
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Fluorescence, Scattering and Refraction in Computer Vision, with a Taste of Deep Learning

Permalink
https://escholarship.org/uc/item/8318g59z

Author
Murez, Zachary

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8318g59z
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Fluorescence, Scattering and Refraction in Computer Vision, with a Taste of Deep
Learning

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Zachary Murez

Committee in charge:

David Kriegman, Chair
Ravi Ramamoorthi, Co-Chair
Jules Jaffe
Jurgen Schulze
Zhuowen Tu

2018



Copyright

Zachary Murez, 2018

All rights reserved.



The dissertation of Zachary Murez is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Co-Chair

Chair

University of California San Diego

2018

iii



DEDICATION

I dedicate this to my family.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Shape From Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Reflectance . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Angular Dependency of Fluorescent Emission . . . . . . . . . . . . 13
2.3 Shape from Shading . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Calibrated Photometric Stereo . . . . . . . . . . . . . . . . . . . . 16
2.5 Uncalibrated Photometric Stereo . . . . . . . . . . . . . . . . . . . 18
2.6 Mutual Illumination in Reconstruction . . . . . . . . . . . . . . . . . 21
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 Photometric Stereo in a Scattering Medium . . . . . . . . . . . . . . . . 24
3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Overview and Assumptions . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Direct Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Backscatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Single Scattered Source Radiance . . . . . . . . . . . . . . . . . . 34
3.6 Single Scatter Object Blur . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Backscatter Removal Using Fluorescence . . . . . . . . . . . . . . 40
3.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 42
3.8.2 Geometric and Radiometric Calibration . . . . . . . . . . . 44
3.8.3 Calibration of Medium Parameters . . . . . . . . . . . . . . 46

3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 4 Learning to See through Turbulent Water . . . . . . . . . . . . . . . . . . 54
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Training Objective . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 5 Image to Image Translation for Domain Adaptation . . . . . . . . . . . . 70
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 MNIST, USPS, and SVHN digits datasets . . . . . . . . . . 83
5.3.2 Office dataset . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 GTA5 to Cityscapes . . . . . . . . . . . . . . . . . . . . . 86

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vi



LIST OF FIGURES

Figure 1.1: General image formation diagram. . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1: Spectra of reflectance, fluorescent excitation, fluorescent emmission, and
camera response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2: Common fluorescent objects view with and without reflectance component. . 11
Figure 2.3: Scattering effects in a fluorescent object. . . . . . . . . . . . . . . . . . . 12
Figure 2.4: Examination of the angular dependency of the fluorescent emission. . . . . 14
Figure 2.5: Shape reconstructions of a sphere spray painted with green fluorescent paint,

using reflectance and fluorescence channels. . . . . . . . . . . . . . . . . . 15
Figure 2.6: 3D reconstruction using photometric stereo. . . . . . . . . . . . . . . . . . 18
Figure 2.7: Uncalibrated photometric stereo from fluorescence and reflectance. . . . . 20
Figure 2.8: Demonstration of how fluorescence helps avoid mutual illumination. . . . . 22

Figure 3.1: A perspective camera is imaging an object in a scattering medium. . . . . . 25
Figure 3.2: Our Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 3.3: Distant dependent falloff. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3.4: Intuition for the effective source approximation. . . . . . . . . . . . . . . . 38
Figure 3.5: Backscatter removal and noise. . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 3.6: Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 3.7: Tabulated values for the amount of milk and grape juice added in our experi-

ments, and the associated scattering and extinction coefficients. . . . . . . 43
Figure 3.8: Cross-sections of the spherical cap reconstruction in turbid medium using

various methods compared to ground truth. . . . . . . . . . . . . . . . . . 44
Figure 3.9: Errors in the reconstructions of four objects as a function of turbidity. . . . 45
Figure 3.10: Input images and resulting surface reconstructions of the spherical cap. . . 47
Figure 3.11: Input images and resulting surface reconstructions of the toy lobster. . . . . 48
Figure 3.12: Input images and resulting surface reconstructions of the toy squirt gun. . . 49
Figure 3.13: Input images and resulting surface reconstructions of the mask. . . . . . . 50

Figure 4.1: Input and our result on a scene captured in the wild. . . . . . . . . . . . . . 55
Figure 4.2: The network structure of our generator. . . . . . . . . . . . . . . . . . . . . 61
Figure 4.3: Qualitative results for ablative study on ImageNet validation test set. . . . . 65
Figure 4.4: Results on real objects demonstrating generalization. . . . . . . . . . . . . 66

Figure 5.1: Sample results for GTA5 to Cityscapes domain adaptation. . . . . . . . . . . 71
Figure 5.2: The detailed system architecture of our I2I (image to image) Adapt framework. 74
Figure 5.3: Image to image translation examples and TSNE embedding visualization of

the latent space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 5.4: Qualitative results for GTA5 to Cityscapes domain adaptation. . . . . . . . 88

vii



LIST OF TABLES

Table 4.1: Quantitative results for the ImageNet validation set. . . . . . . . . . . . . . 67

Table 5.1: Showing the relationship between the existing methods and our proposed
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 5.2: Performance of various prior methods as well as ours and ablations on digits
datasets domain adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 5.3: Accuracy of various methods on the Office datasets. . . . . . . . . . . . . . 82
Table 5.4: Performance (Intersection over Union) of various methods on driving datasets

domain adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



ACKNOWLEDGEMENTS

This work would not have been possible without all the help and support I have received

throughout the years. Thanks go first and foremost to my advisor David Kriegman for taking me

under his wing and training me to be an independent researcher. His guidance and encouragement

throughout the process (both the ups and the downs) was invaluable. I greatly appreciate his going

above and beyond what was required of an adviser while on leave of absence (all those late night

skype meetings). I also want to thank my co-adviser Ravi Ramamoorthi for taking me in during

David’s physical absence. He helped focus my research, allowing me to be more productive and

get more work published. His dedication and insight helped bring me to the finish line.

Next I wish to acknowledge my co-authors and collaborators. I am grateful to Tali Treibitz

for the hands-on help getting my research career started and showing me the ropes around the lab.

Without her help we never would have manged to go from the initial conception of the idea of

shape from fluorescence to ECCV submission in under a month. I wish to thank Zhengqin Li for

collaborating with me on the water project and Manmohan Chandracker for his mentorship. I

thank the entire viscomp lab for their friendship and the great work environment (particularly

Sam Kwak for always keeping the lab interesting). And thanks to my friends for always being

there for me.

Last, but not necessarily least, thanks to my family, without whose support I could not

have done it. Thanks to my sister Andi for being the best sister a brother could ask for. Thanks to

my dad Jim for getting me into technology at a young age, and continually giving me crazy ideas

that sometimes turned into good ones. Thanks also for all the suggestions and help constructing

many of the experimental setups necessary to perform the experiments in this thesis. And thanks

to my mom Melanie for always loving and encouraging me, and for proof-reading much of my

work.

The work was supported by NSF grant ATM-0941760, ONR grant N00014-15-1-2013,

W.M. Keck Foundation, and by the UC San Diego Center for Visual Computing. We gratefully

ix



acknowledge the support of NVIDIA Corporation with the donation of a Titan X Pascal GPU

used for this research.

This dissertation is based on the following published papers, which were co-authored with

others:

• Chapter 2 is a reformatted version of “Shape from Fluorescence,” T. Treibitz, Z. Murez,

B. G. Mitchell, D. Kriegman, European Conference for Computer Vision (ECCV) 2012

[TMMK12]. The dissertation author was the primary investigator and author of this paper.

• Chapter 3 is a reformatted version of “Photometric Stereo in a Scattering Medium,” Z.

Murez, T. Treibitz, D. Kriegman, R. Ramamoorthi, IEEE Transactions on Pattern Analysis

and Machine Intelligence 2016 [MTRK17]. The dissertation author was the primary

investigator and author of this paper.

• Chapter 4 is a reformatted version of “Learning to See through Turbulent Water”, Z. Li, Z.

Murez, D Kriegman, R. Ramamoorthi, M. Chandraker, IEEE Winter Conf. on Applications

of Computer Vision (WACV) 2018 [LMK+18]. The dissertation author was the primary

investigator and author of this paper.

• Chapter 5 is a reformatted version of “Image to Image Translation for Domain Adaptation”,

Z. Murez, S. Kolouri, D Kriegman , R. Ramamoorthi, K. Kim, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) 2018. [MKK+17] The dissertation

author was the primary investigator and author of this paper.

x



VITA

2011 B. S. in Mathematics , Yale University

2011 B. S. in Computer Science , Yale University

2015 M. S. in Computer Science , University of California, San Diego

2018 Ph. D. in Computer Science, University of California, San Diego

PUBLICATIONS

Z. Murez, S. Kolouri, D Kriegman , R. Ramamoorthi, K. Kim “Image to Image Translation for
Domain Adaptation”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2018.

Z. Li, Z. Murez, D Kriegman, R. Ramamoorthi, M. Chandraker “Learning to See through
Turbulent Water”, IEEE Winter Conf. on Applications of Computer Vision (WACV) 2018.

J. Tian, Z. Murez, T. Cui, Z Zhang, D Kriegman , R. Ramamoorthi “Depth and Image Restoration
from Light Field In a Scattering Medium”, IEEE International Conference on Computer Vision
(ICCV) 2017.

Z. Murez, T. Treibitz, D. Kriegman, R. Ramamoorthi, “Photometric Stereo in a Scattering
Medium,” IEEE Transactions on Pattern Analysis and Machine Intelligence 2016.

Z. Murez, T. Treibitz, D. Kriegman, R. Ramamoorthi, “Photometric Stereo in a Scattering
Medium,” IEEE International Conference on Computer Vision (ICCV) 2015.

Veesler, David, et al. “Maximizing the potential of electron cryomicroscopy data collected using
direct detectors.” Journal of structural biology 184.2 (2013): 193-202.

T. Treibitz, Z. Murez, B. G. Mitchell, D. Kriegman, “Shape from Fluorescence,” European
Conference for Computer Vision (ECCV) 2012.

xi



ABSTRACT OF THE DISSERTATION

Fluorescence, Scattering and Refraction in Computer Vision, with a Taste of Deep
Learning

by

Zachary Murez

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

David Kriegman, Chair
Ravi Ramamoorthi, Co-Chair

Physics based vision attempts to model and invert light transport in order to extract

information (such as 3D shape and reflectance properties) about a scene from one or more images.

In order for the inversion of the model to be tractable, many simplifying assumptions about the

physics are made that may or may not hold in practice.

On the other-hand, learning based vision ignores the underlying physics and instead

models observations of the world statistically. A prime example of this is deep learning, which has

recently revolutionized computer vision tasks such as classification, detection, and segmentation.
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These two approaches to vision have traditionally been relatively disjoint, but are begin-

ning to see some overlap. This thesis extends the state-of-the-art on both sides as well as brings

them closer together.

First the novel use of imaging fluorescence for 3D reconstruction from shape from shading

and photometric stereo is proposed. This is achieved by leveraging the previously unexploited

fact that fluorescence emission is isotropic making it an ideal input for algorithms that assume

Lambertian reflectance. In addition, fluorescence can be combined with reflectance to resolve the

Generalized Bas relief ambiguity in uncalibrated photometric stereo. Furthermore, it is observed

that when a material fluoresces a different color than it reflects, inter-reflections do not exist,

which typically causes problems for photometric stereo.

Second, photometric stereo is extended to work in participating media by accounting for

how scattering affects image formation. The first insight is that in this situation fluorescence can

be used to optically remove backscatter which significantly improves the signal-to-noise ratio

compared to image subtraction methods. Second, it is justified, through extensive simulations,

that forward scatter from the light to the object can be calibrated out and effectively ignored.

Finally, using deconvolution to handle forward scatter blur from the object to the camera, a

phenomenon which is often ignored in computer vision, is proposed.

Next the problem of single image dynamic refractive distortion correction is tackled.

Previous work has attacked this problem using physics based approaches and as such requires

additional information, such as high frame rate video or templates, to handle its under-constrained

nature. Instead, using deep learning to learn image and distortion priors which can be used to

undistort a single image is proposed. The initial attempt to train the model using synthetically

generated data failed to generalize to real data, so instead a special new large scale dataset for this

problem was collected.

Finally, the failure to train the model using synthetic data prompted the investigation of

domain adaptation. A novel framework for unsupervised domain adaptation building off the

xiii



ideas of adversarial discriminative feature matching and image-to-image translation is proposed.

Many previous works can be seen as special cases of this general framework. The method is

validated by achieving state-of-the-art results on common domain adaptation benchmarks, but

may be particularly useful for traditionally physics based problems where synthetic data is easy

to generate but real data is hard to annotate.
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Chapter 1

Introduction

Physics based vision attempts to model and invert light transport in order to extract

information (such as 3D shape and reflectance properties), about a scene from one or more images.

In order for the inversion of the model to be tractable, many simplifying assumptions about the

physics are made, that may or may not hold in practice.

On the other-hand, learning based vision ignores the underlying physics and instead

models observations of the world statistically. A prime example of this is deep learning, which has

recently revolutionized computer vision tasks such as classification, detection, and segmentation.

These two approaches to vision have traditionally been relatively disjoint, but are begin-

ning to see some overlap. The work of this thesis advances the field from both sides as well as

brings them a bit closer together. Chapters 2 through 4 examine a variety of physical effects that

are often ignored in the image formation models employed in computer vision. Figure 1.1 shows

a schematic diagram of these effects. Chapters 2 and 3 relax many of the assumptions made

by traditional shape from shading and photometric stereo algorithms by analyzing the physics

of fluorescence and scattering. In chapter 4 we examine the problem of single image dynamic

refractive distortion correction. Here, since the problem is severely under-determined, we deviate

from traditional physics based approaches, and propose a deep learning solution. In the process,
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Figure 1.1: General image formation diagram. Often in computer vision it is assumed that
there is no medium and that the surface reflects diffusely. In this thesis we examine cases of
non-Lambertian reflectance, volumetric scattering within a medium and refraction between two
media.

we realized that getting a deep network trained on synthetic data to generalize to real test data is

difficult. Motivated by this, in Chapter 5 we propose a novel method for unsupervised domain

adaptation. While this is a general tool for any domain shift, we believe it will be particular useful

for physics based problems where synthetic data is easy to generate, but real data is hard for

humans to annotate (for example people are bad at judging absolute reflectance).

Complementary to triangulation based methods for 3D reconstruction (such as binocular

stereo and structure from motion), radiometric based methods (such as shape from shading

and photometric stereo) recover 3D shape by analyzing how light is reflected by the surface.

In particular, the brightness of a pixel can be related to the orientation of the surface normal

with respect to the observation and illumination directions. While this relationship can be quite

2



complex in general, it is often assumed that the surface reflects light isotropically (also known as

Lambertian reflectance) in which case the relationship simplifies to

L(x) = ρ(x)max
(
0,D · N̂(x)

)
(1.1)

where L is the measured pixel irradiance, ρ is the spatially varying albedo which is the fraction of

light which is reflected by the material, D is the light direction vector scaled by its intensity, N̂ is

the unit surface normal vector, and x is the pixel location. This relationship can be rewritten as

L(x) = D ·N(x) (1.2)

where the albedo has been absorbed into the scaled surface normal N and we have assumed that

the point is not in shadow allowing us to drop the max(0, ·). Now given three or more images

under different but known light directions, N can found by solving the system of linear equations

given by eq. 1.2. Once the normals are known, they can be integrated to recover the surface

heights. This is known as photometric stereo and was origionally proposed by Woodham [Woo80].

Furthermore, when fewer than three images are given, the under-determined system can still be

solved by imposing additional constraints, such as the surface being continuous and integrable,

leading to the method of shape from shading.

These algorithms rely on many assumptions (which often do not hold in practice) to

reduce the complex relationship between pixel intensity and surface normal direction to the

simple one given by eq.1.2. In Chapter 2 we propose using fluorescent imaging to help relax some

of these commonly made assumptions. Beyond day glow highlighters and psychedelic black light

posters, it has been estimated that fluorescence is a property exhibited by 20% of objects. When

a fluorescent material is illuminated with a short wavelength light, it re-emits light at a longer

wavelength isotropically in a similar manner as a Lambertian surface reflects light. This hitherto

neglected property opens the doors to using fluorescence to reconstruct 3D shape with some of

3



the same techniques as for Lambertian surfaces – even when the surface’s reflectance is highly

non-Lambertian.

Single image shape-from-shading and calibrated Lambertian photometric stereo can be

applied to fluorescence images to reveal 3D shape. When performing uncalibrated photometric

stereo, both fluorescence and reflectance can be used to recover Euclidean shape and resolve the

generalized bas relief ambiguity. Finally for objects that fluoresce in wavelengths distinct from

their reflectance (such as plants and vegetables), reconstructions do not suffer from problems due

to inter-reflections. We validate these claims through experiments.

