,1) then {xox2 f{. xox2f" ., x1x%féln_1}i,]- C T?(R/k, R)y is linearly inde-
pendent.

(iii) If A = (n —1,1,1) then {xox%fél. xox,zlf]ii, xlx,zlféi xlx%f{i}i,j C T%(R/k, R)y is linearly
independent.

Proof. We will only prove (ii) as the other two cases are analogous (and simpler). We use
A; to denote the matrix associated to ¢;. By construction the entries in A; are supported
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on (X, ..., Xy—1). Dualizing the resolution F we obtain

Y (foo) = _xlfgl - Z xjfgj

1<j<n-1
Vigxy 0 0 £l
¥y (for) = xofor — X111 — Z Xjfo;
1<j<n-1
_ 0 1 0 j '
Y1 (f5) = Xofo; + X1fo; = X1f7; + Z Xjfoi ~ Z Xjfo;
2<j<i i<j<n-1
— 0 1 ]
lvbi/(fg,n—l) = X0fo,u1 T X1fo 1+ Z Xifon1
2<j<n-1
_ 0 j ]
vy (f1) = Xofo; + Z Xjf1i = Z Xjf1;-
1<j<i i<j<n-2

Let us first check that xox?2 féi and x(x2 f]h are well defined elements of T?(R/k, R). It is
enough to show that xox2 annihilates ker ¢; +Kos. Since the entries in A; are supported on
(%0, - .., xp—1), multiplying by xox% annihilates 12(F,) = ker 11. Since the Koszul relations
are supported on (xo, x1), xox?2 annihilate Kos.

Since x1 x% also annihilates Kos, to show that that x; x% f {)’ .1 1s a well defined element,

we only need to prove that x; x2 annihilates the restriction (ker 1) . Letv € kery,

S(=3)e),,
and since the differentials are linear we may assume v is linear. Then 11(v) = 0 implies

—X10,0 —X20,0 —***— Xy—-10,0 =0
1 €n 2 €n n-1 €0,n-1
X000 —X10,0 —Xp0,1 —+++—Xu_10,1 =0
0 en 1 €11 2 €0 n-1 €0,n-1
.‘)Covegi +x1’08(1)i —xlve(l)i + Z Xjv,i — Z x]'vesj =0, 2<i<n-2.
2<j<i i<j<n-1

The j-th equation above is just the j-th row of A1 multiplied with v (we can read this off

from our description of i). From the j-th equation we can see that v ;  is supported
0,n-1

on (xp,...,xy—2) forall0 < j < n —2. As a consequence, xlx% annihilatesv ; and all of
0,n-1
(ker 1p1)|5(_3)eé%1 .
- _ j j
We will now show that the set S = spank{xox%fol. xox,zlfli,
independent in T?(R/k, R). In particular, we need to show that no non-zero element of

xlx%f{),n—l}irj is linearly

S is a linear combination of the form Y, ; c;;Qiipy (f7;) where Qj; € R(2) are quadrics
and c;; € k constants. However, since all the elements of S are multiples of x2 and A;
does not contain the variable x,, it suffices to show that no non-zero element of S is a

linear combination of the form };; ; clix%yl)_i’( f7;)- From the description of i) in the first
paragraph we see that this is indeed the case. |
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5.4 Proof of the main theorem

The goal of this section is to prove Theorem 5.0.1. By Lemma 5.2.1 and Eq. (5.4) we may
assume that s = 0 and n = d — 2. The proof will provide a description of the universal
deformation space of I(A) valid in all characteristics.

Proof of Theorem 5.0.1 (1) to (3). Case (1) and (2) are [30, Theorem 2.4] while case (3) is [16
Theorem 1.1]. O

Proof of Theorem 5.0.1 (4), (5). 1t follows from [83, Theorem 4.1] that dim(Hilb™ (P")) agrees
with the dimension of the tangent space to [I(A)] (Proposition 5.3.7). Thus, [I(1)] is a
smooth point on the Hilbert scheme. By Theorem [83, Theorem 1.4] the lexicographic
point is also a smooth point. Since Hilb™ (P") has only two Borel-fixed points (Proposi-
tion 5.2.10), Lemma 2.0.25 implies that the Hilbert scheme is smooth. Finally, [83, Theorem
4.1] gives the description of the general member. m|

Proof of Theorem 5.0.1 (6), (7). Let U = Kk[luoo, - .., Uo,n—r-1, 411, - - - , Uin, {42,0 }weT; || and let
my denote its maximal ideal. Consider the following perturbation of 1

Wo(ey) = XoXi + UgiXoXy, i<n—r—1
Wo(ed) = xoxi, i=n—r

*\ _ § E § E
\IJO(eH) = xl + ullxox + Ul,n- r+lx Xp—r+l t Uz,pX1w + U n—r+1U2,0Xn—r+] QW
w€eT 1=0 weTh
* q ;
Wo(el;) = xyxi + ulixoxn + E Uy pXiw, 1>1.

w€eTq

By Corollary 5.3.8 this lifts the first order deformation by non-trivial deformations. To per-
turb the syzygies, we need a few definitions. Let i/ := {w € T : there exists x;|w with n —
r<i<n-1},V = {w € T1 : wissupportedon x1,...,Xp—r—1,Xn} \ xZ and 7 := xZ.
Observe that 7 = U/ UV L {x]}.

For each w € U choose some n —r < i < n—1 for which x;|w and let @ := x% and @ :=i.

For each w € V define the following

e Letwp=1and for1 < ¢ < g let wy denote the lexicographically largest monomial of
degree { dividing w.

e For 0 < ¢ < g —1let A(wy) to be the index of the variable “’w’—:l

e For0 <t <qg—1letuw, = & lix=uy};-

For example, if @ = xjx3x4 then wy = x]x3, then A(ws3) = x3 and 1, = uues. Define

q
— -1,,0-1 9=t ¢ % -1
Q:= E (=1 Tuy, x| xyeq + E uzwa)xne ot E Udg E (-1 Uy g Wg- gxneOA(a)q )"
=1

weld weY
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Here is the lift of the syzygies

\Pl(ejol.) = (xj + uojxn)ey; — (xi + uOixn)egj, 0<j<i<n-r-1

\Ifl(eél.) = (xj + uojxn)e& — xie’o"]., j<n-r<i<n-1

FN gk
Wi(ey,) = xjeg; Xi€y;,

0y — * _ L d ok q _x
Wi(ey;) = xoe]; — xjeq — unx,eg

r—1

* q
- Z howey — Z U1n—r+1X1€0 y_py]

w€eTh

1=0

r=1
*
- Z Z WowUln-r+1@Wey . g+ (101 — u1,)Q

1=0 weTq
0y _ * q _* * q x .
Wi(ey;) = xoel; — xjeq; — Z Upwey; — U1iXyeq, + o2, 2<i<n-r-1
w€eT
r
1y _ * * q _* q _* *
Wi(ey;) = x1e]; — xjel; + unix, ey — uyix,eq + Z UL, n—r 1 Xn—r+1€7];
1=0
r—1
* .
= ) Wil n—r+1Xn€g 10 2<i<n-r-1
1=0
iy _ * * 9 x 9 % ..
Wi(ey;) = xjel; — Xjey; + u1jXyeq; — U1iXyep;, 2<j<i<n-r-1

It will be notationally convenient to separate the cases ¢ > 1and g = 1. If g > 1, composing

Y, and W1 we obtain

‘I’o‘l’l(eéi)
Yo (‘1’1(6]1'1-))
Wo(W1(e),)
Wo(WP1(e)))
Wo(W1(ey;))

with a = (-1)77 1], + (-

0, 0<j<i<n-1 (5.5)
= (ugiu1j — uojuli)xonH, 2<j<i<n-r-1
= (uol'(—uzn +a)— uooun)XQXZH, 2<i<n-r-1 (5.6)

+1
((—uzy + @)(uo1 — t1n) — tootia1)XoX,)

+1 .
(ur1uo; — uri(uor — urn))xoxs , 2<i<n—-r—1

1)q_1 ZwEV U2wUwg-

To compute the obstruction space we just repeat the above computation mod m{j L

Indeed, for [ > 1 let \I’é

= ¥, mod m{j land \Ifl1 =¥; mod mlJ 1. Then the image of \I’é\l’ll
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in T2(R/k, R)o ® U/mif? is

Wiwiel) = 0, 0<j<i<n-1

\Pé(\lﬂl(e]h)) = (uol'u1]' — uo]-uy)xgx,zﬂ, 2<j<i<n-r-1
1 .
\Pé(\yll(e(l)l)) = (ugi(—uzn +a)— uoouli)xonJr , 2<i<n-r-1
1
WH(Pi(ed) = (=g + @) (uor = urn) = toottn)xoXy,

+1 .
wiWiel)) = (uuoi — wi(uor — win))xox) , 2<i<n-r-1

Using Lemma 5.3.11 (1), the above equation allows us to directly read off the obstruction
to lift our family from the (I —1)-th order to /-th order (beginning with I = 1). In particular,
the ideal of obstructions to lift to g-th order is the 2 X 2 minors of

Uoo Ul — Uip U2 U3 - UOn—r-1
—Uyy t+a un Uy U1z - Ulp—r-1

If we denote this ideal by ], we have WoW; = 0in U/ (Eq. 5.6). Thus, W, gives a versal
deformation of I(A). Since we are working analytically, we may apply the isomorphism
that maps uz; +— —uz,; + a and fixes the other variables. This transformation makes ] the
2 X 2 minors of a generic matrix. Finally, adding back the trivial deformations we obtain
the universal deformation space of I(A).

If g = 1 we obtain

WoWi(e)) = 0, 0<j<i<n-1
‘1’0(‘1’1(eii)) = (ugiu1j — uojuli)xox,zl, 2<j<i<n-r-1
Wo(Wi(e)))) = (uoiuon — uoouri)xoxz, 2<i<n-r-1
Wo(Wi(e)))) = (uor(uor — t1n) — tootia1)xoxs

Wo(W1(e],)) (ur1to; — t1i(to1 — t1n))xoxs, 2<i<n-—r—1.

Arguing as in the g > 1 case we see that the versal deformation space is cut out by 2 x 2
minors of

Upo U0l —Uln Uo2 U3 - Un—r-1

uo1 U1 Uip w13 o Uip—r-1)

We have obtained the desired étale-local description as the Segre embedding P! x
P71 < P2=1)-1 jg cut out by the ideal of 2 X 2 minors of a generic 2 X (n — r) matrix. It
is well known that the Segre embedding is normal and Cohen-Macaulay [51]. It follows
that the Hilbert scheme is normal and Cohen-Macaulay in a neighbourhood of [I(A)].
Combining this with [83, Theorem 1.4] and Lemma 2.0.25 we deduce that the Hilbert
scheme is normal and Cohen-Macalay. Since the Hilbert scheme is connected [46, Corol-
lary 5.9], it must be irreducible. Finally, the description of the general member is given
in [83, Theorem 4.1] and the other statements follow from Lemma 2.0.25. O
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Proof of Theorem 5.0.1 (8). LetU = k(uqo, ..., uo,n-1,411,- -, U1,n-1,700, - - - , V0,n—1, V11]]. For

convenience we will sometimes use 119 to denote ug;. Consider the following perturbation
of EDO

WO(E&') = XoX;+ UpiXoXy + 00iX1Xy, 0=<i<n-1
\I’O(efl) = x% + U1 X0Xy + V11X1X,
Wolel,) = x1x;j+wixoxy, 2<i<n-1

and a perturbation of

\Ifl(egi) = (x0 + upoXn)ey; — (xi + UoiXy)ed, + VooXnel; — VoiXpey, 1<i<n-1
\I’l(eéi) = (xj + uojx,)ey; — (x; + uol-xn)e(’)‘]. +0gjxpe]; — UOixne’fj, 1<j<i<n-1
Wi(ed)) = (xo + vorxn)el] — x1el, — ur1xnely + (uo1 — v11)xney,
Wi(el;) = xoel; — x1el; + voixnel; + uoixned; — tiixped, 2<i<n-1
\Ifl(e%i) = (X1 + 0n1X,)e]; — Xjel + uiixpe); — uiixpel;, 2<i<n-1
‘111(8]1'1,) = xje}; — xief]. +UpjXpey; — ulixneg]., 2<j<i<n-1.
Composing the two we obtain
WoW1(ed,) = (u11900 — Uo1001)x0x5 + (001 (100 — v01) — Voo(Uo1 — v11))x1X4
WoW1(el.) = (111000 — t0100i)X0x5 + (voi(too — vo1) — U0iV00)X1X7, 2<i<n-1
WoWi(ep,;) = (w1001 — u1100)x0xs + (voi(tor — v11) — UoiV01)X1X7, 2<i<n
‘1’0‘1’1(6{)1-) = (u1700j — U1j00;)X0X 5 + (Uoj00; — UoiV0j)X1X5, 2<j<i<n
Wo(W1(eY))) = (uo1(uo1 — v11) — u11 (10 — v01))XoX2 + (U101 — U11000)X1X5
Wo(W1(ed,)) = (1100 + tortoi — t1itoo)Xoxs + (toiVo1 + D1100i — U1iV00)X1X5, 2<i<n-1
Wo(W1(eq;) = (uoiunn — u1i(uor — v11))xoxa + (U1100; — U17001)X1X5, 2<i<n-1
\I’O(\Pl(e]ii)) = (ujjuo; — uliugj)xoxfl + (uijvoi — ulivoj)xlel, 2<j<i<n-1

Since the lifts Wy and W, are first order, we see that the ideal of obstructions to lift to
second order is the 2 X 2 minors of

Up1 U Ui -+ Ulp-1
000 001 002 -+ U1,n-1
Upo —To1 U1 — 011 U2 -+ UOmn-1

Indeed, most of the minors show up as coefficients of xox% and xlx%. The other minors
come from the underlined equations

U1100; + Uo1Uo; — Uritloo + (U1iV00 — U01T0i) = Vo1Uoi — Voi(Uo1 — V11)
UiV01 + V1100i — U1i000 — (U1100i — U1i001) = Uo1toi — U1i(Uoo — Vo1)-
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If we denote the ideal of 2 X 2 minors by | we have WoW; = 0 in U/J. Thus, W, gives a
versal deformation of I(1). Adding back the trivial deformations gives us the universal
deformation space of I(A). This gives us the desired étale-local description as the Segre
embedding P? x P"~! — P3~1 ig cut out by the ideal of 2 X 2 minors of a generic 3 X n
matrix. Similar to the previous proof, the other statements follow from [51], [46, Corollary
5.9], Lemma 2.0.25 and [83, Theorem 4.1]. O

Proof of Theorem 5.0.1 (9). Let U = kl[uogo, ..., uon-1,411,--.,U1»]] and let my denote its
maximal ideal. We will sometimes use e}, to denote e;. This does not cause any
confusion as e}, is not part of a basis of Fy. Consider the following perturbation of ¢

* )\ _ 42
Wo(eg,) = xg + UooX0Xn
*
Wol(eg;) = XoX1 + Ug1X0Xy — U0, n—1U1,n-1X1Xy
\I/()(e&.) = XoX; + Ui X0Xy, 2<i<n-2
*
Woleq 1) = XoXn-1 + Uon-1X1Xn
* 2
Wo(e];) = X7 + U11X0Xy + U1,y—1X1Xn-1 + U1nX1Xy
Wo(e];) = X1X; + U1iX0Xp, 2<i<n-2.

and a perturbation of y;

‘1’1(681) = (xo + uooxn)egl —(x + M01xn)680 + uo,n—1u1,n—1xne(’§1

0 * * :
Wi(ey;) = (xo + uooxn)eg; — (xi + uoixn)eg, 2<i<n-2
1 * * * .
\Ijl(e()i) =(x1 + umxn)eOi —(x; + uol-xn)em — U0,n-1U1,n-1Xne€7;, 2<i<n-1
iy — * * ..
Wiley,) = (xj + uojxn)eg; — (xi + MOan)eoj, 2<j<i<n-=-2
j e , * * * .
\yl(eo,n—l) = (xj + “Oan)eo,n—1 — Xp-1€0; = Uo,n-1Xne7;, 0<j<n-2
0y _— * * * * *
\Ill(ell) = Xoeqp — X1€y; — U11Xpeyy — ulln_lxleoln_l + (u01 — uln)xnem
0y _— * * * . * .
Wi(ey;) = xoe]; — x1e; + upixyey — UtiXney,, 2<i<n-2
1y _ * % * ) *
Wi(ey;) = x1e]; — xje]] + un1xey; — UiiXpey,
* * .
+ (U1 p-1Xp-1 + u1nxn)e1i — U1iU1,n-1Xn€g 1, 2<i<n-2
j X A K i * . * . . _
Wi(ey;) = xjel; Xjej; + u1jXneq; — tiXneq;, 2<j<i<n-2.

