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Abstract

The Geometry of Hilbert Schemes on Projective Space

by

Ritvik Ramkumar

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

In this thesis we study singularities of Hilbert schemes and show that there are many
(components) of Hilbert schemes that are smooth or mildly singular and use them to
explore phenomena in birational geometry and commutative algebra. Specifically, we
study the Hilbert scheme compactification of a pair of linear spaces, describe all the sub-
schemes parameterized by this component and show that it is a smoothMori dream space.
We study Hilbert schemes with two Borel-fixed points and prove that they are reduced,
and that their irreducible components have normal and Cohen-Macaulay singularities.
We study the Hilbert scheme of points on a threefold and extend results on the Hilbert
scheme of points of a surface to this case; we also provide bounds on the dimension of
this Hilbert scheme. Finally, we generalize the Hilbert and Quot schemes to construct the
fiber-full scheme, which is a fine moduli space that controls all the cohomological data of
a variety instead of just the Hilbert polynomial.
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Chapter 1

Introduction

“Algebraic geometry seems to have acquired the reputation of being esoteric,
exclusive, and very abstract, with adherents who are secretly plotting to take
over all the rest of mathematics. In one respect this last point is accurate.”

– David Mumford [72]

A characteristic of algebraic geometry is that the set of varieties of a given type is often
itself an algebraic variety in a natural way. For example, associating a plane curve with
its defining equation, up to scalars, identifies the family of plane curves of a given degree
with a projective space. Explicitly, a plane curve of degree 3 in the complex projective
plane corresponds to the vanishing locus of a homogeneous polynomial of degree 3 in
three variables. The collection of these polynomials, up to scalars, can be identified with
the projective space P� where � =

(3+2
2

)
− 1. Studying the geometry of certain loci

in P� directly leads to a deeper understanding about the geometry of the plane curves
themselves.

This correspondence canbevastly generalized. To each closed subvariety of aprojective
variety, one can associate a numerical invariant called theHilbert polynomial. For instance,
in the case of a plane curve of degree 3, the Hilbert polynomial is %(C) = 3C + 1 −

(3−1
2

)
. In

1961, Grothendieck [39] constructed the Hilbert scheme which is a projective variety that
parameterizes all subvarieties in a given projective varietywith a fixedHilbert polynomial.
It has applications in algebraic geometry: it is used in constructingothermoduli spaces and
in the study of deformations of curves in birational geometry. It also appears in other areas
such as representation theory, combinatorics, symplectic geometry and mathematical
physics.

Unfortunately, it does have some major drawbacks. It was shown by Vakil that Hilbert
schemes, in general, satisfy “Murphy’s law”, i.e., every singularity of finite type over
k appears on some Hilbert scheme [96]. However, this result does not decide whether
most Hilbert schemes are singular or only some specially constructed (points on) Hilbert
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schemes are singular. For example, every Hilbert scheme in projective space contains a
generically smooth component and there aremany smooth ormildly singular components
of Hilbert schemes. Even the very singular ones are important: the Hilbert scheme of
points on a Calabi-Yau threefold plays a significant role in the computation of Donaldson-
Thomas invariants.

In this thesis we find and study (components of) Hilbert schemes that have well-
behaved singularities. This thesis is broadly divided into three parts:

(i) Chapter 3, Chapter 4, Chapter 5: We study singularities of classical Hilbert schemes
and show that there are many (components) of Hilbert schemes that are smooth
or mildly singular and use them to explore phenomena in birational geometry and
commutative algebra.

(ii) Chapter 6: We initiate a detailed study of the Hilbert scheme of points on a threefold
and extend results on the Hilbert scheme of points of a surface to this case.

(iii) Chapter 7: We generalize the Hilbert and Quot schemes to construct the fiber-full
scheme, which is a fine moduli space that controls all the cohomological data of a
variety instead of just the Hilbert polynomial.

We will now provide some background and details regarding the aforementioned topics.

1.0.1 Smooth components of Hilbert schemes
The cases when the Hilbert scheme is smooth or has smooth components has been well
studied. Early on these smooth components were used to solve numerous enumerative
problems [29] and recently, with major advances in the minimal model program [9],
they are also a source of examples with rich birational structure. Fogarty [30] proved that
Hilb3(P2) is smooth andArcara, Bertram, Coskun andHuizenga [5] proved that it is aMori
dream space and described the stable base decomposition of its effective cone in numerous
cases. Piene and Schlessinger [79] showed that Hilb3C+1(P3) has two smooth components
thatmeet transversely anddescribed thepoints of the component corresponding to twisted
cubics explicitly. Chen [15] proved that the component corresponding to the twisted cubics
is the flip of ĎM0,0(P3, 3) over the Chow variety. Avritzer and Vainsencher [95] proved that
the component corresponding to elliptic quartics in Hilb4C(P3) is smooth and isomorphic
to a double blow up of Gr(1, 9); Gallardo, Huerta and Schmidt [34] computed its effective
cone. Chen, Coskun and Nollet [16] showed that the component corresponding to a pair
of codimension two linear spaces meeting transversely is smooth and isomorphic to a
blowup of Sym2(Gr(= − 2, =)). They also completely worked out its Mori theory. It is thus
very interesting to find components of Hilbert schemes that are smooth and describe their
birational geometry.

In Chapter 3 we show that the component of the Hilbert scheme parameterizing a pair
of linear spaces meeting transversely is smooth and isomorphic to successive blowups of
a product of Grassmannians. This generalizes the classical case of the Hilbert scheme of a
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pair of skew lines in [16]. In Chapter 4we study the birational geometry of this component
of the Hilbert scheme. In particular, we completely describe the effective and nef cones
and prove that it is a Mori dream space. This provides new examples of Mori dream
spaces.

1.0.2 Measuring the complexity of Hilbert schemes
The global geometry of Hilbert schemes is not well understood. The earliest results in
this direction were obtained by Hartshorne [46], who showed that Hilb%(P=) is connected,
and Fogarty [30], who proved that Hilb%(P2) is smooth. Later on, Reeves and Stillman
[83] showed that every Hilbert scheme of projective space contains a smooth Borel-fixed
point. As a consequence, Hilbert schemes with a single Borel-fixed point are smooth
and irreducible, and Staal [89] completely classified these Hilbert schemes. In fact, most
Hilbert schemes or components of Hilbert schemes that are verywell understood have few
Borel-fixed points. For example, the twisted cubic compactification Hilb3C+1(P=), which
has two smooth components that meet transversely [79], has three Borel-fixed points.

Thus, by restricting the structure of the Borel-fixed points one might obtain many
smooth or mildly singular (components of) Hilbert schemes. In Chapter 5, we investigate
the singularities of Hilbert schemes from this perspective. It turns out that if we allow
at most two Borel-fixed points then the Hilbert scheme has at most two components.
Moreover, the components are smooth or have normal, Cohen-Macaulay singularities.
We also provide an explicit description of these singularities as cones over certain Segre
embeddings.

1.0.3 The Hilbert scheme of points on a threefold
The Hilbert scheme of 3 points in P= , denoted by Hilb3(P=), parameterizes closed zero-
dimensional subschemes of P= of degree 3. We have already seen that Hilb3(P2) is
smooth and has a rich history from the perspective of birational geometry. It also has
connections to other areas of mathematics, such as knot theory [35, 75], representation
theory [73], symplectic geometry [6] and combinatorics [41]. By contrast, the Hilbert
scheme is singular for = ≥ 3 and very little is known about its geometry. The case of
Hilb3(P3) is of particular interest, since it lies at the boundary between the smooth cases
= ≤ 2 and the cases = ≥ 4 which are believed to be wildly pathological [55]. In fact,
Hilb3(P3) is known to be rather special, as it admits a super-potential description – it is
the singular locus of a hypersurface on a smooth variety [7]. For 3 ≤ 11, Hilb3(P3) is
irreducible [23], and its general point parametrizes configurations of 3 points in P3; in
particular, the Hilbert scheme is of dimension 33. However, Iarrobino [52,53] proved that
Hilb3(P3) is reducible for 3 ≥ 78. In general, the dimension of Hilb3(P3) is unknown.
Basic questions about the dimension of tangent spaces to Hilb3(P3) are also wide open.
Over forty years ago, Briançon and Iarrobino [10] established an upper bound for the
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dimension of Hilb3(P3), and stated a conjecture regarding the largest possible dimension
of its tangent spaces.

In Chapter 6 we initiate a detailed study of the tangent space to Hilb3(P3). For points
parametrizing monomial subschemes, we consider a decomposition of the tangent space
into six distinguished subspaces, and show that a fat point exhibits an extremal behavior
in this respect. This decomposition is also used to characterize smooth monomial points
on the Hilbert scheme. We prove the Briançon-Iarrobino conjecture up to a factor of
4
3 , and improve the known asymptotic bound on the dimension of Hilb3(P3). We also
provide a self-contained proof of a parity theorem that was previously established using
Donaldson-Thomas theory.

1.0.4 Refining the Hilbert scheme by controlling cohomology
When studying embedded varieties and their moduli, one is led to studying loci inside the
Hilbert scheme that can be defined using certain cohomological data. This can be done
by fixing all the cohomological data of O- , as seen in the works of Martin-Deschamps and
Perrin in the study of curves in P3 [65], or it can be done by enforcing the vanishing of
certain cohomology groups, giving the arithmetically Cohen-Macaulay and Gorenstein
loci [28, 49, 56–58]. For this reason it is useful to express these loci as a fine moduli
space of some functor. However, trying to show that the natural functor associated to the
cohomological data is representable is muchmore subtle since (local) cohomology groups
are, in general, not finitely generated.

In Chapter 7 we show that by fixing all the cohomological data, not just the Hilbert
polynomial, the corresponding functor can be represented by a scheme which we call the
fiber-full scheme. This provides a generalization of the Hilbert and Quot schemes and has
the added benefit of having fewer irreducible components than the Hilbert scheme. As
an example, we show that all the smooth Hilbert schemes are in fact fiber-full schemes.
Numerous applications of the fiber-full scheme can be found in [20].

1.0.5 Concluding remarks
In the appendix we show that one of the Hilbert scheme components from Chapter 3 has
radius bigger than 1. This has been included in the thesis because, to our knowledge, no
such example has appeared in the literature. Chapter 3 and 4 are reproduced from [81],
Chapter 5 is from [80], Chapter 6 is from [82] and is joint work with Alessio Sammartano,
and Chapter 7 is from [19] and is joint work with Yairon Cid-Ruiz.
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Chapter 2

Preliminaries

“I can illustrate the second approach with the same image of a nut to be
opened. The first analogy that came to my mind is of immersing the nut in
some softening liquid, and why not simply water? From time to time you rub
so the liquid penetrates better, and otherwise you let time pass. The shell
becomes more flexible through weeks and months-when the time is ripe,
hand pressure is enough, the shell opens like a perfectly ripened avocado! A
different image came to me a few weeks ago. The unknown thing to be
known appeared to me as some stretch of earth or hard marl, resisting
penetration... the sea advances insensibly in silence, nothing seems to
happen, nothing moves, the water is so far off you hardly hear it... yet it
finally surrounds the resistant substance.”

– Alexander Grothendieck [68]

In this chapter we introduce the Hilbert scheme and go over some of the structural
results on Hilbert schemes in projective space.

Notation 2.0.1. Let ) be a locally Noetherian scheme and - a quasiprojective scheme over
) with O(1) a very ample line bundle on - over ).

Definition 2.0.2. The Hilbert functor is a contravariant functor

Hilb-/) : {locally Noetherian schemes over )} → {Sets}

defined as follows

• For any locally Noetherian )-scheme �,

Hilb-/)(�) = {/ ⊆ - ×) �, closed and flat over �}.

• For anymorphism of locallyNoetherian)-schemes, ! : �→ �′we obtainmorphism

Hilb-/)(�
′) → Hilb-/)(�), / ↦→ / ×�′ �.
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Let � be a connected locally Noetherian )-scheme and / ⊆ - ×) � a closed, flat
subscheme. Let �1 : / → - and �2 : / → � be the two projections. Then for any closed
point 1 ∈ � it is well known that the Euler characteristic

%1(C) := "(O/1 (C)) = "(O/1 ⊗O/
�★1 (O(C)))

is a polynomial in C when /1 = �−1
2 (1) is the closed fiber [47]. Thus for any polynomial

% ∈ Q[C]we can define a subfunctor of the Hilbert functor, denoted by Hilb%-/) , as follows

Hilb%-/)(�) = {/ ∈ Hilb-/)(�) : %1 = % for all 1 ∈ �}.

Theorem 2.0.3 ( [39]). Let - be projective over ). Then for any polynomial % ∈ Q[C], the functor
Hilb%-/) is representable by a projective )-scheme Hilb%-/) . Moreover, Hilb-/) is represented by

Hilb-/) =
⊔

%∈Q[C]
Hilb%-/) .

For an open subscheme* ⊆ -, the functor Hilb*/) is represented by an open subscheme

Hilb*/) ⊆ Hilb-/)

Example 2.0.4. If ) = Spec(k) then the k-points of Hilb%(-) corresponds to subschemes
of - with Hilbert polynomial %. Given a subscheme . ⊆ - we denote its k-point in the
Hilbert scheme by [.]. The tangent space to [.], considered as a k-point of the Hilbert
scheme, is the k-vector space

)[.]Hilb%(-) = �0(-,N./-) = HomO-
(I./- ,O-)

where N./- is the normal sheaf of . in -.

The Hilbert scheme has two natural generalizations. For a more thorough discussion
of these and the Hilbert scheme, see [87].

Remark 2.0.5. Let %1, . . . , %: be a sequence of Hilbert polynomials. Consider the functor

Hilb%1 ,...,%:
-/) : {locally Noetherian schemes over )} → {Sets}

that maps

� ↦→ {(/1, . . . , /:) : /8 ⊆ /8+1 and /8 ∈ Hilb%8
-/)(�) for all 8}.

If - is projective over ), then Hilb%1 ,...,%:
-/) is represented by a projective scheme called the

nested Hilbert scheme.
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Remark 2.0.6. Let F be a coherent sheaf on -. The Quot functor is defined to be

Quot
F/-/) : {locally Noetherian schemes over )} → {Sets}

� ↦→ {coherent quotients 6 : F ×) �→ G : G is flat over �}/∼
If - is projective over ), then Quot

F/-/) is represented by a projective scheme called the
Quot scheme. Analogous to the Hilbert scheme, this decomposes into a disjoint union
of Quot schemes indexed by the Hilbert polynomial. We recover the Hilbert scheme by
taking F = O- . One can also define nested Quot schemes similar to Remark 2.0.5.

An equivalent interpretation of the Hilbert scheme Hilb%(P=) is that it parameterizes
saturated homogeneous ideals of k[G0, . . . , G=]with a fixed Hilbert polynomial. To define
homogeneous one needs a grading on the polynomial ring, and implicit in the latter
statement is the fact that the polynomial ring is standard graded with deg G8 = 1. It is
quite common to come across polynomial rings that are multigraded, and thus it is useful
to have a scheme that parameterizes ideals in such rings with a fixed Hilbert function.
Haiman and Sturmfels in [42] showed that such a scheme does indeed exist.

Remark 2.0.7 ( [42]). Let ( = k[G1, . . . , G=] be a polynomial ring. We can identify a
monomial GD ∈ ( with its exponent vector D ∈ N= . A grading of ( by an abelian group �
is a semigroup homomorphism deg : N= → �. This induces a decomposition

( =
⊕
0∈�

(0 , satisfying (0 · (1 ⊆ (0+1 ,

where (0 is the k-span of all monomials GD whose degree is equal to 0. Note that for any
other k-algebra ' we get an induced grading on ' ⊗k (. Given a function ℎ : �→ N we
define a functor �ℎ

( : : algebras→ Sets that maps

' ↦→ {� ⊆ ' ⊗k ( homogeneous : (' ⊗k ()0/�0 is locally free of rank ℎ(0) for all 0}

There is a quasiprojective scheme �ℎ
(
, called the multigraded Hilbert scheme, that

represents the functor �ℎ
(. If the grading is positive i.e., the only monomial of degree 0 is

G0, then the scheme is projective.

Remark 2.0.8. The multigraded Hilbert scheme recovers the Hilbert scheme of projective
space if we take the Hilbert function to be the Hilbert polynomial in sufficiently high
degree. More precisely let % be a Hilbert polynomial, let < be its Gotzmann number
Remark 2.0.13 and let ( be standard graded with deg(48) = 1 for all 8. Let � = Z and
ℎ : Z→ N is given by

ℎ(8) =
{
%(8) if 8 ≥ <
dimk((8) else.

Then the natural map �ℎ
(
→ Hilb%(P=) is an isomorphism.
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There is still a local relation between the multigraded Hilbert scheme and Hilb%(P=) in
many cases.

Theorem 2.0.9 (Comparison Theorem [79]). Let - ⊆ P= be a subscheme with ideal �- =

( 51, . . . , 5B) where deg 58 = 38 satisfying, (k[G0, . . . , G=]/�-)4 ' �0(O-(4)) for 4 = 31, . . . , 3B .
Then there is an isomorphism between the universal deformation space of �- and that of -; the
latter is an analytic neighbourhood of Hilb(P=) around [-]. In particular,

)[�- ] Hilb(P=) = �0(P= ,N-/P= ) = Hom(�- , (/�-)0.
Remark 2.0.10. Let ( = k[G0, . . . , G=]. With notation as in the above Theorem, consider
the following exact sequence in local cohomology [26, Corollary A1.12],

0 −→ �0
m((/�-) −→ (/�- −→ �0

★(P= ,O-) −→ �1
m((/�-) −→ 0.

If we show that� 8
m((/�-)4 = 0 for 4 = 41, . . . , 4A and 8 = 0, 1, then the Comparison theorem

would apply. Here are two instances in which this is true

(i) The depth of (/�- is at least 2 [26, Corollary A1.13].

(ii) The Castlenuovo-Mumford regularity of the ideal �- is min {41, . . . , 4A} [26, Propo-
sition 4.16]. Note that reg(�-) = reg((/�-) + 1.

We will be primarily interested in Hilb%-/) where - = P= and ) = Spec(k). So we will
fix that once and for all.

Notation 2.0.11. Weuse ( to denote the polynomial ring k[G0, . . . , G=] andm := (G0 . . . , G=)
to denote its maximal ideal. We denote the monomial G00

0 · · · G
0=
= by x". We use (3 to

denote the subspace of monomials of degree 3. The support of a monomial is the set of all
variables that divide the monomial. By lexicographic ordering we will mean the standard
lexicographic ordering on ( with G0 > G1 > · · · > G= .

All ideals are assumed to be saturated unless otherwise specified. We use %-(C) or
%(/�(C) to denote the Hilbert polynomial of the subscheme - = Proj ((/�) ⊆ P= . We
sometimes call this the Hilbert polynomial of �.

We denote Hilb%P=/k by Hilb%(P=). In this case, we use [�] or [-]where - = Proj ((/�) ⊆
P= to denote the corresponding point on the Hilbert scheme.

We begin our study of Hilb%(P=) by determining when it is non-empty. Equivalently,
determining when is % a Hilbert polynomial of some closed subscheme of P= .

Theorem 2.0.12 ( [37]). A polynomial % ∈ Q[C] is a Hilbert polynomial if and only if there exists
an integer partition � = (�1, . . . ,�<) with �1 ≥ · · · ≥ �< ≥ 1 for which

% = %� :=
<∑
8=1

(
C + �8 − 8
�8 − 8

)
. (2.1)

This is called the Gotzmann decomposition of %.
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Remark 2.0.13 ( [37]). The value < in the above theorem is called theGotzmann number
and is an upper bound on the Castelnuovo-Mumford regularity of any saturated ideal �
with Hilbert polynomial %.

The dimension of the subscheme with Hilbert polynomial %� is �1 − 1. In particular, if
the closed subscheme is proper and non-empty we have 1 ≤ �1 ≤ =.

Notation2.0.14. Weuse� todenote the tuple (�1,�2, . . . ,�<)ofweaklydecreasingpositive
integers and call it an integer partition. We use %� to denote theHilbert polynomial Eq. (2.1)
associated to�. Hilbert schemes are indexed by partitions� andwewill do this bywriting
them as Hilb%�(P=).

Although we stated Gotzmann’s result, Macaulay was the first one who classified
Hilbert polynomials. He did this by constructing a special monomial ideal called the
lexicographic ideal. A monomial ideal ! ⊆ ( is a lexicographic ideal if, for all integers
9, the homogeneous component of � 9 is the k-vector space spanned by the dimk � 9 largest
monomials in lexicographic order.

Theorem 2.0.15 ( [63]). For an integer partition � = (�1, . . . ,�<), there is a unique saturated
lexicographic ideal, denoted by !(�), with Hilbert polynomial %�. Let 0 9 be the number of parts in
� equal to 9 for all 9 ∈ N. If = ≥ �1 we have

!(�) := (G0=+1
0 , G

0=
0 G

0=−1+1
1 , . . . , G

0=
0 G

0=−1
1 · · · G03

=−3G
02+1
=−2 , G

0=
0 G

0=−1
1 · · · G02

=−2G
01
=−1). (2.2)

Finally,

% =

=∑
:=0

[(
C + :
: + 1

)
−

(
C + : − <:

: + 1

)]
where <8 =

∑=
8=8 08 . This is called the Macaulay decomposition of %.

Example 2.0.16 (Hypersurfaces). We will now briefly explain why the Hilbert scheme
parameterizing hypersurfaces is isomorphic to a projective space. It can be shown that
/ ⊆ P= is a hypersurface of degree 3 if and only if the Hilbert polynomial of / is %� with
� = (=3) i.e.,

%/(C) =
(
= + C
=

)
−

(
= + C − 3

=

)
=

3∑
8=1

(
C + = − 8
= − 1

)
.

Thus we have a well defined, bĳective morphism

P((3) → Hilb%�(P=), ( 5 ) ↦→ [ 5 ].

To check that this is an isomorphism it suffices to show that

dim)[ 5 ]Hilb%�(P=) = dim P((3) =
(
= + 3
3

)
− 1
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since this would imply Hilb%�(P=) is smooth. By Theorem 2.0.9 we have

)[ 5 ]Hilb%�(P=) = Hom( 5 , (/ 5 ) = Hom( 5 , (/ 5 )0.

It is now straightforward to check that the map 5 ↦→ G" is well defined for all G" ∈ ((/ 5 )3.
Thus dim (Hom( 5 , (/ 5 )0) = dim((/ 5 )3 =

(=+3
3

)
− 1, as required.

The first major result on the structure of Hilbert schemes of projective space was
obtained by Hartshorne, who showed that the Hilbert schemes are always connected in
characteristic 0. Pardue extended this to all characteristics.

Theorem 2.0.17 ( [46, 77]). A non-empty Hilbert scheme Hilb%�(P=) is connected.

This theorem is proved by showing that any point on the Hilbert scheme can be joined
to the lexicogrpahic point [!(�)] by a chain of rational curves.

To prove that the Hilbert scheme is connected the authors study the Borel-fixed points
of the Hilbert scheme. Given a matrix � = (08 9)8 9 ∈ GL(= + 1), the map on variables
G8 ↦→

∑
08 9G 9 induces an action on the set of ideals of ( with Hilbert polynomial %. Thus,

the group GL(= + 1) acts on Hilb%(P=) and so does its subgroup, B, of upper triangular
matrices. A closed point (resp. ideal) is said to be Borel-fixed if it is fixed by the subgroup
B.

Since Borel-fixed points are fixed by the set of diagonal matrices, they must be defined
by monomial ideals. A monomial ideal � ⊆ ( is said to be strongly stable if for any
monomial < ∈ � divisible by G 9 we have < G8

G 9
∈ � for all 8 < 9. The relation between these

two concepts is given by the following theorem.

Proposition 2.0.18 ( [69, Proposition 2.3] ). If char(k) = 0 a monomial ideal � ⊆ ( is Borel-fixed
if and only if � is strongly stable.

This combinatorial criterion can be extend to all characteristics (Definition 3.4.1).
It turns out that the lexicographic point, which is Borel-fixed, is a special point on the

Hilbert scheme.

Theorem 2.0.19 ( [83]). Let � be an integer partition. The lexicographic point [!(�)] is a smooth
point on the Hilbert scheme Hilb%�(P=) and the component it lies on is called the lexicographic
component.

Moreover, any subscheme / parameterized by the general member of the lexicographic compo-
nent may be described as follows: Choose a flag

P= ⊇ P8;+1 ⊇ · · · ⊇ P81+1

Within each P8 9+1 choose a generic hypersurface of degree 0 9 (if 081 = 1, choose P81 ⊇ P82+1 in the
above flag and skip the choice of a hypersurface for 081). Finally choose 00 generic points in P= .
Then / is the union of the chosen hypersurfaces and points.
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Now that we have a distinguished component on each Hilbert scheme, it is possi-
ble to refine Hartshorne’s proof of the connectedness of the Hilbert scheme. To each
Hilbert scheme Hilb%(P=), one can associate an incidence graph as follows: to each irre-
ducible component we assign a vertex, and we connect two vertices if the corresponding
components intersect. Define the distance 3(�, �) between two components �, � to
be the number of edges in the shortest path linking the corresponding vertices. Let
A� = max{3(�, �) : � a component of Hilb%(P=)}, and define the radius of the Hilbert
scheme to be

rad(Hilb%(P=)) = min{A� : � a component of Hilb%(P=)}.

We identify any component � for which rad(Hilb%(P=)) = A� as a center of the graph. By
studying the lexicographic component in relation to other components Reeves established

Theorem 2.0.20 ( [84, Theorem 7]). Consider the Hilbert scheme Hilb%(P=) and let 3 =
deg% be the dimension of the parameterized subschemes. Then the distance from any
component to the lexicographic component is at most 3 + 1. In particular, the radius of
the Hilbert scheme is at most 3 + 1.

Now that we have some understanding of the topological structure of these Hilbert
schemes, the next natural thing to study would be its singularities. We have already seen
that the Hilbert scheme parameterizing hypersurfaces in P= is smooth. In particular, the
Hilbert scheme of P1 is smooth. The next result generalizes this to a surface.

Definition 2.0.21. The symmetric product of a scheme - is the categorical quotient
Sym3(-) := -3/(3 where (3 acts naturally on -3 by permutation.

Theorem 2.0.22 ( [30]). The Hilbert scheme Hilb%(P2) is smooth and irreducible. If % = 3 is
constant, then the Hilbert-Chow morphism

Hilb3(P2) → Sym3(P2), [/] ↦→
∑

deg(O/,?)[?]

is a crepant1 resolution of the symmetric product of a surface.

Remark 2.0.23 ( [64]). Let ( = k[G, H] and assume that it is graded by an abelian group �.
Then for any function ℎ : � → N the multigraded Hilbert scheme Hilbℎ( is smooth and
irreducible.

It is natural to wonder if one can make more general statements about the smoothness
of Hilbert schemes. We state two more instances of this without going into any details:

• If a subscheme / ⊆ P= is a locally complete intersection and �1(/,N//P= ) = 0 then
[/] is a smooth point in the Hilbert scheme [39].

1A resolution of singularities ! : .̃ → . is crepant if !★ . =  .̃
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• If / ⊆ P= is an arithmetically Cohen-Macaulay subscheme of codimension 2 or
an arithmetically Gorenstein subscheme of codimension 3, then [/] is a smooth
point [28, 58].

However, it turns out that Hilbert schemes are very far from being well-behaved in general.
Define an equivalence relation on pointed schemes by: If (-, ?) → (., @) is a smooth
morphism, then (-, ?) ∼ (., @). We call the equivalence classes singularity types, andwill
call pointed schemes singularities (even if the point is regular). We say that Murphy’s
Law holds for a moduli space if every singularity type of finite type over Z appears on
that moduli space.

Theorem 2.0.24 ( [96]). The Hilbert scheme of non-singular curves in projective space satisfies
Murphy’s law. The Hilbert scheme of surfaces in P4 satisfies Murphy’s law.

On the other hand all hope is not lost, there might be still be many smooth Hilbert
schemes or smooth components of Hilbert schemes. Here is a simple lemma that reduces
to checking singularities at the Borel-fixed points.

Lemma 2.0.25. The Hilbert scheme Hilb%(P=) is reduced or smooth if and only if it is reduced
or smooth at all the Borel-fixed points, respectively. Moreover, an integral component, �, of the
Hilbert scheme is normal, Cohen-Macaulay, Gorenstein or smooth if and only if it is normal,
Cohen-Macaulay, Gorenstein or smooth at all the Borel-fixed points on �, respectively.

Proof. Given a k-point [/] ∈ Hilb%(P=), write B(/) for the orbit of / under B. By the
Borel fixed-point theorem the closure, B(/), contains a Borel-fixed point. Assume that
the Hilbert scheme is reduced at all the Borel-fixed points. Since the reduced locus is
open, a non-empty open subset of B(/) is also reduced. Thus, some element of B(/) is
also non-reduced. Since B acts by automorphisms, / must be a reduced point. The same
proof works for smoothness as the smooth locus is also open.

The action of B restricts to any irreducible component of the Hilbert scheme. Since the
normal, Cohen-Macaulay and Gorenstein loci are all open, the proof given in the previous
paragraph also proves the second statement. �

By Theorem 2.0.19 the lexicographic point is smooth. Thus, if the Hilbert scheme has
a single Borel-fixed point then it must be smooth. Staal recently classified all the Hilbert
polynomials for which this is true.

Theorem 2.0.26 ( [89]). Let � = (�1, . . . ,�<) be an integer partition. The Hilbert scheme
Hilb%�(P=) has a unique Borel-fixed point if and only if

(i) = ≥ �1 and �< ≥ 2,

(ii) � = (1) or � = (=A−2,�A−1, 1) where A ≥ 2 and = ≥ �A−1 ≥ 1.

In all of these cases the Hilbert scheme is smooth.



CHAPTER 2. PRELIMINARIES 13

In Chapter 5 I take the next step and classify the singularities of Hilbert scheme with
two Borel-fixed points. Part of my results were used in the recent classification of all the
smooth Hilbert schemes by Skjelnes and Smith.

Theorem 2.0.27 ( [88]). Let � = (�1, . . . ,�<) be an integer partition. The Hilbert scheme
Hilb%�(P=) is smooth if and only if

(i) = = 2 ≥ �1,

(ii) = ≥ �1 and �< ≥ 2,

(iii) � = (1) or � = (=A−2,�A−1, 1) where A ≥ 2 and = ≥ �A−1 ≥ 1,

(iv) (=A−B−2,�B+2
A−B−2, 1) where A − 3 ≥ B ≥ 0 and < − 1 ≥ �A−B−2 ≥ 3,

(v) (=A−B−5, 2B+4, 1) where A − 5 ≥ B ≥ 0,

(vi) (= + 1) or A = 0.
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Chapter 3

Pair of linear spaces - Smoothness

In this chapter we show that the component of the Hilbert scheme that parameterizes
a pair of linear spaces meeting transversely is smooth. We accomplish this by showing
that the component is isomorphic to successive blowups Sym2(Gr(= − :, =)). We classify
the subschemes parameterized by this component and show that this component has a
unique Borel-fixed point.

Let k be an algebraically closed field with char k ≠ 2 and let 3 ≥ 2 ≥ 2. Let - be
the union of an (= − 2)-dimensional plane and an (= − 3)-dimensional plane meeting
transversely in P= . The Hilbert polynomial of - is

%=
=−2,=−3(C) =

(
= − 2 + C

C

)
+

(
= − 3 + C

C

)
−

(
= − 2 − 3 + C

C

)
.

There is an integral component ofHilb%
=
=−2,=−3(P=), denotedH=

=−2,=−3 orH=−2,=−3(P=), whose
general point parameterizes - (Proposition 3.1.2).

We begin with the natural rational map

Ξ : Gr(= − 2, =) ×Gr(= − 3, =) d H=
=−2,=−3 , (Λ,Λ

′) ↦→ [�Λ�Λ′]. (3.1)

If 2 = 3, the rational map is S2-equivariant where S2 is the group of order 2. It acts on
Gr(= − 2, =)2 by interchanging the two factors and acts trivially onH=

=−2,=−2 .

Definition 3.0.1. For each 1 ≤ 8 ≤ 2 define an incidence variety

Γ8 = {(Λ,Λ′) : codimP= (Λ ∩Λ′) ≤ 3 − 1 + 8} ⊆ Gr(= − 2, =) ×Gr(= − 3, =).

Note that Ξ is defined on the open subset where the two planes meet transversely. If
- spans P= (when = ≥ 2 + 3 − 1) then this open set is precisely the complement of Γ2 .
Moreover, in this case, Ξ is also defined on the complement of Γ2−1 (Lemma 3.1.3).

In this thesis we will only be considering the case when 2 = 3. The case when 2 ≠ 3

can be found in [81]. By explicitly resolving Ξ and studying the induced morphism, we
obtain
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Theorem 3.0.2. Let : ≥ 2 and = ≥ 2: −1. The componentH=
=−:,=−: is smooth and the map

Ξ induces an isomorphism

Bl
sΓ:−1 · · ·Bl

sΓ1 Sym2 Gr(= − :, =) −→ H=
=−:,=−:

where sΓ8 is the strict transform of Γ8/S2.
If = < 2: − 1, the morphismH=

=−:,=−: −→ Gr(2= − 2: + 1, =) that sends a scheme to its
linear span is smooth; the fiber over a point Λ isH=−:,=−:(Λ).

Historically, Harris [44] suggested that H3
1,1 ' Bl

sΓ1 Sym2 Gr(1, 3) and that Hilb2C+2 P3

is the union of H3
1,1 and another smooth component meeting transversely. The authors

of [16] generalized this and proved that H=
=−2,=−2 ' Bl

sΓ1 Sym2 Gr(= − 2, =) is smooth and
meets exactly one other component in Hilb%

=
=−2,=−2 P= . A major step in the proof of these

statements was a computation of an analytic neighbourhood of a point in the intersection
of the two components using the tangent-obstruction theory for the Hilbert scheme [16,
Proposition 2.6]. Unfortunately, for general 2, 3 there are many, sometimes singular,
components meetingH=

=−2,=−3 (Remark 3.4.17). Thus a description of a neighbourhood of
a point in the intersection of all these components is most likely intractable. Our proof of
Theorem 3.4.7 circumvents this by using the explicit construction of Ξ and studying the
induced map on tangent spaces.

In Chapter 5 we will study the idea that the complexity of a Hilbert scheme can be
measured by their number of Borel fixed points. In line with our reasoning, we have the
following result:

Theorem 3.0.3. The componentH=
=−2,=−3 has a unique Borel fixed point.

We also give a complete description of all the subschemes parameterized byH=
=−2,=−3.

In light of Theorem 3.4.7, it is enough to consider the case = ≥ 2: − 1. A double structure
on an integral subscheme / ⊆ P= is a subscheme /′ ⊆ P= such that /′red = / and deg(/′) =
2 deg(/). A double structure is said to be pure if it has no embedded components.

Theorem 3.0.4. Let = ≥ 2: − 1. Let / be a subscheme parameterized byH=
=−:,=−: . Then /

is a pair of planesmeeting transversely, or there exists a sequence of integers 1 ≤ 81 < · · · <
8A ≤ : and a flag of linear spaces Λ1 ⊆ Λ2 ⊆ · · · ⊆ ΛA ⊆ P= with codimP= (Λℓ ) = (: + 8ℓ − 1)
for each ℓ , such that

(i) If 81 > 1 then / is a union of two planes meeting along Λ1 with embedded pure
double structures on Λℓ for each 1 ≤ ℓ ≤ A.

(ii) If 81 = 1 then / is a pure double structure on Λ1 with embedded pure double
structures on Λℓ for each 2 ≤ ℓ ≤ A.

Notation 3.0.5. For the rest of the chapter k will denote an algebraically closed field with
char(k) ≠ 2
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3.1 Dimension and generic smoothness
Let - denote the union of an (= − 2)-plane and (= − 3)-plane meeting transversely in P= .
Althoughwe are primarily interested in the case of 2 = 3, the results in this section hold for
general 2, 3. It is clear that- is parameterizedby anopen subset ofGr(=−2, =)×Gr(=−3, =)
of dimension 2(= − 2 + 1) + 3(= − 3 + 1). If we show that the tangent space to [-] on its
Hilbert scheme has dimension 2(= − 2 + 1) + 3(= − 3 + 1), it will follow immediately that
there is an irreducible component of Hilb%

=
=−2,=−3(P=)whose general member parameterizes

- and whose natural scheme structure is reduced.
Since - is projectively equivalent to / = +(G0, . . . , G2−1) ∪+(G=−3+1, . . . , G=), it suffices

to compute the tangent space to [/] on its Hilbert scheme. For the rest of this section we
fix / and %(C) = %=

=−2,=−3(C).
If / ' P=−2 t P=−3 is a disjoint union of linear spaces, it is smooth; this occurs if and

only if = ≤ 2 + 3 − 1. In this case we have a splitting of normals sheaves

N//P= = NP=−2/P= ⊕NP=−3/P= ' O 2
P=−2 (1) ⊕ O3

P=−3(1).

Thus we obtain, ℎ0(P= ,N//P= ) = 2(=− 2+1)+ 3(=− 3+1) and ℎ1(P= ,N//P= ) = 0. It follows
that [/] is a smooth point on its Hilbert scheme [48, Theorem 1.1c]. If = > 2+ 3−1, we will
explicitly compute the tangent space to [/] using Theorem 2.0.9 Since = > 2 + 3 − 1, the
depth of (/�/ is at least 2 and it follows from Remark 2.0.10 that the comparison theorem
applies for /.

Lemma 3.1.1. We have dimk )[/]Hilb%(P=) = 2(= − 2 + 1) + 3(= − 3 + 1).

Proof. We only need to consider the case = > 2 + 3 − 1. Moreover, it suffices to show that
the tangent space dimension is at most 2(= − 2 + 1) + 3(= − 3+ 1). In particular it is enough
to show that any ! ∈ Hom(�/ , (/�/)0 can be written as

!(G8G 9) =
=−3∑
ℓ=0

0
9

ℓ
G8Gℓ +

=∑
ℓ=2

1 8ℓ G 9Gℓ (3.2)

for any 0 ≤ 8 ≤ 2 − 1 and = − 3 + 1 ≤ 9 ≤ = with some constants, 0 8
ℓ
, 1 8
ℓ
∈ k.

Let us first show that !(G8G 9) is supported on {G8G0, . . . , G8G=−3 , G 9G2 , . . . , G 9G=}. Let
8 , 9 be any integers satisfying 0 ≤ 8 ≤ 2 − 1 and = − 3 + 1 ≤ 9 ≤ =. Choose 9′ such
that = − 3 + 1 ≤ 9′ ≤ = and 9 ≠ 9′. Since ! is an (-module homomorphism we have,
G 9′!(G8G 9) = G 9!(G8G 9′). This implies that G 9 divides every non-zero monomial in !(G8G 9)
that is not annihilated by G 9′ in (/�/. It follows that !(G8G 9) is supported on

C = {G?G@ : 0 ≤ ? ≤ 2 − 1, 0 ≤ @ ≤ = − 3} ∪ {G 9G2 , . . . , G 9G=}.

Similarly, choose 8′ such that 0 ≤ 8′ ≤ 2 − 1 and 8′ ≠ 8. Then the equality G8′!(G8G 9) =
G8!(G8′G 9) implies G8 divides everymonomial in !(G8G 9) that is not annihilated by G8′. Once
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again we see that !(G8G 9) is supported on

C′ = {G8G0, . . . , G8G=−3} ∪ {G?G@ : 2 ≤ ? ≤ =, = − 3 + 1 ≤ @ ≤ =}.

Thus !(G8G 9) is supported on C ∩ C′ = {G8G0, . . . , G8G=−3 , G 9G2 , . . . , G 9G=}.
For any 8 , 9, write !(G8G 9) =

∑=−3
ℓ=0 0

8 , 9

ℓ
G8Gℓ +

∑=
ℓ=2 1

8 , 9

ℓ
G 9Gℓ with 1 8 9

ℓ
, 0

8 9

ℓ
∈ k. Using the

relation G 9′!(G8G 9) = G 9!(G8G 9′) we see that 1 8 , 9
ℓ
= 1

8 , 9′

ℓ
for each ℓ and all 9 , 9′. Using the

relation G8′!(G8G 9) = G8!(G′8G 9)we obtain 0 8 , 9
ℓ
= 0

8′, 9
ℓ

for each ℓ and all 8 , 8′. Thus ! is of the
form described in Eq. (3.2). �

We immediately deduce the following.

Proposition3.1.2. There is an integral component ofHilb%(P=), denotedH=
=−2,=−3 orH=−2,=−3(P=),

whose general point parameterizes an (= − 2)-plane and an (= − 3)-plane meeting transversely in
P= .

In the introduction we defined a rational map (Eq. (3.1))

Ξ : Gr(= − 2, =) ×Gr(= − 3, =) d H=
=−2,=−3 , (Λ,Λ

′) ↦→ [�Λ�Λ′].

This map is well defined along the locus where Λ,Λ′ meet transversely, because in this
situation �Λ�Λ′ = �Λ ∩ �Λ′. In many cases, Ξ is in fact defined on a slightly larger open set.

Lemma 3.1.3. Let = ≥ 2 + 3 − 1. The rational map Ξ extends to the complement of Γ2−1.

Proof. We need to show that Ξ is defined along Γ2 \ Γ2−1. Up to projective equivalence,
an element of Γ2 \ Γ2−1 is of the form +(G0, . . . , G2−1) ∪+(G0, G2 , . . . , G2+3−2). It suffices to
show that � = (G0, . . . , G2−1)(G0, G2 , . . . , G2+3−2) has Hilbert polynomial %(C). It follows by
inspecting the minimal generators of � that for any C ≥ 1, ((/�)C is spanned by

G0k[G2+3−1, . . . , G=]C−1 ⊕
2−1⊕
8=1

G8k[G8 , . . . , G2−1, G2+3−1, . . . , G=]C−1 ⊕ k[G2 , . . . , G=]C .

Thus the Hilbert polynomial of (/� is(
= − 2 − 3 + C

C − 1

)
+

2−1∑
8=1

(
= − 3 − 8 + C

C − 1

)
+

(
= − 2 + C

C

)
.

Using the "Hockey-Stick" identity this simplifies to(
= − 2 + C

C

)
+

(
= − 3 + C

C

)
−

(
= − 2 − 3 + C

C

)
= %(C).

�
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Lemma 3.1.4. Let = ≥ 2 + 3 − 1 and consider the open set

V = (Gr(= − 2, =) ×Gr(= − 3, =)) \ Γ2−1 ⊆ Gr(= − 2, =) ×Gr(= − 3, =).

The morphism Ξ|V : V −→ H=
=−2,=−3 is injective if 2 ≠ 3 and two-to-one if 2 = 3.

Proof. Assume Ξ|V(Λ,Λ′) = Ξ|V(Λ̃, Λ̃′) = [.] for some scheme .. Observe that �Λ�Λ′
is a saturated ideal. Indeed, up to projective equivalence, Λ ∪ Λ′ = +(G0, . . . , G2−1) ∪
+(G2 , . . . , G2−3−2, G8) with 8 ∈ {0, 2 − 3 − 1}. In both cases, �Λ�Λ′ is clearly saturated. Thus
we have �. = �Λ�Λ′ and taking nilradicals we obtain

�Λ∪Λ′ = �Λ ∩ �Λ′ =
√
�Λ ∩ �Λ′ =

√
�Λ�Λ′ = �.red .

Similarly, �
Λ̃∪Λ̃′ = �.red . Equating the two expressions we have Λ ∪ Λ′ = Λ̃ ∪ Λ̃′. The

conclusion now follows. �

3.2 Coordinates forH=
=−:,=−:

This section is devoted to an analysis of H=
=−:,=−: . The first major goal of this section

is to prove that H=
=−:,=−: is smooth. We start with the case when the pair of planes

parameterized spans P= . We construct a bĳective morphism from a non-singular variety
to H=

=−:,=−: and deduce this is an isomorphism by proving its differential is injective
(Theorem 3.4.7). For the case where the pair of planes do not span P= , we construct a
certain fibration to reduce to the case where they do span (Corollary 3.4.8).

Let = ≥ 2: − 1 and X0 = Gr(= − :, =)2. For each 1 ≤ E ≤ : − 1, let XE = BlΓE · · ·BlΓ1 X0
and let �E : XE −→ X0 be the blow-up morphism. The map given in Eq. (3.1) induces a
rational map

Ξ : X:−1 = BlΓ:−1 · · ·BlΓ1 Gr(= − :, =)2 d H=
=−:,=−: (3.3)

defined away from the strict transforms of the exceptional divisors. In order to study the
structure ofH=

=−:,=−: , we will begin by extending Ξ to a morphism on X:−1.
For each ordered basis E = {40, . . . , 4=} of (1 we obtain an affine neighbourhood

*E = Spec k[08 , 9 , 18 , 9]:≤ 9≤=0≤8≤:−1 of X0 such that the k-points of*E correspond to

(Λ(a),Λ(b)) := (+(40 +
=∑
9=:

00, 94 9 , . . . , 4:−1 +
=∑
9=:

0:−1, 94 9), +(40 +
=∑
9=:

10, 94 9 , . . . , 4:−1 +
=∑
9=:

1:−1, 94 9)).

(3.4)

It is clear that as E ranges over all ordered basis of (1, the set of *E cover X0. In
particular, it suffices to extend Ξ along each �−1

:−1(*E) in a compatible way. For notational
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convenience we may assume E = {G0, . . . , G=} and let *0 = *E. Observe that the locus
ΓE ∩*0 is cut out by the ideal generated by the E × E minors of the matrix

" =
©­«

00,: − 10,: · · · 00,= − 10,=
...

...

0:−1,: − 1:−1,: · · · 0:−1,= − 1:−1,=

ª®¬ .
Thus �−1

:−1(*0) is obtained by blowing up *0 along the strict transforms of the ideal
generated by the E × E minors of " for E = 1, . . . , : − 1, in that order.

Proposition 3.2.1. For each 1 ≤ E ≤ :−1, there exists non-singular affine open subsets*E ⊆ XE
such that the following hold.

(i) We have*E ⊆ BlΓE∩*E−1 *E−1 ⊆ XE .

(ii) On the open set*E , the matrix �★E (") is row equivalent to the matrix

�1 · · ·�E()(E)0,: − )
(E)
0,=−E+1)

(E)
:−E,: ) · · · �1 · · ·�E()(E)0,=−E − )

(E)
0,=−E+1)

(E)
:−E,=−E) 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

�1 · · ·�E()(E):−E−1,: − )
(E)
:−E−1,=−E+1)

(E)
:−E,: ) · · · �1 · · ·�E()(E):−E−1,=−E − )

(E)
:−E−1,=−E+1)

(E)
:−E,=−E) 0 · · · 0 0

�1 · · ·�E)(E):−E,: · · · �1 · · ·�E)(E):−E,=−E �1 · · ·�E
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . . 0

.

.

.

�1�2)
(2)
:−2,: · · · �1�2)

(2)
:−2,=−E �1�2)

(2)
:−2,=−E+1 · · · �1�2 0

�1)
(1)
:−1,: · · · �1)

(1)
:−1,=−E �1)

(1)
:−1,=−E+1 · · · �1)

(1)
:−1,=−1 �1

©­­­­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®®®®¬
where

�1 = 0:−1,= − 1:−1,= and �8 = )(8−1)
:−8 ,=−8+1 − )

(8−1)
:−8 ,=−8+2)

(8−1)
:−8+1,=−8+1 for each 2 ≤ 8 ≤ : − 1.