In Chapter 3 we extend the use of photometric stereo to scattering media such as turbid

water, biological tissue and fog. Its use here has been limited until now, because of forward

scattered light from both the source and object, as well as light scattered back from the medium

(backscatter). Here we make three contributions to address the key modes of light propagation,

under the common single scattering assumption for dilute media.

First, we show through extensive simulations that single-scattered light from a source can

be approximated by a point light source with a single direction. This alleviates the need to handle

light source blur explicitly. Next, we model the blur due to scattering of light from the object.

We measure the object point-spread function and introduce a simple deconvolution method.

Finally, we show how imaging fluorescence emission where available, eliminates the backscatter

component and increases the signal-to-noise ratio. Experimental results in a water tank, with

different concentrations of scattering media added, show that deconvolution produces higher-

quality 3D reconstructions than previous techniques, and that when combined with fluorescence,

can produce results similar to that in clear water even for highly turbid media.

In Chapters 2 and 3, we used physical models to extend radiometric based 3D reconstruc-

tion algorithms. In Chapter 4 we consider the problem of imaging through dynamic refractive

media, such as looking into turbulent water, or through hot air. This is challenging since light

rays are bent by unknown amounts leading to complex geometric distortions. Inverting these

4



distortions and recovering high quality images is an inherently ill-posed problem, leading previous

works to require extra information such as high frame-rate video or a template image, which

limits their applicability in practice.

Instead, we propose training a deep convolution neural network to undistort dynamic

refractive effects using only a single image. The neural network is able to solve this ill-posed

problem by learning image priors as well as distortion priors. Our network consists of two

parts, a warping net to remove geometric distortion and a color predictor net to further refine

the restoration. Adversarial loss is used to achieve better visual quality and help the network

hallucinate missing and blurred information. Unlike prior works on water undistortion, our

method is trained end-to-end, only requires a single image and does not use a ground truth

template at test time.

Our first attempt to train the network with synthetically distorted data failed to generalize

to the real test data, and is what motivated the work of Chapter 5. Instead, here we trained the

network by generating our own semi-real dataset. Imagenet images were displayed on a monitor

placed under a tank of water and re-imaged from above. Although images of a monitor under a

tank are not exactly the same as images of a real scene, this produced real enough looking data to

allow the network to generalize to images of real objects captured in the wild.

As observed above, training deep models on synthetic data often fails to generalize to

real data. This is a specific case of the more general problem of domain shift, where a network

trained on a training set fails to generalize to the test set due to differences in the data distributions

between the two sets. In Chapter 5 we propose a general framework for unsupervised domain

adaptation, which allows deep neural networks trained on a source domain to be tested on a

different target domain without requiring any training annotations in the target domain. This is

particularly useful for training networks to solve traditionally physics based problems, where

synthetic data is easy to generate, but real data is hard, if not impossible, for a human to annotate.
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This domain adaptation is achieved by adding extra networks and losses that help regular-

ize the features extracted by the backbone encoder network. To this end we propose the novel

use of the recently proposed unpaired image-to-image translation framework to constrain the

features extracted by the encoder network. Specifically, we require that the features extracted are

able to reconstruct the images in both domains. In addition we require that the distribution of

features extracted from images in the two domains are indistinguishable. Many recent works can

be seen as specific cases of our general framework. We apply our method for domain adaptation

between MNIST, USPS, and SVHN datasets, and Amazon, Webcam and DSLR Office datasets in

classification tasks, and also between GTA5 and Cityscapes datasets for a segmentation task. We

demonstrate state of the art performance on each of these datasets.

Finally, in Chapter 6 we conclude with some known limitations of our methods and

directions for future work.
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Chapter 2

Shape From Fluorescence

When a material fluoresces, it absorbs light at a shorter wavelength and emits it at a longer

wavelength. For example, when illuminated by blue light, Chlorophyll fluoresces red (Fig. 2.1).

Minerals emit a wide variety of visible colors when illuminated by ultraviolet (UV) light. While it

has been reported that 20% of materials fluoresce [Bar99], most models of color and reflectance

in computer vision neglect fluorescence.

Radiometric methods for reconstructing shape such as single image shape-from-shading,

photometric stereo, and passive photometric stereo from motion develop explicit models relating il-

lumination, surface reflectance, and image irradiance. Central to these methods is the bidirectional

reflectance distribution function (BRDF) which can be considered as being wavelength dependent.

For example, in classic photometric stereo of surfaces with arbitrary reflectance, reflectance maps

are either derived from the BRDF for each light source direction [Woo80] or measured from a

reference object of the same material [Sil80]. Under Lambertian reflectance, the measured image

irradiance is independent of the viewing direction. Then, surface normals are readily estimated

from three or more images as the solution of a linear system of equations [Woo80], and a spatially

varying albedo can also be estimated. In addition, many computer vision algorithms that rely

on the constant brightness assumption (e.g., optical flow, dense stereo matching, space carving)
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Figure 2.1: [Top] Chlorophyll-a excitation and emission spectra. The excitation peak is at
430nm and the emission peak is at 685nm. Wavelengths at the green range are not absorbed and
thus reflected, giving the plants their prominent green color. [Bottom] Spectral sensitivities of the
RGB channels in a Canon 5DII camera. The excitation spectrum has almost no overlap with the
red camera channel. The yellow barrier filter over the lens enables imaging of green fluorescence
(such as Green Fluorescent Proteins) without contamination of the excitation light. Although
theoretically it seems that the yellow filter is not necessary for red fluorescence imaging, in
practice, the excitation intensity is much stronger than the emission intensity, and so any leakage
of longer wavelength of light from the blue source would reflect and appear in the red channel.
The barrier filter reduces leakage and leads to correct exposure of the red channel.

implicitly or explicitly assume that surfaces are Lambertian. Unfortunately few materials are

truly Lambertian except manufactured materials like Spectralon, and so one must often contend

with non-Lambertian surfaces and this significantly complicates reconstruction compared to the

simplicity and robustness of methods for Lambertian surfaces.

Until now, fluorescent materials were mainly used in computer vision and graphics to

enhance visibility and contrast when imaging in scattering media [Gui90]. The property that

the fluorescence color is distinct from the illumination color is used to optically filter out at

the camera the wavelengths corresponding to the illuminant while allowing the wavelengths of

the fluorescence emission from the object to pass. Fluorescence was also used to reconstruct

transparent objects. Ihrke et al. [IGM05] added a fluorescent dye to water to enable reconstruction

of flow from a video sequence. Hullin et al. [HFI+08] immerse transparent objects in a fluorescent

solution to enable range scanning techniques.
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Interestingly, fluorescent emissions are almost always isotropic [Gla95], radiating en-

ergy equally in all directions, albeit at a different wavelength than the incident illumination.

Consequently, it has the same behavior as an ideal Lambertian surface. In this chapter, we

exploit this phenomenon to estimate shape from fluorescence in images. Contemporary with the

origional publication of the paper related to this chapter, Sato et al. [SOS12a] presented similar

contributions.

2.1 Image Formation

2.1.1 Reflectance

For simplicity of development, we consider an object surface point to be illuminated by

a single light source from the incident direction in polar coordinates (θi,φi) with an incident

radiance Li(λ). The object is viewed by a camera from the direction (θr,φr), also in polar

coordinates. The amount of light reflected from the object point towards the camera [Sze10] is

expressed by

Lr(λ) = Li(λ)F(λ,θθθ)cosθi , (2.1)

where F(λ,θθθ), is the BRDF at this object point, and θθθ = (θi,φi,θr,φr), are incident and viewing

directions in spherical angles relative to a local coordinate system defined by the surface normal.

The cosθi term is a foreshortening factor, as the exposed surface area decreases as the angle

between the surface normal and illumination direction increases.

The intensity of a pixel in color channel c with sensitivity zc(λ) is

Ic = k(γ)cosθi

∫
Λ

zc(λ)Li(λ)F(λ,θθθ)dλ , (2.2)
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where Λ is the range of visible wavelengths. Here k is the ratio between image irradiance and

scene radiance [Hor86], which depends on the effective f-number, lens transfer function, etc. In

addition, k depends on γ, the angle between the projected ray to the optical axis [Hor86]. Most

algorithms reconstructing shape from illumination assume the camera is viewing all object points

from the same direction (orthographic projection), so that k(γ) becomes a constant, or estimate

k(γ) through calibration. Either way, from here on we assume the dependency on γ was corrected

and treat k as a constant.

Typical BRDFs can be divided into two types of reflections. A specular reflection is

mirror-like where most of the incident light at the surface is reflected and concentrated about the

reflection angle θr = θi. On the other hand, a diffuse surface reflects light towards a wide range

of angles. An ideal Lambertian surface reflects light uniformly towards all directions, and the

BRDF is equal to the surface albedo

F(λ,θθθ) = F(λ) . (2.3)

Plugging Eqs. (2.1,2.3) into Eq. (2.2) yields the image intensity for a Lambertian surface

Ic = ac~L ·~N , (2.4)

where~L is a illumination direction scaled by the light source strength and ~N is the unit surface

normal. The term ac is the sensed color of the object in the channel c, as a function of the albedo,

light spectrum and the channel sensitivity

ac = k(γ)
∫

Λ

zc(λ)Li(λ)F(λ)dλ . (2.5)

Ideal Lambertian reflectance hardly exists in nature. Thus, there is a wide literature

on models of non-Lambertian reflectance that aim to characterize either very specific material
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Figure 2.2: Common fluorescent objects. In each example, the color image on the left was
acquired under white light whereas the image on the right was acquired under blue light with
a yellow filter over the lens. (a) Plastic objects (as well as papers) often fluoresce under a
wide excitation spectrum. They are made fluorescent at the same color they reflect to appear
especially bright. The color of the “ice cream” on the right is due to fluorescence; since
the cone does not fluoresce and only reflects, it appears black in the fluorescence image.
(b) Green plants and vegetables contain Chlorophyll that fluoresces red. The image on the right
was taken with a camera with a removed IR filter, for increased sensitivity for Chlorophyll
fluorescence [TNR+12].

classes with a few parameters or a wide range of materials with many parameters. Some of the

prominent ones are Oren-Nayar [ON95], Phong [Pho75], Cook-Torrance [CT82] and Ashikmin-

Shirley [AS00].

2.1.2 Fluorescence

Stokes fluorescence, the common observed type of fluorescence, is the re-emission of

photons having longer wavelengths than the absorbed photons [Gui90]. Any fluorescent molecule

has two characteristic spectra. The excitation spectrum is the relative efficiency of different

wavelengths of the exciting radiation to cause fluorescence. The emission spectrum is the relative

intensity of radiation emitted at various wavelengths (example in Fig. 2.1). To image just the

fluorescence, an excitation filter is mounted on a light source, or a narrow band light source

such as a laser or LED is used. In addition, an emission filter is mounted on the camera. These

filters are designed to have sharp boundaries, and to have negligible overlap in their transmittance

spectra. Recently, Zhang and Sato [ZS11] proposed a method for separating reflectance and

fluorescence by using two images illuminated by distinct colored light sources, that can have
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Figure 2.3: Scattering effects in a fluorescent object: (a) Specular reflections from the surface
are concentrated in a specular lobe around the specular angle θr = θi and often resemble the
illumination color; (b) Light that penetrates the surface undergoes scattering and eventually part
of it is reflected back to the viewer taking on the body color. The shape of the diffuse BRDF,
which includes ideal Lambertian reflectance, varies among surfaces and depends on the surface
roughness [ON95], among other factors; (c) Fluorescence emission of particles is often isotropic,
and thus the surface emission is close to be ideally Lambertian; (d) Differences in optical path
length from the fluorescence emission to the surface might harm isotropy due to absorption.

some overlap. In microscopy, narrow band filters are used to image various fluorescent molecules,

that are later unmixed [ASW10] to yield the separate emitted fluorescence signals.

Fluorescence is more abundant in everyday life than is usually acknowledged, and exam-

ples of fluorescent objects are shown in Fig. 2.2. Many papers and plastics are made fluorescent

to have a more striking color. Bleaching detergent is fluorescent and as a result, white papers

and many cloths fluoresce as well. In nature, green fruits, vegetables and plants fluoresce due to

Chlorophyll. This photosynthetic pigment strongly absorbs blue and red irradiance and reflects

green. Part of the blue irradiance is converted to fluorescence in the red spectrum. Excitation and

emission spectra of Chlorophyll are shown in Fig. 2.1. Corals fluoresce in red and green as they

contain both Chlorophyll and Green Fluorescent Proteins. While less significant in every day life

because of atmospheric attenuation, many objects fluoresce when excited by UV light. Many

minerals fluoresce under UV in colors of red, orange, yellow, green, blue, violet, etc. Porphyrins

in the human skin fluoresce under UV and are used for diagnosing dermatological conditions,

while ”black light posters” are more entertaining. In addition, some fluorescent materials emit

light in the infrared.
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Within the graphics community, Glassner [Gla95] followed by Wilkie et al. [WWLP06]

rendered fluorescent objects as diffuse, and Hullin et al. [HHA+10] claim that they are “weakly

directional”. These works explain this observation by the fact that the fluorescence emission

does not originate from the surface, but from subsurface processes. In addition, it is important

to realize that even before the subsurface scattering takes place, the angular distribution of

fluorescence from particles itself was measured to be isotropic in most cases [KLK78, GVK93].

This isotropic emission from the particles manifests as isotropic emission from the surface if the

fluorescent particles are uniformly spread in the object and are relatively close to the surface. The

reflectance and scattering processes are demonstrated in Fig. 2.3. Incident light may specularly

reflect off of the surface and the observed color is often that of the illuminant (a). Diffuse

reflectance may not be ideally Lambertian (b), and the fluorescence emission (c) is observed to be

closer to ideal Lambertian. For subsurface particles, differences in optical path length from the

fluorescence emission to the surface may manifest as a non-isotropic fluorescence emission, due

to absorption [CKSSM85] of the object material (d), especially in wider viewing angles. This

means that not all fluorescence emissions are ideally Lambertian throughout the entire viewing

range. Characterizing the nature of these cases requires future work. Here, following the above

analysis, in the next section we provide an empirical demonstration of fluorescent emission that

follows Lamberts law, and in the rest of the chapter we demonstrate how to use this insight for

shape estimation.

2.2 Angular Dependency of Fluorescent Emission

In this section we verify the claim that the fluorescence emission is well approximated by

an ideal Lambertian model through a simple experiment. We image a cylinder, illuminated with a

distant collimated light source, such that the light source direction and strength is uniform across
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Figure 2.4: Examination of the angular dependency of the fluorescent emission: (a,b) The
normalized intensity of several spray-painted paper sheets wrapped around a cylinder is plotted
as a function of incident angle θi, for two light source positions. The incident angle was estimated
using a spherical light probe. The specular reflection from the glossy paint indicates the location
of the specular peak. The non-ideal diffuse peaks are shifted from the ideal Lambertian peak
towards the specular direction. From all the measured surfaces, the fluorescent surface is the
closest to the ideal reflection. Interestingly, the reflection from the cardboard is significantly less
diffuse than that of the matte paint; (c) Images of the four materials. The cylinders are adjacent
for display purposes, but the measurements were done separately to avoid inter-reflections.

the cylinder. The cylinder provides imaging of all incident directions in a single image. The light

source direction is determined using a light probe (mirrored sphere) in the scene.

To compare reflectance properties, we spray-painted paper sheets with several types of

paint: matte, glossy, and fluorescent. These were imaged under a few light source directions.

Fig. 2.4 depicts the intensity plots as a function of θi for two distinct light source positions in

addition to the expected ideal Lambertian. The normal direction at each pixel is obtained from its

position on the cylinder and the known radius of the cylinder. Measurements along lines with

constant surface were averaged to remove noise, and the brightness was normalized to have a

consistent maximum intensity. At all measured light source directions, the fluorescent surface is

closer to the ideal reflection than the other surfaces.
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Figure 2.5: Shape reconstructions of a sphere spray painted with green fluorescent paint, using
reflectance and fluorescence channels. In both setups, the green channel is used. (a,b) Re-
construction using shape from shading. The reconstruction from reflectance has a clear bump
from specularities. In the reconstruction from fluorescence, the reconstruction is not ideal but
closely resembles the shape of a sphere. (c,d) Reconstruction by photometric stereo. In the
reconstruction from reflectance, for each pixel, we use the 3 frames that are the least bright in this
pixel, to reduce the effect of the specular reflection. Still, the reconstruction from fluorescence
is almost ideal, whereas the reconstruction from reflectance suffers from its non-Lambertian
nature. Note that both images in (b,d) appear very diffuse. (e) Cross sections of the different
reconstructions. Values in parenthesis depict the mean error in degrees of the normal angles in
each reconstruction.

