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ABSTRACT OF THE THESIS

A Numerical Verification Framework for Differential Privacy in Estimation

by

Yunhai Han

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Sonia Martı́nez, Chair

This work proposes a verification framework for detecting violations of differential privacy

for dynamic systems. Differential privacy aims to protect the privacy of the inputs of a mechanism

so an adversary can not obtain relevant information about any of them by analyzing its outputs.

The framework evaluates the differential privacy of a dynamic system mechanism. An event is

defined as a subset of the state space. Considering the outputs of the mechanism (continuous-

space) state estimates, the number of events required to perform the test is infinite. Thus, to obtain

a tractable test, we limit events containing the outputs up to a given resolution. Further, to limit the

effect of long-time horizons, we restrict events to those which will contain the outputs with high

probability using a data-driven scenario approach. Finally, a statistical hypothesis test is employed

ix



to detect the violations of differential privacy. In order to find the event that is most likely to

disclose the violations, one event is chosen based on the test values. Numerical simulation results

of W2-Moving-Horizon-Estimator and Extended Kalman Filter are performed and evaluated using

this framework. The results demonstrate that the differential privacy is achieved at the cost of

inaccuracy.
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Chapter 1

Introduction

Recently, a rapidly growing number of emerging systems, such as smart grids or intelligent

transportation systems, require data from particular sensors or users (smart sensors or vehicle

GPS) to continuously estimate the current states of the target system. Commonly, the estimation

results are more accurate in the benefit of the online dynamic data, which is good for serving

the tasks of monitoring or control. For example, in a smart grid application, the customer could

receive better rates if the utility company tracks his instantaneous power consumption data,

because it helps to improve the demand forecast algorithm. However, for the privacy reasons,

the data senders who benefit from these systems want to preserve their individual information

as much as possible. In other words, only the strictly necessary information should be released.

Moreover, even though the released data is anonymous, the privacy is not guaranteed due to the

public side information. This has been already demonstrated in [1], in which the researchers found

that although the released datasets provided by Netflix was shown to preserve customer privacy,

it is still possible to identify individual users by using side information from other third-parties,

such as public recommendation systems. Traffic monitoring system [2] that measures the person’s

position from their smartphones is another example where the person’s position traces can be

identified by the correlation between their locations and residences. Hence, several researchers
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have developed privacy preserving mechanisms to address these problems in order to promote the

applications of emerging systems.

Precisely defining what constitutes the privacy in a mathematical notion is a tough work.

Differential Privacy [3], which was initially used in the database literature, is a successful

definition and has gradually become as a standard privacy specification [4]. The differentially

private algorithm randomizes the system outputs in such a way that the distribution of the outputs

is not too sensitive to the system inputs provided by any single senders. As a result, it is more

difficult for the adversaries to make any inferences about individuals based on the system outputs

and side information [5]. It has already been applied in the commercial products provided by

technological giants, such as Apple or Google. They announce that their products are able to

learn from a group as much as possible while keeping minimum knowledge of any members in it.

In the recent decades, the notion of differential privacy has received increasing attention from

the researchers in the field of control and system. They take advantage of the clear definition

to design privacy-preserved estimators for various tasks, including control systems [6], network

topology [7] and estimation and filtering [8]. The work [9] focuses on the development of

differentially-private estimator, which introduces the concept of differential privacy into Kalman

filter design. In [10], the researchers modifies the optimization-based estimators via a perturbed

objective function for the desired level of differential privacy. The concise and broad overview of

the differential privacy in control system can be found in [11].

However, the design of these algorithms is very subtle and error-prone. It has been proved

in the database literature that a large number of proposed algorithms (published) are incorrect

[12] [13], which means the claimed level of differential privacy can not be achieved. In other

words, the individual private information is potentially released for the undesirable usage even

though the data is processed using these algorithms. In [14], they find an approach to detect the

violations of differential privacy in several sophisticated differentially private algorithms. They

build a numerical method of evaluating these algorithms and verifying the correct ones in which
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the claimed level of differential privacy is satisfied. However, their work is only limited to the

database applications. To the best of the authors’ knowledge, currently, there is no published

method that is developed for the same purpose but targets at the control tasks. It disagrees with

the fact that a large number of differentially private estimators are being studied on.

The main contribution of this paper is to build a numerically verification framework that

can detect the violations of differential privacy in several estimators. We redefine the procedures

in [14] so that it can be applied in the online estimation systems. The statistical nature of the

framework is similar as illustrated in [14]: it implements the candidate estimator many times and

then uses a statistical test to evaluate whether or not the claimed level of differential privacy is

satisfied. With the help of this framework, it can greatly reducerobotics the burden for the other

researchers or engineers of selecting the appropriate differentially private estimators in a given

task.

The rest of the thesis is organized as follows: Chapter 2 gives the problem motivation;

Chapter 3 includes all the necessary background knowledge. Chapter 4 presents the technical

details of this framework; Chapter 5 shows the simulation results of a linear oscillator with a

nonlinear observation model; Chapter 6 includes the conclusions.
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Chapter 2

Problem Motivation

In this chapter, we motivate and introduce the concept of differential privacy. In the next

chapter, we will formulate it mathematically in the context of estimation.

Consider the problem of a sensor network performing a distributed estimation task.

Sensors may have different owners, who wish to maintain their locations anonymous. Even

if the communication network among sensors is secure, the estimation of the target may be

widely available due to public interest. Thus, an adversary who have access to additional side

information1 may deduce valuable knowledge about a particular sensor, which should be secured

for some purposes. Fig. 2.1 illustrates a situation when the adversary can estimate the location of

a particular sensor (e.g. via a Bayes rule) by analyzing the released measurement data, target’s

trajectory and other sensors’ location.

To prevent this from happening, differential privacy applied on estimation aims to make

it hard to distinguish between sequences of adjacent, noise-free data y0:T ∈ Rd×T , provided by

adjacent sensor locations. This will be made more precise in the following chapters.

By “perturbing” the outputs of an estimator, differential privacy guarantees no individual

sensor location can be deduced up to a certain degree. It is not hard to imagine that the amount

1About side information: it can be anything that helps with the estimation; for example something about the
target’s true location, or a restricted region of space where the adversary knows where the sensor can be.
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Figure 2.1: A demonstration of estimating a particular sensor location. The solid circle
represents the moving target that is being estimated; the squares represent the location of known
sensors (side information); the star represents the deduced location of the particular sensor,
The actual location can be anywhere within the shaded circle (hypothesis). The diameter of
the hypothesis depends on the level of differential privacy of the estimator. The dashed curve
represents the target’s trajectory and the arrows indicate the direction. The set of red/blue lines
represent the output data released from sensors when the target is at the start/end point. In
application, the adversary can probably achieve the sensor outputs at more than two time steps.

of perturbation influences both the accuracy and the level of privacy of the results, so there

always exists a trade-off between them. In estimation, sensor output data may already be affected

by natural system and sensor measurement noise. However, additional perturbations may be

necessary to guarantee differential privacy. This concept was applied in [10] in the context of

filtering and estimation, where theoretical sufficient conditions for differential privacy have been

found. However, these conditions are conservative. Thus, in this work we aim to investigate the

following questions:

1. Produce a numerical test procedure to evaluate the differential privacy of an estimation

method for a dynamic system; while providing probability guarantees of its correctness.

2. Evaluate numerically the differential-privacy properties of the W2 filter introduced in [10];

compare its performance with that of an extended Kalman filter.