For I > 1let, W) = W) mod m{/! and W} = W/ mod mif!. As done previously, the
obstruction to lifting to second order is the image of \I’(l)\lf% in T2(R/k,R)y ® m% / m%. This
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is
wlyle ) =0 0<j<i<n-2
0*r1(€p) =0, <j<i<
\I]l\yl 0 - _ 2 2
0 1(eO,n—l) = —U1UQ,n-1X0Xy; + UpoU,n-1X1X},
Tyl 1 _ 2 2
WoWi(eq 1) = ton-1(to1 — u1n) X125 — Uo,n-1411X0%X;

— U, n-1U1,n-1X1Xn-1Xn

Wyls, ) — 2 2 .
WoWi(ey 1) = Uojto,n-1X1%X; — Uo,n-1U1jX0X7;, 2<j<n-2
Tasle.0 \ — 2
WoWi(eq;) = (uo1(uo1 — u1n) — UooU11)X0X;,

2
— U n-1U1,n-1X1Xn

Wowi(el.) = (uoruoi — uoott1i)xoxs, 2<i<n-2
WiWi(el.) = (uoiun1 — uri(uor — u1n))Xox5

+ U1 n-1U1iX0Xn—1Xn, 2<i<n-2
\I’(l)\lf%(e]h) = (uOiul]- — u()]'uu)X()x%, 2<j<i<n-2

In this image, the three underlined terms are 0. Indeed, the second and third underlined
term (from the top) are 0 in R and the first term is equal to tplv (Mo, n—1U1,n-1X1Xp fal). After

the underlined terms vanish, \I’(l)‘ll% is written in terms of our desired basis elements
(Lemma 5.3.11 (2)). Thus, the ideal generated by the coefficients, which we denote by
J1, is the ideal of of obstructions to lift to second order. Let U' = U/J; and my; its
maximal ideal. To compute the the obstructions to third order we compute W2W? in

T*(R/k,R)g ® m?, /m¢,. This is

WiWieq) =0, (i,))#(0,n~1)
Wo(€g, 1) = UG -1 X1y

\P%\I/%(ejl.i) =0, forallj,i

Thus, the ideal of obstructions to lift to third order is

Upo ol — Uiy U2 Uz - UOm-2
Jo := | (up,u-1) + I N
Up1 U1 Uiy 13 - Uip—2

(100 + 10,n-1U1,n-1, Uo1, U02, - - - , U0,n—2, U11, U12, - - - , U1 n—2, Uln)-

Here I(—) denotes the ideal of the 2 X2 minors of —. Finally, it is easy to see that WoW; = 0
in U/], (for instance, the underlined terms in \I’(l)\l’% are cancelled by the second order
terms). Thus W gives a versal deformation of I(1). Adding back the trivial deformations
gives us the universal deformation space of I(A).



CHAPTER 5. HILBERT SCHEMES WITH TWO BOREL-FIXED POINTS 84

From Proposition 5.3.5 and Corollary 5.3.9 we see that there are 4n — 6 trivial deforma-
tions; denote themby t1, . . ., t4,—6. Thus, the smooth component of Spec(Ul[t1, .. ., tan—6]/]2)
has dimension 4n — 4. Since P, = (t:’f;z) +t + 1, there is an irreducible component, ),
whose general member parameterizes a line and a disjoint (1 — 2)-plane. This is birational
to G(1,n) X G(1, n —2) and, as a consequence, has dimension 4n —4; thus ) is the smooth
component. It is shown in [81] that ) is isomorphic to a blow up of G(1,1n) X G(n — 2, n)
along the locus {(L, A) : L € A}. Similar to the previous proofs, the other statements

follow from [51], [46, Corollary 5.9], Lemma 2.0.25 and [83, Theorem 4.1]. O
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Chapter 6

On the tangent space to Hilbd(P3)

In this chapter we study the tangent space to the Hilbert scheme Hilb?(P3), motivated by
Haiman’s work on Hilb?(P?) and by a long-standing conjecture of Briangon and Iarrobino
on the most singular point in Hilb?(P").

For an ideal I, denote by T(I) the tangent space to the corresponding point [I] in the
Hilbert scheme. The question of finding the largest possible dimension of a tangent space
to Hilb? P" has been raised in many places, including e.g. [1,10,69,93]. To answer this
question we restrict to an affine open A" = Spec k[x, ..., x,] € P". Itis natural to expect
that a fat point subscheme V ((xl, cee, xn)r) C A" yields the most singular point in its own
Hilbert scheme:

Conjecture 6.0.1 ([10]). Let S = k[x1,...,x,], m = (x1,...,x,), and d = (”Z"l) withr € N.
For all [I] € Hilb"(A") we have dimy T(I) < dimy T(m").

No progress on the conjecture has been made so far. By degeneration arguments,
one reduces Conjecture 6.0.1 to monomial ideals I, and in fact to Borel-fixed ideals in
characteristic 0. Inspired by Haiman’s theory of Hilb?(A2) [40], we decompose the tangent

space T(I) to a monomial ideal I C k[x1, ..., x,] into subspaces defined in terms of Z"-
graded directions, as follows.

Definition 6.0.2. A signature is a non-constant n-tuple on the two-element set {p,n},
where
p = “positive or 07, n = “negative”.

Let © denote the set of signatures, and define for each s € ©
Zg
(D)

{(ar,...,an) €Z" :a; >0 if 5;=p, a; <0 if s; =n}

@ T(D|, c T()

a€Z}

where |T(I)|, denotes the graded component of T(I) of degree o € Z".
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We then have Tpp..p(I) = Ton..n(I) = 0, and therefore T(I) = P T:(I), cf. Propo-
sition 6.1.8. Our first theorem establishes a symmetry between components of opposite
signature.

Theorem 6.2.4. For any monomial point [I] € Hilb?(A%) we have

dimy Tppn (I ) = dimy Tanp (I ) +d,
dimy Tpnp(I) = dimy Thpn(I) +4d,
dimy Trpp(I) = dimy Tpnn(I) + d.

This result may be regarded as a generalization of Haiman’s combinatorial proof of the
smoothness of Hilb?(P2) [40]. In our notation, his proof shows that

dimy Ton(I) = dimy Top(I) = d 6.1)

for any monomial point [I] € Hilb”(A2). Theorem 6.2.4 extends Eq. (6.1) to A% in the sense
that it implies

dimy Tpnp (I) + dimy Tonn(I) = dimy Thpp (I) + dimy Trpn (1)

and two other similar equations. Our result may be seen as further evidence for the
exceptionality of the Hilbert scheme of points in P2. For instance, it implies that dimy T(I)
has the same parity as the length d = dimy(S/I), a fact established in [66] where it plays
a crucial role in the calculation of Donaldson-Thomas theory for toric threefolds. We are
not aware of any such symmetry phenomenon in higher dimension.

As a special case, Theorem 6.2.4 provides a simple criterion for smoothness of mono-
mial points on the Hilbert scheme, in terms of the subspaces T;(I).

Theorem 6.2.6. A monomial point [I] € Hilb?(A%) is smooth if and only if
Ts(I)=0 for all s € {pnn, npn, nnp}.

In the opposite direction, we use the subspaces Ti(I) to provide evidence in favor of
Conjecture 6.0.1. Clearly, Conjecture 6.0.1 is implied by the statement that dimy Ts(I) <

dimy Ts(m”) for all s € S and all Borel-fixed points [I]. For Hilb?(A3), we are able to
establish this inequality for four out of the six signatures s. As a bonus, we characterize
when equality holds.

Theorem 6.3.6. Let d = ("}?) and let [I] € Hilb”(A3) be Borel-fixed, with char(k) = 0. We
have

dimy Tppn(I ) < dimy Tppn(mr), dimy Tnnp(I ) < dimy Tmp(mr),
dimy Tpnp(l ) < dimy Tpnp (mr) , dimy Tnpn(l ) < dimy Tnpn(mr).

Moreover, in each case equality occurs if and only if I = m’".
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We conjecture that dimy Tnpp(I) < dimy Tnpp(m”) and dimyg Tonn(I) < dimy Tpnn(m”) as
well, but we are unable to prove this. However, we are able to prove Conjecture 6.0.1 up
to a factor of %. This also allows us to improve the asymptotic bound on the dimension of

Hilb?(P3), a problem proposed by Sturmfels in [93, Problem 2.4.c].

Theorem 6.4.2. Forall d € Nand [I] € Hilbd(P3) we have
dimy T(I) < %dimk T(m") ~ 3.63 - 43 + O(d)

whenever d < ("3?). In particular, dim Hilb?(P%) < 3.64 - d3 for d > 0.

Note that Theorem 6.4.2 also holds for Hilbert schemes of points of arbitrary smooth

threefolds, since these are étale-locally isomorphic to Hilb?(P?), see for instance [8, Lemma
4.4].

6.1 The tangent space

Notation 6.1.1. For this chapter k will denote an infinite field and S = k[x1, ..., x,] the
polynomial ring in n variables, m = (x1,...,x,) the ideal of the origin in A" = Spec(S)
(note that this is different from the other chapters). When n < 3, we typically denote the
variables by x, y, z instead of x1, xp, x3. If V is a (multi)graded vector space, we use the
notation |V, to denote the graded component of V of degree a.

The main object of interest is the Hilbert scheme Hilb? (A") parametrizing O-dimensional
subschemes of A" of length d, equivalently ideals I € S with dimy(S/I) = d. The Zariski
tangent space to a point [I] € Hilbd(A”) may be identified with the k-vector space (Exam-
ple 2.0.4)

T(I) = Homg(I, S/I).

The well-known generic initial ideal deformation allows to reduce questions such as
Conjecture 6.0.1 to the case of Borel-fixed points, see [24, 15.9] or [69, 2.2-2.3] for details.

Lemma 6.1.2. For every [I] € Hilb? A" we have dimi T(I) < dimy T(gin I). Moreover,
gin I C S is Borel-fixed.

For a monomial point [I] € Hilb%(A") the tangent space T(I) inherits a natural Z"-
grading. Our next goal is to describe a combinatorial interpretation of T(I) in terms of
regions in Z".

Definition 6.1.3. For a monomial ideal I, we define I € N" to be the subset consisting of
the exponent vectors of all monomials in I.
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A path between a, § € Z" is a sequence a = @,y 5= 5, (m) = g of points of
Z" such that ||y — y®|| = 1 for all i, where ||5] = Z?:l |6;| denotes the 1-norm in Z" .

A subset U C Z" is said to be connected if it is non-empty and for any two points
a, B € U there is a path between them contained in U. Given a subset V C Z", a maximal
connected subset U C V is called a connected component.

A subset U C Z" is bounded if Card(U) < oo.

Remark 6.1.4. Let [I] € Hilb?(A") and a € Z". A connected component U of T+a)\ I
is bounded if and only if U € N”. The condition is sufficient as Card(N" \ I) < o0, and
necessary since if § € U with f; < 0, then § + me; € U for all m € N and j # i, where
e; € N" is the j-th basis vector.

Proposition 6.1.5. Let a € Z" and [I] € Hilb?(A"). The set of bounded connected components
of (I + a)\ I corresponds to a basis of |T(I)]q.

Proof. For each bounded connected component U C (I + a)\ I we define a multigraded
k—linear map @y : I — S/I by setting gy (xf) = x**F € S/l if a + B € U, 0 otherwise. We
claim that ¢y is S-linear; it suffices to check the equation ¢(xfx?) = xfd(x?) in S/I for all
B eN",y el Thisisclearly trueif a +f+y € I. fa+f+y ¢ I, observe thata +f+y € U
if and only if a +y € U, since the two points are connected in (I + )\ I, thus the equation
holds and ¢y € |T(I)|o. We have Image(py) = span, (x* : a € U) € S/I, hence all maps
@u are linearly independent.

Finally, let ¢y € |T(I)|, be any map. If B,y € I are such that a + f, a + ¥ lie in the same
connected component U C (I+a)\ I, then there exists cy,u € ksuch that Y(xP) = C4,,ux“+/3
and (x7) = cy,ux®7: this claim follows easily by induction on || — y||. In particular,
cy,u = 0if U is unbounded. We deduce that ¢ = i, ¢y, upu, concluding the proof. m|

Remark 6.1.6. A simple but useful consequence of Proposition 6.1.5 is the fact that, for

I monomial, dimy T(I) is independent of k. Thus, in Conjecture 6.0.1 we may assume
chark = 0.

Remark 6.1.7. For n = 2, the tangent space T(I) is analyzed combinatorially in [40] in
terms of “arrows”, see also [69, 18.2]. That description is essentially equivalent to the
one presented here, in Proposition 6.1.5. However, we find the framework of connected
components to be more transparent and efficient.

Recall the distinguished subspaces of T(I) introduced in Definition 6.0.2. These are the
only relevant subspaces of the tangent space:

Proposition 6.1.8. If[I] € Hilb"(A") is a monomial point and n > 2, then T(I) = P T.(I).

Proof. Let @ € Z". If a; > O for all i, then T+ @ C Tand (T + a) \ I = 0. Suppose a; < 0
for all i, we claim that (I + @) \ I is connected and unbounded. To see this, notice that
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the “boundary” B = I \ (T +(1,1,..., 1)) is connected and unbounded. Furthermore,
B+a)NI=0,s0(B+a)<(+a)\ Iisconnected and unbounded. However, any point

of I+ )\ Iis connected to (B + a), since any point of I is connected to B by a straight
path, and this verifies the claim. In either case |T(I)|, = 0 by Proposition 6.1.5. O

For a monomial point [I] € Hﬂbd(Az) Proposition 6.1.8 gives the decomposition
T(I) = Tpn(I) @ Tnp(l)/
whereas for a monomial point [I] € Hilb%(A%) we have
T(I) = Tppn(l) ® Tpnp(I) ® Tnpp(l) ® Tpnn(I) ® Tnpn(I) ® Tnnp(l)'

Next, we compute the components of the tangent space for the fat point [m”]. For any
vector @ = (a1,...,a,) € Z" we have a = a* — a~ for two unique vectors a®,a” € N"
such that a* - a= = 0. Moreover we denote w(a) = a1 + -+ + a, € Z.

Lemma 6.1.9. Let @« € Z" and r € N. We have |T(m")|, = 0 if w(a) # 1. If w(a) = =1 then

dimu [T(m")|o = ("7~ if w(a™) < 7, |T(M")]o = 0 otherwise.

Proof. For simplicity we denote M = m” C N". If w(a) > 0 then((M + @) \ M) NN" =0,
while if w(a) < -2 then the whole region (M + a) \ M is connected and unbounded, as
it follows by inspecting the points § + a € (M + a) with w(f) = r,r + 1. In either case
|T(m")|, = 0 by Proposition 6.1.5.

If w(a) = —1 then any bounded component of (M + a) \ M consists of a single point
B + a € N" with w(B) = r. These points are in bijection with points y =  — a~ € N" such
that w(y) = r — w(a™), i.e. with the monomials of degree r — w(a~), yielding the desired
formula. O

Finally, we distinguish some special tangent vectors in T(I). For an S-module M, we
denote its socle by soc(M) = 0 :pr m € M. Notice that soc(T(I)) = Homg(I, soc(S/I)) <
T(I).

Remark 6.1.10. If [I] € Hilb%(A") is monomial, then soc(S/I) and soc(T(I)) are Z"—graded.
Furthermore, we see from the proof of Proposition 6.1.5 that a k-basis for |soc(T(I))|a

is given by the maps ¢y where U C (I + @)\ I is a connected component such that
Card(U) = 1. We refer to these ¢y;’s as the socle maps.

It is easy to compute dimy soc(T(I)), using the isomorphism

soc (T(I)) = Homsg (I, soc (?)) =~ Homy (mLI’ soc (?)) ) (6.2)

When I = m” we have soc(T(I)) = T(I) by Lemma 6.1.9, but in general the inclusion is
strict.
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6.2 Symmetries in the tangent space and smooth points

In the rest of the paper we work with the Hilbert scheme of points in A?, so we fix S =
k[x,y,z] and m = (x, y, z), unless stated otherwise. We explore symmetries between the
components T;(I) of the tangent space introduced in Definition 6.0.2. The main results of
this section are Proposition 6.2.3 and Theorem 6.2.4, which parallel phenomena observed
for Hilbd(Az) in [40]. As a byproduct, we also prove Theorem 6.2.6, which characterizes
smooth monomial points on the Hilbert scheme.