(iii) The strict transform of ΓE+1 on*E is cut out by

()(E)
8 , 9
− )(E)

8 ,=−E+1)
(E)
:−E,9)

0≤8≤:−E−1
:≤ 9≤=−E .

(iv) ΓE+1 ∩*E is non-singular and the blowup along this locus is given by

BlΓE+1∩*E *E := Proj k[*E][)(E+1)
8 , 9
]8 , 9/(Koszul Relations).

Proof. We begin with the definition of *1. Since Γ1 is cut out by (08 , 9 − 18 , 9)8 , 9 on *0, it is
a non-singular subscheme and we have BlΓ1∩*0 *0 = Proj k[*0][)(1)8 , 9 ]8 , 9/(Koszul relations).
We define*1 = �()(1):−1,=).
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Let"E denote thematrix appearing in item (ii). Wewill prove items (i) - (iv) inductively
starting with E = 1. Item (i) is true for E = 1 by construction. On the open set *1, the
Koszul relations simplify to 08 , 9 − 18 , 9 = �1)

(1)
8 , 9

; here we have set )(1)
:−1,= = 1. Substituting

this into the matrix �★1 (") and subtracting appropriate multiples of the bottom row from
every other row, we obtain the matrix

"1 =

©­­­­­«
�1()(1)0,: − )

(1)
0,=)

(1)
:−1,:) · · · �1()(1)0,=−1 − )

(1)
0,=)

(1)
:−1,=−1) 0

...
...

...

�1()(1):−2,: − )
(1)
:−2,=)

(1)
:−1,:) �1()(1):−2,=−1 − )

(1)
:−2,=)

(1)
:−1,=−1) 0

�1)
(1)
:−1,: · · · �1)

(1)
:−1,=−1 �1

ª®®®®®¬
.

This proves item (ii) for E = 1. The ideal generated by the 2 × 2 minors of "1 is �2
1()
(1)
8 , 9
−

)
(1)
8 ,=
)
(1)
:−1, 9)

0≤8≤:−2
0≤ 9≤=−1. Thus the ideal of the strict transform of Γ2 is ()(1)

8 , 9
− )(1)

8 ,=
)
(1)
:−1, 9)

0≤8≤:−2
0≤ 9≤=−1.

Since this ideal is generated by a regular sequence, the blowup along it is non-singular
and equal to BlΓ2∩*1 *1 := Proj k[*1][)(2)8 , 9 ]8 , 9/(Koszul relations). This proves item (iii) and
(iv) for E = 1.

Now assume items (i) - (iv) have been proved for some 1 ≤ E ≤ : − 2. Define
*E+1 = �()(E+1)

:−E−1,=−E); equivalently let )(E+1)
:−E−1,=−E = 1. Then the Koszul relations on this

open simplify to )(E)
8 , 9
− )(E)

8 ,=−E+1)
(E)
:−E,9 = �E+1)

(E+1)
8 , 9

. Once we substitute this into the matrix
"E , it is straightforward to row reduce the matrix so that it becomes "E+1. Items (i) - (iv)
will follow immediately as explained in the previous paragraph. �

Remark 3.2.2. It follows from Proposition 3.2.1 that a set of algebraically independent
coordinates on*:−1 is

{18 , 9}:≤ 9≤=0≤8≤:−1 ∪ {)
(9)
8 ,=−9+1}

0≤8≤:−1−9
1≤ 9≤:−1 ∪ {�1, . . . ,�:−1} ∪ {)(8):−8 , 9}

1≤8≤:−1
:≤ 9≤=−8 ∪ {)

(:)
0, 9 }:≤ 9≤=−:+1

with )(:)0, 9 = )
(:−1)

0, 9 − )(:−1)
0,=−:+2)

(:−1)
1, 9 for all 9.

Proposition 3.2.3. Let = ≥ 2: − 1. The rational map Ξ in Eq. (3.3) extends to a morphism
*:−1 −→ H=

=−:,=−: .

Proof. We will use a to denote the tuple (08 , 9)8 , 9 and similarly use b and T(E) to denote
their corresponding tuples. Moreover, we will use Λ(a) to denote the (= − :)-plane
corresponding to a as in Eq. (3.4). For each 0 ≤ 8 ≤ : − 1 let H8 = G8 +

∑=
9=: 18 , 9G 9 . At the

moment, Ξmaps

(a, b,T(1) , . . . ,T(:)) ↦→
[
�Λ(a)�Λ(b)

]
(3.5)

=

(H0 +
=∑
9=:

(00, 9 − 10, 9)G 9 , . . . , H:−1 +
=∑
9=:

(0:−1, 9 − 1:−1, 9)G 9)(H0 , . . . , H:−1)

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and this is undefined along the strict transforms of the exceptional divisors. Although
we may express a in terms of b and {T(E)}E , we will still describe formulas in terms of a as
it simplifies the exposition.

Observe that a minimal set of generators for �Λ(a) is given by the rows of
[
Id:×: |"

]
z)

where z =
[
H0 · · · H:−1 G: · · · G=

]
is a row vector. Applying row operations to[

Id:×: |"
]
will produce different minimal sets of generators. In particular, applying the

row operations we did to " to get ":−1 (Proposition 3.2.1 (ii)) to the matrix
[
Id:×: |"

]
we obtain a new set of generators 
0, . . . , 
:−1 of �Λ(a) where


? = H? −
:−1−?∑
9=1

)
(9)
?,=−9+1H:−9 +

=−(:−1−?)∑
9=:

�1 · · ·�:−?)(:−?)?,9
G 9 for 0 < ? ≤ : − 1

and


0 = H0 −
:−1∑
9=1

)
(9)

0,=−9+1H:−9 +
=−(:−1)∑
9=:

�1 · · ·�:−1)
(:)

0, 9 G 9

with )(:)0, 9 = )
(:−1)

0, 9 − )(:−1)
0,=−:+2)

(:−1)
1, 9 for all 9. By construction, )(E)

:−E,=−E+1 = 1 for all 1 ≤ E ≤
: − 1.

For 0 ≤ ? < @ ≤ : − 1 define the following "cross terms"

�?,@ =
©­«H? −

:?∑
9=1

)
(9)
?,=−9+1H:−9

ª®¬ ©­«
=−:@∑
9=:

)
(:−@)
@,9

G 9
ª®¬ − �?,@ ©­«H@ −

:@∑
9=1

)
(9)
@,=−9+1H:−9

ª®¬ ©­«
=−:?∑
9=:

)
(:−?)
?,9

G 9
ª®¬ ,

where :? = : − 1 − ? for all ? and �?,@ =

{
�:−@+1 · · ·�:−? if ? > 0
�:−@+1 · · ·�:−1 if ? = 0.

Note that our convention implies �0,1 = 1. Extend Ξ to*:−1 by mapping

(a, b,T(1) , . . . ,T(:)) ↦→
[
�Λ(a)(H0 , . . . , H:−1) + (�?,@)0≤?<@≤:−1

]
=

©­«G8 +
=∑
9=:

08 , 9
ª®¬0≤8≤:−1

©­«G8 +
=∑
9=:

18 , 9
ª®¬0≤8≤:−1

+
(
�?,@

)
0≤?<@≤:−1

 .
(3.6)

Note that Eq. (3.6) extends the original rational map given in Eq. (3.5). Indeed, Eq. (3.5)
is defined away from the strict transform of all the the exceptional divisors; this is the
locus where �1, . . . ,�:−1 ≠ 0. In this case we have

(H0, . . . , H:−1)�Λ(a) 3
©­«H? −

:?∑
9=1

)
(9)
?,=−9+1H:−9

ª®¬ 
@−©­«H@ −
:@∑
9=1

)
(9)
@,=−9+1H:−9

ª®¬ 
? = �1 · · ·�:−@�?,@ .

(3.7)
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Thus �?,@ ∈ �Λ(a)(H0, . . . , H:−1) and Eq. (3.5) and Eq. (3.6) coincide.
To show that the image of Eq. (3.6) is well defined, it is enough to show that the

Hilbert polynomial of an ideal � = �Λ(a)�Λ(b) + (�?,@)0≤?<@≤:−1 in this image is %=
=−:,=−:(C).

In Lemma 3.2.5 we define a term order > on ( for which

in>� = (G0, . . . , G:−1)2 + (G?G=−:@ )0≤?<@≤:−1.

Since there is a flat degeneration from � to in>� it suffices to show in>� has the desired
Hilbert polynomial. It is easy to see that ((/in>�)C is spanned by

:−1⊕
8=0

G8k[G: , . . . , G=−:+8+1]C−1 ⊕ k[G: , . . . , G=]C .

Using this and the Hockey-Stick identity we deduce that Hilbert polynomial of (/in>� is(
= − : + C

C

)
+

:−1∑
8=0

(
= − 2: + 8 + C

C − 1

)
=

(
= − : + C

C

)
+

(
= − : + C

C

)
−

(
= − 2: + C

C

)
= %=

=−:,=−:(C).

�

Prior to proving Lemma 3.2.5 we need the following auxiliary result.

Lemma 3.2.4. The ideal �Λ(a)�Λ(b) + (�?,@)0≤?<@≤:−1 in the image of Eq. (3.6) is projectively
equivalent to an ideal of the form

(G? + �?,:G=−:? )0≤?≤:−1(G0, . . . , G:−1) + (G?G=−:@ − �?,@G@G=−:? )0≤?<@≤:−1, (3.8)

with �8 ∈ k and �?,@ = �:−@+1 · · ·�:−? for any 0 ≤ ? < @ ≤ :.

Proof. Applying the projective transformation that maps G8 ↦→ G8 −
∑
9≥: 18 , 9G 9 if 8 ≤ : − 1

and fixes the other G8 , we may assume b = 0. For each 0 ≤ 8 ≤ : − 1 let �8 denote the map
that sends G8 ↦→ G8 +

∑:−8−1
9=1 )

(9)
8 ,=−9+1G:−9 and fixes the other 8. It is clear that �:−1 ◦ · · · ◦ �0(�)

equals,

©­«G? +
=−:?∑
9=:

�1 · · ·�:−?)(:−?)?,9
G 9

ª®¬0≤?≤:−1

(G0 , . . . , G:−1) +
©­«G? ©­«

=−:@∑
9=:

)
(:−@)
@,9

G 9
ª®¬ − �?,@G@ ©­«

=−:?∑
9=:

)
(:−?)
?,9

G 9
ª®¬ª®¬?<@

For each 0 ≤ 8 ≤ : − 1 let �8 = �8 . If )(:)0, 9 = 0 for all 9 then let �: = 0. If not, choose the

largest index ℓ for which )(:)0,ℓ ≠ 0 and let �: = )(:)0,ℓ .
For each 1 ≤ 8 ≤ :−1 consider themap �=−:8 , thatmaps G=−:8 ↦→ G=−:8−

∑=−:8−1
9=:

)
(:−8)
8 , 9

G 9

and fixes the other G8 . As we range over all 8, we obtain maps �= , . . . , �=−(:−2). If �: = 0 let
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�=−(:−1) be the identity; else let �=−(:−1) denote themap that sends Gℓ ↦→ G=−:0− 1
�:

∑ℓ−1
9=: )

(:)
0, 9 ,

G=−:0 ↦→ Gℓ if ℓ < = − :0, and fixes the other G8 .
Using the fact that )(:−8)

8 ,=−:8 = 1 on the open set *:−1, it is straightforward to check that
�=−(:−1) ◦ · · · �= ◦ �:−1 ◦ · · · ◦ �0(�) is of the desired form. �

Lemma 3.2.5. Let > denote the lexicographic ordering on ( with terms ordered by G0 > G1 >
· · · > G:−1 > G= > G=−1 > · · · > G: . Let � = �Λ(a)�Λ(b) + (�?,@)0≤?<@≤:−1 denote the ideal in the
image of Eq. (3.6). Then we have

in>� = (G0, . . . , G:−1)2 + (G?G=−:@ )0≤?<@≤:−1

Proof. Let �′ denote the ideal in Eq. (3.8). We will first show that

in>�
′ = (G0, . . . , G:−1)2 + (G?G=−:@ )0≤?<@≤:−1. (3.9)

Let �?,@ = (G? + �?,:G=−:? )G@ for 0 ≤ ? ≤ @ ≤ : − 1 and �?,@ = G?G=−:@ − �?,@G@G=−:?
for 0 ≤ ? < @ ≤ : − 1. Since in>�?,@ = G?G@ and in>�?,@ = G?G=−:@ , to prove Eq. (3.9), it is
enough to show that � = {�?,@ , �?,@}?,@ is a Gröbner basis for �′. Note that � generates �′
because for ? < @ we have

(G@ + �@,:G=−:@ )G? = (G? + �?,:G=−:? )G@ + �@,:(G?G=−:@ − �?,@G@G=−:? ) (3.10)
= �?,@ + �@,:�?,@ ∈ (�).

Notice that �?,@�@,: = �?,: and this will be used repeatedly in the rest of the proof.
Given 0, 1 ∈ (wedenote theirS-pairby'(0, 1) = ( in>1

ℎ
)0−( in>0

ℎ
)1with ℎ = gcd(in>(0), in>(1)).

To show that � forms a Gröbner basis we need to show that there is a standard expression
for the S-pairs in terms of elements of � with no remainder [50, Section 2.2-2.3].

Case 1. The standard expression of '(�?1 ,@1 , �?2 ,@2): Let ℎ = gcd(in>�?1 ,@1 , in>�?2 ,@2)
and we may assume ?1 ≤ ?2. If ℎ = 1 then ?1 < ?2 and we have

'(�?1 ,@1 , �?2 ,@2) = G?2G@2�?1 ,@1 − G?1G@1�?2 ,@2

= �?1 ,:G?2G@2G=−:?1
G@1 − �?2 ,:G?1G@1G=−:?2

G@2

= −�?2 ,:G@1G@2�?1 ,?2 .

This is obviously a standard expression with no remainder. If ℎ = G?1 then ?1 = ?2 or
?1 = @2; in the latter case we still have ?1 = ?2 as our assumptions imply ?1 ≤ ?2 ≤ @2.
Thus in both the situations we obtain '(�?1 ,@1 , �?2 ,@2) = G@2�?1 ,@1 − G@1�?1 ,@2 = 0. If ℎ = G@1

we have either @1 = @2 or @1 = ?2. If @1 = @2 then as shown above we obtain

'(�?1 ,@1 , �?2 ,@2) = G?2�?1 ,@1 − G?1�?2 ,@1 = �?1 ,:G?2G=−:?1
G@1 − �?2 ,:G?1G=−:?2

G@1 = −�?2 ,:G@1�?1 ,?2 .

Similarly, if @1 = ?2 we obtain '(�?1 ,@1 , �?2 ,@2) = G@2�?1 ,?2 − G?1�?2 ,@2 = −�?2 ,:G@2�?1 ,?2 (if
?1 = ?2 this is just 0). If ℎ = G?1G@1 then we have ?1 = @1 = ?2 = @2 or ?1 = ?2 < @1 = @2; in
either case '(�?1 ,@1 , �?2 ,@2) = 0.
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Case 2. The standard expression of '(�?1 ,@1 , �?2 ,@2): Let ℎ = gcd(in>�?1 ,@1 , in>�?2 ,@2)
and assume ?1 ≤ ?2. If ℎ = 1 we have ?1 < ?2 and @1 ≠ @2. Then we obtain

'(�?1 ,@1 , �?2 ,@2) = G?2G=−:@2
�?1 ,@1 − G?1G=−:@1

�?2 ,@2

= −�?1 ,@1G?2G=−:@2
G@1G=−:?1

+ �?2 ,@2G?1G=−:@1
G@2G=−:?2

= �?2 ,@2G@2G=−:@1
�?1 ,?2 − G?2G=−:?1

(�?1 ,@1G@1G=−:@2
− �?1 ,?2�?2 ,@2G@2G=−:@1

)

=

{
�?2 ,@2G@2G=−:@1

�?1 ,?2 − �?1 ,@1G?2G=−:?1
�@1 ,@2 if @1 < @2

�?2 ,@2G@2G=−:@1
�?1 ,?2 + �?1 ,@2G?2G=−:?1

�@2 ,@1 if @2 < @1.

Each of the above cases is a standard expression in terms of � with no remainder 1. If
ℎ = G=−:@1

we have @1 = @2 and ?1 < ?2. Then we obtain

'(�?1 ,@1 , �?2 ,@2) = G?2�?1 ,@2 − G?1�?2 ,@2

= −�?1 ,@2G?2G@2G=−:?1
+ �?2 ,@2G?1G@2G=−:?2

= �?2 ,@2G@2�?1 ,?2 .

If ℎ = G?1 we have ?1 = ?2 and wlog we may assume @1 < @2. Then we have

'(�?1 ,@1 , �?2 ,@2) = G=−:@2
�?1 ,@1 − G=−:@1

�?1 ,@2

= −�?1 ,@1G=−@2G@1G=−:?1
+ �?1 ,@2G=−:@1

G@2G=−:?1

= −�?1 ,@1G=−:?1
�@1 ,@2 .

Finally if ℎ = G?1G=−:@1
we have ?1 = ?2 < @1 = @2 and thus '(�?1 ,@1 , �?2 ,@2) = 0.

Case 3. The standard expression of '(�?1 ,@1 , �?2 ,@2): Let ℎ = gcd(in>�?1 ,@1 , in>�?2 ,@2)
and note that ℎ ∈ {1, G?1 , G@1}. If ℎ = G?1 we have ?1 = ?2 and using Eq. (3.10) we obtain

'(�?1 ,@1 , �?2 ,@2) = G=−:@2
�?1 ,@1 − G@1�?1 ,@2

= �?1 ,:G=−:@2
G=−:?1

G@1 + �?1 ,@2G@1G=−:?1
G@2

=

{
�?1 ,@2G=−:?1

�@2 ,@1 if @1 ≥ @2

�?1 ,@2G=−:?1
�@1 ,@2 + �?1 ,:G=−:?1

�@1 ,@2 if @1 < @2.

Both these cases are standard expressions with no remainder. If ℎ = G@1 then @1 = ?2 and
we obtain,

'(�?1 ,@1 , �?2 ,@2) = G=−:@2
�?1 ,?2 − G?1�?2 ,@2

= �?1 ,:G=−:@2
G=−:?1

G?2 + �?2 ,@2G?1G=−:?2
G@2

= G=−:@2
�?1 ,@2 − G?1�?2 ,@2 .

1If �?2 ,@2 ≠ 0 then in>'(�?1 ,@1 , �?2 ,@2) = �?2 ,@2G?1G=−:@1
G@2G=−:?2

. This is greater or equal to
in>(G@2G=−:@1

�?1 ,?2) and in>(G?2G=−:?1
�@1 ,@2).
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Finally consider the case ℎ = 1. If we further assume ?2 < ?1 and @2 < ?1 we have

'(�?1 ,@1 , �?2 ,@2) = G?2G=−:@2
�?1 ,@1 − G?1G@1�?2 ,@2

= �?1 ,:G?2G=−:@2
G=−:?1

G@1 + �?2 ,@2G?1G@1G@2G=−:?2

= �?1 ,:G=−:@2
G@1�?2 ,?1 + �?2 ,:G=−:@2

G@1G?1G=−:?2
+ �?2 ,@2G?1G@1G@2G=−:?2

= �?1 ,:G=−:@2
G?2�?2 ,?1 + �?2 ,@2G=−:?2

G@1�@2 ,?1

This is a standard expression with no remainder. We omit the other cases as their proofs
use Eq. (3.10) and are very similar. We have now shown that � is a Gröbner basis for �′.

Since �′ and in>�
′ have the same Hilbert function (as graded (-modules) and � is

projectively equivalent to �′, � and in>�
′ have the same Hilbert function. On the other

hand, (G0, . . . , G:−1)2 ⊆ in>� and G?G=−:@ = in>(�?,@) ∈ in>�. Thus in>� ⊇ in>�
′. Since

these ideals have the same Hilbert function they must be equal, completing the proof. �

Remark 3.2.6. For the rest of the paper, > will always denote the term order from
Lemma 3.2.5 and :? will always denote : − 1 − ?.

The following Lemma sheds some light on the structure of the subschemes in the
image of the morphism,*:−1 −→ H=

=−:,=−: .

Lemma 3.2.7. Let � = �Λ(a)�Λ(b) + (�?,@)0≤?<@≤:−1 denote the ideal in the image of the morphism
given by Eq. (3.6). Then the following statements are true

(i) The ideal � is saturated.

(ii) If all the �8 are non-zero and T(:) ≠ 0 then � is the ideal of a pair of (= − :)-planes meeting
transversely.

(iii) If all the �8 are non-zero and T(:) = 0 then
√
� is the ideal of a pair of (= − :)-planes meeting

along an (= − 2: + 1)-plane.

(iv) Let ℓ be the smallest index for which �ℓ = 0. Then we have

� = �Λ(a)�Λ(b) + (�?,@)0≤?<@≤:−ℓ

and
√
� is the ideal of a pair of (= − :)-planes meeting along an (= − : + 1 − ℓ )-plane.

Proof. Item (i) follows from the fact that depth
m
((/�) ≥ depth

m
((/in>�) ≥ 1 where m =

(G0, . . . , G=). The first inequality is [50, Theorem 3.3.4] and the second inequality is true
because G: is a non-zero divisor on (/in>�.

Notice that Λ(a) and Λ(b)meet along a (= − : + 1− ℓ )-plane precisely when the matrix
" (Proposition 3.2.1 (ii)) has rank ℓ − 1. As a consequence items (ii), (iii) and the second
half of (iv) follow immediately. The other half of item (iv) follows fromEq. (3.7) as it shows
�?,@ ∈ �Λ(a)�Λ(b) for any @ > : − ℓ . �
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Proposition 3.2.8. Let = ≥ 2:−1. ThenΞ induces a surjective, GL(=+1)-equivariant morphism
sΞ : X:−1/S2 ' BlΓ:−1 · · ·BlΓ1 Sym2 Gr(= − :, =) −→ H=

=−:,=−: .

Moreover, the quotient X:−1/S2 is non-singular.

Proof. In Proposition 3.2.3 we showed that Ξ extends to a map from *:−1. We will now
explain how the same argument gives a morphism on all of �−1

:−1(*0). Consider a pair

$ = ($1, $2) = (($1
1, . . . , $

1
:
), ($2

1, . . . , $
2
:−1))

with $1 an ordered :-subset of {0, . . . , :−1} and $2 an ordered (:−1)-subset of {:, . . . , =}.
For any such $ we can define a sequence of open sets*$

1 , . . . , *
$
:−1 such that

(1) *$
1 = �()

(1)
$1

1 ,$
2
1
) ⊆ BlΓ1∩*0 *0 and let )$,(1)

8 , 9
= )

(1)
8 , 9

.

(2) For E ≥ 1, the strict transform of ΓE+1 on*
$
E is cut out by(

)
$,(E)
8 , 9
− )$,(E)

8 ,$2
E

)
$,(E)
$1
E , 9

) 8∈{0,...,:−1}\{$1
1 ,...,$

1
E}

9∈{:,...,=}\{$2
1 ,...,$

2
E}

(3) For E ≥ 1, the locus ΓE+1 ∩*$
E is non-singular and

Bl
ΓE+1∩*$

E
*

$
E ' Proj k[*$

E ][)
$,(E)
8 , 9
]8 , 9/(Koszul Relations).

(4) For E ≥ 1, we have*$
E = �()

$,(E)
$1
E ,$

2
E

) ⊆ Bl
ΓE∩*$

E−1
*

$
E−1.

Due to symmetry, the proof of Proposition 3.2.1 also establishes the above statements
(note that*:−1 = *

$
:−1 with $1 = (: − 1, : − 2, . . . , 0) and $2 = (=, = − 1, . . . , = − : + 2)). It

follows that {*$
:−1}$ is an affine cover of �−1

:−1(*0)with the natural gluing maps. We omit
an explicit description of the gluing maps as they will never be used.

To construct the *$
E and verify statement (2), we would have to row reduce " in a

way analogous to Proposition 3.2.1 (each $ corresponds to a different sequence of row
redutions). We will omit an explicit description of the matrix, but the corresponding
lambdas are

�
$
1 = 0$1

1 ,$
2
1
− 1$1

1 ,$
2
1

and �
$
8
= )

$,(8−1)
$1
8
,$2
8

− )$,(8−1)
$1
8
,$2
8−1
)
$,(8−1)
$1
8−1 ,$

2
8

for each 2 ≤ 8 ≤ : − 1.

As in the proof of Proposition 3.2.3 we can choose a minimal generating set, 
$
0 , . . . , 


$
:−1

of �Λ(a) where



$
? = H$1

:−?
−
:−1−?∑
9=1

)
$,(9)
$1
:−? ,$

2
9

H$1
9
+

∑
9∈{:,...,=}\{$2

1 ,...,$
2
:−1−?}

�
$
1 · · ·�

$
:−?)

$,(:−?)
$1
:−? , 9

G 9
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for 0 < ? ≤ : − 1 and



$
0 = H$1

:
−

:−1∑
9=1

)
$,(9)
$1
:
,$2

9

H$1
9
+

∑
9∈{:,...,=}\{$2

1 ,...,$
2
:−1}

�
$
1 · · ·�

$
:−1)

$,(:)
$1
:
, 9
G 9

with )$,(:)
$1
:
, 9
= )

$,(:−1)
$1
:
, 9
− )$,(:−1)

$1
:
,$2
:−1
)
$,(:−1)
$1
:−1 , 9

.

For 0 ≤ ? < @ ≤ : − 1 we may define analogous "cross terms"

�
$
?,@ =

©­«H$1
:−?
−
:−1−?∑
9=1

)
$,(9)
$1
:−? ,$

2
9

H$1
9

ª®¬
©­­«

∑
9∈{:,...,=}\{$2

1 ,...,$
2
:−1−@}

)
$,(:−@)
$1
:−@ , 9

G 9
ª®®¬

− �$
?,@

©­«H$1
:−@
−
:−1−@∑
9=1

)
$,(9)
$1
:−@ ,$

2
9

H$1
9

ª®¬
©­­«

∑
9∈{:,...,=}\{$2

1 ,...,$
2
:−1−?}

)
$,(:−?)
$1
:−? , 9

G 9
ª®®¬ .

Thus we obtain a morphism

Ξ*
$
:−1

: (a, b,T$,(1), . . . ,T$,(:)) ↦→
[
�Λ(a)�Λ(b) + (�

$
?,@)0≤?<@≤:−1

]
. (3.11)

This is well defined as any ideal in the image of Ξ*$
:−1

is still projectively equivalent to an
ideal in Eq. (3.8) (the proof of Lemma 3.2.4 works with straightforward modifications).
As explained in Proposition 3.2.3, Ξ*$

:−1
will also extend the original rational map given

by Eq. (3.5), for each $. Thus for any $, $′, Ξ*$
:−1

and Ξ
*

$′
:−1

agree on an open subset of

*
$
:−1 ∩*

$′

:−1. By uniqueness of extensions, they will agree on all of *$
:−1 ∩*

$′

:−1 . Gluing
all these maps gives us a morphism �−1

:−1(*0) −→ H=
=−:,=−: .

As mentioned in the beginning of the section, Gr(= − :, =)2 is covered by open sets of
the form*E where E ranges over all ordered bases of (1. Since assuming E = {G0, . . . , G=}
was purely notational, all the discussion in this section applies verbatim to �−1

:−1(*E ). In
particular, we obtain a morphism on each �−1

:−1(*E ) that extends the original rational map
given by Eq. (3.5). Thus we can glue all these maps to obtain a morphism Ξ : X:−1 −→
H=
=−:,=−: .
LetS2 = {1, 6} be the group on two elements and consider its natural on Gr(= − :, =)2

given by interchanging the two factors. Since each of the Γ8 are S2 stable, the action
extends to the blowup X:−1. If we consider the trivial action of S2 on H=

=−:,=−: , then
our construction shows that Ξ is S2-equivariant. Thus, we get an induced morphism
sΞ : X:−1/S2 −→ H=

=−:,=−: .
Since char k ≠ 2 and 6 fixes a divisor (the strict transform of the exceptional divisor of

X1), the Chevalley-Shephard-Todd theorem [74, Theorem 7.14] implies that the quotient
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is non-singular. Note that

X:−1/S2 = (BlΓ:−1 · · ·BlΓ1 Gr(= − :, =)2)/S2 ' Bl
sΓ:−1 · · ·Bl

sΓ1 Sym2 Gr(= − :, =).

Since Ξ is dominant and X:−1 is projective, sΞ is surjective.
The natural action ofGL(=+1) onP= induces an action onGr(=−:, =)2 and onH=

=−:,=−: .
Since the Γ8 are stable under this action, it extends to an action on X:−1. To show that Ξ
is GL(= + 1)-equivariant we need to show that for any 6 ∈ GL(= + 1) the two morphisms,
Ξ ◦ 6 : X:−1 → H=

=−:,=−: given by F ↦→ Ξ(6F) and 6 ◦ Ξ : X:−1 → H=
=−:,=−: given by

F ↦→ 6Ξ(F) are identical. For any (Λ,Λ′) in the open set Gr(= − :, =)2 \Γ: ⊆ X:−1 we have

(Ξ ◦ 6)(Λ,Λ′) = Ξ(6(Λ), 6(Λ′)) = 6(Λ) ∪ 6(Λ′) = 6(Λ ∪Λ′) = (6 ◦ Ξ)(Λ,Λ′).

Thus Ξ ◦ 6 and 6 ◦ Ξ must agree on all of X:−1. It follows that sΞ is also GL(= + 1)-
equivariant. �

Corollary 3.2.9. Let = ≥ 2: − 1. Any subscheme parameterized by H=
=−:,=−: is minimally cut

out by :2 quadrics.

Proof. By the discussion in Proposition 3.2.8 we may reduce to considering subschemes
cut out by ideals in the image ofmorphism (Eq. (3.6)). Let � denote any such ideal and note
that �, as presented, is generated by quadrics. By Lemma 3.2.7 (i), � is saturated and thus is
the ideal of its corresponding subscheme. Therefore it suffices to show that dimk �2 = :2.
Since (/� and (/in>� have the same Hilbert function we have dimk �2 = dimk(in>�)2 = :2

(Lemma 3.2.5). �

Remark 3.2.10. The analogue of Lemma 3.2.7 holds verbatim for ideals in the image of
Eq. (3.11). The analogue of Lemma 3.2.5 is as follows: Let � be any ideal in the image of
Eq. (3.11) and let >$ denote a lexicographic ordering on ( for which

G$1
:
> G$1

:−1
> · · · > G$1

1
> G$2

1
> · · · > G$2

:−1
> Gℎ1 > · · · > Gℎ=−2:+2 .

We may choose any ℎ8 so that {ℎ1, . . . , ℎ=−2:+2} = {:, . . . , =} \ {$2
1, . . . , $

2
:−1}. Then we

have
in>$ � = (G0, . . . , G:−1)2 + (G$1

:−?
G$2

:−@
)0≤?<@≤:−1

3.3 An analysis of Ξ
We split the proof of the injectivity of sΞ into two steps. Here is the first step.

Lemma 3.3.1. For any $, the restriction sΞ : *$
:−1/S2 −→ H=

=−:,=−: is injective.
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Proof. It is evident from our construction that *$
:−1 is S2-stable and thus the quotient

*
$
:−1/S2 is well defined. Without loss of generality wemay assume*$

:−1 = *:−1. To prove
the Lemma it suffices to show that for any /̃, /̂ ∈ *:−1 satisfying Ξ(/̃) = Ξ(/̂), we have
/̃ = /̂ or 6(/̃) = /̂ where where 6 is the non-identity of S2. Let /̃ = (ã, b̃, T̃(1), . . . , T̃(:))
and /̂ = (â, b̂, T̂(1), . . . , T̂(:)) be their coordinates on *:−1. The "betas" and "lambdas"
corresponding to /̃ are denoted by �̃8 , 9 and �̃8 respectively, and the ones corresponding to
/̂ are denoted by �̂8 , 9 and �̂8 .

We have Λ(ã) ∪ Λ(b̃) = Ξ(/̃)red = Ξ(/̂)red = Λ(â) ∪ Λ(b̂). After possibly replacing
/̃, /̂ by 6(/̃), 6(/̂) respectively, we may assume ã = â and b̃ = b̂. Thus to prove that sΞ

is injective, we need to now show that /̃ = /̂. Since Ξ is GL(= + 1)-equivariant we may
apply a projective transformation and assume b̃ = b̂ = 0. For simplicity we let a := ã = â.

By Lemma 3.2.7, Ξ(/̃)red = Ξ(/̂)red is a pair of (= − :)-planes meeting along an (= − : +
1−ℓ )-plane for some 1 ≤ ℓ ≤ :+1. If ℓ ∈ {:, :+1} then /̃, /̂ lie in an open set along which
Ξwas already shown to be two-to-one (Lemma 3.1.4). Thus we may assume ℓ ≤ : − 1. By
Lemma 3.2.7 it is also the smallest index for which �̃ℓ = 0 and, symmetrically, the smallest
index for which �̂ℓ = 0.

UsingLemma3.2.7 (iv)wegetΞ(/̃) = [�Λ(a)�Λ(0)+(�̃?,@)0≤?<@≤:−ℓ ]andΞ(/̂) = [�Λ(a)�Λ(0)+
(�̂?,@)0≤?<@≤:−ℓ ]. Using Lemma 3.2.7 (i) we have the equality

�Λ(a)�Λ(0) + (�̃?,@)0≤?<@≤:−ℓ = �Λ(a)�Λ(0) + (�̂?,@)0≤?<@≤:−ℓ .
I claim that (�̃?,@)0≤?<@≤:−ℓ = (�̂?,@)0≤?<@≤:−ℓ . Assume �̃?,@ = 
 + $ with 
 ∈ �Λ(a)�Λ(0) and
$ ∈ (�̂?,@)0≤?<@≤:−ℓ such that 
, $ are linearly independent and homogenous of degree 2.
Since �̂ℓ = �̃ℓ = 0, the construction in Proposition 3.2.3 implies

�Λ(a)�Λ(0) = (
0, . . . , 
:−1)(G0, . . . , G:−1) ⊆ (G0, . . . , G:−1, G=−ℓ+2, . . . , G=)(G0, . . . , G:−1)
and

(�̃?,@)0≤?<@≤:−ℓ , (�̂?,@)0≤?<@≤:−ℓ ⊆ (G0, . . . , G:−1)(G: , . . . , G=−ℓ+1).
This implies 
 = 0 and we obtain � = (�̃?,@)0≤?<@≤:−ℓ = (�̂?,@)0≤?<@≤:−ℓ . The proof will
be complete once we the show that the coordinates from Remark 3.2.2 of /̃ coincide with
those of /̂.

It follows from the proof of Proposition 3.2.1 that the coordinate )(E)
8 , 9

admits a formal
expression

)
(E)
8 , 9

=
�8 , 9 ,E(a, b,�1, . . . ,�E)

�&1
1 · · ·�

&E
E

(3.12)

with �8 , 9 ,E a polynomial in a, b,�1, . . . ,�E and &1, . . . , &E ≥ 1. Similarly, each �E admits a
formal expression

�E =
�8 , 9 ,E(a, b,�1, . . . ,�E−1)

�&1
1 · · ·�

&E−1
E−1

(3.13)
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with �8 , 9 ,E a polynomial in a, b,�1, . . . ,�E−1 and &1, . . . , &E−1 ≥ 1.

(i) �̂8 = �̃8 for all 8 ≤ ℓ : We clearly have �̂1 = 0:−1,= = �̃1. Since �̂E ≠ 0 for all E ≤ ℓ − 1
we can inductively apply Eq. (3.13) to obtain

�̂E =
�8 , 9 ,E(a, 0, �̂1, . . . , �̂E−1)

�̂&1
1 · · · �̂

&E−1
E−1

=
�8 , 9 ,E(a, 0, �̃1, . . . , �̃E−1)

�̃&1
1 · · · �̃

&E−1
E−1

= �̃E .

(ii) )̂(E)
8 , 9

= )̃
(E)
8 , 9

for all E ≤ ℓ − 1 and all 8 , 9: Analogous to item (i) above, where we instead
use Eq. (3.12) to conclude

)̂
(E)
8 , 9

=
�8 , 9 ,E(a, 0, �̂1, . . . , �̂E)

�̂&1
1 · · · �̂

&E
E

=
�8 , 9 ,E(a, 0, �̃1, . . . , �̃E)

�̃&1
1 · · · �̃

&E
E

= )̃
(E)
8 , 9
.

(iii) )̂(E)
8 , 9

= )̃
(E)
8 , 9

for all : − 1 ≥ E ≥ ℓ and all relevant 8 , 9 (those appearing as coordinates
in Remark 3.2.2: Let A, B be any integers such that 0 ≤ A < B ≤ : − ℓ and assume
�̂A,B =

∑
0≤?<@≤:−ℓ 2?,@ �̃?,@ for some constants 2?,@ ∈ k. Let ?′ = min{? : 2?,@ ≠ 0} and

@′ = max{@ : 2?′,@ ≠ 0}. Then

GAG=−:B = in>(�̂A,B) = in>
©­«

∑
0≤?<@≤:−ℓ

2?,@ �̃?,@
ª®¬ = 2?′,@′G?′G=−:@′ .

It follows that �̃A,B = �̂A,B . Equating the terms supported on GA we obtain

=−:B∑
9=:

)̂
(:−B)
B, 9

G 9 =

=−:B∑
9=:

)̃
(:−B)
B, 9

G 9 .

It follows that )̂(:−B)
B, 9

= )̃
(:−B)
B, 9

for all : ≤ 9 < = − :B . Similarly, equating the terms

supported on G=−:B we obtain )̂(9)
A,=−9+1 = )̃

(9)
A,=−9+1 for all 1 ≤ 9 ≤ :A .

(iv) )̂(:)0, 9 = )̃
(:)

0, 9 for all : ≤ 9 ≤ = − : + 1: Combining �̂0,1 = �̃0,1 and the equality of
coordinates in (iii) we obtain

�̂0,1
©­«G1 −

:−2∑
9=1

)̂
(9)

1,=−9+1G:−9
ª®¬ ©­«

=−(:−1)∑
9=:

)̂
(:)

0, 9 G 9
ª®¬ = �̃0,1

©­«G1 −
:−2∑
9=1

)̃
(9)

1,=−9+1G:−9
ª®¬ ©­«

=−(:−1)∑
9=:

)̃
(:)

0, 9 G 9
ª®¬ .

Since �̂0,1 = 1 = �̃0,1, equating the coefficients of the monomials containing G1 gives
the desired result.
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(v) �̂8 = �̃8 for all 8 ≥ ℓ +1: For each ℓ +1 ≤ 8 ≤ :−1 we have �̃:−8 ,:−8+1 = �̂:−8 ,:−8+1. Note
that �̂:−8 ,:−8+1 = �̂8 and �̃:−8 ,:−8+1 = �̃8 . Using the equality of coordinates in (iii), the
expression �̃:−8 ,:−8+1 = �̂:−8 ,:−8+1 reduces to

�̂8
©­«G:−8+1 −

8−2∑
9=1

)̂
(9)
:−8+1,=−9+1G:−9

ª®¬ ©­«
=−8+1∑
9=:

)̂
(8)
:−8 , 9G 9

ª®¬ = �̃8
©­«G:−8+1 −

8−2∑
9=1

)̃
(9)
:−8+1,=−9+1G:−9

ª®¬ ©­«
=−8+1∑
9=:

)̃
(8)
:−8 , 9G 9

ª®¬ .
Equating the coefficients of G:−8+1G=−8+1 gives the desired result. �

Lemma 3.3.2. The fiber of Ξ over the point [(G0, . . . , G:−1)2 + (G?G=−:@ )0<?<@≤:−1] consists of a
single element.

Proof. Let � denote the ideal (G0, . . . , G:−1)2 + (G?G=−:@ )0<?<@≤:−1. Let - ∈ *:−1 be the
point with all the coordinates of Remark 3.2.2 equal to 0. We clearly have Ξ(-) = [�].
Now assume / ∈ X:−1 such that Ξ(/) = [�]. Since �red = (G0, . . . , G:−1), we must have
/ ∈ �−1

:−1(*0). In particular, / ∈ *$
:−1 for some $. By Remark 3.2.10 we have

(G0, . . . , G:−1)2 + (G$1
:−?
G$2

:−@
)0≤?<@≤:−1 = in>$Ξ(/) = in>$ � = �.

Comparing the monomial generators of the two ideals we deduce that $1
:−? = ? for all

0 ≤ ? ≤ : − 2; this forces $1
1 = : − 1. But then we also obtain $2

:−@ = = − :@ = = − (: − @) + 1
for all 1 ≤ @ ≤ : − 1. Thus *$

:−1 = *:−1 and by Lemma 3.3.1, / = - or 6(/) = - for the
non-identity 6 ∈ S2. Since Ξ(/)red = Ξ(-)red = +(G0, . . . , G:−1) we must have 6(/) = /;
thus / = -. �

Proposition 3.3.3. Let = ≥ 2: − 1. The morphism sΞ : X:−1/S2 −→ H=
=−:,=−: is injective.

Proof. Let ., / ∈ X:−1 such that Ξ(.) = Ξ(/). Since Ξ(.)red = Ξ(/)red we may assume
wlog that ., / ∈ �−1

:−1(*0). We may also assume wlog that . ∈ *:−1. By Lemma 3.3.1 we
only need to show that / ∈ *:−1. Let ℓ ≥ 1 be the maximal value such that / ∈ *$

:−1 with
$1
8
= : − 8 and $2

8
= = − 8 + 1 for all 8 < ℓ . We need to show that ℓ = : (then automatically,

$1
:
= 0). For the sake of a contradiction, assume that ℓ < :. Our method is to compare

certain initial ideal degenerations of Ξ(/) and Ξ(.).
Let w be any integral weight order corresponding to > [24, Section 15]. For any C ∈ k★

let 6C ∈ GL(= + 1) denote the automorphism that maps G8 ↦→ C−w(8)G8 . Since each 6C just
scales the coordinates the following facts are immediate

(1) 6C induces an action on X0 and extends to all the blowups XE .

(2) 6C fixes*
$
ℓ
and also fixes any closed subset of the form +()$,(ℓ )

8 , 9
).

(3) For each ℓ let #ℓ : X:−1 −→ Xℓ denote the blowdown map. Then #ℓ is GL(= + 1)-
equivariant and thus #ℓ (6C) = 6C(#ℓ ).
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Let.0 = limC→0 6C(.) and/0 = limC→0 6C(/). Using [24, Theorem15.17] andLemma3.2.5
we obtain

Ξ(.0) = lim
C→0

6C(Ξ(.)) = in>Ξ(.) = (G0, . . . , G:−1)2 + (G?G=−:@ )0<?<@≤:−1.

Similarly, Ξ(/0) = (G0, . . . , G:−1)2 + (G?G=−:@ )0<?<@≤:−1 = Ξ(.0). By Lemma 3.3.2, /0 = .0.
Using the notation in item (3) and our assumption on ℓ , #ℓ (/) and #ℓ (.) are k-points

of Proj k[*ℓ−1][)(ℓ )8 , 9 ]/(Koszul) ⊆ Xℓ . By maximality of ℓ we have )(ℓ )
:−ℓ ,=−ℓ+1(#ℓ (/)) = 0

i.e. #ℓ (/) lies in +()(ℓ )
:−ℓ ,=−ℓ+1). Then by item (2) we still have #ℓ (6C(/)) = 6C(#ℓ (/)) ∈

+()(ℓ )
:−ℓ ,=−ℓ+1). Thus the limit #ℓ (/0) also lies in there. But this contradicts the fact that

)
(ℓ )
:−ℓ ,=−ℓ+1(#ℓ (.0)) = )

(ℓ )
:−ℓ ,=−ℓ+1(.0) ≠ 0 (since .0 lies in *:−1). Thus ℓ = : and we have

/,. ∈ *:−1, as required. �

Remark 3.3.4. It follows that the preimageΞ−1(/) is a single point preciselywhen/red is an
(=−:)-plane. This occurs preciselywhen/ is generically non-reduced, see Theorem3.4.13.

3.4 Smoothness of H=
=−:,=−:

We begin by showing that H=
=−:,=−: has a unique Borel-fixed point. We begin with a

combinatorial criterion for Borel-fixed points in arbitrary characteristic [24, Section 15].

Definition 3.4.1. Let � ⊆ ( be a monomial ideal and ? a prime number. The ideal � is said
to be 0-Borel-fixed if for any monomial generator < ∈ � divisible by G 9 , we have G8

G 9
< ∈ �

for all 8 < 9. The ideal � is said to be ?-Borel-fixed if for any monomial generator < ∈ �
divisible by G�

9
but no higher power of G 9 , we have ( G8G 9 )


< ∈ � for all 8 < 9 and 
 �? � (this
means that each digit in the ?-base expansion of 
 is less than or equal to each digit in the
?-base expansion of �).

Note that a 0-Borel-fixed ideal is always ?-Borel-fixed for any ?.

Proposition 3.4.2. [24, Theorem 15.23] Let char k = ? ≥ 0. Then � ⊆ ( is Borel-fixed if and
only if it � is ?-Borel.

In our situation, char k = ? ≥ 0 with ? ≠ 2. Let � be a saturated ?-Borel-fixed
ideal parameterized by H=

=−:,=−: . Since � is a monomial ideal generated by quadrics
(Corollary 3.2.9) and ? ≠ 2, the condition 
 �? � in Definition 3.4.1 reduces to the
condition 
 ≤ �. In particular, � is always 0-Borel.
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Proposition 3.4.3. Let = ≥ 2: − 1. Consider the ideal

�=
=−:,=−: =

:−1∑
8=0

G8(G8 , . . . , G2:−2−8) = (G0, . . . , G:−1)2 + (G?G2:−1−@)0≤?<@≤:−1.

Then [�=
=−:,=−:] is the unique Borel-fixed point onH=

=−:,=−: .

Proof. As noted above, Borel-fixed ideals in H=
=−:,=−: are the same as 0-Borel-fixed ideals.

Since �=
=−:,=−: is projectively equivalent to (G0, . . . , G:−1)2 + (G?G=−:@ )0≤?<@≤:−1, it lies in

H=
=−:,=−: . It also clear that �=

=−:,=−: is Borel-fixed. Let � be any saturated 0-Borel-fixed
ideal on H=

=−:,=−: . Then it is of the form � =
∑&
8=0 G8(G8 , . . . , G08 ) with = − 1 ≥ 00 ≥ 01 ≥

· · · ≥ 0& ≥ &. Since
√
� = (G0, . . . , G&) has codimension :, we obtain & = : − 1.

Arguing as in the end of the proof of Proposition 3.2.3 we see that the Hilbert polyno-
mial of � is

(=−:+C
C

)
+∑:−1

8=0
(C+=−08−2

C−1
)
. Equating this with the Hilbert polynomial of �=

=−:,=−:
we have

:−1∑
8=0

(
= − 2: + 8 + C

C − 1

)
=

:−1∑
8=0

(
C + = − 08 − 2

C − 1

)
.

Since the set {
(C−1+0

0

)
}0∈N is a Q-basis for Q[C], we obtain 08 = 2: − 8 − 2 for all 8; therefore

� = �=
=−:,=−: . �

Lemma 3.4.4. Let � be a (saturated) ideal parameterized by H=
=−:,=−: . Then the Castelnuovo-

Mumford regularity of � is 2 and )[�]Hilb%
=
=−:,=−:(C) P= = Hom((� , (/�)0.