3. Evaluate the differences in privacy/estimation when the perturbations are directly applied
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to the measurement data before the filtering process is done.
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Chapter 3

Background Knowledge

3.1 Differential Privacy in Database

Originally, differential privacy refers to a system for publicly sharing information about

a dataset while withholding information about individuals in the dataset. The core behind

differential privacy is that if the influence of making a single substitution in the database is

small enough, the query result cannot be used to infer much about any single individual, thus

providing privacy. An alternative way to describe differential privacy is applying a constraint on

the algorithms used to publish aggregated information about a target database. This constraint

helps to limit the disclosure of private information of records whose information is in the database.

For instance, differentially private algorithms are used by some government offices to publish

statistical information while ensuring confidentiality of each record, and by companies to collect

information about user behavior while controlling what is visible even to internal analysts.

Roughly speaking, an algorithm is differentially private if an observer seeing its output

cannot decide if a particular individual’s information was used in the computation. Differential

privacy is usually discussed in identifying individuals whose information may be in a database.

Although it does not directly refer to re-identification attacks, differentially private algorithms
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probably resist such attacks [15].

Differential privacy was developed by cryptographers and thus is often associated with

the applications in database searching. Here, we first formulate it mathematically in the context

of database.

We can view a database as a finite set of records generated from some domain. Differential

privacy replies on the concept of adjacent databases. Usually, the two most common definitions

of adjacency with respect to database are: 1). two databases D1 and D2 are adjacent if D1 can be

obtained from D2 by removing or adding one record; 2). two databases D1 and D2 are adjacent

if D1 can be obtained from D2 by modifying one record. We write D1 ∼ D2 to indicate D1 is

adjacent to D2. The term mechanism is referred to an algorithm M that aims to protect the

differential privacy of its inputs. Suppose this mechanism satisfies the ε-differential privacy:

Definition 1 (ε-Differential Privacy [15]). Let ε > 0, a mechanism is said to satisfy ε-differential

privacy if for every pair of adjacent databases D1 and D2, and every subset E ⊆ Range(M ),

P(M (D1) ∈ E)≤ eε ·P(M (D2) ∈ E)

Here, P(M (D1) ∈ E) and P(M (D2) ∈ E) are the probabilities that the numerical queries

infer the same record when searching the adjacent databases . The value of ε controls the level of

privacy and the smaller ε is, the better privacy can be expected.

One of the famous ε-differentially private algorithms is the Laplace mechanism, which

is used to assign the property of differential privacy to any numerical queries. If D is the target

database, a numerical query is a function q : D→ Rk (i.e. it outputs a k dimensional vector

to identify the database). Laplace mechanism works by adding the Laplace noise to the query

answers:
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Definition 2 (Laplace Mechanism [15]). For any query q, the Laplace mechanism outputs:

M (D,q,ε) = q(D)+(η1, · · · ,ηk)

Where each ηi are independent random variables with relation to the value ε. In [16], it is

proved to be ε-differential private.

Adopting the same ideas, we can then formulate differential privacy in the context of

estimation.

3.2 Differential Privacy in Estimation

The importance of the differential privacy with respect to estimation has been shown in

Chapter 2. Here, we formulate it in a mathematical manner.

In this work, the dynamics and the observation model that we consider are given as:

Ω :

 xk+1 = f (xk,wk) ,

yk = h(xk)+ vk.
(3.1)

where, xk ⊂ RdX ,yk ⊂ RdY , wk ⊂ RdW and vk ⊂ RdV . wk and vk represents the process noise and

measurement noise at time step k, respectively. We make two assumptions:

1. (Lipschitz continuity). The functions f and h are Lipschitz continuous, with ‖ f (x1,w1)−

f (x2,w2)‖ ≤ c f ‖x1− x2‖+ cn ‖w1−w2‖ and ‖h(x1)−h(x2)‖ ≤ ch ‖x1− x2‖.

2. (Noise characteristics). The noise sequences {wk}k∈N and {vk}k∈N are independent samples

from distributions ω and ν with |w| and |v| bounded. Moreover, we assume that Eω [wk] = 0 and

Eν [vk] = 0. In order to drop the noise variables from the optimization (will be introduced later),

we describe the autonomous system corresponding to Eqn. 3.1
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Σ :

 xk+1 = f (xk,0) = f0 (xk) ,

yk = h(xk) .
(3.2)

Let {0, . . . ,T} be the time horizon, and denote by y0:T = (y0, . . . ,yT ) the sensor output data up to

time T and by ΣT (x) =
(
h(x),h◦ f0(x), . . . ,h◦ f T

0 (x)
)

the output mapping from system Σ.

We can now more formally define ε-δ differential privacy for a state estimator M up to

time T of a system as in Eqn. 3.1. In doing this, we interpret the estimator or mechanism M as

a mapping M : R(T+1)dY → RdX , which assigns an output sensor data y0:T of the autonomous

system in Eqn. 3.2 to a state estimate. This mapping is stochastic, with randomness induced by

the noises that are present in Eqn. 3.1.

Definition 3 (ε-δ Differential Privacy). Suppose that M is a state estimator of system in Eqn. 3.1.

Given δ ∈ R>0, the estimator M satisfies ε-δ differential privacy (for some ε ∈ R>0) up to time

T if for any two δ-adjacent sensor output data y1
0:T ,y

2
0:T (dy

(
y1

0:T ,y
2
0:T
)
≤ δ
)
), we have

P
(
M
(
y1

0:T
)
∈ E
)
≤ eεP

(
M
(
y2

0:T
)
∈ E
)
,∀E ⊂ range(M ). (3.3)

Here, P
(
M
(
y1

0:T
)
∈ E
)

and P
(
M
(
y2

0:T
)
∈ E
)

are the probabilities that the estimation

result falls into the same event E by using adjacent sensor output data y1
0:T and y2

0:T , respectively.

Note that dy
(
y1

0:T ,y
2
0:T
)

is a general expression that evaluates the distance between two

outputs of the estimator up to time T . Under the assumptions of Lipschitz continuity of h,

adjacency in sensor measurements (in the sense of the 2-norm) will translate into adjecency of the

corresponding output data in the sense of the 2-norm. We elaborate on this in Chapter 5, where

we employ the L2 norm in Euclidean space to compute it. Note also that, instead of focusing on a

single time step, we require sequences of sensor output data as we are interested in evaluating the

performance along a complete time horizon.
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3.3 W2-Moving-Horizon-Estimator (W2MHE)

In this section, and for the sake of completeness, we provide the background of Wasserstein

Moving Horizon Estimator (W2-MHE) and refer readers to [10], for its asymptotic stability and

robustness properties. The estimator can be further modified by adding an entropy operator to

attain the differential privacy, which is used to be against data integrity attacks.

It is worth emphasizing that the proposed framework is not specific to any estimator:

readers should be aware that the following theory can easily be adopted to other estimators, such

as the differentially private Kalman filter in [9].

3.3.1 Moving-Horizon Estimator

The moving-horizon estimation method provides an estimation method for nonlinear

systems which are stable under bounded disturbances [17], [18] [19]. It treats the state estimation

as an optimization problem.

Using the notations in Eqn. 3.2, the full-horizon state estimation (FIE) problem aims

at computing x0 based on given y0:T and ΣT (x0), which is an inverse optimization problem.

To formulate the inverse problem, we consider the function JT (y0:T ,ΣT (x0)) = ∑
T
k=0 ‖yk−h◦

f k
0 (x0)‖2, such that JT (y0:T ,ΣT (x0)) = 0 if and only if ΣT (x0) = y0:T . Now, the estimation

problem becomes:

x0 ∈ arg min
x∈RdX

JT (y0:T ,ΣT (x)) .

In the above equation, y0:T is given. Under some conditions, a local minimum of JT (y0:T ,ΣT (x0))

is also global; see [10] and Theorem 1 in [20].