In all experiments reported in this chapter we use raw images acquired either with a

Canon 1D mark IV or with a Canon 5DII illuminated with a Lowel pro-light tungsten halogen

light source. The reflectance images were imaged with this setup as-is and all the fluorescence

images were imaged using a blue filter on the light source and a yellow filter mounted on the lens

acquired from NightSea LLC. For Chlorophyll fluorescence images, we use a Canon 5DII with a

removed IR filter, for increased sensitivity for Chlorophyll fluorescence [TNR+12].

2.3 Shape from Shading

Eq. (2.4) is used in various methods for reconstructing 3D shape as it provides a simple

relation between image intensity and object normals, provided the surface is indeed ideally

Lambertian and the light source is distant. In shape from shading methods, a single image is
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used to estimate the shape under the assumption of constant albedo [ZTCS99]. A unit normal at

each pixel is defined by two unknowns, and Eq. (2.4) provides a single constraint. Then, various

additional constraints, such as integrability and smoothness are applied to obtain a solution.

There is also a bulk of literature on numerical methods for integrating the normals into a smooth

surface [ZTCS99, DFS08]. The majority of the existing methods assume Lambertian reflectance

and even then it is commonly acknowledged that results are usually unsatisfactory. A few methods

consider non-Lambertian reflectance models, that are known a-priori, e.g. [AF06].

Here we show that the Lambertian-like fluorescence emission is an ideal input to shape

from shading. We imaged a sphere spray-painted with green fluorescent paint. In each case

(reflectance and fluorescence) the green image channel is the input to shape from shading. The

reconstruction was performed using code based on [TS94], and the recovered shapes are shown in

Fig. 2.5. The reflectance suffers from the specular reflection, whereas in the reconstruction from

fluorescence, the reconstruction is not ideal but very closely resembles the shape of a sphere.

2.4 Calibrated Photometric Stereo

As stated in the previous section, shape from a single image usually produces unsatisfiable

results due to its under-determined nature and the required constant albedo assumption. Therefore,

in photometric stereo methods at least three images are taken [Woo80], in order to have a fully

determined set of equations from the form of Eq. (2.4). The problem can be cast as a matrix

equation, where for each pixel

~Ik×1 =~Sk×3N3×1 . (2.6)

Here S is a k× 3 matrix, representing k distinct light source directions normalized by their

intensity. The pixel values under each light source are stacked in~Ik×1. In the calibrated case, the

light source directions ~S are known and thus ~N can be solved for directly from Eq. (2.6) given at

least three linearly independent light source locations.
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The majority of photometric stereo methods assumes Lambertian surfaces, while some

works assume a different known reflectance function, explicit or parametric, e.g. [TD91]. There

are also attempts to estimate spatially varying BRDFs [GCHS10]. Considerable effort is given to

remove specularities in the images, usually assuming dichromatic BRDFs [SI94, ZMKB08a].

Here, we show how the fluorescence signal provides an ideal input to Eq. (2.6) and

alleviates the need for more complex methods. In Fig. 2.5 we show the result of photometric stereo

on a sphere spray painted with green fluorescent spray. In the reconstruction from reflectance, we

tried two methods to reduce the effect of the non-Lambertian reflectance. In one, for each object

point we used only the three frames where the corresponding pixel was the least bright. In the

second, we manually thresholded the brightest areas, and only use the non-thresholded frames for

each object point. A normal pointing in the z direction was assigned to object points that did not

have at least three input frames after thresholding. Still, the reconstruction from fluorescence is

much closer to the ground truth. The cross sections of the different reconstructions and the mean

error of the reconstructed normal angles are depicted in Fig 2.5(e).

Reconstruction of more complex objects is shown in Fig. 2.6. We show reconstruction for

a fluorescent plastic bottle (top) and for a (real) green bell pepper (bottom). In addition, Fig. 2.7

shows another reconstruction of a fluorescent toy squirt gun. All objects fluoresce as-is and

were not painted (see Sec. 2.2). In all cases the reflectance image (left) has clear specularities

that harm the reconstruction. The fluorescence images (right) appear very diffuse and indeed

the reconstruction based on them does not suffer from problems common to non-ideal diffuse

surfaces. For all objects the fluorescence image is taken from the red camera channel, and the

reflectance is from the blue channel. The integration part in the reconstruction uses the method

in [FC88].
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fluorescencereflectance

Figure 2.6: 3D reconstruction using photometric stereo applied to a fluorescent pink plastic
bottle (top) and to a (real) green bell pepper (bottom). These objects fluoresce as-is and were
not painted. [Left] The reflectance images have clear specularities that harm the reconstruction.
[Right] The fluorescence images are very diffuse and thus the reconstruction based on them
does not suffer from these problems. For all objects the fluorescence image was taken from the
red camera channel, and the reflectance image was from the blue channel. Seven images were
used to reconstruct the bottle while nine were used for the pepper.

2.5 Uncalibrated Photometric Stereo

The input to uncalibrated photometric stereo is a set of images of an object in fixed

pose under unknown lighting conditions. i.e., no information about the light source strength or

direction is needed [Hay94, YS97]. The basic equation describing the problem is then

~Ik× j =~Sk×3N3× j , (2.7)

where j is the number of pixels in the image. The unknown light source directions ~S are

considered uniform for all j pixels in the image. Image intensity of all pixels under all light

sources~Ik× j is used as an input, to simultaneously estimate ~S and the normal directions at every

pixel, N3× j. When the object is Lambertian and assuming only local reflectance, Eq. (2.7) can

be solved using SVD and applying integrability constraints up to a generalized bas relief (GBR)
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tranformation [YS97, BKY99] in the form

G =


1 0 0

0 1 0

µ ν τ

 , (2.8)

where µ, ν and τ are the three degrees of freedom of the tranformation.

For strictly Lambertian surfaces, inter-reflections in concave regions can resolve the

GBR [CKK05] as can heuristics like minimization of the entropy of albedo [AMK07]. How-

ever, both constraints are not always effective. Alternatively, the GBR can be resolved using

isotropy together with Helmholtz reciprocity [TMQ+07]. This method can only be accomplished

when the Lambertian component of reflectance can be separated from the specular component

(e.g., using polarization [NFB97] or the SUV color space under the dichromatic reflectance

model [ZMKB08b]).

Here, we offer a method to resolve the GBR in color images when the fluorescence is in

one color channel and other color channels contain reflectance images of a specular surface. The

strategy is simple. Because the emitted radiance due to fluorescence behaves like a Lambertian

surface, the surface can be reconstructed up to a GBR tranformation from the fluorescence channel

of multiple images under unknown lighting using the method of Yuille and Snow [YS97]. The

GBR can then be resolved from the specularities detected in the reflectance channel using the

method of Drbohlav and Chaniler [DC05]. This method uses normals from at least two specular

points to impose constraints on the reconstruction of the form

~v = 2(~n ·~l)~n−~l , (2.9)

where ~v is the viewing direction, ~n is the unknown normal at the specular point and ~l is the

unknown light source direction at the specific image containing the specular point. The constraint
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Figure 2.7: (a,b) Calibrated photometric stereo from fluorescence, demonstrated on a fluorescent
orange toy squirt gun, using 12 images. The fluorescence signal is diffuse, providing a 3D
reconstruction that does not suffer from bumps due to specularities. (c-e) Here we show how
specular pixels from the reflectance image (originally not used for reconstruction) can be used
to resolve GBR ambiguity in uncalibrated photometric stereo from the fluorescence channel.
(c) The solution for the uncalibrated case, based on [YS97], using the input images used in (b).
The shape of the squirt gun is apparent, but skewed with a GBR. Then, specular pixels are chosen
(marked by black spheres). These pixels imply constraints that allow recovery of the correct
GBR tranformation, following Eq. (2.9). The successfully transformed reconstruction is shown
in (d). In (e) two examples of the actual input images (both reflectance and fluorescence) are
shown and the specularity location is marked. Note that the reflection channel is used solely for
locating the specularity while surface is densely reconstructed from the more stable fluorescence
channel which does not exhibit specularities at these (or any) pixels.

in Eq. (2.9) is imposed on the solution of the uncalibrated step [YS97] to estimate the correct

GBR tranformation.

In [DC05], the normals reconstructed from the specular pixels in the reflectance image

are actually used in Eq. (2.9) to impose the constraint for surface reconstruction. Thus, they

are prone to errors and to an unstable reconstruction. As opposed to that, in our case we have

a clear advantage as the normals in the uncalibrated solution are obtained from the Lambertian

fluorescence channel, and the reflectance channel is used solely to locate the specular pixels. We
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show an example for this method in Fig. 2.7(c-e). The uncalibrated case is solved up to a GBR

ambiguity, and then the tranformation is estimated based on specularities. In our experience, this

method sometimes actually produces results that are better than the calibrated results due to better

accuracies in estimating the light source directions.

2.6 Mutual Illumination in Reconstruction

Nearly all radiometric methods for shape reconstruction (shape-from-shading, photometric

stereo) are based on local illumination models wherein the image irradiance is a function of the

direct illumination from the light source onto an imaged surface patch and the patch properties.

Unless methods to separate local and global illumination [NKGR06] are applied, the inter-

reflections of light from other surfaces in the scene onto the patch are neglected and left unmodeled.

However, when rendering scenes in computer graphics, global illumination methods achieve their

realism precisely because they account for inter-reflections. Forsyth and Zisserman showed that

the image intensity of a dihedral (where two planar faces meet and form a concavity) becomes

brighter closer to the corner due to mutual illumination, and the increase of brightness is related to

the albedos of the two faces [FZ89]. When performing reconstruction using shape-from-shading

or photometric stereo, this increased brightness results in shallower reconstructed concavities than

the true depth. Nayar et. al. [NIK90] called this the pseudo surface, and introduced an iterative

method for estimating the true surface from the pseudo surface by estimating an inter-reflection

kernel at each step.

Consider a simple concavity illuminated solely by wavelengths within its fluorescence

excitation spectrum. Some of the incident light will reflect from the surface according to its

BRDF, and some amount will excite fluorescence that will be emitted according to the material’s

emission spectrum. In general, the reflected light from the fluorescence emission can interreflect

within the concavity. However, when the material does not reflect light at the wavelengths of
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Figure 2.8: To demonstrate how fluorescence helps avoid mutual illumination, we covered
a V-shaped cardboard with leaves. (a,b) The reflectance and the fluorescence images of the
covered cardboard; (c) The shape was reconstructed using calibrated photometric stereo for
both the reflectance and fluorescence channels. The reconstructed depth (at a certain cross
section) is plotted for the reflectance and fluorescence images. While the reconstruction from
the reflectance channel shows classical bending of the corner (pseudo surface) as described
in [NIK90], the reconstruction from the fluorescence channel maintains sharp edges clearly
demonstrating the reduction of the effect of inter-reflections.

the fluorescence emission, there will not be any subsequent interreflections of the fluorescence

emissions. Consequently, reconstruction methods that only assume local Lambertian reflectance

will be effective for images of such materials.

Contrary to [SOS12a], we found that most artificial fluorescent objects and materials

reflect the color they fluoresce, as they are made fluorescent to appear brighter than they are, in

the same color. However, many natural objects such as leaves, vegetables and fruits, fluoresce

at different wavelengths than they reflect. For example, green leaves reflect green light but

absorb red and blue light. When lit by blue light, the Chlorophyll in the leaves will fluoresce red

(Fig. 2.1). Because the leaf absorbs red light, we do not expect appreciable brightening due to

inter-reflections. Consequently, when performing reconstruction, local illumination models will

be adequate to correctly estimate the depth, and methods such as [NKGR06, NIK90] should be

unnecessary.

To demonstrate this claim on a simple case, we created a concave dihedral (V-shaped) out

of cardboard and glued leaves to it, such that it is covered by the leaves. Using the reflectance and

fluorescence channels separately, the shape was reconstructed using calibrated photometric stereo

(example images shown in Fig. 2.8a,b, total images was 10). To clearly demonstrate the effect,
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we plot a cross section of the reconstructed height for the two channels, (Fig. 2.8c). Whereas the

reconstruction from the fluorescence channel shows a sharp corner, the reconstruction from the

reflectance channel is shallower and the smooth rounding of the corner (pseudo surface) is similar

to what is described in [NIK90].

2.7 Summary

Imaging fluorescence through inexpensive off-the-shelf filters opens an enchanting world

of glowing objects and objects that alter their color appearance. It is surprising to discover that

many every day objects fluoresce in the visible spectrum under UV or blue light and therefore can

be imaged with conventional cameras. In this chapter we showed the benefit of using fluorescence

for 3D reconstruction methods since fluorescence emissions are often isotropic much like ideal

Lambertian reflectance. This insight can be used, for example, for 3D reconstruction of fluorescent

corals underwater, where texture correspondences are sometimes problematic, given the water

optical properties are taken into account. We showed that there is an advantage of imaging a

fluorescent object over a matte object, as specularities from the reflectance channel can provide

additional information regarding light source directions relative to the object. In addition, we

showed how in some cases fluorescence can avoid mutual illumination problems.

Chapter 2 is a reformatted version of “Shape from Fluorescence,” T. Treibitz, Z. Murez, B.

G. Mitchell, D. Kriegman, European Conference for Computer Vision (ECCV) 2012 [TMMK12].

The dissertation author was the primary investigator and author of this paper.

23



Chapter 3

Photometric Stereo in a Scattering

Medium

In the previous chapter we examined how properties of fluorescence make it an ideal

input for shape from shading and photometric stereo. In this chapter, we focus on photometric

stereo, and extend its use to participating media, such as in fog, haze, water, or biological tissue.

Obtaining 3D information in this case is difficult because of scattering [GRG+13, KDCS08,

PPV08].

Unlike in air, in a scattering medium, light propagation is affected by scattering which

degrades the performance of photometric algorithms unless accounted for. Distance dependent

attenuation caused by the medium has been dealt with in the past [KFB92]. Here, our contributions

lie in handling three scattering effects (Fig. 3.1), based on a single scatter model [SRNN05]:

1) light traveling from the source to the object is blurred due to forward scattering; 2) light

traveling from the object to the camera is blurred due to forward scattering; 3) light traveling

from the source is scattered back towards the camera without hitting the object. This is known

as backscatter and is an additive component that veils the object. All these effects are distance

dependent and thus depend on the object 3D surface: the property we aim to reconstruct. To
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Figure 3.1: A perspective camera is imaging an object point at X, with a normal N, illuminated
by a point light source at S. The object is in a scattering medium, and thus light may be scattered
in the three ways shown, detailed in Sec. 3.2.

handle this we introduce the small surface variations approximation for the object (Sec. 3.2),

that assumes surface changes are small relative to the distance from the object (that is assumed

to be known). This assumption removes the dependence on the unknown surface heights Z, but

unlike the common distant light/camera approximations, it still allows for dependencies on spatial

locations X and Y . One important consequence of this is the ability to model anisotropic light

sources, which is not possible for distant lights.

Forward scatter was previously compensated for iteratively for both pathways (light to

object and object to camera) simultaneously [NZH02]. We analyze the paths separately. The

resulting algorithm is simpler, requires fewer images and yields better results. First, consider

the blurring of light traveling to the object from the source (Fig. 3.1b). The photometric stereo

formulation assumes a point light source, illuminating from a single direction. However, if

the source is scattered by the medium, this no longer holds: the point light source is spread,

and the direction of light rays incident on the object changes. Nonetheless, for a Lambertian

surface, illuminated from a variety of directions, we still get a linear equation between the image

intensities and the surface normals [Sha92]. Here, we show through simulations in a large variety

of single scattering media, that a forward-scattered light source illuminating a Lambertian surface

can be well approximated by a non-blurred light source in an effective purely absorbing medium

(Sec. 3.5). This allows for much easier calibration in practice.
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Next, we observe that the blur caused by scattering from the object to the camera (Fig. 3.1c)

significantly affects the shape of the surface reconstructed by photometric stereo. This important

effect has been neglected in many previous works. In general, the point-spread function (PSF)

for an object is spatially varying and dependent on the unknown scene depths. However, we

demonstrate that a spatially invariant approximation can still achieve good results, when calibrated

for the desired medium and approximate object distance. Although this means we must capture

an additional calibration image for each medium and working distance, we do not believe this will

be too cumbersome based on previous experience in the field. We estimate the PSF and use it to

deconvolve the images after backscatter has been removed (Sec. 3.6). These corrected images are

used as input to a linear photometric stereo algorithm to recover the surface normals, which are

then integrated. This results in much higher quality 3D surfaces across varying turbidity levels.