A monomial ideal I C S admits direct sum decompositions, as module over the sub-
rings of S, into smaller monomial ideals. For instance, the k[z]—and k[vy, z]-decompositions

of [ are o '
I= @xly](zbfrf) = @xlli
i] i
where (z%i) C k[z] and I; C k[y, z] are monomial ideals. Clearly, such decompositions
exist and are unique. Since [ is an ideal, we have b;; > biy1,j,bij+1 and I; C [y, If

I is m-primary, then b;; = 0 for all but finitely many E)airs i,j, and I; = kly,z] for
all but finitely many i. Analogous remarks hold for the k[x]-, k[y]-, k[x, y]-, and

k[x, z]-decompositions of I.

Remark 6.2.1. Let [I] € Hilb?(A%) be a monomial point. In his way to proving that
Hilb%(A2) is smooth, Haiman [40] shows that

dimy Ton(I) = dimy Top(I) = d. (6.3)

In fact, a more precise statement is proved. Consider the k[y]-decomposition I =
P x(y"). Then for each i € N we have

D dimi [T(Dla = > dimic|T(D)]a = b (6.4)
0(1=i 0(1=—i—1

Note that Eq. (6.3) and Eq. (6.4) cannot be extended directly to A3, since the Hilbert
scheme is singular, and the dimension of T(I) actually depends on I and not just on d.

Nevertheless, we are going to establish versions of these equations for Hilb?(A3).
We begin with a homological lemma, which we state in the general case of a polynomial
ring in n variables, for simplicity.

Lemma 6.2.2. Let S = k[x1,...,x,] and M be an Artinian Z"-graded S module. For each
{=0,...,n there is a natural isomorphism of functors of finitely generated Z"-graded S modules

Exti(—, M) = Ext{ (M, - ® ws)

where - denotes the Matlis dual and ws the Z"-graded canonical module. In particular, for every
finitely generated Z"*-graded module N we have

Ext;(N,M)" = Extt (M, N)(-1,-1,...,-1)
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as Z" —graded vector spaces, where —" denotes the k-dual.

Proof. To prove the first assertion, by the universal properties of derived functors [24,
A.3.9], it suffices to verify the following four properties for the functors Extg_f (M, -®ws)'.

(i) Isomorphism for £ = 0, that is, Homs(—, M) = Extg(M, — ® ws)’.
(ii) The vanishing Ext} ‘(M, P ® ws) = 0 for finitely generated projective P and ¢ > 0.

(iii) For each short exact sequence 0 — N’ — N — N” — 0, there is a long exact
sequence of Extg"} (M, -® ws)'.

(iv) Naturality of the connecting homomorphism, that is, for each map of short exact
sequences of S-modules, the two long exact sequences of Extg_f(M ,—® ws) forma
a commutative diagram.

For (i), observe that we have natural isomorphisms
Homg(—, M) = Homg (-, Ext}(M, ws)’) = (- @ Ext{(M, ws)) = Ext{(M, - ® ws)'.

The first one follows from the Local Duality Theorem [11, 3.6], while the second one by
Hom-Tensor adjointness. To see the third one, let F, be a minimal free resolution of M,
then

Extt(M, — ® ws) = H" (Hom(F., - ® ws))
=~ H"(Hom(F., ws) ® —)
=~ H"(Hom(F,, ws)) ® — by right-exactness
= Extg(M, ws) ® —.

For (ii) it suffices to show the vanishing in the case P = S, which follows since M is
Cohen-Macaulay of grade n, cf. [11, 3.3]. Items (iii) and (iv) follow from the corresponding
properties of Exts(M, —) combined with the exact contravariant functor —’. Finally, the
second assertion of the theorem follows from the first since wg = S(-1,-1,...,-1) and
-V = -/ cf. [11, 3.6]. |

Proposition 6.2.3. Let [I] € Hilb"(A3) be a monomial point, with k[z]-decomposition I =
&P x'y/(z%7). For every i, j € N we have

> dimi | T(D]e = bij+ > dimg| (D). (6.5)
a1=1 ay=—i-1
ar=j ap=—j-1

Proof. Fix i,j € N and consider the groups Exté (§/I1,S/I) for¢ =0,...,3. We have

Ext(S/1,S/I)=S/I and Exty(S/I,S/I)=T(I),
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where the latter holds since Exté(S /1,S/1) = Extg(I ,S/I) by homological “dimension
shift”. By Lemma 6.2.2 we have Extf;(S/I, S/I)Y = Extg_e(S/I, S/I)(-1,-1,-1), hence

> dimy [ExtY(S/1,8/1), = Z dimy |S/I], = bij,

a1=1 a1=1

a2=j a2=j

Z dimy [Ext}(S/1,S/1)|, = Z dimy |T(D)|a,
a1=i alzi

ar=j ar=j

Z dimy [Ext3(S/1, S/1)|, = Z dimy |T(D)|«,
a1=i a1=—i—1

ar=j ar=—j-1

Z dimy [Ext3(S/1,8/D)|, = Z dimy |S/I|, = 0.
a1=i a1=—i-1

ar=j ar=—j-1

Eq. (6.5) is then equivalent to

3
Z(—1)" Z dimy | Ext§(S/1,S/1)|, = 0. (6.6)
(=0 a1=i

azzj

Let] = (xﬁ(l), cee, xB" ) and let F, be the Taylor free resolution of S/I [69, 4.3.2]. The
modules in F, are given by

Fp = @ S(-p*)  where "= lcm{xﬁ(a) ta € A}

AcA{1,...,m}
Card(A)=¢

Since Extt(S/I,S/I) = H!(Homg(F., S/I)) = H!(Homs,;(F./IF., S/I)), we can rephrase
Eq. (6.6) as

m
Z(—l)f Z dimy [Homs,(F¢/IF;, S/1)|, = 0. (6.7)
=0 a1=j

ax=j]

Define for each A C {1, ..., m} the quantity
tg= Z dimk|Hom5/1 (S/I( —IB’A),S/I)LX.

a1=i
ar=]

then Eq. (6.7) is equivalent to

Z (—1)Card(A)y . = 0, (6.8)
Ac{1,...,m}
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Note that for each a and A we have

| Homs); (S/1( =), 8/1)|, = [Homs;1 ($/1,8/1)| .4 = [S/1]

a+pA a+pA

so that i
1 ifa+pAeN3\I,

dimyc | Homs,r (S/1( - ), S/1)|, = {o otherwise.

Adding over all a3 € Z we get t 4 = Card {ag, eZ: (i,j,a3)+ ﬁA e N3 \ T}, that is, in
terms of the k[z]-decomposition of I,

bA=biypa jipa- (6.9)

Assuming without loss of generality that xP" = 2%, the formula Eq. (6.9) immediately
implies that t4 = t u(m) for every A, which in turn yields Eq. (6.8) and concludes the
proof. m|

The following consequence of Proposition 6.2.3 is the main result of the section.

Theorem 6.2.4. Let [I] € Hilbd(A3) be a monomial point. We have

dimy Tppn(I) = dimy Tanp(I) +d,
dimy Tpnp (I ) = dimy Thpn(! )+d,
dimy Trpp(I) = dimy Tpnn(I) + d.

Proof. The first equation follows from Proposition 6.2.3 by adding over all 7, j € N, and
using Proposition 6.1.8. The other two follow from the first by permutation. O

Theorem 6.2.4 provides the correct generalization of Eq. (6.3) to A3, since it implies

where e.g. Tpn«(I) = Tpnp(I) ® Tonn(I). To the best of our knowledge, Proposition 6.2.3 and
Theorem 6.2.4 do not extend to higher dimensions.

Theorem 6.2.4 is also a vast generalization of the following parity result of Maulik,
Nekrasov, Okounkov, and Pandharipande, which follows from [66, Theorem 2], see also [8,
Lemma 4.1 (¢)].

Corollary 6.2.5. For each monomial point [I] € Hilbd(A3) we have dimy T(I) = d mod 2.

Whether dimy T(I) = d mod 2 for every [I] € Hﬂbd(A3) is an open and interesting
question; see [12, Remark 22] for related matters. A stronger open question is whether
for any [I] € Hilbd(A3) there exists a monomial [M] € Hﬂbd(A3) such that dimy T(I) =
dimy T(M).

Another interesting special case of Theorem 6.2.4 occurs when each of the three equa-
tions is a small as possible: we obtain the following smoothness criterion for monomial
points in Hilb" (A3).
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Theorem 6.2.6. A monomial point [I] € Hilb" (A3) is smooth if and only if
T.(I)=0  for s € {pnn,npn, nnp}.

Proof. It is known that a monomial point [I] lies in the closure of the component of

Hilb?(A%) parametrizing subschemes of d distinct points, see e.g. [13, 4.15]. We deduce
that [I] is a smooth point if and only if dimy T(I) = 3d, and the statement follows by
Theorem 6.2 4. 0

The criterion can be particularly effective in proving that a point [I] is singular: it
suffices to exhibit a single tangent vector with forbidden signature. In many cases, the
existence of such tangent vector follows just by looking at the minimal generators of I. We
give two examples.

Corollary 6.2.7. Let [I] € Hilbd(A3) be a monomial point. Suppose the minimal generating set
of I contains three monomials x®1y®2, xP1zP3 72273 with aq, aa, B1, B3, y2, 73 > 0 satisfying one
of the following:

o a1 > fBrand ar > Y,

o f1 > ajand B3 > y3;

® V2 > azand y3 > Bs.
Then [I] is a singular point.
Proof. Since dimy(S/I) < oo, there are also minimal generators x°!, y°2,z%, and by mini-
mality we get s1 > a1, f1, 52 > a2, V2, 53 > B3, 3. It follows that there are monomials

) ~ ~ S
x51y52253 1’ xelySZ 1Z€3’ xSl 1yCZZC3 € soC (7

for some 61 < B1 -1,00 < -1l,e1<a1-1,e3<y3-1,05 < ar—1,03 < ﬁg—l. By
Remark 6.1.10 and by Eq. (6.2) there are three maps @1, @2, ¢3 € soc(T(I)) € T(I) such that
s3—1

(Pl(xalyaz) — xélyézz (pz(xﬁlzﬁ3) — x€1y52_1z€3, (PS(]/)/ZZ%) — xsl—lylzqu

Using the hypothesis we derive @1 € Tynp(I), or @2 € Tnpn(I), or @3 € Tpnn(I). O

Corollary 6.2.8. Let [I] € Hilbd(A3) be a strongly stable point. Then [I] is smooth if and only if
x el

Proof. Assume x ¢ I and let z*> € I be a minimal generator. By strong stability, xy? is a
minimal generator for some a > 0, and moreover xz%7!, yz3~1 € [, thus 257! € soc(S/I).
By Remark 6.1.10 and by Eq. (6.2) there is a map ¢ € soc(T(I)) € T(I) such that p(xy”) =
271, 50 ¢ € Tanp(I) # 0.
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Now assume x € I. Then y; = 0 for all x” € S/I, and 1 = 0O for all generators
xP # x of I. Let ¢ € |T(I)|4 for some a. If ¢(x) # 0 then az, a3 > 0, 50 @ € Thpp(I).
Suppose @(xP) # 0 for some generator x # xf € I, then a; = 0 since f1 = 0. Assume
by contradiction that ay, a3 < 0. Considering the “boundary” B = 1 \ (T + (0,1, 1)) and
arguing as in Proposition 6.1.8, we see that (I + a) \ I is connected and unbounded. This

contradicts Proposition 6.1.5, thus @z > 0 or a3 > 0,and ¢ € Tppn(I) @ Tpnp(I). We conclude
that Tonn(I) = Tnpn(I) = Tanp(I) = 0. O

6.3 Extremality of subspaces of the tangent space

In this section we prove Theorem 6.3.6, confirming the extremal behavior predicted by
Conjecture 6.0.1 for certain components T;(I) of the tangent space.

Proposition 6.3.1. Let [I] € Hilbd(A3) be a monomial point with k[z]—decomposition 1 =
P xty/ (zb"«f). For each a1, az > 0 we have the inequality

Z dimy |T(I)|(a1,a21a3) < Z (bi,j —max{bis1,j, bijs1}) -

a3<0 >
j=as

Proof. Fix non-negative integers a1, as, and define the sets

C= U {bounded connected components of (T + (a1, an, 0(3)) \ I },

a3<0

S = {(z‘,j,k)g_:f: i>a1,j> azand(i+1,j,k),(i,j+1,k)ef}.

We defineamap W : C — Sby choosing, foreach U € C,avector W(U) = (1#111, Lpg, 1/}%1) el
such that I,Dé’l is the least possible among vectors in U, and (IP%J +1, l,bg , gbé[ ), (gb%l , gb’zl +
1,95 ¢ U. The choice is possible as Card(U) < co. Since U is a bounded connected

component of (I + (a1, @z, a3)) \ I for some a3, the vector W(U) is indeed in S.
We claim that the map W is injective. Let U # U’ be bounded components of

(f+ (a1, az,ag)) \ [ and (f+ (a1, an, ag)) \ I respectively, for some a3, a; < 0. If ag = o]
then U N U’ = 0 by definition of connected component, hence W(U) # W(U’). Sup-
pose now a3 < aj, thus (T+ (al,az,aé)) \ Ic (T+ (al,az,ag)) \ I. HUNnU # 0
then necessarily U” ¢ U, and this implies W(U’) + (0,0, a3 — a}) € U. We conclude that
Pl < gbg’ +az—aj < gbgl', in particular W(U) # W(U’) as claimed.
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Note that, for each pair i, j, we have Card {(i,j, k) ¢ I: (i+1,7,k),G,j+1,k) e f} =
b, — max{bis1,j, bi j+1}. We deduce that

Card(C) < Card(S) = Z (bi,j —max{bj+1,, bi,j+1})

i>a
jzas

concluding the proof by Proposition 6.1.5. m|

By combining the inequalities for all a1, a2 > 0 Proposition 6.3.1 provides upper
bounds for Typn(I) and, up to permutation, for Tonp(I) and Thpp(I). Using the symmetries
of Section 6.2, we also obtain estimates for the other three signatures. We are going to

apply these bounds to Borel-fixed points. Before we can present the main result, we need
some lemmas about strongly stable ideals and powers of m.

Lemma6.3.2. Let[I] € Hilbd(A3) be a strongly stable point with k[z]— and k[y |—decompositions

I = @ xiyj(zb’;f/) = @xizj(ybiy'f).

M — 1Y
Then max{blﬂj ]+1} b? i1 and max{blﬂj l.,].+1} b: ]Hfor all i, j.
Proof. Since I is strongly stable, x'y/*1z biin e 1 implies x'*1y/z Yl € 1, thus, by definition
bfﬂ] bf]+1 ie. max{le] ’].+1} = bf]H The other equation is proved similarly. O

Lemma 6.3.3. Let [I] € Hilb"(A3) be a strongly stable point with k[y, z]-decomposition I =
EB x'I;. Then for every i > O the ideal I; is strongly stable, and we have I; : y C ;1.

Proof. Both properties follow easily by strong stability. m|

Lemma 6.3.4. Let [I] € Hilb"(A3) be a strongly stable point with k[y, z]—-decomposition I =
P x'I;. If d < dimy(S/m") then for all 0 < j < r we have

r—1
; i Zd (y z)“ (6.10)

Moreover, if equality holds forall 0 < j <r -1 then [=m"

Proof. Observethat m” hask[y, z]-decompositionm” = P x'(y, z)"~', with the convention
that (y, z)" = k[y, z]if h < 0.

Suppose first dimy (k[y, z]/Ip) = dimk( [y,z]/(y,2)"). We prove the inequalities
Eq. (6.10) by induction on £ = min{h : x” € I}. The case ¢ = 11is clear, so we assume ¢ > 1.
Define I’ = @xl 11, ¢ S, then x~1 € I and

dimy(S/I") = dimy(S/I) — dimy (k[y, z]/Io)
< dimg(S/m") - dimy (k[y, z1/(y, 2)")
= dimy (S/m" ).
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Applying the inductive step to I’ and m"~! we deduce
r=1 -2

K[y, =
> dimy %Z]:Zd <Zd yz)rlz Zd yz)rl

i=j i=j—-1 i=j—-1

verifying Eq. (6.10) for all 1 < j < r — 1, while the case j = 0 holds by assumption.
Suppose now that dimy (k[y, z]/Io) < dimy (k[y, z]/(y,2)"). We claim that

dimy (K[y, z]/I) < dimy (K[y, z1/(y, 2)")

for all i, implying the inequalities Eq. (6.10). By Lemma 6.3.3 it suffices to verify the follow-
ing statement: if | C k[y, z] is strongly stable and dimy (k[y, z]/]) < dimy (k[y, z]/(y, z)")
for some h, then dimy (k[y, z]/(J : y)) < dimx (k[y, z]/(y, 2)""!). Write

— (ya’ ya—lzq’ ya—chz ., yZC“’l, an)’
so]:y =y, y 2z, y" 3z, ., z%1), If ¢, < h then (y,z)" C ] by strong stability,
thus (y, z)"! = (y,z)h yC ] y and the claim follows. If ¢, > h then the claim follows as
Kzl Kzl xh K _Klyz] Ky, 2]
dimy —— — dimy —— Ci 2 > h = dimy — dimy .
] J:y Z‘ i (y,2)" (y, 2)"!