By means of a moving window of length N, one can additionally assimilate the new sensor

outputs online. In this way, at any time step k, we use yk:k+N ,ΣN(xk), and the previous state
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estimation xk−1 to obtain the next state estimate xk as follows:

xk ∈ arg min
x∈RdX

γ( f0 (xk−1) ,x)+GN
k (xk), (3.4)

where, γ( f0(xk−1),x) measures the difference between the estimation x and system evolution

f0 (xk−1). This term can also be seen as a prediction by the filter. Here, GN
k (xk)= JN (yk:k+N ,ΣN(xk))

is the correction within the moving window. In other words, Eqn. 3.4 indicates the core component

of a prediction & correction online estimation algorithm.

Differential privacy can be easily addressed by lifting the estimation to the space of

probability distributions. This is summarized in the following subsections.

3.3.2 Distributional Moving-Horizon Estimator

In the previous subsection, we presented a recursive moving-horizon estimator. We

now lift the estimates to the space of probability distributions over RdX . This allows for the

consideration of more general noise distributions and can easily account for differential privacy.

In this way, the expectation of the objective function in Eqn. 3.4 should be minimized. In the

following, we use X to denote the sample space of the state variable. Thus, the estimation results

can be encoded via probability measures over X, a set we denote by P (X).

The new optimization problem is described as

µk ∈ arg min
µ∈P (X)

D(µ, f0#µk−1)+Eµ
[
GN

k
]
,

where D : P (X)×P (X)→ R≥0 is a metric or divergence providing a measure of distance on

P (X). Different choices of D result in different estimators. In this work, we study Wasserstein
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metric W2, which exactly yields the fast moving-horizon estimator [21] given as:

µk ∈ arg min
µ∈P (X)

1
2

W 2
2 (µ, f0#µk−1)+Eµ

[
GN

k
]
. (3.5)

An implementable version of this estimator is derived in [10], which uses Monte Carlo methods

to sample from µk:

xk ∈ argmin
x

1
2
‖x− f0 (xk−1)‖2 +GN

k (x), k > 0.

The initial condition x0 can be sampled from the initial probability distribution P0(X). The

number of particles is adjustable and the final estimation result are the average of all the particles.

The asymptotic stability and the robustness of W2-MHE are guaranteed under certain

assumptions in [10]. In the ensuing subsection, an entropy term is added into the objective

function for the purpose of differential privacy.

3.3.3 Differentially-private W2-MHE

Compared with the regular W2-MHE, differential privacy holds if the objective function

in Eqn. 3.5 is modified with an entropy term as follows:

µk ∈ argminµ∈P (X)
[1

2skW 2
2 (µ, f0#µk−1)+ skEµ

[
GN

k

]

−(1− sk)SKk(µ)
]
.

(3.6)

Where sk ∈ [0,1] is a tunable time-variant parameter for all k. In applications, the values

depend on the level of differential privacy that is expected to maintain. Moreover, SA(µ) =∫
A ρ log(ρ) dvol, where A⊂ X and dµ = ρ dvol with ρ being the corresponding density function

and vol being the Lebesgue measure. For n-dimensional Euclidean space, if n = 1,2, or 3,
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Lebesgue measure coincides with the measure of length, area, or volume. In Eqn. 3.6, Kk is the

support of f0#µk−1 (with K0 being the support of µ0). We note that when sk = 0, the problem

reduces to an entropy maximization problem, which yields a uniform distribution over f0(Kk−1)

as the solution. The uniform distribution is insensitive to the sensor outputs, so it provides with

maximum level of differential privacy, while being of no use for the estimation. Similarly, when

sk = 1, Eqn. 3.6 reduces to Eqn. 3.5, which maximizes the accuracy but maintain no differential

privacy. Thus, it is important to find the best upper bound of sk to guarantee the desired level of

privacy. Also, the goal targets at full time horizon {0, . . . ,T}, so the the upper bound should be

applied on a sequence of values {sk}T
k=1.

The optimization problem in Eqn. 3.6 can be rewritten as follows:

µk ∈ argminµ∈P (X)
[1

2W 2
2 (µ, f0#µk−1)+Eµ

[
GN

k

]

−
(

1−sk
sk

)
SKk(µ)

]
.

(3.7)

With a theoretical justification provided in [10], the following upper bound condition on {sk}T
k=1

is sufficient for the ε-δ differential privacy of the modified W2-MHE in Eqn. 3.7 over full time

horizon:
T

∑
k=1

(
sk

1− sk

)
ck

f ≤
ε

lδdiam(K0)
. (3.8)

Here, ck
f denotes k-th power of Lipschitz constant for the discrete dynamics system f0(x); l denotes

the l-smoothness constant of function GN
k

1; and K0 is the support of the initial distribution and

diam(K0) can be approximated by the diameter of the distribution.

We note that for a given ε, the upper bound on {sk}T
k=1 decreases with δ. Hence, the same

level of ε-δ differential privacy for more divergent adjacent sensor outputs (larger δ) requires an

increase of the proportion of entropy term, resulting in less accuracy. With one more step, Eqn.

1It is assumed that for any x,y ∈ R, we have ‖∇GN
k (y)−∇GN

k (x)‖ ≤ l‖y− x‖.
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3.8 can be turned into:

ε≥ lδdiam(K0)
T

∑
k=1

sk

1− sk
ck

f . (3.9)

This shows that given {sk}T
k=1, what the expected level of privacy from the estimator is. In

Chapter 5, we will correlate the simulation results with theoretical results from Eqn. 3.9. However,

the conditions considered in [10] are only sufficient and may be restrictive. This is what we aim

to test by means of hypothesis tests.

3.4 Hypothesis testing

The most important component of our proposed approach is based on a hypothesis testing

procedure. Hence, we give a brief introduction of this procedure. Under some conditions,

tests can guarantee that the probability of making a mistake with test rule is small with high

probability. This probability can be calculated exactly for finite samples in some cases, or,

with high-confidence as a function of the number of samples, with the help of Large Number

theory. Readers can find more about hypothesis test in the chapter 8 of [22] and [23]. For more

information, we provide a brief description of this next.

A statistical hypothesis procedure is a claim about a parameter of a distribution that

generates data. The test provides a rule based on samples of the distribution to decide whether a

null hypothesis (denoted by H0) is accepted as true or rejected as false.

The decision rule of the test is given in terms of a test statistic, or function of the

sampled data W (X1, . . . ,Xn), and a rejection region R. For example, this can be expressed as

W (X1, . . . ,Xn) ∈ R, which implies that the null hypothesis should be rejected. The evaluation of

the hypothesis test is done via the probability of making a mistake when accepting or rejecting

the null hypothesis. This leads to the so-called Type I and Type II errors. A Type I test error

occurs when the test incorrectly rejects the null hypothesis when it is indeed true. If, on the

other hand, the test accepts the null hypothesis while it should be rejected, then the Type II
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error occurs. The common practice is to control only the Type I error because it is the most

important. Mathematically, the Type I error is defined as the probability P(W (X1, . . . ,Xn)∈ R|H0).

The Type I error also defines the so-called p-value, that is, p = P(W (X1, . . . ,Xn) ∈ R|H0). The

significance level of the test is a constant α (typically 0.1, 0.05 or 0.01) which is used to decide

whether to accept or reject H0. If p is such that p≤ α, then the probability that a mistake is made

by rejecting the null hypothesis is very small. In other words, it implies the stronger the evidence

that the null hypothesis should be rejected when our test statistic falls into the rejection region.

On the other hand, if p > α, the test should accept the null hypothesis. Usually the p-value can

not be computed exactly, except for the so-called exact tests. Using the Large Number theory,

one can approximate the p-values for some tests.