Proof. Since � is generated by quadrics, the regularity is at least 2. Up to projective
equivalence, we may assume � is as described by Eq. (3.8). By [50, Theorem 3.3.4] we
have also reg(�) ≤ reg(in>�). Note that in>� is projectively equivalent to �=

=−:,=−: and the
regularity of a 0-Borel ideal is the highest degree of a minimal monomial generator [50,
Corollary 7.2.3]. Thus reg(�) ≤ reg(�=

=−:,=−:) = 2, as required. The description of the
tangent space follows from Remark 2.0.10 and Theorem 2.0.9. �

Definition 3.4.5. Let � denote the pre-image of [�=
=−:,=−:] in X:−1 (Remark 3.3.4) and let �̄

denote the image of � in X:−1/S2.

By constructing curves passing through � and �̄wewill now show that the differential
3sΞ�̄ is injective. This is a major portion of the proof of Theorem 3.4.7.

Lemma 3.4.6. Let = ≥ 2: − 1. The differential 3sΞ�̄ : )�̄(X:−1/S2) −→ )[�=
=−:,=−:]H

=
=−:,=−: is

injective.
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Proof. Note that we have a factorization

)�X:−1 )�̄(X:−1/S2)

)[�=
=−:,=−:]H

=
=−:,=−:

By non-singularity we also have dimk )�X:−1 = dimk )�̄(X:−1/S2). Thus to show that 3sΞ�̄
is injective it suffices to establish the following two facts

(1) 3Ξ� : )�X:−1 −→ )[�=
=−:,=−:]H

=
=−:,=−: has a 1 dimensional kernel

(2) The exists $ ∈ )�̄(X:−1/S2) for which 3sΞ�̄($) does not lie in the image of 3Ξ�.

We begin with item (1). Let $1 = (: − 1, : − 2, . . . , 0) and $2 = (:, : + 1, . . . , 2: − 2).
Then � is the point 0 on *$

:−1 (Proposition 3.2.8). As in Remark 3.2.2 a set of coordinates
on*$

:−1 is N = N1 ∪ · · · ∪N5 where

N1 = {18 , 9}:≤ 9≤=0≤8≤:−1, N2 = {)$,(9)
8 ,:−1+9}

0≤8≤:−1−9
1≤ 9≤:−1 , N3 = {)$,(8)

:−8 , 9}
1≤8≤:−1
:+8≤ 9≤= ,

N4 = {�$
1 , . . . ,�

$
:−1}, N5 = {)$,(:)

0, 9 }2:−1≤ 9≤= .

For each � ∈ N we define a curve �� : Spec k[C] −→ *
$
:−1, passing through 0, by setting

� = C and all the other coordinates in N to 0.
Let � : Spec k[C]/(C2) −→ Spec k[C] be a first order deformation of the origin. SinceX:−1

is non-singular the set {�� ◦ �}�∈N is a basis for )0*
$
:−1 = )�X:−1. We need to study the

dimension of {3Ξ�(�� ◦ �)}�. Since 3Ξ�(�� ◦ �) = (Ξ ◦ ��) ◦ � we begin with an explicit
description of each Ξ ◦ ��. The items below follow directly from the construction of the
map (Eq. (3.11)).

(i) If � = 18 , 9 ∈ N1 then Ξ ◦ ��(C) is

(G0, . . . , G8−1, G8 + CG 9 , G8+1, . . . , G:−1)2 + (G?G2:−1−@)0≤?<@≤:−1
?≠8

+(G8 + CG 9)(G: , . . . , G2:−2−8).

(ii) If � = )$,(9)
8 ,:−1+9 ∈ N2 then Ξ ◦ ��(C) is

(G0, . . . , G:−1)2 + (G?G2:−1−@)0≤?<@≤:−1
?≠8

+ (G8 − CG:−9)(G: , . . . , G2:−2−8).

(iii) If � = )$,(8)
:−8 , 9 ∈ N3 then Ξ ◦ ��(C) is

(G0, . . . , G:−1)2 + (G?G2:−1−@)0≤?<@≤:−1
@≠:−8 + (G0, . . . , G:−8−1)(G:−1+8 + CG 9).
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(iv) If � = �
$
8
with 8 > 1 then Ξ ◦ ��(C) is

(G0, . . . , G:−1)2 + (G?G2:−1−@)0≤?<@≤:−1
(?,@)≠(:−8 ,:−8+1) + (G:−8G:+8−2 − CG:−8+1G:+8−1).

(v) If � = �
$
1 then Ξ ◦ ��(C) is

(G0, . . . , G:−2)(G0, . . . , G:−1) + (G:−1 + CG:)G:−1 + (G?G2:−1−@)0≤?<@≤:−1.

(vi) If � = )$,(:)
0, 9 ∈ N5 then Ξ ◦ ��(C) is

(G0, . . . , G:−1)2 + (G?G2:−1−@)0≤?<@≤:−1
(?,@)≠(0,1) + (G0G2:−2 − CG1G 9).

Let � = �=
=−:,=−: and under the inclusion H=

=−:,=−: ⊆ Hilb%
=
=−:,=−:(C) P= , we may identify

)[�]H=
=−:,=−: with a subspace of Hom(� , (/�)0 (Lemma 3.4.4). We can explicitly describe

this identification using [48, Proposition 2.3]. In particular, by re-indexing, we obtain

spank{3Ξ�(�� ◦ �)}�∈N1∪N2∪N3 = spank

({
−G 9

%

%G8

}:≤ 9≤=
0≤8≤:−1

∪
{
G 9

%

%G8

} 8+1≤ 9≤:−1

0≤8≤:−2
∪

{
−G 9

%

%G8

} 8+1≤ 9≤=

:≤8≤2:−2

)
= spank

{
G 9

%

%G8

} 8+1≤ 9≤=

0≤8≤2:−2
.

These are the trivial deformations i.e. the ones induced by a change of coordinates. For
8 ∈ {1, . . . , : − 2} let Δ8 be the derivation that maps G8G2:−2−8 ↦→ G8+1G2:−1−8 and other
generators to 0. Let Δ:−1 denote the derivation that maps G2

:−1 ↦→ G:−1G: and the other
generators to 0. For 8 ∈ {2: − 1, . . . , =} let Δ8 to the derivation that maps G0G2:−2 ↦→ G1G8 .
Then we have

spank{3Ξ�(�� ◦ �)}�∈N4∪N5 = spank({Δ8}1≤8≤:−1 ∪ {Δ8}2:−1≤8≤=).

Notice that the derivation Δ:−1 is a scalar multiple of G: %
%G:−1

. Thus to prove (1) it suffices
to show that the set {G 9 %

%G8
}8+1≤ 9≤=

0≤8≤2:−2 ∪ {Δ8}1≤8≤:−2 ∪ {Δ8}2:−1≤8≤= is linearly independent.
Assume we had a linear combination∑

0≤8≤2:−2
8+1≤ 9≤=

&8 , 9G 9
%

%G8
+

∑
1≤8≤:−2

2:−1≤8≤=

&8Δ8 ≡ 0 mod � (3.14)

with some constants &8 , 9 , &8 ∈ k. Assume &?,@ ≠ 0 for some ? < @. Since G?G2:−2−? ∈ � we
may evaluate Eq. (3.14) at G?G2:−2−? to obtain∑

?+1≤ 9≤=
&?,9G 9G2:−2−? +

∑
2:−1−?≤ 9≤=

&2:−2−?,9G 9G? +& ≡ 0 mod � (3.15)
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where

& =


∑=
8=2:−1 &8G1G8 if ? = 0, 2: − 2,

&?G?+1G2:−1−? if 1 ≤ ? ≤ : − 2,
0 if ? = : − 1
&2:−2−?G2:−1−?G?+1 if : ≤ ? ≤ 2: − 3.

Observe that the monomial G@G2:−2−? does not appear in the support of &. Thus, in the
left hand side of Eq. (3.15), the monomial G@G2:−2−? appears with a coefficient of &?,@ if
? ≠ : − 1 and a coefficient of 2&?,@ if ? = : − 1. In either case, the coefficient is non-zero.
But this is a contradiction as G@G2:−2−? ∉ �. Thus we have &?,@ = 0 for all ?, @. Evaluating
Eq. (3.14) at G?G2:−2−? we see that &? = 0 for every ? ∈ {1, . . . , : − 2}. Finally, evaluating
Eq. (3.14) at G0G2:−2 we obtain

∑=
8=2:−1 &8G1G8 ≡ 0 mod �. Since G1G8 ∉ � for all 8 ≥ 2: − 1,

we must have that &8 = 0 for all 8. This completes the proof of item (1).
Let Δ ∈ Hom(� , (/�)0 denote the derivation that maps G:−1G: ↦→ G2

:
and all the other

generators to 0. By evaluating at G:−1G: it is easy to see that Δ does not lie in the span of
{G 9 %

%G8
}8+1≤ 9≤=

0≤8≤2:−2 ∪ {Δ8}1≤8≤:−2 ∪ {Δ8}2:−1≤8≤= . Consider the curve � : Spec k[C] → H=
=−:,=−:

given by

C ↦→ (G0, . . . , G:−2)(G0, . . . , G:−1) + (G2
:−1 − CG

2
:
) + (G?G2:−1−@)0≤?<@≤:−1

This is well defined because for any given B ∈ k, �(B) is the point in*$
:−1 with �$

1 = −2
√
B,

1:−1,: =
√
B and all other coordinates equal 0. It is also clear that � ◦ � corresponds to the

derivation Δ. Thus to prove item (2) it suffices to find a curve �′ : Spec k[C] → X:−1/S2
passing through �̄ for which 3�̄sΞ(�′ ◦ �) = � ◦ �.

Let / denote the image of � and let /′ denote the pullback sΞ−1(/) ⊆ X:−1/S2. I claim
that sΞ|/′ : /′→ / is an isomorphism. Since / is non-singular, /′ is Cohen-Macaulay and
sΞ is bĳective, the morphism sΞ|/′ is flat. It is clear that a finite flat degree 1 morphism is
an isomorphism. Thus �′ = sΞ|−1

/′ ◦ � : Spec k[C] → X:−1/S2 is the desired curve. �

We are now ready to prove the main Theorem.

Theorem 3.4.7. Let = ≥ 2: − 1. The componentH=
=−:,=−: is smooth and isomorphic to

X:−1/S2 = Bl
sΓ:−1 · · ·Bl

sΓ1 Sym2 Gr(= − :, =).

Proof. Proposition 3.2.8 andProposition 3.3.3 together show that sΞ is bĳective andX:−1/S2
is non-singular. Since sΞ is GL(= + 1)-equivariant, �̄ (Definition 3.4.5) is the unique Borel-
fixed point onX:−1/S2. By Borel’s fixed point theorem, the closure of the Borel orbit of any
point in X:−1/S2 contains �̄. Thus to show that sΞ is an isomorphism, it suffices to show
that it is an isomorphism in a neighbourhood of �̄. By the proof of [45, Theorem 14.9], this
is equivalent to showing that 3sΞ�̄ : )�̄(X:−1/S2) −→ )[�=

=−:,=−:]H
=
=−:,=−: is injective. This is

precisely the content of Lemma 3.4.6. �
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When the pair of planes do not span P= , we obtain the following fibration

Corollary 3.4.8. Let = < 2: − 1. The morphism � : H=
=−:,=−: −→ Gr(2= − 2: + 1, =) that sends

a scheme to its linear span is smooth; the fiber over a point Λ isH=−:,=−:(Λ).

Proof. Recall that the linear spanof a subscheme/ ⊆ P= is the linear space+(�0(P= , �/(1))) ⊆
P= . Let Y −→ A1 be a flat family such that for C ≠ 0, YC is a disjoint pair of (= − :)-planes.
It is clear that for any C ≠ 0, the linear span of YC is a (2= − 2: + 1)-plane. By upper
semicontunity, the limit Y0 also lies in a (2= − 2: + 1)-plane, which we denote by Λ. Thus
Y0 defines a point inH=

=−:,=−:(Λ) and by Corollary 3.2.9, we see that the linear span of Y0
is all ofΛ. It follows that the linear span of any subscheme parameterized byH=−:,=−:(P=)
is of dimension 2= − 2: + 1.

For each ordered basis E = {40, . . . , 4=} of (1 we obtain an open neighbourhood *E =

Spec k[ 58 , 9]2:−1−=≤ 9≤=
0≤8≤2:−2−= ofΛE = +(40, . . . , 42:−2−=) inGr(2=−2:+1, =). Thek-point f = ( 58 , 9)8 , 9

is identified with

+(40 +
=∑

9=2:−1−=
50, 94 9 , . . . , 42:−2−= +

=∑
9=2:−1−=

52:−2−=,94 9).

Let E = {48}8 , E′ = {4′8}8 be ordered bases of (1. The isomorphismΛE → ΛE′ given bymap-
ping 48 ↦→ 4′

8
for all 8 induces an an isomorphism #E,E′ : H=−:,=−:(ΛE) −→ H=−:,=−:(ΛE′).

Define the following

• XE = H=−:,=−:(ΛE) ×*E,

• XE,E′ = H=−:,=−:(ΛE) × (*E ∩*E′) ⊆ XE,

• !E,E′ = #E,E′ × id : XE,E′ −→ XE′,E.

It is clear that !−1
E,E′ = !E′,E, !E′,E′′ ◦ !E,E′ = !E,E′′ on XE,E′ ∩ XE,E′′ and !E,E′(XE,E′ ∩ XE,E′′) =

XE′,E ∩ XE′,E′′. Thus the set of schemes {-E}E glue to a smooth scheme X (Theorem 3.4.7).
For each E we obtain a natural morphism 6E : *E −→ GL(= + 1) such that for any f,

6E(f) is the map that sends 48 ↦→ 48 +
∑=
9=2:−1−= 58 , 94 9 if 8 ≤ 2: − 2 − = and fixes the other

coordinates. Thus we may define a map

H=−:,=−:(ΛE) ×*E −→ H=−:,=−:(P=), (-, f) ↦→ 6E(f)(-).

Thesemaps glue to amorphismΠ : X −→ H=
=−:,=−: . By the first paragraph,Π is a bĳective

morphism. It is also clear that the differential to Π is injective at all points. As noted in
Theorem 3.4.7, this implies that Π is an isomorphism. By construction, there is a smooth
fibration � : X −→ Gr(2= − 2: + 1, =) of the desired form. �

Theorem 3.4.9. H=
=−:,=−: has a unique Borel-fixed point.
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Proof. By Proposition 3.4.3wemy assume = < 2:−1. If- is Borel-fixed then its linear span
+((�-)1) is also Borel-fixed. Thus - lies in the fiber �−1(+(G0, . . . , G2:−2−=)) ' H2=−2:+1

=−:,=−: .
Moreover, the Borel action on H=

=−:,=−: restricts to the Borel action on this fiber. By
Proposition 3.4.3 this fiber has a unique Borel-fixed point; thus - is unique. �

We now turn our attention to the subschemes parameterized by H=
=−:,=−: . Since we

are going to describe these subschemes up to projective equivalence, we may assume
= ≥ 2: − 1 (Corollary 3.4.8). We begin with two Lemmas that will aid in the proof of
Theorem 3.4.13.

Lemma 3.4.10. Let � = (G0, . . . , G:−1)2 + (G?G=−:@ − �?,@G@G=−:? )0≤?<@≤:−1 with �8 ∈ k and
�?,@ = �:−@+1 · · ·�:−? for any 0 ≤ ? < @ ≤ :. If all the �8 are non-zero then the subscheme
defined by � is Cohen-Macaulay; in particular, it has no embedded components. Moreover, the
subscheme defined by � is double structure on +(G0, . . . , G:−1).

Proof. Applying the change of coordinates that maps G? ↦→ �?,:G? for all ? ≤ : − 1 and
fixing the other coordinates, we may assume �?,@ = 1 for all ?, @. If = > 2: − 1, the
variables G: , . . . , G=−: form a regular sequence as they do not appear in the support of the
generators of �. Thus we may quotient by the ideal (G: , . . . , G=−:) to reduce to the case
= = 2: − 1; in this case = − :? = : + ?. Since Proj((/�) is supported on +(G0, . . . , G:−1), it
suffices to verify the Cohen-Macaulayness on the open sets �(G:), . . . , �(G2:−1).

On the open set , = �(G:) we may set G: = 1. Then for all 9 ≠ 0 we have G 9 −
G0G:+9 = −(G0G:+9 − G 9G:) ∈ � |, and this implies � |, = (G2

0 , G1− G0G:+1, . . . , G:−1− G0G2:−1).
Since G: , . . . , G2:−1 forms a regular sequence on ((/�)|, , Proj((/�)|, is a Cohen-Macaulay
subscheme of dimension : − 1. The argument for the other open sets is the same.

Since the Hilbert polynomial of Proj((/�) is %=
=−:,=−:(C), its degree is 2; thus it is a

double structure on the linear space +(G0, . . . , G:−1) �

Remark 3.4.11. More generally, (G&1 , . . . , G&2)2+(G?G=−:@ −�?,@G@G=−:? )&1≤?<@≤&2 is Cohen-
Macaulay for any 0 ≤ &1 ≤ &2 ≤ : − 1, assuming �8 ≠ 0 for all 8.

Lemma 3.4.12. Let 0 ≤ &1 ≤ &2 ≤ :−1 and let �(&1, &2) = (G&1 , . . . , G&2)2+(G?G=−:@ )&1≤?<@≤&2 .
Then we have a primary decomposition

�(&1, &2) =
&2⋂
9=&1

(G&1 , . . . , G 9−1, G
2
9 , G 9+1, . . . , G&2 , G=−: 9+1 , . . . , G=−:&2

).

Proof. For the first statement we proceed by induction on &2. The base case &2 = &1 is
vacuous and by induction we may assume

�(&1, &2 + 1) =
[
(G&1 , . . . , G&2)2 + (G?G=−:@ )&1≤?<@≤&2 + (G&2+1, G=−:&2+1)

]
∩ (G&1 , . . . , G&2 , G

2
&2+1).

The conclusion now follows from the fact that if �1 = (<1, . . . , <81), �2 = (<1, . . . , <82) are
monomial ideals then �1 ∩ �2 = (lcm(<8< 9) : 1 ≤ 8 ≤ 81, 1 ≤ 9 ≤ 82). �



CHAPTER 3. PAIR OF LINEAR SPACES - SMOOTHNESS 39

Theorem 3.4.13. Let = ≥ 2: − 1. Let / be a subscheme parameterized by H=
=−:,=−: . Then / is

a pair of planes meeting transversely, or there exists a sequence of integers 1 ≤ 81 < · · · < 8A ≤ :
and a flag of linear spaces Λ1 ⊆ Λ2 ⊆ · · · ⊆ ΛA ⊆ P= with codimP= (Λℓ ) = (: + 8ℓ − 1) for each ℓ ,
such that

(i) If 81 > 1 then / is a union of two planes meeting along Λ1 with embedded pure double
structures on Λℓ for each 1 ≤ ℓ ≤ A.

(ii) If 81 = 1 then / is a pure double structure on Λ1 with embedded pure double structures on
Λℓ for each 2 ≤ ℓ ≤ A.

Proof. It suffices to compute a primary decomposition of the ideal

� = (G? + �?,:G=−:? )0≤?≤:−1(G0, . . . , G:−1) + (G?G=−:@ − �?,@G@G=−:? )0≤?<@≤:−1

in Eq. (3.8). Let P0 = (G? + �?,:G=−:? )0≤?≤:−1, P1 = (G0, . . . , G:−1) and �?,@ = G?G=−:@ −
�?,@G@G=−:? for each 0 ≤ ? < @ ≤ :−1. Lemma3.2.7 (ii) implies that all the�8 are non-zero if
and only if � is the ideal of a pair of (=− :)-planesmeeting transversely. Sowemay assume
some of the �8 are zero. Let 81 < · · · < 8A be all the indices 8 for which �8 = 0. Set 80 = 0
and 8A+1 = : + 1. Lemma 3.2.7 (iv) implies

√
� = P0 ∩P1 and � = P0P1 + (�?,@)0≤?<@≤:−81 .

For each 2 ≤ ℓ ≤ A + 1 define

Pℓ = (G0, . . . , G:−8ℓ ) + (G:−8ℓ+1, . . . , G:−8ℓ−1)2 + (�?,@):−8ℓ+1≤?<@≤:−8ℓ−1+
(G:−8ℓ−1+1, . . . , G:−1, G=−8ℓ−1+2, . . . , G=).

I claim that � = P0 ∩ P1 ∩ · · · ∩ PA+1 (note that if �1 = 0 then P0 = P1). We begin
with the inclusion, � ⊆ P0 ∩ · · · ∩ PA+1. It is enough to show that P0P1 and �?,@ lie in
P0 ∩ · · · ∩PA+1 for 0 ≤ ? < @ ≤ : − 81. Observe that

P0P1 = ((G0, . . . , G:−81) + (G? + �?,:G=−:? ):−81+1≤?≤:−1)(G0, . . . , G:−1)

Clearly, (G0, . . . , G:−81)(G0, . . . , G:−1) ⊆ P9 for all 9. We also have, G? , G=−:? ∈ P9 for all
:−81+1 ≤ ? ≤ :−1 andall 9. ThusP0P1 ⊆ P0∩· · ·∩PA+1. It is clear that �?,@ ∈ P0∩· · ·∩PA+1
if there is some ℓ such that : − 8ℓ + 1 ≤ ? < @ ≤ : − 8ℓ−1. If this was not the case, then there
is some ℓ such that ? ≤ :− 8ℓ < @. This implies �?,@ = G?G=−:@ and this lies in (G0, . . . , G:−8 9 )
if 9 ≤ ℓ or in (G=−8 9−1+2, . . . , G=) if 9 > ℓ ; in either case, �?,@ ∈ P9 . Thus �?,@ ∈ P0∩ · · · ∩PA+1
and we have the desired containment.

To get the other containment it suffices to show thatP0∩· · ·∩PA+1 has the sameHilbert
function as �. We have

in>� ⊆ in> (P0 ∩ · · · ∩PA+1) ⊆ in>(P0 ∩P1) ∩ in>P2 ∩ · · · ∩ in>PA+1. (3.16)
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Our goal is to show all these containments are equalities. Using Eq. (3.10) we have

P0 ∩P1 = ((G0, . . . , G:−81) + (G? + �?,:G=−:? ):−81+1≤?≤:−1) ∩ (G0, . . . , G:−1)
= (G0, . . . , G:−81) + (G? + �?,:G=−:? ):−81+1≤?≤:−1 ∩ (G:−81+1, . . . , G:−1)
= (G0, . . . , G:−81) + (G? + �?,:G=−:? ):−81+1≤?≤:−1(G:−81+1, . . . , G:−1)
= (G0, . . . , G:−81) + ((G? + �?,:G=−:? )G@):−81+1≤?≤@≤:−1 + (�?,@):−81+1≤?<@≤:−1.

Then the proof of Lemma 3.2.5 immediately implies

in>(P0 ∩P1) = (G0, . . . , G:−81) + (G:−81+1, . . . , G:−1)2 + (G?G=−:@ ):−81+1≤?<@≤:−1.

Similarly for ℓ ≥ 2

in>Pℓ = (G0, . . . , G:−8ℓ ) + (G:−8ℓ+1, . . . , G:−8ℓ−1)2 + (G?G=−:@ ):−8ℓ+1≤?<@≤:−8ℓ−1+
(G:−8ℓ−1+1, . . . , G:−1, G=−8ℓ−1+2, . . . , G=).

Using Lemma 3.4.12 we see that in>(P0 ∩P1) ∩ in>P2 ∩ · · · ∩ in>PA+1 equals

A+1⋂
ℓ=1

:−8ℓ−1⋂
9=:−8ℓ+1

(G0, . . . , G 9−1, G
2
9 , G 9+1, . . . , G:−1, G=−: 9+1 , . . . , G=).2

Applying Lemma 3.4.12 once again we see that this intersection is just �(0, : − 1) ∩
(G0, . . . , G:−1). But this ideal is precisely (G0, . . . , G:−1)2 + (G?G=−:@ )0<?<@≤:−1 = in>�. Thus
all the containments in Eq. (3.16) are equalities and this shows that � has the same Hilbert
function as P0 ∩ · · · ∩PA .

We are left with showing Pℓ is a primary component for all ℓ ≥ 2. Going modulo
the linear forms it suffices to show that (G:−8ℓ+1, . . . , G:−8ℓ−1)2 + (�?,@):−8ℓ+1≤?<@≤:−8ℓ−1 is a
primary component. This is the content of Lemma 3.4.10 and Remark 3.4.11. �

Corollary 3.4.14. Up to projective equivalence, there are exactly 2: schemes parameterized by
H=
=−:,=−: .

Proof. By Corollary 3.4.8 we may assume = ≥ 2: − 1. It suffices to consider ideals � as
described in Eq. (3.8). Let ! denote the projective transformation that maps G? ↦→ �?,:G?
if �?,: ≠ 0 and 0 ≤ ? ≤ : − 1 and fixes the other coordinates. For a fixed ?, note that if
�?,: ≠ 0 then �@,: ≠ 0 and �?,@ ≠ 0 for all ? < @. Thus after applying ! we may assume
that the non-zero �8 are equal to 1. In particular, for each subset , ⊆ {1, . . . , :} we
obtain an ideal parameterized by H=

=−:,=−: by setting �8 = 0 if 8 ∈ , and 1 otherwise;
this gives at most 2: distinct ideals. On the other hand, since projective transformations
preserve the dimensions of the embedded structures, each of the 2: ideals are projectively
inequivalent. �

2If 9 = : the ideal (G0 , . . . , G 9−1 , G
2
9
, G 9+1 , . . . , G:−1 , G=−: 9+1 , . . . , G=) is equal to (G0 , . . . , G:−1).
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Example 3.4.15. We can nowdeterminewhen there is a specialization / /′ inH=
=−:,=−: .

For any subscheme / ∈ H=
=−:,=−: let ,/ = {&1, . . . , &A} be the set of dimensions of the

embedded components of /; if / is generically non-reduced include =− : in that set. Then
there is a specialization / /′ if and only if,/ ⊆ ,/′

Here is a diagram of specializations for H5
2,2. The non-reduced structures on points,

lines and planes are represented by shadings.

(i)

(ii)

(iii)

(v)

(iv)

(vi)

(vii)

(viii)

Remark 3.4.16. In [94], Vainsencher uses themapΞ : BlΓ2 BlΓ1 Gr(2, 5)2 → H5
2,2 to compute

the degree of a family of rational cubic fourfolds in P5. However, he does not prove the
smoothness ofH5

2,2.

Remark 3.4.17. In [16] it was shown that H=
=−2,=−2 meets exactly one other component in

Hilb%
=
=−2,=−2(P=) and that this component is smooth. We will give two examples to show

that these statements are false in general.
The componentH5

2,2 will meet the component whose general member parameterizes a
pair of 2-planesmeeting at a point union an isolated point. It will alsomeet the component
whose general member parameterizes a quadric union an isolated line.

In Chapter 5 we will see that Hilb%
=
=−2,1(P=) is a union of H=

=−2,1 and a component
Y2, whose general point parameterizes a line meeting an (= − 2)-plane union an isolated
point. Moreover, Y2 is singular and its singularity is a cone over the Segre embedding of
P1 × P=−2 ↩→ P2(=−1)−1.
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Chapter 4

Pair of linear spaces - Birational
Geometry

In this chapterweprove thatwhen char(k) = 0, theHilbert scheme of a pair of linear spaces
is a Mori dream space. The main idea is to use our explicit description of Ξ obtained in
Chapter 3 and the classification of ideals to completely describe the effective and nef cones
ofH=

=−:,=−: . We also determine the pairs (:, =) for which the component is Fano.

Notation 4.0.1. For the rest of the chapter k will denote an algebraically closed field of
characteristic 0. Λ< will always denote an<-dimensional linear subspace of P= . We begin
with a description of the divisors.

Definition 4.0.2. Let . be a smooth projective variety with Cl(.) finitely generated. Then
. is aMori dream space if the Cox Ring of . is finitely generated over k. The Cox ring of
. is defined to be ⊕

m∈Z:

�0(.,O.

( ∑
8 m8�8

)
)

where �1, . . . , �: are chosen to generate Cl(.).

Definition 4.0.3. Let = ≥ 2:−1. For each 1 ≤ 8 ≤ :−1 and a choice of a flag of linear spaces
{Λ8−1 ⊆ Λ2:−1−8}, let �8 denote the divisor class of the locus of subschemes / ∈ H=

=−:,=−: ,
for which the linear span of Λ8−1 ∪ (/ ∩ Λ2:−1−8) has dimension less than 2: − 8 − 1. Let
�: denote the divisor class of the locus of subschemes that meet a fixed Λ:−1.

Definition 4.0.4. Let = ≥ 2: − 1. Let #1 denote the divisor class of the locus of generically
non-reduced subschemes in H=

=−:,=−: . For each 2 ≤ 8 ≤ : − 1, let #8 denote the divisor
class of the locus of subschemes with an embedded (= − : + 1 − 8)-plane. If = = 2: − 1
let #: denote the divisor class of the locus of subschemes with an embedded point. If
= > 2: − 1 let #: denote the class of the closure of the locus of pairs of planes meeting
transversely, where the intersection of the two planes meets a fixed Λ2:−1.
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Here are the results when the pair of planes span P= .

Theorem 4.0.5. Let : ≥ 2 and = ≥ 2: − 1. The component H=
=−:,=−: is a Mori dream space and

we have,

Eff(H=
=−:,=−:) = 〈#1, . . . , #:〉 and Nef(H=

=−:,=−:) = 〈�1, . . . , �:〉.

Moreover,H=
=−:,=−: is Fano if and only if either : = 3 and = = 5, or : ≠ 3 and = ∈ {2: − 1, 2:}.

To state the results when the pair of planes do not span P= , it is more convenient to use
dimension instead of codimension to index the component. In particular, the component
parameterizing subschemes that do not span P= are of the formH=

:−1,:−1 with = > 2: − 1.

Definition 4.0.6. Let = > 2:−1. For each 1 ≤ 8 ≤ :−1 and a choice of flag {Λ=−2:+8 ⊆ Λ=−8},
let�′

8
denote the divisor class of the locus of subschemes / ∈ H=

:−1,:−1, for which the linear
span of Λ=−2:+8 ∪ (Λ=−8 ∩/) has dimension less than = − 8. Let �′

:
denote the divisor class

of the locus of subschemes meeting a fixed Λ=−: . Let � denote the divisor class of the
locus of subschemes whose linear span meets a fixed Λ=−2: .

Definition 4.0.7. Let = > 2: − 1. Let #′1 denote the divisor class of the locus of generically
non-reduced subschemes in H=

:−1,:−1. For each 2 ≤ 8 ≤ :, let #′
8
denote the divisor class

of the locus of subschemes with an embedded (: − 8)-plane.

Here are the results when the pair of planes do not span P= .

Theorem 4.0.8. Let : ≥ 2 and = > 2: − 1. The component H=
:−1,:−1 is Fano and thus a Mori

dream space. Moreover we have,

Eff(H=
:−1,:−1) = 〈#

′
1, . . . , #

′
: , �〉 and Nef(H=

:−1,:−1) = 〈�
′
1, . . . , �

′
: , �〉.

Analogous results forH=−2,=−3 with 2 ≠ 3 can be found in [81].

4.1 Divisors when the pair of planes span P=

In this section we study the Picard group of H=
=−:,=−: for = ≥ 2: − 1. We give an explicit

description of the divisors �8 , #8 (Remark 4.1.6, Remark 4.1.9) and describe equations for
their pullback along Ξ|*:−1 .

Notation 4.1.1. Wewill use�: to denote the coordinate)(:)0,=−:+1 on*:−1 fromRemark 3.2.2.
This convention will simplify the formulas for the equations we will obtain.

The proofs of Theorem 3.4.13 and Lemma 3.2.4 give explicit equations for the various
loci of embedded structures.
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Lemma 4.1.2. Let = ≥ 2: − 1 and let / be a subscheme parameterized by Ξ(*:−1). Then
(i) / is a pair of planes meeting transversely if and only if �1, . . . ,�:−1,T(:) ≠ 0.

(ii) / has an embedded (= − 2: + 1)-plane if and only if T(:) = 0.

(iii) For each 2 ≤ 8 ≤ : − 1, / has an embedded (= − : + 1 − 8)-plane if and only if �8 = 0.

(iv) / is generically non-reduced if and only if �1 = 0.

Definition 4.1.3. Consider the sequence of blowups

X:−1
#:−1−→ X:−2

#:−2−→ · · ·
#1−→ X0.

For each 8, let �8 denote the strict transform in X:−1 of the exceptional divisor of #8 . Let
�: denote the strict transform of Γ: .

Lemma 4.1.4. Let = ≥ 2: − 1. Then #1(H=
=−:,=−:) = Cl(H=

=−:,=−:) = Z: . In particular, linear
equivalence and numerical equivalence for divisors coincide.

Proof. SinceH=
=−:,=−: = X:−1/S2 is a smooth rational variety, its class group is torsion free.

In particular, #1(X:−1/S2) = Cl(X:−1/S2). Thus it suffices to prove that Cl(X:−1/S2)Q :=
Cl(X:−1/S2) ⊗ Q is isomorphic to Q: . By [31, Example 1.7.6] we have Cl(X:−1/S2)Q =

Cl(X:−1)S2
Q . Let �1,0 and �0,1 be the strict transform, in X:−1, of OX0(1, 0) and OX0(0, 1),

respectively. By [47, Theorem 8.5], Cl(X:−1)Q is freely generated by �1, . . . , �:−1, �1,0, �0,1.
Since S2 fixes �8 and interchanges �1,0 with �0,1, it follows that

Cl(X:−1)S2
Q = spanQ{�1, . . . , �:−1, �1,0 + �0,1} ' Q: . �

Definition 4.1.5. Let (X0)trv = X0 \ Γ: denote the open subset of X0 consisting of pairs of
(= − :)-planes such that the two planes in the pair meet transversely. We say that a pair
of (= − :)-planes meets another plane Λ transversely, if each plane in the pair meets Λ
transversely.

We now describe �8 as a scheme theoretic image under Ξ.

Remark 4.1.6. For each 1 ≤ 8 ≤ :−1 consider a flagF8 = {Λ8−1 ⊆ Λ2:−1−8}. Let,8 ⊆ (X0)trv
be the open subset consisting of pairs of planes that meet Λ2:−1−8 transversely. Let �̂8

denote the (scheme theoretic) closure of

{/ ∈,8 : dimk span(Λ8−1 ∪ (/ ∩Λ2:−1−8)) < 2: − 1 − 8}

in X0. Then �8 is the image of the strict transform of �̂8 under the map Ξ.
Similarly, given a plane Λ:−1, let �̂: be the scheme theoretic closure of

{/ ∈ (X0)trv : / ∩Λ:−1 ≠ ∅}

in X0. Then �: is the image of the strict transform of �̂: under the map Ξ.
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Lemma 4.1.7. The loci �8 are divisorial. For 1 ≤ 8 ≤ : − 1 let �8 be defined by the flag

Λ8−1 = +(G8−1, G8+1, . . . , G=) ⊆ Λ2:−8−1 = +(G: , . . . , G=−:8−2 , G=−:8 − G=−:8−1). (4.1)

Then Ξ★(�8) ∩*:−1 is cut out by )(:−8)8−1,=−:8 + )
(:−8)
8−1,=−:8)

(:−8)
8 ,=−:8−1

+ �:−8+1.

Proof. Assume 1 ≤ 8 ≤ : − 1 and let �8 be defined by the flag Eq. (4.1). To show that �8 is
a divisor, it suffices to show that �̂8 ∩,8 is a divisor in,8 (notation from Remark 4.1.6).
By symmetry, it is enough to show that �̂8 ∩,8 ∩*0 is a divisor in,8 ∩*0.

Given a point (Λ(a),Λ(b)) ∈,8 ∩*0 we have (Λ(a) ∪Λ(b)) ∩Λ2:−1−8 = % ∪& for a pair
of (: − 1 − 8)-planes, % and &. For each = − :8+1 ≤ 9 ≤ = let ? 9 (respectively @ 9) denote the
point in % (respectively &) obtained by setting G 9 = 1 and Gℓ = 0 for all other ℓ ≥ : (there
are no such points for 8 = : − 1). Explicitly,

? 9 = (−00, 9 : · · · : −0:−1, 9 : 0 : · · · : 0 : 1 : 0 : · · · : 0)
@ 9 = (−10, 9 : · · · : −1:−1, 9 : 0 : · · · : 0 : 1 : 0 : · · · : 0).

Let ?=−:8 (respectively @=−:8 ) denote the point in % (respectively &) obtained by setting
G=−:8 = G=−:8−1 = 1 and Gℓ = 0 for all other ℓ ≥ :. Explicitly,

?=−:8 = (−00,=−:8 − 00,=−:8−1 : · · · : −0:−1,=−:8 − 0:−1,=−:8−1 : 0 : · · · : 0 : 1 : 1 : 0 : · · · : 0)
@=−:8 = (−10,=−:8 − 10,=−:8−1 : · · · : −1:−1,=−:8 − 1:−1,=−:8−1 : 0 : · · · : 0 : 1 : 1 : 0 : · · · : 0).

For each ℓ ∈ {0, . . . , 8 − 2, 8} let Aℓ = +(G0, . . . , Gℓ−1, Gℓ+1, . . . , G=).
By construction we have, % = span(?=−:8 , . . . , ?=), & = span(@=−:8 , . . . , @=) and Λ8−1 =

span(A0, . . . , A8−2, A8). It follows that the points in span(Λ8−1∪ ((Λ(a) ∪Λ(b)) ∩Λ2:−1−8)) are
in the row span of the matrix[

@=−:8 · · · @= ?=−:8 · · · ?= A0 · · · A8−2 A8
])
.

In particular, �̂8 ∩,8 ∩ *0 is the locus where the matrix has rank less than 2: − 8. Let
&; , 9 = 0; , 9 − 1; , 9 and apply the row operation

©­­­­­­­­­­­­­­­­­­«

@=−:8
@=−:8+1
...

@=
?=−:8
...

?=
A0
...

A8−2
A8

ª®®®®®®®®®®®®®®®®®®¬

−→

©­­­­­­­­­­­­­­­­­­­«

@=−:8 − ?=−:8 −
∑
;(&; ,=−:8 + &; ,=−:8−1)A;

@=−:8+1 − ?=−:8+1 −
∑
; &; ,=−:8+1A;

...

@= − ?= −
∑
; &; ,=A;

?=−:8
...

?=
A0
...

A8−2
A8

ª®®®®®®®®®®®®®®®®®®®¬
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and swap the 8-th column and (8 − 1)-st column. It follows that the locus is cut out by the
determinant of the submatrix

©­­­­­«
&8−1,=−:8 + &8−1,=−:8−1 &8+1,=−:8 + &8+1,=−:8−1 · · · &:−1,=−:8 + &:−1,=−:8−1

&8−1,=−:8+1 &8+1,=−:8+1 · · · &:−1,=−:8+1
&8−1,=−:8+2 &8+1,=−:8+2 · · · &:−1,=−:8+2

...
...

...

&8−1,= &8+1,= · · · &:−1,=

ª®®®®®¬
.

Thus �̂8 ∩,8 ∩*0 is a divisor and this determinant also cuts out �̂8 ∩*0.
The strict transform of this determinant cuts out Ξ★(�8) ∩ *:−1. Pulling back this

matrix to*:−1 and column reducing as in Proposition 3.2.1 we obtain

©­­­­­­­­­«

�1 · · ·�:−8()(:−8)8−1,=−:8 + )
(:−8)
8−1,=−:8−1

) ★ · · · · · · ★ ★

0 �1 · · ·�:−8−1
. . .

...

0 0 . . .
. . .

...
... · · · . . .

. . . ★ ★
0 · · · 0 �1�2 ★
0 · · · 0 0 �1

ª®®®®®®®®®¬
.

The strict transform of its determinant is )(:−8)
8−1,=−:8 + )

(:−8)
8−1,=−:8−1

.

• If 8 > 1wemayuseProposition3.2.1 (ii) to rewrite)(:−8)
8−1,=−:8−1

= �:−8+1+)(:−8)8−1,=−:8)
(:−8)
8 ,=−:8−1

.

• If 8 = 1 we may use Remark 3.2.2 to rewrite )(:−1)
0,=−:+1 = �: + )(:−1)

0,=−:+2)
(:−1)

1,=−:+1.

In either case, Ξ★(�8)∩*:−1 is cut out by the desired equation. Lastly, �: is a divisor since
�̂: is the Weil divisor associated to OX0(1, 1) ∈ PicX0 ' Z2. �

Corollary 4.1.8. Let 0 ≤ 9 < 8. For 1 ≤ 8 ≤ : − 1 let �8 be defined by the flag

Λ8−1 = +(G 9 , G8+1, . . . , G=) ⊆ Λ2:−8−1 = +(G: , . . . , G=−: 9−2 , G=−: 9 − G=−: 9−1 , G=−: 9+1 , . . . , G=−:8 )1
(4.2)

and let �: be defined by the plane

Λ:−1 = +(G 9 + G=−: 9 , G: , . . . , G=−: 9−1 , G=−: 9+1 , . . . , G=).

Then Ξ★(�8) ∩*:−1 is cut out by a polynomial in the coordinates of Remark 3.2.2 that is linear in
�:−9 .

1if 9 = 0 then : 9−1 = :−1 = : is still consistent with our convention, see Remark 3.2.6
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Proof. Assume 8 ≤ : − 1 and 9 ≠ 0. Imitating the proof of Lemma 4.1.7 we see that
Ξ★(�8) ∩ *:−1 is cut out by )(:−8)

9 ,=−: 9 + )
(:−8)
9 ,=−: 9−1

. To express this in terms of our desired

coordinates we will use the relation )(ℓ )?,@ = )
(ℓ )
?,=−ℓ+1)

(ℓ )
:−ℓ ,@ + �ℓ+1)

(ℓ+1)
?,@ which is true for any

@ ≤ =− :? and any ? < :−ℓ and ℓ < :−1 (proof of Proposition 3.2.1). Repeatedly applying
this relation we obtain the following expressions

)
(:−8)
9 ,=−: 9 =

:−9−1∑
ℓ=:−8

�:−8+1 · · ·�ℓ)(ℓ )9 ,=−ℓ+1)
(ℓ )
:−ℓ ,=−: 9 + �:−8+1 · · ·�:−9

and

)
(:−8)
9 ,@

=

:−9−1∑
ℓ=:−8

�:−8+1 · · ·�ℓ)(ℓ )9 ,=−ℓ+1)
(ℓ )
:−ℓ ,@ + �:−8+1 · · ·�:−9)(:−9)9 ,@

(4.3)

for any @ < =− : 9 . Thus )(:−8)9 ,@
, as a polynomial in the coordinates of Remark 3.2.2, is linear

in �:−9 for all @ ≤ = − : 9 . This implies Ξ★(�8) ∩*:−1 is linear in �:−9 .
Assume 8 ≤ : − 1 and 9 = 0. Most of the argument from the previous paragraph still

applies in this case. In particular, Ξ★(�8) ∩*:−1 is cut out by )(:−8)0,=−:+1 +)
(:−8)

0,=−: and we have

)
(:−8)

0,@ =

:−2∑
ℓ=:−8

�:−8+1 · · ·�ℓ)(ℓ )0,=−ℓ+1)
(ℓ )
:−ℓ ,@ + �:−8+1 · · ·�:−1)

(:−1)
0,@ (4.4)

for all @ ≤ =− :+1 = =− :0. Notice that)(:−1)
0,@ = )

(:)
0,@ +)

(:−1)
0,=−:+2)

(:−1)
1,@ for all @ ≤ =− :+1 and

)
(:)

0,=−:+1 = �: (Remark 3.2.2). Substituting this into Eq. (4.4) we see that )(:−8)0,=−:+1 + )
(:−8)

0,=−: is
linear in �: .

Finally assume 8 = :. The locus of points (Λ(a),Λ(b)) ∈ *0 meeting Λ:−1 is clearly cut
out by (0 9 ,=−: 9 −1)(1 9 ,=−: 9 −1). The pullback of this equation to*:−1, which coincides with
the strict transform, defines Ξ★(�:). If 9 ≠ 0 we can use Eq. (4.3) to deduce that

(0 9 ,=−: 9 −1)(1 9 ,=−: 9 −1) =
(
1 9 ,=−: 9 +

:−9−1∑
ℓ=1

�1 · · ·�ℓ)(ℓ )9 ,=−ℓ+1)
(ℓ )
:−ℓ ,=−: 9 +�1 · · ·�:−9−1

)
(1 9 ,=−: 9 −1).

This expression is linear in �:−9 . If 9 = 0 we can argue in the previous paragraph and
deduce linearity in �: . This completes the proof. �

Here is an alternate description of #8 .

Remark 4.1.9. For each 1 ≤ 8 ≤ : − 1, let #8 = Ξ(�8). If = = 2: − 1 we let #: = Ξ(�:). If
= > 2: − 1, let #̂: denote the closure in X0, of the locus of pairs of planes in X trv

0 where
the intersection of the two planes meets a fixed Λ2:−1. Then #: is the image of the strict
transform of #̂: under Ξ.
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In the next lemma we abuse notation and use "=" to mean equality as divisor classes.

Lemma 4.1.10. Let = ≥ 2: − 1. The loci #8 are divisorial. Moreover, we have

(i) Ξ★(#1) = 2�1.

(ii) Ξ★(#8) = �8 for 2 ≤ 8 ≤ : − 1.

(iii) If = = 2: − 1 then Ξ★(#:) = �: and Ξ★(#:) ∩*:−1 is cut out by �: .

(iv) If = > 2: − 1 let Λ2:−1 = +(G: , . . . , G=−:) be the plane defining #: . Then Ξ★(#:) ∩*:−1
is cut out by �: .

Proof. Assume 1 ≤ 8 ≤ : − 1. Remark 4.1.9 implies that the #8 are divisors. Items (i),
(ii) and the first half of (iii) follow from the fact that Ξ is a finite, degree 2 map branched
along #1 (although not phrased this way, it is part of the proof of Proposition 3.2.8),
see [31, Chapter 1.7]. The rest of item (iii) is a consequence of Lemma 4.1.2 (ii).

Now assume = > 2: − 1 and let #̂: be as in Remark 4.1.9. To show that #: is a
divisor it is enough to show that #̂: ∩ X trv

0 ∩*0 is a divisor in X trv
0 ∩*0. Given a point

(Λ(a),Λ(b)) ∈ X trv
0 ∩*0, the intersection of the two planes is Λ(a) ∩Λ(b) = +({∑=

9=:(08 , 9 −
18 , 9)G 9 , H8}0≤8≤:−1). Thus the locus of points inX trv

0 ∩*0 satisfying (Λ(a)∩Λ(b))∩Λ2:−1 ≠ ∅
is cut out by the determinant of

©­«
00,=−:+1 − 10,=−:+1 · · · 0:−1,=−:+1 − 1:−1,=−:+1

...
...

00,= − 10,= · · · 0:−1,= − 1:−1,=

ª®¬
Column reducing as in Proposition 3.2.1 (ii) and taking the strict transform gives item
(iv). �

4.2 Effective and nef cones
This section is devoted to the proof of Proposition 4.2.12. For the rest of the section we
will assume = ≥ 2: − 1. We begin by constructing two families of curves and computing
their intersection numbers with �8 and #8 .

Roughly speaking, the first family of curves will fix a pair of planes and vary the
embedded structures while the second family will vary the planes and fix the embedded
structures.