Finally, consider the backscatter component (Fig. 3.1a). In a previous work (Tsiotsios et

al. [TAKD14]) backscatter was calibrated and subtracted from the input images. This is similar

in spirit to, and can in fact be used in conjunction with, ambient light subtraction, however

underwater light is rapidly attenuated and thus ambient light is often minimal. However, when

backscatter is strong relative to the object signal, subtracting it after image formation leads to

lack of dynamic range and lower signal-to-noise ratios (SNR) [TS12] that significantly degrades

deblurring and reconstruction. Here we show that if the object fluoresces, this can be leveraged

to optically remove the backscatter prior to image formation (Sec. 3.7). Fluorescence is the

re-emission of photons in wavelengths longer than the excitation light [Gui90], and therefore the

backscatter can be eliminated by optically blocking the excitation wavelengths and imaging only

the fluorescence emission. This improves SNR, especially in high turbidity. This approach is

feasible as many natural underwater objects such as corals and algae fluoresce naturally.

We demonstrate our method experimentally in a water tank (Sec. 3.9) with varying

turbidity levels. Deblurring can be used separately or combined with fluorescence imaging to

significantly improve the quality of photometric stereo reconstructions.
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3.1 Previous Work

The traditional setup for photometric stereo assumes a Lambertian surface, orthographic

projection, distant light sources, and a non-participating medium [Woo80]. However, underwater

light is exponentially attenuated with distance, and thus the camera and lights must be placed

close to the scene for proper illumination. This means that the orthographic camera model, and

the distant light assumptions, are no longer valid. In addition, attenuation and scattering by the

medium need to be accounted for. These effects were partially considered in previous works.

Near-Field Effects and Exponential Attenuation: Photometric stereo in air was solved with

perspective cameras [LK96, TK05], nearby light sources [KB91], or both [GT96, ISI90]. Kola-

gani et al. [KFB92] uses a perspective camera, nearby light sources and includes exponential

attenuation of light in a medium. Their formulation leads to nonlinear solutions for the normals

and heights. We handle these near field effects but linearize the problem (Sec. 3.2).

Photometric Stereo with Backscatter: Narasimhan et al. [NNSK05] handles backscatter and

attenuation, with the assumption of distant light sources and an orthographic camera. Tsiotsios et

al. [TAKD14] extends this to nearby point sources and assumes the backscatter saturates close to

the camera and thus does not depend on the unknown surface height. Then, it can be calibrated

and subtracted from the images. We use the method in [TAKD14] in one of our variants.

Backscatter Removal: Backscatter was previously removed for visibility enhancement, by

structured light [GNS08], range-gating [KDCS08], or using polarizers [TS09]. Nevertheless,

these methods do not necessarily preserve photometric information. It is sometimes possible

to reduce backscatter by increasing the camera light source separation [GNS08, Jaf90], but this

often leads to more shadowed regions, creating problems for photometric stereo.

Fluorescence Imaging: Removing scatter using fluorescence is used in microscopy [TT07],

where many objects of interest are artificially dyed to fluoresce. Hullin et al. [HFI+08] imaged

objects immersed in a fluorescent liquid to reconstruct their 3D structure. It was recently shown
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that the fluorescence emission yields photometric stereo reconstructions [SOS12b, TMMK12] in

air that are superior to reflectance images as the fluorescence emission behaves like a Lambertian

surface due to its isotropic emission.

Deblurring Forward Scatter: Zhang et al. [ZN02] and Negahdaripour et al. [NZH02] handle

blur caused by forward scatter using the PSF derived in [Jaf90, McG80]. Their PSF depends on

the unknown distances, as well as three empirical parameters, and affects both the path from the

light source to the object and from the object to the camera. They iteratively deconvolve and

update the depths until a good result is achieved. Trucco et al. [TOA06] simplify the PSF of

[Jaf90, McG80] to only depend on two parameters while assuming the depth is known. Our PSF

is nonparametric, independent of the unknown depths and only affects the path to the camera,

which allows for a direct solution without iteration. While we look at a Lambertian surface in a

scattering medium, Inoshita et al. [IMMY14] and Dong et al. [DMZP14] consider the problem of

photometric stereo in air on a surface that exhibits subsurface scattering, which blurs the radiance

across the surface. They deconvolve the images to improve the quality of the normals recovered

using linear photometric stereo. Tanaka et al. [TMK+15] also model forward scatter blur as a

depth dependent PSF and combine it with multi (spatial) frequency illumination to recover the

appearance of a small number of inner slices of a translucent material.

3.2 Overview and Assumptions

In this section we introduce the image formation model, considering each of the modes of

light propagation in a single scattering medium, as shown in Fig. 3.1. We derive expressions for

each component in the following sections.

Consider a perspective camera placed at the origin, with the image (x,y) coordinates

parallel to the world’s (X ,Y ) axes, and the Z-axis aligned with the camera’s optical axis. Let the

point X = (X ,Y,Z) be the point on the object’s surface along the line of sight of pixel x = (x,y).
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Our Algorithm
Input:

3 or more images: Li

source positions: Si

mean depth: Z̄
backscatter images: Li

b
scattering parameters: PSF and σ̃ (Sec. 3.8.3)

Output:
normals: N
surface heights: Z

1: if reflectance images then
2: subtract backscatter: Li−Li

b (Sec. 3.4)
3: end if
4: deblur images: Li

o← h−1 ∗ (Li−Li
b) (Eq. 3.19)

5: solve linear PS: N j← [L̃eq
j ]
−1[Lo j ] (Eq. 3.10,3.12)

6: integrate normals: Z←
∫

N

Figure 3.2: Our Algorithm. Steps 2 and 4 are applied to each image i independently. Step 5 is
applied to each pixel j independently with the data from each image i stacked into a matrix.

Let S be the world coordinates of a point light source, and define D(X) = S−X as the vector

from the object to the source.

We assume a single scattering medium which allows us to express the radiance Lo reflected

by a surface point as the sum of two terms:

Lo(x) = Ld(x)+Ls(x) (3.1)

where Ld is the direct radiance from the source (Sec. 3.3), and Ls is the radiance from the source

which is scattered from other directions onto X (Sec. 3.5 and Fig. 3.1b).

Next, we express the radiance arriving at the camera as the sum of three terms:

L(x) = Lo(x)e−σ‖X‖+Lb(x)+Lc(x) (3.2)
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where Lo is the light reflected by the surface point X which arrives at the camera without

undergoing scattering. Note that it is attenuated by e−σ‖X‖ where σ is the extinction coefficient.

Lb is composed of rays of light emitted by the source that are scattered into x’s line of sight before

hitting the surface (Sec. 3.4 and Fig. 3.1a). This term is known as backscatter. Finally, Lc, is

composed of rays of light reflected by other points on the surface that are scattered into pixel x’s

line of sight (Sec. 3.6 and Fig. 3.1c).

In order to write analytic expressions for these terms and derive a simple solution we

make two assumptions. First, the surface is Lambertian with a spatially varying albedo ρ(X).

Second, we assume that surface variations in height are small compared to object distance from

the camera. We call this the small surface variations approximation and note that it is weaker

than the common distant light sources and orthographic projection approximations. Let Z̄ be the

average Z coordinate of the surface (assumed to be known). Then, the approximation claims that

for every point on the surface: |Z(X)− Z̄| � Z̄, ∀X.

The approximation results in a weak perspective such that the projection x of X in the

image plane is given by

x =

(
f

X
Z̄
, f

Y
Z̄

)t

; X =

(
Z̄
f

x,
Z̄
f

y, Z̄
)t

, (3.3)

where f is the known focal length. Note that for a given pixel, since we know its (x,y) coordinates

and the average object distance Z̄, the world coordinates X are known. Specifically, D(X) is

independent of the unknown object height Z but still depends on X and Y , whereas in the distant

light sources approximation D(X) is a constant.

Outline of Our Method

Given an input image L we eliminate the backscatter Lb by one of two methods. The first

follows [TAKD14]: backscatter from each light source is measured by imaging it with no objects
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in the scene, and then the measured backscatter is subtracted from the input images. In the second,

backscatter is optically eliminated using fluorescence as we explain in Sec. 3.7. Once backscatter

is removed, the resulting images are deblurred, using a calibrated PSF, to recover Lo (Sec. 3.6,

Eq. 3.19). Next we write Lo as a linear equation between the unknown surface normals, albedo

and an equivalent light source (Sec. 3.5, Eq. 3.10), which we approximate as an effective point

source in a purely absorbing medium with effective extinction coefficient (Sec. 3.5, Eq. 3.12).

With a minimum of 3 images under distinct light locations the normals can be solved for, as in

conventional photometric stereo. The normals are then integrated to recover a smooth surface.

This algorithm is summarized in Fig. 3.2.

3.3 Direct Radiance

First, consider the direct reflected radiance from a Lambertian surface[Woo80]:

Ld(x) = I(X)
ρ(X)

π
D̂(X) · N̂ , (3.4)

where N̂ is the unit surface normal and D̂ is the normalized source-to-object vector. The radiance

on the object surface I(X) depends on the radiant intensity I0 of the source in direction1 (−D̂):

I(X) =
(

I0
(
− D̂(X)

)
e−σ‖D(X)‖

)
/‖D(X)‖2 . (3.5)

Eq. 3.5 accounts for nearby angularly-varying sources, exponential attenuation along the optical

path length with extinction coefficient σ, and inverse-square distance falloff.

1the direction is negative as we consider outgoing rays from the source.
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Can Distance-Dependent Falloff Be Neglected?

We have introduced a near-field source, but often, in photometric stereo, the distant light

source assumption is used, as it simplifies the mathematical development, computation of shape,

and calibration of implemented systems because the light source direction can be treated as a

constant, and the incident irradiance does not depend upon depth allowing it to also be treated as a

constant. In this section, we explore whether similar simplifications are possible for photometric

stereo in a medium.

In a medium, the incident irradiance falls off as function of distance due to the product

of two factors; free space falloff and medium attenuation. Consider the situation depicted in

Fig. 3.3a for which two points P and P∆ are illuminated by a light source that is respectively at

distances d and d +∆ from the points. The ratio Ψ of the irradiance at P and P∆ can be expressed

as Ψ = EP∆
/EP = ΨfreespaceΨmedium. The irradiance of a point light source propagating in a

medium at distance d, falls off by 1/d2, and is attenuated by the medium by e−βd . Thus,

Ψfreespace = d2/(d +∆)2 , Ψmedium = e−β∆ . (3.6)

Interestingly, Ψfreespace depends on both the absolute distance d to the light source as

well as ∆, while Ψmedium is independent of d, and depends only on the path difference ∆ and

on the attenuation coefficient β. To get an idea of object dimensions where the variation in

incident irradiance is small and might be treated as constant, let us consider an example where

the path difference ∆ yields Ψ = 0.9 (i.e., a 10% difference in the incident irradiance at P and

P∆). Figure 3.3b shows a plot of ∆ vs d where Ψfreespace = 0.9, and we see that the object’s size

can increase linearly with distance. Figure 3.3b shows a plot of ∆ vs β the attenuation parameter

where Ψmedium = 0.9, and we see that as the medium becomes murkier the size decreases and is

independent of distance. In other words, the opportunity to neglect distance-dependent falloff of

lighting in a medium depends upon the clarity of the medium, even when the distance is large
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Figure 3.3: (a) Light source can be considered distant if the irradiant light intensity across it is
uniform. (b) Path length differences yield 10% intensity difference of point light source intensity
due to free space falloff, as a function of d. (c) Path length differences along an object that
yield 10% difference in medium attenuation across it, as a function of β. For β > 1m−1, which
represents fairly clear water, path lengths greater than 10cm already result in noticeable intensity
changes, ruling out the distant light source assumption.

enough to allow the freespace falloff to be ignored. Due to this we chose to use the small surface

variations approximation instead of the distant source approximation.

3.4 Backscatter

Light is scattered as it travels through a medium. The fraction of light scattered to each

direction is determined by the phase function P(α), where α ∈ [0,2π] is the angle between the

original ray direction and scattered ray, and β is the scattering coefficient.

Light which is scattered directly into the camera by the medium without reaching the

object is termed backscatter and is given by [NGD+06, SRNN05] (Fig. 3.1a):

Lb(x) = β

∫ ‖X‖
0

I(rX̂)P(α)e−σrdr (3.7)
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The integration variable r is the distance from the camera to the imaged object point X along the

line of sight (LOS), that is a unit direction X̂. The scattering angle α is given by cos(α) = D̂ · X̂

(recall that D is the direction to the light) and I(rX̂) is the direct radiance of the source at point

rX̂ as defined in Eq. 3.5.

Note that for the small surface variations approximation, X and hence the limits of

the integral are known for a given pixel. Therefore, the backscatter does not depend on the

unknown height of the object and is a (different) constant for each pixel, similar to Tsiotsios et

al. [TAKD14].

Instead of analytically computing Lb, we found that it was easier and more accurate to

directly measure it using the calibration method of [TAKD14]: for each light an image is captured

with no object in the field-of-view.

3.5 Single Scattered Source Radiance

Because of the medium, light rays that are not originally pointed at an object point may

be scattered and reach it from the entire hemisphere of directions Ω (Fig. 3.1b), termed forward

scattered radiance

Ls(x) =
ρ(X)

π

∫
ωωω∈Ω

Li(ωωω)(ωωω · N̂)dωωω . (3.8)

where Li(ωωω) is the total radiance scattered into the direction ωωω and is given by

Li(ωωω) = β

∫
∞

t=0
I(X+ tωωω)P(α)e−σtdt , (3.9)

where t is the distance from the object, and the angle α is given by cos(α) = D̂(X+ tωωω) ·ωωω. Note

that D is the direction of the integration point to the light.
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Substituting Eqs. 3.4,3.8 into Eq. 3.1 and rearranging yields:

Lo(X) = Ld(X)+Ls(X) =
ρ(X)

π
LLLeq(X) · N̂ , (3.10)

where

LLLeq(X) = I(X)D̂(X)+
∫

ωωω∈Ω

Li(ωωω)ωωωdωωω . (3.11)

Here, the direct light as well as the integrated scattered contributions can be thought of as

an equivalent distant source. However, this equivalent source may be different (in direction

and magnitude) for each surface point, and thus is not a true distant source. Furthermore, the

integration domain Ω in Eq. 3.11 depends on N̂, preventing Eq. 3.10 from giving us a simple

linear equation for the unknown normals and albedo.

We next show through simulations, that for a wide variety of media, Leq(X) can be

approximated as an effective point source in a purely absorbing medium with effective extinction

coefficient. This eliminates the non-linearity in Eq. 3.10 allowing for a linear solution for the

normals given 3 or more images.

Effective Point Source Simulations

We approximate Leq(X) as:

L̃LLeq
(X)≈

κI0
(
− D̂(X)

)
e−σ̃‖D(X)‖

‖D(X)‖2 D̂(X) , (3.12)

which has the same form as Eq. 3.5, but the extinction coefficient is replaced by the effective

extinction coefficient σ̃, and the intensity is scaled by κ. The effective source has the same

position S and intensity distribution I0 as the real source. Note that κ is a global brightness scale,
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which is the same for all the lights, and thus does not need to be explicitly calibrated, as it cancels

out in the normal estimation.

The intuition for why the source direction is unchanged is visualized in Fig. 3.4a. Although

light is arriving from the entire hemisphere of directions, the vector sum of most of these directions

lies in the original direction due to symmetry. Only the area of asymmetric scattering does not

have symmetrical rays since the symmetrical rays lie below the visible hemisphere (in attached

shadow) for the surface point. Although these asymmetric rays could potentially shift the

equivalent direction, their contribution is often small for two reasons. First, these rays correspond

to larger scattering angles, which are often much weaker than for rays with smaller scattering

angles. Second, these paths are on average longer than for paths with smaller scattering angles

and thus are more attenuated. Guided by this intuition we formulated the effective source

approximation, and verified it’s accuracy through extensive simulations in a wide variety of

media.

For our simulations we used an isotropic point source at a distance d from a Lam-

bertian surface patch with an angle φ between the surface normal and light direction. Note

that the parametrization of a surface patch by d and φ fully parametrize the space of possible

surface patches. For the scattering function, we used the common Henyey-Greenstein phase

function [HG41], which can represent a large space of scattering functions by tuning a single

parameter g ∈ [−1,1]. In water, g is usually between 0.7−0.9 [NGD+06].

We compute Lo(d,φ) for d ∈ [200,600]mm, φ ∈ [0,π], for a variety of media given by

β ∈ [0,0.005]mm−1 and g ∈ [0,0.9]. Note that we choose I0 such that Lo(200,0) is normalized

to 1. To reduce the number of parameters we set σ = β, which does not influence the analysis2.

2In general β≤ σ, but since β purely scales Ls, a smaller value of beta would make Lo closer to Ld and thus L̃0
would be an even better fit than we calculated.
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For each parameter pair g, β we compute the approximation parameters κ and σ̃ by minimizing:

min
κ,σ̃

∑
d,φ
|Lo(d,φ)− L̃o(d,φ)|2 . (3.13)

The error in the approximation is then given by the residuals RE(d,φ) = |Lo(d,φ)− L̃o(d,φ)|.