The Fisher’s exact test [24] is an exact test on binomial distributions. Let c1,c2 be two

samples from two binomial distributions B(n1, p1) and B(n2, p2), respectively. Here, p1 and

p2 are two unknown parameters and let s = c1 + c2. The goal is to test the null hypothesis

H0 : p1 ≤ p2, given the total s = c1 + c2 and knowing the parameters n1,n2. That is, one aims to

evaluate whether or not the number of successes according to the first distribution happens in the

same proportion as the number of successes according to the second distribution. For the special

case H0 : p1 = p2, and taking s = c1 + c2, n1 and n2 as given, the p-value of an extreme event is

equal to 1 - Hypergeometric.cdf(c1−1|n1 +n2,n1,s)2 When p1 < p2, the p-value of an extreme

event can not be exactly computed without knowing p1 and p2 [24], but it is still bounded by 1 -

Hypergeometric.cdf(c1−1|n1 +n2,n1,s). Thus, this quantity is used as a surrogate p-value. This

value should be larger than the chosen level α to accept the null hypothesis. Note that this result

applies for small sample sizes because the test is exact.

2This notation represents the cumulative distribution function of a hypergeometric distribution.
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3.5 Reachable Set Analysis

In this section, we show how to employ reachable set analysis and their approximation to

determine the set of events that will be considered in our test approach later. This will lead to the

verification of ε-δ differential-privacy with high confidence.

In most cases, the computation of the exact reachable set R[t0,tk] for a dynamical system

(see Def. 4) is intractable. Instead, one can attempt to obtain some approximation R̂[t0,tk]. We

do this as in [25], which employs scenario optimization [26] to obtain approximations with

probabilistic guarantees of correctness. In this way, the approximated reachable set can be

guaranteed to contain a certain part of the actual one with high confidence.

We perform the approximation by finding a vector parameter θθθ, which represents a family

of sets, and that can best capture the actual reachable set. For example, using ellipsoids, we

consider:

R̂[t0,tk](θθθ) = {x : ‖Ax−b‖2 ≤ 1}. (3.10)

Thus, the parameters reprensenting this are θθθ = (A,b). It is not difficult to see how R̂[t0,tk](θθθ) can

provide either an over-approximation or under-approximation of R[t0,tk]. Though the two kinds of

approximations are useful to provide safety guarantees, an estimated reachable set from a set of

samples does not in general correspond to either of these cases.

Consider a random variable Z with support on R[t0,tk]. Then, its probability density

function (pdf) will satisfy pZ(x) = 0 for x not within R[t0,tk] and pZ(x) > 0 for x within R[t0,tk].

That is, R[t0,tk] is a set with probability one, and any other disjoint set defines an event with

probability zero. Other sets that overlap with R[t0,tk] have a probability between zero and one. A

higher probability indicates that it contains more parts of R[t0,tk]. In this context, our goal is to

approximate R[t0,tk] via a set that has a high probability under this distribution. In particular, we
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would like to obtain a β-accurate approximation, R̂[t0,tk](θθθ) satisfying:

pZ(R̂[t0,tk](θθθ))≥ 1−β.

Notice that it is still possible that a β-accurate approximation is quite conservative, which means

in addition to the 1−β part of R[t0,tk], it can also contain a large portion of the state space outside.

For most methods, the undesirable over-approximation can not be totally eliminated, but it can be

minimized.

With this in mind, we define the following chance-constrained optimization problem that

1). computes a β-accurate reachable set; 2). minimizes the volume the estimated set:

minimize
θθθ

Vol
(
R̂[t0,tk](θθθ)

)
,

subject to PZ
(
R̂[t0,tk](θθθ)

)
≥ 1−β.

(3.11)

In general, this optimization problem is intractable. The work [27] discusses how to solve this

problem approximately as follows.

First, using sample data, R[t0,tk] is approximated via an L2 norm ball, which is an ellipsoid.

As defined in Eqn. 3.10, x,b ∈ Rd,A ∈ Rd×d . In general cases, we can consider that A is any

symmetric matrix, which allows us to use − logdetA as a proxy for the volume of R̂[t0,tk](θ). It

can be proved that the value of − logdetA is directly proportional to the volume of the L2 norm

ball [25]. Using the L2 norm ball with the proxy, the β-accurate reachable set that contains the

least state space can be computed by solving:

minimize
A,b

− logdetA

subject to PZ (‖AZ−b‖2−1≤ 0)≥ 1−β

(3.12)

Note that − logdetA and ‖AZ−b‖2−1 are both convex with respect to A and b, so Eqn. 3.12

defines a convex chance-constrained optimization problem. Via scenario approach, one can obtain
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the problem:

minimize
A,b

− logdetA

subject to ‖Az(i)−b‖2−1≤ 0, i = 1, . . . ,Γ
(3.13)

Note that in Eqn. 3.13, A is a d×d matrix and b is a d-vector, so the degree of freedom (Dof)

of the decision variables in that equation can be computed by d(d +1)/2+d. Here comes the

following theorem.

Theorem 1 ([25].). Given γ, if Γ in Eqn. 3.13 satisfies

Γ≥ 1
β
(

e
e−1

)(log
1
γ
+

d(d +1)
2

+d),

The global minimizer of Eqn. 3.13 is also a feasible solution of Eqn. 3.12 with probability≥ 1−γ,

which indicates that the approximated reachable set θθθ = (A,b) contains at least 1−β of the

actual one while has the minimum area of state space.
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Chapter 4

Differential Privacy Test Framework

4.1 Overview of the differential-privacy test framework

The algorithmic approach to test for differential privacy is based on the following steps

and modules:

1. The evaluation of ε-δ differential-privacy for an estimator requires checking Eqn. 3.3 for an

infinite number of events. Since this is not possible, the algorithm first computes a finite list

of events through an EventListGeneration function. This function is based on 1) obtaining a

sufficiently fine partition of the state space, and 2) implementing a reachability set analysis

to obtain the most-likely event.

2. Once a finite set of events is generated, a second step is to identify the worst case event

that leads with higher probability of violation of differential privacy. This is done via a

WorstEventSelection module in the algorithm which also includes a hypothesis testing step.

3. A final step performs a hypothesis test with respect to the worst event via the HypothesisTest

module.

Based on the above, we will construct the main components of an algorithm to test for ε-δ
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differential privacy. The overall algorithm description is summarized below.

Algorithm 1 Overview of the Test Framework
1: function TEST FRAMEWORK(M ,ε, y1

0:T ,y
2
0:T )

2: Input: Target estimator(M )
3: Desired differential privacy(ε)
4: δ-adjacent sensor outputs(y1

0:T ,y
2
0:T )

5: EventList = EventListGenerator(M , y1
0:T )

6: WorstEvent = WorstEventSelector(M ,ε, y1
0:T ,y

2
0:T ,

7: EventList)
8: p+, p+ = HypothesisTest(M ,ε, y1

0:T ,y
2
0:T ,

9: WorstEvent)
10: Return p+, p+
11: end function

4.1.1 EventListGenerator

Here, we start by discussing the methods for generating the candidate list of events via

the EventListGenerator module in the algorithm. This is based on the concept of reachable sets

for dynamic systems.

Definition 4 (Reachable Set for a dynamic system).

The general definition of a dynamic system can be considered as a mapping from initial

state x0 ⊂ RdX to a unique final state at time k under the influence of the system dynamics, and

the bounded disturbances. Therefore, reachable set can be defined as: Suppose we are given with

an initial set X0 ⊂ RdX , and a set of disturbances ω⊂ RdW , then the forward reachable set can

be defined as:

R[t0,tk] = f (x0,ωt0 : ωtk),x0 ⊂ RdX ,ω⊂ RdW .