Definition 4.2.1. For each 1 ≤ 9 ≤ : − 1, define the curve � 9 : P1 → H=
=−:,=−: by

� 9(B : C) = �Λ�Λ′ + (BG 9−1G=−: 9 − CG 9G=−: 9−1) +
9−2∑
?=0

G?(G=−:?+1 , . . . , G=−: 9 )

with Λ = +(G0, . . . , G:−1) and Λ′ = +(G0, . . . , G 9 , G 9+1 + G=−: 9+1 , . . . , G:−1 + G=).
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Remark 4.2.2. Theorem 3.4.13 shows that � 9(B : C) is projectively equivalent to Eq. (3.8)
with

�1 = · · · = �:−9−1 = 1, �:−9 = 0, �:−9+1 =

{
C
B if B ≠ 0
0 if B = 0

, �:−9+2 = · · · = �: = 0.

It also shows that for 9 ≤ : − 2, the general member of � 9 is a pair of (= − :)-planes
meeting along a pencil of embedded (=−2:+ 9+1)-planes and containing fixed embedded
(= − 2: + ℓ )-planes for all 1 ≤ ℓ ≤ 9 − 1, while �:−1 is a pencil of generically non-reduced
(= − :)-planes. If (B : C) = (1 : 0), (0 : 1), the corresponding subscheme has an embedded
(= − 2: + 9)-plane.

Definition 4.2.3. Let 0 ≤ 9 ≤ : − 1. Let Λ = +(G0, . . . , G:−1) and consider the pencil of
(= − :)-planes Λ′(B : C) = +(G0, . . . , G 9−1, BG 9 + CG=−: 9 , G 9+1 + G=−: 9+1 , . . . , G:−1 + G=). Define
the curve � 9 : P1 → H=

=−:,=−: by

� 9(B : C) = �Λ�Λ′(B:C) + (G?G=−:@ − G@G=−:? )0≤?<@≤ 9−1 + (G0, . . . , G 9−1)G=−: 9 .

Remark 4.2.4. Theorem 3.4.13 shows that � 9(B : C) is projectively equivalent to Eq. (3.8)
with

�1 = · · · = �:−9−1 = 1, �:−9 =

{
C
B if B ≠ 0
1 if B = 0

, �:−9+1 = 0, �:−9+2 = · · · = �: = 1.

If (B : C) ≠ (1 : 0), then �0(B : C) is a pair of (= − :)-planes meeting transversely while
� 9(B : C) a pair of (= − :)-planes with a pure embedded (= − 2: + 9)-plane for 9 > 0.
Moreover, the embedded (= − 2: + 9)-plane is fixed along the curve.

If (B : C) = (1 : 0), the corresponding subscheme has an embedded (=−2:+ 9+1)-plane.
Note that �:−1(1 : 0) is, more precisely, a generically non-reduced (= − :)-plane.

Before we determine the intersection numbers we need to compute a few linear spans.
We begin with notation that will be used a great deal in the following Lemmas.

Notation 4.2.5. We use �†
9
(B : C) and �†

9
(B : C) to denote the subschemes of P= cut out by

� 9(B : C) and � 9(B : C), respectively. Given an ideal � ⊆ (, let sat(�) denote its saturation
with respect to (G0, . . . , G=) and let �(1) denote the ideal generated by the linear forms in �.

Lemma 4.2.6. Let 1 ≤ 8 ≤ 9 ≤ : − 1 and let Λ2:−8−1 = +(G: , G:+1, . . . , G=−:8−2 , G=−:8 − G=−:8−1).
For any (B : C) ∈ P1, if 8 ≠ 9 the linear span of �†

9
(B : C) ∩Λ2:−8−1 is

+(G0, . . . , G8−1, G: , . . . , G=−:8−2 , G=−:8 − G=−:8−1)

and if 8 = 9 the linear span of �†
8
(B : C) ∩Λ2:−8−1 is

+(G0, . . . , G8−2, BG8−1 − CG8 , G: , . . . , G=−:8−2 , G=−:8 − G=−:8−1).
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Proof. Let Λ = Λ2:−8−1 and note that the linear span of �†
9
(B : C) ∩Λ is cut out by sat(� 9(B :

C) + �Λ)(1). Assume 8 < 9. It is straigthtforward to see that Gℓ (G0, . . . , G=) ⊆ � 9(B : C) + �Λ
for every 0 ≤ ℓ ≤ 8 − 1. Thus we have

sat(� 9(B : C) + �Λ) ⊇ �Λ + (G0, . . . , G8−1) + (G8 , . . . , G:−1)(G8 , . . . , G 9 , G 9+1 + G=−: 9+1 , . . . , G:−1 + G=)

+ (BG 9−1G=−: 9 − CG 9G=−: 9−1) +
9−2∑
?=8

G?(G=−:?+1 , . . . , G=−: 9 )

= Q.

Moreover, it is clear that Q(3) = (� 9(B : C) + �Λ)(3) for all 3 ≥ 2. Thus if we show that
Q is saturated then Q = sat(� 9(B : C) + �Λ), and this would give the desired linear span.
If we write Q = �Λ + (G0, . . . , G8−1) + Q′, it suffices to show that quadratic portion, Q′, is
saturated. But notice thatQ′ is projectively equivalent to an ideal of the form Eq. (3.8) (for
reasons similar to Remark 4.2.2). It follows from Lemma 3.2.7 that Q is saturated. The
case of 8 = 9 is analogous. �

Remark 4.2.7. Here are two simple facts about linear spans:

(i) If Λ? and Λ@ are disjoint linear spaces in P= then dimk span(Λ? ∪Λ@) = ? + @ + 1.

(ii) span(.1 ∪ .2) = span(span.1 ∪ span.2) for any subschemes .1, .2 ⊆ P= .

The first fact is clear and the second follows from the following chain of equalities,

�.1∪.2(1) = (�.1 ∩ �.2)(1) = (�.1(1) ∩ �.2(1))(1).

Lemma 4.2.8. Let 1 ≤ 8 ≤ : and 1 ≤ 9 ≤ : − 1. We have the following intersection numbers

(i) �8 · � 9 = 0 whenever 8 ≠ 9,

(ii) �8 · �8 = 1 for all 8 ≤ : − 1.

Proof. Assume 8 > 9. Since the dimension of any embedded subscheme of �†
9
(B : C) is at

most =−2: + 9+1, a generic (2: −1− 8)-plane will not intersect any embedded subscheme
of �†

9
(B : C). If 8 < :, the intersection of �†

9
(B : C) with a generic Λ2:−1−8 is a pair of skew

(: − 1 − 8)-planes. Moreover, these skew planes are independent of (B : C) and thus

span (�†9 (B : C) ∩Λ2:−1−8) ' P2:−28−1

is independent of (B : C). As a consequence, we may choose an (8 − 1)-planeΛ8−1 ⊆ Λ2:−1−8
that does not meet the P2:−28−1. It follows from Remark 4.2.7 that

dimk span (Λ8−1 ∪ (�†9 (B : C) ∩Λ2:−1−8)) = 2: − 1 − 8.
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If we use the flag {Λ8−1 ⊆ Λ2:−1−8} to define �8 we see that �8 · � 9 = 0. Similarly, if 8 = :

and Λ:−1 is generic we have that �†
9
(B : C) ∩Λ:−1 = ∅. Thus �: · � 9 = 0.

Assume 8 < 9 and let Λ2:−8−1 = +(G: , G:+1, . . . , G=−:8−2 , G=−:8 − G=−:8−1). By Lemma 4.2.6
we have that

span (�†9 (B : C) ∩Λ2:−1−8) = +(G0, . . . , G8−1, G: , G:+1, . . . , G=−:8−2 , G=−:8 − G=−:8−1) ' P2:−28−1

is fixed and independent of (B : C). As done in the previous paragraph, if we choose a
general Λ8−1 inside Λ2:−1−8 to define �8 , then �8 · � 9 = 0. This completes the proof of item
(i).

Assume 8 = 9 and let the flag {Λ8−1 ⊆ Λ2:−1−8} in Eq. (4.1) define �8 . By Lemma 4.2.6
we have that

span (�†8 (B : C) ∩Λ2:−1−8) = +(G0, . . . , G8−2, BG8−1 − CG8 , G: , G:+1, . . . , G=−:8−2 , G=−:8 − G=−:8−1)

Thus, if C ≠ 0, the linear span of (�†
8
(1 : C) ∩ Λ2:−8−1) ∪ Λ8−1 is all of Λ2:−8−1. If C = 0, the

linear span of (�†
8
(1 : 0) ∩ Λ2:−8−1) ∪ Λ8−1 is Λ2:−8−1 ∩+(G8−1). Thus �8 ∩ �8 is supported

on the point /0 = �8(1 : 0).
Let �̃8 denote the closure in X:−1 of the curve, A1 ↩→ *:−1 obtained by setting

�1, . . . ,�:−8−1 = 1, �:−8+1 = C and all the other coordinates of Remark 3.2.2 to 0. Since
Ξ(�̃8)|*:−1 = �8(1 : C) it follows that Ξ(�̃8) = �8 . In particular �̃8 ∩Ξ★(�8) is supported at a
unique point /̃0 ∈ Ξ−1(/0). Since Ξ★(�8) is linear in �:−8+1 (Lemma 4.1.7), it follows that
Ξ★(�8) and �̃8 intersect transversely at /̃0. Using the push-pull formula we conclude that
�8 · �8 = Ξ★�̃8 · �8 = Ξ★(�̃8 · Ξ★(�8)) = 1. �

Lemma 4.2.9. Let 1 ≤ 8 ≤ : and 0 ≤ 9 ≤ : − 1. We have the following intersection numbers

(i) �8 · � 9 = 0 for all 8 ≤ 9,

(ii) �8 · � 9 = 1 for all 8 > 9.

Proof. Assume 8 ≤ 9 and let Λ2:−1−8 = +(G: , . . . , G=−:8−2 , G=−:8 − G=−:8−1). Arguing as in
Lemma 4.2.6 we see that

span (Λ2:−1−8 ∩ �†9 (B : C)) = +(G0, . . . , G8−1, G: , G:+1, . . . , G=−:8−1) ' P2:−28−1

is independent of (B : C). Arguing as in Lemma 4.2.8 we deduce item (i).
Assume that 9 < 8 ≤ : − 1 and let {Λ8−1 ⊆ Λ2:−1−8} be the flag Eq. (4.2) defining �8 .

Then �†
9
(B : C) ∩Λ2:−8−1 is a disjoint pair of (: − 8 − 1)-planes defined by

(G0, . . . , G 9−1, BG 9 + CG=−: 9 , G 9+1, . . . , G8 , G8+1 + G=−:8+1 , . . . , G:−1 + G= ,
G: , G:+1, . . . , G=−: 9−2 , G=−: 9 − G=−: 9−1 , G=−: 9+1 , . . . , G=−:8 )∩

(G0, . . . , G=−: 9−2 , G=−: 9 − G=−: 9−1 , G=−: 9+1 , . . . , G=−:8 ).
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For C ≠ 0, the linear span of (�†
9
(B : C) ∩Λ2:−8−1) ∪Λ8−1 is all of Λ2:−8−1. On the other hand

if C = 0, the linear span of (�†
9
(B : C) ∩ Λ2:−8−1) ∪ Λ8−1 is Λ2:−1−8 ∩ +(G 9). Thus �8 ∩ � 9 is

supported at the point /0 = � 9(1 : 0).
Let �̃ 9 denote the closure inX:−1 of the curve,A1 ↩→ *:−1 obtained by setting�1 = · · · =

�:−9−1 = 1, �:−9 = C, �:−9+2 = · · · = �: = 1 and all the other coordinates of Remark 3.2.2
to 0. Since Ξ(�̃ 9)|*:−1 = � 9(1 : C) we have Ξ(�̃ 9) = � 9 . Thus �̃ 9 ∩ Ξ★(�8) is supported at a
unique point /̃0 ∈ Ξ−1(/0). Since Ξ★(�8) is linear in �:−9 (Corollary 4.1.8), it follows that
Ξ★(�8) and �̃ 9 intersect transversely at /̃0. Using the push-pull formula we conclude that
� 9 · �8 = Ξ★�̃ 9 · �8 = Ξ★(�̃ 9 · Ξ★(�8)) = 1.

Now assume 9 < 8 = : and let Λ:−1 = +(G 9 + G=−: 9 , G: , . . . , G=−: 9−1 , G=−: 9+1 , . . . , G=) be
the plane defining �: . It is evident that � 9 ∩ �: is supported at the point /1,1 = � 9(1 : 1).
Once again, �̃ 9 (defined in the previous paragraph) and Ξ★(�:) will meet at a unique
point /̃1,1 ∈ Ξ−1(/1,1). Since Ξ★(�:) is linear in �:−9 (Corollary 4.1.8) we see that �̃ 9 meets
Ξ★(�:) transversely at /̃1,1. Once again we conclude using the push-pull formula. �

Lemma 4.2.10. We have the following intersection numbers,

(i) #8 · � 9 = 0 for each 1 ≤ 8 ≤ : − 1 and all 1 ≤ 9 ≤ : − 8 − 1,

(ii) #8 · � 9 = 0 for each 1 ≤ 8 ≤ : and all 9 ≠ : − 8 , : − 8 + 1,

(iii) #8 · �:−8+1 = 2 for each 2 ≤ 8 ≤ :,

(iv) #1 · �:−1 = 2 and #8 · �:−8 = 1 for 2 ≤ 8 ≤ :.

Proof. Item (i) and item (ii), except for the case of 8 = :, follow from the definition of the
#8 and the description of the embedded subschemes in Remark 4.2.2 and Remark 4.2.4.
We will deal with the case of 8 = : in the last paragraph. For the rest of the proof let
/0 = �:−8+1(1 : 0) and /∞ = �:−8+1(0 : 1). We will also use the curves �̃:−8+1 and �̃ 9

defined in Lemma 4.2.8. In particular, let /̃0, /̃∞ ∈ �̃:−8+1 be such that Ξ(/̃0) = /0 and
Ξ(/̃∞) = /∞.

Assume 2 ≤ 8 ≤ : − 1. Since #8 is the locus of subschemes containing an embedded
(= − : + 1 − 8)-plane, it meets the curve �:−8+1 at /0 and /∞. Thus �̃:−8+1 meets �8 at /̃0
and /̃∞. Using Lemma 4.1.10 (ii), we obtain

#8 · �:−8+1 = Ξ★(�̃:−8+1 · Ξ★(#8)) = �̃:−8+1 · �8 = (�̃:−8+1 · �8)|/̃0
+ (�̃:−8+1 · �8)|/̃∞ .

Since /̃0 ∈ *:−1 and �8 is cut out by �8 , �̃:−8+1 meets �8 transversely at /̃0. Symmetrically,
�̃:−8+1 will also meet �8 transversally at /̃∞. To see the latter statement, consider the
projective transformation 6 ∈ GL(= + 1) that interchanges G 9 with G 9−1, interchanges
G=−: 9 with G=−: 9−1 and fixes the other coordinates. It follows from the definition that
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6(�:−8+1) = �:−8+1 and 6 interchanges /0 with /∞. Since intersection multiplicity is
invariant under automorphisms ofH=

=−:,=−: we obtain

(#8 · �:−8+1)|/∞ = (6(#8) · 6(�:−8+1)) |6(/∞) = #8 · �:−8+1 |/0 = (�8 · �̃:−8+1)|/̃0
= 1.

This proves item (iii) for 8 ≠ :.
Since #1 is the locus of generically non-reduced subschemes, it meets the curve �:−1 at

�:−1(1 : 0). Using Lemma 4.1.10 (i) we obtain#1 ·�:−1 = Ξ★(�̃:−1 ·Ξ★(#1)) = 2�̃:−1 ·�1 = 2.
Similarly, using Lemma 4.1.10 we obtain #8 · �:−8 = 1 for all 2 ≤ 8 ≤ : − 1. This finishes
item (iv) for 8 ≠ :.

Finally, assume 8 = : and let Λ2:−1 = +(G: , . . . , G=−:) be the plane defining #: (if
= > 2: − 1). By Lemma 4.1.10 (iii), (iv) we see that Ξ★(#:) meets �̃1 at /0 and possibly
also at /∞ (since the latter does not lie in *:−1). Moreover, Ξ★(#:) meets �̃1 transversely
at /̃0. We may argue as in the previous paragraph to show that Ξ★(#:) also meets �̃1
transversely at /̃∞. Indeed, the projective transformation 6 fixes #: . This is clear if
= = 2: − 1 and the case of = > 2: − 1 follows from the fact that 6 fixes Λ2:−1. Thus
#: · �1 = (#: · �1)|/0 + (#: · �1)|/∞ = 2(#: · �1)|/0 = 2, completing the proof of item (iii).
For items (ii) and (iv) we argue similarly using the following projective transformation:
6′ ∈ GL(= + 1) that maps G=−: 9 ↦→ G=−: 9 + G 9 and fixes the other coordinates. It is
straightforward to verify that 6′(� 9) = � 9 , 6′(� 9(0 : 1)) = � 9(1 : 1) and 6′ fixes #: (since 6′
fixes Λ2:−1). This implies

(#: · � 9)|�9(0:1) =
(
6′(#:) · 6′(� 9)

)
|6′(�9(0:1)) = (#: · � 9)|�9(1:1) = 0

for 9 ≠ 1. Thus, we may compute Ξ★(#:) · �̃ 9 along*:−1 to obtain the desired results. �

Proposition 4.2.11. Let 1 ≤ 8 ≤ :. Then we have

• #1 = 2�: − 2�:−1,

• #8 = 2�:−8+1 − �:−8 − �:−8+2 for all 2 ≤ 8 ≤ : − 1,

• #: = 2�1 − �2.

Proof. By Lemma 4.1.4, Lemma 4.2.8 and Lemma 4.2.9 we see that #1(H=
=−:,=−:) is gener-

ated by {�1, . . . , �:}. This allows us to write #8 =
∑:
ℓ=1 &8 ,ℓ�ℓ for some &8 ,ℓ ∈ Z. Using

Lemma 4.2.8 - Lemma 4.2.10 we obtain

• #1 · �ℓ = &1,ℓ = 0 for ℓ ≤ : − 2,

• #1 · �:−1 = &1,: = 2 and #1 · �:−2 = &1,:−1 + &1,: = 0.

This immediately implies #1 = 2�: − 2�:−1. For each 2 ≤ 8 ≤ : we obtain

• #8 · � 9 =
∑:
ℓ=9+1 &8 ,ℓ = 0 for 9 ≠ : − 8 , : − 8 + 1
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• #8 · �:−8 =
∑:
ℓ=:−8+1 &8 ,ℓ = 1 and #8 · �:−8+1 = &8 ,:−8+1 = 2.

If 8 ≠ :, we obtain &8 ,:−8 = −1, &8 ,:−8+1 = 2, &8 ,:−8+2 = −1, and &8 ,ℓ = 0 for other ℓ . If 8 = : we
obtain &:,1 = 2, &:,2 = −1 and &8 ,ℓ = 0 for other ℓ . This completes the proof. �

Proposition 4.2.12. Let : ≥ 2 and = ≥ 2: − 1. Then we have

Eff(H=
=−:,=−:) = 〈#1, . . . , #:〉 and Nef(H=

=−:,=−:) = 〈�1, . . . , �:〉.

Moreover,H=
=−:,=−: is Fano if and only if either : = 3 and = = 5, or : ≠ 3 and = ∈ {2: − 1, 2:}.

Proof. It is clear that the divisors #1, . . . , #: are effective and generate #1(H=
=−:,=−:). To

conclude that the effective cone is generated by #1, . . . , #: , it is enough to show that any
R-divisor # =

∑:
8=1 &8#8 , with some & 9 < 0, is not effective. Let � 9 : P1 ↩→ H=

=−:,=−:
denote any curve such that for (B : C) ≠ (1 : 0), � 9(B : C) is a pair of (= − :)-planes
meeting transversely while � 9(1 : 0) it is a pair of (= − :)-planes with a pure embedded
(= − : + 1 − 9)-plane if 9 > 1 and generically non-reduced if 9 = 1. Clearly, � 9 · #8 = 0 for
8 ≠ 9 and � 9 · #9 > 0. Since # · � 9 = & 9 < 0 and � 9 is not contained in the support of # ,
we see that # cannot be an effective divisor.

By varying the flags it is easy to see that each of the �8 is base point free; thus it is also
nef. Similar to the previous paragraph, to show that the nef cone gone is generated by
�1, . . . , �: , it is enough to show that any R-divisor � =

∑:
8=1 &8�8 , with some & 9 < 0, is

not nef. If 9 ≠ :, we have � · � 9 = & 9 < 0 and if 9 = : we have � · �:−1 = &: < 0. Thus � is
not nef.

We will now compute the canonical divisor of H=
=−:,=−: using the branched cover

Ξ : X:−1 → H=
=−:,=−: . By [47, Exercise 8.5b] and [24, Exercise 10.10] we may write

 X:−1 =

:−1∑
9=1
((: − 9 + 1)(= − : − 9 + 2) − 1)� 9 − (= + 1)�̂:

where �̂: is the strict transform ofOX0(1, 1) (Remark 4.1.6). Note that the canonical divisor
of X0 is OX0(−= − 1,−= − 1). Let  H=

=−:,=−:
= &1#1 + · · · + &:−1#:−1 + &:�: for some &8 ∈ Q.

Hurwitz’s theorem implies that  X:−1 = Ξ
★( H=

=−:,=−:
) + �1. Using this and Lemma 4.1.10

we obtain

2&1�1 +
:−1∑
9=2

& 9� 9 + &:�̂: = Ξ
★( H=

=−:,=−:
) = (:(= − : + 1) − 2)�1+

:−1∑
9=2
((: − 9 + 1)(= − : − 9 + 2) − 1)� 9 − (= + 1)�̂: .
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Let &̃ 9 = (: − 9 + 1)(= − : − 9 + 2) − 1 and using Proposition 4.2.11 we obtain

 H=
=−:,=−:

=
1
2(&̃1 − 1)(2�: − 2�:−1) +

:−1∑
9=2

&̃ 9(2�:−9+1 − �:−9 − �:−9+2) − (= + 1)�: .

For : = 2, 3 the above expression simplifies to

 H=
=−2,=−2

= (4 − 2=)�1 + (= − 5)�2,  H=
=−3,=−3

= (7 − 2=)�1 + (= − 6)�2 − 2�3.

If : ≥ 4 we can rewrite the expression as follows:

 H=
=−:,=−:

= (&̃1 − 1)(�: − �:−1) − (= + 1)�: +
:−3∑
9=2
(2&̃ 9+1 − &̃ 9 − &̃ 9+2)�:−9

− &̃2�: + (2&̃2 − &̃3)�:−1 + (2&̃:−1 − &̃:−2)�2 − &̃:−1�1

= (&̃1 − &̃2 − = − 2)�: + (2&̃2 − &̃3 − &̃1 + 1)�:−1 +
:−3∑
9=2
(2&̃ 9+1 − &̃ 9 − &̃ 9+2)�:−9

+ (2&̃:−1 − &̃:−2)�2 − &̃:−1�1.

Since 2&̃ 9+1 − &̃ 9 − &̃ 9+2 = −2 for all 9 we obtain

 H=
=−:,=−:

= (4: − 5 − 2=)�1 + (= − 2: − 1)�2 − 2�3 − 2�4 − · · · − 2�:−2 − �:−1 − 2�: .

Since the ample cone is the interior of the nef cone, we see that − H=
=−2,=−2

is ample if
and only if = = 3, 4 and that − H=

=−3,=−3
is ample precisely when = = 5. If : ≥ 4, − H=

=−:,=−:
is ample if and only if = = 2: − 1, 2:. �

4.3 Mori dream space
This section is devoted to the proof of Theorem 4.3.14. We will show thatH=

:−1,:−1 is Fano,
and thus a Mori dream space. By constructing a contraction from H=

:−1,:−1 to H=
=−:,=−:

(Proposition 4.3.11) we will also deduce thatH=
=−:,=−: is a Mori dream space.

Notation 4.3.1. In this section we will primarily be interested in the case when the pair of
planes do not span all of P= . By swapping the roles of codimension and dimension, the
components we are interested in are of the formH=

:−1,:−1 with = > 2: − 1.

Corollary 3.4.8 states that for = > 2: − 1, the morphism � : H=
:−1,:−1 −→ Gr(2: − 1, =)

that sends a scheme to its linear span is smooth; the fiber over a point Λ isH:−1,:−1(Λ).
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Remark4.3.2. Let, = Spec k[ 52:,9 , . . . , 5=,9]0≤ 9≤2:−1 beaneighbourhoodofΛ = +(G2: , . . . , G=) ∈
Gr(2: − 1, =) such that its k-points are identified with

+(G2: +
2:−1∑
9=0

52:,9G 9 , . . . , G= +
2:−1∑
9=0

5=,9G 9).

Then the open subset �−1(,) is naturally isomorphic to, ×H:−1,:−1(Λ).

Lemma 4.3.3. Let = > 2: − 1. Then #1(H=
:−1,:−1) = Z:+1.

Proof. As explained in Lemma 4.1.4, since H=
:−1,:−1 is rational and smooth, it suffices

to compute #1(H=
:−1,:−1) ⊗ Q which equals Pic(H=

:−1,:−1) ⊗ Q = �2(H=
:−1,:−1,Q). By

Corollary 3.4.8 we have a smooth morphism H=
:−1,:−1 −→ Gr(2: − 1, =) with fibers iso-

morphic to H2:−1
:−1,:−1. Since the base of this morphism is simply connected, we may

apply the Leray-Hirsch theorem [97, Theorem 7.33] and Lemma 4.1.4 to deduce that
�2(H=

:−1,:−1,Q) ' Q:+1. �

Using the fibration � and Remark 4.3.2 one can easily verify that the loci �′
8
, #′

8
, � are

divisorial. We nowdefine the curves insideH=
:−1,:−1; all but two of them come from curves

lying inside H2:−1
:−1,:−1.

Definition 4.3.4. Let Λ = +(G2: , . . . , G=). For each relevant 9, let �′
9
, �′

9
, �′

9
be the images

of � 9 , �9 , � 9 (Definition 4.2.1, Definition 4.2.3, Proposition 4.2.12) under the inclusion
�−1(Λ) = H:−1,:−1(Λ) ↩→ H=

:−1,:−1, respectively.

Definition 4.3.5. Let Λ′ = +(G: , . . . , G=) and let

Λ(B : C) = +(G0, . . . , G:−1, BG2: + CG: , G2:+1, . . . , G=)

be a pencil of (: − 1)-planes disjoint from Λ′. Define the curve .1 : P1 → H=
:−1,:−1 by

(B : C) ↦→ Λ(B : C) ∪Λ′. Explicitly

.1(B : C) = (BG2: + CG: , G2:+1, . . . , G=) + (G0, . . . , G:−1)(G: , . . . , G2:−1).

Define the curve .2 : P1 → H=
:−1,:−1 by

.2(B : C) = (BG2: + CG0, G2:+1, . . . , G=) + (G1, . . . , G:−1)(G:+1, . . . , G2:−1)
+ (G0, G2:)2 + (G0, G2:)(G1, . . . , G:−1, G:+1, . . . , G2:−1).

Remark 4.3.6. Let Λ = +(G0, . . . , G:−1, G2: , . . . , G=) and Λ′ = +(G0, G:+1, . . . , G=) be a pair
of (: − 1)-planes meeting along a point. Then we have

.2(B : C) = �Λ ∩ �Λ′ ∩ ((G0, G2:)2, BG2: + CG0, G1, . . . , G:−1, G:+1, . . . , G2:−1, G2:+1, . . . , G=).

In particular, .2 is a pair of fixed (: − 1)-planes with a pencil of embedded points.
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Lemma 4.3.7. .2 is a moving curve in #′
:
i.e. its deformations span #′

:
.

Proof. The general subscheme parameterized by #′
:
is a pair of (: − 1)-planes meeting

along an embedded point. By Corollary 3.4.8 and Theorem 3.4.13, up to projectively
equivalence, such a subscheme is cut out by

(G0, . . . , G:−1, G2: , . . . , G=) ∩ (G0, G:+1, . . . , G=) ∩ (G2
0 , G1, . . . , G:−1, G:+1, . . . , G=) = .2(1 : 0)

In particular, the GL(= + 1) orbit of .2 covers a dense subset of #′: . �

Lemma4.3.8. For all pairs of relevant indices 8 , 9 (the ones appearing inLemma4.2.8, Lemma4.2.9,
Lemma 4.2.10), the intersection numbers of �′

8
, #′

8
with �′

9
, �′

9
are the same as the intersection

numbers of �8 , #8 with � 9 , � 9 , respectively.

Proof. We will only verify �′
8
· �′

9
= �8 · � 9 for 1 ≤ 8 , 9 ≤ : − 1; the other cases are

analogous. Let Λ = +(G2: , . . . , G=) be a fixed (2: − 1)-plane. Let �′
8
be defined by a flag

F ′
8
= {Λ=−2:+8 ⊆ Λ=−8}, where the flag is chosen to satisfy the following two properties:

• Λ is transverse to each element of the flag F ′
8
,

• Let �8 ⊆ H:−1,:−1(Λ) be defined by the flag F8 = {Λ=−2:+8 ∩ Λ ⊆ Λ=−8 ∩ Λ}. Then
either �8 ∩ � 9 = ∅ if 8 ≠ 9 or �8 is transverse to � 9 if 8 = 9.

Let, be the open neighbourhood ofΛ fromRemark 4.3.2. The first bullet point implies
that every element of, is transverse to the flag F ′

8
. It follows that �′

8
|�−1(,) =, ×�8 and

�′
9
= {Λ} × � 9 . Thus we have �′

8
· �′

9
= �′

8
|�−1(,) · �′9 = �8 · � 9 . �

Lemma 4.3.9. We have the following intersection numbers

(i) �′
8
· .2 = #

′
8
· .1 = 0 for all 1 ≤ 8 ≤ :,

(ii) #′
8
· .2 = 0 for all 1 ≤ 8 ≤ : − 1,

(iii) �′
8
· .1 = 1 for all 1 ≤ 8 ≤ :,

(iv) � · .1 = � · .2 = 1.

Proof. Items (i) and (ii) are clear from the definition of the divisors.
Let 1 ≤ 8 ≤ :, Λ = +(G2: , . . . , G=) and, be as in Remark 4.3.2. We may choose a flag

F ′
8
to define �′

8
so that the following properties are satisfied:

• Λ is transverse to each element of the flag F ′
8
,

• �′
8
∩ .1 is supported at /0 = .1(1 : 0).
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Let, ′ = Spec k[&1, . . . , &:2] ⊆ H:−1,:−1(Λ) be any affine open containing the image of
/0 inH:−1,:−1(Λ). Then,×, ′ is identifiedwith an open neighbourhood of/0 ∈ H=

:−1,:−1.
Along this open set, .1 is the curve obtained by setting 52:,: = C, 58 , 9 = 0 for other 8 , 9, and
&8 = �8 for some constants �8 ∈ k. On the other hand, �′

8
=, × (�8 ∩, ′)where �8 is the

divisor defined by the flag F ′
8
∩Λ. It immediately follows that �′

8
meets .1 transversely at

/0 inside, ×, ′; this proves item (iii).
For item (iv), we will only verify � ·.1 = 1 as the other case is similar. Let � be defined

by the (=−2:)-plane,+(G0, . . . , G:−1, G:+1, . . . , G2:). It follows that �∩.1 is also supported
at /0. Moreover, along, ×, ′, � is cut out by the function 52:,: . Combining this with the
equation of .1 along, ×, ′ we see that � meets .1 transversely at /0. �

Proposition 4.3.10. Let : ≥ 2 and = > 2: − 1. Then we have,

Eff(H=
:−1,:−1) = 〈#

′
1, . . . , #

′
: , �〉 and Nef(H=

:−1,:−1) = 〈�
′
1, . . . , �

′
: , �〉.

Moreover we have,

• #′1 = 2�′
:
− 2�′

:−1,

• #′
8
= 2�′

:−8+1 − �
′
:−8 − �

′
:−8+2 for all 2 ≤ 8 ≤ : − 1,

• #′
:
= 2�′1 − �′2 − �.

Proof. Using the intersection numbers with the curves {�′1, . . . , �′: , .2} and arguing as
in Proposition 4.2.11, Proposition 4.2.12 we see that #1(H=

:−1,:−1) and Nef(H=
:−1,:−1) are

both generated by �′1, . . . , �
′
:
, �. Using the curves {�′1, . . . , �′: , .1} and arguing as in

Proposition 4.2.12, we see that #′1, . . . , #
′
:
, � generate the effective cone.

By Proposition 4.2.11 and Lemma 4.3.8 there exists &8 ∈ Q such that

• #′1 = 2�′
:
− 2�′

:−1 + &1�,

• #′
8
= 2�′

:−8+1 − �
′
:−8 − �

′
:−8+2 + &8� for all 2 ≤ 8 ≤ : − 1,

• #′
:
= 2�′1 − �′2 + &:�.

Intersecting these divisors with .1, .2 and using Lemma 4.3.9 we obtain &1, . . . , &:−1 = 0
and &: = −1. �

We are now ready to relateH=
:−1,:−1 withH=

=−:,=−: .

Proposition 4.3.11. There is a morphismΨ : H=
:−1,:−1 −→ H=

=−:,=−: with exceptional locus #
′
:
.

Moreover, #′
:
is a P=−2:+1-fibration overΨ(#′

:
). Geometrically,Ψ "forgets" the embedded points.

Proof. Given an (= + 1)-dimensional vector space + , let

Γ8(P+) = {(Λ,Λ′) : dim(Λ ∩Λ′) ≥ : − 8} ⊆ Gr(: − 1, P+)2.
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By [59, Theorem 6.3] the Hilbert-Chow morphism induces a birational morphism,

H:−1,:−1(P+) −→ Sym2 Gr(: − 1, P+).

Let sΓ8(P+) denote the image of Γ8(P+) in Sym2 Gr(: − 1, P+). Since the pullback of each
sΓ8(P+) is #′8 , we obtain a morphism

Ψ1 : H=
:−1,:−1 −→ Bl

sΓ:−1(P+) · · ·Bl
sΓ1(P+) Sym2 Gr(: − 1, P+).

There is an isomorphism Gr(: − 1, P+)2 ' Gr(= − :, (P+)★)2 induced by map Λ ↦→ Λ★

that sends a linear space to its dual variety. This isomorphism maps Γ8(P+) to Γ8 (Defi-
nition 3.0.1) and thus maps sΓ8(P+) to sΓ8 after quotienting by S2. Therefore we obtain an
isomorphism

Ψ2 : Bl
sΓ:−1(P+) · · ·Bl

sΓ1(P+) Sym2 Gr(: − 1, P+) '−→ Bl
sΓ:−1 · · ·Bl

sΓ1 Sym2 Gr(= − :, =)
= H=−:,=−:((P+)★).

Let Ψ = Ψ2 ◦Ψ1. One can directly check that Ψ★(�8) = �′
8
for all 8 and Ψ★(#8) = #′

8
for

1 ≤ 8 ≤ : − 1.
To show that Ψ contracts #′

:
, it is enough to show that Ψ contracts .2 (Lemma 4.3.7).

Using Lemma 4.3.9 we obtainΨ★.2 ·�8 = Ψ★(.2 ·Ψ★(�8)) = Ψ★(.2 ·�′8) = 0 for all 8. Since
�1, . . . , �: generates the nef-cone ofH=

=−:,=−: we must haveΨ★.2 = 0, i.e. Ψ contracts .2.
Conversely, let � be any curve contracted byΨ. If � ·�′

8
≠ 0 for some 8, we would have

Ψ★� · �8 = Ψ★(� · �′8) ≠ 0, proving that Ψ does not contract �. Thus we may assume
� ·�′

8
= 0 for all 8. Since {�′

8
}8∪� generates the nef-cone ofH=

:−1,:−1 wemust have � ·� > 0.
Using Proposition 4.3.10 we obtain #′

:
· � = −� · � < 0, i.e. � lies inside #′

:
.

Lastly, we need to verify that #′
:
is a P=−2:+1-fibration over Ψ(#′

:
). Up to projective

equivalence, it is enough toverify that thefiber ofΨ1 over/ = +(G0, . . . , G:−1, G2: , . . . , G=)∪
+(G0, G:+1, . . . , G=) is isomorphic toP=−2:+1, seeExample 4.3.12. Let� = spank{G0, G2: , . . . , G=}.
Similar to the proof of Lemma 4.3.7, any subscheme parameterized by H=

:−1,:−1 and sup-
ported on / is cut out by

(G0, . . . , G:−1, G2: , . . . , G=) ∩ (G0, G:+1, . . . , G=) ∩
[
(G1, . . . , G:−1, G:+1, . . . , G2:−1) + (�′) + (�′′)2

]
(4.5)

where �′ ∈ Gr(= − 2: + 1, �) and �′′ ⊆ � is chosen so that �′ ⊕ �′′ = �. Notice that for
a fixed �′, all choices of �′′ give the same ideal as Eq. (4.5). It follows that the Ψ−1

1 (/) is
paramaterized by Gr(= − 2:, P�) ' P=−2:+1. �

Example 4.3.12. Consider - ⊆ P4 cut out by (G0, G1, G4) ∩ (G0, G3, G4) ∩ (G2
0 , G1, G3, G4). This

is a pair of lines meeting along an embedded point. Let G★0 , . . . , G
★
4 be the dual coordinates

on (P4)★. We can trace the image of - under the map Ψ : H1,1(P4) → H2,2((P4)★) as
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follows:

(G0, G1, G4) ∩ (G0, G3, G4) ∩ (G2
0 , G1, G3, G4)

Ψ1↦→ (G0, G1, G4) ∩ (G0, G3, G4)
Ψ2↦→ point inH4

2,2 corresponding to (G★2 , G
★
3 ) ∩ (G

★
1 , G

★
2 )

= (G★2 , G
★
3 ) · (G

★
1 , G

★
2 )

= (G★2 , G
★
3 ) ∩ (G

★
1 , G

★
2 ) ∩ ((G

★
2 )

2, G★1 , G
★
3 ).

Proposition 4.3.13. Let : ≥ 2 and = > 2: − 1. The componentH=
:−1,:−1 is Fano.

Proof. Using Proposition 4.3.11 and the canonical divisor in Proposition 4.2.12 we deduce
that

 H=
:−1,:−1

= Ψ★ H=
=−:,=−:

+ (= − 2: + 1)#′:
= Ψ★ H=

=−:,=−:
+ (= − 2: + 1)(2�′1 − �′2 − �)

=


−3�′1 − 2�′2 − 2�′3 − · · · − 2�′

:−2 − �
′
:−1 − 2�′

:
− (= − 2: + 1)� if : ≥ 4,

−3�′1 − �′2 − 2�′3 − (= − 5)� if : = 3,
−2�′1 − 2�′2 − (= − 3)� if : = 2.

The first equality is a modification of [47, Exercise 8.5] combined with the fact that the
codimension of Ψ(#′

:
) in H=

=−:,=−: is = − 2: + 2. It follows from Proposition 4.3.10 that
− H=

:−1,:−1
is ample in all cases; thusH=

:−1,:−1 is always Fano. �

Here is the the main theorem of the paper:

Theorem 4.3.14. The componentsH=
:−1,:−1 andH

=
=−:,=−: are Mori dream spaces.

Proof. This follows immediately from Proposition 4.2.12, Proposition 4.3.11, Proposi-
tion 4.3.13 and the subsequent two facts:

(i) A smooth Fano variety is a Mori dream space [67, Corollary 4.9],

(ii) Let 5 : - → . be a surjective morphism of smooth, projective varieties. If - is a
Mori dream space, then so is . [76, Theorem 1.1]. �
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Chapter 5

Hilbert schemes with two Borel-fixed
points

In this chapter we study Hilbert schemes with two Borel-fixed points. We classify Hilbert
schemes with two Borel-fixed points and determine when the associated Hilbert schemes
or its irreducible components are smooth. In particular, we show that the Hilbert scheme
is reduced and has at most two irreducible components. By describing the singularities in
a neighbourhood of the Borel-fixed points, we show that the singularities that occur are
cones over certain Segre embeddings of P0 ×P1 . In particular, the singularities are always
Cohen-Macaulay and normal.

After the first version of this chapter was available on arXiv, Skjelnes-Smith [88] clas-
sified all smooth Hilbert schemes and described their geometry. Complementing [88],
our work may be seen as a first step towards a classification of mildly singular Hilbert
schemes. To state our results we use the Gotzmann decomposition of aHilbert polynomial
(Theorem 2.0.12).

Theorem 5.0.1. Assume char(k) = 0. The Hilbert scheme Hilb%�(P=) has two Borel-fixed
points precisely in the following cases:

(i) � = (=B , 1, 1, 1) for = ≥ 2: The Hilbert scheme Hilb%�(P=) is smooth, and when B = 0
its general member parameterizes three isolated points.

(ii) � = (=B , 1, 1, 1, 1) for = = 2: The Hilbert scheme Hilb%�(P2) is smooth, and when
B = 0 its general member parameterizes four isolated points in the plane.

(iii) � = (=B , 2, 2, 1) for = ≥ 3: The Hilbert scheme Hilb%�(P=) is a union of two smooth
irreducible components meeting transversely. When B = 0, the general member of
one component parameterizes a plane conic union an isolated point and the general
member of the other component parameterizes two skew lines.
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(iv) � = (=B , (3 + 1)@ , 1) with = > 3 + 1 > 2 and @ ≥ 2: The Hilbert scheme Hilb%�(P=) is
smooth, and when B = 0 its general member parameterizes a hypersurface of degree
@ in a P3+1 union an isolated point.

(v) � = (=B , 2@ , 1) with and = > 2 and @ ≥ 4: The Hilbert scheme Hilb%�(P=) is smooth,
and when B = 0 its general member parameterizes a plane curve of degree @ union
an isolated point.

(vi) � = (=B , (3 + 1)@ , A + 1, 1)with = > 3 + 1 > A + 1 > 2: The Hilbert scheme Hilb%�(P=)
is irreducible, Cohen-Macaulay, and normal. When B = 0, the general member
parameterizes a hypersurface of degree @ in a P3+1 union a A-plane inside P3+1

and an isolated point; the hypersurface meets the A-plane transversely in P3+1. If
3 = = − 2 the Hilbert scheme at the non lexicographic point is étale-locally a cone
over the Segre embedding P1 × P=−A−1 ↩→ P2(=−A)−1.

(vii) � = (=B , (3 + 1)@ , 2, 1) with = > 3 + 1 > 2 and @ ≥ 3: The description of the Hilbert
scheme is identical to Case (5).

(viii) � = (=B , 3 + 1, 1, 1)with = > 3 + 1 > 1: The Hilbert scheme Hilb%�(P=) is irreducible,
Cohen-Macaulay and normal. If B = 0 the general member parameterizes a 3-plane
union two isolated points. If 3 = = − 2 the Hilbert scheme at the non lexicographic
point is étale-locally a cone over the Segre embedding P2 × P=−1 ↩→ P3=−1. In
particular, if = = 3 theHilbert scheme, which parameterizes a line union two isolated
points, is Gorenstein.

(ix) � = (=B , 3 + 1, 2, 1) with = > 3 + 1 > 3: The Hilbert scheme Hilb%�(P=) is reduced
with two irreducible components Y1 and Y2.

• When B = 0 the componentY1 is smooth and its generalmemberparameterizes a
disjoint union of a 3-plane union a line. If 3 = =−2 the component is isomorphic
to the blowup of G(1, =) ×G(= − 2, =) along the locus {(!,Λ) : ! ⊆ Λ}.

• When B = 0 the componentY2 is normal and Cohen-Macaulay. Its general point
parameterizes a 3-plane union a line and an isolated point; the 3-plane meets
the line at a point. If 3 = = − 2 the component at the non lexicographic point is
étale-locally a cone over the Segre embedding P1 × P=−2 ↩→ P2(=−1)−1.

After the result appeared on arXiv, work of Staal [90] shows that the classification
of Hilbert schemes with two Borel-fixed points extends to positive characteristics with a
minor modification. In particular, [90, Theorem 1.1] states that for char(k) ≠ 2 the Hilbert
scheme Hilb%�(P=) has two Borel-fixed points if and only if � is as in one of the cases in
Theorem 5.0.1. If char(k) = 2 then� can be any of the cases of Theorem 5.0.1 except for case
(2). Since our deformation computations are characteristic independent (see Section 5.3
and Section 5.4), we obtain a description of the singularities in all characteristics.
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Theorem 5.0.2. Let char(k) = ?. The Hilbert scheme Hilb%�(P=) has two Borel-fixed points
if and only if

• ? ≠ 2 and � is as in case (1) - (9) of Theorem 5.0.1, or

• ? = 2 and � is as in case (1) or (3) - (9) of Theorem 5.0.1.

In all of these cases the description of Hilb%�(P=) is identical to the one given in Theo-
rem 5.0.1.

5.1 Resolutions of Borel-fixed ideals
We use !(�) to denote the unique saturated lexicographic ideal with Hilbert polynomial
%� (Eq. (2.2)). If the Hilbert scheme has exactly two Borel-fixed points we will use �(�) to
denote the non lexicographic Borel-fixed point.

The Eliahou-Kervaire resolution provides an explicit minimal free resolution of a
strongly stable ideal [27]. We will mostly be interested in resolutions of ideals of the
form � = G0(G0, . . . , G=−1) + G@1(G1, . . . , G?) with @ ≥ 1 and = − 1 ≥ ? ≥ 0. Note that �
is strongly stable in all characteristics. Following the presentation in [78, Section 2], let

0 → �=−1
#=−1−−−→ · · ·

#2−→ �1
#1−→ �0

#0−→ � → 0 denote the Eliahou-Kervaire resolution of �
where

�0 =

(
=−1⊕
8=0

((−2)e★08

) ⊕ (
?⊕
8=1

((−@ − 1)e★18

)
and

�1 =
©­«

⊕
0≤ 9<8≤=−1

((−3)e 908
ª®¬
⊕©­«

⊕
0≤ 9<8≤?

((−@ − 2)e 918
ª®¬ .

The first two differentials are given by #0(e★08) = G0G8 , #0(e★18) = G
@

1G8 and,

#1(e 908) = G 9e★08 − G8e
★
09 , 0 ≤ 9 < 8 ≤ = − 1

#1(e0
18) = G0e★18 − G

@

1e
★
08 , 1 ≤ 8 ≤ ?

#1(e 918) = G 9e★18 − G8e
★
19 , 1 ≤ 9 < 8 ≤ ?.

This presentation also allows us to explicitly describe the first two terms of the cotangent
complex [48, Chapter 3]. Let ' = (/� and let

Kos := #−1
1

(
{#0(e★;1 91)e

★
;1 91
− #0(e★;2 92)e

★
;2 92
}
)
⊆ �1,
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be the pre-image of the Koszul relations in �0. Let #∨1 : Hom((�0, () → Hom((�1, ()
denote the dual of #1. The second cotangent cohomology, )2('/k, '), is the cokernel of
the following map

Hom'(�0 ⊗ ', ')
#∨1−−→ Hom' (�1/(ker#1 + Kos), ') .

5.2 Classifying Hilbert polynomials
In this section we classify Hilbert polynomials with two Borel-fixed ideals in characteristic
0 (Proposition 5.2.10 and Proposition 5.2.11). The first step is to reduce to studying
Hilbert schemes corresponding to integer partitions � with = > �1, equivalently Hilbert
schemes parameterizing subschemes of codimension at least 2. Using the classification of
Hilbert schemes with a single Borel-fixed ideal and Algorithm 5.2.3 we obtain the desired
classification.