The residuals for g = 0.8, β = 0.0026 (common in our setup) are plotted in Fig. 3.4b. We

can see that the difference between the approximation and true values are small for all values of

d and φ. Note that the error is largest near φ = 90◦, where the area of asymmetric scattering is

largest.

For each β ∈ [0, .005]mm−1 and g ∈ [0, .9] we compute the mean residual (MRE) over d,

φ and plot it in Figure 3.4c. We see that the MRE is less than 2% across all medium conditions

tested justifying the approximation. Further, we see that the MRE increases slowly with scattering

coefficient β, and more rapidly with phase parameter g. As such, in water, which is mostly forward

scattering (g between 0.7−0.9), our approximation is very accurate, even for highly turbid media.

On the other hand, if scattering is more isotropic (g close to zero), then the approximation might

not be valid for large β.

3.6 Single Scatter Object Blur

Similar to the light source blur, radiance from the object is also blurred while it propa-

gates to the camera (Fig. 3.1c). As we demonstrate, this effect deteriorates the performance of

photometric stereo, although it has been neglected in previous works [SRNN05].

The contribution of object blur to the pixel intensity is computed by integrating light

scattered into the LOS of X from all other points on the surface:

Lc(x) = β

∫ ‖X‖
r=0

∫
ωωω∈Ω

Lo(X′)P(α)e−σ(t+r) dωωωdr. (3.14)
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Figure 3.4: a) Diagram of the intuition for the effective source approximation. Although light
is arriving from the entire hemisphere of directions, the vector sum of most of these directions
lies in the original direction due to symmetry. Only the area of asymmetric scattering does
not have symmetrical rays since the symmetrical rays lie below the visible hemisphere (in
attached shadow) for the surface point. The contribution from these rays are often small. b) The
relative error between Lo(d,φ) and L̃o(d,φ) for g = 0.8 and β = 0.0026. Note that the spike
only reaches 3% and is located at φ = 90◦ where L̃o = 0 due to shadowing. φ near 90◦ and above
is not usually relevant for photometric stereo. c) The mean relative error between Lo and L̃o for
β ∈ [0,0.005]mm−1 and g ∈ [0,0.9]. The approximation errors are small over a wide variety of
media.
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Here r is the distance along the LOS, X′ is the object surface point intersected by the ray starting

at point rX in direction ωωω. Its radiance is Lo(X′) and its distance to the scatter point in the LOS is

given by t = ‖rX̂−X′‖ with scattering angle cosα = ωωω · (−X̂).

We now show that Lo can be recovered from Loe−σ‖X‖+ Lc by deconvolution with a

constant PSF.

Deblurring Object Scatter

First we rewrite Eq. 3.14 to integrate over the area of the object surface dA = dωωω · t2/cosθ

instead of solid angle dωωω, where t is the distance from X′ to the scattering event, and θ is the

angle between the normal at X′ and the ray of light before scattering. Eq. 3.14 now becomes

Lc(x) = β

∫
X′

Lo(X′)
∫ ‖X‖

0
P(α)e−σ(t+r) cosθ

t2 dr dA. (3.15)

Now we define the scattering kernel

K(X,X′) = δ(X−X′)e−σ‖X‖+

β

∫ ‖X‖
0

P(α)e−σ(t+r) cosθ

t2 dr, (3.16)

where δ(X−X′) is the Dirac delta function. Now,

Lo(x)e−σ‖X‖+Lc(x) =
∫

X′
K(X,X′)Lo(X′)dA(X′) . (3.17)

In general, the kernel K, depends on X, X′ and the unknown normals N̂′. For an ortho-

graphic camera viewing a plane at constant depth, K is shift invariant and Eq. 3.17 can be written

as a convolution with a PSF. Motivated by this, we found empirically that for a given Z̄ it is

approximately shift invariant (and rotationally symmetric).
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Denoting the PSF as h, we get

Lo(x)e−σ‖X‖+Lc(x)≈ h∗Lo . (3.18)

We emphasize here that we have shown that under a single scattering model, the forward

scatter from the object can be written as an integral transform with kernel K. This justifies

approximating the forward scattering as a PSF which is not obvious in the form of Eq. 3.14.

We solve Eq. 3.18 for Lo by writing the image as a column vector and representing the

convolution as a matrix operation

(L−Lb) = HLo (3.19)

where we have substituted the known backscatter compensated image (L−Lb) for Loe−σ‖X‖+Lc,

and H is the matrix representation of h. Here H is a large nonsparse matrix and thus storing it

in memory and directly inverting it is infeasible. Instead we solve the linear system of Eq. 3.19

using conjugate gradient descent. This requires only the matrix vector operation which can be

computed as a convolution and implemented using a Fast Fourier Transform (FFT).

3.7 Backscatter Removal Using Fluorescence

While we are able to subtract the backscatter component, it is an additive component that

effectively reduces the dynamic range of the signal from the object, degrades the image quality

and reduces SNR [TS12]. As such it is beneficial to optically remove it when imaging. Here,

we use the observation that for fluorescence images taken with non-overlapping excitation and

emission filters, there is no backscatter in the image (Fig. 3.5a). In fluorescence imaging, the

signal of interest is composed of wavelengths that are longer than that of the illumination, and a

barrier filter on the camera is used to block the reflected light. The backscatter is composed of

light scattered by the medium before it reaches the object. Thus, the backscatter has the same
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Figure 3.5: a) Backscatter is caused by light that is scattered into the camera by a medium,
before it reaches the object and has the same color as the illumination. Thus, the barrier filter
used to block fluorescence excitation also blocks backscatter, while imaging the signal from
the object. We use this property to remove backscatter in input images. b) Photometric stereo
reconstruction of a fluorescent sphere using backscatter subtracted reflectance images. One
of the input images is shown on the left, with visible noise and blur. Blur in the input images
flattens the reconstruction. c) Looking at fluorescence images as an input, the backscatter is
eliminated while maintaining a higher SNR. However the blur still flattens the reconstruction.
d) Deblurring the backscatter subtracted images recovers the general shape but suffers from
noise as seen by the spiky surface. e) Deblurring the fluorescence results in the correct shape
with much less noise.
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spectral distribution as the light source, which is blocked by the barrier filter on the camera. This

insight enables imaging without loss of dynamic range even in highly turbid media. Compared to

a backscatter subtracted reflectance image, a fluorescence image has less noise (Fig. 3.5b,c). This

difference becomes even more apparent after deconvolution (Fig. 3.5d,e).

In addition, in [SOS12b, TMMK12] it was shown that the fluorescence emission acts as a

Lambertian surface in photometric reconstructions. Thus, imaging fluorescence has an additional

advantage as it relaxes the need for a Lambertian surface.

In the development of our algorithm we assumed a single set of medium parameters

β, σ and P(α). However these quantities are in general wavelength dependent. In reflectance

imaging, the wavelength of the light is the same on both pathways: light to object, and object to

camera. However, in fluorescence imaging they are different. Nevertheless, the only parameters

that require calibration in our solution are the effective extinction coefficient σ̃ and the PSF.

The parameter σ̃ is estimated for the excitation wavelength and the PSF is estimated for the

emission wavelength, and as such we do not need to calibrate any extra parameters in the case of

fluorescence imaging.

3.8 Implementation

3.8.1 Experimental Setup

Our setup is shown in Fig. 3.6. We used a Canon 1D camera with a 28mm lens placed

2cm away from a 10 gallon glass aquarium. All sides except the front (where the camera looks in)

were painted black to reduce reflection. In addition, a black panel was suspended just below the

surface of the water to remove reflection from the air-water interface. The objects were placed

at an average distance of 40cm from the front of the tank. For point illumination we used Cree

XML - RGBW Star LEDs. The LEDs were water proofed by coating the electrical terminals with

epoxy. Reflection images were taken under white illumination while fluorescent images were
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Figure 3.6: [Left] Our experimental setup consists of a camera looking through a glass port into
a tank. [Right] 8 LEDs are mounted inside the tank around the camera port illuminating the
object placed at the back of the tank.

Level 1 Level 2 Level 3 Level 4
Objects Spherical Cap & Lobster

Milk (ml) 1.25 2.50 3.75 5.00
juice (ml) 15.0 30.0 45.0 60.0

β(×10−3mm−1) .602 1.20 1.81 2.41
σ(×10−3mm−1) .642 1.28 1.93 2.57

Objects Toy Gun & Mask
Milk (ml) 1.25 2.50 3.75 5.00
juice (ml) 0 0 0 0

β(×10−3mm−1) .602 1.20 1.81 2.41
σ(×10−3mm−1) .602 1.20 1.81 2.41

Figure 3.7: Tabulated values for the amount of milk and grape juice added in our experiments,
and the associated scattering and extinction coefficients. The coefficients were computed using
the data provided in [NGD+06].

43



 

Figure 3.8: Cross-sections of the spherical cap reconstruction in turbid medium using various
methods compared to ground truth. The clear water reconstruction resembles the ground truth.
Only correcting for the backscatter (by subtraction or fluorescence) yields flattened results.
Deblurring the backscatter subtracted images recovers the shape but is degraded by noise (the
surface is jagged). Deblurring the fluorescence images produces the best results.

taken under blue illumination with a Tiffen #12 emission filter on the camera. We used tap water,

and the turbidity was increased using a mixture of whole milk and grape juice (milk is nearly

purely scattering, while grape juice is nearly purely absorbing and thus by mixing them we can

achieve a variety of scattering conditions [NGD+06]). The LEDs were mounted inside the tank

on a square around the camera, four on the corners and four on the edges. Their positions were

measured. Images were acquired in Raw mode which is linear and the normal integration was

done using the method of [ARC06].

3.8.2 Geometric and Radiometric Calibration

Images of a checkerboard (in clear water) were used to calibrate the intrinsic camera

parameters (implicitly accounting for refraction) [Bou]. The location of each light was measured

using a ruler, and transformed to the camera reference frame. To calibrate each light’s angular

intensity distribution we imaged a matte painted (assumed to be Lambertian) plane at a known
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Figure 3.9: Errors in the reconstructions of four objects as a function of turbidity, compared
to clear water reconstruction. Top rows are average percent errors in heights and bottom rows
are average angular errors in normals. Removing backscatter by either subtraction or using
fluorescence performs similarly. Deblurring the backscatter compensated images significantly
improves the reconstructions. In high turbidity where the backscatter is strong compared to
the object signal deblurring the backscatter subtracted images degrades due to noise, while
deblurring the fluorescence suffers less, as the fluorescence images have a higher SNR.
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position under illumination from each light in clear water. Using Eq. 3.4, the known geometry,

and σ = 0, we compute I0(−D̂), the angular dependence of the light source.

3.8.3 Calibration of Medium Parameters

The backscatter component is measured using the calibration method of [TAKD14]. For

each light an image is captured with no object in the field-of-view and subsequently subtracted

from future reflectance images. This is not used when imaging fluorescence.

Our method works independent of how the PSF is calibrated and thus a variety of methods

could be used including that of Narasimhan et. al. [NN03]. Here we chose a procedure using a

calibration target similar to [JSK08] due to its ease of implementation. We use a matte painted

checkerboard which is imaged with its axis aligned to the image plane at the approximate depth

of the objects we plan to reconstruct. As the PSF is rotationally symmetric its parameters are the

values along a radius [h0, ...,hs], where h0 is the center value and hs is the value on the support

radius s. The PSF and the effective extinction coefficient σ̃ are estimated by optimizing

min
σ̃

min
h0...hs

∑
x
‖h∗Lo(x, σ̃)− (L−Lb)‖ (3.20)

where L is the image of the checkerboard in the medium and Lb is the image of the backscatter.

Lo is computed from Eq. 3.10 using the calibrated lights, known geometry, and registering the

checkerboard albedo, measured in clear water to the image in turbid water. The inner optimization

is an overdetermined linear system holding σ̃ fixed. We sweep over the values of σ̃ and choose

the one with the minimum error. Note that the PSF is not normalized due to loss of energy

(attenuation) from the object to the camera.
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Figure 3.10: Input images and resulting surface reconstructions of the spherical cap. The
columns depict three levels of increasing turbidity from left to right. [1st row] result of standard
photometric stereo (scattering is ignored). The shape is not reconstructed correctly. [2nd
row] Result of removing the backscatter as in [TAKD14]. The reconstruction is improved but
still unsatisfactory. [3rd row] Using fluorescence to remove backscatter. The result is basically
the same as backscatter subtraction. [4th row] result of deblurring the backscatter subtracted
images. This recovers the shape quite well when the SNR is not too low. However this is not the
case in high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR
remains high even in high turbidity and thus we continue to get excellent quality reconstructions.
Note the roughness on the fourth row, second column due to noise. [Bottom row] Clear water
reconstruction (ground truth).
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Figure 3.11: Input images and resulting surface reconstructions of the toy lobster. The columns
depict three levels of increasing turbidity from left to right. [1st row] result of standard photo-
metric stereo (scattering is ignored). The shape is not reconstructed correctly. [2nd row] Result
of removing the backscatter as in [TAKD14]. The reconstruction is improved but still unsatis-
factory. [3rd row] Using fluorescence to remove backscatter. The result is basically the same
as backscatter subtraction. [4th row] result of deblurring the backscatter subtracted images.
This recovers the shape quite well when the SNR is not too low. However this is not the
case in high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR
remains high even in high turbidity and thus we continue to get excellent quality reconstructions.
Note the roughness on the fourth row, second column due to noise. [Bottom row] Clear water
reconstruction (ground truth).
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Figure 3.12: Input images and resulting surface reconstructions of the toy squirt gun. The
columns depict three levels of increasing turbidity from left to right. [1st row] result of standard
photometric stereo (scattering is ignored). The shape is not reconstructed correctly. [2nd
row] Result of removing the backscatter as in [TAKD14]. The reconstruction is improved but
still unsatisfactory. [3rd row] Using fluorescence to remove backscatter. The result is basically
the same as backscatter subtraction. [4th row] result of deblurring the backscatter subtracted
images. This recovers the shape quite well when the SNR is not too low. However this is not the
case in high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR
remains high even in high turbidity and thus we continue to get excellent quality reconstructions.
Note the roughness on the fourth row, third column due to noise. The object signal is stronger in
this case than the lobster and sphere since the medium doesn’t contain juice which increases
attenuation. [Bottom row] Clear water reconstruction (ground truth).
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Figure 3.13: Input images and resulting surface reconstructions of the mask. The columns
depict three levels of increasing turbidity from left to right. [1st row] result of standard photo-
metric stereo (scattering is ignored). The shape is not reconstructed correctly. [2nd row] Result
of removing the backscatter as in [TAKD14]. The reconstruction is improved but still unsatis-
factory. [3rd row] Using fluorescence to remove backscatter. The result is basically the same as
backscatter subtraction. [4th row] result of deblurring the backscatter subtracted images. This
recovers the shape quite well when the SNR is not too low. However this is not the case in high
turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR remains high
even in high turbidity and thus we continue to get excellent quality reconstructions. Note the
roughness on the fourth row, third column due to noise. Similar to the toy gun, the object signal
is stronger in this case than the lobster and sphere since the medium doesn’t contain juice which
increases attenuation. [Bottom row] Clear water reconstruction (ground truth).
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3.9 Results

We imaged four objects: a spherical cap (Fig. 3.10), a plastic toy lobster (Fig. 3.11), a

plastic toy squirt gun (Fig. 3.12), and a fluorescent painted mask (Fig. 3.13) in clear water as

well as four increasing turbidities. Each turbidity level corresponded to adding 1.25ml of milk to

the 10 gallon tank. For the spherical cap and the lobster, we also added 15ml of grape juice per

turbidity level to increase absorption. In this case, since attenuation is exponential with distance,

the signal from the object, which travels further, is relatively weaker than the backscatter which

comes mostly from shorter paths. This exacerbates the loss of signal-to-noise ratio in backscatter

subtracted images. To get an idea of the true scattering parameters of our various media we use

the data provided in [NGD+06]. Tabulated values are shown in Fig. 3.7.

We employ two error metrics to evaluate the quality of our reconstructions: The mean

absolute difference in heights (Err Z = mean(Z−Zgt)) and the mean angular error in the normals

(Err N = mean(acos(N ·Ngt)), where Zgt and Ngt are the ground truth heights and normals.

Note that during integration, random noise in the normals cancels out locally, resulting in

reconstructions with the correct overall shape, but with rough surfaces. As such Err Z captures

systematic errors that affect the overall shape, but is less sensitive to noise in the normals.

We see that the reconstructed spherical cap in clear water nearly perfectly matches the

ground truth (Fig. 3.8) with an Err Z of 1.4% and Err N of 3◦. This justifies our use of clear water

reconstructions as ground truth for the other objects where true ground truth is not available.