This indicates all the reachable states where the dynamic system can reach at time step k

if it starts from a state within RdW with bounded disturbance at each time step.

Our approach to reduce the set of events that need to be checked to guarantee ε-δ dif-

ferential privacy consists of the following: a) approximating the reachable set of the dynamic
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system, and b) dividing the state space with a grid of a certain resolution. See the schematics of

the function in Algorithm 2.

Algorithm 2 Event List Generator
1: function EVENTLISTGENERATOR(M , y1

0:T )
2: Input: Target Estimator(M )
3: Sensor Output(y1

0:T )
4: ReachableSet← Approximate of reachable set
5: at each time step k
6: EventList← Each event is composed of grids that
7: are inside ReachableSet along all time steps
8: Return EventList
9: end function

Traditional approaches to approximate the reachable set of a dynamic system require a

careful analysis of the system dynamical equations, which can be difficult or conservative for

general nonlinear systems. Hence, we adopt a recently proposed method in [25], which does this

in a data-driven fashion as shown in Alg. 3 with probabilistic guarantees of correctness. The

theoretical justifications can be found in Section 3.5.

In Alg. 3, Γ defines the sampling number that is necessary for guaranteeing the estimated

reachable set contains 1−β of the actual distribution with confidence 1− γ. In Section 3.5, we

will discuss on how it works. Thus, we run the estimator Γ times and record the results. Finally, a

scenario optimization problem is solved for the matrix Ak and the vector bk, which encompasses

an ellipsoid (ellipse if dimension n = 2).

In the reachable set, several grids are then generated according to the given resolution r.

For example, if r = 2, there are two intervals along both x,y directions. Thus, in total, four grids

are obtained at each time step k.

Each event E represents a combination of grids at all time steps. If r = 2,T = 4, the

number of total events is 44 = 256. The next step is to select the worst event E∗.
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Algorithm 3 Reachable Set Approximation
1: Input: Target Estimator(M ) with dimension d
2: Measurement data(y1

0:T )
3: Probabilistic guarantee parameters β,γ
4: Output: Matrix Ak and vector bk representing an
5: β-accurate reachable set at time step k
6: Rk(Ak,bk) =

{
x : ‖Akx+bk‖2 ≤ 1

}
7: with confidence 1−η.
8: Set number of samples Γ =
9:

[
1
β

e
e−1

(
log 1

γ
+d(d +1)/2+d

)⌉
10: for k ∈ {0, . . . ,T} do
11: for i ∈ {0, . . . ,Γ} do
12: Simulator Initialization
13: Record zk

i = M
(
y1

0:k
)

14: end for
15: Solve the convex problem

16:
argminAk,bk − logdetAk

subject to
∥∥Akzk

i −bk
∥∥

2−1≤ 0, i = 0, . . . ,Γ

17: return Ak,bk

18: end for

4.1.2 WorstEventSelector

We now discuss how to select E∗ that is most likely to show a violation of ε-δ differential

privacy. The procedures are described in Alg. 4. They are designed to return one event E∗ for the

future use in Hypothesis Test in Alg. 1. First, WorstEventSelector receives an EventList from

EventListGenerator. Then, for each event, it counts the number of estimation results falling in

it and run PVALUE to compute p∗. The event that produces the minimal p∗ is returned to Alg. 1

as E∗ and HypothesisTest on E∗ will be implemented to check ε-δ differential privacy.

4.1.3 HypothesisTest

We now discuss how to apply the Fisher’s exact test to evaluate the differential privacy

of our estimator M . To do this, fix a event E∗ and define p1 = P
(
M
(
y1

0:T
)
∈ E∗

)
and p2 =

P
(
M
(
y2

0:T
)
∈ E∗

)
. The random variables given by the history of sensor outputs yi

0:T ∼ Y i,
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Algorithm 4 Worst Event Selector
1: function WORSTEVENTSELECTOR(n,M , ε, y1

0:T ,y
2
0:T , EventList)

2: Input: Target Estimator(M )
3: Desired differential privacy(ε)
4: δ-adjacent measurement data(y1

0:T ,y
2
0:T )

5: EventList
6: O1← Estimation results of running M (y1

0:T ) for
7: n times
8: O2← Estimation results of running M (y2

0:T ) for
9: n times

10: pvalues← [ ]
11: for E ∈ EventList do
12: c1← |{i|O1[i] ∈ E}|
13: c2← |{i|O2[i] ∈ E}|
14: p+, p+← PVALUE (c1,c2,n,ε)
15: p∗←min(p+, p+)
16: pvalues.append(p∗)
17: end for
18: WorstEvent (E∗)← EventList[argmin{pvalues}]
19: Return WorstEvent (E∗)
20: end function

i= 1,2, starting from the initial condition x0, defines a new random variable Zi = 1 if M (Y i)∈ E∗,

Zi = 0, otherwise. It is clear that Zi are distributed as a Bernoulli with parameter pi, i = 1,2. By

implementing the estimator M using y1
0:T and y2

0:T for n1 and n2 times, we count the number of

M
(
y1

0:T
)
∈ E∗ as c1 and M

(
y2

0:T
)
∈ E∗ as c2. In this sense, c1 and c2 can be seen as samples

from two binomial distributions B(n1, p1) and B(n2, p2), which can be used in the Fisher’s exact

test.

Instead of evaluating p1 ≤ p2, we are interested in testing the null hypothesis is p1 ≤ eε p2,

with the additional eε. To handle the effect of eε, we adapt the following procedure. Let’s consider

sampling c̄1 from a B(c1,1/eε) distribution. The sampling criteria satisfies the following Lemma:

Lemma 1 ([14].). Let Y ∼ B(n, p1), and Z be sampled from B(Y,1/eε), the unconditional distri-

bution of Z is B(n, p1/eε).

Proof. Suppose Z is sampled from a Binomial (Y,1/eε) and Y is distributed according to a
Binomial (n, p1), which has two possible outputs:Yi = 0 or Yi = 1. Hence, the unconditional

24



distribution of Z follows:

P(Zi = 1) = P(Zi = 1|Yi = 1)P(Yi = 1)+P(Zi = 1|Yi = 0)P(Yi = 0)

= (1/eε) · p1 +0 · (1− p1) = p1/eε

This implies that the unconditional distribution of Z subjects to the B(n, p1/eε).

Thus, the facts follow immediately from the lemma:

• if p1 > eε p2, then the distribution of c̄1 (B(n1, p̄1)) has a larger Binomial parameter than

c2 (Bn2, p2)) with p̄1 = p1/eε > p2. In this case, the test results are expected to be able to

reject the null hypothesis.

• if p1 = eε p2, then the distribution of c̄1 (B(n1, p̄1)) has the same Binomial parameter as c2

(B(n2, p2)) with p̄1 = p1/eε = p2. In this case, the rest results are not expected to be able to

reject the null hypothesis.

• if p1 < eε p2, then the distribution of c̄1 (B(n1, p̄1)) has a smaller Binomial parameter than

c2 (B(n2, p2)) with p̄1 = p1/eε < p2. In this case, the rest results are not expected to be able

to reject the null hypothesis.

Hence, the problem of testing the null hypothesis H0 : p1 ≤ eε p2 is reduced to the problem of

testing p̄1 ≤ p2 on the basis of c̄1, c2 instead of c1, c2. Checking whether or not c̄1, c2 are

generated from the same distribution can be done using the Fisher’s exact test with p-value being

equal to 1 - Hypergeometric.cdf(c̄1−1|n1 +n2,n1, c̄1 + c2).