Finally, assume equality holds in Eq. (6.10) for all j, then

dimy (K[y, z]/1}) = dimu (K[y, z1/(y, )™

for all i. We show by decreasing induction on i that I; = (y,z)"~". If x” ¢ I then I contains
no monomial of degree r, by strong stability, yielding the contradiction I € m"*!. Thus
I; = k[y, z] foralli > r. Now suppose I; = (y,z)" " forsome0 < i < r. Using the argument
of the previous paragraph with | = I;_j and h = r —i + 1, we must have ¢, < &, otherwise
dimy (k[y, z]/I;) < dimy (k[y,z]/(Ii-1 : y)) < dimk (k[y, z]/(y, z)"™"). Butif ¢, < h then
(y,z) """ = (y,z)" € J = I;_1, and equality must hold by dimension reasons. O

Lemma 6.3.5. Let r € N. We have

dimy Topn(") = dimy Topp(n") = dimmy Typp(m”) = (r K 3),

dimk Tpm(mr) = dimk Tnpn(mr) = dimk Tnnp(mr)

Il
—_—
~
e+
N
~————

In particular, dimy T(m") = (”52) (”51).
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Proof. Using Lemma 6.1.9 and the “hockey-stick identity” of binomial coefficients one gets

r12 4+ r=1 r=1-m rel—a o r=1 r+l-m I
. " _ 3 — a1 —az2| _
SO W Rt YD S G S AP YIRS

ay,02>0,a3>-r a1=0 a»=0 a1=0 h=2
a1taxt+az=-1

(TR ()

The same holds for Tpnp(Mm”), Tnpp(M”) by symmetry. The other formula is proved likewise.
The last formula follows from Proposition 6.1.8. O

We are now ready to state the main theorem of this section:

Theorem 6.3.6. Let char(k) = 0 and [I] € Hilb?(A®) be Borel-fixed, with d = ("}?). Then we
have

dimy Tppn(I ) < dimy Tppn(mr), dimy Tpnp (I) < dimy Tpnp(mr) ,

dimy Tnnp(f ) < dimy Tnnp(mr), dimy Tnpn(I ) < dimy Tnpn(mr).

Moreover, in each case equality occurs if and only if I = m”

Proof. By Theorem 6.2.4 it suffices to prove the first two inequalities. We consider the
k[z]-, k[y]- and k[y, z]-decompositions of I

I= @xiyf(zb?rf) = @xizj(ybiy’/) = @xilz‘-

Note that ;- bf]. = dimy(k[y, z]/I;) for each i. Recall that I; = k[y, z] for all i >

r,
as observed in the proof of Lemma 6.3.4. We apply Proposition 6.3.1 and Lemma 6.3.2,
Lemma 6.3.4, Lemma 6.3.5 to obtain

dimy Tppn(I) = Z dimy [T(I)|(ay,a0,05) < Z Z bz _maX{le] ,j+1})

a1,a2>0 a1,02>01i>a
a3<0 jza
= Z Z (b7, = b7 ,,) = Z(i+1)(j+1)(bz ~bi ) = Z(i+1)bf,].
a120i>m i,j i,j
a2>0j>a;
r—1 r-1 r-1 r—1 r-1
kly, z]
= +1)di = dim < dim
Z(;(z ) dimy T Z ) <22 (y, ),]
= i=0 j=i i=0 j=i
1

Il
B
|
<
1
[y
—
<
[
N —
+
—_
~—————
Il
. ~
|
—_
<
L
+
—_
—_——
N =
~————
Il
<
AN
—_——
~
(})N
\/
<
+
N

)26
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The inequality dimy Tpnp(I) < dimyg Tpnp(m”) is proved in the same way, using the
second part of Lemma 6.3.2 and the fact that for each i we have ), j0 bi./ i = dimy(k[y, z]/1;).

Finally, we verify the last assertion of the theorem. Observe that, if any of the four
inequalities is an equality, then all the inequalities in the application of Lemma 6.3.4 are
equalities, so for every 0 < i < r — 1 we have

r=1 r=1
> dimi(kly, z1/1) = ) dimyc (K[y, 21/(y,2)"7),
j=i j=i
and this in turn forces I = m” by the second part of Lemma 6.3.4. O

Remark 6.3.7. By Lemma 6.1.2, Remark 6.1.6, and Proposition 6.1.8, Theorem 6.3.6 verifies

two thirds of Conjecture 6.0.1 for Hilbd(A3 ). In fact, we conjecture that the remaining two
inequalities

dimy Trpp(I) < dimy Tppp(m”) and dimy Tonn(I) < dimy Tpnn(m”)

are also true. However, the bounds obtained for these subspaces through Proposition 6.3.1
are not sharp enough to prove them, as the next example shows.

Example 6.3.8. Let I = (x) + (y,z)° where s € N. We consider its k[x]-decomposition
I =P y'z/(xbi). Observe that b; ; = 1if i + j < s, whereas b; j = 0if i + j > 5. Proceeding
as in the proof of Theorem 6.3.6, we use Proposition 6.3.1 to estimate dimy Tnpp(I) and
obtain

dimy Tnpp(I) = Z Z dimy [T(D](ay,a0,05) < Z Z (bi,j — max{bis1,j, bij+1})

ar,a3>0 a1<0 ar,a3>0i>an
jzas
s+1
D D I STRSRE L N
az,a3>0 i>an,j>a3 ap,a3>0 an,a3>0
z'+j:s—l ar+a3<s ar+a3<s

s—1

(Sgl)s—Zi(i+1): (s—;—l)s_ (s—1);(s +2) _ (S;Z)-

i=1

Choose s = 15 and r = 8, so dimk(S/I) = ('5) = 120 = (*}%) = dim(S/m"). The
inequality above yields dimy Thpp(I) < (15; 2) = 680; however, dimy Tppp(M) = (813) =330
by Lemma 6.3.5.

6.4 Global estimates

We now take a more direct approach to estimating the dimension of tangent space to a
point in Hilbd(A3). This section is devoted to the proof of Theorem 6.4.2.
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Let R be a regular local ring of dimension 2, and denote by £(-) the length of an R-

module. A key step in the proof of the smoothness of Hilb?(A2) [30] is to show that
¢(T(I)) = 2¢(R/I) for all artinian ideals I € R. The next proposition generalizes this fact.

Proposition 6.4.1. Let R be a 2-dimensional regular local ring, and let I, ] C R be ideals satisfying
¢(R/I),{(R]]) < oo. Then

¢(Homg(I, R/T)) = £(R/]) + £((T : )/1).

Proof. Let 0 — R™ — R" — R — R/I — 0 be a free resolution, then the alternating
sum of ranks vanishes: ag — aj + a, = 0. Setting x(R/I, R/]) = ¥2_,(—=1)"¢( Ext'(R/I, R/]))
we have

2 2 2
XR/LR]T) = Y (~D'x(RY,R/]) = Y (~D'U(R/])-a; = (R/]) Y (~1)'a; =0. (6.11)
i=0 i=0 i=0

Let wg/; be the canonical module of R/I. Since R/I is a Cohen-Macaulay R-module of
codimension 2, dualizing its free resolution and using right-exactness of — ® R/] yields

Ext*(R/I,R/]) = Ext*(R/I,R)® R/] = wr/1 ® R/]. (6.12)
Combining equations Eq. (6.11) and Eq. (6.12) with the exact sequence

0 — Hom(R/I,R/]) = R/] — Hom(I, R/]) — Ext'(R/I,R/]) — 0

we get
¢(Hom(I,R/])) = ¢(R/])—¢€(Hom(R/I,R/])) + ¢(Ext'(R/I,R/]))
= {(R/]) + ¢(Ext*(R/I,R/]))
= f(R/])-Ff(a)R/[@RR/]).

It remains to show that ¢(wg/;/Jwgr/r) = €((I : J)/I). We have (I : J)/I = (I: (I +]))/I and
wr/r/Jwrsr = wgyr/(I + J)wg; (since I annihilates wg/;), so we may assume that I C J.
In this case R/] is a finite R/I-module and wg/; = Hom(R/], wg/). Since Hom(—, wg 1)
induces a duality in the category of finite R/I-modules (cf. [24, 21.1]) we obtain

Hom(R/J,R/I) = Hom (Hom(R/I, wg/1), Hom(R/], wgr/1))
Hom(a)R/I, a)R/])

Hom(wg1/]Jwr1, wr/y)

1R

and this implies £( Hom(R/], R/I)) = ¢(wr/1/Jwg/1), again by duality. The proof is com-
pleted, as (I : J)/I = Hom(R/], R/I). O
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Now we present the main result of this section, which establishes an approximation of
Conjecture 6.0.1 for the Hilbert scheme of points in A3.

Theorem 6.4.2. Let d, r € N be such that d < ("}?). Forall [I] € Hilb%(A3) we have
. 4
dimy T(I) < 3 dimy T(m").

Proof. By Remark 6.1.6 and Lemma 6.1.2 we may assume that chark = 0and I C S is Borel-
fixed. Let I = P x'I; be the k[y, z]-decomposition and let p = min {i I = k[y,z]}.
Assuming without loss of generality that I # m’, the hypothesis d < (”gz) and the fact that
I is strongly stable imply that p < r.

We denote by T(I); the component of T(I) of x-degree j, that is, T(I); = EBM:]. |T(I)|a.
A tangent vector & € T(I);, viewed as homomorphism & : I — S/I,is uniquely determined
by its restrictions
j kly, z]

Ii+j

.ol i+
§|x"L- x'l; — x

wherei > 0and 0 < i+ j < p. Clearly, T(I); = 0if j > p. On the other hand, we also have
T(I); = 0if j < —p, since any monomial minimal generator of I has x-degree at most p by
strong stability. For the same reason, it suffices to consider the restrictions for i < p. To
summarize, every x-homogeneous & € T(I) is determined by the induced k[y, z]-linear
homomorphisms

k[y, z]
Liy

g|li I —> with —p<j<p-1, max(0,—j) <i <min(p,p—j-1) (6.13)

where, by abuse of notation, we drop the placeholders x/, x'*/.
Now we can estimate the dimension of the tangent space:
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p—1 min(p,p—j-1)
dimy T(I) < Z dimyg Hom (Ii,
j=—p i=max(0,—j)

kly, Z]) by Eq. (6.13)

Ii4

—1 mm(pp j-1)

Ii o Liyj
my, — i al ) by Proposition 6.4.1

i

my

j=-p i= max(O —]) (

y,Z] kly, Z])

i

_ Z Zp: (d1 Ky, 21 | i k[i’z])

—p i=j Lisj
P—l p-j-1
k[y, k[y,
+ Z (dim [y Z] + dimy —[z 2l
=0 =0 i+j i
p=1 i p-1 p
kly, kly, . .
= Z Z dimy [i 2l + Z dimy [5 d reindexing
i=0 j=0 J j=0 i=p—j 1
p-1p-1 p-lp-j-1
. kly,z] kly, z]
+ dim + d
i=0 j=i I] j=0 IZ(; i
p-1 p
kly, z ,Z
:(p+1)Zd1mk [g ]+pZd K []; |
=0 I i=0 !
= (2p + 1) dimg ? < (2r - 1)(r ; 2) by assumption
4(r+2\(r+1 4
<= = —di r 3.5.
_3( ) )( ) ) 3dlka(m) by Lemma 6.3.5

Our analysis allows verifying Conjecture 6.0.1 for many monomial ideals:

Corollary 6.4.3. Let [I] € Hilb?(A3) be a monomial point with d < ("32). If xP € I with
p =< 3751, then dimy T(I) < dimy T(m”").

Proof. As in the proof of Theorem 6.4.2, we may assume that chark = 0O and I C S is
Borel-fixed: in fact, if I is any monomial ideal and x? € I, then x” € gin I as well. Now, if
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p < 3 then we can improve the estimates in the proof of Theorem 6.4.2 obtaining

dimy T(I) < (2p + 1) dimy ? < 6r; 6 (r ; 2) - (7 er 2) (V er 1) — dimy T(m").

O

As observed in the proof of Theorem 6.4.2, if I is strongly stable and d = dimy(S/I) <

("$?) then x" € I. Hence, Corollary 6.4.3 proves Conjecture 6.0.1 for “three quarters” of

the strongly stable ideals — in fact, often for a much larger fraction. For example, we use
this fact in the proof of [82] where the search for the maximum tangent space dimension
for Hilb®(A®) is reduced from all 39098 strongly stable ideals to the 2654 ones that do not
contain small powers of x.

Another consequence of Theorem 6.4.2 is a new bound on the dimension of the Hilbert
scheme:

Corollary 6.4.4. For d > 0 we have dim Hilb? (A%) < 3.64 - d3.

Proof. Let r € N such that ("}') <d < ("}?),s0 7 — 1 < V6d. Using Theorem 6.4.2 we get

2
dim Hilb?(A%) < max  dimy T(I) < = dimy T(n) = ‘—L(Y * )(r * 1)
[eHilb? (A%) 3 3\ 2 2

4
= %(r +2)(r +1)%(r) < % (\3/@) + 0O(d) ~ 3.634 - d3 + O(d)
implying the desired asymptotic bound. O

Remark 6.4.5. The authors in [10] proved that dim Hilb%(A%) < 19.92 - d 3. On the other
hand, the full Conjecture 6.0.1 would imply that dim Hilb?(A%) < 2.73 - d 3 ford > 0.
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Chapter 7
The fiber-full scheme

“Last time, I asked: “What does mathematics mean to you?” And some
people answered: “The manipulation of numbers, the manipulation of
structures.” And if I had asked what music means to you, would you have
answered: “The manipulation of notes?”

Serge Lang [61]

In this chapter we introduce a far-reaching generalization of the Hilbert and Quot
schemes that controls all the cohomological data of the quotients of a coherent sheaf
Z, instead of just the Hilbert polynomial. To accomplish this we develop a theory of
flattening stratifications for various modules and complexes; the most important being
the local cohomology modules and the higher direct image sheaves. We also develop the
notion of a fiber-full sheaf.

We start with the classical example of the Hilbert scheme compactification of the
space of twisted cubics that was studied by Piene and Schlessinger [79]. The motivating
example below shows how this well-studied Hilbert scheme decomposes into locally
closed subschemes that have constant cohomological data.

Example 7.0.1 (Theorem 7.4.9). In [79], it was shown that Hilb?f;l = H U H’ is a union of
k

two smooth irreducible components such that the general member of H parametrizes a

twisted cubic, and the general member of H’ parametrizes a plane cubic union an isolated

point. It is also known that H — H N H’ is the locus of arithmetically Cohen-Macaulay

curves of degree 3 and genus 0. We then have a decomposition

Hilbi" = (H-HNH)UH'.
k
Furthermore, one can show that the functions

M Z o N, v dimy (H(X, 0x(0)
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are the same for any element [X| € H-HNH’ and the same for any element [X] € H’ (for an
explicit computation, see Theorem 7.4.9). It then follows that Hilbi’f;l can be decomposed
k

into two locally closed subschemes where the cohomological functions h;'( are constant. It
should also be noted that one might be quite interested in studying H — H N H’ as it gives
all the closed subschemes of Pi with the same cohomological data as that of a twisted
cubic.

As presented below, the scheme we introduce allows us to provide a unified and
systematic treatment of the decomposition seen in Theorem 7.0.1. Let S be a locally
Noetherian scheme, f : X C P; — S be a projective morphism and .7 be a coherent
sheaf on X. We follow Grothendieck’s general idea of considering a contravariant functor
whose representing scheme (if it exists) is the parameter space one is interested in.

Notation 7.0.2. In this chapter S will always denote a base scheme while R will be used
to denote a polynomial ring. While this is in contrast with the rest of the thesis, it is
consistent with both the papers [19] and [20]. Since this chapter is taken from [19] we have
chosen to use the notation appearing there.