The quality of results as a function of turbidity level is demonstrated in Fig. 3.9. The

plots show how Err Z and Err N increase for each method as the turbidity increases, where the

lowest error is achieved using the deblurred fluorescence images. In the highest turbidity level,

the deblurred reflectance image often performs worse than all other methods, as the deblurring

degrades with noise.

51



Figures 3.10,3.11,3.12,3.13 depict an input image and the resulting reconstruction for the

spherical cap, the toy lobster, the toy squirt gun, and the mask respectively. In each figure, the

rows show various reconstruction methods and the columns show the results for turbidity levels

2-4. The bottom row shows an input image and reconstruction in clear water which are treated as

ground truth.

In all results, reconstructions from uncorrected images are flattened. Removing backscat-

ter, either by backscatter subtraction (current state-of-the-art [TAKD14]), or using fluorescence,

but without handling blur, also produces flattened results. For lower turbidities deblurring

backscatter subtracted images produces excellent results, but in the highest turbidity, where the

backscatter dominates the signal, using fluorescence reduces the noise and results in a smoother

surface.

3.10 Summary

In this chapter, we have developed a comprehensive and novel solution for photometric

stereo in a scattering medium. We address each of the three key modes of single scattering,

showing how a scattered light source can be modeled as an unscattered point light source,

accounting for blur due to scattering from the object through a novel deconvolution framework,

and demonstrating how fluorescence imaging can optically eliminate backscatter, increasing

SNR in high turbidity. With the simple small surface variations approximation, we reduce the

problem to a linear system for the surface normals, almost identical to conventional photometric

stereo. Our practical methods for deconvolution and fluorescence can be combined to produce

reconstructions almost as accurate as those obtained in air, and significantly better than previous

methods.

Chapter 3 is a reformatted version of “Photometric Stereo in a Scattering Medium,” Z.

Murez, T. Treibitz, D. Kriegman, R. Ramamoorthi, IEEE Transactions on Pattern Analysis and
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Machine Intelligence 2016 [MTRK17]. The dissertation author was the primary investigator and

author of this paper.
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Chapter 4

Learning to See through Turbulent Water

In the previous chapter we considered photometric stereo when the camera and scene

are submerged in the same medium and accounted for volumetric scattering. In this chapter we

consider the imaging scenario in which the camera views a scene through a refractive medium, in

which the interface is constantly changing. Two common examples of this occur when looking

from air into water with a turbulent surface and imaging through a medium with temperature

variations that gives rise to atmospheric refraction or mirages. In all such cases, the scene appears

distorted due to the bending of light as it passes through the refractive interface.

Removing such distortions from a single image is challenging since the shape of the

interface is not known a priori and must be estimated simultaneously with the latent image. The

problem is similar to blind deconvolution, but the kernel is spatially varying and can be much

larger than what is typically considered in image deblurring. As such, most previous works

[DDR06, DR07, EISV04, TN09] assume an input video instead of a single frame.

In contrast, we attempt to solve the single image undistortion problem by building upon

the recent success of deep convolutional neural networks at solving image-to-image translations

[IZZE16a]. Our hypothesis is that the space of natural images as well as the space of natural

refractive distortions is structured enough that a neural network can learn a reasonable mapping
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Figure 4.1: Top: Input and our result on a scene captured in the wild. Note the distortions to the
ladder on the top of the fire truck and the landing skids of the helicopter. Bottom: Our laboratory
setup for generating large amounts of training data.

between distorted input images and undistorted output images. We demonstrate that it is in fact

the case by training a network end-to-end for our task.

Although, in principle, a purely convolutional and deconvolutional network could learn

the complex mapping between distorted images and undistorted images directly, we find training

such a network to be difficult. Instead we propose a two-step framework to address the nature of

images observed through dynamic refraction. The first step outputs a warping field and applies it

to the input image to undistort it. Note that we can apply the warping in a differentiable manner by

using bilinear sampling. While such a warping network is able to remove many of the geometric

distortions, there is often information lost during image formation due to blurring and holes

induced by the complex shape of the interface. To correct for this, we train another color network

that takes the output of the warp net and hallucinates plausible details. Both the networks are

trained together in an end-to-end manner. As has been observed in prior work [LTH+16], when

the network is trained solely with the L1 or L2 loss, the output images are blurry. To combat this,

our network is also trained with adversarial [GPAM+14a] and perceptual losses [LTH+16].

To train the network we need a large number of input distorted and ground truth image

pairs. Unlike previous works that use computer graphics simulations to generate voluminous
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data, we find that our application demands a narrower domain gap between training and testing.

Since no such dataset with real images currently exists, we construct a new large scale dataset by

displaying ImageNet images on a monitor placed under a glass tank full of water and capturing

images from above. We demonstrate that by training our network on this dataset we are able to

generalize to images of real objects, even in completely different environments (see Fig 4.1). Our

method consistently produces high quality undistorted images from a single distorted input, in

contrast to the recent end-to-end learning framework of [IZZE16b]. Our dataset and code will be

publicly released to stimulate further research towards this challenging problem.

In summary, we make the following contributions: 1) propose using deep learning to

solve the as yet unattempted problem of single image distortion removal, 2) design a new special

network architecture that takes advantage of the physical image distortion model, 3) construct a

large scale image dataset that can be used to train our network, 4) show high quality results on

real objects imaged through diverse distortions in various settings.

4.1 Related Work

Imaging Through Refractive Distortions: Water distortion removal is an extremely challeng-

ing problem due to its inherent ill-posed nature. To the best of our knowledge, all previous

methods assume additional information beyond a single input image.

One common approach is to use a video sequence of a still scene under varying distortions.

Murase et al. [Mur92] proposes the common assumption that the water surface slant is Gaussian

with mean zero over time. This means that the temporal average of frames will give a reasonable

undistorted image. This suggests the method known as lucky imaging in which the image with

the least distortion is chosen as the restoration. Going beyond this, Efros et al. [EISV04] divide

the images into patches and choose the best patch for each location across the video sequence

and stitch the results into the final result. Donate et al. [DDR06, DR07] improve this method by
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further removing the motion blur and by using k-means clustering to reduce the number of patches

being considered for the patch selection process. Wen et al. [WLFL10] combines lucky imaging

with Fourier domain spectral analysis for better reconstruction. Tian et al. [TN09] propose a

compact spatial distortion model based on the wave equation and use it to design an image

restoration technique specifically for water distortion. Periodicity and smoothness constraints for

water surfaces are used as regularization to help avoid poor local minima. Oreifej et al. [OSPS11]

propose an iterative two stage restoration in which the first stage robustly aligns the frames to the

temporal mean image and the second stage removes sparse noise using a low rank assumption.

Another branch of works focuses on recovering the shape of the water surface from a

distorted and non-distorted image pair. Note that this is a slightly different problem than ours

as the desired non-distorted image is assumed known. In this case the problem can be posed

as an image alignment problem seeking the warping field that warps the distorted image to

the undistorted one. Tian et al. [TN12] develop a data-driven gradient descent algorithm that

iteratively recovers the warping field. They first generate a large set of training samples with

known distortions. Then in each iteration, they find the nearest neighbor of the current distorted

image in the training set and use its distortion parameters to warp the distorted image back

to the template. Tian et al. [TN15] further develop a hierarchical structure which needs much

less training samples and can consider global and local distortion simultaneously. Zhang et

al. [ZLG+14] uses defocus and distortion cues from a video along with a non-distorted template

to solve for both the water surface and object depth.

Alterman et al. [ASS16] considers the problem of multi-view stereo through a dynamic

refractive interface. They use multiple cameras along a wide baseline to observe a scene under

uncorrelated distortions and recover sparse point clouds. Xue et al. [XRW+14] estimate flow

velocity in a dynamic refractive medium using optical flow.
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CNNs for Estimating Transformations: Siamese networks have been used for estimating

rigid or non-rigid transformations between two images for tasks such as motion estimation or

matching [ACM15, KJC16]. In contrast, we use a single image for undistortion, since the ground

truth target image is not known at test time. The spatial transformer has been proposed as a

trainable module in classification networks by Jaderberg et al. [JSZK15] to estimate parametric

transformations, with a convolutional variant used for correspondence learning in [CGSC16].

Non-parametric transformations in the form of a shape basis representation are estimated in

[YZC16] to handle articulations. In contrast to those works, we address the problem of distortions

induced by waves on the surface of water, which is not a parametric transformation and often too

complex to be representable by a small number of bases.

Image-to-Image Deep Learning: Although deep learning first saw great success on the prob-

lem of image classification [KSH12], it has also proven very successful on image to image

problems such as semantic segmentation [LSD15]. Recently many works have trained convolu-

tional/ deconvolutional networks to perform a variety of image to image problems, such as image

super-resolution [DLHT16, LTH+16], image colorization [DRF15, DLYF16, ZIE16, ISSI16],

image inpainting [PKD+16], image style transfer [LW16], image manipulation guided by user

constraints [ZKSE16] and image de-raining [ZSP17].

Many of these works rely on generative adversarial networks (GANs), which have recently

shown promise at the task of natural image generation [GPAM+14a]. A GAN consists of two

networks: a generator, whose task is to generate realistic looking images, and a discriminator,

whose job is to label images from the generator as fake and real images as real. These two

networks are trained together forcing the generator to learn to produce realistic images. Despite

recent work on improving the training of GANs [RMC15], the resulting images are not yet of

high quality. However, when the generator is conditioned on an input image and can can be

trained with a traditional loss, such as L1 or L2, in addition to the adversarial loss, the results are

58



much more impressive [LTH+16, IZZE16b]. The adversarial loss drives the results away from

the mean/median image that is learned from solely the L2/L1 loss, which allows the network to

learn to predict more detailed, less blurry, realistic looking images.

Isola et al. [IZZE16b] build upon these to propose a general framework for image-to-image

translation problems that involves training a convolutional/ deconvolutional network on input and

output image pairs using a combination of L1 pixel loss and an adversarial loss. Although this

can be used to solve our problem in principle, our experiments indicate that their general purpose

net has difficulty in learning to correct geometric distortions in practice.

4.2 Model

We train a deep neural network to take in images distorted by a dynamic refractive

interface and output the undistorted image that would have been observed without an interface.

Although, in theory, a purely convolutional/ deconvolutional architecture such as [IZZE16b] could

learn this complex mapping, we find it does not perform well in practice (see Figure 4.4). Unlike

most previous image-to-image networks [IZZE16b, LTH+16, ZSP17], we draw inspiration from

the physical image formation model to help simplify the problem for the network.

Let I(x) be the image that would have been observed without any refractive distortion and

W̃(x) be a 2D warping field that corresponds to the distortion induced by the refractive interface.

When the height of the variations of the water are small compared to the depth of the scene and

the height of the camera, W̃ is linearly related to the gradient of the surface height ∇Z(x). Then

the observed, distorted image J(x) is given by

J(x) = I(x+W̃(x)) (4.1)

Unfortunately, inverting 4.1 is difficult not only since both I(x) and W̃ are unknown, but also

because the mapping need not be one-to-one.
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Inspired by this, we train our network to predict the inverse warping field W(x) such that

I(x) = J(x+W(x)) (4.2)

Thus, given a predicted warping field W(x) from our network, we can easily compute the desired

undistorted image by interpolation of the input image. We use bilinear interpolation since it

is differentiable, which allows end-to-end training. Here we have taken advantage of the fact

that we know the mapping between input and output images to be a warp. By performing the

warping explicitly through interpolation, we do not require the network to learn to do it through

convolutions.

However as stated above, the forward warping need not be one-to-one and thus information

may be lost in the distorted image J(x). This is often observed as blurring, double images and

singularities. To handle this, we train a second image-to-image network, which we call the color

network, that takes the unwarped image J(x+W(x)) and outputs our final image. The goal of

this second network is to add back details lost during the warping and correct other artifacts that

the warping network could not handle (partly due to its limited modeling).

Let our warping network be denoted as Wθ and our color network as Cφ, where θ and φ

are the learnable parameters of each network, respectively. Then our full generator network is

given by

Gθφ(J(x),x) = Cφ(J(x+Wθ(J(x)),x), (4.3)

which we train end-to-end.

4.2.1 Network Architecture

The architectures of our warping network Wθ and color network Cφ are inspired by Ledig

et al. [LTH+16] and Isola et al. [IZZE16b], but we make a few important changes to better suit
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Figure 4.2: The network structure of our generator. For each convolutional layer, k represents
the kernel size, n represents the number of feature maps, s represents the stride and p represents
the padding size. Here, d represents the transpose convolutional layer.

our problem. Both our networks have the same general structure with only a few differences,

which we now discuss in detail.

Both nets consist of three stride 2, size 4 convolution layers, followed by eight residual

blocks, followed by three stride 2, size 4 deconvolution layers (see Figure 4.2). The output feature

dimensions are 32, 64, 128, 64, 32, x, where x is a two channel warping field for the warp net

and a 3 channel RGB image for the color net. Each residual block consists of two stride 1, size

3, dim 128 convolution layers followed by an additive skip connection, following the design of

[HZRS16a]. We also add concatenation skip connections between corresponding convolution and

deconvolution layers of the color net to help maintain fine details in the output image. This is not

necessary for the warp net. Note that a similar, but much shallower, two stage network structure

was proposed in [KWR16] for the problem of lightfield interpolation where the warps are small.
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We find that normalization plays an important role in generalizing from our training set to

real objects that have somewhat different color statistics (see Section 4.3). With standard batch

normalization, we achieve the best results (in terms of L1 loss) on the training set, but observe

bright blob artifacts when testing on real objects. This is due to the network over fitting to the

color statistics of our training images. The problem is not alleviated solely by using instance

normalization as suggested by [UVL16] because unlike them, we expect the network to preserve

the brightness and contrast of the input image. To address this, we use instance normalization

throughout our network, but save the mean and variance extracted from the input layer and use it

to scale and shift the output.

4.2.2 Training Objective

We train our network by minimizing the L1 loss in pixel space

Lcon = ∑
x
|I(x)−Gθφ(J(x),x)| (4.4)

which we call the content loss. However, the L1 loss alone trains the network to predict the median

image, which is often blurry and lacking in high frequency details. As in [IZZE16b, LTH+16] we

also train our network with an adversarial loss to help encourage the predicted images to reside

on the natural image manifold. This forces the network to produce sharp images with more fine

details, and even hallucinate missing information from large distortions.

We train an additional discriminator network Dγ to distinguish between undistorted images

from the generator and the natural non-distorted images, while the generator is trained to fool

the discriminator. During the training process, the discriminator and generator are trained in an

alternating manner to solve the min-max problem

min
θ,φ

max
γ

E[logDγ(I)] + E[log(1−Dγ(Gθφ(J)) )] (4.5)
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For more stable training we use the Least Squares GAN objective [MLX+16]

Ladv =−(Dγ(Gθφ(J))−1)2 (4.6)

The discriminator architecture follows the guidelines proposed in [RMC15]. We use 7 con-

volutional layers with kernel size 4 and stride 2 and increasing feature dimension (32,64,128,256,512,512,1).

Each convolution except the last is followed by batch normalization and LeakyReLU activations.

The last output is followed by a sigmoid activation. We also try the PatchGAN [IZZE16a]

by decreasing the receptive field of discriminator to 70× 70 and apply it through the image

convolutionally. However, in our case, using PatchGAN does not improve the image quality.

Although the adversarial loss encourages more details, it also introduces some artifacts

due to the unstable nature of GAN training. To combat this we follow [LTH+16] and add a

perceptual loss defined by

Lper = ∑
x
|ψ(I(x))−ψ(Gθφ(J(x),x))|, (4.7)

where ψ is the output of an intermediate feature layer of a pretrained convolutional neural net. In

our implementation we use the output of the conv4 3 layer of VGG.

Our final loss function is a weighted combination of the 3 losses

L = Lcon +λadvLadv +λperLper (4.8)

Training Detail: We largely follow the training scheme in [LTH+16] and [RMC15]. We first

train the network with L1 loss alone from scratch and then fine tune the network adding adversarial

loss and perceptual loss. The weight for adversarial loss and perceptual loss are 0.0005 and 0.3

respectively. Compared with [LTH+16], our weight for adversarial loss and perceptual loss is

much lower and we do not remove L1 loss when fine tuning the network. This is because we
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observe that L1 loss is important for our problem and if we remove L1 loss the network will not

generate reasonable results. When training with L1 loss, we set the learning rate to be 0.001 and

divide it by 10 after 15000 iterations. We train the network for 30,000 iterations with a batch

size of 32. Then we fine tune the network adding perceptual loss and adversarial loss for 2000

iterations with learning rate 0.0002 and batch size 16.