The test procedures can be described as follows in our work: Suppose we have an

estimator M , δ-adjacent sensor outputs (y1
0:T ,y

2
0:T ) and an Event E∗, we wish to check if

P
(
M
(
y1

0:T
)
∈ E∗

)
≤ eεP

(
M
(
y2

0:T
)
∈ E∗

)
or P

(
M
(
y2

0:T
)
∈ E∗

)
≤ eεP

(
M
(
y1

0:T
)
∈ E∗

)
. The

first case is addressed, as the other one is symmetric. The complete procedures are shown in Alg.

5 and we explain why it works before.

For this purpose, we do:
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Algorithm 5 Hypothesis Test
1: function PVALUE(c1,c2,n,ε)
2: c̄1← B(c1,1/eε)
3: s← c̄1 + c2
4: p+← 1 - Hypergeom.cdf(c̄1−1|2n,n,s)
5: c̄2← B(c2,1/eε)
6: s← c̄2 + c1
7: p+← 1 - Hypergeom.cdf(c̄2−1|2n,n,s)
8: return p+, p+
9: end function

10: function HYPOTHESISTEST(n,M , ε, y1
0:T ,y

2
0:T , E∗)

11: Input: Target Estimator(M )
12: Desired differential privacy(ε)
13: δ-adjacent sensor outputs(y1

0:T ,y
2
0:T )

14: E∗ (WorstEvent)
15: O1← Estimation results of running M (y1

0:T ) for
16: n times
17: O2← Estimation results of running M (y2

0:T ) for
18: n times
19: c1← |{i|O1[i] ∈ E∗}|
20: c2← |{i|O2[i] ∈ E∗}|
21: p+, p+← PVALUE (c1,c2,n,ε)
22: Return p+, p+
23: end function

• Define p1 = P
(
M
(
y1

0:T
)
∈ E∗

)
and p2 = P(M

(
y2

0:T
)
∈ E∗)

• Create the null hypothesis as H0 : p1 ≤ eε · p2

• Run M with δ-adjacent sensor outputs(y1
0:T ,y

2
0:T ) n times independently and results are

recorded as O1,O2

• Count the number of times that the estimation results fall into E∗. Let c1 = |{i|O1[i] ∈ E∗}|

and c2 = |{i|O2[i] ∈ E∗}|. We note that c1 and c2 are equivalent to samples from B(n, p1)

and B(n, p2), respectively. By intuition, c1� eεc2 provides firm evidence against the null

hypothesis

• Compute the p-value based on c1,c2 to quantify how unlikely the null hypothesis is
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To summarize, given c1 and c2, c̄1 is first generated from the B(c1,1/eε) distribution and then

p-value is computed. We should note that generating c̄1 is a random process, so we reduce

its variation by multiple sampling and averaging the p-values. In other words, we can run the

function PVALUE multiple times with the same inputs and average the p-values. The main

limitation is that a great amount of time is required for collecting the estimates. Only by this, we

can expect the reasonable results from the statistical tests. In this paper, T (time horizon) is set as

a small number for less computation.

4.2 Algorithm analysis

In this section, we will consider some theoretical results of the test framework in this

paper. However, to do so, we will first restrict our notion of differential privacy as follows:

Definition 5 (Differential privacy wrt a space partition). Let P = {E1, . . . ,En} be a space

partition1 and M be an estimator of System 3.1. We say that M is ε-δ differential private (up to

time T ) wrt P if the definition of ε-δ differential privacy holds for M with respect to each event

Ek, k = 1, . . . ,n, in the partition.

The following results explain the relationship between differential privacy wrt partitions

of different resolutions.

Lemma 2. In the context of the previous definition, suppose we have a partition P1 = {E1, . . . ,En},

which is finer than another partition P2 = {F1, . . . ,Fn}. That is, each Fi can be represented by the

disjoint union Fi = ∪mi
s=1 Els . Then, if ε-δ differental privacy holds on P1, then it also holds on P2.

Proof. Suppose ε-δ differential privacy holds with respect to each event Ei in P1, then for all i =

1, . . . ,n, P
(
M
(
y1

0:T
)
∈ Ei

)
≤ eεP

(
M
(
y2

0:T
)
∈ Ei

)
and P

(
M
(
y2

0:T
)
∈ Ei

)
≤ eεP

(
M
(
y1

0:T
)
∈ Ei

)
for y1

0:T ,y
2
0:T . In the following, we address the first inequality since their treatments are analogous.

1A partition of the space R(T+1)dX for Eqn. 3.1, if estimation is considered up to time T .
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Take Fi = El1∪ . . .∪Elmi
, then we can obtain:

P
(
M
(
y1

0:T
)
∈ Fi

)
= P

(
M
(
y1

0:T
)
∈ El1∪ . . .∪Elmi

)
= ∑

mi
s=1P

(
M
(
y1

0:T
)
∈ Els

)
≤ eε

∑
mi
s=1P

(
M
(
y2

0:T
)
∈ Els

)
= eεP

(
M
(
y2

0:T
)
∈ Fi

)
This holds true since there is no overlap between each Els . Thus, we can conclude that if ε-δ

differential privacy holds for P1, it also holds for P2.

Corollary 1. In the context of this section, an estimator M is ε-δ differentially private (up to

time T ) if and only if it is ε-δ differentially private for infinitesimally small partitions.

From the above, it is easy to see that if a mechanism is ε-δ differentially private wrt to

all the points in the state-space, then it will be differentially private. Since it is impossible to

handle infinitesimally small event sets, it is of interest to find a level of resolution in a partition

that is enough to guarantee that ε-δ differential privacy wrt this partition. However, this does

not seem to be possible. Differential privacy depends on the relative mass that the mechanism

assigns to an event under two adjacent sensor outputs. This fraction is independent (and can

be arbitrarily much larger than) the volume of the event set itself. Thus, even if a mechanism

is differentially private wrt a partition composed of sets with very small volume, differential

privacy wrt to a smaller event may not hold. Still, if the Jacobian of M is full row rank, one

can view differential-privacy wrt a partition whose elements have a volume of ε to be a type of

differential-privacy in “high-probability” ≥ 1−ζ, for some ζ a function of ε.

Now we turn our attention to the conditions that guarantee differential privacy wrt a

partition with high confidence.

Recall that the rule to decide whether to accept the null hypothesis (H0 : p1 ≤ eε · p2)

based on the sample results on the worst event in a partition is described in Section 4.1. We now
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talk about the probability guarantee of the test.

Lemma 3. Let α be a significance level, M be an estimator of System 3.1, and P = {E1, . . . ,En}

be a partition that is used to test for differential privacy. Suppose that E∗ is the worst event in the

partition, in the sense that it provides with the minimum p-value. If this p-value is p ≤ α, the

probability of making a Type I error to verify differential privacy wrt E∗ is exactly less or equal

than α. Thus, ε-δ differential privacy of M holds wrt to the partition P with probability (1−α).

Proof. By looking at the worst-case event as indicated above, we guarantee that, if the test is

passed, then it will also pass wrt all other elements in the partition. Given Lemma 1 and the

exactness provided by the Fisher’s test provided in Chapter 3.4, we can say that, for each event,

the probability of making a Type I error is thus bounded by α exactly and it is also independent

of the number of trials taken. Collectively, this means that differential privacy (or the probability

of making a Type I error for all events) holds with probability (1−α).

Finally, we can put a theorem together on the correctness of our algorithm to verify

differential privacy using hypothesis test and reachable set approximation.