Lemma 5.2.1. Let � = (=B ,�B+1,�B , . . . ,�<) be an integer partition with B > 0. Then there is
an isomorphism

Hilb%�(P=) ' P(�0(OP= (B))) ×Hilb%�′ (P=)
where �′ = (�B+1, . . . ,�<). This isomorphism is GL(= + 1)-equivariant and thus induces a
bĳection on Borel-fixed ideals, given by � ↦→ GB0�

′.

Proof. By [30, Theorem 1.4] and [30, Remark 2, p. 514] there is an isomorphism

P(�0(OP= (B′))) ×Hilb%
′(P=) ' Hilb%�(P=), ( 5 , [�]) ↦→ [ 5 �] (5.1)

where deg%′ < = − 1 and

%�(C) =
(
C + =
=

)
−

(
C + = − B′

=

)
+ %′(C − B′).

Since the morphism Eq. (5.1) is given by multiplication of ideals, it is also GL(= + 1)-
equivariant. Using the well-known identity on summation of binomial coefficients we
obtain

B∑
8=1

(
C + = − 8
= − 1

)
+

<∑
8=B+1

(
C + �8 − 8
�8 − 1

)
= %�(C) =

B′∑
8=1

(
C + = − 8
= − 1

)
+ %′(C − B′).

Since deg%′ < = − 1 we must have B = B′ and this, in turn, implies that %′ = %�′. The
desired bĳection on Borel-fixed points follows from the �!(= + 1)-equivariance. �

By Lemma 5.2.1 it suffices to classify Borel-fixed ideals in Hilbert schemes correspond-
ing to � with = > �1.
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Notation 5.2.2. For the rest of this section we will assume char(k) = 0.

We begin by briefly describing a procedure that generates all the Borel-fixed ideals in
characteristic 0. Following [21, 62], we fix an order on the variables so that G0 > G1 >
· · · > G= . This induces a partial order on monomials of a fixed degree: if G8 > G 9 then
G8x" > G 9x". This is called the Borel order and we denote it by ≥�.

Let � ⊆ ( be a stongly stable ideal with Hilbert polynomial %(C) and let G(�) denote
the set of minimal generators of �. Given an element x" of G(�) that is also minimal with
respect to ≥� one can produce a new strongly stable ideal withHilbert polynomial %(C)+1.
This procedure is known as an expansion of � with respect to x", and the new strongly
stable ideal is generated by

(G(�) \ {x"}) ∪ {x"GA , x"GA+1, . . . , x"G=−1}

where A = max{8 : G8 |x"}. For our purposes, we just need the penultimate step in the
recursive algorithm.

Algorithm 5.2.3. Every saturated strongly stable ideal of ( with Hilbert polynomial %(C)
is obtained from a strongly stable ideal of ' = k[G0, . . . , G=−1] with Hilbert polynomial
Δ%(C) := %(C) − %(C − 1) via a sequence of expansions. More precisely, � is obtained by
successively expanding �( 2 times, where � is a strongly stable ideal of ' with Hilbert
polynomial Δ%(C) and 2 = %(C) − %(/�((C) is a constant.

Remark 5.2.4. An alternative algorithm to generate the strongly stable ideals is presented
in [70].

Implicit in the above Algorithm is the following Lemma that will be extremely useful
for us.

Lemma 5.2.5 ( [62, Lemma 3.1, §4.2]). Let � ⊆ ( be a saturated strongly stable ideal. Then we
can always expand � at a minimal generator of degree 4 that is minimal w.r.t to ≥�. Any such
expansion is strongly stable with Hilbert polynomial %(/�(C) + 1.

Remark 5.2.6. Integer partitions behave well with respect to the difference operator. If � =

(�1, . . . ,�< , 1B) then we have Δ1%� = %�′′ where �′′ = (�1 − 1, . . . ,�< − 1). Indeed, we have

Δ1%� =

<+B∑
8=1

(
C + �8 − 8
�8 − 1

)
−
<+B∑
8=1

(
C − 1 + �8 − 8

�8 − 1

)
=

<+B∑
8=1

(
C + (�8 − 1) − 8
(�8 − 1) − 1

)
= %�′′ .

By our discussion above we see that the number of Borel-fixed points on a Hilbert
scheme Hilb%�(P=) are, to some extent, determined by the number of Borel-fixed points
on HilbΔ%�(P=−1) and Hilb%�−1(P=). It turns out that by considering Hilb%�−1(P=), we can
greatly restrict the partitions� that could give rise toHilbert schemeswith two Borel-fixed
points.
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Lemma 5.2.7. IfHilb%�(P=) has more than one Borel-fixed point, thenHilb%�−1(P=) is non-empty.

Proof. Let � = (�1,�2, . . . ,�<). If Hilb%�(P=) has more than one more Borel-fixed point
then [89, Theorem 1.1] implies that �< = 1 and < ≥ 2. It follows that

%� − 1 =
<∑
8=1

(
C + �8 − 8
�8 − 1

)
− 1 =

<−1∑
8=1

(
C + �8 − 8
�8 − 1

)
= %�′

with �′ = (�1, . . . ,�<−1). Since �′ is an integer partition with 1 ≤ �′1 ≤ =, the result
follows. �

We can now state a necessary condition for a Hilbert scheme to have two Borel-fixed
points.

Proposition 5.2.8. Let � = (�1,�2, . . . ,�<) be an integer partition with �1 ≤ = − 1. If
Hilb%�(P=) has two Borel-fixed points then � = ((3 + 1)@ , 1) or � = ((3 + 1)@ , A + 1, 1)

Proof. By [89, Theorem 1.1] wemay assume �< = 1 and< ≥ 2. Let �′ = (�1, . . . ,�<−1) and
we have %� = %�′ + 1. If the lexicographic point, !(�′), was generated in more than two
degrees then Lemma 5.2.5 would imply that Hilb%�(P=) contains at least three Borel-fixed
points; a contradiction. So we may assume that !(�′) (Eq. (2.2)) is generated in at most
two degrees. Let A be the smallest integer for which 0A+1 ≠ 0 and 3 be the largest integer
for which 03+1 ≠ 0. By assumption we have 0= = 0. If A = 3 we must have

!(�′) = (G0, . . . , G=−3−2, G
03+1
=−3−1) (5.2)

which implies �′ = ((3 + 1)03+1). If 3 > A we have 03+1 + 1 = 03+1 + 03 + 1 = · · · =
03+1 + · · · + 0A+2 + 1 = 03+1 + · · · + 0A+1. This implies 0A+2, . . . , 03 = 0 and 0A+1 = 1, and we
obtain

!(�′) = (G0, . . . , G=−3−2) + G03+1
=−3−1(G=−3−1, G=−3−2, . . . , G=−A−1) (5.3)

and �′ = ((3 + 1)03+1 , A + 1), as required. �

We now turn our attention to eliminating some of the � that appeared in Proposi-
tion 5.2.8. If the Hilbert scheme Hilb%�(P=) has two Borel-fixed points then they are
both on the lexicographic component. Let -1 and -2 denote the two Borel-fixed points.
By [84, Theorem 11] the hyperplane sections -8 ∩+(G=)must be equal to the lexicographic
point +(!(�′)) where Δ%� = %�′. Thus, if we produce a Borel-fixed point on Hilb%�(P=)
whose hyperplane section is not !(�′), then the corresponding Hilbert scheme cannot
have two Borel-fixed points. Of course, sometimes it is simpler to directly construct three
Borel-fixed ideals. We use both of these methods to obtain the following Lemma.

Lemma 5.2.9. Let � = (�1,�2, . . . ,�<) be an integer partition with �1 ≤ =−1. For the following
partitions �, the Hilbert scheme Hilb%�(P=) has at least three Borel-fixed points
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(i) � = (11) with 1 ≥ 4 and = ≥ 3,

(ii) � = (11) with 1 ≥ 5 and = = 2,

(iii) � = ((3 + 1)2, 2, 1) with 3 ≥ 1,

(iv) � = ((3 + 1)@ , 12) with 3 ≥ 1 and @ > 1.

Proof. For the rest of the proof let ' = k[G0, . . . , G=−1]. In case (1) we may use Propo-
sition 2.0.18 to verify that the following ideals are Borel-fixed with Hilbert polynomial
%� = 1:

(G0, . . . , G=−3, G=−2, G
1
=−1), (G0, . . . , G=−3, G

2
=−2, G=−2G=−1, G

1−1
=−1) and

(G0, . . . , G=−4, G
2
=−3, G=−3G=−2, G=−3G=−1, G

2
=−2, G=−2G=−1, G

1−2
=−1).

Similarly, in case (2) we may use Proposition 2.0.18 to verify the following ideals are
Borel-fixed with Hilbert polynomial %� = 1:

(G0, G
1
1), (G

2
0 , G0G1, G

1−1
1 ) and (G

2
0 , G0G

2
1 , G

1−2
1 ).

If we are in case (3) then consider the following Borel-fixed ideal

� = (G0, . . . , G=−3−3) + G=−3−2(G=−3−2, . . . , G=−2) + (G2
=−3−1).

To see that � has Hilbert polynomial %�, it suffices to compare it to

!(�) = (G0, . . . , G=−3−2) + G2
=−3−1(G=−3−1, G=−3−2, . . . , G=−3) + G2

=−3−1G=−2(G=−2, G=−1).

Indeed, for 9 � 0 we have

�9 \ !(�)9 = {G2
=−3−1G=−3−2G

9−3
= } ∪ {G2

=−3−1G
4
=−1G

9−2−4
= }0≤4≤ 9−2

and
!(�)9 \ �9 = {G=−3−2G

4
=−1G

9−1−4
= }0≤4≤ 9−1.

Since these two sets have the same cardinality 9, it follows that %(/!(�)(C) = %(/�(C). The
hyperplane section +(G=) ∩+(�) is defined by the saturated ideal

(G0, . . . , G=−3−3) + G=−3−2(G=−3−2, . . . , G=−2) + (G2
=−3−1).

Since this is different from !(33) = (G0, . . . , G=−3−2, G
3
=−3−1), theHilbert scheme cannot have

two Borel-fixed points.
Finally, if we are in case (4) we have the following Borel-fixed ideals

!(�) = (G0, . . . , G=−3−2) + G@=−3−1(G=−3−1, G=−3−2, . . . , G=−2) + (G@=−3−1G
2
=−1),

� = (G0, . . . , G=−3−3) + G=−3−2(G=−3−2, . . . , G=−1) + G@=−3−1(G=−3−1, G=−3−2, . . . , G=−1),
� = (G0, . . . , G=−3−3) + G=−3−2(G=−3−2, . . . , G=−2, G

2
=−1) + (G

@

=−3−1).
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Just as we did in case (3), it is straightforward to see that the three ideals have Hilbert
polynomial %�. For instance, consider � and note that for 9 � 0 we have

�9 \ !(�)9 = {G@=−3−1G=−1G
9−@−1
= } ∪ {G=−3−1G

9−@
= }

and
!(�)9 \ �9 = {G=−3−2G=−1G

9−2
= , G=−3−2G

9−1
= }. �

We now ready to prove the main result of this section. It will turn out that the
constraints we have found on � up until this point are sufficient. We accomplish this
by studying the expansions of Borel-fixed ideals with Hilbert polynomial Δ%(C) (Algo-
rithm 5.2.3). Since the Borel-fixed ideals naturally fit into two distinct families, we split
the result into two Propositions.

Proposition 5.2.10. Let � = ((3 + 1)@ , 1) with = − 2 ≥ 3. The Hilbert scheme Hilb%�(P=) has
two Borel-fixed points if and only if = ≥ 2 and

(i) 3 = 0 and @ = 2, or

(ii) 3 = 0, @ = 3 and = = 2, or

(iii) 3 = 1 and @ ≠ 1, 3, or

(iv) 3 ≥ 2 and @ ≥ 2.

The two Borel-fixed ideals are

�(�) = (G0, . . . , G=−3−3) + G=−3−2(G=−3−2, . . . , G=−1) + (G@=−3−1),
!(�) = (G0, . . . , G=−3−2) + G@=−3−1(G=−3−1, G=−3−2, . . . , G=−1).

Proof. The ideals �(�) and !(�) are expansions of a lexicographic ideal

(G0, . . . , G=−3−2, G
@

=−3−1).

Since the latter ideal has Hilbert polynomial %((3+1)@), it follows from Lemma 5.2.5 that
the Hilbert polynomial of �(�) and !(�) is %�. We first show that the cases are necessary.
By [89, Theorem 1.1 (ii)] if = = 1 or @ = 1 the Hilbert scheme has a single Borel-fixed point.
The remaining conditions on � follow from Lemma 5.2.9.

If we are in case (1) then the Hilbert scheme parameterizes subschemes of length three.
Any such subscheme can be realized as limC→0 /C = / where /C a reduced union of three
points for C ∈ A1 − 0 [17]. By upper-semicontinuity, since the union of three reduced
points is contained in a P2, the subscheme / is also contained in a P2. If / was Borel-fixed
this implies �/ = (G0, . . . , G=−3) + �( with � ⊆ (′ := k[G=−2, G=−1, G=] and %(′/�(C) = 3.
Using Proposition 2.0.18 we see that only choices are (G0, . . . , G=−3, G

2
=−2, G=−2G=−1, G

2
=−1)

and (G0, . . . , G=−3, G=−2, G
3
=−1).
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If we are in case (2) then Proposition 2.0.18 shows that (G0, G
4
1) and (G2

0 , G0G1, G
3
1) are the

only two Borel-fixed ideals.
So we may assume that we are in case (3) or case (4) of the theorem. Let �′ = ((3 + 1)@)

and �′′ = (3@). By Algorithm 5.2.3 we begin by computing all the Borel-fixed ideals in
' := k[G0, . . . , G=−1]with Hilbert polynomial, Δ1%� = %�′′.

For 3 ≥ 2 the Hilbert scheme Hilb%�′′ (Proj(')) has a unique Borel-fixed point [89,
Theorem 1.1] and it is given by !(�′′) = (G0, . . . , G=−3−2, G

@

=−3−1). The lift of !(�′′) to (
is just the lexicographic ideal, !(�′), with Hilbert polynomial %�′ = %� − 1. Thus, in
the last step of the algorithm, we only need to perform one successive expansion. Once
with the monomial G=−3−2 and once with the monomial G@

=−3−1, giving us the two desired
Borel-fixed ideals.

The last case is if 3 = 1 and @ ≠ 1, 3. In this case we have

%�(C) =
@∑
8=1

(
C + 2 − 8

2 − 1

)
+ 1 = @C + 2 −

(
@ − 1

2

)
.

SinceΔ1(%�) = @we compute all the Borel-fixed ideals in'withHilbert polynomial @. One
such ideal is � = (G0, . . . , G=−3, G

@

=−2)whose lift, �(, is the ideal of a plane curve of degree @.
Thus, the Hilbert polynomial of �( is %�′ and wemay expand �( at G=−3 and G

@

=−2 to obtain
the two Borel-fixed ideals. To finish, it suffices to show that if � is a Borel-fixed ideal in '
different from � then theHilbert polynomial of the lift, �(, is bigger than %�. For such a � to
exist we must have @ ≥ 4. In particular, we will prove that %(/�((C) ≥ %�(C) + 1 = %�′(C) + 2
for all C � 0. Since � ≠ �, we may assume that Gℓ

=−2 ∈ � and G
ℓ−1
=−2 ∉ � for some 1 < ℓ < @.

This implies that for 9 � 0, ('/�)9 is spanned by{
<1G

9−deg<1
=−1 , . . . , <@−ℓ G

9−deg<@−ℓ
=−1 , G

9

=−1, G=−2G
9−1
=−1, . . . , G

ℓ−1
=−2G

9−ℓ+1
=−1

}
.

We may assume that the <8 are monomials of degree strictly less than ℓ and not divisible
by G=−1 (applying the exchange property to Gℓ

=−2, we see that � contains all monomials
of degree at least ℓ supported on G0, . . . , G=−2). Thus, for 9 � 0 the graded piece ((/�()9
contains the monomials in G

?

=−2(G=−1, G=)9−? for 0 ≤ ? ≤ ℓ − 1 and the monomials in
<E(G=−1, G=)9−deg<E for 1 ≤ E ≤ @ − ℓ . This implies

dimk((/�)9 ≥
ℓ−1∑
?=0
(9 − ? + 1) +

@−ℓ∑
E=1
(9 − deg<E + 1) ≥

ℓ−1∑
?=0
(9 − ? + 1) +

@−ℓ∑
E=1
(9 − ℓ + 1 + 1).
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If we further assume ℓ < @ − 1, we may rewrite the sum and obtain

dimk((/�)9 ≥
ℓ−1∑
?=0
(9 − ? + 1) +

@−ℓ∑
E=1
(9 − ℓ + 1) + (@ − ℓ )

≥
ℓ−1∑
?=0
(9 − ? + 1) +

@−1∑
E=ℓ

(9 − E + 1) + (@ − ℓ )

=

@−1∑
?=0
(9 − ? + 1) + (@ − ℓ )

= @ 9 + 1 −
(
@ − 1

2

)
+ (@ − ℓ )

≥ dimk((/�()9 + 2 = %�′(9) + 2

as required. Finally, if ℓ = @ − 1, the exchange property forces

� = (G0, . . . , G=−4, G
2
=−3, G=−3G=−2, G

@−1
=−2).

Since @ ≥ 4, one can observe that %(/�((C) = %(/�((C) + 2, completing the proof. �

Proposition 5.2.11. Let � = ((3 + 1)@ , A + 1, 1) with 3 > A. The Hilbert scheme Hilb%�(P=) has
two Borel-fixed points if and only if = ≥ 2 and

(i) A = 0, @ = 1, or

(ii) A = 1, @ ≠ 2, or

(iii) A ≥ 2 .

The two Borel-fixed ideals are

�(�) = (G0, . . . , G=−3−3) + G=−3−2(G=−3−2, . . . , G=−1) + G@=−3−1(G=−3−1, G=−3−2, . . . , G=−A−1),
!(�) = (G0, . . . , G=−3−2) + G@=−3−1(G=−3−1, G=−3−2, . . . , G=−A−2) + G@=−3−1G=−A−1(G=−A−1, . . . , G=−1).

Proof. Since �(�) and !(�) are expansions of the lexicographic ideal (Eq. (5.3)) it follows
from Lemma 5.2.5 that their Hilbert polynomial is %�. By Lemma 5.2.9 these conditions
are also necessary; if = = 1 the Hilbert scheme has a single Borel-fixed point.

Now assume that we are in case (1), (2) or (3). Let �′ = ((3 + 1)@ , A + 1) and �′′ = (3@ , A).
We begin by computing all the Borel-fixed ideals in ' := k[G0, . . . , G=−1] with Hilbert
polynomial Δ1%� = %�′′.

If A ≥ 2 or (A, @) = (1, 1) the Hilbert scheme Hilb%�′′ (Proj(')) has a unique Borel-fixed
point [89, Theorem 1.1] and it is given by

!(�′′) = (G0, . . . , G=−3−2) + G@=−3−1(G=−3−1, G=−3−2, . . . , G=−A−1).
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The lift of !(�′′) to ( is just the lexicographic ideal, !(�′), with Hilbert polynomial %�′ =
%�−1. Thus, to obtain all the Borel-fixed idealswe only need to performa single expansion.
Once with the monomial G=−3−2 and once with the monomial G@

=−3−1G=−A−1, giving us the
two Borel-fixed ideals.

Similarly, if (A, @) = (0, 1) the Hilbert scheme Hilb%�′′ (Proj(')) has a unique Borel-
fixed point [89, Theorem 1.1] and it is given by (G0, . . . , G=−3−1). The lift to ( has Hilbert
polynomial

(C+3
3

)
= %� − 2. Thus, we begin by performing an expansion with G=−3−1 to

obtain (G0, . . . , G=−3−2)+ G=−3−1(G=−3−1, . . . , G=−1). This is the lexicographic ideal !(�′) and
we conclude as in the previous paragraph.

Assume A = 1 and @ ≥ 3. Then Proposition 5.2.10 (3) implies that the Hilbert scheme
Hilb%�′′ (Proj('))has twoBorel-fixed ideals, �′′ := (G0, . . . , G=−3−3)+G=−3−2(G=−3−2, . . . , G=−2)+
(G@
=−3−1) and !(�

′′). We first show that the Hilbert polynomial of �′′( is larger than %�. We
can do this by comparing the number of generators of (�′′()9 to those of �(�)9 for 9 � 0. Let
ℭ9 denote the intersection of the monomials of (�′′()9 with the monomials of �(�)9 . Then
it is evident that �(�)9 is generated by

ℭ9 ∪ {G=−3−2G=−1G
0
=−1G

1
=}0+1=9−2

while (�′′()9 is generated by

ℭ9 ∪ {G@=−3−1G
0
=−1G

1
=}0+1=9−@

for all 9 � 0. This implies %(/�(�)(C) + 9 − 1 = %(/�′′((C) + 9 − @ + 1. It follows that
%(/�′′((C) = %(/�(�)(C) + (@ − 2) = %�(C) + (@ − 2) > %�(C), as required. Thus, we only need
to perform one successive expansion of the lexicographic ideal, !(�′′)( = !(�′). This will
give us the two desired Borel-fixed ideals. �

Note that Proposition 5.2.10 corresponds to case (1) - case (5) in Theorem 5.0.1 while
Proposition 5.2.11 corresponds to the other cases.

5.3 Deformation Theory
In this section we compute the tangent space to the non lexicographic Borel-fixed ideal,
[�(�)], and provide a partial basis for the second cotangent cohomology group of (/�(�).
These are essential for the computation of the universal deformation space of �(�), which
we carry out in Section 5.4. The general procedure to compute the universal deformation
space can be found in [92, §3] and [79, §5].

From Proposition 5.2.10 and Proposition 5.2.11 we see that �(�) lies inside a unique
P3+2. As a consequence, any embedded deformation of the �(�) in P= can be realized as
a deformation of the �(�) in P3+2 along with a deformation of P3+2 in P= . In other words,
étale locally around [�(�)]we have an isomorphism

Hilb%�(P=) ' Hilb%�(P3+2) ×A(3+3)(=−3−2). (5.4)
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As a consequence, it suffices to prove Theorem 5.0.1 assuming = = 3 − 2.

Notation 5.3.1. For the rest of this section we assume = = 3 − 2. We also assume � is
of the form ((3 + 1)@ , 1) satisfying the conditions of Proposition 5.2.10, or of the form
((3 + 1)@ , A + 1, 1) satisfying the conditions of Proposition 5.2.11. In the first case the
corresponding non lexicographic ideal is

�(�) = G0(G0, . . . , G=−1) + (G@1)

and in the second case it is

�(�) = G0(G0, . . . , G=−1) + G@1(G1, . . . , G=−A−1).

We start by verifying that the comparison theorem holds in all cases of interest.

Lemma 5.3.2. If � ≠ (14) then ((/�(�))4 ' �0(P= ,OProj((/�(�))(4)) for all 4 ≥ 1.

Proof. For the purpose of this proof it will be convenient to unify notation and express

�(�) = G0(G0, . . . , G=−1) + G@1(G1, . . . , G?)

with 0 ≤ ? ≤ =−1. Let- = Proj((/�(�)) and assume ? ≠ =−1. Let � = (G0)+G@1(G1, . . . , G?)
and consider the exact sequence 0 −→ �/�(�) −→ (/�(�) −→ (/� −→ 0. The associated
long exact sequence in local cohomology of graded (-modules is

0 −→ �0
m(�/�(�)) −→ �0

m((/�(�)) −→ �0
m((/�) −→ �1

m(�/�(�)) −→ �1
m((/�(�)) −→ �1

m((/�).

Since G=−1 and G= are nonzero divisors on (/� we have depth
m
((/�) ≥ 2. This implies

that the local cohomology groups �0
m((/�) and �1

m((/�) are zero. As graded (-modules,
we have �/�(�) ' ((/(G0, . . . , G=−1))(−1) := (̄(−1). The associated sheaf on P= is just the
structure sheaf of a point. Consider the following exact sequence

0 −→ �0
m((̄(−1)) −→ (̄(−1) −→ �0

★(Opt(−1)) −→ �1
m((̄(−1)) −→ 0.

For all 4 ≥ 1 we have �0
★(Opt(−1))4 = �0(Opt(4 − 1)) = �0(Opt) = k ' (̄(−1)4 . Thus, we

have �0
m((̄(−1))4 = �1

m((̄(−1))4 = 0 for all 4 ≥ 1.
Combining thiswith thefirst longexact sequenceweobtain�0

m((/�(�))4 = �1
m((/�(�))4 =

0 for all 4 ≥ 1. The desired result now follows from using the exact sequence

0 −→ �0
m((/�(�)) −→ (/�(�) −→ �0

★(P= ,O-) −→ �1
m((/�(�)) −→ 0.

The remaining case is when ? = = − 1 and @ = 1 (we excluded the case of = = 2, @ =
2). In this case the regularity of �(�) is 2 [78, Corollary 3.1]. Thus Corollary 4.8 and
Proposition 4.16 in [26] establish that dimk((/�(�))4 = %(/�(�)(4) = %-(4) = ℎ0(P= ,O-(4))
for all 4 ≥ 1. �
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The next four propositions provide a basis for the tangent space to each [�(�)]. Since
their proofs are very similar we will only provide all the details for the first one.

Definition 5.3.3. For ( = k[G0, . . . , G=] and for @ ≥ 1 define the following subsets

(i) T1 = {G81 · · · G8@ : 1 ≤ 81 ≤ 82 ≤ · · · ≤ 8@ ≤ =} \ {G@1 , G
@−1
1 G2, . . . , G

@−1
1 G=}.

(ii) T2 = {G@−1
1 G2, . . . , G

@−1
1 G=}.

Proposition 5.3.4. Let � = ((= − 1)@ , A + 1, 1) be an integer partition. Assume = ≥ 4 and either
A ≥ 2 and @ ≥ 1, or A = 1 and @ ≥ 3. Then

dimk )[�(�)] Hilb%�(P=) = 3= − 1 + (= − A − 2)(A + 1) +
(
= + @ − 1
= − 1

)
.

A general ! ∈ Hom(�(�), (/�(�))0 can be written as

!(G2
0) = 00G0G=

!(G0G8) = 08G0G= + 21G1G8 + 22G2G8 + · · · + 2=G=G8 , 1 ≤ 8 ≤ = − 1
!(G@+1

1 ) = 11G0G
@
= +

∑
$∈T1

2$G1$ + ℓ 1
=−AG

@

1G=−A + · · · ℓ
1
=G

@

1G= , 1 ≤ 8 ≤ = − A − 1

!(G@1G8) = 18G0G
@
= +

∑
$∈T1∪T2

2$G8$ + ℓ 8=−AG
@

1G=−A + · · · ℓ
8
=G

@

1G= , 2 ≤ 8 ≤ = − A − 1

where 00, . . . , 0=−1, 11, . . . , 1=−A−1, 21, . . . , 2= , {2$}$∈T1∪T2 , and {ℓ 89 }
1≤8≤=−A−1
=−A≤ 9≤= are independent

parameters.

Proof. ByTheorem2.0.9 andLemma5.3.2, dimk )[�(�)] Hilb%�(P=) = dimk Hom(�(�), (/�(�))0.
Let �1

#1−→ �0
#0−→ �(�) −→ 0 be the beginning of the Eliahou-Kervaire resolution from

Section 5.1. We have the following exact sequence

0 −→ Hom(�(�), (/�(�))0 −→ Hom(�0, (/�(�))0
#∨1−→ Hom(�1, (/�(�))0.

Dualizing#1 we see that ) ∈ Hom(�(�), (/�(�))0 if and only if the following relations hold
in (/�(�)

)(G0G8)G 9 = )(G0G 9)G8 , 0 ≤ 8 , 9 ≤ = − 1
)(G0G 9)G@1 = )(G@1G 9)G0, 1 ≤ 9 ≤ = − A − 1
)(G@1G8)G 9 = )(G@1G 9)G8 , 1 ≤ 8 , 9 ≤ = − A − 1.

It is straightforward to check that the family described in the statement satisfies these
relations.
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Conversely, given ) ∈ Hom(�(�), (/�(�))0 we need to show that ) lies in our family.
For any 8 ≠ = − 1, the relation )(G0G8)G=−1 = )(G0G=−1)G8 implies that G8 divides all
the monomials in the support of )(G0G8) that are not annihilated by G=−1. But the only
quadratic monomial that is non-zero in (/� and annihilated by G=−1 is G0G= . Thus, for
8 ≠ = − 1 the image )(G0G8) is supported on {G1G8 , G2G8 , . . . , G=G8 , G0G=}. Since A ≥ 2 or
@ ≥ 3, the only quadratic monomial (non-zero in (/�(�)) annihilated by G=−2 is G0G= .
Thus the relation )(G0G=−2)G=−1 = )(G0G=−1)G=−2 implies )(G0G=−1) is also supported on
{G1G=−1, G2G=−1, . . . , G=G=−1, G0G=}. Analogously, we may use the relation )(G@1G8)G 9 =
)(G@1G 9)G8 to deduce that )(G@1G8) is supported on {G@1G=−A . . . , G

@

1G= G0G
@
=} ∪ G8T1 ∪ G8T2.

Let )(G0G=−1) = 0=−1G0G= + 22G=−1G2 + · · · 2=G=−1G= for some constants 28 . Then for 9 ≠
=−1, the relation G 9)(G0G=−1) = G=−1)(G0G 9) implies )(G0G 9) = 0 9G0G=+22G 9G2+· · ·+2=G 9G=
for some constant 0 9 . Now assume

)(G@1G2) = 12G0G
@
= +

∑
$∈T1∪T2

2$G2$ + ℓ 2
=−AG

@

1G=−A + · · · + ℓ
2
=G

@

1G= .

with 2$ , ℓ2
8
, 12 some constants. For 9 ≥ 3 the relation )(G@1G2)G 9 = )(G@1G 9)G2 implies

)(G@1G 9) = 1 9G0G
@
= +

∑
$∈T1∪T2

2$G 9$ + ℓ 9=−AG
@

1G=−A + · · · + ℓ
9
=G

@

1G= .

where ; 9
8
, 1 9 are constants. Note that if 9 = 1 then the non-zero elements of G 9T2 are

{G@1G=−A , . . . , G
@

1G=}. Thus, )(G@+1
1 ) is also of the desired form and this completes the

proof. �

Proposition 5.3.5. Let � = (= − 1, 2, 1) be an integer partition with = ≥ 4. Then

dimk )[�(�)] Hilb%�(P=) = 6= − 6.

A general ! ∈ Hom(�(�), (/�(�))0 can be written as

!(G2
0) = 00G0G=

!(G0G8) = 08G0G= + 22G2G8 + 23G3G8 + · · · + 2=G=G8 , 1 ≤ 8 ≤ = − 2
!(G0G=−1) = 0=−1G0G= + 21G1G=−1 + 22G2G=−1 + · · · + 2=G=G=−1 + 
G1G=

!(G2
1) = 11G0G= + ℓ 1

=−1G1G=−1 + ℓ 1
=G1G=

!(G1G8) = 18G0G= + 32G2G8 + · · · + 3=G=G8 + ℓ 8=−1G1G=−1 + ℓ 8=G1G= , 2 ≤ 8 ≤ = − A − 1.

where 
, 00, . . . , 0=−1, 11, . . . , 1=−2, 21, . . . , 2= , 32, . . . , 3= and {ℓ 8=−1, ℓ
8
=}1≤8≤=−2 are independent

parameters.

Proposition 5.3.6. Let � = (= − 1, 1, 1) be an integer partition with = ≥ 3. Then

dimk )[�(�)] Hilb%�(P=) = 6= − 4.
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A general ! ∈ Hom(�(�), (/�(�))0 can be written as

!(G2
0) = 00

0G0G= + 01
0G1G=

!(G0G1) = 00
1G0G= + 01

1G1G=

!(G0G8) = 00
8 G0G= + 01

8 G1G= + 22G2G8 + 23G3G8 + · · · + 2=G=G8 , 2 ≤ 8 ≤ = − 1
!(G2

1) = 10
1G0G= + 11

1G1G=

!(G1G8) = 10
8 G0G= + 11

8 G1G= + 32G2G8 + · · · + 3=G=G8 , 2 ≤ 8 ≤ = − 1.

where 22, . . . , 2= , 32, . . . , 3= , {00
8
, 01
8
}0≤8≤=−1, {10

8
, 11
8
}1≤8≤=−1 are independent parameters.

Proposition 5.3.7. Let � = ((= − 1)@ , 1) be an integer partition where either = = 3 and @ ≥ 4, or
= ≥ 4 and @ ≥ 2. Then

dimk )[�(�)] Hilb%�(P=) = 2= − 1 +
(
= + @ − 1
= − 1

)
.

A general ! ∈ Hom(�(�), (/�(�))0 can be written as

!(G2
0) = 00G0G=

!(G0G8) = 08G0G= + 21G1G8 + · · · + 2=G=G8
!(G@1) = 11G0G

@−1
= +

∑
$∈T1∪T2\G@=

28 ,$$,

where 00, . . . , 0=−1, 11, 21, . . . , 2= , 28 ,$ are independent parameters.

As we will see in Section 5.4, for � = ((= − 1)@ , 1) the ideal �(�) corresponds to a
smooth point on its Hilbert scheme. To understand the geometry in a neighborhood of
the other [�(�)], wewill need to compute its deformation space. To do this, wemay exclude
the trivial deformations, those induced by coordinate changes, as they are unobstructed.
More precisely, we want to compute )1('/k, ')0 where ' = (/�(�) [92, §3, p. 24]. A
straightforward computation of the partial derivatives gives the following bases for )1 .

Corollary 5.3.8. Let � = ((= − 1)@ , A + 1, 1) be an integer partition and let ' = (/�(�). Assume
= ≥ 4 and either A ≥ 2 and @ ≥ 1, or A = 1 and @ ≥ 3. Then )1('/k, ')0 is spanned by

!(G0G8) = 08G0G= , 0 ≤ 8 ≤ = − A − 1
!(G0G8) = 0, = − A ≤ 8 ≤ = − 1

!(G@+1
1 ) = 11G0G

@
= +

∑
$∈T1

2$G1$ + ℓ 1
=−AG

@

1G=−A + · · · ℓ
1
=G

@

1G=

!(G@1G8) = 18G0G
@
= +

∑
$∈T1

2$G8$, 1 ≤ 8 ≤ = − A − 1,

where 00, . . . , 0=−1, 11, . . . , 1=−A−1, ℓ
1
=−A , . . . , ℓ

1
= and {2$}$∈T1 are independent parameters.
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Corollary 5.3.9. Let � = (= − 1, 2, 1) be an integer partition with = ≥ 4 and let ' = (/�(�).
Then )1('/k, ')0 is spanned by

!(G0G8) = 08G0G= , 0 ≤ 8 ≤ = − 2
!(G0G=−1) = 
G1G=

!(G2
1) = 11G0G= + 3=−1G1G=−1 + 3=G1G=

!(G1G8) = 18G0G= , 2 ≤ 8 ≤ = − A − 1,

where 
, 00, . . . , 0=−2, 11, . . . , 1=−2, 3=−1, 3= are independent parameters.

Corollary 5.3.10. Let � = (= − 1, 1, 1) be an integer partition with = ≥ 3 and let ' = (/�(�).
Then )1('/k, ')0 is spanned by

!(G0G8) = 00
8 G0G= + 01

8 G1G= , 0 ≤ 8 ≤ = − 1
!(G2

1) = 10
1G0G= + 11

1G1G= , 0 ≤ 8 ≤ = − 1
!(G1G8) = 10

8 G0G= , 2 ≤ 8 ≤ = − 1,

where 00
8
, 01
8
, 10
8
are independent parameters.

Lemma 5.3.11. With notation as in Section 5.1, let � denote the Eliahou-Kervaire resolution of
�(�). Let ' = (/�(�) and let f 9

;8
∈ Hom(�1, ') denote the dual of e 9;8 .

(i) If � = ((= − 1)@ , A + 1, 1) then {G0G
2
= f

9

08 , G0G
@+1
= f

9

18}8 , 9 ⊆ )2('/k, ')0 is linearly indepen-
dent.

(ii) If � = (= − 1, 2, 1) then {G0G
2
= f

9

08 G0G
2
= f

9

18 , G1G
2
= f

9

0,=−1}8 , 9 ⊆ )2('/k, ')0 is linearly inde-
pendent.

(iii) If � = (= − 1, 1, 1) then {G0G
2
= f

9

08 G0G
2
= f

9

18 , G1G
2
= f

9

08 G1G
2
= f

9

18}8 , 9 ⊆ )2('/k, ')0 is linearly
independent.

Proof. We will only prove (ii) as the other two cases are analogous (and simpler). We use
�8 to denote the matrix associated to #8 . By construction the entries in �8 are supported
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on (G0, . . . , G=−1). Dualizing the resolution � we obtain

#∨1 ( f
★
00) = −G1 f

0
01 −

∑
1< 9≤=−1

G 9 f
0
09

#∨1 ( f
★
01) = G0 f

0
01 − G1 f

0
11 −

∑
1< 9≤=−1

G 9 f
1
09

#∨1 ( f
★
08) = G0 f

0
08 + G1 f

1
08 − G1 f

0
18 +

∑
2≤ 9<8

G 9 f
9

08 −
∑

8< 9≤=−1
G 9 f

8
09

#∨1 ( f
★
0,=−1) = G0 f

0
0,=−1 + G1 f

1
0,=−1 +

∑
2≤ 9<=−1

G 9 f
9

0,=−1

#∨1 ( f
★
18) = G0 f

0
09 +

∑
1≤ 9<8

G 9 f
9

18 −
∑

8< 9≤=−2
G 9 f

8
19 .

Let us first check that G0G
2
= f

9

08 and G0G
2
= f

9

18 are well defined elements of )2('/k, ')0. It is
enough to show that G0G

2
= annihilates ker#1+Kos. Since the entries in�2 are supported on

(G0, . . . , G=−1), multiplying by G0G
2
= annihilates #2(�2) = ker#1. Since the Koszul relations

are supported on (G0, G1), G0G
2
= annihilate Kos.

Since G1G
2
= also annihilates Kos, to show that that G1G

2
= f

9

0,=−1 is a well defined element,
we only need to prove that G1G

2
= annihilates the restriction (ker#1)|((−3)e 90,=−1

. Let v ∈ ker#1

and since the differentials are linear we may assume v is linear. Then #1(v) = 0 implies

−G1ve0
01
− G2ve0

02
− · · · − G=−1ve0

0,=−1
= 0

G0ve0
01
− G1ve0

11
− G2ve1

02
− · · · − G=−1ve1

0,=−1
= 0

G0ve0
08
+ G1ve1

08
− G1ve0

18
+

∑
2≤ 9<8

G 9ve
9

08
−

∑
8< 9≤=−1

G 9ve 809
= 0, 2 ≤ 8 ≤ = − 2.

The 9-th equation above is just the 9-th row of �1 multiplied with v (we can read this off
from our description of #∨1 ). From the 9-th equation we can see that v

e
9

0,=−1
is supported

on (G0, . . . , G=−2) for all 0 ≤ 9 ≤ = − 2. As a consequence, G1G
2
= annihilates ve

9

0,=−1
and all of

(ker#1)|((−3)e 90,=−1
.

We will now show that the set S = spank{G0G
2
= f

9

08 G0G
2
= f

9

18 , G1G
2
= f

9

0,=−1}8 , 9 is linearly
independent in )2('/k, '). In particular, we need to show that no non-zero element of
S is a linear combination of the form

∑
; ,8 2;8&;8#∨1 ( f

★
;8) where &;8 ∈ '(2) are quadrics

and 2;8 ∈ k constants. However, since all the elements of S are multiples of G2
= and �1

does not contain the variable G= , it suffices to show that no non-zero element of S is a
linear combination of the form

∑
; ,8 2;8G

2
=#
∨
1 ( f

★
;8). From the description of #∨1 in the first

paragraph we see that this is indeed the case. �
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5.4 Proof of the main theorem
The goal of this section is to prove Theorem 5.0.1. By Lemma 5.2.1 and Eq. (5.4) we may
assume that B = 0 and = = 3 − 2. The proof will provide a description of the universal
deformation space of �(�) valid in all characteristics.

Proof of Theorem 5.0.1 (1) to (3). Case (1) and (2) are [30, Theorem 2.4] while case (3) is [16,
Theorem 1.1]. �

Proof of Theorem 5.0.1 (4), (5). It follows from [83, Theorem4.1] that dim(Hilb%�(P=)) agrees
with the dimension of the tangent space to [�(�)] (Proposition 5.3.7). Thus, [�(�)] is a
smooth point on the Hilbert scheme. By Theorem [83, Theorem 1.4] the lexicographic
point is also a smooth point. Since Hilb%�(P=) has only two Borel-fixed points (Proposi-
tion 5.2.10), Lemma 2.0.25 implies that theHilbert scheme is smooth. Finally, [83, Theorem
4.1] gives the description of the general member. �

Proof of Theorem 5.0.1 (6), (7). Let U = k[[D00, . . . , D0,=−A−1, D11, . . . , D1= , {D2,$}$∈T1]] and let
mU denote its maximal ideal. Consider the following perturbation of #0

Ψ0(e★08) = G0G8 + D08G0G= , 8 ≤ = − A − 1
Ψ0(e★08) = G0G8 , 8 ≥ = − A

Ψ0(e★11) = G
@+1
1 + D11G0G

@
= +

A∑
;=0

D1,=−A+;G
@

1G=−A+; +
∑
$∈T1

D2,$G1$ +
A∑
;=0

∑
$∈T1

D1,=−A+;D2,$G=−A+;$

Ψ0(e★18) = G
@

1G8 + D18G0G
@
= +

∑
$∈T1

D2,$G8$, 8 > 1.

ByCorollary 5.3.8 this lifts the first order deformation by non-trivial deformations. To per-
turb the syzygies, we need a few definitions. Let U := {$ ∈ T1 : there exists G8 |$ with = −
A ≤ 8 ≤ = − 1}, V := {$ ∈ T1 : $ is supported on G1, . . . , G=−A−1, G=} \ G@= and � := G

@
= .

Observe that T1 = U t V t {G@=}.
For each $ ∈ U choose some =− A ≤ 8 ≤ =−1 for which G8 |$ and let $̄ := $

G8
and $̂ := 8.

For each $ ∈ V define the following

• Let $0 = 1 and for 1 ≤ ℓ ≤ @ let $ℓ denote the lexicographically largest monomial of
degree ℓ dividing $.

• For 0 ≤ ℓ ≤ @ − 1 let �($ℓ ) to be the index of the variable $ℓ+1
$ℓ

.

• For 0 ≤ ℓ ≤ @ − 1 let D$ℓ := $
$ℓ
|{G 9=D09} 9 .

For example, if $ = G3
0G

3
3G4 then $4 = G

3
0G3, then �($3) = G3 and D$4 = D

2
03D04. Define

Ω :=
@∑
ℓ=1
(−1)ℓ−1Dℓ−1

01 G
@−ℓ
1 Gℓ=e

★
01+

∑
$∈U

D2$$̄G=e★0,$̂+
∑
$∈V

D2$

@∑
ℓ=1
(−1)ℓ−1D$@−ℓ+1$@−ℓ G

ℓ
=e

★
0,�($@−ℓ ).
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Here is the lift of the syzygies

Ψ1(e 908) = (G 9 + D09G=)e★08 − (G8 + D08G=)e★09 , 0 ≤ 9 < 8 ≤ = − A − 1

Ψ1(e 908) = (G 9 + D09G=)e★08 − G8e
★
09 , 9 < = − A ≤ 8 ≤ = − 1

Ψ1(e 908) = G 9e
★
08 − G8e

★
09 , = − A ≤ 9 < 8 ≤ = − 1

Ψ1(e0
11) = G0e★11 − G

@

1e
★
01 − D11G

@
=e

★
00

−
∑
$∈T1

D2$$e★01 −
A−1∑
;=0

D1,=−A+;G
@

1e
★
0,=−A+;

−
A−1∑
;=0

∑
$∈T1

D2$D1,=−A+;$e★0,=−A+; + (D01 − D1=)Ω

Ψ1(e0
18) = G0e★18 − G

@

1e
★
08 −

∑
$∈T1

D2$$e★08 − D18G
@
=e

★
00 + D08Ω, 2 ≤ 8 ≤ = − A − 1

Ψ1(e1
18) = G1e★18 − G8e

★
11 + D11G

@
=e

★
08 − D18G

@
=e

★
01 +

A∑
;=0

D1,=−A+;G=−A+;e★18

−
A−1∑
;=0

D18D1,=−A+;G=e★0,=−A+; , 2 ≤ 8 ≤ = − A − 1

Ψ1(e 918) = G 9e
★
18 − G8e

★
19 + D19G

@
=e

★
08 − D18G

@
=e

★
09 , 2 ≤ 9 < 8 ≤ = − A − 1.

It will be notationally convenient to separate the cases @ > 1 and @ = 1. If @ > 1, composing
Ψ0 andΨ1 we obtain

Ψ0Ψ1(e 908) = 0, 0 ≤ 9 < 8 ≤ = − 1 (5.5)

Ψ0(Ψ1(e 918)) = (D08D19 − D09D18)G0G
@+1
= , 2 ≤ 9 < 8 ≤ = − A − 1

Ψ0(Ψ1(e0
18)) = (D08(−D2� + 
) − D00D18)G0G

@+1
= , 2 ≤ 8 ≤ = − A − 1 (5.6)

Ψ0(Ψ1(e0
11)) = ((−D2� + 
)(D01 − D1=) − D00D11)G0G

@+1
=

Ψ0(Ψ1(e1
18)) = (D11D08 − D18(D01 − D1=))G0G

@+1
= , 2 ≤ 8 ≤ = − A − 1

with 
 = (−1)@−1D
@

01 + (−1)@−1 ∑
$∈V D2$D$0 .

To compute the obstruction space we just repeat the above computation modm;+1
U .

Indeed, for ; ≥ 1 letΨ;
0 = Ψ0 mod m;+1

U andΨ;
1 = Ψ1 mod m;+1

U . Then the image ofΨ;
0Ψ

;
1
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in )2('/k, ')0 ⊗ U/m;+2
U is

Ψ;
0Ψ

;
1(e

9

08) ≡ 0, 0 ≤ 9 < 8 ≤ = − 1

Ψ;
0(Ψ

;
1(e

9

18)) ≡ (D08D19 − D09D18)G0G
@+1
= , 2 ≤ 9 < 8 ≤ = − A − 1

Ψ;
0(Ψ

;
1(e

0
18)) ≡ (D08(−D2� + 
) − D00D18)G0G

@+1
= , 2 ≤ 8 ≤ = − A − 1

Ψ;
0(Ψ

;
1(e

0
11)) ≡ ((−D2� + 
)(D01 − D1=) − D00D11)G0G

@+1
=

Ψ;
0(Ψ

;
1(e

1
18)) ≡ (D11D08 − D18(D01 − D1=))G0G

@+1
= , 2 ≤ 8 ≤ = − A − 1

UsingLemma5.3.11 (1), the above equation allowsus todirectly readoff the obstruction
to lift our family from the (;−1)-th order to ;-th order (beginningwith ; = 1). In particular,
the ideal of obstructions to lift to @-th order is the 2 × 2 minors of(

D00 D01 − D1= D02 D03 · · · D0,=−A−1
−D2� + 
 D11 D12 D13 · · · D1,=−A−1

)
.