We define the fiber-full functor which for an S-scheme T parametrizes all coherent
quotients Z1 —» ¢ such that all the higher direct images of ¢4 and its twistings are locally
free over T. More precisely, for any (locally Noetherian) S-scheme T we define

1' .
Fibz 1 /s(T) = {Coherent quotient Zr —» @ R'fi1), (4(v)) is locally free over T },

forall0<i<r,veZ

where 77 is the pull-back sheaf on X1 = X X5 T and f(r) : Xr C P;. — T is the base change
morphism fr) = f Xs T. We have that

f]"iﬁy/x/s : (Sch/S)°PP — (Sets)

is a contravariant functor from the category of (locally Noetherian) S-schemes to the
category of sets (see Theorem 7.4.1). We stratify this functor in terms of “Hilbert functions”
for all the cohomologies. Leth = (ho, ..., h;): Z'1 - N'*lbea tuple of functions. Then,
we define the following functor depending on h:

dim,) (H' (Xe, %4 (1)) = hi(v) } ,

.h .
Fibzxs(T) = {g € Fibzrx/sT) | forallo<i<rvezteT

where «(t) denotes the residue field of the point f € T, X; = X7 Xt Spec(x(t)) is the fiber
over t € T, and ¥%; is the pull-back sheaf on X;. The idea of this functor is to measure
the dimension of all cohomologies of all possible twistings. We easily obtain the stratification

Fibzx/s(T) = [Ipzr1_ N fiﬁil; /X /S(T) when T is connected, and so it follows that
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Fibzx/s(T) is a representable functor if all the functors fiﬁhg /xs(T) are representable.
When .% = Ox, we simplify the notation by writing Tiﬁl;{ /s instead of Tiﬁlgx /X /s

For any numerical polynomial P € Q[t], we have Grothendieck’s definition of the Quot
functor
Quot’, 1x/s + (5ch/S)PP — (Sets)

which for an S-scheme T parametrizes all coherent quotients .#r —» ¢ that are flat over T
and have Hilbert polynomial equal to P along all fibers. The Hilbert functor 5—[1'[61:@ /x/s 18
the special case of Quot; IX/s with .% = Ox. Then, the fiber-full functor can be thought of

as a refinement of the Hilbert and Quot functors due to the following inclusions. From the
tuple of functionsh = (hy, ..., h,) : Z'*t — N'*!, we define the function Pn = },/_(=1)h;.
When P, € Q[t] is a numerical polynomial, since the Hilbert polynomial of a sheaf
coincides with its Euler characteristic, we automatically get the inclusions

Fiby o(T) < }[i[ﬁfg/s(T) and  Fib%y5(T) C Quotf;/x 1s(T)

for any (locally Noetherian) S-scheme T. If Py is not a numerical polynomial, then
fiﬁlhg/X/S(T) = ( for any S-scheme T.

The following is the main theorem of this article. Here, we show that the functor
Tiﬁg /x/s 18 represented by a quasi-projective S-scheme that we call the fiber-full scheme

and we write as Fib} /X/S" From the definition of Tiﬁgz /X /S it follows that the fiber-full
Pr

ZIX/s if one

scheme Fib};z /x5 is the finest possible generalization of the Quot scheme Quot
is interested in controlling all the cohomological data.

Theorem 7.0.3. Let S be a locally Noetherian scheme, f : X C Py — S be a projective
morphism and .% be a coherent sheaf on X. Let h = (hg,..., ;) : Z"' — N be a
tuple of functions and suppose that Py is a Hilbert polynomial. Then, there is a quasi-

projective S-scheme Fibgi /x,s that represents the functor jFib'}Jl; /x/s and that is a locally

closed subscheme of the Quot scheme Quo’cph

T/X/S"

Our main tool for constructing the fiber-full scheme is given in Theorem 7.2.2 where we
provide a flattening stratification theorem that deals with all the direct images of a sheaf
and its possible twistings. To prove this technical theorem we utilize some techniques
previously developed in the papers [14,18]. In a related direction, we also introduce the
notion of fiber-full sheaves and we give three equivalent definitions in Theorem 7.3.2.
Under the above notation, we say that .7 is a fiber-full sheaf over S if R f, ( (v)) is locally
free over S for all 0 < i < r and v € Z. Fiber-full sheaves serve as a sheaf-theoretic

extension of the notions of algebras having liftable local cohomology [60] and cohomologically
full rings [22].
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It turns out there has been previous interest in stratifying the Hilbert scheme in terms
of the whole cohomological data.

In the work of Martin-Deschamps and Perrin [65], they were able to control the co-
homologies of a sheaf, but not all the possible twistings, as their method would yield
the intersection of infinitely many (not necessarily closed) subschemes (see [65, Chapitre
VI, Proposition 1.9 and Corollaire 1.10]); their approach is based on classical techniques
related to the Grothendieck complex which are covered, e.g., in [47, §I11.12].

In the thesis of Fumasoli [32,33], he stratified the Hilbert scheme by bounding below
the cohomological functions of the points of the Hilbert scheme, which is a consequence
of the classical upper semicontinuity theorem (see [47, Theorem II1.12.8]).

Our main result Theorem 7.0.3 vastly generalizes the two aforementioned approaches
and shows that one can indeed stratify the Hilbert and Quot schemes by taking into
account all the cohomological data. In this regard, one important part of our work is
to develop the necessary tools that allow us to prove the general stratification result of
Theorem 7.2.2.

Next, we describe some applications that follow from the existence of the fiber-full
scheme.

There is a large literature on the study of the loci of arithmetically Cohen-Macaulay
(ACM for short) schemes and the loci of arithmetically Gorenstein (AG for short) schemes
within the Hilbert scheme (see [28,49,56-58,65] and the references therein). As a result
of considering the fiber-full scheme, we can provide a finer description of these loci and
parametrize ACM and AG schemes with a fixed cohomological data. Let d € N and
ho, hg : Z — N be two functions, and consider the tuple of functions h : 7'+ — N1
given by h = (h,0,...,0,h4,0,...,0) where 0 : Z — N denotes the zero function. To
study ACM and AG schemes, since all the intermediate cohomologies vanish in these cases,
it becomes natural to consider the following two functors. For any (locally Noetherian)
S-scheme T, we have

ho,hq

/‘ZlCMX/S

(T) = {closed subscheme Z C Xr ‘ Z € Tiﬁl;( /S(T) and Z;is ACM forallt € T }

and

ﬂg?{o/,gd(T) = {closed subscheme Z C Xr ‘ Z e ﬁﬁl}'( ;s(T)and Zy is AG forall t € T } .

The following theorem shows the two functors above are representable, and so it
provides the natural parameter spaces for ACM and AG schemes with fixed cohomological
data.

Theorem 7.0.4 (Theorem 7.4.7). Let S be a locally Noetherian schemeand f : X ¢ Py — S
be a projective morphism. Let 4 € N and hg, h; : Z — N be two functions, and consider
the tuple of functions h = (ho,0,...,0,h4,0,...,0): 7'+ — N+ Suppose that Py, € Q[f]
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is a numerical polynomial. Then, there exist open S-subschemes ACM;O/’Q‘* and AG’;CO/’]S“"’ of
ho,ha

Fibl)'( ;s that represent the functors ACM ZO/’Z”’ and 4G, /s respectively.

We end by studying examples of Hilbert schemes that we stratify in terms of fiber-full
schemes. Furthermore, by using the recent classification of Skjelnes and Smith [88], we
show in Theorem 7.5.4 that smooth Hilbert schemes coincide with a fiber-full scheme (i.e.,
cohomological data is constant for points in a smooth Hilbert scheme).

7.1 Some flattening stratification theorems in a graded
category of modules

In this section, we provide several flattening stratification theorems in a graded category
modules; the list includes: the case of modules, cohomology of complexes of modules,
Ext modules and local cohomology modules. For organizational purposes, we divide the
section into four different subsections.

7.1.1 Flattening stratification of modules

In this subsection, we concentrate on an extension for modules of the flattening stratifica-
tion theorem given in [4] (also, see [71, §8]). Throughout this subsection, we shall use the
following setup.

Setup. Let A be ring (always assumed to be commutative and unitary) and R be a finitely
generated graded A-algebra. For any p € Spec(A), let k(p) := A,/pA, be the residue field
of p.

For a graded R-module M, we say that M has a Hilbert function over A if for allv € Z
the graded part [M], is a finitely generated locally free A-module of constant rank on
Spec(A); and in this case, the Hilbert function is hy; : Z — N, hpy(v) = ranka ([M],). If
a graded R-module M has a Hilbert function over A, then M ®4 B has the same Hilbert
function over any A-algebra B.

Remark 7.1.1. Let 0 - L — M — N — 0 be a short exact sequence of graded R-modules.

(i) If L and N have Hilbert functions over A, then M has a Hilbert function over A given by
hm(v) = ho(v) + hn(v).

(ii) If M and N have Hilbert functions over A, then L has a Hilbert function over A given by
hi(v) = hm(v) = hn(v).

For completeness, we recall the following flatness result.
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Lemma 7.1.2. Assume that A is Noetherian. Let M be a finitely generated graded A-module.
Then, the following locus

Upm = {p € Spec(A) | M ®4 Ay is a flat Ap-module}
is an open subset of Spec(A).
Proof. For a proof, see [4, Lemma 2.1] or [14, Lemma 2.5]. O

For a given graded R-module M and a function / : Z — N, we consider the following
functor for any ring B,

—{]:]P(/I(B) - {morphism Spec(B) — Spec(A) [M ®a B], is alocally free B-module } .

of rank h(v) forallv € Z

We now describe our first flattening stratification theorem.

Theorem 7.1.3. Assume A is Noetherian. Let M be a finitely generated graded R-module and
h : Z — N be a function. Then, the following statements hold:

(i) The functor F 5\1/1 is represented by a locally closed subscheme F 1}\1/1 C Spec(A). In other words,
for any morphism g : Spec(B) — Spec(A), M ®4 B has a Hilbert function over B equal to
h if and only if g can be factored as

Spec(B) — F]}(/I — Spec(A).

(ii) There is only a finite number of different functions hy, ..., hy : Z — N such that Fﬁ =0,
and so Spec(A) is set-theoretically equal to the disjoint union of the locally closed subschemes

hi
FM’

Proof. (i) For any morphism Spec(B) — Spec(A), one has that [M ®a B], is locally free of
rank h(v) if and only if Fitty)-1([M ®4 B],) = 0 and Fitty(, ([M ®4 B],) = B, and that
Fitt;([M ®4 Bl,) = (Fitt;([M],)) B (for more details on Fitting ideals, see [25, §20.2]).

Let Z 1}\’4 C Spec(A) be the closed subscheme given by

Zh, = Spec(A /(L ez Fittyw)-1(IM],))).

We have that Fitty,,,)—1 ([M ®4 B],) = 0 for all v € Z if and only if Spec(B) — Spec(A) factors
through Z ;’A Therefore, we can substitute Spec(A) by Z h , and we do so.

Let p € Uy and suppose that M ®4 A, has a Hilbert function hyg,a, = h over A,. By
Theorem 7.1.2, there is an affine open neighborhood p € Spec(A;) C U of p for some
a € A. Thus [91, Tag 00ONX] implies that for all v € Z the function Spec(A;) — N, q +—
dimy.(4)([M ®a, x(q)],) is locally constant. Consequently, there is an open connected
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neighborhood p € V C Spec(A,) of p such that hjg,4, = h for all g € V. It then follows
that the following locus

U}f/l := {p € Spec(A) | M ®4 A, has a Hilbert function mg,a, = h over A,}

is an open subset of Spec(A).

Note that Fitt,,([M ®4 B],) = B if and only if 8 N A 3 Fitty,)([M],) for all B €
Spec(B). Hence, under the condition Fitty,,)_1([M ®4 B],) = 0 for all v € Z, it follows that
Fitty,,,([M ®4 B],) = B for all v € Z if and only if Spec(B) — Spec(A) factors through U}\‘A
So, after having changed Spec(A) by Z!,, we have that ¥ ?\4 is represented by the open
subscheme U}\I/I C Spec(A). This completes the proof of this part.

(ii) For each p € Spec(A), let hy, be the function hy(v) := dimy(,)([M ®4 x(p)]y). As
we have a natural morphism Spec(x(p)) — Spec(A), it clearly follows that p € P;l/‘f.
Therefore, by the Noetherian hypothesis, we can show that there is a finite number of
distinct functions hy, ..., h,, such that set-theoretically we have the equality Spec(A) =

m h;
Llisq szlr m]

7.1.2 Flattening stratification of the cohomologies of a complex

Here we study how the process of taking tensor product with another ring affects the
cohomology of a bounded complex. The notation below will be used throughout the
paper.
i-1 i

Notation 7.1.4. For a (co-)complex of A-modules K® : --- — K7l — K' — Kl —
.-+, one defines Z' (K*) := Ker(¢'), B' (K*) := Im(¢p'™"), H (K*) := Z'(K*)/B'(K*), and
C'(K*) := K/B'(K*) > H!(K®) for all i € Z. We use analogous notation with lower
indices for a complex K,.

Remark 7.1.5. A basic result that we shall use several times is the following: for a complex
of A-modules K* and an A-module N, we have a four-term exact sequence

0— H(K*® N) = C'(K*)® N - K" @4 N - C*(K*)®4 N — 0
of A-modules.

The following lemma transfers the burden of studying the cohomologies of a bounded
complex to considering the cokernels of the maps.

Lemma 7.1.6. Let K* : 0 —» KY — K! — - — KP — 0 be a bounded complex of graded
R-modules. Suppose that each K' has a Hilbert function over A. Let Spec(B) — Spec(A) be a
morphism. Then, the following two conditions are equivalent:

(i) H'(K® ®4 B) has a Hilbert function over B forall 0 < i < p.
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(ii) C'(K*) ®4 B has a Hilbert function over B for all 0 < i < p.

Moreouver, if any of the above conditions are satisfied, we have

hHi(K'®AB) = hci(K°)®AB + hCi“(K')®AB - hKi+1®AB

and
p

hci(K')®AB = Z(—l)j_i (th(K'®AB) + th+l®AB) .
j=i

Proof. We have the four-term exact sequence
0— H(K*®4 B) = C/(K*)®1 B — K" ®4 B — C""}(K*) ®4 B — 0,
which can be broken into short exact sequences
0 — H'(K*®4B) » C(K")®B —>L -0 and 0— L — K*'®4B — C*(K*)®4B — 0

where L' is some graded R-module.

By Theorem 7.1.1, if all C {(K*) ®4 B have a Hilbert function over B then all L’ have
a Hilbert function over B and, by the same token, it follows that all H {(K®* ®4 B) have a
Hilbert function over B. This establishes the implication (2) = (1).

Suppose that all H'(K®* ®4 B) have a Hilbert function over B. As a consequence
of Theorem 7.1.1, if C'*1(K*) ®4 B has a Hilbert function over B, we obtain that L’ and,
subsequently, C!(K®*)®4 B have Hilbert functions over B. Since C?(K*)®4 B = HP (K*®4 B),
by descending induction on i, we get that all C*(K*) ®4 B have a Hilbert function over B.
So, the other implication (1) = (2) also holds.

The additional equations relating the Hilbert functions of C'(K*) ®4 B and H'(K® ®4 B)
are straightforwardly checked. O

For a given bounded complex of graded R-modules K* : 0 — KO- K!'—... 5 KV —
0 such that each K’ has a Hilbert function over A and a given tuple of p + 1 functions
h=(hy,..., hy):2ZF +1 5 NP*1, we consider the following functor for any ring B,

Fh.(B) = {morphism Spec(B) — Spec(A) [F'(K® @4 B)], is a locally free B-module } .

of rank h;(v) forall0 <i <p,veZ

For completeness, we include a lemma which shows that, in our setting, flatness is equiv-
alent to being locally free.

Lemma 7.1.7. Let K* : 0 — K — K! — --- — KV — 0 be a bounded complex of graded R-
modules. Suppose that [K'], is a finitely generated locally free A-module for all0 <i < p,v € Z.
Let Spec(B) — Spec(A) be a morphism. Then, the following two conditions are equivalent:

(i) [H'(K®* ®4 B)], is a flat B-module forall 0 < i < p,v € Z.
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(ii) [H'(K® ®4 B)], is a locally free B-module for all0 < i < p,v € Z.

Proof. The implication (2) = (1) is clear. So, we assume that each [H'(K® ®4 B)], is a
flat B-module. As in the proof of Theorem 7.1.6, we consider the short exact sequences
0— H'(K*®4B) - C'(K*)®4B —» L' > 0and0 — L' - K'"'®,B — C"*{(K*)®4B — 0.
Note that each [CP(K®) ®4 B], = [HP(K*® ®4 B)], is a locally free B-module since it is flat
of finite presentation as a B-module. Similarly to Theorem 7.1.6, by descending induction
on i, we can show that [H'(K® ®4 B)], and [C!(K®) ®4 B], are locally free B-modules for
all0<i<p,veZ m|

The following theorem deals with the stratification of the cohomologies of bounded
complexes.