Theorem 2. Consider an estimator M of the System 3.1, a time horizon T , and parameters ε,δ,β

and γ. Consider a partition P of the subset of R⊆ R(T+1)dX , given by R = R̂[t0,t1]× R̂[t0,t2]×·· ·×

R̂[t0,T ]. Then, if Γ is taken such that

Γ≥ 1
β
(

e
e−1

)(log
1
γ
+

d(d +1)
2

+d),

and the estimator passes the test given by Alg. 1, then, M is ε-δ differentially private wrt

P ∪{x |x ∈ R(T+1)dX \R} with probability (1−α)(1− γ).
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Chapter 5

Experiments & Results

In this chapter, we present the simulation results using the framework proposed in this

paper. The simulations are performed in MATLAB(R2020a).

5.1 Example description

5.1.1 Dynamical system.

In what follows, we consider a non-isotropic oscillator in R2 with potential function:

V
(
x1,x2)= 1

2
(
(x1)2 +4(x2)2) .

Thus, the corresponding oscillator particle with position xk = (x1
k ,x

2
k) ∈ R2 moves from initial

conditions x1
0 = 5,x2

0 = 0, ẋ1
0 = 0, ẋ2

0 = 2.5 under the force −∆V . The update equations of our

autonomous dynamic system become:

xk+1 = f (xk) = Axk, k ≥ 0.
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where, A is a constant matrix. Thus, this takes the form of System 3.2, and Condition 1

(Lipschitz continuity), it holds with a Lipschitz constant for the dynamic given by c f = ‖A‖ as

| f (x1)− f (x2)| ≤ ‖A‖‖x1−x2‖. It should be noted that at each time step k, the system dynamical

noise accords with a uniform distribution between [−0.001,0.001] for each dimension. We will

assume that the distribution of initial conditions is given by a truncated Gaussian distribution with

mean vector (5, 0, 0, 2.5) and bounded by 0.1 measured in the L2 distance, which means K0 in

Eqn. 3.8 is equal to 0.1.

5.1.2 Sensor network and observation model.

We will assume that a sensor network consisting of p nodes is placed on a circle with

the center point located at (0,0) and radius R = 10
√

2, surrounding the oscillator. In addition,

suppose that the sensors are homogeneous with the following observation model:

yi,k = h(xk,qi)+vi,k

= 100tanh(0.1(xk−qi))+vi,k, i = 1, . . . , p,

where qi ∈ R2 is the position of sensor i on the circle, and xk =
(
x1

k ,x
2
k

)
is the position of the

particle at time step k. Here, the hyperbolic tangent function tanh is applied in a element-wise

way. Velocities are not observed by the sensors. The vector vi,k ∈ R2 represents the observation

noise of each sensor, which is generated from the same truncated mixed Gaussian distribution

at each time step k in simulation, indicating that the volume of random noise has a limit. tanh

function introduces nonlinearity into the observation model. All these observations are stacked

together as sensor outputs yk = (y>1,k, . . . ,y
>
p,k)
> ∈ R2p in W2-MHE.

Given a fixed sensor position, qi, the (stacked noiseless) measurement function of the
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collective sensor network is:

h(xk) =
(

h(xk,qi)
> = 100tanh(0.1(xk−qi))

>
)>
∈ R2p.

Since tanh function has a Lipschitz constant of 1, We have that

‖h(x1)−h(x2)‖ ≤
p

∑
i=1
‖h(x1,qi)−h(x2,qi)‖ ≤ 10

p

∑
i=1
‖x1−x2‖= 10p‖x1−x2‖ (5.1)

. Thus, in the Lipschitz continuity condition 1. in System 3.1, we have ch = 10p.

5.1.3 Estimation horizon and other filter parameters.

In order to implement the W2 filter, we consider a certain time horizon T = 8 and a moving

horizon N = 5≤ T . We have:

GN
k (xk) = JN (yk:k+N ,ΣN(xk)) ,

= ∑
N
i=0 ‖yk+i−h◦ f i(xk)‖2.

Taking gradients, we have ‖∇GN
k (x1)−∇GN

k (x2)‖ ≤ 2(N + 1)ch maxl ‖A‖l‖x1− x2‖. So l in

Eqn. 3.8 will be approximated as l = 2(N +1)10p‖A‖.

5.1.4 δ-adjacent Sensor Outputs.

To check for differential privacy, we will consider adjacent sensor outputs given by

adjacent sensors. To generate these, we first obtain a set of p sensor positions, denoted by S1.

Then, with p−m (0 < m < p) sensors fixed, we replace m of them by adjacent m sensors on

the same circle and obtain a new set of p sensors, denoted by S2. Let us use θ1 and θ2 ∈ Rm to

represents the angle of m sensors on the circle before and after replacement, respectively. For

the two sets of sensor outputs y1
k,y

2
k obtained using S1 and S2, together with the fact that tanh
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function in obervation modelhas a Lipschitz constant of 1, at time step k, we have:

∣∣y1
k−y2

k

∣∣= ∣∣h(x,S1)−h(x,S2)
∣∣ ,

≤ 10m‖(cosθ1,sinθ1)− (cosθ2,sinθ2)‖,

≤ 10m
√

2‖θ1−θ2‖.

where, ∆θ = ‖θ1−θ2‖, and it be measured as the L2 norm between the two vectors θ1 and θ2.

The distance between two sensor outputs along a full time horizon T is referred as dy
(
y1

0:T ,y
2
0:T
)

in Def. 3, which is less than:

dy
(
y1

0:T ,y
2
0:T
)
≤ 10m

√
2(T −N +1)∆θ = 20

√
2m∆θ.

Therefore, in order to generate δ adjacent measurement data, we take

∆θ≤ δ

20
√

2m
. (5.2)

In our simulations, given δ, we take m = 1, so that one of p sensors is moved to a new position

that is δ

20
√

2
close on the circle.

For each time step k, sk is assigned with same value and we want to verify the correctness

of Eqn. 3.9.

5.2 Numerical Verification Results of W2-MHE

In this section, we present our simulation & verification results. As described in Alg. 3,

we take d = 2 and for the guarantee, we take β = 0.05,γ = 10−9. The number of samples we

take is Γ = 814 and each of them are initially generated from the truncated Gaussian distribution

specified before. This allows us to produce an ellipsoid that contains at least 0.95 of the actual

reachable set distribution with probability ≥ 1− 10−9 (see Theorem 1). An example of the
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estimated reachable set at t = 1 is shown below.

Figure 5.1: Estimated reachable set at t = 1

In Fig. 5.1, the red point represents the ground-truth position, that is, the oscillator’s

state evolving under the noiseless dynamics as described in Subsection 5.1.1 and Γ blue points

represent the estimated positions using differentially private W2-MHE. It can be seen how accuracy

is sacrificed for the purpose of privacy. The black points form the ellipsoid that demonstrates the

reachable set of the system subject to noise. The red lines divide the set into a gridded region

with 4 subsets, plus a complementary set, which define the partition wrt we check for differential

privacy as in Section 4.1.1.

The goal is to explore the relation between the accuracy and the privacy ε. By doing so,

the system designers are able to verify the minimum requirements so that the proposed estimators

can achieve ε level of differential privacy but also obtain the highest accuracy. At each time

step k, (4 in total since T = 8,N = 5), the same operation is applied. Thus, the EventList is

obtained by recording all the possible combinations of this partition, with the length of 44 = 256.

Followed by this, we re-run W2-MHE enough times using both sets of sensor outputs, respectively.

During the computation, as shown in Alg. 4, c1,c2 of each event are recorded and finally the event

with minimum p-value is returned as WorstEvent. Again, we record c1,c2 with respect to this

event by another set of runs. Then, the p-value is computed under a different level of differential
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privacy ε. We then compare this with the significance parameter α, we can tell whether or not ε-δ

differential privacy is satisfied.