If we denote this ideal by �, we have Ψ0Ψ1 = 0 in U/� (Eq. 5.6). Thus, Ψ0 gives a versal
deformation of �(�). Since we are working analytically, we may apply the isomorphism
that maps D2� ↦→ −D2� + 
 and fixes the other variables. This transformation makes � the
2 × 2 minors of a generic matrix. Finally, adding back the trivial deformations we obtain
the universal deformation space of �(�).

If @ = 1 we obtain

Ψ0Ψ1(e 908) = 0, 0 ≤ 9 < 8 ≤ = − 1

Ψ0(Ψ1(e 918)) = (D08D19 − D09D18)G0G
2
= , 2 ≤ 9 < 8 ≤ = − A − 1

Ψ0(Ψ1(e0
18)) = (D08D01 − D00D18)G0G

2
= , 2 ≤ 8 ≤ = − A − 1

Ψ0(Ψ1(e0
11)) = (D01(D01 − D1=) − D00D11)G0G

2
=

Ψ0(Ψ1(e1
18)) = (D11D08 − D18(D01 − D1=))G0G

2
= , 2 ≤ 8 ≤ = − A − 1.

Arguing as in the @ > 1 case we see that the versal deformation space is cut out by 2 × 2
minors of (

D00 D01 − D1= D02 D03 · · · D0,=−A−1
D01 D11 D12 D13 · · · D1,=−A−1

)
.

We have obtained the desired étale-local description as the Segre embedding P1 ×
P=−A−1 ↩→ P2(=−A)−1 is cut out by the ideal of 2× 2 minors of a generic 2× (= − A)matrix. It
is well known that the Segre embedding is normal and Cohen-Macaulay [51]. It follows
that the Hilbert scheme is normal and Cohen-Macaulay in a neighbourhood of [�(�)].
Combining this with [83, Theorem 1.4] and Lemma 2.0.25 we deduce that the Hilbert
scheme is normal and Cohen-Macalay. Since the Hilbert scheme is connected [46, Corol-
lary 5.9], it must be irreducible. Finally, the description of the general member is given
in [83, Theorem 4.1] and the other statements follow from Lemma 2.0.25. �
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Proof of Theorem 5.0.1 (8). LetU = k[[D00, . . . , D0,=−1, D11, . . . , D1,=−1, E00, . . . , E0,=−1, E11]]. For
conveniencewewill sometimes use D10 to denote D01. Consider the following perturbation
of #0

Ψ0(e★08) = G0G8 + D08G0G= + E08G1G= , 0 ≤ 8 ≤ = − 1
Ψ0(e★11) = G2

1 + D11G0G= + E11G1G=

Ψ0(e★18) = G1G8 + D18G0G= , 2 ≤ 8 ≤ = − 1

and a perturbation of #1

Ψ1(e0
08) = (G0 + D00G=)e★08 − (G8 + D08G=)e★00 + E00G=e★18 − E08G=e★01, 1 ≤ 8 ≤ = − 1

Ψ1(e 908) = (G 9 + D09G=)e★08 − (G8 + D08G=)e★09 + E09G=e★18 − E08G=e★19 , 1 ≤ 9 < 8 ≤ = − 1

Ψ1(e0
11) = (G0 + E01G=)e★11 − G1e★01 − D11G=e★00 + (D01 − E11)G=e★01

Ψ1(e0
18) = G0e★18 − G1e★08 + E08G=e★11 + D08G=e★01 − D18G=e★00, 2 ≤ 8 ≤ = − 1

Ψ1(e1
18) = (G1 + E11G=)e★18 − G8e

★
11 + D11G=e★08 − D18G=e★01, 2 ≤ 8 ≤ = − 1

Ψ1(e 918) = G 9e
★
18 − G8e

★
19 + D19G=e★08 − D18G=e★09 , 2 ≤ 9 < 8 ≤ = − 1.

Composing the two we obtain

Ψ0Ψ1(e0
01) = (D11E00 − D01E01)G0G

2
= + (E01(D00 − E01) − E00(D01 − E11))G1G

2
=

Ψ0Ψ1(e0
08) = (D18E00 − D01E08)G0G

2
= + (E08(D00 − E01) − D08E00)G1G

2
= , 2 ≤ 8 ≤ = − 1

Ψ0Ψ1(e1
08) = (D18E01 − D11E08)G0G

2
= + (E08(D01 − E11) − D08E01)G1G

2
= , 2 ≤ 8 < =

Ψ0Ψ1(e 908) = (D18E09 − D19E08)G0G
2
= + (D09E08 − D08E09)G1G

2
= , 2 ≤ 9 < 8 < =

Ψ0(Ψ1(e0
11)) = (D01(D01 − E11) − D11(D00 − E01))G0G

2
= + (D01E01 − D11E00)G1G

2
=

Ψ0(Ψ1(e0
18)) = (D11E08 + D01D08 − D18D00)G0G

2
= + (D08E01 + E11E08 − D18E00)G1G

2
= , 2 ≤ 8 ≤ = − 1

Ψ0(Ψ1(e1
18)) = (D08D11 − D18(D01 − E11))G0G

2
= + (D11E08 − D18E01)G1G

2
= , 2 ≤ 8 ≤ = − 1

Ψ0(Ψ1(e 918)) = (D8 9D08 − D18D09)G0G
2
= + (D8 9E08 − D18E09)G1G

2
= , 2 ≤ 9 < 8 ≤ = − 1.

Since the lifts Ψ0 and Ψ1 are first order, we see that the ideal of obstructions to lift to
second order is the 2 × 2 minors of©­«

D01 D11 D12 · · · D1,=−1
E00 E01 E02 · · · E1,=−1

D00 − E01 D01 − E11 D02 · · · D0,=−1

ª®¬ .
Indeed, most of the minors show up as coefficients of G0G

2
= and G1G

2
= . The other minors

come from the underlined equations

D11E08 + D01D08 − D18D00 + (D18E00 − D01E08) = E01D08 − E08(D01 − E11)
D08E01 + E11E08 − D18E00 − (D11E08 − D18E01) = D01D08 − D18(D00 − E01).
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If we denote the ideal of 2 × 2 minors by � we have Ψ0Ψ1 = 0 in U/�. Thus, Ψ0 gives a
versal deformation of �(�). Adding back the trivial deformations gives us the universal
deformation space of �(�). This gives us the desired étale-local description as the Segre
embedding P2 × P=−1 ↩→ P3=−1 is cut out by the ideal of 2 × 2 minors of a generic 3 × =
matrix. Similar to the previous proof, the other statements follow from [51], [46, Corollary
5.9], Lemma 2.0.25 and [83, Theorem 4.1]. �

Proof of Theorem 5.0.1 (9). Let U = k[[D00, . . . , D0,=−1, D11, . . . , D1=]] and let mU denote its
maximal ideal. We will sometimes use e★10 to denote e★01. This does not cause any
confusion as e★10 is not part of a basis of �0. Consider the following perturbation of #0

Ψ0(e★00) = G
2
0 + D00G0G=

Ψ0(e★01) = G0G1 + D01G0G= − D0,=−1D1,=−1G1G=

Ψ0(e★08) = G0G8 + D08G0G= , 2 ≤ 8 ≤ = − 2
Ψ0(e★0,=−1) = G0G=−1 + D0,=−1G1G=

Ψ0(e★11) = G
2
1 + D11G0G= + D1,=−1G1G=−1 + D1=G1G=

Ψ0(e★18) = G1G8 + D18G0G= , 2 ≤ 8 ≤ = − 2.

and a perturbation of #1

Ψ1(e0
01) = (G0 + D00G=)e★01 − (G1 + D01G=)e★00 + D0,=−1D1,=−1G=e★01

Ψ1(e0
08) = (G0 + D00G=)e★08 − (G8 + D08G=)e★00, 2 ≤ 8 ≤ = − 2

Ψ1(e1
08) = (G1 + D01G=)e★08 − (G8 + D08G=)e★01 − D0,=−1D1,=−1G=e★18 , 2 ≤ 8 ≤ = − 1

Ψ1(e 908) = (G 9 + D09G=)e★08 − (G8 + D08G=)e★09 , 2 ≤ 9 < 8 ≤ = − 2

Ψ1(e 90,=−1) = (G 9 + D09G=)e★0,=−1 − G=−1e★09 − D0,=−1G=e★19 , 0 ≤ 9 ≤ = − 2

Ψ1(e0
11) = G0e★11 − G1e★01 − D11G=e★00 − D1,=−1G1e★0,=−1 + (D01 − D1=)G=e★01

Ψ1(e0
18) = G0e★18 − G1e★08 + D08G=e★01 − D18G=e★00, 2 ≤ 8 ≤ = − 2

Ψ1(e1
18) = G1e★18 − G8e

★
11 + D11G=e★08 − D18G=e★01

+ (D1,=−1G=−1 + D1=G=)e★18 − D18D1,=−1G=e★0,=−1, 2 ≤ 8 ≤ = − 2

Ψ1(e 918) = G 9e
★
18 − G8e

★
19 + D19G=e★08 − D18G=e★09 , 2 ≤ 9 < 8 ≤ = − 2.

For ; ≥ 1 let, Ψ;
0 ≡ Ψ

;
0 mod m;+1

U and Ψ;
1 ≡ Ψ

;
1 mod m;+1

U . As done previously, the
obstruction to lifting to second order is the image ofΨ1

0Ψ
1
1 in )

2('/k, ')0 ⊗ m2
U/m

3
U. This
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is

Ψ1
0Ψ

1
1(e

9

08) ≡ 0, 0 ≤ 9 < 8 ≤ = − 2
Ψ1

0Ψ
1
1(e0

0,=−1) ≡ −D01D0,=−1G0G
2
= + D00D0,=−1G1G

2
=

Ψ1
0Ψ

1
1(e1

0,=−1) ≡ D0,=−1(D01 − D1=)G1G
2
= − D0,=−1D11G0G

2
=

− D0,=−1D1,=−1G1G=−1G=

Ψ1
0Ψ

1
1(e

9

0,=−1) ≡ D09D0,=−1G1G
2
= − D0,=−1D19G0G

2
= , 2 ≤ 9 ≤ = − 2

Ψ1
0Ψ

1
1(e0

11) ≡ (D01(D01 − D1=) − D00D11)G0G
2
=

− D0,=−1D1,=−1G
2
1G=

Ψ1
0Ψ

1
1(e0

18) ≡ (D01D08 − D00D18)G0G
2
= , 2 ≤ 8 ≤ = − 2

Ψ1
0Ψ

1
1(e1

18) ≡ (D08D11 − D18(D01 − D1=))G0G
2
=

+ D1,=−1D18G0G=−1G= , 2 ≤ 8 ≤ = − 2

Ψ1
0Ψ

1
1(e

9

18) ≡ (D08D19 − D09D18)G0G
2
= , 2 ≤ 9 < 8 ≤ = − 2.

In this image, the three underlined terms are 0. Indeed, the second and third underlined
term (from the top) are 0 in ' and the first term is equal to #∨1 (D0,=−1D1,=−1G1G= f

★
01). After

the underlined terms vanish, Ψ1
0Ψ

1
1 is written in terms of our desired basis elements

(Lemma 5.3.11 (2)). Thus, the ideal generated by the coefficients, which we denote by
�1, is the ideal of of obstructions to lift to second order. Let U1 = U/�1 and mU1 its
maximal ideal. To compute the the obstructions to third order we compute Ψ2

0Ψ
2
1 in

)2('/k, ')0 ⊗ m3
U1/m4

U1 . This is

Ψ2
0Ψ

2
1(e

9

08) ≡ 0, (8 , 9) ≠ (0, = − 1)
Ψ2

0Ψ
2
1(e0

0,=−1) ≡ D
2
0,=−1D1,=−1G1G

2
=

Ψ2
0Ψ

2
1(e

9

18) ≡ 0, for all 9 , 8

Thus, the ideal of obstructions to lift to third order is

�2 :=
(
(D0,=−1) + �2

(
D00 D01 − D1= D02 D03 · · · D0,=−2
D01 D11 D12 D13 · · · D1,=−2

))
∩

(D00 + D0,=−1D1,=−1, D01, D02, . . . , D0,=−2, D11, D12, . . . , D1,=−2, D1=).

Here �2(−) denotes the ideal of the 2×2 minors of −. Finally, it is easy to see thatΨ0Ψ1 = 0
in U/�2 (for instance, the underlined terms in Ψ1

0Ψ
1
1 are cancelled by the second order

terms). ThusΨ0 gives a versal deformation of �(�). Adding back the trivial deformations
gives us the universal deformation space of �(�).
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From Proposition 5.3.5 and Corollary 5.3.9 we see that there are 4= − 6 trivial deforma-
tions; denote themby C1, . . . , C4=−6. Thus, the smooth component of Spec(U[C1, . . . , C4=−6]/�2)
has dimension 4= − 4. Since %� =

(C+=−2
=−2

)
+ C + 1, there is an irreducible component, Y1,

whose general member parameterizes a line and a disjoint (= − 2)-plane. This is birational
to G(1, =) ×G(1, = − 2) and, as a consequence, has dimension 4= − 4; thus Y1 is the smooth
component. It is shown in [81] that Y1 is isomorphic to a blow up of G(1, =) ×G(= − 2, =)
along the locus {(!,Λ) : ! ⊆ Λ}. Similar to the previous proofs, the other statements
follow from [51], [46, Corollary 5.9], Lemma 2.0.25 and [83, Theorem 4.1]. �
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Chapter 6

On the tangent space to Hilb3(P3)

In this chapter we study the tangent space to the Hilbert scheme Hilb3(P3), motivated by
Haiman’s work on Hilb3(P2) and by a long-standing conjecture of Briançon and Iarrobino
on the most singular point in Hilb3(P=).

For an ideal �, denote by )(�) the tangent space to the corresponding point [�] in the
Hilbert scheme. The question of finding the largest possible dimension of a tangent space
to Hilb3 P= has been raised in many places, including e.g. [1, 10, 69, 93]. To answer this
question we restrict to an affine open A= = Spec k[G1, . . . , G=] ⊆ P= . It is natural to expect
that a fat point subscheme+

(
(G1, . . . , G=)A

)
⊆ A= yields the most singular point in its own

Hilbert scheme:

Conjecture 6.0.1 ( [10]). Let ( = k[G1, . . . , G=],m = (G1, . . . , G=), and 3 =
(A+=−1

=

)
with A ∈ N.

For all [�] ∈ Hilb3(A=) we have dimk )(�) ≤ dimk )(mA).

No progress on the conjecture has been made so far. By degeneration arguments,
one reduces Conjecture 6.0.1 to monomial ideals �, and in fact to Borel-fixed ideals in
characteristic 0. Inspired byHaiman’s theory of Hilb3(A2) [40], we decompose the tangent
space )(�) to a monomial ideal � ⊆ k[G1, . . . , G=] into subspaces defined in terms of Z=-
graded directions, as follows.

Definition 6.0.2. A signature is a non-constant =-tuple on the two-element set {p, n},
where

p = “positive or 0”, n = “negative”.
Let S denote the set of signatures, and define for each s ∈ S

Z=
s =

{
(
1, . . . , 
=) ∈ Z= : 
8 ≥ 0 if s8 = p, 
8 < 0 if s8 = n

}
)s(�) =

⊕

∈Z=s

��)(�)��


⊆ )(�)

where |)(�)|
 denotes the graded component of )(�) of degree 
 ∈ Z= .
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We then have )pp···p(�) = )nn···n(�) = 0, and therefore )(�) =
⊕

s∈S )s(�), cf. Propo-
sition 6.1.8. Our first theorem establishes a symmetry between components of opposite
signature.

Theorem 6.2.4. For any monomial point [�] ∈ Hilb3(A3)we have

dimk )ppn(�) = dimk )nnp(�) + 3,
dimk )pnp(�) = dimk )npn(�) + 3,
dimk )npp(�) = dimk )pnn(�) + 3.

This result may be regarded as a generalization of Haiman’s combinatorial proof of the
smoothness of Hilb3(P2) [40]. In our notation, his proof shows that

dimk )pn(�) = dimk )np(�) = 3 (6.1)

for any monomial point [�] ∈ Hilb3(A2). Theorem 6.2.4 extends Eq. (6.1) to A3 in the sense
that it implies

dimk )pnp(�) + dimk )pnn(�) = dimk )npp(�) + dimk )npn(�)

and two other similar equations. Our result may be seen as further evidence for the
exceptionality of the Hilbert scheme of points in P3. For instance, it implies that dimk )(�)
has the same parity as the length 3 = dimk((/�), a fact established in [66] where it plays
a crucial role in the calculation of Donaldson-Thomas theory for toric threefolds. We are
not aware of any such symmetry phenomenon in higher dimension.

As a special case, Theorem 6.2.4 provides a simple criterion for smoothness of mono-
mial points on the Hilbert scheme, in terms of the subspaces )s(�).

Theorem 6.2.6. A monomial point [�] ∈ Hilb3(A3) is smooth if and only if

)s(�) = 0 for all s ∈ {pnn, npn, nnp}.

In the opposite direction, we use the subspaces )s(�) to provide evidence in favor of
Conjecture 6.0.1. Clearly, Conjecture 6.0.1 is implied by the statement that dimk )s(�) ≤
dimk )s(mA) for all s ∈ S and all Borel-fixed points [�]. For Hilb3(A3), we are able to
establish this inequality for four out of the six signatures s. As a bonus, we characterize
when equality holds.

Theorem 6.3.6. Let 3 =
(A+2

3
)
and let [�] ∈ Hilb3(A3) be Borel-fixed, with char(k) = 0. We

have

dimk )ppn(�) ≤ dimk )ppn(mA), dimk )nnp(�) ≤ dimk )nnp(mA),
dimk )pnp(�) ≤ dimk )pnp(mA), dimk )npn(�) ≤ dimk )npn(mA).

Moreover, in each case equality occurs if and only if � = mA .
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We conjecture that dimk )npp(�) ≤ dimk )npp(mA) and dimk )pnn(�) ≤ dimk )pnn(mA) as
well, but we are unable to prove this. However, we are able to prove Conjecture 6.0.1 up
to a factor of 4

3 . This also allows us to improve the asymptotic bound on the dimension of
Hilb3(P3), a problem proposed by Sturmfels in [93, Problem 2.4.c].

Theorem 6.4.2. For all 3 ∈ N and [�] ∈ Hilb3(P3) we have

dimk )(�) ≤
4
3 dimk )(mA) ≈ 3.63 · 3 4

3 + $(3)

whenever 3 ≤
(A+2

3
)
. In particular, dim Hilb3(P3) ≤ 3.64 · 3 4

3 for 3 � 0.

Note that Theorem 6.4.2 also holds for Hilbert schemes of points of arbitrary smooth
threefolds, since these are étale-locally isomorphic toHilb3(P3), see for instance [8, Lemma
4.4].

6.1 The tangent space
Notation 6.1.1. For this chapter k will denote an infinite field and ( = k[G1, . . . , G=] the
polynomial ring in = variables, m = (G1, . . . , G=) the ideal of the origin in A= = Spec(()
(note that this is different from the other chapters). When = ≤ 3, we typically denote the
variables by G, H, I instead of G1, G2, G3. If + is a (multi)graded vector space, we use the
notation |+ |
 to denote the graded component of + of degree 
.

Themainobject of interest is theHilbert schemeHilb3(A=)parametrizing0-dimensional
subschemes of A= of length 3, equivalently ideals � ⊆ ( with dimk((/�) = 3. The Zariski
tangent space to a point [�] ∈ Hilb3(A=)may be identified with the k-vector space (Exam-
ple 2.0.4)

)(�) = Hom((� , (/�).
The well-known generic initial ideal deformation allows to reduce questions such as

Conjecture 6.0.1 to the case of Borel-fixed points, see [24, 15.9] or [69, 2.2–2.3] for details.

Lemma 6.1.2. For every [�] ∈ Hilb3 A= we have dimk )(�) ≤ dimk )(gin �). Moreover,
gin � ⊆ ( is Borel-fixed.

For a monomial point [�] ∈ Hilb3(A=) the tangent space )(�) inherits a natural Z=-
grading. Our next goal is to describe a combinatorial interpretation of )(�) in terms of
regions in Z= .

Definition 6.1.3. For a monomial ideal �, we define �̃ ⊆ N= to be the subset consisting of
the exponent vectors of all monomials in �.
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A path between 
, � ∈ Z= is a sequence 
 = �(0), �(1), . . . , �(<−1), �(<) = � of points of
Z= such that ‖�(8+1) − �(8)‖ = 1 for all 8, where ‖�‖ = ∑=

9=1 |� 9 | denotes the 1−norm in Z= .
A subset * ⊆ Z= is said to be connected if it is non-empty and for any two points


, � ∈ * there is a path between them contained in* . Given a subset + ⊆ Z= , a maximal
connected subset* ⊆ + is called a connected component.

A subset* ⊆ Z= is bounded if Card(*) < ∞.

Remark 6.1.4. Let [�] ∈ Hilb3(A=) and 
 ∈ Z= . A connected component * of (�̃ + 
) \ �̃
is bounded if and only if * ⊆ N= . The condition is sufficient as Card(N= \ �̃) < ∞, and
necessary since if � ∈ * with �8 < 0, then � + <e9 ∈ * for all < ∈ N and 9 ≠ 8, where
e9 ∈ N= is the 9-th basis vector.

Proposition 6.1.5. Let 
 ∈ Z= and [�] ∈ Hilb3(A=). The set of bounded connected components
of (�̃ + 
) \ �̃ corresponds to a basis of |)(�)|
.

Proof. For each bounded connected component * ⊆ (�̃ + 
) \ �̃ we define a multigraded
k−linear map !* : � → (/� by setting !*(x�) = x
+� ∈ (/� if 
 + � ∈ * , 0 otherwise. We
claim that !* is (-linear; it suffices to check the equation )(x�x�) = x�)(x�) in (/� for all
� ∈ N= , � ∈ �̃. This is clearly true if 
+�+� ∈ �̃. If 
+�+� ∉ �̃, observe that 
+�+� ∈ *
if and only if 
+ � ∈ * , since the two points are connected in (�̃ + 
) \ �̃, thus the equation
holds and !* ∈ |)(�)|
. We have Image(!*) = spank(x
 : 
 ∈ *) ⊆ (/�, hence all maps
!* are linearly independent.

Finally, let # ∈ |)(�)|
 be any map. If �, � ∈ �̃ are such that 
 + �, 
 + � lie in the same
connected component* ⊆ (�̃+
)\ �̃, then there exists 2#,* ∈ k such that#(x�) = 2#,*x
+�
and #(x�) = 2#,*x
+�: this claim follows easily by induction on ‖� − �‖. In particular,
2#,* = 0 if* is unbounded. We deduce that # =

∑
* 2#,*!* , concluding the proof. �

Remark 6.1.6. A simple but useful consequence of Proposition 6.1.5 is the fact that, for
� monomial, dimk )(�) is independent of k. Thus, in Conjecture 6.0.1 we may assume
chark = 0.

Remark 6.1.7. For = = 2, the tangent space )(�) is analyzed combinatorially in [40] in
terms of “arrows”, see also [69, 18.2]. That description is essentially equivalent to the
one presented here, in Proposition 6.1.5. However, we find the framework of connected
components to be more transparent and efficient.

Recall the distinguished subspaces of )(�) introduced in Definition 6.0.2. These are the
only relevant subspaces of the tangent space:

Proposition 6.1.8. If [�] ∈ Hilb3(A=) is a monomial point and = ≥ 2, then )(�) =
⊕

s∈S )s(�).

Proof. Let 
 ∈ Z= . If 
8 ≥ 0 for all 8, then �̃ + 
 ⊆ �̃ and (�̃ + 
) \ �̃ = ∅. Suppose 
8 < 0
for all 8, we claim that (�̃ + 
) \ �̃ is connected and unbounded. To see this, notice that
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the “boundary” � = �̃ \
(
�̃ + (1, 1, . . . , 1)

)
is connected and unbounded. Furthermore,

(� + 
) ∩ �̃ = ∅, so (� + 
) ⊆ (�̃ + 
) \ �̃ is connected and unbounded. However, any point
of (�̃ + 
) \ �̃ is connected to (� + 
), since any point of �̃ is connected to � by a straight
path, and this verifies the claim. In either case |)(�)|
 = 0 by Proposition 6.1.5. �

For a monomial point [�] ∈ Hilb3(A2) Proposition 6.1.8 gives the decomposition

)(�) = )pn(�) ⊕ )np(�),

whereas for a monomial point [�] ∈ Hilb3(A3)we have

)(�) = )ppn(�) ⊕ )pnp(�) ⊕ )npp(�) ⊕ )pnn(�) ⊕ )npn(�) ⊕ )nnp(�).

Next, we compute the components of the tangent space for the fat point [mA]. For any
vector 
 = (
1, . . . , 
=) ∈ Z= we have 
 = 
+ − 
− for two unique vectors 
+, 
− ∈ N=

such that 
+ · 
− = 0. Moreover we denote $(
) = 
1 + · · · + 
= ∈ Z.

Lemma 6.1.9. Let 
 ∈ Z= and A ∈ N. We have |)(mA)|
 = 0 if $(
) ≠ −1. If $(
) = −1 then
dimk |)(mA)|
 =

(=+A−$(
−)−1
=−1

)
if $(
−) ≤ A, |)(mA)|
 = 0 otherwise.

Proof. For simplicity we denote " = m̃A ⊆ N= . If $(
) ≥ 0 then
(
(" + 
) \ "

)
∩N= = ∅,

while if $(
) ≤ −2 then the whole region (" + 
) \ " is connected and unbounded, as
it follows by inspecting the points � + 
 ∈ (" + 
) with $(�) = A, A + 1. In either case
|)(mA)|
 = 0 by Proposition 6.1.5.

If $(
) = −1 then any bounded component of (" + 
) \ " consists of a single point
� + 
 ∈ N= with $(�) = A. These points are in bĳection with points � = � − 
− ∈ N= such
that $(�) = A − $(
−), i.e. with the monomials of degree A − $(
−), yielding the desired
formula. �

Finally, we distinguish some special tangent vectors in )(�). For an (-module ", we
denote its socle by soc(") = 0 :" m ⊆ ". Notice that soc()(�)) = Hom((� , soc((/�)) ⊆
)(�).

Remark 6.1.10. If [�] ∈ Hilb3(A=) ismonomial, then soc((/�) and soc()(�)) areZ=−graded.
Furthermore, we see from the proof of Proposition 6.1.5 that a k-basis for

�� soc()(�))
��



is given by the maps !* where * ⊆ (�̃ + 
) \ �̃ is a connected component such that
Card(*) = 1. We refer to these !* ’s as the socle maps.

It is easy to compute dimk soc()(�)), using the isomorphism

soc
(
)(�)

)
= Hom(

(
� , soc

(
(

�

))
� Homk

(
�

m�
, soc

(
(

�

))
. (6.2)

When � = mA we have soc()(�)) = )(�) by Lemma 6.1.9, but in general the inclusion is
strict.
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6.2 Symmetries in the tangent space and smooth points
In the rest of the paper we work with the Hilbert scheme of points in A3, so we fix ( =
k[G, H, I] and m = (G, H, I), unless stated otherwise. We explore symmetries between the
components )s(�) of the tangent space introduced in Definition 6.0.2. The main results of
this section are Proposition 6.2.3 and Theorem 6.2.4, which parallel phenomena observed
for Hilb3(A2) in [40]. As a byproduct, we also prove Theorem 6.2.6, which characterizes
smooth monomial points on the Hilbert scheme.

A monomial ideal � ⊆ ( admits direct sum decompositions, as module over the sub-
ringsof(, into smallermonomial ideals. For instance, thek[I]− andk[H, I]−decompositions
of � are

� =
⊕
8 , 9

G 8H 9
(
I18 , 9

)
=

⊕
8

G 8�8

where (I18 , 9 ) ⊆ k[I] and �8 ⊆ k[H, I] are monomial ideals. Clearly, such decompositions
exist and are unique. Since � is an ideal, we have 18 , 9 ≥ 18+1, 9 , 18 , 9+1 and �8 ⊆ �8+1. If
� is m-primary, then 18 , 9 = 0 for all but finitely many pairs 8 , 9, and �8 = k[H, I] for
all but finitely many 8. Analogous remarks hold for the k[G]−, k[H]−, k[G, H]−, and
k[G, I]−decompositions of �.

Remark 6.2.1. Let [�] ∈ Hilb3(A2) be a monomial point. In his way to proving that
Hilb3(A2) is smooth, Haiman [40] shows that

dimk )pn(�) = dimk )np(�) = 3. (6.3)

In fact, a more precise statement is proved. Consider the k[H]-decomposition � =⊕
G 8(H18 ). Then for each 8 ∈ N we have∑


1=8

dimk |)(�)|
 =
∑


1=−8−1
dimk |)(�)|
 = 18 . (6.4)

Note that Eq. (6.3) and Eq. (6.4) cannot be extended directly to A3, since the Hilbert
scheme is singular, and the dimension of )(�) actually depends on � and not just on 3.
Nevertheless, we are going to establish versions of these equations for Hilb3(A3).

We beginwith a homological lemma,whichwe state in the general case of a polynomial
ring in = variables, for simplicity.

Lemma 6.2.2. Let ( = k[G1, . . . , G=] and " be an Artinian Z=-graded ( module. For each
ℓ = 0, . . . , = there is a natural isomorphism of functors of finitely generated Z=-graded ( modules

Extℓ((−, ") � Ext=−ℓ( (",− ⊗ $()′

where −′ denotes the Matlis dual and $( the Z=-graded canonical module. In particular, for every
finitely generated Z=-graded module # we have

Extℓ((#, ")
∨ � Ext=−ℓ( (", #)(−1,−1, . . . ,−1)
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as Z=−graded vector spaces, where −∨ denotes the k-dual.

Proof. To prove the first assertion, by the universal properties of derived functors [24,
A.3.9], it suffices to verify the following four properties for the functors Ext=−ℓ

(
(",−⊗$()′.

(i) Isomorphism for ℓ = 0, that is, Hom((−, ") � Ext=((",− ⊗ $()′.

(ii) The vanishing Ext=−ℓ
(
(", % ⊗ $()′ = 0 for finitely generated projective % and ℓ > 0.

(iii) For each short exact sequence 0 → #′ → # → #′′ → 0, there is a long exact
sequence of Ext=−ℓ

(
(",− ⊗ $()′.

(iv) Naturality of the connecting homomorphism, that is, for each map of short exact
sequences of (-modules, the two long exact sequences of Ext=−ℓ

(
(",− ⊗ $()′ form a

a commutative diagram.

For (i), observe that we have natural isomorphisms

Hom((−, ") � Hom(

(
−, Ext=((", $()′

)
�

(
− ⊗ Ext=((", $()

)′
� Ext=((",− ⊗ $()′.

The first one follows from the Local Duality Theorem [11, 3.6], while the second one by
Hom-Tensor adjointness. To see the third one, let �• be a minimal free resolution of ",
then

Ext=((",− ⊗ $() = �=
(
Hom(�•,− ⊗ $()

)
� �=

(
Hom(�•, $() ⊗ −

)
� �=

(
Hom(�•, $()

)
⊗ − by right-exactness

= Ext=((", $() ⊗ −.

For (ii) it suffices to show the vanishing in the case % = (, which follows since " is
Cohen-Macaulay of grade =, cf. [11, 3.3]. Items (iii) and (iv) follow from the corresponding
properties of Ext•((",−) combined with the exact contravariant functor −′. Finally, the
second assertion of the theorem follows from the first since $( � ((−1,−1, . . . ,−1) and
−∨ � −′, cf. [11, 3.6]. �

Proposition 6.2.3. Let [�] ∈ Hilb3(A3) be a monomial point, with k[I]−decomposition � =⊕
G 8H 9(I18 , 9 ). For every 8 , 9 ∈ N we have∑


1=8

2=9

dimk |)(�)|
 = 18 , 9 +
∑


1=−8−1

2=−9−1

dimk |)(�)|
 . (6.5)

Proof. Fix 8 , 9 ∈ N and consider the groups Extℓ
(
((/� , (/�) for ℓ = 0, . . . , 3. We have

Ext0
(((/� , (/�) = (/� and Ext1

(((/� , (/�) = )(�),
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where the latter holds since Ext1
(((/� , (/�) = Ext0

(
(� , (/�) by homological “dimension

shift”. By Lemma 6.2.2 we have Extℓ
(
((/� , (/�)∨ � Ext3−ℓ

(
((/� , (/�)(−1,−1,−1), hence∑


1=8

2=9

dimk
��Ext0

(((/� , (/�)
��


=

∑

1=8

2=9

dimk |(/� |
 = 18 , 9 ,

∑

1=8

2=9

dimk
��Ext1

(((/� , (/�)
��


=

∑

1=8

2=9

dimk |)(�)|
 ,

∑

1=8

2=9

dimk
��Ext2

(((/� , (/�)
��


=

∑

1=−8−1

2=−9−1

dimk |)(�)|
 ,

∑

1=8

2=9

dimk
��Ext3

(((/� , (/�)
��


=

∑

1=−8−1

2=−9−1

dimk |(/� |
 = 0.

Eq. (6.5) is then equivalent to

3∑
ℓ=0
(−1)ℓ

∑

1=8

2=9

dimk
�� Extℓ(((/� , (/�)

��


= 0. (6.6)

Let � = (x�(1) , . . . , x�(<)) and let �• be the Taylor free resolution of (/� [69, 4.3.2]. The
modules in �• are given by

�ℓ =
⊕

A⊆{1,...,<}
Card(A)=ℓ

(
(
− �A

)
where x�

A
= lcm

{
x�
(0) : 0 ∈ A

}
.

Since Extℓ
(
((/� , (/�) = �ℓ

(
Hom((�•, (/�)

)
= �ℓ

(
Hom(/�(�•/��•, (/�)

)
, we can rephrase

Eq. (6.6) as
<∑
ℓ=0
(−1)ℓ

∑

1=8

2=9

dimk
��Hom(/�(�ℓ/��ℓ , (/�)

��


= 0. (6.7)

Define for each A ⊆ {1, . . . , <} the quantity

CA =
∑

1=8

2=9

dimk
�� Hom(/�

(
(/�

(
− �A

)
, (/�

) ��


.

then Eq. (6.7) is equivalent to ∑
A⊆{1,...,<}

(−1)Card(A)CA = 0. (6.8)
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Note that for each 
 and Awe have�� Hom(/�
(
(/�

(
− �A

)
, (/�

) ��


=

�� Hom(/�
(
(/� , (/�

) ��

+�A =

��(/���

+�A

so that

dimk
�� Hom(/�

(
(/�

(
− �A

)
, (/�

) ��


=

{
1 if 
 + �A ∈ N3 \ �̃ ,
0 otherwise.

Adding over all 
3 ∈ Z we get CA = Card
{

3 ∈ Z : (8 , 9 , 
3) + �A ∈ N3 \ �̃

}
, that is, in

terms of the k[I]−decomposition of �,

CA = 18+�A1 , 9+�
A
2
. (6.9)

Assuming without loss of generality that x�(<) = I10,0 , the formula Eq. (6.9) immediately
implies that CA = CA∪{<} for every A, which in turn yields Eq. (6.8) and concludes the
proof. �

The following consequence of Proposition 6.2.3 is the main result of the section.

Theorem 6.2.4. Let [�] ∈ Hilb3(A3) be a monomial point. We have

dimk )ppn(�) = dimk )nnp(�) + 3,
dimk )pnp(�) = dimk )npn(�) + 3,
dimk )npp(�) = dimk )pnn(�) + 3.

Proof. The first equation follows from Proposition 6.2.3 by adding over all 8 , 9 ∈ N, and
using Proposition 6.1.8. The other two follow from the first by permutation. �

Theorem 6.2.4 provides the correct generalization of Eq. (6.3) to A3, since it implies

dimk )pn∗(�) = dimk )np∗(�), dimk )p∗n(�) = dimk )n∗p(�), dimk )∗pn(�) = dimk )∗np(�),
where e.g. )pn∗(�) = )pnp(�) ⊕ )pnn(�). To the best of our knowledge, Proposition 6.2.3 and
Theorem 6.2.4 do not extend to higher dimensions.

Theorem 6.2.4 is also a vast generalization of the following parity result of Maulik,
Nekrasov, Okounkov, and Pandharipande, which follows from [66, Theorem 2], see also [8,
Lemma 4.1 (c)].

Corollary 6.2.5. For each monomial point [�] ∈ Hilb3(A3) we have dimk )(�) ≡ 3 mod 2.

Whether dimk )(�) ≡ 3 mod 2 for every [�] ∈ Hilb3(A3) is an open and interesting
question; see [12, Remark 22] for related matters. A stronger open question is whether
for any [�] ∈ Hilb3(A3) there exists a monomial ["] ∈ Hilb3(A3) such that dimk )(�) =
dimk )(").

Another interesting special case of Theorem 6.2.4 occurs when each of the three equa-
tions is a small as possible: we obtain the following smoothness criterion for monomial
points in Hilb3(A3).
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Theorem 6.2.6. A monomial point [�] ∈ Hilb3(A3) is smooth if and only if

)s(�) = 0 for s ∈ {pnn, npn, nnp}.

Proof. It is known that a monomial point [�] lies in the closure of the component of
Hilb3(A3) parametrizing subschemes of 3 distinct points, see e.g. [13, 4.15]. We deduce
that [�] is a smooth point if and only if dimk )(�) = 33, and the statement follows by
Theorem 6.2.4. �

The criterion can be particularly effective in proving that a point [�] is singular: it
suffices to exhibit a single tangent vector with forbidden signature. In many cases, the
existence of such tangent vector follows just by looking at the minimal generators of �. We
give two examples.

Corollary 6.2.7. Let [�] ∈ Hilb3(A3) be a monomial point. Suppose the minimal generating set
of � contains three monomials G
1H
2 , G�1I�3 , H�2I�3 with 
1, 
2, �1, �3, �2, �3 > 0 satisfying one
of the following:

• 
1 ≥ �1 and 
2 ≥ �2;

• �1 ≥ 
1 and �3 ≥ �3;

• �2 ≥ 
2 and �3 ≥ �3.

Then [�] is a singular point.

Proof. Since dimk((/�) < ∞, there are also minimal generators GB1 , HB2 , IB3 , and by mini-
mality we get B1 > 
1, �1, B2 > 
2, �2, B3 > �3, �3. It follows that there are monomials

G�1H�2IB3−1, G&1HB2−1I&3 , GB1−1H�2I�3 ∈ soc
(
(

�

)
for some �1 ≤ �1 − 1, �2 ≤ �2 − 1, &1 ≤ 
1 − 1, &3 ≤ �3 − 1, �2 ≤ 
2 − 1, �3 ≤ �3 − 1. By
Remark 6.1.10 and by Eq. (6.2) there are three maps !1, !2, !3 ∈ soc()(�)) ⊆ )(�) such that

!1(G
1H
2) = G�1H�2IB3−1, !2(G�1I�3) = G&1HB2−1I&3 , !3(H�2I�3) = GB1−1H�2I�3 .

Using the hypothesis we derive !1 ∈ )nnp(�), or !2 ∈ )npn(�), or !3 ∈ )pnn(�). �

Corollary 6.2.8. Let [�] ∈ Hilb3(A3) be a strongly stable point. Then [�] is smooth if and only if
G ∈ �.

Proof. Assume G ∉ � and let IB3 ∈ � be a minimal generator. By strong stability, GH0 is a
minimal generator for some 0 > 0, and moreover GIB3−1, HIB3−1 ∈ �, thus IB3−1 ∈ soc((/�).
By Remark 6.1.10 and by Eq. (6.2) there is a map ! ∈ soc()(�)) ⊆ )(�) such that !(GH0) =
IB3−1, so ! ∈ )nnp(�) ≠ 0.
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Now assume G ∈ �. Then �1 = 0 for all x� ∈ (/�, and �1 = 0 for all generators
x� ≠ G of �. Let ! ∈ |)(�)|
 for some 
. If !(G) ≠ 0 then 
2, 
3 ≥ 0, so ! ∈ )npp(�).
Suppose !(x�) ≠ 0 for some generator G ≠ x� ∈ �, then 
1 = 0 since �1 = 0. Assume
by contradiction that 
2, 
3 < 0. Considering the “boundary” � = �̃ \

(
�̃ + (0, 1, 1)

)
and

arguing as in Proposition 6.1.8, we see that (�̃ + 
) \ �̃ is connected and unbounded. This
contradicts Proposition 6.1.5, thus 
2 ≥ 0 or 
3 ≥ 0, and ! ∈ )ppn(�)⊕)pnp(�). We conclude
that )pnn(�) = )npn(�) = )nnp(�) = 0. �

6.3 Extremality of subspaces of the tangent space
In this section we prove Theorem 6.3.6, confirming the extremal behavior predicted by
Conjecture 6.0.1 for certain components )s(�) of the tangent space.

Proposition 6.3.1. Let [�] ∈ Hilb3(A3) be a monomial point with k[I]−decomposition � =⊕
G 8H 9

(
I18 , 9

)
. For each 
1, 
2 ≥ 0 we have the inequality∑


3<0
dimk

��)(�)��(
1 ,
2 ,
3) ≤
∑
8≥
1
9≥
2

(
18 , 9 −max{18+1, 9 , 18 , 9+1}

)
.

Proof. Fix non-negative integers 
1, 
2, and define the sets

C =
⋃

3<0

{
bounded connected components of

(
�̃ + (
1, 
2, 
3)

)
\ �̃

}
,

S =
{
(8 , 9 , :) ∉ �̃ : 8 ≥ 
1, 9 ≥ 
2 and (8 + 1, 9 , :), (8 , 9 + 1, :) ∈ �̃

}
.

Wedefine amapΨ : C → S by choosing, for each* ∈ C, a vectorΨ(*) = (#*1 ,#
*
2 ,#

*
3 ) ∈ *

such that #*3 is the least possible among vectors in * , and (#*1 + 1,#*2 ,#
*
3 ), (#

*
1 ,#

*
2 +

1,#*3 ) ∉ * . The choice is possible as Card(*) < ∞. Since * is a bounded connected
component of (�̃ + (
1, 
2, 
3)) \ �̃ for some 
3, the vectorΨ(*) is indeed in S.

We claim that the map Ψ is injective. Let * ≠ *′ be bounded components of(
�̃ + (
1, 
2, 
3)

)
\ �̃ and

(
�̃ + (
1, 
2, 
′3)

)
\ �̃, respectively, for some 
3, 
′3 < 0. If 
3 = 
′3

then * ∩ *′ = ∅ by definition of connected component, hence Ψ(*) ≠ Ψ(*′). Sup-
pose now 
3 < 
′3, thus

(
�̃ + (
1, 
2, 
′3)

)
\ �̃ (

(
�̃ + (
1, 
2, 
3)

)
\ �̃. If * ∩ *′ ≠ ∅

then necessarily *′ ( * , and this implies Ψ(*′) + (0, 0, 
3 − 
′3) ∈ * . We conclude that
#*3 ≤ #*

′
3 + 
3 − 
′3 < #*

′
3 , in particularΨ(*) ≠ Ψ(*′) as claimed.



CHAPTER 6. ON THE TANGENT SPACE TO Hilb3(P3) 96

Note that, for each pair 8 , 9, we have Card
{
(8 , 9 , :) ∉ �̃ : (8 + 1, 9 , :), (8 , 9 + 1, :) ∈ �̃

}
=

18 , 9 −max{18+1, 9 , 18 , 9+1}. We deduce that

Card(C) ≤ Card(S) =
∑
8≥
1
9≥
2

(
18 , 9 −max{18+1, 9 , 18 , 9+1}

)
concluding the proof by Proposition 6.1.5. �

By combining the inequalities for all 
1, 
2 ≥ 0 Proposition 6.3.1 provides upper
bounds for )ppn(�) and, up to permutation, for )pnp(�) and )npp(�). Using the symmetries
of Section 6.2, we also obtain estimates for the other three signatures. We are going to
apply these bounds to Borel-fixed points. Before we can present the main result, we need
some lemmas about strongly stable ideals and powers of m.

Lemma6.3.2. Let [�] ∈ Hilb3(A3) be a strongly stable pointwithk[I]− andk[H]−decompositions

� =
⊕

G 8H 9
(
I
1I
8, 9
)
=

⊕
G 8I 9

(
H
1
H

8, 9
)
.

Then max{1I
8+1, 9 , 1

I
8, 9+1} = 1

I
8, 9+1 and max{1H

8+1, 9 , 1
H

8, 9+1} = 1
H

8, 9+1 for all 8 , 9.

Proof. Since � is strongly stable, G 8H 9+1I
1I
8, 9+1 ∈ � implies G 8+1H 9I

1I
8, 9+1 ∈ �, thus, by definition

1I
8+1, 9 ≤ 1

I
8, 9+1 i.e. max{1I

8+1, 9 , 1
I
8, 9+1} = 1

I
8, 9+1. The other equation is proved similarly. �

Lemma 6.3.3. Let [�] ∈ Hilb3(A3) be a strongly stable point with k[H, I]−decomposition � =⊕
G 8�8 . Then for every 8 ≥ 0 the ideal �8 is strongly stable, and we have �8 : H ⊆ �8+1.

Proof. Both properties follow easily by strong stability. �

Lemma 6.3.4. Let [�] ∈ Hilb3(A3) be a strongly stable point with k[H, I]−decomposition � =⊕
G 8�8 . If 3 ≤ dimk((/mA) then for all 0 ≤ 9 ≤ A we have

A−1∑
8=9

dimk
k[H, I]
�8

≤
A−1∑
8=9

dimk
k[H, I]
(H, I)A−8

. (6.10)

Moreover, if equality holds for all 0 ≤ 9 ≤ A − 1 then � = mA .

Proof. Observe thatmA hask[H, I]−decompositionmA =
⊕

G 8(H, I)A−8 , with the convention
that (H, I)ℎ = k[H, I] if ℎ < 0.

Suppose first dimk
(
k[H, I]/�0

)
≥ dimk

(
k[H, I]/(H, I)A

)
. We prove the inequalities

Eq. (6.10) by induction on ℓ = min{ℎ : Gℎ ∈ �}. The case ℓ = 1 is clear, so we assume ℓ > 1.
Define �′ =

⊕
G 8−1�8 ⊆ (, then Gℓ−1 ∈ � and

dimk((/�′) =dimk((/�) − dimk
(
k[H, I]/�0

)
≤ dimk((/mA) − dimk

(
k[H, I]/(H, I)A

)
=dimk((/mA−1).
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Applying the inductive step to �′ and mA−1 we deduce

A−1∑
8=9

dimk
k[H, I]
�8

=

A−2∑
8=9−1

dimk
k[H, I]
�′
8

≤
A−2∑
8=9−1

dimk
k[H, I]
(H, I)A−1−8 =

A−1∑
8=9

dimk
k[H, I]
(H, I)A−8

.

verifying Eq. (6.10) for all 1 ≤ 9 ≤ A − 1, while the case 9 = 0 holds by assumption.
Suppose now that dimk

(
k[H, I]/�0

)
≤ dimk

(
k[H, I]/(H, I)A

)
. We claim that

dimk
(
k[H, I]/�8

)
≤ dimk

(
k[H, I]/(H, I)A−8

)
for all 8, implying the inequalities Eq. (6.10). By Lemma 6.3.3 it suffices to verify the follow-
ing statement: if � ⊆ k[H, I] is strongly stable anddimk

(
k[H, I]/�

)
≤ dimk

(
k[H, I]/(H, I)ℎ

)
for some ℎ, then dimk

(
k[H, I]/(� : H)

)
≤ dimk

(
k[H, I]/(H, I)ℎ−1) . Write

� = (H0 , H0−1I21 , H0−2I22 , . . . , HI20−1 , I20 ),

so � : H = (H0−1, H0−2I21 , H0−3I22 , . . . , I20−1). If 20 ≤ ℎ then (H, I)ℎ ⊆ � by strong stability,
thus (H, I)ℎ−1 = (H, I)ℎ : H ⊆ � : H and the claim follows. If 20 > ℎ then the claim follows as

dimk
k[H, I]
�
− dimk

k[H, I]
� : H =

0∑
8=1

28 −
0−1∑
8=1

28 = 20 > ℎ = dimk
k[H, I]
(H, I)ℎ

− dimk
k[H, I]
(H, I)ℎ−1 .