Theorem 7.1.8. Assume A is Noetherian. Let K®* : 0 - K - K! —» .-+ > K - O bea
bounded complex of finitely generated graded R-modules and h = (hy, ..., hy) : ZP*1 — NP*1 pe
a tuple of functions. Suppose that each K' has a Hilbert function over A. Then, the functor ¥,
is represented by a locally closed subscheme F;- C Spec(A). In other words, for any morphism
g : Spec(B) — Spec(A), each H'(K*®* ®a B) has a Hilbert function over B equal to h; if and only
if g can be factored as

Spec(B) — Fk. — Spec(A).

Proof. For any morphism Spec(B) — Spec(A), Theorem 7.1.6 implies that each H {(K*®4B)
has a Hilbert function over B equal to ; if and only if each C*(K*)®4 B has a Hilbert function
over B equal to i}, where h’ := Z?:i(—l)]_l (h]- + hK]-u@AB). Therefore, by Theorem 7.1.3,

¥R, is represented by the locally closed subscheme F!, c Spec(A) given by

h h hy
0 NF! Nn---NFF O

FCO(K') C1(K*) CP(K*)"

7.1.3 Flattening stratification of Ext modules

We now focus on a flattening stratification result for certain Ext modules. During this
subsection, we shall use the following setup.

Setup 1. Let A be a Noetherian ring and R be a positively graded polynomial ring R =
Alx1,...,x,] over A.

First, we recall the following result from [18].

Lemma 7.1.9. Let M be a finitely generated graded R-module and suppose that M is a flat A-
module. Let Fq : --- — F; — -+ — F1 — F be a graded free R-resolution of M by modules of
finite rank. Let '

D;, := Coker(Homg(F;_1, R) — Homg(F;, R))

foreach i > 0. Then, the following statements hold:
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(i) Ext%(M,R) =0foralli >r+1.
(ii) D}, is a flat A-module for all i > r + 1.

(iii) If Ext%(M, R) is a flat A-module for all 0 < i < r, then

>~

Exty (M, R) ®4 B = Ext}g (M ®4 B, R ®4 B)
forall i > 0 any A-algebra B.

Proof. It follows directly from [18, Lemma 2.10]. O

For a given finitely generated graded R-module M thatis A-flat and a tuple of functions
h = (hg,..., h): Z""' — N"*!, we consider the following functor for any ring B,

v

?f{t}]{/l(B) := {morphism Spec(B) — Spec(A) _
B-module of rank h;(v) forall0 <i<r,veZ

[EXt%®AB(M ®4 B, R ® B)] is a locally free } .

Note that this functor controls all the Ext modules of M because, as a consequence of
Theorem 7.1.9, if M is A-flat then ExtkmB(M ®4 B,R®4 B) =0foralli > r + 1. The next
theorem provides a flattening stratification for all the Ext modules.

Theorem 7.1.10. Let M be a finitely generated graded R-module that is a flat A-module, and
h = (ho,..., hy): Z™1 — N™1 be a tuple of functions. Then, the functor FExtY, is represented
by a locally closed subscheme FExtIA‘A C Spec(A). In other words, for any morphism g : Spec(B) —
Spec(A), each Ext%m 3(M ®4 B, R ®4 B) has a Hilbert function over B equal to h; if and only if
g can be factored as

Spec(B) — FExtIA‘A — Spec(A).

Proof. LetFq:---— F; — -+ — F1 — Fo be a graded free R-resolution of M by modules
of finite rank. Consider the complex fsr+l given as the truncation FE*1 .0 - Fp —
F, —» -+ — F; — Fy, and P* := Homg(F5"*!, R). By Theorem 7.1.9, D]’\jfl = H™*(P*) =
C™*1(P*) is a flat A-module and so each [Dﬂl]v (being finitely presented over A) is a
locally free A-module. Hence [91, Tag 00NX] implies that for all v € Z the function
Spec(A) » N, p— dimK(p)([D;;Irl ®a k(p)]v) is locally constant. As a consequence, hDXZl
is a constant function on each connected component of Spec(A).
Consider the bounded complex K* given by

K*: O—>P0—>---—>Pr—>Pr+1—>D;V}'1—>O,

Note that H'(K* ®4 B) = H'(P®* ®4 B) = Extyy (M ®4 B,R ®4 B) forall 0 < i < r (since

M is A-flat), and that H'*1(K* ®4 B) = H'*?(K* ®4 B) = 0.
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To show that the functor ,‘Ffpgt}]:/l is representable, we can simply restrict Spec(A) to one
of its connected components. Thus, we now assume that Spec(A) is connected, and so
Dﬂl has a Hilbert function over A. Leth’ = (hy,...,h;,0,0) : Z'*> — N’*3 be obtained
by concatenating two zero functions 0 : Z — N to h. Finally, by Theorem 7.1.8, it follows
that ,‘Ff)(tllt/l is represented by the locally closed subscheme FExtIX/I = F}g C Spec(A). This
settles the proof of the theorem. m]

7.1.4 Flattening stratification of local cohomology modules

Next, we provide a flattening stratification theorem for local cohomology modules. The
main idea is that, by using some techniques from [14,18], we can obtain a flattening stratifi-
cation of local cohomology modules from the one of Ext modules given in Theorem 7.1.10.

We start with the following lemma that gives a base change of local cohomology
modules over a base which is not necessarily Noetherian.

Lemma 7.1.11. Let A bearing, R = A[x1, ..., x.] be a positively graded polynomial ring over A,
m = (x1,...,%,) C R be the graded irrelevant ideal, and M be a graded R-module. If M is A-flat
and Hi (M) is A-flat for all 0 < i < r, then H: (M) ®4 B — H. (M ®4 B) forall 0 < i < r and
any A-algebra B.

Proof. By using [86] and the fact that x1, ..., x, is a regular sequence in R, even if A is not

Noetherian, we can compute H’, (M) as the i-th cohomology of C3, ®k M where Cy, denotes
the Cech complex with respect tom = (xq,...,%,). LetLe:--- = L; = --- — L1 — Lo be
a graded free R-resolution of M. By considering the spectral sequences coming from the
double complex Cy, ®s L. ®4 B, we obtain the isomorphisms

H:.(M ®4 B) = H,_;(H}(Ls) ®4 B)

for any A-algebra B and all integers i (see [14, Lemma 3.4]). By the flatness condition and
standard base change results (see [14, Lemma 2.8]), we obtain

H,, (M) ®4 B = H,_i(H},(L.)) ®4 B = H,—;(H},(L.) ®4 B) = H,,(M ®4 B),
and so the result follows. O
The following setup is now set in place for the rest of the subsection.

Setup 2. Let A be a Noetherian ring, R be a positively graded polynomial ring R =
Alx1,...,x,] over A, m = (x1,...,x;) C R be the graded irrelevant ideal, and 0 :=
deg(x1) + - -- + deg(x,) € Z,.

For a graded R-module M and a morphism Spec(B) — Spec(A), we consider the
graded (R ®4 B)-module M ®4 B and we denote the B-relative graded Matlis dual by

(M ®4 B)® ="Homp(M ®4 B, B) := @ Homp (M ®4 B]_,, B).

veZ
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Note that (M ®4 B)™ has a natural structure of graded (R ®4 B)-module. From the canon-
ical perfect pairing of free A-modules in “top” local cohomology [R], ®4 [H}(R)]_s_, —
[H].(R)]_s = A we obtain a canonical graded R-isomorphism HJ (R) = (R(-9))" =
*Homy (R(-=0), A) . Then, for a morphism Spec(B) — Spec(A) and a complex F, : -+ —
F; — -+ — F; — Fj of finitely generated graded free R-modules, we obtain the isomor-
phisms of complexes

H (F. ®4 B) = H}(F,) ®4 B = (Homg(F., R(—0))) " ®4 B = (Homg(F., R(-5)) ®4 B) ™.
The next proposition gives a sort of local duality theorem (see [18, Proposition 2.11]).

Proposition 7.1.12. Let M be a finitely generated graded R-module and suppose that M is a
flat A-module. Let Spec(B) — Spec(A) be a morphism. Then, the following two conditions are
equivalent:

(i) H:,(M ®4 B) has a Hilbert function over B for all 0 < i < r.
(i1) Extﬁq@AB(M ®4 B, R ®4 B) has a Hilbert function over B forall 0 < i < r.

Moreover, when any of the above equivalent conditions is satisfied, we have that

thn(M‘@AB)(V) = hEXt;{gAB(M®AB,R®AB)(_V - 6)

foralli,v € Z.

Proof. LetFq:--- — F; — --- — F1 — Fg be a graded free R-resolution of M by modules
of finite rank. As M is A-flat, F, ®4 B is a resolution of M ®4 B. Then, by using the
isomorphism of complexes H},(Fs ®4 B) = (Homg(F., R(—8)) ®4 B)™ and the same proof
of [18, Proposition 2.11], we obtain that conditions (1) and (2) are equivalent, and that
in the case they are satisfied, we have the isomorphism an(M ®a B) = (Ext%gA (M ®4
B,R(-6) ®4 B))™. O

For a given finitely generated graded R-module M thatis A-flat and a tuple of functions
h = (hg,..., h): Z""' — N"*!, we consider the following functor for any ring B,

h . -
Frocy(B) = {morph1sm Spec(B) — Spec(4) of rank h;(v) forall0<i <r,veZ
Finally, we have below a theorem that gives a flattening stratification for local cohomology
modules.

Theorem 7.1.13. Let M be a finitely generated graded R-module that is a flat A-module, and
h = (ho,..., hy): Z'*1 — N1 be a tuple of functions. Then, the functor FLoc%, is represented
by a locally closed subscheme FLOCR/I C Spec(A). In other words, for any morphism g : Spec(B) —
Spec(A), each H!, (M ®4 B) has a Hilbert function over B equal to h; if and only if g can be factored
as

Spec(B) — FLOCI]{,I — Spec(A).

[an(M ®4 B)]v is a locally free B-module

I
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Proof. Let h’ = (h),...,h.) : Z*' — N'*! be a tuple of functions defined by hi(v) =
hy—i(—=v = 6). So, it follows directly from Theorem 7.1.12 and Theorem 7.1.10 that TLOCR/I
is represented by the locally closed subscheme FLoc!, := FExtY) c Spec(A). O

7.2 Flattening stratification of the higher direct images of a
sheaf and its twistings

In this section, we provide a flattening stratification theorem that deals with all the direct
images of a sheaf and its possible twistings. This result is the core of our approach to
show that the fiber-full scheme exists.

For completeness, we start with a base change result which is probably well-known to
the experts, but we could not find it in the generality we need (cf. [43, Lemma 4.1]). Let S
be a scheme and f : X ¢ Pg — S be a projective morphism. Let g : T — S be a morphism
of schemes and t € T be a point. We use the notation X7 := X XsT, fir):= fXsT : X7 — T,
X; := X7 X7 Spec(x(t)) and f) := fir) Xr Spec(x(t)) : X; — Spec(x(t)), and we consider
the commutative diagram

XT L4 1xs g
X¢ = X1 X7 Spec(k(t)) Xr=XXxsT X=XXgS§
fue fi) f
Spec(k(t)) " T g S.

For a quasi-coherent sheaf .# on X, let %7 := (1 X5 g)*.# be the sheaf on Xt obtained by
the pull-back induced by g and .%; := (1 Xt 1;)".%1 be the sheaf on X; obtained by taking
the fiber over t. Recall that in this setting, we have the base change map ¢*R'f.7 —
Rif(T)* (%7) foralli > 0.

Proposition 7.2.1. Let S be a scheme, f : X C Pg — S be a projective morphism and 7 be a
quasi-coherent O'x-module. Suppose that R f, (F (v)) is a flat Os-module forall 0 < i < r,v € Z.
Let g : T — S be a morphism of schemes. Then, .7 is flat over S and we have a base change
isomorphism

IR

SR (F (1) = Rifir), (Fr(v))
forall0<i<r,veL

Proof. Since the first consequence is local on S and the second one is local on T, we
may assume that T = Spec(B) and S = Spec(A) are affine schemes. Then, we have the
identifications _ _ _

R'f (7 (v)) = H(X, Z7(v))” = H(P}, Z(v))”
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and

R fir), (Fr(v)) = H (X1, Zr(v))” = H' (P, Fr(v))~
(see [91, Tag 01XK], [47, Proposition 8.5]). Let R := Alxo, ..., x,] with P!, = Proj(R),
m = (xg,...,x;), and M be the graded R-module given by M := f _, HOYP",, Z(v)).
Note that # = M~ and %1 = (M ®4 B)™. Thus, it is clear that .# is flat over S. We have
the exact sequence

0 — H),(M ®4 B) > M &4 B — (P H(P}, r(v)) — H},(M &4 B) = 0

vezZ
and the isomorphism H;'{(M ®,4 B) = PB,.,H i(Pr, Fr(v)) for all i > 1. In the special
case B = A, since M = (P, ., H'(P',, #(v)), we obtain that H),(M) = H},(M) = 0. Finally,

Theorem 7.1.11 implies that H (M) ®4 B N H! (M ®4 B) forall0 < i < r +1,and so the
proof of the proposition is complete. O

We fix the following setup for the rest of this section.

Setup 3. Let S be a locally Noetherian scheme and f : X c P; — S be a projective
morphism.

When we take the fiber X; = X7 X1 Spec(x(t)) of fir)overt € T, we get the isomorphism
R, (F) = H (X¢, F1)°

for all i > 0. Our main object of study is the following functor. For a given coherent sheaf
Z on X that is S-flat and a tuple of functions h = (ho, ..., h,) : 7't — N1 we consider
the following functor for any scheme T,

Rifir), (Z1(v)) is locally free over T and
TDir}(T) := {morphism T — S| dim, ) (H' (X¢, Z:(v))) = hi(v)
forall0<i<r,veZ,teT

Note that, as a consequence of Theorem 7.2.1, a morphism T — S belongs to the set
Tﬂ)ir}u‘@(T) if and only if R/ fr), (Fr(v)) is a locally free Or-module of rank h;(v) for all

0 <i <r,v € Z. The following theorem yields the representability of the functor Tﬂ)ir}.
This result will be our main tool.

Theorem 7.2.2. Let .% be a coherent sheaf on X that is flat over S, and h = (hy, ..., hy) : AR
N"*1 be a tuple of functions. Then, the functor ?’Dir} is represented by a locally closed subscheme
FDir} C S. In other words, for any morphism g : T — S of schemes, each R’ firy, (Fr(v)) is a
locally free Or-module of rank h;(v) if and only if g can be factored as

T — FDir; — S.
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Proof. Let S = ;e Sj be an open covering of S where each S; is a Noetherian affine

scheme. Note that the functor ,‘Fﬂ)irgh is a Zariski sheaf and it has a Zariski covering by
the open subfunctors {G; }jc; where

R! fr), (Fr(v)) is locally free over T and
“(T) := {morphism T — S; | dim (H' (X¢, Z:(v))) = hi(v)
foral0<i<r,veZ,teT

(see [36, §8.3]). Therefore, due to [36, Theorem 8.9], in order to show that T@ir} is
representable by a locally closed subscheme of S, it suffices to show that each ¥; is
representable by a locally closed subscheme of S;.

As a consequence of the above reductions, we assume that A is a Noetherian ring and
S = Spec(A). Since all the conditions that we consider on R fir), (Zr(v)) are local on T,
we may restrict to an affine morphism T = Spec(B) — Spec(A), and we do so.

Let R := Alxo,...,x;] with P, = Proj(R) and m = (xp,...,x,) € R. By known
arguments, we can choose an integer m € Z such that the following conditions are satisfied:

i) M:=p,., HO(P",, Z(v)) is a finitely generated graded R-module that is flat over
A,

(i) M~ = .% and (M ®4 B)™ = 77,
(ili) M®a B =P, ,,, H'(P}, Fr(v)), and
(iv) Hi(P",, Z(v)) =0foralll1 <i <r,v>m

(see, e.g., [47, §II1.9]). Therefore, we obtain a short exact sequence

0> M®@yB— @ H(P, #r(v)) » HL (M ®4 B) = 0
veEZ
that splits into the isomorphisms

Me®s B = (HH (P, Zr(v) and HHP,, Fr(v) = HL (M ®4 B),

v>m v<m

and we get the isomorphism H (M ®4 B) = P,z H{(P,, Fr(v)) forall i > 1.
We have obtained that H i(Pg, F1(v)) is a locally free B-module of rank h;(v) for all
i > 0,v € Zif and only if the following three conditions hold:

e [M ®4 B], is a locally free B-module of rank ho(v) for all v > m,
o [HL(M ®4B)],isa locally free B-module of rank ho(v) for all v < m, and
° [an(M ®a B)], is a locally free B-module of rank h;_1(v) foralli > 2,v € Z.
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Let hé, hé’ : Z — N be the functions
ho(v) ifv>m
0 otherwise,

hotv) ifv<m
= d hil'(v) =
0( v)i= { otherwise an o) {
and i’ : Z"2 — N"*2 be the tuple of functions defined by h’ := (0, i), hs, ..., h;), where
0 : Z — N denotes the zero function. ’
Finally, by Theorem 7.1.3 and Theorem 7.1.13, we obtain that each H'(P’,, #r(v)) is a

locally free B-module of rank /;(v) if and only if the morphlsm g T = Spec(B) — S =

Spec(A) factors through the locally closed subscheme F N FLocY, v € S = Spec(A). This
concludes the proof of the theorem. m|

7 0/

7.3 Fiber-full sheaves

In this short section, we introduce the notion of fiber-full sheaf that extends the concept
of fiber-full modules from [18]. Let S be a locally Noetherian scheme, f : X ¢ Pg — S be
a projective morphism, and .% be a coherent sheaf on X.