We first set sk = 0.8 in Eqn. 3.7 and δ= 10 in Eqn. 5.2 (for all simulations in the thesis) and

the simulation results are shown in Fig. 5.2. In the top figure, we can see that around ε = 0.39947,

the p-value grows larger than 0.05. From the definition of differential privacy, this means

that (P
(
M
(
y1

0:T
)
∈ E∗

)
≤ eεP

(
M
(
y2

0:T
)
∈ E∗

)
or P

(
M
(
y2

0:T
)
∈ E∗

)
≤ eεP

(
M
(
y1

0:T
)
∈ E∗

)
)

holds, if ε≥ 0.39947 in the worst case event E∗. This ε provides a lower bound to ε-δ differential

privacy with high confidence. The bottom figure shows a plot of the ground-truth states as well

as the estimates using both sets of sensor outputs. The root mean squared error (RMSE) for the

estimated are found to be Ecorrect = 0.0040408 and Eadjacent = 0.026032 for the estimates using

correct and adjacent sensor outputs, respectively. Recall that sk = 0.8 implies a relatively low

noise injection level. Note that here, Eadjacent is larger than Ecorrect because the adjacent sensor

outputs are in fact generated from another set of sensor positions.

Then, we decrease sk to be 0.7, enlarging the entropy term in the objective function.

As shown in Fig. 5.3, the critical ε is smaller (ε = 0.11485), confirming that a higher level of

differential privacy is satisfied wrt the considered partition and at a high confidence. However, the

increase of privacy leads to a decrease in accuracy, which can be seen from Ecorrect = 0.00599996.

Therefore, the tests reflect the expected trade-off between differential privacy and accuracy.

In order to choose between two given estimation methods, a designer can either (i) first set a bound

on what is the tolerable estimation error, then compare two methods based on the differential

privacy level they guarantee based on the given test, or (ii) given a desired level of differential

privacy, choose the estimation method that results into the smallest estimation error.

5.2.1 Correctness of the sufficient Condition

Eqn. 3.9 provides with a theoretical formula to calculate ε that guarantees ε-δ differential

privacy. However, since this condition is derived using several assumptions and upper bounds,
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(a) Hypothesis test results

(b) Estimation accuracy

Figure 5.2: W2-MHE: State estimation & differential privacy test results (sk = 0.8)

the answer is in general expected to be conservative.

In order to make comparisons, we take sk = 0.8 and the value of other parameters are:

T = 8,c f = 1.0777,ch = 100, l = 1293.2(N = 5),diam(K0) = 0.1,δ = 10. Plug these values into

Eqn. 3.9, we can obtain ε ≥ 6977.2. Upon inspection, it is clear that the theoretical answer is

much more conservative than the approximated one based on Fig. 5.2a, which indicates that

if ε ≥ 0.39947, the differential privacy is satisfied with high confidence wrt the given space

partition.
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(a) Hypothesis test results

(b) Estimation accuracy

Figure 5.3: W2-MHE: State estimation & differential privacy test results (sk = 0.7)

5.3 Input Perturbation

In [9] two mechanisms were defined that lead to two different approaches to produce

differentially-private estimators. The first one generally adds noise at the output of the perfect

estimators (and W2-MHE discussed above can be considered in this category of estimators). The

second one directly perturbs each input signal, such as the sensor output measurements. These

perturbations are then passed through the estimators, leading to noisy outputs. Since only the

input signals are perturbed, no changes of the estimators are necessary. An advantage of this

approach is that the users do not need to rely on a trusted server to maintain their privacy since

they themselves can release noisy signals.

Taking benefit of our work, it is then of interest to numerically compare the performance
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of these two mechanisms in the W2-MHE estimator method. By selecting sk = 1 (remove the

entropy term in Eqn. 3.7) and adding Gaussian noise directly to both sets of sensor outputs, we

can run the estimator enough times and find the trade-off between accuracy and privacy. The

Gaussian noise has zero mean and the covariance matrix Q is defined as:

Q = (1− s)(I +
R+R′

2
). (5.3)

Where, I is an Identity matrix and R is a matrix of random numbers over the interval (0,1)

(agree with uniform distribution). The value s is a scalar, s ∈ R which decides the magnitude of

covariance matrix. In simulation, we change the value of s and compare the results.

We first set s = 0.944 in Eqn. 5.3 and the simulation results are shown in Fig. 5.4. Then,

we increase the magnitude of the noise by setting s = 0.894 and the simulation results are shown

in Fig. 5.5. They also show that the higher level of differential privacy is achieved at the loss

of accuracy. From Fig. 5.2 and Fig. 5.5, we find that although the level of differential privacy

is close to each other, the RMSE in Fig. 5.5 is only 1/3 of that in Fig. 5.2. Thus, the second

mechanism (adding noise directly at the mechanism input) seems to indicate that can lead to

better accuracy while maintaining the same ε-δ differential privacy guarantee. However, this is a

preliminary result applied on a particular example, which requires further investigation to confirm

the results.

5.3.1 Differentially private EKF

The framework can be easily extended with other differentially private estimators. Here,

instead of W2-MHE, a modified extended Kalman filter is tested on the same experiment settings.
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(a) Hypothesis test results

(b) Estimation accuracy

Figure 5.4: Input Perturbation: State estimation & differential privacy test results (s = 0.944)

The prediction and update formula are described in Eqn. 5.4.

µ̄k = Aµk−1,

Σ̄k = AΣk−1AT +Rk,

Mk = Σ̄kHT
k

(
HkΣ̄kHT

k +Qk
)−1

,

µk = µ̄k +Mk (zk−h(µ̄k))− 1−sk
sk

w,

Σk = (I−KkHk) Σ̄k.

(5.4)

In Eqn. 5.4, Rk,Qk represent the covariance matrix of the update and measurement noise,

respectively; Hk represents gradient matrix of the nonlinear measurement function h(x) at x = µ̄k

Compared with the regular EKF, uniformly distributed random noise w is added to the filter
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(a) Hypothesis test results

(b) Estimation accuracy

Figure 5.5: Input Perturbation: State estimation & differential privacy test results (s = 0.894)

output at the update step, which makes the estimator differentially private. The initial guess µ0 is

generated from the same distribution used in W2-MHE.

In simulation, we set sk = 0.96 and fine-tune the noise covariance matrices. The results

are shown in Fig. 5.6. From that, the critical ε = 0.46223 with the RMSE Ecorrect = 0.0066205.

Therefore, compared with the results in Fig. 5.2, the performance of the EKF is worse than that

of W2-MHE with respect to both privacy level and RMSE. Besides, for W2-MHE, no extra efforts

of tuning parameters (Rk and Qk in Eqn. 5.4) or assumption of Gaussian noise distribution are

required, which makes it more applicable in complex environments.
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(a) Hypothesis test results

(b) Estimation accuracy

Figure 5.6: Diff-private EKF: State estimation & differential privacy test results (sk = 0.96)
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Chapter 6

Conclusions

In this work, we propose a novel numerical verification framework of differential privacy

for estimators. We first introduce the differentially private mechanisms in the context of estimation

by describing a moving horizon estimator that guarantees ε-differential privacy. We then clearly

establish each components of the framework, including the approximation of reachable set by a

data-driven method. In experiments, we demonstrate the estimator’s performance and built the

connections between the theoretical solution and the numerical solution. Also, we discuss on the

other approaches and compare the simulation results. It is obvious that the framework can be

applied to different estimators and this can benefit all researchers or designers working on this

field.

This work is also being prepared for a publication: Yunhai Han; Sonia Martı́nez. The

thesis author will be the primary author of the paper.
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