Finally, assume equality holds in Eq. (6.10) for all 9, then

dimk
(
k[H, I]/�8

)
= dimk

(
k[H, I]/(H, I)A−8

)
for all 8. We show by decreasing induction on 8 that �8 = (H, I)A−8 . If GA ∉ � then � contains
no monomial of degree A, by strong stability, yielding the contradiction � ⊆ mA+1. Thus
�8 = k[H, I] for all 8 ≥ A. Now suppose �8 = (H, I)A−8 for some 0 < 8 ≤ A. Using the argument
of the previous paragraph with � = �8−1 and ℎ = A − 8 + 1, we must have 20 ≤ ℎ, otherwise
dimk

(
k[H, I]/�8

)
≤ dimk

(
k[H, I]/(�8−1 : H)

)
< dimk

(
k[H, I]/(H, I)A−8

)
. But if 20 ≤ ℎ then

(H, I)A−8+1 = (H, I)ℎ ⊆ � = �8−1, and equality must hold by dimension reasons. �

Lemma 6.3.5. Let A ∈ N. We have

dimk )ppn(mA) = dimk )pnp(mA) = dimk )npp(mA) =

(
A + 3

4

)
,

dimk )pnn(mA) = dimk )npn(mA) = dimk )nnp(mA) =

(
A + 2

4

)
.

In particular, dimk )(mA) =
(A+2

2
) (A+1

2
)
.
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Proof. Using Lemma 6.1.9 and the “hockey-stick identity” of binomial coefficients one gets

dimk )ppn(mA) =
∑


1 ,
2≥0,
3≥−A

1+
2+
3=−1

(
A + 2 + 
3

2

)
=

A−1∑

1=0

A−1−
1∑

2=0

(
A + 1 − 
1 − 
2

2

)
=

A−1∑

1=0

A+1−
1∑
ℎ=2

(
ℎ

2

)

=

A−1∑

1=0

(
A + 2 − 
1

3

)
=

A+2∑
:=3

(
:

3

)
=

(
A + 3

4

)
.

The same holds for )pnp(mA), )npp(mA) by symmetry. The other formula is proved likewise.
The last formula follows from Proposition 6.1.8. �

We are now ready to state the main theorem of this section:

Theorem 6.3.6. Let char(k) = 0 and [�] ∈ Hilb3(A3) be Borel-fixed, with 3 =
(A+2

3
)
. Then we

have

dimk )ppn(�) ≤ dimk )ppn(mA), dimk )pnp(�) ≤ dimk )pnp(mA),
dimk )nnp(�) ≤ dimk )nnp(mA), dimk )npn(�) ≤ dimk )npn(mA).

Moreover, in each case equality occurs if and only if � = mA .

Proof. By Theorem 6.2.4 it suffices to prove the first two inequalities. We consider the
k[I]−, k[H]− and k[H, I]−decompositions of �

� =
⊕

G 8H 9
(
I
1I
8, 9

)
=

⊕
G 8I 9

(
H
1
H

8, 9

)
=

⊕
G 8�8 .

Note that
∑
9≥0 1

I
8, 9
= dimk(k[H, I]/�8) for each 8. Recall that �8 = k[H, I] for all 8 ≥ A,

as observed in the proof of Lemma 6.3.4. We apply Proposition 6.3.1 and Lemma 6.3.2,
Lemma 6.3.4, Lemma 6.3.5 to obtain

dimk )ppn(�) =
∑


1 ,
2≥0

3<0

dimk |)(�)|(
1 ,
2 ,
3) ≤
∑


1 ,
2≥0

∑
8≥
1
9≥
2

(
1I8, 9 −max{1I8+1, 9 , 1

I
8, 9+1}

)
=

∑

1≥0

2≥0

∑
8≥
1
9≥
2

(
1I8, 9 − 1

I
8, 9+1

)
=

∑
8 , 9

(8 + 1)(9 + 1)
(
1I8, 9 − 1

I
8, 9+1

)
=

∑
8 , 9

(8 + 1)1I8, 9

=

A−1∑
8=0
(8 + 1)dimk

k[H, I]
�8

=

A−1∑
8=0

A−1∑
9=8

dimk
k[H, I]
� 9

≤
A−1∑
8=0

A−1∑
9=8

dimk
k[H, I]
(H, I)A−9

=

A−1∑
8=0

A−1∑
9=8

(
A − 9 + 1

2

)
=

A−1∑
8=0

A−8+1∑
ℎ=2

(
ℎ

2

)
=

A−1∑
8=0

(
A − 8 + 2

3

)
=

A+2∑
:=3

(
:

3

)
=

(
A + 3

4

)
= dimk )ppn(mA).
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The inequality dimk )pnp(�) ≤ dimk )pnp(mA) is proved in the same way, using the
second part of Lemma 6.3.2 and the fact that for each 8wehave

∑
9≥0 1

H

8, 9
= dimk(k[H, I]/�8).

Finally, we verify the last assertion of the theorem. Observe that, if any of the four
inequalities is an equality, then all the inequalities in the application of Lemma 6.3.4 are
equalities, so for every 0 ≤ 8 ≤ A − 1 we have

A−1∑
9=8

dimk(k[H, I]/� 9) =
A−1∑
9=8

dimk
(
k[H, I]/(H, I)A−9

)
,

and this in turn forces � = mA by the second part of Lemma 6.3.4. �

Remark 6.3.7. By Lemma 6.1.2, Remark 6.1.6, and Proposition 6.1.8, Theorem 6.3.6 verifies
two thirds of Conjecture 6.0.1 for Hilb3(A3). In fact, we conjecture that the remaining two
inequalities

dimk )npp(�) ≤ dimk )npp(mA) and dimk )pnn(�) ≤ dimk )pnn(mA)

are also true. However, the bounds obtained for these subspaces through Proposition 6.3.1
are not sharp enough to prove them, as the next example shows.

Example 6.3.8. Let � = (G) + (H, I)B where B ∈ N. We consider its k[G]−decomposition
� =

⊕
H 8I 9

(
G18 , 9

)
. Observe that 18 , 9 = 1 if 8 + 9 < B, whereas 18 , 9 = 0 if 8 + 9 ≥ B. Proceeding

as in the proof of Theorem 6.3.6, we use Proposition 6.3.1 to estimate dimk )npp(�) and
obtain

dimk )npp(�) =
∑


2 ,
3≥0

∑

1<0

dimk |)(�)|(
1 ,
2 ,
3) ≤
∑


2 ,
3≥0

∑
8≥
2
9≥
3

(
18 , 9 −max{18+1, 9 , 18 , 9+1}

)
=

∑

2 ,
3≥0

∑
8≥
2 , 9≥
3
8+9=B−1

1 =
∑


2 ,
3≥0

2+
3<B

(B − 
2 − 
3) =
(
B + 1

2

)
B −

∑

2 ,
3≥0

2+
3<B

(
2 + 
3)

=

(
B + 1

2

)
B −

B−1∑
8=1

8(8 + 1) =
(
B + 1

2

)
B − (B − 1)B(B + 2)

3 =

(
B + 2

3

)
.

Choose B = 15 and A = 8, so dimk((/�) =
(15+1

2
)
= 120 =

(8+2
3

)
= dimk((/mA). The

inequality above yields dimk )npp(�) ≤
(15+2

3
)
= 680; however, dimk )npp(mA) =

(8+3
4

)
= 330

by Lemma 6.3.5.

6.4 Global estimates
We now take a more direct approach to estimating the dimension of tangent space to a
point in Hilb3(A3). This section is devoted to the proof of Theorem 6.4.2.
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Let ' be a regular local ring of dimension 2, and denote by ℓ (·) the length of an '-
module. A key step in the proof of the smoothness of Hilb3(A2) [30] is to show that
ℓ ()(�)) = 2ℓ ('/�) for all artinian ideals � ⊆ '. The next proposition generalizes this fact.

Proposition 6.4.1. Let ' be a 2-dimensional regular local ring, and let � , � ⊆ ' be ideals satisfying
ℓ ('/�), ℓ ('/�) < ∞. Then

ℓ
(
Hom'(� , '/�)

)
= ℓ

(
'/�

)
+ ℓ

(
(� : �)/�

)
.

Proof. Let 0 → '02 → '01 → '00 → '/� → 0 be a free resolution, then the alternating
sum of ranks vanishes: 00 − 01 + 02 = 0. Setting "('/� , '/�) = ∑2

8=0(−1)8ℓ
(
Ext8('/� , '/�)

)
we have

"('/� , '/�) =
2∑
8=0
(−1)8"('08 , '/�) =

2∑
8=0
(−1)8ℓ ('/�) · 08 = ℓ ('/�)

2∑
8=0
(−1)808 = 0. (6.11)

Let $'/� be the canonical module of '/�. Since '/� is a Cohen-Macaulay '-module of
codimension 2, dualizing its free resolution and using right-exactness of − ⊗ '/� yields

Ext2('/� , '/�) � Ext2('/� , ') ⊗ '/� = $'/� ⊗ '/�. (6.12)

Combining equations Eq. (6.11) and Eq. (6.12) with the exact sequence

0→ Hom('/� , '/�) → '/� → Hom(� , '/�) → Ext1('/� , '/�) → 0

we get

ℓ
(
Hom(� , '/�)

)
= ℓ

(
'/�

)
− ℓ

(
Hom('/� , '/�)

)
+ ℓ

(
Ext1('/� , '/�)

)
= ℓ

(
'/�

)
+ ℓ

(
Ext2('/� , '/�)

)
= ℓ

(
'/�

)
+ ℓ

(
$'/� ⊗' '/�

)
.

It remains to show that ℓ
(
$'/�/�$'/�

)
= ℓ

(
(� : �)/�

)
. We have (� : �)/� =

(
� : (� + �)

)
/� and

$'/�/�$'/� = $'/�/(� + �)$'/� (since � annihilates $'/�), so we may assume that � ⊆ �.
In this case '/� is a finite '/�-module and $'/� � Hom('/� , $'/�). Since Hom(−, $'/�)
induces a duality in the category of finite '/�-modules (cf. [24, 21.1]) we obtain

Hom('/� , '/�) � Hom
(
Hom('/� , $'/�),Hom('/� , $'/�)

)
� Hom($'/� , $'/�)
= Hom($'/�/�$'/� , $'/�)

and this implies ℓ
(
Hom('/� , '/�)

)
= ℓ

(
$'/�/�$'/�

)
, again by duality. The proof is com-

pleted, as (� : �)/� = Hom('/� , '/�). �
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Nowwe present the main result of this section, which establishes an approximation of
Conjecture 6.0.1 for the Hilbert scheme of points in A3.

Theorem 6.4.2. Let 3, A ∈ N be such that 3 ≤
(A+2

3
)
. For all [�] ∈ Hilb3(A3) we have

dimk )(�) ≤
4
3 dimk )(mA).

Proof. ByRemark 6.1.6 and Lemma 6.1.2wemay assume that char k = 0 and � ⊆ ( is Borel-
fixed. Let � =

⊕
G 8�8 be the k[H, I]−decomposition and let ? = min

{
8 : �8 = k[H, I]

}
.

Assuming without loss of generality that � ≠ mA , the hypothesis 3 ≤
(A+2

3
)
and the fact that

� is strongly stable imply that ? < A.
We denote by )(�)9 the component of )(�) of G-degree 9, that is, )(�)9 =

⊕

1=9

��)(�)��


.

A tangent vector � ∈ )(�)9 , viewed as homomorphism � : � → (/�, is uniquely determined
by its restrictions

�
��
G 8 �8

: G 8�8 −→ G 8+9
k[H, I]
�8+9

where 8 ≥ 0 and 0 ≤ 8 + 9 < ?. Clearly, )(�)9 = 0 if 9 ≥ ?. On the other hand, we also have
)(�)9 = 0 if 9 < −?, since any monomial minimal generator of � has G-degree at most ? by
strong stability. For the same reason, it suffices to consider the restrictions for 8 ≤ ?. To
summarize, every G-homogeneous � ∈ )(�) is determined by the induced k[H, I]-linear
homomorphisms

�
��
�8

: �8 −→
k[H, I]
�8+9

with −? ≤ 9 ≤ ?−1, max(0,−9) ≤ 8 ≤ min(?, ?− 9−1) (6.13)

where, by abuse of notation, we drop the placeholders G 8 , G 8+9 .
Now we can estimate the dimension of the tangent space:
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dimk )(�) ≤
?−1∑
9=−?

min(?,?−9−1)∑
8=max(0,−9)

dimk Hom
(
�8 ,

k[H, I]
�8+9

)
by Eq. (6.13)

=

?−1∑
9=−?

min(?,?−9−1)∑
8=max(0,−9)

(
dimk

k[H, I]
�8+9

+ dimk
�8 : �8+9
�8

)
by Proposition 6.4.1

≤
?−1∑
9=−?

min(?,?−9−1)∑
8=max(0,−9)

(
dimk

k[H, I]
�8+9

+ dimk
k[H, I]
�8

)
=

−1∑
9=−?

?∑
8=−9

(
dimk

k[H, I]
�8+9

+ dimk
k[H, I]
�8

)
+
?−1∑
9=0

?−9−1∑
8=0

(
dimk

k[H, I]
�8+9

+ dimk
k[H, I]
�8

)
=

?−1∑
8=0

8∑
9=0

dimk
k[H, I]
� 9
+
?−1∑
9=0

?∑
8=?−9

dimk
k[H, I]
�8

reindexing

+
?−1∑
8=0

?−1∑
9=8

dimk
k[H, I]
� 9
+
?−1∑
9=0

?−9−1∑
8=0

dimk
k[H, I]
�8

= (? + 1)
?−1∑
9=0

dimk
k[H, I]
� 9
+ ?

?∑
8=0

dimk
k[H, I]
�8

= (2? + 1)dimk
(

�
≤ (2A − 1)

(
A + 2

3

)
by assumption

≤ 4
3

(
A + 2

2

) (
A + 1

2

)
=

4
3 dimk )(mA) by Lemma 6.3.5.

�

Our analysis allows verifying Conjecture 6.0.1 for many monomial ideals:

Corollary 6.4.3. Let [�] ∈ Hilb3(A3) be a monomial point with 3 ≤
(A+2

3
)
. If G? ∈ � with

? ≤ 3A+1
4 , then dimk )(�) ≤ dimk )(mA).

Proof. As in the proof of Theorem 6.4.2, we may assume that char k = 0 and � ⊆ ( is
Borel-fixed: in fact, if � is any monomial ideal and G? ∈ �, then G? ∈ gin � as well. Now, if



CHAPTER 6. ON THE TANGENT SPACE TO Hilb3(P3) 103

? ≤ 3A+1
4 then we can improve the estimates in the proof of Theorem 6.4.2 obtaining

dimk )(�) ≤ (2? + 1)dimk
(

�
≤ 6A + 6

4

(
A + 2

3

)
=

(
A + 2

2

) (
A + 1

2

)
= dimk )(mA).

�

As observed in the proof of Theorem 6.4.2, if � is strongly stable and 3 = dimk((/�) ≤(A+2
3

)
then GA ∈ �. Hence, Corollary 6.4.3 proves Conjecture 6.0.1 for “three quarters” of

the strongly stable ideals – in fact, often for a much larger fraction. For example, we use
this fact in the proof of [82] where the search for the maximum tangent space dimension
for Hilb39(A3) is reduced from all 39098 strongly stable ideals to the 2654 ones that do not
contain small powers of G.

Another consequence of Theorem 6.4.2 is a new bound on the dimension of the Hilbert
scheme:

Corollary 6.4.4. For 3 � 0 we have dim Hilb3(A3) ≤ 3.64 · 3 4
3 .

Proof. Let A ∈ N such that
(A+1

3
)
< 3 ≤

(A+2
3

)
, so A − 1 ≤ 3√63. Using Theorem 6.4.2 we get

dim Hilb3(A3) ≤ max
�∈Hilb3(A3)

dimk )(�) ≤
4
3 dimk )(mA) = 4

3

(
A + 2

2

) (
A + 1

2

)
=

1
3(A + 2)(A + 1)2(A) ≤ 1

3

(
3√63

)4
+ $(3) ≈ 3.634 · 3 4

3 + $(3)

implying the desired asymptotic bound. �

Remark 6.4.5. The authors in [10] proved that dim Hilb3(A3) ≤ 19.92 · 3 4
3 . On the other

hand, the full Conjecture 6.0.1 would imply that dim Hilb3(A3) ≤ 2.73 · 3 4
3 for 3 � 0.
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Chapter 7

The fiber-full scheme

“Last time, I asked: “What does mathematics mean to you?” And some
people answered: “The manipulation of numbers, the manipulation of
structures.” And if I had asked what music means to you, would you have
answered: “The manipulation of notes?”

Serge Lang [61]

In this chapter we introduce a far-reaching generalization of the Hilbert and Quot
schemes that controls all the cohomological data of the quotients of a coherent sheaf
F , instead of just the Hilbert polynomial. To accomplish this we develop a theory of
flattening stratifications for various modules and complexes; the most important being
the local cohomology modules and the higher direct image sheaves. We also develop the
notion of a fiber-full sheaf.

We start with the classical example of the Hilbert scheme compactification of the
space of twisted cubics that was studied by Piene and Schlessinger [79]. The motivating
example below shows how this well-studied Hilbert scheme decomposes into locally
closed subschemes that have constant cohomological data.

Example 7.0.1 (Theorem 7.4.9). In [79], it was shown that Hilb3C+1
P3

k
= � ∪ �′ is a union of

two smooth irreducible components such that the general member of � parametrizes a
twisted cubic, and the general member of �′ parametrizes a plane cubic union an isolated
point. It is also known that � − � ∩ �′ is the locus of arithmetically Cohen-Macaulay
curves of degree 3 and genus 0. We then have a decomposition

Hilb3C+1
P3

k
= (� − � ∩ �′) t �′.

Furthermore, one can show that the functions

ℎ 8- : Z→ N, � ↦→ dimk

(
� 8(-,O-(�))

)
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are the same for any element [-] ∈ �−�∩�′ and the same for any element [-] ∈ �′ (for an
explicit computation, see Theorem 7.4.9). It then follows that Hilb3C+1

P3
k

can be decomposed

into two locally closed subschemes where the cohomological functions ℎ 8
-
are constant. It

should also be noted that one might be quite interested in studying � −� ∩�′ as it gives
all the closed subschemes of P3

k with the same cohomological data as that of a twisted
cubic.

As presented below, the scheme we introduce allows us to provide a unified and
systematic treatment of the decomposition seen in Theorem 7.0.1. Let ( be a locally
Noetherian scheme, 5 : - ⊂ PA

(
→ ( be a projective morphism and F be a coherent

sheaf on -. We follow Grothendieck’s general idea of considering a contravariant functor
whose representing scheme (if it exists) is the parameter space one is interested in.

Notation 7.0.2. In this chapter ( will always denote a base scheme while ' will be used
to denote a polynomial ring. While this is in contrast with the rest of the thesis, it is
consistent with both the papers [19] and [20]. Since this chapter is taken from [19] we have
chosen to use the notation appearing there.

We define the fiber-full functor which for an (-scheme ) parametrizes all coherent
quotients F) � G such that all the higher direct images of G and its twistings are locally
free over ). More precisely, for any (locally Noetherian) (-scheme ) we define

FibF/-/(()) =
{
coherent quotient F) � G

'8 5())∗ (G (�)) is locally free over )
for all 0 ≤ 8 ≤ A, � ∈ Z

}
,

where F) is the pull-back sheaf on -) = - ×() and 5()) : -) ⊂ PA
)
→ ) is the base change

morphism 5()) = 5 ×( ). We have that

FibF/-/( : (Sch/()opp→ (Sets)

is a contravariant functor from the category of (locally Noetherian) (-schemes to the
category of sets (see Theorem7.4.1). We stratify this functor in terms of “Hilbert functions”
for all the cohomologies. Let h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1 be a tuple of functions. Then,
we define the following functor depending on h:

Fibh
F/-/(()) =

{
G ∈ FibF/-/(())

dim�(C)
(
� 8 (-C , GC(�))

)
= ℎ8(�)

for all 0 ≤ 8 ≤ A, � ∈ Z, C ∈ )

}
,

where �(C) denotes the residue field of the point C ∈ ), -C = -) ×) Spec(�(C)) is the fiber
over C ∈ ), and GC is the pull-back sheaf on -C . The idea of this functor is to measure
the dimension of all cohomologies of all possible twistings. We easily obtain the stratification
FibF/-/(()) =

⊔
h:ZA+1→NA+1 Fibh

F/-/(()) when ) is connected, and so it follows that
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FibF/-/(()) is a representable functor if all the functors Fibh
F/-/(()) are representable.

When F = O- , we simplify the notation by writing Fibh
-/( instead of Fibh

O-/-/(.

For any numerical polynomial % ∈ Q[C], we have Grothendieck’s definition of the Quot
functor

Quot%
F/-/( : (Sch/()opp→ (Sets)

which for an (-scheme ) parametrizes all coherent quotients F) � G that are flat over )
and have Hilbert polynomial equal to % along all fibers. The Hilbert functor Hilb%F/-/( is
the special case of Quot%

F/-/( with F = O- . Then, the fiber-full functor can be thought of
as a refinement of the Hilbert and Quot functors due to the following inclusions. From the
tuple of functions h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1, we define the function %h =

∑A
8=0(−1)8ℎ8 .

When %h ∈ Q[C] is a numerical polynomial, since the Hilbert polynomial of a sheaf
coincides with its Euler characteristic, we automatically get the inclusions

Fibh
-/(()) ⊂ Hilb%h

-/(()) and Fibh
F/-/(()) ⊂ Quot%h

F/-/(())

for any (locally Noetherian) (-scheme ). If %h is not a numerical polynomial, then
Fibh

F/-/(()) = ∅ for any (-scheme ).
The following is the main theorem of this article. Here, we show that the functor

Fibh
F/-/( is represented by a quasi-projective (-scheme that we call the fiber-full scheme

and we write as Fibh
F/-/(. From the definition of Fibh

F/-/(, it follows that the fiber-full
scheme Fibh

F/-/( is the finest possible generalization of the Quot schemeQuot%h
F/-/( if one

is interested in controlling all the cohomological data.

Theorem 7.0.3. Let ( be a locally Noetherian scheme, 5 : - ⊂ PA
(
→ ( be a projective

morphism and F be a coherent sheaf on -. Let h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1 be a
tuple of functions and suppose that %h is a Hilbert polynomial. Then, there is a quasi-
projective (-scheme Fibh

F/-/( that represents the functor Fibh
F/-/( and that is a locally

closed subscheme of the Quot scheme Quot%h
F/-/(.

Ourmain tool for constructing the fiber-full scheme is given in Theorem 7.2.2wherewe
provide a flattening stratification theorem that deals with all the direct images of a sheaf
and its possible twistings. To prove this technical theorem we utilize some techniques
previously developed in the papers [14, 18]. In a related direction, we also introduce the
notion of fiber-full sheaves and we give three equivalent definitions in Theorem 7.3.2.
Under the above notation, we say that F is a fiber-full sheaf over ( if '8 5∗ (F (�)) is locally
free over ( for all 0 ≤ 8 ≤ A and � ∈ Z. Fiber-full sheaves serve as a sheaf-theoretic
extension of the notions of algebras having liftable local cohomology [60] and cohomologically
full rings [22].
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It turns out there has been previous interest in stratifying the Hilbert scheme in terms
of the whole cohomological data.

In the work of Martin-Deschamps and Perrin [65], they were able to control the co-
homologies of a sheaf, but not all the possible twistings, as their method would yield
the intersection of infinitely many (not necessarily closed) subschemes (see [65, Chapitre
VI, Proposition 1.9 and Corollaire 1.10]); their approach is based on classical techniques
related to the Grothendieck complex which are covered, e.g., in [47, §III.12].

In the thesis of Fumasoli [32, 33], he stratified the Hilbert scheme by bounding below
the cohomological functions of the points of the Hilbert scheme, which is a consequence
of the classical upper semicontinuity theorem (see [47, Theorem III.12.8]).

Our main result Theorem 7.0.3 vastly generalizes the two aforementioned approaches
and shows that one can indeed stratify the Hilbert and Quot schemes by taking into
account all the cohomological data. In this regard, one important part of our work is
to develop the necessary tools that allow us to prove the general stratification result of
Theorem 7.2.2.

Next, we describe some applications that follow from the existence of the fiber-full
scheme.

There is a large literature on the study of the loci of arithmetically Cohen-Macaulay
(ACM for short) schemes and the loci of arithmetically Gorenstein (AG for short) schemes
within the Hilbert scheme (see [28, 49, 56–58, 65] and the references therein). As a result
of considering the fiber-full scheme, we can provide a finer description of these loci and
parametrize ACM and AG schemes with a fixed cohomological data. Let 3 ∈ N and
ℎ0, ℎ3 : Z → N be two functions, and consider the tuple of functions h : ZA+1 → NA+1

given by h = (ℎ0, 0, . . . , 0, ℎ3 , 0, . . . , 0) where 0 : Z → N denotes the zero function. To
studyACMandAGschemes, since all the intermediate cohomologies vanish in these cases,
it becomes natural to consider the following two functors. For any (locally Noetherian)
(-scheme ), we have

ACM ℎ0 ,ℎ3
-/( ()) =

{
closed subscheme / ⊂ -) / ∈ Fibh

-/(()) and /C is ACM for all C ∈ )
}

and

AG ℎ0 ,ℎ3
-/( ()) =

{
closed subscheme / ⊂ -) / ∈ Fibh

-/(()) and /C is AG for all C ∈ )
}
.

The following theorem shows the two functors above are representable, and so it
provides the natural parameter spaces forACMandAGschemeswith fixed cohomological
data.

Theorem 7.0.4 (Theorem 7.4.7). Let ( be a locally Noetherian scheme and 5 : - ⊂ PA
(
→ (

be a projective morphism. Let 3 ∈ N and ℎ0, ℎ3 : Z→ N be two functions, and consider
the tuple of functions h = (ℎ0, 0, . . . , 0, ℎ3 , 0, . . . , 0) : ZA+1 → NA+1. Suppose that %h ∈ Q[C]
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is a numerical polynomial. Then, there exist open (-subschemes ACMℎ0 ,ℎ3
-/( and AGℎ0 ,ℎ3

-/( of
Fibh

-/( that represent the functors ACM ℎ0 ,ℎ3
-/( and AG ℎ0 ,ℎ3

-/( , respectively.

We end by studying examples of Hilbert schemes that we stratify in terms of fiber-full
schemes. Furthermore, by using the recent classification of Skjelnes and Smith [88], we
show in Theorem 7.5.4 that smooth Hilbert schemes coincide with a fiber-full scheme (i.e.,
cohomological data is constant for points in a smooth Hilbert scheme).

7.1 Some flattening stratification theorems in a graded
category of modules

In this section, we provide several flattening stratification theorems in a graded category
modules; the list includes: the case of modules, cohomology of complexes of modules,
Ext modules and local cohomology modules. For organizational purposes, we divide the
section into four different subsections.

7.1.1 Flattening stratification of modules
In this subsection, we concentrate on an extension for modules of the flattening stratifica-
tion theorem given in [4] (also, see [71, §8]). Throughout this subsection, we shall use the
following setup.

Setup. Let � be ring (always assumed to be commutative and unitary) and ' be a finitely
generated graded �-algebra. For any p ∈ Spec(�), let �(p) := �p/p�p be the residue field
of p.

For a graded '-module ", we say that " has a Hilbert function over � if for all � ∈ Z
the graded part ["]� is a finitely generated locally free �-module of constant rank on
Spec(�); and in this case, the Hilbert function is ℎ" : Z → N, ℎ"(�) = rank� (["]�). If
a graded '-module " has a Hilbert function over �, then " ⊗� � has the same Hilbert
function over any �-algebra �.

Remark 7.1.1. Let 0→ !→ " → # → 0 be a short exact sequence of graded '-modules.

(i) If ! and # have Hilbert functions over �, then " has a Hilbert function over � given by
ℎ"(�) = ℎ!(�) + ℎ# (�).

(ii) If " and # have Hilbert functions over �, then ! has a Hilbert function over � given by
ℎ!(�) = ℎ"(�) − ℎ# (�).

For completeness, we recall the following flatness result.
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Lemma 7.1.2. Assume that � is Noetherian. Let " be a finitely generated graded �-module.
Then, the following locus

*" :=
{
p ∈ Spec(�) | " ⊗� �p is a flat �p-module

}
is an open subset of Spec(�).

Proof. For a proof, see [4, Lemma 2.1] or [14, Lemma 2.5]. �

For a given graded '-module " and a function ℎ : Z→ N, we consider the following
functor for any ring �,

F ℎ
"(�) :=

{
morphism Spec(�) → Spec(�) [" ⊗� �]� is a locally free �-module

of rank ℎ(�) for all � ∈ Z

}
.

We now describe our first flattening stratification theorem.

Theorem 7.1.3. Assume � is Noetherian. Let " be a finitely generated graded '-module and
ℎ : Z→ N be a function. Then, the following statements hold:

(i) The functor F ℎ
"
is represented by a locally closed subscheme �ℎ

"
⊂ Spec(�). In other words,

for any morphism 6 : Spec(�) → Spec(�), " ⊗� � has a Hilbert function over � equal to
ℎ if and only if 6 can be factored as

Spec(�) → �ℎ" → Spec(�).

(ii) There is only a finite number of different functions ℎ1, . . . , ℎ< : Z→ N such that �ℎ8
"
≠ ∅,

and so Spec(�) is set-theoretically equal to the disjoint union of the locally closed subschemes
�
ℎ8
"
.

Proof. (i) For any morphism Spec(�) → Spec(�), one has that [" ⊗� �]� is locally free of
rank ℎ(�) if and only if Fittℎ(�)−1([" ⊗� �]�) = 0 and Fittℎ(�)([" ⊗� �]�) = �, and that
Fitt9([" ⊗� �]�) =

(
Fitt9(["]�)

)
� (for more details on Fitting ideals, see [25, §20.2]).

Let /ℎ
"
⊂ Spec(�) be the closed subscheme given by

/ℎ" := Spec(�/(∑�∈Z Fittℎ(�)−1(["]�))).

Wehave that Fittℎ(�)−1(["⊗��]�) = 0 for all � ∈ Z if and only if Spec(�) → Spec(�) factors
through /ℎ

"
. Therefore, we can substitute Spec(�) by /ℎ

"
, and we do so.

Let p ∈ *" and suppose that " ⊗� �p has a Hilbert function ℎ"⊗��p = ℎ over �p. By
Theorem 7.1.2, there is an affine open neighborhood p ∈ Spec(�0) ⊂ *" of p for some
0 ∈ �. Thus [91, Tag 00NX] implies that for all � ∈ Z the function Spec(�0) → N, q ↦→
dim�(q)([" ⊗�0 �(q)]�) is locally constant. Consequently, there is an open connected

https://stacks.math.columbia.edu/tag/00NX
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neighborhood p ∈ + ⊂ Spec(�0) of p such that ℎ"⊗��q = ℎ for all q ∈ + . It then follows
that the following locus

* ℎ
" :=

{
p ∈ Spec(�) | " ⊗� �p has a Hilbert function ℎ"⊗��p = ℎ over �p

}
is an open subset of Spec(�).

Note that Fittℎ(�)([" ⊗� �]�) = � if and only if P ∩ � ⊅ Fittℎ(�)(["]�) for all P ∈
Spec(�). Hence, under the condition Fittℎ(�)−1([" ⊗� �]�) = 0 for all � ∈ Z, it follows that
Fittℎ(�)([" ⊗� �]�) = � for all � ∈ Z if and only if Spec(�) → Spec(�) factors through* ℎ

"
.

So, after having changed Spec(�) by /ℎ
"
, we have that F ℎ

"
is represented by the open

subscheme* ℎ
"
⊂ Spec(�). This completes the proof of this part.

(ii) For each p ∈ Spec(�), let ℎp be the function ℎp(�) := dim�(p)([" ⊗� �(p)]�). As
we have a natural morphism Spec(�(p)) → Spec(�), it clearly follows that p ∈ �

ℎp
"
.

Therefore, by the Noetherian hypothesis, we can show that there is a finite number of
distinct functions ℎ1, . . . , ℎ< such that set-theoretically we have the equality Spec(�) =⊔<
8=1 �

ℎ8
"
. �

7.1.2 Flattening stratification of the cohomologies of a complex
Here we study how the process of taking tensor product with another ring affects the
cohomology of a bounded complex. The notation below will be used throughout the
paper.

Notation 7.1.4. For a (co-)complex of �-modules  • : · · · →  8−1 )8−1

−−−→  8
)8

−→  8+1 →
· · · , one defines Z8 ( •) := Ker()8), B8 ( •) := Im()8−1), � 8 ( •) := Z8( •)/B8( •), and
� 8 ( •) :=  8/B8( •) ⊃ � 8 ( •) for all 8 ∈ Z. We use analogous notation with lower
indices for a complex  •.

Remark 7.1.5. A basic result that we shall use several times is the following: for a complex
of �-modules  • and an �-module # , we have a four-term exact sequence

0→ � 8
(
 • ⊗� #

)
→ � 8( •) ⊗� # →  8+1 ⊗� # → � 8+1( •) ⊗� # → 0

of �-modules.

The following lemma transfers the burden of studying the cohomologies of a bounded
complex to considering the cokernels of the maps.

Lemma 7.1.6. Let  • : 0 →  0 →  1 → · · · →  ? → 0 be a bounded complex of graded
'-modules. Suppose that each  8 has a Hilbert function over �. Let Spec(�) → Spec(�) be a
morphism. Then, the following two conditions are equivalent:

(i) � 8( • ⊗� �) has a Hilbert function over � for all 0 ≤ 8 ≤ ?.
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(ii) � 8( •) ⊗� � has a Hilbert function over � for all 0 ≤ 8 ≤ ?.

Moreover, if any of the above conditions are satisfied, we have

ℎ� 8( •⊗��) = ℎ� 8( •)⊗�� + ℎ� 8+1( •)⊗�� − ℎ 8+1⊗��

and

ℎ� 8( •)⊗�� =

?∑
9=8

(−1)9−8
(
ℎ� 9( •⊗��) + ℎ 9+1⊗��

)
.

Proof. We have the four-term exact sequence

0→ � 8
(
 • ⊗� �

)
→ � 8( •) ⊗� �→  8+1 ⊗� �→ � 8+1( •) ⊗� �→ 0,

which can be broken into short exact sequences

0→ � 8
(
 •⊗��

)
→ � 8( •)⊗��→ !8 → 0 and 0→ !8 →  8+1⊗��→ � 8+1( •)⊗��→ 0

where !8 is some graded '-module.
By Theorem 7.1.1, if all � 8( •) ⊗� � have a Hilbert function over � then all !8 have

a Hilbert function over � and, by the same token, it follows that all � 8( • ⊗� �) have a
Hilbert function over �. This establishes the implication (2)⇒ (1).

Suppose that all � 8( • ⊗� �) have a Hilbert function over �. As a consequence
of Theorem 7.1.1, if � 8+1( •) ⊗� � has a Hilbert function over �, we obtain that !8 and,
subsequently, � 8( •)⊗�� haveHilbert functions over �. Since �?( •)⊗�� = �?( •⊗��),
by descending induction on 8, we get that all � 8( •) ⊗� � have a Hilbert function over �.
So, the other implication (1)⇒ (2) also holds.

The additional equations relating the Hilbert functions of � 8( •) ⊗� � and� 8( • ⊗� �)
are straightforwardly checked. �

For a given bounded complex of graded '-modules  • : 0→  0 →  1 → · · · →  ? →
0 such that each  8 has a Hilbert function over � and a given tuple of ? + 1 functions
h = (ℎ0, . . . , ℎ?) : Z?+1 → N?+1, we consider the following functor for any ring �,

F h
 •(�) :=

{
morphism Spec(�) → Spec(�)

[
� 8( • ⊗� �)

]
�
is a locally free �-module

of rank ℎ8(�) for all 0 ≤ 8 ≤ ?, � ∈ Z

}
.

For completeness, we include a lemma which shows that, in our setting, flatness is equiv-
alent to being locally free.

Lemma 7.1.7. Let  • : 0 →  0 →  1 → · · · →  ? → 0 be a bounded complex of graded '-
modules. Suppose that [ 8]� is a finitely generated locally free �-module for all 0 ≤ 8 ≤ ?, � ∈ Z.
Let Spec(�) → Spec(�) be a morphism. Then, the following two conditions are equivalent:

(i) [� 8( • ⊗� �)]� is a flat �-module for all 0 ≤ 8 ≤ ?, � ∈ Z.
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(ii) [� 8( • ⊗� �)]� is a locally free �-module for all 0 ≤ 8 ≤ ?, � ∈ Z.

Proof. The implication (2) ⇒ (1) is clear. So, we assume that each [� 8( • ⊗� �)]� is a
flat �-module. As in the proof of Theorem 7.1.6, we consider the short exact sequences
0→ � 8

(
 •⊗��

)
→ � 8( •)⊗��→ !8 → 0 and 0→ !8 →  8+1⊗��→ � 8+1( •)⊗��→ 0.

Note that each [�?( •) ⊗� �]� = [�?( • ⊗� �)]� is a locally free �-module since it is flat
of finite presentation as a �-module. Similarly to Theorem 7.1.6, by descending induction
on 8, we can show that [� 8( • ⊗� �)]� and [� 8( •) ⊗� �]� are locally free �-modules for
all 0 ≤ 8 ≤ ?, � ∈ Z. �

The following theorem deals with the stratification of the cohomologies of bounded
complexes.

Theorem 7.1.8. Assume � is Noetherian. Let  • : 0 →  0 →  1 → · · · →  ? → 0 be a
bounded complex of finitely generated graded '-modules and h = (ℎ0, . . . , ℎ?) : Z?+1 → N?+1 be
a tuple of functions. Suppose that each  8 has a Hilbert function over �. Then, the functor F h

 •

is represented by a locally closed subscheme �h
 • ⊂ Spec(�). In other words, for any morphism

6 : Spec(�) → Spec(�), each � 8( • ⊗� �) has a Hilbert function over � equal to ℎ8 if and only
if 6 can be factored as

Spec(�) → �h
 • → Spec(�).

Proof. For anymorphism Spec(�) → Spec(�), Theorem 7.1.6 implies that each� 8( •⊗��)
has aHilbert functionover� equal to ℎ8 if andonly if each� 8( •)⊗�� has aHilbert function
over � equal to ℎ′

8
, where ℎ′

8
:=

∑?

9=8
(−1)9−8

(
ℎ 9 + ℎ 9+1⊗��

)
. Therefore, by Theorem 7.1.3,

F h
 • is represented by the locally closed subscheme �h

 • ⊂ Spec(�) given by

�
ℎ′0
�0( •) ∩ �

ℎ′1
�1( •) ∩ · · · ∩ �

ℎ′?
�?( •). �

7.1.3 Flattening stratification of Ext modules
We now focus on a flattening stratification result for certain Ext modules. During this
subsection, we shall use the following setup.

Setup 1. Let � be a Noetherian ring and ' be a positively graded polynomial ring ' =

�[G1, . . . , GA] over �.

First, we recall the following result from [18].

Lemma 7.1.9. Let " be a finitely generated graded '-module and suppose that " is a flat �-
module. Let �• : · · · → �8 → · · · → �1 → �0 be a graded free '-resolution of " by modules of
finite rank. Let

� 8
" := Coker

(
Hom'(�8−1, ') → Hom'(�8 , ')

)
for each 8 ≥ 0. Then, the following statements hold:
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(i) Ext8'(", ') = 0 for all 8 ≥ A + 1.

(ii) � 8
"

is a flat �-module for all 8 ≥ A + 1.

(iii) If Ext8'(", ') is a flat �-module for all 0 ≤ 8 ≤ A, then

Ext8'(", ') ⊗� �
�−→ Ext8'⊗��(" ⊗� �, ' ⊗� �)

for all 8 ≥ 0 any �-algebra �.

Proof. It follows directly from [18, Lemma 2.10]. �

For a given finitely generated graded'-module" that is�-flat and a tuple of functions
h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1, we consider the following functor for any ring �,

FExt h
"(�) :=

{
morphism Spec(�) → Spec(�)

[
Ext8'⊗��(" ⊗� �, ' ⊗� �)

]
�
is a locally free

�-module of rank ℎ8(�) for all 0 ≤ 8 ≤ A, � ∈ Z

}
.

Note that this functor controls all the Ext modules of " because, as a consequence of
Theorem 7.1.9, if " is �-flat then Ext8'⊗��(" ⊗� �, ' ⊗� �) = 0 for all 8 ≥ A + 1. The next
theorem provides a flattening stratification for all the Ext modules.

Theorem 7.1.10. Let " be a finitely generated graded '-module that is a flat �-module, and
h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1 be a tuple of functions. Then, the functor FExt h

"
is represented

by a locally closed subscheme FExth" ⊂ Spec(�). In other words, for anymorphism 6 : Spec(�) →
Spec(�), each Ext8'⊗��(" ⊗� �, ' ⊗� �) has a Hilbert function over � equal to ℎ8 if and only if
6 can be factored as

Spec(�) → FExth" → Spec(�).

Proof. Let �• : · · · → �8 → · · · → �1 → �0 be a graded free '-resolution of " by modules
of finite rank. Consider the complex �≤A+1

• given as the truncation �≤A+1
• : 0 → �A+1 →

�A → · · · → �1 → �0, and %• := Hom'(�≤A+1
• , '). By Theorem 7.1.9, �A+1

"
= �A+1(%•) =

�A+1(%•) is a flat �-module and so each [�A+1
"
]� (being finitely presented over �) is a

locally free �-module. Hence [91, Tag 00NX] implies that for all � ∈ Z the function
Spec(�) → N, p ↦→ dim�(p)([�A+1

"
⊗� �(p)]�) is locally constant. As a consequence, ℎ�A+1

"

is a constant function on each connected component of Spec(�).
Consider the bounded complex  • given by

 • : 0→ %0 → · · · → %A → %A+1 → �A+1
" → 0.

Note that � 8( • ⊗� �) = � 8(%• ⊗� �) � Ext8'⊗��(" ⊗� �, ' ⊗� �) for all 0 ≤ 8 ≤ A (since
" is �-flat), and that �A+1( • ⊗� �) = �A+2( • ⊗� �) = 0.

https://stacks.math.columbia.edu/tag/00NX
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To show that the functor FExt h
"
is representable, we can simply restrict Spec(�) to one

of its connected components. Thus, we now assume that Spec(�) is connected, and so
�A+1
"

has a Hilbert function over �. Let h′ = (ℎ0, . . . , ℎA , 0, 0) : ZA+3 → NA+3 be obtained
by concatenating two zero functions 0 : Z→ N to h. Finally, by Theorem 7.1.8, it follows
that FExt h

"
is represented by the locally closed subscheme FExth" := �h′

 • ⊂ Spec(�). This
settles the proof of the theorem. �

7.1.4 Flattening stratification of local cohomology modules
Next, we provide a flattening stratification theorem for local cohomology modules. The
main idea is that, by using some techniques from [14,18], we can obtain a flattening stratifi-
cation of local cohomologymodules from the one of Ext modules given in Theorem 7.1.10.

We start with the following lemma that gives a base change of local cohomology
modules over a base which is not necessarily Noetherian.

Lemma 7.1.11. Let � be a ring, ' = �[G1, . . . , GA] be a positively graded polynomial ring over �,
m = (G1, . . . , GA) ⊂ ' be the graded irrelevant ideal, and " be a graded '-module. If " is �-flat
and H8

m(") is �-flat for all 0 ≤ 8 ≤ A, then H8
m(") ⊗� �

�−→ H8
m(" ⊗� �) for all 0 ≤ 8 ≤ A and

any �-algebra �.

Proof. By using [86] and the fact that G1, . . . , GA is a regular sequence in ', even if � is not
Noetherian, we can compute H8

m(") as the 8-th cohomology of C•m⊗'" where C•m denotes
the Čech complex with respect to m = (G1, . . . , GA). Let !• : · · · → !8 → · · · → !1 → !0 be
a graded free '-resolution of ". By considering the spectral sequences coming from the
double complex C•m ⊗( !• ⊗� �, we obtain the isomorphisms

H8
m(" ⊗� �) � �A−8

(
HA
m(!•) ⊗� �

)
for any �-algebra � and all integers 8 (see [14, Lemma 3.4]). By the flatness condition and
standard base change results (see [14, Lemma 2.8]), we obtain

H8
m(") ⊗� � � �A−8(HA

m(!•)) ⊗� �
�−→ �A−8(HA

m(!•) ⊗� �) � H8
m(" ⊗� �),

and so the result follows. �

The following setup is now set in place for the rest of the subsection.

Setup 2. Let � be a Noetherian ring, ' be a positively graded polynomial ring ' =

�[G1, . . . , GA] over �, m = (G1, . . . , GA) ⊂ ' be the graded irrelevant ideal, and � :=
deg(G1) + · · · + deg(GA) ∈ Z+.

For a graded '-module " and a morphism Spec(�) → Spec(�), we consider the
graded (' ⊗� �)-module " ⊗� � and we denote the �-relative graded Matlis dual by

(" ⊗� �)∗� = ∗Hom�(" ⊗� �, �) :=
⊕
�∈Z

Hom� ([" ⊗� �]−� , �) .
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Note that (" ⊗� �)∗� has a natural structure of graded (' ⊗� �)-module. From the canon-
ical perfect pairing of free �-modules in “top” local cohomology [']� ⊗� [HA

m(')]−�−� →
[HA

m(')]−� � � we obtain a canonical graded '-isomorphism HA
m(') � ('(−�))∗� =

∗Hom� ('(−�), �) . Then, for a morphism Spec(�) → Spec(�) and a complex �• : · · · →
�8 → · · · → �1 → �0 of finitely generated graded free '-modules, we obtain the isomor-
phisms of complexes

HA
m(�• ⊗� �) � HA

m(�•) ⊗� � �
(
Hom'(�•, '(−�))

)∗� ⊗� � � (
Hom'(�•, '(−�)) ⊗� �

)∗� .
The next proposition gives a sort of local duality theorem (see [18, Proposition 2.11]).

Proposition 7.1.12. Let " be a finitely generated graded '-module and suppose that " is a
flat �-module. Let Spec(�) → Spec(�) be a morphism. Then, the following two conditions are
equivalent:

(i) H8
m(" ⊗� �) has a Hilbert function over � for all 0 ≤ 8 ≤ A.

(ii) Ext8'⊗��(" ⊗� �, ' ⊗� �) has a Hilbert function over � for all 0 ≤ 8 ≤ A.

Moreover, when any of the above equivalent conditions is satisfied, we have that

ℎH8
m("⊗��)(�) = ℎExtA−8

'⊗��
("⊗��,'⊗��)(−� − �)

for all 8 , � ∈ Z.