Definition 7.3.1. We say that .7 is a fiber-full sheaf over S if Rif, (Z(v)) is locally free
over Sforall0 <i<randv e Z.

For every s € S and q > 1, let g;, be the natural map g, : Spec(Css/ml) — S
where m; denotes the maximal ideal of the local ring Os s, X, be the scheme X; ; :=
X Xs Spec(ﬁsls/mg), and .%; 4 := (1 X5 gs,4)"-7 be the sheaf on X; ; obtained by the pull-
back induced by g; 4. For the case g4 = 1 (i.e., when we take the fiber at a point s € S), we
simply write ¢s = 5,1, Xs = Xs,1 and .%; = F; 1. The following theorem gives two further
equivalent definitions for the notion of a fiber-full sheaf. The name “fiber-full” is inspired
by condition (3) below.

Theorem 7.3.2. Under the above notations, the following three conditions are equivalent:

(i) .Z is a fiber-full sheaf over S.

(i) Z is a locally free Os-module and H'(X; o, Fs,q(v)) is a free Os s/ ml-module for all s € S,
0<i<r,veZandgq>1.

(iii) .Z# is a locally free Os-module and the natural map Hi(XS,q, Fs,q(v)) — Hi(Xs, Zs(v)) is
surjective foralls € S,0<i <r,v € Zand q > 1.

Proof. Since the three conditions are local on S, we can choose a point s € S and assume
that (B, b) = (0s s, m;) is a Noetherian local ring and S = Spec(B). Moreover, in each of
the three above conditions one is assuming that .# is flat over S. Let R := B[xy, ..., x;]
with P} = Proj(R) and m = (xo, ..., x;) C R. Then, we can choose an integer m € Z such
that the following conditions are satisfied:
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iM:=6,.,H O(P7,, Z(v)) is a finitely generated graded R-module that is flat over
B,

(i) M~ = .7 and (M ®3 B/b7)" = .7 5, and

(i) M®s B/b1 =P ., HUP, ., Fsqv)).

v=m B/b1’

Similar to the proof of Theorem 7.2.2, by using the relations between local and sheaf
cohomologies, the equivalence of the three conditions follows directly from [18, Theorem
Al. O

7.4 Construction of the fiber-full scheme

In this section, we construct the fiber-full scheme which can be seen as a parameter space
that generalizes the Hilbert and Quot schemes and that controls all the cohomological
data instead of just the corresponding Hilbert polynomial. We also construct open sub-
schemes of the fiber-full scheme that parametrize arithmetically Cohen-Macaulay and
arithmetically Gorenstein schemes.

Let S be a locally Noetherian scheme, f : X C Pg — S be a projective morphism, and
F be a coherent sheaf on X. We define the fiber-full functor which for an S-scheme
T parametrizes all coherent quotients .1 —» ¢ such that all higher direct images of ¢
and its twistings are locally over T. That is, we define the following map for any (locally
Noetherian) S-scheme T

i .
Fibzxs(T) = {coherent quotient .Fr » ¢ R'fir), (4(v)) is locally free over T } )

forall0<i<r,veZ
One important basic thing about this map is the next lemma, which tells us that
Fibzx/s : (Sch/S)°PP — (Sets)

is a contravariant functor from the category of (locally Noetherian) S-schemes to the
category of sets.

Lemma 7.4.1. Let g : T" — T be morphism of (locally Noetherian) S-schemes. Then, we have a
natural map

Fibzx/s(8) + Fibz x;s(T) = Fibz/x/s(T'), 4+ (1xrg)'¥,
where (1 X1 §)*¥Y is the sheaf on Xt obtained by the pull-back induced by g.

Proof. This is a direct consequence of Theorem 7.2.1. O
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We now stratify this functor in terms of “Hilbert functions” for all the cohomologies.
Leth = (hy,..., h;) : Z"' — N"*! be a tuple of functions. Then, we define the following
functor depending on h:

.h .
Fibzxs(T) = {g € Fibz/xisT) | forallo<i<rvezteT

dimy ) (H (Xt, % (1)) = hi(v) } ,

The idea of this functor is to measure the dimension of all cohomologies of all possible
twistings. Of course, we obtain the following stratification

Fibrxis(T) = | | Fibx;s(T)

h:Zr+1—Nr+1

when T is connected. Therefore, %ib #/x/s(T) is a representable functor if all the functors

j—'iﬁ} /x/s(T) are representable. When .# = 0, we simplify the notation by writing Tili?( /57
and we obtain the following alternative description of significant interest

R fir), (02 (v)) is locally free over T and
fiﬁg‘(/s(T) := {closed subscheme Z C Xt | dimy) (H' (Zt, O7,(v))) = hi(v)
forall0<i<r,veZ,teT

These functors should be thought of as a refinement of the Hilbert and Quot functors in
the following sense.

Remark 7.4.2. Leth = (hy, ..., hy) : Z'*' — N"*! be a tuple of functions and suppose that
Py := };_o(=1)'h; € Q[t] is a numerical polynomial. Then, we automatically obtain the
following inclusions

Fiby (T) < }ﬁ[ﬁfgl/s(tr) and  Fib'y . s(T) C Quot;h/x 15(T):

We say that Py is the Hilbert polynomial corresponding with the prescribed “Hilbert
functions” h : Z'*! — N"*! of cohomologies. Note that if the function Pn = X./_,(-1)'h;

does not coincide with a numerical polynomial then Tiﬁl;( s5(T) = 0 for all S-schemes T.

Our main result is the following theorem which says that the functor Tiﬁ} /x/s 18
represented by a quasi-projective S-scheme.

Theorem 7.4.3. Let h = (ho, ..., h,) : Z™t — N'*! be a tuple of functions and suppose that
Pn(t) € Q[t] is a numerical polynomial. Then, there is a quasi-projective S-scheme Fib} IX/s
that represents the functor Tiﬁ?‘l] /x /s and that is a locally closed subscheme of the Quot scheme

Py
Quoty/x/s.
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Proof. By Theorem 7.4.2, there is an injective morphism of functors

.ch
D : flﬁy/x/s — Quotl;‘/x/s.

Pn
F/X/S®

is represented by a projective S-scheme

We shall show that Tiﬁ} /x/s 1s a locally closed subfunctor of Quot

P
of the Quot scheme [3,39], the functor Quotg}l X/

By the existence

Pr . . P . Pn Pr
Quot 2, ¢ and a universal quotient .7 Quot’d > Wy sin Quot 2o (Quot X/ 5)- Let
Q := Quotf;l‘ IX/s and W = W;h/x /st Thus, for each S-scheme T and for each quotient

Fr > 94 in Quot;h /X /S(T), there is a unique classifying S-morphism gr« : T — Q such

that ¢ = (1 Xs g1.6)'W.
By using Theorem 7.2.2, let Fiblf? /X/s = FDirl)}V C Q be the locally closed subscheme
of Q that represents the functor T@ir%}v. So, it follows that a quotient in .1 - ¥ in

Quotf;l1 /x/5(T) belongs to fiﬁl}/ /x/s(T) if and only if g7« factors through Fib} /x/s- Finally,

this shows that the functor Tiﬁ} /x/s is represented by the S-scheme Fib;z /x,s and by the
universal quotient ?Fib; s~ (1xst)'Win Tili} /XS (Fibil; /X /5),WhereL : Fib} x5 = Q

denotes the natural locally closed immersion. Since Q is a projective S-scheme, we obtain
that Fibi}; /x/s 18 a quasi-projective S-scheme. |

Remark 7.4.4. When the base scheme S is well understood, we may simply write the
fiber-full schemes as Fib}} /x and Fibg‘( instead of Fib}} /x/s and Fib};{ /5» respectively.

Remark 7.4.5. Since the dimensions of the cohomology groups can jump in flat families,
the fiber-full scheme is usually not projective [47, Example II1.12.9.2].

We now recall the following notions.

Definition 7.4.6. Let k be a field and Y C P{( be a closed subscheme. Let Ry be the
homogeneous coordinate ring of Y. We say that Y is arithmetically Cohen-Macaulay
(ACM for short) if Ry is a Cohen-Macaulay ring. If Ry is a Gorenstein ring then Y is said
to be arithmetically Gorenstein (AG for short).

Next, we show the existence of open subschemes of the fiber-full scheme that parametrize
ACM and AG schemes. Recall that a closed subscheme Y C P, is ACM if and only if the
following two conditions are satisfied:

(i) H(Y,Oy(v))=0foralll <i < dim(Y)-1and v € Z, and

(ii) the natural map Ry — P, ., H(Y, Oy (v)) is bijective if dim(Y) > 0, or injective if

dim(Y) = 0.

veZ
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Let d € N and ho,hs : Z — N be two functions, and consider the tuple of functions
h:Z"*!' — N'*! given by h = (h,0,...,0,hy4,0,...,0) where 0 : Z — N denotes the
zero function. To study ACM and AG schemes, it then becomes natural to consider the
following two functors. For any (locally Noetherian) S-scheme T, we have

ACM ?(ojgzd(”_l’) = {closed subscheme Z C Xt ‘ Z € Tiﬁg'( ;5(T)and Zy is ACM forall t € T }

and

/‘Zlg;o/”;d(T) = {closed subscheme Z C X7 ‘ Z € Tiﬁ?(/s(T) and Z; is AG forallt € T } :
Note that, by using the base change results of Theorem 7.1.9 and Theorem 7.1.11, we can
immediately deduce that ACM ho/hd and JZlghO g
the category of (locally Noetherian) S- schemes into the category of sets. The following

theorem gives the representability of these two functors.

are indeed contravariant functors from

Theorem 7.4.7. Let d € N and ho,hy : Z — N be two functions, and consider the tuple
of functions h = (ho,0,...,0,h4,0,...,0) : Z""1 — N1 Suppose that Py(t) € Q[ lisa

numerical polynomial. Then, there exist open S-subschemes ACM?(O/Z‘* and AG?(O/ §of Fle /s that

represent the functors ACM ;0/2’7’ and /‘Zlg X /5 4, respectively.

Proof. By Theorem 7.4.3, there is a pair (Fibl; 7x/s» L) representing the functor Tiﬁi}; X/

where Fib" F/x/s 18 fiber-full scheme and 7 is the universal ideal sheaf on P’lb}}} e Let
F:= Flbg /X5 This means that, for each S-scheme T and for each Z € Fif". 7x/s(T), there
is a unique classifying S-morphism g7,z : T — F such that 77 = (1 Xs g7,7)"Z is the ideal
sheaf on P7, that corresponds with the closed subscheme Z C P7.

FixZ € Tiﬁ; /X /S(T) gr,z : T — FandZz = (1Xsgr,z)"Z. Since the conditions defining
the functors 2CM ?(0/ " and Gy o, h"
open subschemes Spec(B) C T and Spec(A) C F with A being Noetherian. So, we assume
that T = Spec(B) and F = Spec(A). Let R := Alxo,...,x,] with P, = Proj(R) and m =
(x0,..., %) C R. LetI C R be the saturated ideal I := (P, HO(P’,,Z(v)). The saturated
ideal and homogeneous coordinate ring of Z are given by Iy := P ., H'(P}, Iz(v)) =
I ®4 B and Rz := Blxo,...,x;]/Iz = R/I ®a B, respectively. For allt € T, let R; :=
Blxo,..., x| ® x(t) = R®4 x(t) and Rz ; := Rz @ k(t) = R/I ®4 «(t).

Flrst we show that ﬂCM h° hd is representable. By construction, H%(Rz,t) = 0 for
all t € T, and so Z; is ACM for allt € Twhend = 0. If d > 0, we have that Z; is
ACM for all t € T if and only if Hll(RZ t) = 0 forall t € T. We have that the locus

= {f € F | H,(R/I ®4 x(f)) = 0} is an open subscheme of F. Whend >0, g7z : T =

Spec(B) — F = Spec(A) factors through V if and only if Z € ACM ;O/gd (T). Therefore, it

arelocal on T, we can restrict the morphism g7 7 to affine
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follows that, in both cases d = 0 or d > 0, ACM "% is represented by an open subscheme

X/S
of ACM,¢! C F.

We now concentrate on the representability of 4G o by

X/s

Cohen-Macaulay, we assume that Z € ACM ?(0 /I;d (T)and so gr,7 factors through ACMéEO /zd C
F. Therefore, as Rz is a Cohen-Macaulay ring of dimension d + 1, it is Gorenstein if and

only if its (d + 1)-th Bass number

Since a Gorenstein ring is

pa+1(Rz,¢) = dimy (Extﬁi{;i (Rz,t/mRz4,Rz1))
is equal to one (see [11, Theorem 3.2.10]). By upper semicontinuity, the locus

W :={f € F | par1(R/I ®4 x(f)) < 1}

is an open subscheme of F. On the other hand, if f € ACM;O/Sd,then pa+1(R/I®ax(f)) > 1.
ho,ha . _

Finally, it follows that gr.z : T = Spec(B) — F = Spec(A) factors through AG s

ACM;O/Z" NW if and only if Z € 4G,/ /h”’(T) So, the proof of the theorem is complete. O

We end this section by giving two examples.

Example 7.4.8 (Points). Let S be a locally Noetherian scheme and f : X C P, — Sbea
projective morphism. Let h : Z"*1 — N"*! be the tuple of constant functions defined by
=(c,0,...,0) and let P, = c be the associated Hilbert polynomial. For any S-scheme T

and Z € }[1[6;“/ 5(T), we have
‘ c ifi=0
di H'(Z;, O =
1Mye(t) (Z4 Zt(V)) {O ifi>0

forallt € T and v € Z. It follows that ,‘Fiﬁ; ss(T) = }[1[61;(“/ (T) for all T and thus

-1 .h P,
Fle/S = Hllbxh/s

In particular, Fib?r satisfies Murphy’s law up to retraction for r > 16 [55 Theorem 1.3].

More generally, for any coherent sheaf .%# on X, we have Fib{l;,7 IX/s = = Quot’h 7/X/5"

For the next two examples, let k be an algebraically closed field of characteristic zero.

Example 7.4.9 (Twisted cubics). By the work of [79] it is known that H11b3m+1 =HUH’

is a union of two smooth irreducible components such that the general member of H
parametrizes a twisted cubic, and the general member of H’ parametrizes a plane cubic
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union an isolated point. It is also known that H — H N H’ is the locus of arithmetically
Cohen-Macaulay curves of degree 3 and genus 0. Then we have a decomposition

Hilb?"*! = Fib"*” L Fibh " = (H - H N H') U H'
k Pk P

k

where h = (hg, h1), W = (h)), h}) : Z*> — N? are the tuples of functions given by

0’71
0 ifv<-1 Lo ifvs- () = ho(v) — (3v +1)
B ifv<-— boon — 1(v) = nolv) = (5v +
h(’(v)‘{sm ify>o, 0TI VR0 A ) < i) - Gy 1)
3v+1 ifv>1

To verify this decomposition we appeal to the classification of ideals in [79, §4]. Since
(X, 0x(v) = x(Ox(v)) + 11X, Ox(v) = 3v + 1+ 1'(X, Ox(v))
for any [X] € Hilbi?“, it suffices to compute h%(X, Ox(v)). Any subscheme [X] €
k
H — H N H’ is arithmetically Cohen-Macaulay with the ideal sheaf having a resolution

0— ﬁPi(—3)2 - Op (-2)® - .7x — 0.

It follows that h%(Zx(v)) = 3(1’;1) —2(}). Using the ideal sheaf exact sequence and the fact
that h'(Zx(v)) = 0 we deduce that h%(X, Ox(v)) = (*3°) =3("}) +2(3) =3v +1forv > 0
and 0 otherwise, as required.