4.3 Training Data

To train our deep network, we need a large training set. However, collecting a large

number of images distorted by a water surface along with the corresponding non-distorted ground

truth is challenging. There are no such existing large scale datasets. Tian et al. [TN09] provide a

small dataset but that is not nearly enough to train a deep network.

Synthetic data is a natural option, but we found generating diverse enough water surfaces

to be challenging. We tried using Gaussian Processes and the wave equation as in [TN09], as well

as perturbing the surface with random Gaussian shaped drops. In each case, the network quickly

over fit to the particular distribution of water surfaces generated and failed to generalize to real

images. Creating diverse synthetic water surfaces is an interesting direction for future work.

Instead, we choose to construct a large dataset of distorted and non-distorted image pairs

by capturing images of ImageNet images displayed under a water surface (see Figure 4.1). We

place a computer monitor under a glass tank, which is filled with approximately 13cm water.

The water is kept in motion using a small agitating pump. A Cannon 5D Mark IV is placed

approximately 1.5m above the tank. Images are resampled using bilinear interpolation to fill the

available screen space in the tank, after which the captured image is tightly cropped to its original

shape and downsampled to its original size. The camera is set to f/1.2, ISO100, with exposure

time of 1/320s. The camera is manually focused just beyond the monitor as this slight defocus

removes the Moiré pattern observed in properly focused images.
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Figure 4.3: Qualitative results for ablative study on ImageNet validation test set. From left to
right: input image, color net with L1 loss, warp+color net with L1 loss, warp+color net with
L1+Adv+Per losses, ground truth. We observe that estimating the undistortion with the warp
net significantly improves the geometry, while the adversarial loss allows better perceptual
alignment to ground truth.
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Figure 4.4: Results on real objects demonstrating generalization. (Rows 1 and 2) From left
to right: input image in a larger tank, result of Isola et al. [IZZE16b], our result and ground
truth. We observe that our framework that uses problem structure and careful normalizations
produces better geometric undistortion and color outputs. (Bottom row) We show another
example of further generalization by acquiring an image in a fountain pool. We see more
significant contrasts relative to [IZZE16b], with clearly better undistortion performance for our
method.

66



Table 4.1: Quantitative results for the ImageNet validation set. The network is trained with
L1 loss, whereby we observe that L1 error reduces for the full network compared to warp or
color net alone. As expected, the adversarial loss increases the L1 error, but allows for better
appearance. For completion, we also show other metrics not directly related to the training, such
as MSE, PSNR and SSIM.

Method L1 MSE PSNR SSIM
colorNet 20.318 998.631 18.841 0.470
warpNet 20.140 961.978 19.035 0.490

fullNet(L1) 19.091 902.032 19.306 0.502
fullNet(adv+L1+per) 19.109 894.178 19.348 0.499

The process of displaying and recapturing the images changes the color space slightly

due to nonlinear gamma curves and pixel sensitivity. To handle this, we pretrain a small color

correction net that consists of 6 convolutional layers with receptive fields of size 1 to minimize

the L1 distance between the captured image and the original ImageNet image. This mostly solves

the problem, however we find that proper normalization in the net (as described in Section 4.2.1)

is important for generalization to real objects. We collect 324,452 images from all 1000 ImageNet

categories. We withhold 5 images from each category to form a validation set of 5000 images.

We note that creating a large real image dataset for 3D underwater scenes in the wild

is extremely difficult. The intent of our training data collection is to easily generate sufficient

volume in conditional similar but not identical to the application scenario. The choice of using

flat images is a deliberate one, sacrificing realism for quantity. This is in line with several studies

that use simulations for generating training data. Our laboratory setup similarly allows collecting

large-scale data, but with reduced domain gap. Our experiments demonstrate generalization from

the laboratory tank setup with flat images to real images of non-flat objects and in wild settings.

4.4 Results

We show results on our validation set captured by displaying ImageNet images on a

monitor under a water surface, as well as images of real objects underwater. To demonstrate
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generalization ability, the real objects are imaged in a different larger tank, as well as outdoors in

a fountain pool.

In Figure 4.3, we show our results and an ablation study on the ImageNet validation

set. In addition to the input image (column 1), our result (column 4) and ground truth (column

5), we also show two ablation results. The first is our color net alone trained with only the L1

loss (column 2). The second is our full generator architecture but trained with only the L1 loss

(column 3). The five rows show the outputs for different input images.

We observe that the color net alone struggles to remove the large geometric distortions.

Adding the warp net that accounts for the structure of the problem results in significantly better

geometric undistortion, while also producing good colors. Next, adding the adversarial and

perceptual loss has the effect of recovering sharp detailed images that are perceptually closer to

the ground truth.

Figure 4.4 shows our results on real objects as well as a comparison to a state-of-the-art

method for image to image translation [IZZE16b]. This method is similar to our color net alone

but does not generalize well to real data due to the normalization issues discussed above. It also

does not take advantage of domain knowledge that the transformation is a warp. Due to these

factors, we observe that our method produces results that are closer to ground truth as compared

to [IZZE16b]. This is emphasized by the insets, showing better geometric warp estimation in

regions with long edges and also better color estimates than [IZZE16b] which produces subtle

checkerboard artifacts.

Although no previous work in the water undistortion literature attempts the problem of

single image blind undistortion, we note that methods such as [TN12] estimate a warping field by

assuming the ground truth nondistorted image is known. In comparison, we do not require the

assumption of a template, which might not exist in wild settings. Even in lab settings, acquiring a

template requires careful alignment of images before and after the water surface is agitated. Other
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works such as [TN09] additionally assume high frame rate video inputs, whereas we require only

a single image.

Finally, in Figures 4.1 and 4.4, we show example outputs on an underwater sequence

captured in a wild setting. We use the same network trained on ImageNet images observed

through distortions in a tank, but the test images in this experiment are acquired outdoors at a

water fountain. While there is no available ground truth, it is observed that the network generalizes

quite well to this unseen condition, as reflected by the undistortion output that preserves edge

shapes and displays plausible colors.

4.5 Summary

We have proposed a novel approach that uses deep learning to solve the previously

unattempted problem of using a single image to remove distortions due to a refractive interface

such as water surface. Since a turbulent water surface induces distortions that are too complex

to be modeled as parametric or basis transformations, we use domain knowledge to model the

distortion as a warp. This is different from general purpose image to image translation networks,

which does not utilize problem structure. We demonstrate in experiments that our formulation as

an end-to-end trainable two-stage network that estimates geometry and color, along with careful

consideration of normalizations, leads to better results and generalization ability. To train our

network, we collected a large scale dataset in lab settings with displayed images and show that it

generalizes to images of real scenes imaged in different settings including unconstrained ones.

Chapter 4 is a reformatted version of “Learning to See through Turbulent Water”, Z. Li, Z.

Murez, D Kriegman, R. Ramamoorthi, M. Chandraker, IEEE Winter Conf. on Applications of

Computer Vision (WACV) 2018 [LMK+18]. The dissertation author was the primary investigator

and author of this paper.
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Chapter 5

Image to Image Translation for Domain

Adaptation

In the previous chapter we trained a network using a dataset collected by imaging a

computer monitor under a tank of turbulent water. We resorted to collecting this new dataset

because our attempts to train using purely synthetic data failed to generalize to real data. Motivated

by this, in this chapter we propose a new domain adaptation method.

The recent unprecedented advances in computer vision and machine learning are mainly

due to: 1) deep (convolutional) neural architectures, and 2) existence of abundant labeled data.

Deep convolutional neural networks (CNNs) [KSH12, HZRS16b, HLWvdM16] trained on large

numbers of labeled images (tens of thousands to millions) provide powerful image representations

that can be used for a wide variety of tasks including recognition, detection, and segmentation. On

the other hand, obtaining abundant annotated data remains a cumbersome and expensive process

in the majority of applications. Hence, there is a need for transferring the learned knowledge

from a source domain with abundant labeled data to a target domain where data is unlabeled or

sparsely labeled. The major challenge for such knowledge transfer is a phenomenon known as
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Figure 5.1: A) Sample image from the synthetic GTA5 dataset. B) Input image from the
real Cityscapes dataset. C) Segmentation result trained on GTA5 dataset without any domain
adaptation. D) Ours. E) Ground truth. We can see that our adaptation fixes large areas of simple
mistakes on the road and sidewalk and building on the right. We also partially detect the thin
pole on the right. The mean Intersection Over Union (IOU) values are reported.
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domain shift [GSH+09], which refers to the different distribution of data in the target domain

compared to the source domain.

To further motivate the problem, consider the emerging application of autonomous driving

where a semantic segmentation network is required to be trained to detect roads, cars, pedes-

trians, etc. Training such segmentation networks requires semantic, instance-wise, dense pixel

annotations for each scene, which is excruciatingly expensive and time consuming to acquire.

To avoid human annotations, a large body of work focuses on designing photo-realistic simu-

lated scenarios in which the ground truth annotations are readily available. Synthia [RSM+16],

Virtual KITTI [GWCV16], and GTA5 [RVRK16] datasets are examples of such simulations,

which include a large number of synthetically generated driving scenes together with ground

truth pixel-level semantic annotations. Training a CNN based on such synthetic data and ap-

plying it to real-world images (i.e. from a dashboard mounted camera), such as the Cityscapes

dataset [COR+16], will give very poor performance due to the large differences in image charac-

teristics which gives rise to the domain shift problem. Figure 5.1 demonstrates this scenario where

a network is trained on the GTA5 dataset [RVRK16], which is a synthetic dataset, for semantic

segmentation and is tested on the Cityscapes dataset [COR+16]. It can be seen that with no adap-

tation the network struggles with segmentation (Figure 5.1, C), while our proposed framework

ameliorates the domain shift problem and provides a more accurate semantic segmentation.

Domain adaptation techniques aim to address the domain shift problem, by finding a

mapping from the source data distribution to the target distribution. Alternatively, both domains

could be mapped into a shared domain where the distributions are aligned. Generally, such

mappings are not unique and there exist many mappings that align the source and target distribu-

tions. Therefore various constraints are needed to narrow down the space of feasible mappings.

Recent domain adaptation techniques parameterize and learn these mappings via deep neural

networks [THDS15, LCWJ15, THSD17, LZHFF17, SBCC17, SPT+]. In this paper, we propose

a unifying, generic, and systematic framework for unsupervised domain adaptation, which is
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broadly applicable to many image understanding and sensing tasks where training labels are not

available in the target domain. We further demonstrate that many existing methods for domain

adaptation arise as special cases of our framework.

While there are significant differences between the recently developed domain adaptation

methods, a common and unifying theme among these methods can be observed. We identify

three main attributes needed to achieve successful unsupervised domain adaptation: 1) domain

agnostic feature extraction, 2) domain specific reconstruction, and 3) cycle consistency. The first

requires that the distributions of features extracted from both domains are indistinguishable (as

judged by an adversarial discriminator network). This idea was utilized in many prior methods

[HWYD16, GL15, GUA+16], but alone does not give a strong enough constraint for domain

adaptation knowledge transfer, as there exist many mappings that could match the source and

target distributions in the shared space. The second is requiring that the features are able to be

decoded back to the source and target domains. This idea was used in Ghifary et al. [GKZ+16]

for unsupervised domain adaptation. Finally, the cycle consistency is needed for unpaired source

and target domains to ensure that the mappings are learned correctly and they are well-behaved,

in the sense that they do not collapse the distributions into single modes [ZPIE17]. Figure 5.2

provides a high-level overview of our framework.

The interplay between the ‘domain agnostic feature extraction’, ‘domain specific re-

construction with cycle consistency’, and ‘label prediction from agnostic features’ enables our

framework to simultaneously learn from the source domain and adapt to the target domain. By

combining all these different components into a single unified framework we build a systematic

framework for domain knowledge transfer that provides an elegant theoretical explanation as well

as improved experimental results. We demonstrate the superior performance of our proposed

framework for segmentation adaptation from synthetic images to real world images (See Figure

5.1 as an example), as well as for classifier adaptation on three digit datasets. Furthermore, we
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Figure 5.2: The detailed system architecture of our I2I (image to image) Adapt framework. The
pathways to the loss modules denote the inputs to these modules, which are used for training.
Best viewed in color.

show that many of the State Of the Art (SOA) methods can be viewed as special cases of our

proposed framework. Code is available at https://github.com/zmurez/I2IAdapt.

5.1 Related Work

There has been a plethora of recent work in the field of visual domain adaptation address-

ing the domain shift problem [GSH+09], otherwise known as the dataset bias problem. The major-

ity of recent work use deep convolutional architectures to map the source and target domains into a

shared space where the domains are aligned [THZ+14, THDS15, THSD17, HWYD16, SBCC17].

These methods widely differ on the architectures as well as the choices of loss functions used

for training them. Some have used Maximum Mean Discrepancy (MMD) between the distribu-

tions of the source and target domains in the shared space [LCWJ15], while others have used

correlation maximization to align the second-order statistics of the domains. Another popular
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and effective choice is maximizing the confusion rate of an adversarial network, that is required

to distinguish the source and target domains in the shared space [THDS15, HWYD16, GL15,

GUA+16, GKZ+16]. Other approaches include the work by Sener et al. [SSSS16], where the

domain transfer is formulated in a transductive setting, and the Residual Transfer Learning (RTL)

approach [LZWJ16] where the authors assume that the source and target classifiers only differ by

a residual function and learn these residual functions.

Our work is primarily motivated by the work of Hoffman et al. [HWYD16], Isola et

al. [IZZE16b], Zhu et al. [ZPIE17], and Ghifary et al. [GKZ+16]. Hoffman et al. [HWYD16]

utilized fully convolutional networks with domain adversarial training to obtain domain agnostic

features (i.e. shared space) for the source and target domains, while constraining the shared

space to be discriminative for the source domain. Hence, by learning the mappings from source

and target domains to the shared space (i.e. fx and fy in Figure 5.2), and learning the mapping

from the shared space to annotations (i.e. h in Figure 5.2), their approach effectively enables

the learned classifier to be applicable to both domains. The Deep Reconstruction Classification

Network (DRCN) of Ghifary et al. [GKZ+16], utilizes a similar approach but with a constraint

that the embedding must be decodable, and learns a mapping from the embedding space to

the target domain (i.e. gy in Figure 5.2). The image-to-image translation work by Isola et al.

[IZZE16b] maps the source domain to the target domain by an adversarial learning of fx and

gy and composing them gy ◦ fx : X → Y . In their framework the target and source images were

assumed to be paired, in the sense that for each source image there exists a known corresponding

target image. This assumption was lifted in the follow-up work of Zhu et al. [ZPIE17] and Royer

et al.[RBG+17], where cycle consistency was used to learn the mappings based on unpaired

source and target images. While the approaches of Isola et al. [IZZE16b] and Zhu et al. [ZPIE17]

do not address the domain adaptation problem, yet they provide a baseline for learning high

quality mappings from a visual domain into another.
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The patterns that collectively emerge from the mentioned papers [THZ+14, HWYD16,

IZZE16b, GKZ+16, ZPIE17], are: a) the shared space must be a discriminative embedding for

the source domain, b) the embedding must be domain agnostic, hence maximizing the similarity

between the distributions of embedded source and target images, c) the information preserved

in the embedding must be sufficient for reconstructing domain specific images, d) adversarial

learning as opposed to the classic losses can significantly enhance the quality of learned mappings,

e) cycle-consistency is required to reduce the space of possible mappings and ensure their quality,

when learning the mappings from unpaired images in the source and target domains. Our proposed

method for unsupervised domain adaptation unifies the above-mentioned pieces into a generic

framework that simultaneously solves the domain adaptation and image-to-image translation

problems.

There have been other recent efforts toward a unifying and general framework for deep

domain adaptation. The Adversarial Discriminative Domain Adaptation (ADDA) work by Tzeng

et al. [THSD17] is an instance of such frameworks. Tzeng et al. [THSD17] identify three

design choices for a deep domain adaptation system, namely a) whether to use a generative or

discriminative base, whether to share mapping parameters between fx and fy, and the choice

of adversarial training. They observed that modeling image distributions might not be strictly

necessary if the embedding is domain agnostic (i.e. domain invariant).

Very similar ideas to ours have been published concurrently by Hoffman et al. [HTP+17]

and Liu et al. [LBK17].

5.2 Method

Consider training images xi ∈ X and their corresponding annotations/labels ci ∈C from

the source domain (i.e. domain X). Note that ci may be image level such as in classification or

pixel level in the case of semantic segmentation. Also consider training images y j ∈ Y in the
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target domain (i.e. domain Y ), where we do not have corresponding annotations for these images.

Our goal is then to learn a classifier that maps the target images, y js, to labels C. We note that

the framework is readily extensible to a semi-supervised learning or few-shot learning scenario

where we have annotations for a few images in the target domain. Given that the target domain

lacks labels, the general approach is to learn a classifier on the source domain and adapt it in a

way that its domain distribution matches that of the target domain.