Proof. Let �• : · · · → �8 → · · · → �1 → �0 be a graded free '-resolution of " by modules
of finite rank. As " is �-flat, �• ⊗� � is a resolution of " ⊗� �. Then, by using the
isomorphism of complexes HA

m(�• ⊗� �) �
(
Hom'(�•, '(−�)) ⊗� �

)∗� and the same proof
of [18, Proposition 2.11], we obtain that conditions (1) and (2) are equivalent, and that
in the case they are satisfied, we have the isomorphism H8

m(" ⊗� �) �
(
ExtA−8'⊗��(" ⊗�

�, '(−�) ⊗� �)
)∗� . �

For a given finitely generated graded'-module" that is�-flat and a tuple of functions
h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1, we consider the following functor for any ring �,

FLoch
"(�) :=

{
morphism Spec(�) → Spec(�)

[
H8
m(" ⊗� �)

]
�
is a locally free �-module

of rank ℎ8(�) for all 0 ≤ 8 ≤ A, � ∈ Z

}
.

Finally, we have below a theorem that gives a flattening stratification for local cohomology
modules.

Theorem 7.1.13. Let " be a finitely generated graded '-module that is a flat �-module, and
h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1 be a tuple of functions. Then, the functor FLoch

"
is represented

by a locally closed subschemeFLoch
" ⊂ Spec(�). In otherwords, for anymorphism 6 : Spec(�) →

Spec(�), eachH8
m("⊗��) has a Hilbert function over � equal to ℎ8 if and only if 6 can be factored

as
Spec(�) → FLoch

" → Spec(�).
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Proof. Let h′ = (ℎ′0, . . . , ℎ′A) : ZA+1 → NA+1 be a tuple of functions defined by ℎ′
8
(�) :=

ℎA−8(−� − �). So, it follows directly from Theorem 7.1.12 and Theorem 7.1.10 that FLoch
"

is represented by the locally closed subscheme FLoch
" := FExth′" ⊂ Spec(�). �

7.2 Flattening stratification of the higher direct images of a
sheaf and its twistings

In this section, we provide a flattening stratification theorem that deals with all the direct
images of a sheaf and its possible twistings. This result is the core of our approach to
show that the fiber-full scheme exists.

For completeness, we start with a base change result which is probably well-known to
the experts, but we could not find it in the generality we need (cf. [43, Lemma 4.1]). Let (
be a scheme and 5 : - ⊂ PA

(
→ ( be a projective morphism. Let 6 : ) → ( be a morphism

of schemes and C ∈ ) be a point. We use the notation -) := -×(), 5()) := 5 ×() : -) → ),
-C := -) ×) Spec(�(C)) and 5(C) := 5()) ×) Spec(�(C)) : -C → Spec(�(C)), and we consider
the commutative diagram

-C = -) ×) Spec(�(C)) -) = - ×( ) - = - ×( (

Spec(�(C)) ) (.

1 ×) �C

�C

5(C)

1 ×( 6

6

55())

For a quasi-coherent sheaf F on -, let F) := (1 ×( 6)∗F be the sheaf on -) obtained by
the pull-back induced by 6 and FC := (1 ×) �C)∗F) be the sheaf on -C obtained by taking
the fiber over C. Recall that in this setting, we have the base change map 6∗'8 5∗F →
'8 5())∗ (F)) for all 8 ≥ 0.

Proposition 7.2.1. Let ( be a scheme, 5 : - ⊂ PA
(
→ ( be a projective morphism and F be a

quasi-coherent O--module. Suppose that '8 5∗ (F (�)) is a flat O(-module for all 0 ≤ 8 ≤ A, � ∈ Z.
Let 6 : ) → ( be a morphism of schemes. Then, F is flat over ( and we have a base change
isomorphism

6∗'8 5∗ (F (�))
�−→ '8 5())∗ (F)(�))

for all 0 ≤ 8 ≤ A, � ∈ Z.

Proof. Since the first consequence is local on ( and the second one is local on ), we
may assume that ) = Spec(�) and ( = Spec(�) are affine schemes. Then, we have the
identifications

'8 5∗ (F (�)) � � 8(-,F (�))∼ � � 8(PA� ,F (�))
∼
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and
'8 5())∗ (F)(�)) � � 8(-) ,F)(�))∼ � � 8(PA� ,F)(�))∼

(see [91, Tag 01XK], [47, Proposition 8.5]). Let ' := �[G0, . . . , GA] with PA
�
= Proj('),

m = (G0, . . . , GA), and " be the graded '-module given by " :=
⊕

�∈Z �
0(PA

�
,F (�)).

Note that F � "∼ and F) � (" ⊗� �)∼. Thus, it is clear that F is flat over (. We have
the exact sequence

0→ H0
m(" ⊗� �) → " ⊗� �→

⊕
�∈Z

�0(PA� ,F)(�)) → H1
m(" ⊗� �) → 0

and the isomorphism H8+1
m (" ⊗� �) �

⊕
�∈Z �

8(PA
�
,F)(�)) for all 8 ≥ 1. In the special

case � = �, since " =
⊕

�∈Z �
0(PA

�
,F (�)), we obtain that H0

m(") = H1
m(") = 0. Finally,

Theorem 7.1.11 implies that H8
m(") ⊗� �

�−→ H8
m(" ⊗� �) for all 0 ≤ 8 ≤ A + 1, and so the

proof of the proposition is complete. �

We fix the following setup for the rest of this section.

Setup 3. Let ( be a locally Noetherian scheme and 5 : - ⊂ PA
(
→ ( be a projective

morphism.

Whenwe take the fiber-C = -)×) Spec(�(C)) of 5()) over C ∈ ), we get the isomorphism

'8 5(C)∗ (FC) � � 8 (-C ,FC)∼

for all 8 ≥ 0. Our main object of study is the following functor. For a given coherent sheaf
F on - that is (-flat and a tuple of functions h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1, we consider
the following functor for any scheme ),

FDir h
F ()) :=

morphism ) → (

'8 5())∗ (F)(�)) is locally free over ) and
dim�(C)

(
� 8 (-C ,FC(�))

)
= ℎ8(�)

for all 0 ≤ 8 ≤ A, � ∈ Z, C ∈ )

 .
Note that, as a consequence of Theorem 7.2.1, a morphism ) → ( belongs to the set
FDir h

F ()) if and only if '8 5())∗ (F)(�)) is a locally free O)-module of rank ℎ8(�) for all
0 ≤ 8 ≤ A, � ∈ Z. The following theorem yields the representability of the functor FDir h

F .
This result will be our main tool.

Theorem 7.2.2. LetF be a coherent sheaf on - that is flat over (, and h = (ℎ0, . . . , ℎA) : ZA+1 →
NA+1 be a tuple of functions. Then, the functor FDir h

F is represented by a locally closed subscheme
FDirh

F ⊂ (. In other words, for any morphism 6 : ) → ( of schemes, each '8 5())∗ (F)(�)) is a
locally free O)-module of rank ℎ8(�) if and only if 6 can be factored as

) → FDirh
F → (.

https://stacks.math.columbia.edu/tag/01XK


CHAPTER 7. THE FIBER-FULL SCHEME 118

Proof. Let ( =
⋃
9∈� ( 9 be an open covering of ( where each ( 9 is a Noetherian affine

scheme. Note that the functor FDir h
F is a Zariski sheaf and it has a Zariski covering by

the open subfunctors {G9} 9∈� where

G9()) :=
morphism ) → ( 9

'8 5())∗ (F)(�)) is locally free over ) and
dim�(C)

(
� 8 (-C ,FC(�))

)
= ℎ8(�)

for all 0 ≤ 8 ≤ A, � ∈ Z, C ∈ )


(see [36, §8.3]). Therefore, due to [36, Theorem 8.9], in order to show that FDir h

F is
representable by a locally closed subscheme of (, it suffices to show that each G9 is
representable by a locally closed subscheme of ( 9 .

As a consequence of the above reductions, we assume that � is a Noetherian ring and
( = Spec(�). Since all the conditions that we consider on '8 5())∗ (F)(�)) are local on ),
we may restrict to an affine morphism ) = Spec(�) → Spec(�), and we do so.

Let ' := �[G0, . . . , GA] with PA
�
= Proj(') and m = (G0, . . . , GA) ⊂ '. By known

arguments, we can choose an integer< ∈ Z such that the following conditions are satisfied:

(i) " :=
⊕

�≥< �
0(PA

�
,F (�)) is a finitely generated graded '-module that is flat over

�,

(ii) "∼ � F and (" ⊗� �)∼ � F) ,

(iii) " ⊗� � �
⊕

�≥< �
0(PA

�
,F)(�)), and

(iv) � 8(PA
�
,F (�)) = 0 for all 1 ≤ 8 ≤ A, � ≥ <

(see, e.g., [47, §III.9]). Therefore, we obtain a short exact sequence

0→ " ⊗� �→
⊕
�∈Z

�0(PA� ,F)(�)) → H1
m(" ⊗� �) → 0

that splits into the isomorphisms

" ⊗� � �
⊕
�≥<

�0(PA� ,F)(�)) and
⊕
�<<

�0(PA� ,F)(�)) � H1
m(" ⊗� �),

and we get the isomorphism H8+1
m (" ⊗� �) �

⊕
�∈Z �

8(PA
�
,F)(�)) for all 8 ≥ 1.

We have obtained that � 8(PA
�
,F)(�)) is a locally free �-module of rank ℎ8(�) for all

8 ≥ 0, � ∈ Z if and only if the following three conditions hold:

• [" ⊗� �]� is a locally free �-module of rank ℎ0(�) for all � ≥ <,

• [H1
m(" ⊗� �)]� is a locally free �-module of rank ℎ0(�) for all � < <, and

• [H8
m(" ⊗� �)]� is a locally free �-module of rank ℎ8−1(�) for all 8 ≥ 2, � ∈ Z.
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Let ℎ′0, ℎ
′′
0 : Z→ N be the functions

ℎ′0(�) :=

{
ℎ0(�) if � < <

0 otherwise
and ℎ′′0 (�) :=

{
ℎ0(�) if � ≥ <
0 otherwise,

and h′ : ZA+2 → NA+2 be the tuple of functions defined by h′ := (0, ℎ′0, ℎ1, . . . , ℎA), where
0 : Z→ N denotes the zero function.

Finally, by Theorem 7.1.3 and Theorem 7.1.13, we obtain that each � 8(PA
�
,F)(�)) is a

locally free �-module of rank ℎ8(�) if and only if the morphism 6 : ) = Spec(�) → ( =

Spec(�) factors through the locally closed subscheme �ℎ
′′
0
"
∩ FLoch′

" ⊂ ( = Spec(�). This
concludes the proof of the theorem. �

7.3 Fiber-full sheaves
In this short section, we introduce the notion of fiber-full sheaf that extends the concept
of fiber-full modules from [18]. Let ( be a locally Noetherian scheme, 5 : - ⊂ PA

(
→ ( be

a projective morphism, and F be a coherent sheaf on -.

Definition 7.3.1. We say that F is a fiber-full sheaf over ( if '8 5∗ (F (�)) is locally free
over ( for all 0 ≤ 8 ≤ A and � ∈ Z.

For every B ∈ ( and @ ≥ 1, let 6B,@ be the natural map 6B,@ : Spec(O(,B/m@
B ) → (

where mB denotes the maximal ideal of the local ring O(,B , -B,@ be the scheme -B,@ :=
- ×( Spec(O(,B/m@

B ), and FB,@ := (1 ×( 6B,@)∗F be the sheaf on -B,@ obtained by the pull-
back induced by 6B,@ . For the case @ = 1 (i.e., when we take the fiber at a point B ∈ (), we
simply write 6B = 6B,1, -B = -B,1 and FB = �B,1. The following theorem gives two further
equivalent definitions for the notion of a fiber-full sheaf. The name “fiber-full” is inspired
by condition (3) below.

Theorem 7.3.2. Under the above notations, the following three conditions are equivalent:

(i) F is a fiber-full sheaf over (.

(ii) F is a locally free O(-module and � 8(-B,@ ,FB,@(�)) is a free O(,B/m@
B -module for all B ∈ (,

0 ≤ 8 ≤ A, � ∈ Z and @ ≥ 1.

(iii) F is a locally free O(-module and the natural map � 8(-B,@ ,FB,@(�)) → � 8(-B ,FB(�)) is
surjective for all B ∈ (, 0 ≤ 8 ≤ A, � ∈ Z and @ ≥ 1.

Proof. Since the three conditions are local on (, we can choose a point B ∈ ( and assume
that (�, b) = (O(,B ,mB) is a Noetherian local ring and ( = Spec(�). Moreover, in each of
the three above conditions one is assuming that F is flat over (. Let ' := �[G0, . . . , GA]
with PA

�
= Proj(') and m = (G0, . . . , GA) ⊂ '. Then, we can choose an integer < ∈ Z such

that the following conditions are satisfied:
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(i) " :=
⊕

�≥< �
0(PA

�
,F (�)) is a finitely generated graded '-module that is flat over

�,

(ii) "∼ � F and (" ⊗� �/b@)∼ � FB,@ , and

(iii) " ⊗� �/b@ �
⊕

�≥< �
0(PA

�/b@ ,FB,@(�)).

Similar to the proof of Theorem 7.2.2, by using the relations between local and sheaf
cohomologies, the equivalence of the three conditions follows directly from [18, Theorem
A]. �

7.4 Construction of the fiber-full scheme
In this section, we construct the fiber-full scheme which can be seen as a parameter space
that generalizes the Hilbert and Quot schemes and that controls all the cohomological
data instead of just the corresponding Hilbert polynomial. We also construct open sub-
schemes of the fiber-full scheme that parametrize arithmetically Cohen-Macaulay and
arithmetically Gorenstein schemes.

Let ( be a locally Noetherian scheme, 5 : - ⊂ PA
(
→ ( be a projective morphism, and

F be a coherent sheaf on -. We define the fiber-full functor which for an (-scheme
) parametrizes all coherent quotients F) � G such that all higher direct images of G
and its twistings are locally over ). That is, we define the following map for any (locally
Noetherian) (-scheme ):

FibF/-/(()) :=
{
coherent quotient F) � G

'8 5())∗ (G (�)) is locally free over )
for all 0 ≤ 8 ≤ A, � ∈ Z

}
.

One important basic thing about this map is the next lemma, which tells us that

FibF/-/( : (Sch/()opp→ (Sets)

is a contravariant functor from the category of (locally Noetherian) (-schemes to the
category of sets.

Lemma 7.4.1. Let 6 : )′ → ) be morphism of (locally Noetherian) (-schemes. Then, we have a
natural map

FibF/-/((6) : FibF/-/(()) → FibF/-/(()′), G ↦→ (1 ×) 6)∗G ,

where (1 ×) 6)∗G is the sheaf on -)′ obtained by the pull-back induced by 6.

Proof. This is a direct consequence of Theorem 7.2.1. �



CHAPTER 7. THE FIBER-FULL SCHEME 121

We now stratify this functor in terms of “Hilbert functions” for all the cohomologies.
Let h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1 be a tuple of functions. Then, we define the following
functor depending on h:

Fibh
F/-/(()) :=

{
G ∈ FibF/-/(())

dim�(C)
(
� 8 (-C , GC(�))

)
= ℎ8(�)

for all 0 ≤ 8 ≤ A, � ∈ Z, C ∈ )

}
.

The idea of this functor is to measure the dimension of all cohomologies of all possible
twistings. Of course, we obtain the following stratification

FibF/-/(()) =
⊔

h:ZA+1→NA+1

Fibh
F/-/(())

when ) is connected. Therefore, FibF/-/(()) is a representable functor if all the functors
Fibh

F/-/(()) are representable. WhenF = O- , we simplify the notation bywritingFibh
-/(,

and we obtain the following alternative description of significant interest

Fibh
-/(()) :=

closed subscheme / ⊂ -)
'8 5())∗ (O/(�)) is locally free over ) and
dim�(C)

(
� 8 (/C ,O/C (�))

)
= ℎ8(�)

for all 0 ≤ 8 ≤ A, � ∈ Z, C ∈ )

 .
These functors should be thought of as a refinement of the Hilbert and Quot functors in
the following sense.

Remark 7.4.2. Let h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1 be a tuple of functions and suppose that
%h :=

∑A
8=0(−1)8ℎ8 ∈ Q[C] is a numerical polynomial. Then, we automatically obtain the

following inclusions

Fibh
-/(()) ⊂ Hilb%h

-/(()) and Fibh
F/-/(()) ⊂ Quot%h

F/-/(()).

We say that %h is the Hilbert polynomial corresponding with the prescribed “Hilbert
functions” h : ZA+1 → NA+1 of cohomologies. Note that if the function %h =

∑A
8=0(−1)8ℎ8

does not coincide with a numerical polynomial then Fibh
-/(()) = ∅ for all (-schemes ).

Our main result is the following theorem which says that the functor Fibh
F/-/( is

represented by a quasi-projective (-scheme.

Theorem 7.4.3. Let h = (ℎ0, . . . , ℎA) : ZA+1 → NA+1 be a tuple of functions and suppose that
%h(C) ∈ Q[C] is a numerical polynomial. Then, there is a quasi-projective (-scheme Fibh

F/-/(
that represents the functor Fibh

F/-/( and that is a locally closed subscheme of the Quot scheme
Quot%h

F/-/(.
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Proof. By Theorem 7.4.2, there is an injective morphism of functors

Φ : Fibh
F/-/( → Quot%h

F/-/( .

We shall show that Fibh
F/-/( is a locally closed subfunctor of Quot%h

F/-/(. By the existence
of the Quot scheme [3,39], the functor Quot%h

F/-/( is represented by a projective (-scheme
Quot%h

F/-/( and a universal quotientFQuot%h
F/-/(

�W%h
F/-/( in Quot%h

F/-/(
(
Quot%h

F/-/(
)
. Let

& := Quot%h
F/-/( and W := W%h

F/-/(. Thus, for each (-scheme ) and for each quotient
F) � G in Quot%h

F/-/(()), there is a unique classifying (-morphism 6),G : ) → & such
that G = (1 ×( 6),�)∗W .

By using Theorem 7.2.2, let Fibh
F/-/( := FDirh

W ⊂ & be the locally closed subscheme
of & that represents the functor FDir h

W . So, it follows that a quotient in F) � G in
Quot%h

F/-/(()) belongs to Fibh
F/-/(()) if and only if 6),G factors through Fibh

F/-/(. Finally,
this shows that the functor Fibh

F/-/( is represented by the (-scheme Fibh
F/-/( and by the

universal quotientFFibh
F/-/(

� (1×( �)∗W inFibh
F/-/(

(
Fibh

F/-/(
)
, where � : Fibh

F/-/( ↩→ &

denotes the natural locally closed immersion. Since & is a projective (-scheme, we obtain
that Fibh

F/-/( is a quasi-projective (-scheme. �

Remark 7.4.4. When the base scheme ( is well understood, we may simply write the
fiber-full schemes as Fibh

F/- and Fibh
- instead of Fibh

F/-/( and Fibh
-/(, respectively.

Remark 7.4.5. Since the dimensions of the cohomology groups can jump in flat families,
the fiber-full scheme is usually not projective [47, Example III.12.9.2].

We now recall the following notions.

Definition 7.4.6. Let k be a field and . ⊂ PAk be a closed subscheme. Let '. be the
homogeneous coordinate ring of .. We say that . is arithmetically Cohen-Macaulay
(ACM for short) if '. is a Cohen-Macaulay ring. If '. is a Gorenstein ring then . is said
to be arithmetically Gorenstein (AG for short).

Next,we showthe existenceof open subschemesof thefiber-full scheme thatparametrize
ACM and AG schemes. Recall that a closed subscheme . ⊂ PAk is ACM if and only if the
following two conditions are satisfied:

(i) � 8(.,O.(�)) = 0 for all 1 ≤ 8 ≤ dim(.) − 1 and � ∈ Z, and

(ii) the natural map '. →
⊕

�∈Z �
0(.,O.(�)) is bĳective if dim(.) > 0, or injective if

dim(.) = 0.
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Let 3 ∈ N and ℎ0, ℎ3 : Z → N be two functions, and consider the tuple of functions
h : ZA+1 → NA+1 given by h = (ℎ0, 0, . . . , 0, ℎ3 , 0, . . . , 0) where 0 : Z → N denotes the
zero function. To study ACM and AG schemes, it then becomes natural to consider the
following two functors. For any (locally Noetherian) (-scheme ), we have

ACM ℎ0 ,ℎ3
-/( ()) :=

{
closed subscheme / ⊂ -) / ∈ Fibh

-/(()) and /C is ACM for all C ∈ )
}

and

AG ℎ0 ,ℎ3
-/( ()) :=

{
closed subscheme / ⊂ -) / ∈ Fibh

-/(()) and /C is AG for all C ∈ )
}
.

Note that, by using the base change results of Theorem 7.1.9 and Theorem 7.1.11, we can
immediately deduce that ACM ℎ0 ,ℎ3

-/( and AG ℎ0 ,ℎ3
-/( are indeed contravariant functors from

the category of (locally Noetherian) (-schemes into the category of sets. The following
theorem gives the representability of these two functors.

Theorem 7.4.7. Let 3 ∈ N and ℎ0, ℎ3 : Z → N be two functions, and consider the tuple
of functions h = (ℎ0, 0, . . . , 0, ℎ3 , 0, . . . , 0) : ZA+1 → NA+1. Suppose that %h(C) ∈ Q[C] is a
numerical polynomial. Then, there exist open (-subschemesACMℎ0 ,ℎ3

-/( andAGℎ0 ,ℎ3
-/( of Fibh

-/( that
represent the functors ACM ℎ0 ,ℎ3

-/( and AG ℎ0 ,ℎ3
-/( , respectively.

Proof. By Theorem 7.4.3, there is a pair (Fibh
F/-/( , I) representing the functor Fibh

F/-/(,
where Fibh

F/-/( is fiber-full scheme and I is the universal ideal sheaf on PA
Fibh

F/-/(
. Let

� := Fibh
F/-/(. This means that, for each (-scheme ) and for each / ∈ Fibh

F/-/(()), there
is a unique classifying (-morphism 6),/ : ) → � such that I/ = (1 ×( 6),/)∗I is the ideal
sheaf on PA

)
that corresponds with the closed subscheme / ⊂ PA

)
.

Fix / ∈ Fibh
F/-/(()), 6),/ : ) → � and I/ = (1×( 6),/)∗I. Since the conditions defining

the functorsACM ℎ0 ,ℎ3
-/( andAG ℎ0 ,ℎ3

-/( are local on), we can restrict themorphism 6),/ to affine
open subschemes Spec(�) ⊂ ) and Spec(�) ⊂ � with � being Noetherian. So, we assume
that ) = Spec(�) and � = Spec(�). Let ' := �[G0, . . . , GA] with PA

�
= Proj(') and m =

(G0, . . . , GA) ⊂ '. Let � ⊂ ' be the saturated ideal � :=
⊕

�∈Z �
0(PA

�
, I(�)). The saturated

ideal and homogeneous coordinate ring of / are given by �/ :=
⊕

�∈Z �
0(PA

�
, I/(�)) �

� ⊗� � and '/ := �[G0, . . . , GA]/�/ � '/� ⊗� �, respectively. For all C ∈ ), let 'C :=
�[G0, . . . , GA] ⊗� �(C) � ' ⊗� �(C) and '/,C := '/ ⊗� �(C) � '/� ⊗� �(C).

First, we show that ACM ℎ0 ,ℎ3
-/( is representable. By construction, H0

m('/,C) = 0 for
all C ∈ ), and so /C is ACM for all C ∈ ) when 3 = 0. If 3 > 0, we have that /C is
ACM for all C ∈ ) if and only if H1

m('/,C) = 0 for all C ∈ ). We have that the locus
+ := { 5 ∈ � | H1

m('/� ⊗� �( 5 )) = 0} is an open subscheme of �. When 3 > 0, 6),/ : ) =
Spec(�) → � = Spec(�) factors through + if and only if / ∈ ACM ℎ0 ,ℎ3

-/( ()). Therefore, it
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follows that, in both cases 3 = 0 or 3 > 0, ACM ℎ0 ,ℎ3
-/( is represented by an open subscheme

of ACMℎ0 ,ℎ3
-/( ⊂ �.

We now concentrate on the representability of AG ℎ0 ,ℎ3
-/( . Since a Gorenstein ring is

Cohen-Macaulay,weassume that/ ∈ ACM ℎ0 ,ℎ3
-/( ())andso 6),/ factors throughACMℎ0 ,ℎ3

-/( ⊂
�. Therefore, as '/,C is a Cohen-Macaulay ring of dimension 3 + 1, it is Gorenstein if and
only if its (3 + 1)-th Bass number

�3+1('/,C) := dim�(C)
(
Ext3+1

'/,C
('/,C/m'/,C , '/,C)

)
is equal to one (see [11, Theorem 3.2.10]). By upper semicontinuity, the locus

, :=
{
5 ∈ � | �3+1('/� ⊗� �( 5 )) ≤ 1

}
is an open subscheme of �. On the other hand, if 5 ∈ ACMℎ0 ,ℎ3

-/( , then�3+1('/�⊗��( 5 )) ≥ 1.
Finally, it follows that 6),/ : ) = Spec(�) → � = Spec(�) factors through AGℎ0 ,ℎ3

-/( :=
ACMℎ0 ,ℎ3

-/( ∩, if and only if / ∈ AG ℎ0 ,ℎ3
-/( ()). So, the proof of the theorem is complete. �

We end this section by giving two examples.

Example 7.4.8 (Points). Let ( be a locally Noetherian scheme and 5 : - ⊆ PA
(
→ ( be a

projective morphism. Let h : ZA+1 → NA+1 be the tuple of constant functions defined by
h := (2, 0, . . . , 0) and let %h = 2 be the associated Hilbert polynomial. For any (-scheme )
and / ∈ Hilb%h

-/(()), we have

dim�(C)�
8(/C ,O/C (�)) =

{
2 if 8 = 0
0 if 8 > 0

for all C ∈ ) and � ∈ Z. It follows that Fibh
-/(()) = Hilb%h

-/(()) for all ) and thus

Fibh
-/( = Hilb%h

-/( .

In particular, Fibh
PA satisfies Murphy’s law up to retraction for A ≥ 16 [55, Theorem 1.3].

More generally, for any coherent sheaf F on -, we have Fibh
F/-/( = Quot%h

F/-/(.

For the next two examples, let k be an algebraically closed field of characteristic zero.

Example 7.4.9 (Twisted cubics). By the work of [79] it is known that Hilb3<+1
P3

k
= � ∪ �′

is a union of two smooth irreducible components such that the general member of �
parametrizes a twisted cubic, and the general member of �′ parametrizes a plane cubic
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union an isolated point. It is also known that � − � ∩ �′ is the locus of arithmetically
Cohen-Macaulay curves of degree 3 and genus 0. Then we have a decomposition

Hilb3<+1
P3

k
= Fib(h,0,0)

P3
k
t Fib(h

′,0,0)
P3

k
= (� − � ∩ �′) t �′

where h = (ℎ0, ℎ1), h′ = (ℎ′0, ℎ′1) : Z2 → N2 are the tuples of functions given by

ℎ0(�) =
{

0 if � ≤ −1
3E + 1 if � ≥ 0,

ℎ′0(�) =


1 if � ≤ −1
2 if � = 0
3E + 1 if � ≥ 1

and ℎ1(�) = ℎ0(�) − (3� + 1)
ℎ′1(�) = ℎ′0(�) − (3� + 1).

To verify this decomposition we appeal to the classification of ideals in [79, §4]. Since

ℎ0(-,O-(�)) = "(O-(�)) + ℎ1(-,O-(�)) = 3� + 1 + ℎ1(-,O-(�))

for any [-] ∈ Hilb3<+1
P3

k
, it suffices to compute ℎ0(-,O-(�)). Any subscheme [-] ∈

� − � ∩ �′ is arithmetically Cohen-Macaulay with the ideal sheaf having a resolution

0→ OP3
k
(−3)2 → OP3

k
(−2)3 → I- → 0.

It follows that ℎ0(I-(�)) = 3
(�+1

3
)
− 2

(�
3
)
. Using the ideal sheaf exact sequence and the fact

that ℎ1(I-(�)) = 0 we deduce that ℎ0(-,O-(�)) =
(�+3

3
)
− 3

(�+1
3

)
+ 2

(�
3
)
= 3� + 1 for � ≥ 0

and 0 otherwise, as required.
If [-] ∈ �′ then I- = I-′ ∩J where -′ is a plane cubic and J defines a, possibly

embedded, 0-dimensional subscheme. Consider the exact sequence

0→ I-′/I- → O- → O-′ → 0

of sheaves on -. Since I-′/I- is 0-dimensional, we have

ℎ0(-,I-′/I-) = length(I-′/I-) = (3< + 1) − 3< = 1.

It is straightforward to show that the cohomology of a plane curve . of degree 3 is given
by ℎ0(.,O.(�)) =

(�+2
2

)
−

(�+2−3
2

)
. Thus, we deduce that ℎ0(-,O-(�)) = ℎ0(-′,O-′(�))+1 =(�+2

2
)
−

(�−1
2

)
+ 1, as required.

7.5 Smooth Hilbert schemes
In this section, we study the fiber-full scheme as a subscheme of smooth Hilbert schemes,
the latter were recently classified in [88]. Our main result states that if the Hilbert scheme
is smooth, then it is equal to a fiber-full scheme.
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Definition 7.5.1. For an integer partition�, define the tuple of functions h� = (ℎ0, . . . , ℎA) :
ZA+1 → NA+1 given by ℎ8(�) := dimk

(
� 8(PAk,O+(!(�))(�))

)
for all � ∈ Z.

We begin by describing h� explicitly.

Lemma 7.5.2. Let � = (�1, . . . ,�=) ≠ (A + 1) be an integer partition and !(�) = !(01 . . . , 0A) be
the associated lexicographic ideal. Then, for all � ∈ Z we have

dimk

(
� 8(PAk,O+(!(�))(�))

)
=

{∑=
8=1

(�+�8−8
�−8+1

)
+

(01+···+0A−�−1
1

)
−

(02+···+0A−�−1
1

)
if 8 = 0(08+1+···+0A−�−1

8+1
)
−

(08+2+···+0A−�−1
8+1

)
if 8 > 0.

Proof. Fix ! = !(�). By [83, Lemma 3.2], we obtain

Ext8'('/!, ') �
(
'/(G0, . . . , G8−2, G

0A−8+1
8−1 )

)
(0A−8+1 + · · · + 0A + 8 − 1), 1 ≤ 8 ≤ A.

Note that 0; in the notation of [83] corresponds to 0;+1 in our convention. Using the exact
sequence

0→ ('/(G0, . . . , G@−1))(−?) → '/(G0, . . . , G@−1) → '/(G0, . . . , G@−1, G
?
@ ) → 0,

we deduce that

dimk

( [
'/(G0, . . . , G@−1, G

?
@ )

]
�

)
=

(
� + A − @
A − @

)
−

(
� − ? + A − @

A − @

)
.

Using the above formulas and the local duality theorem (see, e.g., [11, Theorem 3.6.19]),
we obtain

dimk

(
� 8(PAk,O+(!)(�))

)
= dimk

(
[� 8+1

m ('/!)]�
)

= dimk

(
[ExtA−8' ('/!, ')]−�−A−1

)
= dimk

( [
'/(G0, . . . , GA−8−2, G

08+1
A−8−1)(08+1 + · · · + 0A + A − 8 − 1)

]
−�−A−1

)
=

(
08+1 + · · · + 0A − � − 1

8 + 1

)
−

(
08+2 + · · · + 0A − � − 1

8 + 1

)
.

for all 8 > 0. Similarly, since ! is saturated, we obtain

dimk

(
�0(PAk,O+(!)(�))

)
= dimk (['/!]�) + dimk

(
[�1

m('/!)]�
)

= dimk (['/!]�) + dimk
(
[ExtA'('/!, ')]−�−A−1

)
=

=∑
8=1

(
� + �8 − 8
� − 8 + 1

)
+

dimk

( [
'/(G0, . . . , GA−2, G

01
A−1)(01 + · · · + 0A + A − 1)

]
−�−A−1

)
=

=∑
8=1

(
� + �8 − 8
� − 8 + 1

)
+

(
01 + · · · + 0A − � − 1

1

)
−

(
02 + · · · + 0A − � − 1

1

)
.
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The formula for dimk (['/!]�) can be found in [88, Lemma 3.3]. �

Beforewe can prove themain result of this section, we need a simple lemma that relates
the cohomologies of +( 5 �) to those of +(�) for any subscheme +(�) ⊆ PAk of codimension
at least two.

Lemma 7.5.3. Let � = (A, . . . , A︸  ︷︷  ︸
0A -times

,�′) be an integer partition with 0A > 0 and [�] ∈ Hilb%�PAk
. Then,

we have � = 5 �′ with [�′] ∈ Hilb%�′PAk
, deg( 5 ) = 0A and

dimk

(
� 8(PAk,O+(�)(�))

)
=

{
dimk

(
� 8(PAk,O+(�′)(� − 0A))

)
if 8 ≠ A − 1(0A−�−1

A

)
−

(−�−1
A

)
if 8 = A − 1.

Proof. The first statement is Lemma 5.2.1. The second statement follows from the local
duality theorem and [83, Fact 1], similar to Theorem 7.5.2. �

Thenext propositionprovides an equality between thefiber-full schemeand theHilbert
scheme when the latter is smooth.

Proposition 7.5.4. Let � denote an integer partition for which Hilb%�PAk
is smooth. Then, we have

the equality
Fibh�

PAk
= Hilb%�PAk

.

Proof. Since theHilbert schemeHilb%�PAk
is smooth, it suffices to just check thatFibh�

PAk
(Spec(k)) =

Hilb%�PAk
(Spec(k)). By Theorem 2.0.27 there are seven different families of � for which the

Hilbert scheme is smooth. We can reduce to considering partitions that satisfy 0A = 0,
i.e., Hilbert schemes parametrizing subschemes of codimension at least two. Indeed, if
0A > 0, Theorem 7.5.3 implies that Fibh�

PAk
= Hilb%�PAk

if and only if Fibh�′
PAk

= Hilb%�′PAk
where

� = (A, . . . , A︸  ︷︷  ︸
0A -times

,�′). Thus, for the rest of the proof we will only study those partitions in

Theorem 2.0.27 for which 0A = 0.
The conclusion is immediate forCase (7) as theHilbert scheme consists of a single point.

Case (1) corresponds to the Hilbert scheme of points in P2
k. In this case � = (1, . . . , 1),

equivalently %� is constant, and this is covered by Theorem 7.4.8. Similarly, Case (6)
reduces to � = (1, 1, 1)which is also covered by Theorem 7.4.8.

To deal with Case (2) and Case (3) we use the fact that they have a unique Borel-fixed
point. Let � be as in Case (2) or Case (3) and let [�] ∈ Hilb%�PAk

with � saturated. Since gin(�)
is Borel-fixed [25, Theorem 15.20], we have gin(�) = !(�). This implies � and !(�) have
the same Hilbert function and thus, !(�) is the lexicographic ideal associated to �. The
result now follows from [85, Theorem 0.1]. The characteristic assumption of [85] does not
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pose any issue because, in our case, the generic initial ideal is strongly stable [85, proof of
Theorem 0.1, page 274].

Case (4) and Case (5) correspond to Hilbert schemes with two Borel-fixed points. By
Theorem 5.0.1 we have two cases

• � = ((3 + 1)@ , 1) with 3 ≥ 2 and @ ≥ 2: The general member of Hilb%�PAk
parametrizes

� ∪ {%} where � ⊆ P3+1
k is a hypersurface of degree @ and % is a point.

• � = (2@ , 1) with @ ≥ 4: The general member of Hilb%�PAk
parametrizes � ∪ % where �

is a plane curve of degree @ and % is a point.

In either case, for any subscheme [-] ∈ Hilb%�PAk
, we have I- = I-′ ∩ J with [-′] ∈

Hilb%�−1
PAk

and J defining a, possibly embedded, 0-dimensional subscheme. Arguing as

in Theorem 7.4.9, we see that Fib%�PAk
= Hilb%�PAk

if and only if Fib%�−1
PAk

= Hilb%�−1
PAk

. But the
latter equality has already been established since � = ((3 + 1)@) and � = (2@), for the
aforementioned 3, @, have a unique Borel-fixed point. �
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Appendix A

Radius of the Hilbert scheme

Many things can cause mistakes: similar symbols, sloppy handwriting,
alcohol last night, teacher’s advice...

– Shihoko Ishi [54]

In this short appendixwe give an explicit example of aHilbert schemewhose incidence
graph has radius two. The example will involve a certain Hilbert scheme of a pair of linear
spaces studied in Chapter 3.

In Chapter 2 we came across the following theorem of Reeves on the radius of the
Hilbert scheme

Theorem A.0.1 ( [84, Theorem 7]). Consider the Hilbert scheme Hilb%(P=) and let 3 =
deg% be the dimension of the parameterized subschemes. Then the distance from any
component to the lexicographic component is at most 3 + 1. In particular, the radius of
the Hilbert scheme is at most 3 + 1.

It is natural to ask to what extent Reeves’ bound on the radius is sharp. As far as we are
aware, no explicit example of a Hilbert scheme with radius larger than one has appeared
in the literature. It turns out that the Hilbert schemes we studied in Chapter 3 provide
such an example.

Theorem A.0.2. The radius of the Hilbert scheme Hilb%
5
3,3(P5) is two. Moreover, the

lexicographic component is not the center of the incidence graph.

Since the lexicographic component is, in general, the best understood component, one
might start by studying the components which meet the lexicographic component. How-
ever, there are two immediate obstacles. The first is that it is difficult to determine all
the components of the Hilbert scheme. Secondly, it is even more difficult to prove that
two components of the Hilbert scheme do not meet. Even if we succeeded in determin-
ing which components meet the lexicographic component, the lexicographic component
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might not be the center of the incidence graph. We overcome these problems by working
with family of Hilbert schemes Hilb%

=
=−2,=−2(P=) where we completely understand a com-

ponent different from the lexicographic component. For simplicity, we assume k is an
algebraically closed field of characteristic zero.

A.1 The example with radius 2
Recall from Chapter 3 that for = ≥ 3 the Hilbert scheme

H= := Hilb%
=
=−2,=−2(P=)

has a component H=
=−2,=−2 whose general member parameterizes a pair of codimension

two linear spaces meeting transversely in P= . For this chapter we denote this component
by H=

1 . The Hilbert scheme H= has another component, denoted by H=
2 whose general

memberparameterizes&∪Λ=−3 where& is a quadric (=−2)-fold andΛ=−3 is a codimension
three linear space such that & ∩Λ=−3 is a codimension four linear space.

Theorem A.1.1 ( [16, Theorem 1.1]1). Let = ≥ 3. The only component of H= that H=
1 meets is

H=
2 .

In the new notation, Theorem A.0.2 states that the Hilbert scheme H5 has radius two.
With a bit more analysis, that we omit, we can describe a large portion of the incidence
graph. In particular, other than the six known components of H5 [16, Remark 2.7] we
found another component and we were able to determine how these components met one
another. Moreover, we checked that all of these components are generically smooth. We
believe that these are all the components, but we were unable to prove it:

H5
1 H5

2 H5
3

H5
4

H5
5

H5
6

H5
lex

Here is a description of the components appearing in the graph. For the rest of the
paragraph, Λ8 will denote an 8-dimensional linear space and & will denote a quadric
threefold.

1Our notation differs from [16]; in their paper the authors use �= to denote the component H=
1 .
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(i) The general point ofH5
3 parameterizes the scheme theoretic union& ∪Λ2∪/ where

/ is a double line of genus −2 embedded along Λ2 and & ∩Λ2 is a conic.

(ii) The general point of H5
4 parameterizes & ∪Λ2 ∪Λ1 such that & and Λ2 lie in a four

dimensional linear subspace of P5, and & ∩Λ1 is a point.

(iii) The general point of H5
5 parameterizes & ∪Λ2 ∪Λ1 such that & and Λ2 lie in a four

dimensional linear subspace of P5, and Λ2 ∩Λ1 is a point.

(iv) The general point of H5
6 parameterizes & ∪Λ2 ∪Λ1 ∪Λ0 such that &, Λ2 and Λ1 lie

in a four dimensional linear subspace of P5, and Λ0 is an isolated point.

(v) The general point ofH5
lex parameterizes & ∪Λ2 ∪Λ1 ∪Λ0 ∪Λ′0 such that &, Λ2 and

Λ1 lie in a four dimensional linear subspace of P5, Λ1 ∩Λ2 is a point, and Λ0,Λ
′
0 are

isolated points.

A.2 Computing the radius
Prior to analyzingH5 we need a sufficiently good understanding ofH4. The general point
ofH4

lex parameterizes a quadric surface union a line and two isolated points, such that the
line meets the quadric at two points.

Lemma A.2.1. The Hilbert schemeH4 has three Borel-fixed ideals:

�1 = (G2
0 , G0G1, G0G2, G

2
1), �2 = (G2

0 , G0G1, G0G2, G0G3, G
3
1 , G

2
1G2), �lex = (G0, G

3
1 , G

2
1G

2
2 , G

2
1G2G3).

Moreover,

(i) �1 only lies in H4
1 andH

4
2,

(ii) �lex only lies in H4
lex,

(iii) �2 is in every component ofH4 \H4
1.

Proof. The Borel-fixed ideals can be computed using [70, Algorithm 4.6] or using the
computer algebra system Macaulay2 [38] and the package Strongly stable ideals [2]. By
Theorem 3.4.9, �1 is the unique Borel-fixed ideal on H4

1. Since H4
1 meets H4

2 and their
intersectionmust contain a Borel-fixed ideal, �1 also lies inH4

2. SinceH
4
1 does not meet any

other component (Theorem A.1.1), �1 does not lie on any other component. We know that
the lexicographic ideal �lex is a smooth point and lies on its own component, H4

lex. Since
H4 is connected, every component ofH4 \H4

1 contains �2. �

Proposition A.2.2. The Hilbert scheme H4 has radius one while the distance between H4
1 and

H4
lex is two.
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Proof. This is an immediate consequence of LemmaA.2.1 as every component ofH4 meets
H4

2 and H4
lex does not meetH4

1. �

This shows that even when the radius is one, the lexicographic component need not
be the center of the incidence graph.

RemarkA.2.3. Bycomputinganeighbourhoodof �2 inH4, it canbe shown thatH4
1 ,H

4
2 ,H

4
lex

are the only irreducible components ofH4 and thatH4
2 is smooth.

Lemma A.2.4. The Hilbert schemeH5 has nine Borel-fixed ideals:

(i) �1 = �lex = (G0, G
3
1 , G

2
1G

2
2 , G

2
1G2G

2
3 , G

2
1G2G3G

2
4),

(ii) �2 = (G0, G
3
1 , G

2
1G2G3G4, G

2
1G

2
2G4, G

2
1G2G

2
3 , G

2
1G

2
2G3, G

2
1G

3
2),

(iii) �3 = (G0, G
4
1 , G

3
1G2, G

3
1G3, G

3
1G4, G

2
1G

2
2 , G

2
1G2G

2
3 , G

2
1G2G3G4),

(iv) �4 = (G0, G
4
1 , G

3
1G2, G

3
1G3, G

2
1G

2
2 , G

2
1G2G3, G

3
1G

2
4),

(v) �5 = (G2
0 , G0G1, G0G2, G0G3, G0G4, G

3
1 , G

2
1G2G

2
3 , G

2
1G2G3G4, G

2
1G

2
2),

(vi) �6 = (G2
0 , G0G1, G0G2, G0G3, G0G4, G

4
1 , G

3
1G2, G

3
1G3, G

3
1G4, G

2
1G

2
2 , G

2
1G2G3),

(vii) �7 = (G2
0 , G0G1, G0G2, G0G3, G0G

2
4 , G

3
1 , G

2
1G2G3, G

2
1G

2
2),

(viii) �8 = (G2
0 , G0G1, G0G2, G0G3, G

3
1 , G

2
1G2),

(ix) �9 = (G2
0 , G0G1, G0G2, G

2
1).

Moreover, �1, . . . , �7 are the only Borel-fixed ideals lying in the lexicographic component.

Proof. The computation of Borel-fixed ideals is similar to LemmaA.2.1. To prove the other
statement we appeal to a theorem of Reeves. Given an ideal � ⊆ ( we define the double
saturation, satG4 ,G5(�) to be the ideal obtained by setting G4 = 1 and G5 = 1 in �. It is shown
in [84, Theorem 11] that a Borel-fixed ideal � lies in the lexicographic component if and
only if satG4 ,G5(�) = satG4 ,G5(�lex). It is clear that the double saturation of �1, . . . , �7 are all
equal to satG4 ,G5(�lex) = (G0, G

3
1 , G

2
1G

2
2 , G

2
1G2G3) while the double saturation of �8 and �9 are

different. �

NotationA.2.5. Let/ 9 denote theBorel-fixedpoints definedby the ideal � 9 of LemmaA.2.4.

Lemma A.2.6. The component H5
2 does not meet H5

lex. Moreover, the only Borel-fixed points on
H2

5 are /8 and /9.



APPENDIX A. RADIUS OF THE HILBERT SCHEME 133

Proof. By Lemma A.2.4 it suffices to show that H5
2 does not contain /1, . . . , /7. Assume

this was not the case; then there is a flat family X → Spec k[C](C) with generic fiber
X{(0)} isomorphic to a quadric threefold meeting a plane along a line and special fiber
X{(C)} = /8 for some 8 ≤ 7. We may choose the family so that X{(0)} is transverse to the
hyperplane +(G5) in P5

k(C). Since G5 is a non-zero divisor on (/�/8 , the hyperplane section
X ∩+(G5) → Spec k[C](C) is still flat.

Since X{(0)} ∩ +(G5) is a quadric surface meeting a line at a point, /8 ∩ +(G5) must lie
in the component H4

2. A straightforward computation shows that the (saturated) ideal of
/8 ∩ +(G5) is defined by (G5, G0, G

3
1 , G

2
1G2G3, G

2
1G

2
2). But as noted in Lemma A.2.1 (ii), this

defines the lexicographic point which lies inH4
lex \H

4
2; a contradiction.

By Theorem 3.4.9, /9 is the unique Borel-fixed point inH5
1 and thus /9 ∈ H5

1∩H
5
2 ⊆ H5

2.
Since the Hilbert scheme is connected, H5

2 must meet a component W different from H5
1

and H5
lex. Once again using Lemma A.2.4 we see that /8 ∈ H5

2 ∩W ⊆ H5
2. �

Proof of Theorem A.0.2. Since H5
1 only meets H5

2 (Theorem A.1.1) and H5
lex does not meet

H5
2 (Lemma A.2.6), the radius of H5 is at least two. To show that the radius of H5 is at

most two, it is enough to establish the following two facts:

(i) The distance fromH5
2 toH5

lex is two,

(ii) If Y is a component of H5 that does not meet H5
2 then W meetsH5

lex.

Indeed, once we know these two facts, the component connecting H5
2 to H5

lex will be a
center of the incidence graph. To prove (i) consider a path H5

2 = W1,W2, . . . ,W< = H5
lex

with W8 ∩W8+1 ≠ ∅ and < minimal. The minimality of < implies W3 ∩W1 = ∅. Since
/8, /9 lie inW1, the intersectionW2∩W3 must contain one of /1, . . . , /7. By LemmaA.2.4,
W2 meets the lexicographic component. Thus < = 3 proving item (i). The proof of item
(ii) is analogous. �
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