If [X] € H' then S = Jx N _# where X’ is a plane cubic and _# defines a, possibly
embedded, 0-dimensional subscheme. Consider the exact sequence

0> Ix/Ix > Ox — Ox — 0
of sheaves on X. Since .#x/ ¥ is 0-dimensional, we have
(X, Ix | Ix) = length(Fx [ Ix) = Bm +1) = 3m = 1.
It is straightforward to show that the cohomology of a plane curve Y of degree d is given

by hO(Y, Oy(v)) = (*3%) = ("*37%). Thus, we deduce that i%(X, Ox(v)) = h(X’, Ox:(v))+1 =

(vJZFZ) _ (Vgl) + 1, as required.

7.5 Smooth Hilbert schemes

In this section, we study the fiber-full scheme as a subscheme of smooth Hilbert schemes,
the latter were recently classified in [88]. Our main result states that if the Hilbert scheme
is smooth, then it is equal to a fiber-full scheme.
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Definition 7.5.1. For an integer partition A, define the tuple of functions hy = (ho, ..., h) :
2! — N1 given by hi(v) := dimu (H'(P, Oy1)(v))) forallv € Z.

We begin by describing h, explicitly.

Lemma 7.5.2. Let A = (Ay,...,Ay) # (r + 1) be an integer partition and L(A) = L(ay ..., a,) be
the associated lexicographic ideal. Then, for all v € Z we have

) n v+)\i—i + (a1+--~+a,—v—1) _ (u2+--~+ur—v—l) ifi —
di (Hz Pr’ Vi ) — ?21 (v—1+1) ' 1 1
e e v ) {() - (e >0

Proof. Fix L = L(A). By [83, Lemma 3.2], we obtain
Ext}'{(R/L,R) = (R/(x0, ..., Xi—2, X\ 7)) (@rcin+---+ar+i-1), 1<i<r.

Note that 4; in the notation of [83] corresponds to 4;,1 in our convention. Using the exact
sequence

0— (R/(xq,...,x4-1))(=p) = R/(x0, ..., x4-1) = R/(x0, ... ,xq_l,xZ) — 0,

we deduce that

dimk([R/(xo,...,xq_l,x;’)]v) _ (V +i; q) 3 (V—P +7r —‘7)'

r r—q

Using the above formulas and the local duality theorem (see, e.g., [11, Theorem 3.6.19]),
we obtain

dimic (H' (B, 0y (1)(v)) = dimu ([HE(R/L)])
= dimi ([Bxt/(R/L, R)]--r-1 )
= dimy ([R/(xo, e X2, X0 Y@ Ay =i - 1)]_v_r_1)
_ (gt Far—v=1) fapo+--+a,—-v-1
B i+1 i+1 '
for all i > 0. Similarly, since L is saturated, we obtain
dimny, (HO(P, Gy (1)(v))) = dimi ([R/L},) + dimi ([HA(R/L)], )
= dimy ([R/L], ) + dimy ([Ext(R/L, R)]-y—r-1)

Z v+ A=
B v—z+1
dimy ([R/(xo, X, X )@+ A+ - 1)]_V_r_1)

B S (v Ai—i N m+-+ar—v-1 foo+---+a,-v-1
S L\v-i+l 1 1 ‘
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The formula for dimy ([R/L],) can be found in [88, Lemma 3.3]. O

Before we can prove the main result of this section, we need a simple lemma that relates
the cohomologies of V(fI) to those of V(I) for any subscheme V(I) C P} of codimension
at least two.

Lemma 7.5.3. Let A = (r,...,r,A’) be an integer partition with a, > 0 and [I] € Hilbllzf. Then,
N—— k
a,-times

we have I = fI’ with [I'] € H1le’,‘ ,

deg(f) = a, and

dimy (Hi(PV, ﬁv(l)(v))) _ {dimk (H'(PL, Oyy(v —ay))  ifizr—1

e - () fizr-1
Proof. The first statement is Lemma 5.2.1. The second statement follows from the local
duality theorem and [83, Fact 1], similar to Theorem 7.5.2. O

The next proposition provides an equality between the fiber-full scheme and the Hilbert
scheme when the latter is smooth.

Proposition 7.5.4. Let A denote an integer partition for which Hilbiﬂ is smooth. Then, we have
k

the equality
Fibgf = Hilby, .

Proof. Since the Hilbertscheme Hllb 1s smooth, it suffices tojust check that ?16 (Spec(k))

}[1[61)A (Spec(k)) By Theorem 2.0.27 there are seven different families of A for wh1ch the

H1lbert scheme is smooth. We can reduce to considering partitions that satisfy a, = 0,
i.e., Hilbert schemes parametrizing subschemes of codimension at least two. Indeed, if

ar > 0, Theorem 7.5.3 implies that Flb H1le/‘ if and only if F1b = Hilb, ¥ where

A= (r,...,v,A'). Thus, for the rest of the proof we will only study those partltlons in
H/—/
ar-times

Theorem 2.0.27 for which a, = 0.

The conclusion is immediate for Case (7) as the Hilbert scheme consists of a single point.
Case (1) corresponds to the Hilbert scheme of points in Pi. In this case A = (1,...,1),
equivalently P, is constant, and this is covered by Theorem 7.4.8. Similarly, Case (6)
reduces to A = (1,1, 1) which is also covered by Theorem 7.4.8.

To deal with Case (2) and Case (3) we use the fact that they have a unique Borel-fixed

point. Let A be as in Case (2) or Case (3) and let [I] € Hilbi’,‘ with I saturated. Since gin(I)
k

is Borel-fixed [25, Theorem 15.20], we have gin(I) = L(A). This implies I and L(A) have

the same Hilbert function and thus, L(A) is the lexicographic ideal associated to I. The

result now follows from [85, Theorem 0.1]. The characteristic assumption of [85] does not
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pose any issue because, in our case, the generic initial ideal is strongly stable [85, proof of
Theorem 0.1, page 274].

Case (4) and Case (5) correspond to Hilbert schemes with two Borel-fixed points. By
Theorem 5.0.1 we have two cases

e A =((d+1)7,1) withd > 2 and q > 2: The general member of H1lb parametrlzes
C U {P} where C C Pi” is a hypersurface of degree g and P is a pomt

= (27,1) with g > 4: The general member of H1lb parametrlzes C U P where C

is a plane curve of degree g and P is a point.

In either case, for any subscheme [X] € Hilb®?, we have Tx = Ix' N J with [X'] €

I)T 7
Hilbp"_1 and J defining a, possibly embedded, 0-dimensional subscheme. Arguing as
in Theorem 7.4.9, we see that F1b H1lbp" if and only if Flbp" 1o Hllpr !, But the

latter equality has already been estabhshed since A = ((d + 1)‘7 )and A = (2‘7) for the
aforementioned d, g, have a unique Borel-fixed point. O
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Appendix A

Radius of the Hilbert scheme

Many things can cause mistakes: similar symbols, sloppy handwriting,
alcohol last night, teacher’s advice...

— Shihoko Ishi [54]

In this short appendix we give an explicit example of a Hilbert scheme whose incidence
graph has radius two. The example will involve a certain Hilbert scheme of a pair of linear
spaces studied in Chapter 3.

In Chapter 2 we came across the following theorem of Reeves on the radius of the
Hilbert scheme

Theorem A.0.1 ( [84, Theorem 7]). Consider the Hilbert scheme Hilb”(P") and let d =
deg P be the dimension of the parameterized subschemes. Then the distance from any
component to the lexicographic component is at most 4 + 1. In particular, the radius of
the Hilbert scheme is at most d + 1.

It is natural to ask to what extent Reeves” bound on the radius is sharp. As far as we are
aware, no explicit example of a Hilbert scheme with radius larger than one has appeared
in the literature. It turns out that the Hilbert schemes we studied in Chapter 3 provide
such an example.

Theorem A.0.2. The radius of the Hilbert scheme Hileg,S(PS) is two. Moreover, the
lexicographic component is not the center of the incidence graph.

Since the lexicographic component is, in general, the best understood component, one
might start by studying the components which meet the lexicographic component. How-
ever, there are two immediate obstacles. The first is that it is difficult to determine all
the components of the Hilbert scheme. Secondly, it is even more difficult to prove that
two components of the Hilbert scheme do not meet. Even if we succeeded in determin-
ing which components meet the lexicographic component, the lexicographic component
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might not be the center of the incidence graph. We overcome these problems by working
with family of Hilbert schemes Hilb"n-2-2(P") where we completely understand a com-
ponent different from the lexicographic component. For simplicity, we assume k is an
algebraically closed field of characteristic zero.

A.1 The example with radius 2

Recall from Chapter 3 that for n > 3 the Hilbert scheme
H" = Hilbn-2n2(P")

has a component H| , , whose general member parameterizes a pair of codimension
two linear spaces meeting transversely in P”. For this chapter we denote this component
by H7. The Hilbert scheme H" has another component, denoted by H}; whose general
member parameterizes QUA,_3 where Q isa quadric (n—2)-fold and A,,_3 is a codimension
three linear space such that Q N A,,_3 is a codimension four linear space.

Theorem A.1.1 ( [16, Theorem 1.1]"). Let n > 3. The only component of H" that HY meets is

In the new notation, Theorem A.0.2 states that the Hilbert scheme ° has radius two.
With a bit more analysis, that we omit, we can describe a large portion of the incidence
graph. In particular, other than the six known components of Ho [16, Remark 2.7] we
found another component and we were able to determine how these components met one
another. Moreover, we checked that all of these components are generically smooth. We
believe that these are all the components, but we were unable to prove it:

Here is a description of the components appearing in the graph. For the rest of the
paragraph, A; will denote an i-dimensional linear space and Q will denote a quadric
threefold.

!Our notation differs from [16]; in their paper the authors use H, to denote the component #/.
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(i) The general point of "Hg parameterizes the scheme theoretic union Q U Ay U Z where
Z is a double line of genus —2 embedded along A; and Q N A is a conic.

(ii) The general point of ’HZ parameterizes Q U Ay U Aq such that Q and A, lie in a four
dimensional linear subspace of P°, and Q N A; is a point.

(iii) The general point of ’Hg’ parameterizes Q U Ay U Aq such that Q and A; lie in a four
dimensional linear subspace of P>, and A N Ajisa point.

(iv) The general point of 7—[2 parameterizes Q U Ay U A1 U Ag such that Q, Ay and A lie
in a four dimensional linear subspace of P°, and Ay is an isolated point.

(v) The general point of ’erx parameterizes Q U A U A1 U Ag U Af such that Q, A; and

A1 lie in a four dimensional linear subspace of P>, A1NAyisa point, and A, A6 are
isolated points.

A.2 Computing the radius

Prior to analyzing H° we need a sufficiently good understanding of H*. The general point
of erx parameterizes a quadric surface union a line and two isolated points, such that the
line meets the quadric at two points.

Lemma A.2.1. The Hilbert scheme H* has three Borel-fixed ideals:

_ 2 2 _ 2 3 .2 _ 3 .2..2 .2
Iy = (xg, xox1, Xox2, x7), I = (x3, Xox1, X0X2, X0X3, X7, X7%2), lilex = (X0, X7, X7X5, X]X2X3).

Moreover,
(i) I only lies in H; and H;,
(i) Tiex only lies in H;, ,
(iii) I is in every component of H* \ 7—[‘11.

Proof. The Borel-fixed ideals can be computed using [70, Algorithm 4.6] or using the
computer algebra system Macaulay? [38] and the package Strongly stable ideals [2]. By
Theorem 3.4.9, I is the unique Borel-fixed ideal on H%' Since ’;’-{,‘1L meets ’H% and their
intersection must contain a Borel-fixed ideal, I; also lies in H‘zl. Since 7—[‘11 does not meet any
other component (Theorem A.1.1), I; does not lie on any other component. We know that
the lexicographic ideal I}e, is a smooth point and lies on its own component, ’erx. Since
H* is connected, every component of H* \ 7’-[,‘1L contains . O

Proposition A.2.2. The Hilbert scheme H* has radius one while the distance between ”H‘ll and

’erx 1s two.
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Proof. This is an immediate consequence of Lemma A.2.1 as every component of H* meets
H; and Hf‘ex does not meet H7. O

This shows that even when the radius is one, the lexicographic component need not
be the center of the incidence graph.

Remark A.2.3. By computing a neighbourhood of I in H*, it can be shown that ’H‘ll, ’H‘zl, ’erx
are the only irreducible components of 7* and that ’H% is smooth.

Lemma A.2.4. The Hilbert scheme H> has nine Borel-fixed ideals:

. _ — 3 ,2.,2 .2 2 .2 2
(1) 11 - Ilex - (x()/ xllxlxzr x1x2x3/ x1XZX3x4),

2 2.2 2
1XQX3X4, xleX4, xl

2x2x3, x2x3

2
X 1%2)s

(11) 12 = (x()/ x%/ X 3741

X2 X

— 4 .3 3 3 2,2 ,.2 2,2
(iii) I3 = (xo, X7, X7X2, X7X3, X7 X4, X]X5, XTX2X3, X X2X3X4),

3 3

2 3.2
1%X2, X%

: _ 4 2.2
(iv) Iy = (xo,x7, x X3, X]X5, X7X2X3, X]X]),

2 2,2

(v) Is = (x3, XoX1, X0X2, X0X3, XoXa, X, X{X2X5, X]X2X3X4, X]X3),

4 30 430 23a 4242 42

: _ 2
(vi) I = (x§, x0Xx1, X0X2, X0X3, X0X4, X], X X2, X7 X3, X X4, X]X5, X]X2X3),

e — (42 2,3 ,2 2,2
(Vll) I7 - (xOI X0X1, X0X2, X0X3, x0x4/ xll x1x2x3/ xlxz ’

o _ 2 3 2
(viii) Ig = (x5, XoX1, XoX2, X0X3, X{, X]X2),
- — (o2 2
(ix) s = (x5, x0x1, X0X2, X7)-
Moreover, I, . .., I7 are the only Borel-fixed ideals lying in the lexicographic component.

Proof. The computation of Borel-fixed ideals is similar to Lemma A.2.1. To prove the other
statement we appeal to a theorem of Reeves. Given an ideal | € S we define the double
saturation, saty, xs(J) to be the ideal obtained by setting x4 = 1 and x5 = 1in J. It is shown
in [84, Theorem 11] that a Borel-fixed ideal | lies in the lexicographic component if and
only if saty, rs(J) = saty, rs(llex). It is clear that the double saturation of I, ..., I7 are all
equal to saty, xs(llex) = (x0, xf, x%x%, X%Xng) while the double saturation of Ig and Iy are
different. m]

Notation A.2.5. Let Z; denote the Borel-fixed points defined by the ideal I; of Lemma A.2.4.

Lemma A.2.6. The component H; does not meet erx. Moreover, the only Borel-fixed points on
HZ are Zg and Zo.
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Proof. By Lemma A.2.4 it suffices to show that Hg does not contain Z1,...,7Z7. Assume
this was not the case; then there is a flat family & — Speck][t]) with generic fiber
X{(0)y isomorphic to a quadric threefold meeting a plane along a line and special fiber
X)) = Zi for some i < 7. We may choose the family so that X ), is transverse to the
hyperplane V(x5) in Pi( e Since x5 is a non-zero divisor on S/Iz;, the hyperplane section
X N V(xs) — Speck[t] is still flat.

Since X(); N V(x5) is a quadric surface meeting a line at a point, Z; N V(x5) must lie
in the component 7;. A straightforward computation shows that the (saturated) ideal of
Z; N V(x5) is defined by (x5, xo, x:f, x%xzxg, x%x%). But as noted in Lemma A.2.1 (ii), this
defines the lexicographic point which lies in ’erx \ H3; a contradiction.

By Theorem 3.4.9, Zo is the unique Borel-fixed point in %] and thus Zg € H}NH; C 5.
Since the Hilbert scheme is connected, 7 must meet a component W different from #3
and 7—[156)(. Once again using Lemma A.2.4 we see that Zg € 7—[; NnwWc Hg m|

Proof of Theorem A.0.2. Since HJ only meets H; (Theorem A.1.1) and 7—[15ex does not meet

’Hg (Lemma A.2.6), the radius of H? is at least two. To show that the radius of H° is at
most two, it is enough to establish the following two facts:

(i) The distance from Hg to ’Hf’ex is two,
(ii) If JV is a component of H° that does not meet Hg then VW meets 7-[156)(.

Indeed, once we know these two facts, the component connecting 7—[; to H>_ will be a

lex
center of the incidence graph. To prove (i) consider a path Hg =W W, ..., W, = 7—[15ex
with Wi N Wiy # 0 and m minimal. The minimality of m implies YW5 N W; = 0. Since
Zg, Zg lie in W, the intersection YW> N W3 must containone of Zy, ..., Z7. By Lemma A.2.4,
W, meets the lexicographic component. Thus m = 3 proving item (i). The proof of item

(ii) is analogous. O
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