The overarching idea here is to find a joint latent space, Z, for the source and target

domains, X and Y , where the representations are domain agnostic. To clarify this point, consider

the scenario in which X is the domain of driving scenes/images on a sunny day and Y is the domain

of driving scenes on a rainy day. While ‘sunny’ and ‘rainy’ are characteristics of the source and

target domains, they are truly nuisance variations with respect to the annotation/classification task

(e.g. semantic segmentation of the road), as they should not affect the annotations. Treating such

characteristics as structured noise, we would like to find a latent space, Z, that is invariant to such

variations. In other words, domain Z should not contain domain specific characteristics, hence it

should be domain agnostic. In what follows we describe the process that leads to finding such a

domain agnostic latent space.

Let the mappings from source and target domains to the latent space be defined as

fx : X → Z and fy : Y → Z, respectively (See Figure 5.2). In our framework these mappings are

parameterized by deep convolutional neural networks (CNNs). Note that the members of the

latent space z ∈ Z are high dimensional vectors in the case of image level tasks, or feature maps

in the case of pixel level tasks. Also, let h : Z→C be the classifier that maps the latent space to

labels/annotations (i.e. the classifier module in Figure 5.2). Given that the annotations for the

source class X are known, one can define a supervised loss function to enforce h( fx(xi)) = ci:

Qc = ∑
i

lc (h( fx(xi)),ci) (5.1)
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where lc is an appropriate loss (e.g. cross entropy for classification and segmentation). Minimizing

the above loss function leads to the standard approach of supervised learning, which does not

concern domain adaptation. While this approach would lead to a method that performs well on the

images in the source domain, xi ∈ X , it will more often than not perform poorly on images from

the target domain y j ∈Y . The reason is that, domain Z is biased to the distribution of the structured

noise (‘sunny’) in domain X and the structured noise in domain Y (‘rainy’) confuses the classifier

h(·). To avoid such confusion we require the latent space, Z, to be domain agnostic, so it is not

sensitive to the domain specific structured noise. To achieve such a latent space we systematically

introduce a variety of auxiliary networks and losses to help regularize the latent space and

consequently achieve a robust h(·). The auxiliary networks and loss pathways are depicted in

Figure 5.2. In what follows we describe the individual components of the regularization losses.

1. First of all Z is required to preserve the core information of the target and source images

and only discard the structured noise. To impose this constraint on the latent space, we

first define decoders gx : Z→ X and gy : Z→ Y that take the features in the latent space to

the source and target domains, respectively. We assume that if Z retains the crucial/core

information of the domains and only discards the structured noise, then the decoders should

be able to add the structured noise back and reconstruct each image from their representation

in the latent feature space, Z. In other words, we require gx( fx(·)) and gy( fy(·)) to be close

to identity functions/maps. This constraint leads to the following loss function:

Qid =∑
i

lid (gx( fx(xi)),xi)+∑
j

lid
(
gy( fy(y j)),y j

)
(5.2)

where lid(·, ·) is a pixel-wise image loss such as the L1 norm.

2. We would like the latent space Z to be domain agnostic. This means that the feature repre-

sentations of the source and target domain should not contain domain specific information.

To achieve this, we use an adversarial setting in which a discriminator dz : Z→ {cx,cy}
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tries to classify if a feature in the latent space z ∈ Z was generated from domain X or Y ,

where cx and cy are binary domain labels (i.e. from domain X or domain Y). The loss

function then can be defined as the certainty of the discriminator (i.e. domain agnosticism

is equivalent to fooling the discriminator), and therefore we can formulate this as:

Qz = ∑
i

la (dz( fx(xi)),cx)+∑
j

la
(
dz( fy(y j)),cy

)
(5.3)

where la(·, ·) is an appropriate loss (the cross entropy loss in traditional GANs [GPAM+14b]

and mean square error in least squares GAN [MLX+16]). The discriminator is trained to

maximize this loss while the discriminator is trained to minimize it.

3. To further ensure that the mappings fx, fy, gx, and gy are consistent we define translation

adversarial losses. An image from target (source) domain is first encoded to the latent space

and then decoded to the source (target) domain to generate a ‘fake’ (translated) image.

Next, we define discriminators dx : X → {cx,cy} and dy : Y → {cx,cy}, to identify if an

image is ‘fake’ (generated from the other domain) or ‘real’ (belonged to the actual domain).

To formulate this translation loss function we can write:

Qtr =∑
i

la (dy(gy( fx(xi))),cx)+∑
j

la
(
dx(gx( fy(y j)),cy

)
(5.4)

4. Given that there are no correspondences between the images in the source and target

domains, we need to ensure that the semantically similar images in both domains are

projected into close vicinity of one another in the latent space. To ensure this, we define

the cycle consistency losses where the ‘fake’ images generated in the translation loss,

gx( fy(y j)) or gy( fx(xi)), are encoded back to the latent space and then decoded back to

their original space. The entire cycle should be equivalent to an identity mapping. We can
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Table 5.1: Showing the relationship between the existing methods and our proposed method.

Method λc λz λtr λidX λidY λcyc λtrc
[HWYD16] X X
[THSD17] X X
[GKZ+16] X X
[SBCC17] X X
[ZPIE17] X X

Ours X X X X X X X

formulate this loss as follows:

Qcyc =∑
i

lid (gx( fy(gy( fx(xi)))),xi)+∑
j

lid
(
gy( fx(gx( fy(y j)))),y j

)
(5.5)

5. To further constrain the translations to maintain the same semantics, and allow the target

encoder to be trained with supervision on target domain ‘like’ images we also define a

classification loss between the source to target translations and the original source labels:

Qtrc = ∑
i

lc (h( fy(gy( fx(xi)))),ci) (5.6)

Finally, by combining these individual losses we define the general loss to be,

Q = λcQc +λzQz +λtrQtr +λidQid +λcycQcyc +λtrcQtrc (5.7)

A variety of prior methods for domain adaptation are special cases of our framework.

Table 5.1 summarizes which hyperparameters to include and which are set to zero to recover

these prior methods.
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Table 5.2: Performance of various prior methods as well as ours and ablations on digits datasets
domain adaptation. MNIST→ USPS indicates MNIST is the source domain (labels available)
and USPS is the target domain (no labels available). Results reported are classification error rate
(lower is better). Blue is best prior method, bold is best overall. Our results are considerably
better than the prior state of the art.

Method MNIST→ USPS USPS→MNIST SVHN→MNIST
Source only 24.8 42.9 39.7

Gradient reversal [GUA+16] 28.9 27.0 26.1
Domain confusion [THDS15] 20.9 33.5 31.9

CoGAN [LT16] 8.8 10.9 -
ADDA [THSD17] 10.6 9.9 24.0

DTN [TPW16] - - 15.6
WDAN [YDL+17] 27.4 34.6 32.6
PixelDA [BSD+17] 4.1 - -
DRCN [GKZ+16] 8.2 26.3 18.0

Gen to Adapt [SBCC17] 7.5 9.2 15.3
λz λtr λidX λidY λcyc λtrc Ours

8.9 33.0 28.5
X 2.1 2.8 19.9

X 2.1 28.5 23.7
X X 1.4 22.6 29.5

X X 1.3 3.0 12.1
X X X 1.2 2.4 9.9
X X X X X 2.5 3.6 10.0
X X X X X X 1.5 2.6 10.4
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Table 5.3: Accuracy (larger is better) of various methods on the Office dataset consisting of
three domains: Amazon (A), Webcam (W) and DSLR (D). A→W indicates Amazon is the
source domain (labels available) and Webcam is the target domain (no labels available). Bold is
best. Our method performs best on 4 out of 6 of the tasks.

Method A→W W→ A A→ D D→ A W→ D D→W
Domain confusion [THZ+14] 61.8 52.2 64.4 21.1 98.5 95.0

Transferable Features [LCWJ15] 68.5 53.1 67.0 54.0 99.0 96.0
Gradient reversal [GUA+16] 72.6 52.7 67.1 54.5 99.2 96.4

DHN [VECP17] 68.3 53.0 66.5 55.5 98.8 96.1
WDAN [YDL+17] 66.8 52.7 64.5 53.8 98.7 95.9
DRCN [GKZ+16] 68.7 54.9 66.8 56.0 99.0 96.4

λz λtr λidX λidY λtrc Ours
59.1 46.4 61.0 45.3 98.0 92.8

X 70.8 49.0 67.1 43.4 98.2 90.8
X 61.1 49.6 67.3 49.8 99.0 94.7

X X X 71.2 49.1 70.9 45.5 97.8 94.3
X X X X X 75.3 52.1 71.1 50.1 99.6 96.5

Table 5.4: Performance (Intersection over Union) of various methods on driving datasets domain
adaptation. Above the line uses the standard dilated ResNet as the encoder. Our method performs
the best overall and on all sub categories except two. Switching to a DenseNet encoder beats the
previous method even without domain adaptation. DenseNet plus our method significantly out
performs the previous method. Blue is best with ResNet, Bold is best overall.
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Source only 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.1
FCNs in the Wild [HWYD16] 67.4 29.2 64.9 15.6 8.4 12.4 9.8 2.7 74.1 12.8 66.8 38.1 2.3 63.0 9.4 5.1 0.0 3.5 0.0 27.1

Ours 85.3 38.0 71.3 18.6 16.0 18.7 12.0 4.5 72.0 43.4 63.7 43.1 3.3 76.7 14.4 12.8 0.3 9.8 0.6 31.8
Source only - DenseNet 67.3 23.1 69.4 13.9 14.4 21.6 19.2 12.4 78.7 24.5 74.8 49.3 3.7 54.1 8.7 5.3 2.6 6.2 1.9 29.0

Ours - DenseNet 85.8 37.5 80.2 23.3 16.1 23.0 14.5 9.8 79.2 36.5 76.4 53.4 7.4 82.8 19.1 15.7 2.8 13.4 1.7 35.7

82



5.3 Experiments

The loss function is optimized via the ADAM method with learning rate 0.0002 and betas

0.5 and 0.999, in an end-to-end manner. The discriminative networks, dx, dy, and dz are trained

in an alternating optimization alongside with the encoders and decoders.

To further constrain the features that are learned we share the weights of the encoders.

We also share the weights of the first few layers of the decoders. To stabilize the discriminators

we train them using the Improved Wasserstein method [GAA+17]. The loss of the feature

discriminator (Qz) is only backpropagated to the generator for target images (we want the encoder

to learn to map the target images to the same distribution as the source images, not vice versa).

Likewise, the translation classification loss (Qtrc) is only backpropagated to the second encoder

and classifier ( fy and h). This prevents the translator (gy) from cheating by hiding class information

in the translated images.

5.3.1 MNIST, USPS, and SVHN digits datasets

First, we demonstrate our method on domain adaptation between three digit classification

datasets, namely MNIST [LBBH98], USPS [Hul94], and the Street View House Numbers (SVHN)

[NWC+11] datasets. We followed the experimental protocol of [GUA+16, THDS15, LT16,

THSD17, SBCC17] where we treated one of the digit datasets as a labeled source domain and

another dataset as unlabeled target domain. We trained our framework for adaptation from

MNIST→ USPS, USPS → MNIST, and SVHN → MNIST. Figure 5.3 shows examples of

MNIST to SVHN input and translated images.

For a fair comparison with previous methods, our feature extractor network (encoder, fx

and fy) is a modified version of LeNet [LBBH98]. Our decoders (i.e. gx and gy) consist of three

transposed convolutional layers. Our image discriminators consist of three convolutional layers

and our feature discriminator consists of three fully connected layers. All images from MNIST
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Figure 5.3: Top) Image to image translation examples for MNIST to SVHN. Bottom) TSNE
embedding visualization of the latent space. Red are source images, Blue are target images.
A) No adaptation. B) Image to image adaptation without latent space discriminator. C) Full
adaptation.

and USPS were bilinearly upsampled to 32x32. Images from SVHN were converted to gray scale.

We also included very simple data augmentation in the form of random translations and rotations

as it helped a lot. For our hyperparameters we used: λc = 1.0, λz = 0.05, λid = 0.1, λtr = 0.02,

λcyc = 0.1, λtrc = 0.1.

We compare our method to nine prior works (see Table. 5.2). Our method consistently

out performs the prior state of the art by a significant margin. We also show ablations to analyze

how much each of the loss terms contributes to the overall performance. First note that even our

results without domain adaption (top row of Table. 5.2 below the line) are better than many prior

methods. This is purely due to the simple data augmentation. Next we see that λz and λidY both

improve results a lot. However the combination of them with λtrc produces the best results. This

is especially apparent in SVHN to MNIST, which is the most challenging. Finally, in this case,

the remaining losses don’t help any further.
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Figure 5.3 A,B,C show TSNE embeddings of the features extracted from the source and

target domain when trained without adaptation, with image to image loss only, and our full model.

It can be seen that without adaptation, the source and target images get clustered in the feature

space but the distributions do not overlap which is why classification fails on the target domain.

Just image to image translation is not enough to force the distributions to overlap as the networks

learn to map source and target distributions to different areas of the feature space. Our full model

includes a feature distribution adversarial loss, forcing the source and target distributions to

overlap, while image translation makes the features richer yielding the best adaptation results.

5.3.2 Office dataset

The Office dataset [SKFD10] consists of images from 31 classes of objects in three

domains: Amazon (A), Webcam (W) and DSLR (D) with 2817, 795 and 498 images respectively.

Our method performs the best in four out of six of the tasks (see Table 5.3). The two tasks that

ours is not best at consist of bridging a large domain shift with very little training data in the

source domain (795 and 498 respectively). Here the ablations show that the translation loss (Qtr)

helps.

For our encoder we use a ResNet34 pretrained on ImageNet. The encoder is trained with

a smaller learning rate (2×10−5), to keep the weights closer to their good initialization. Images

are down sampled to 256x256 and then a random crop of size 224x244 is extracted. The final

classification layer is applied after global average pooling. Our decoders consist of 5 stride 2

transposed convolutional layers. The image discriminators consist of 4 stride 2 convolutional

layers. The feature discriminator consists of 3 1x1 convolutions followed by global average

pooling.

Our hyperparameters were: λc = 1.0, λz = 0.1, λtr = 0.005, λid = 0.2, λcyc = 0.0, λtrc =

0.1.
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5.3.3 GTA5 to Cityscapes

We also demonstrate our method for domain adaptation between the synthetic (photoreal-

istic) driving dataset GTA5 [RVRK16] and the real dataset Cityscapes [COR+16]. The GTA5

dataset consists of 24,966 densely labeled RGB images of size 1914×1052, containing 19 classes

that are compatible with the Cityscapes dataset (See Table 5.4). The Cityscapes dataset contains

5,000 densely labeled RGB images of size 2040×1016 from 27 different cities. Here the task is

pixel level semantic segmentation. Following the experiment in [HWYD16], we use the GTA5

images as the labeled source dataset and the Cityscapes images as the unlabeled target domain.

We point out that the convolutional networks in our model are interchangeable. We

include results using a dilated ResNet34 encoder for fair comparison with previous work, but we

found from our experiments that the best performance was achieved by using our new Dilated

Densely-Connected Networks (i.e. Dilated DenseNets) for the encoders which are derived by

replacing strided convolutions with dilated convolutions [YKF17] in the DenseNet architecture

[HLWvdM16]. DenseNets have previously been used for image segmentation [JDV+17] but

their encoder/decoder structure is more cumbersome than what we proposed. We use a series of

transposed convolutional layers for the decoders.

Our decoders consist of a stride 1 convolutional layer followed by 3 stride 2 transposed

convolutional layers. The image discriminators consist of 4 stride 2 convolutional layers. We did

not include the cycle consistency constraint due to memory issues. Due to computational and

memory constraints, we down sample all images by a factor of two prior to feeding them into the

networks. Output segmentations are bilinearly up sampled to the original resolution. We train our

network on 256x256 patches of the down sampled images, but test on the full (downsampled)

images convolutionally. Our hyperparameters were: λc = 1.0, λz = 0.01, λtr = 0.04, λid = 0.2,

λcyc = 0.0, λtrc = 0.1.

Our encoder architecture (dilated ResNet/DenseNet) is optimized for segmentation and

thus it is not surprising that our translations (see Figure. 5.4) are not quite as good as those
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reported in [ZPIE17]. Qualitatively, it can be seen from Figure 5.4 that our segmentations are

much cleaner compared to no adaptation. Quantitatively (see Table 5.4), our method outperforms

the previous method [HWYD16] on all categories except 3, and is 5% better overall. Furthermore,

we show that using Dilated DenseNets in our framework, increases the SOA by 8.6%.

5.4 Summary

We have proposed a general framework for unsupervised domain adaptation which

encompasses many recent works as special cases. Our proposed method simultaneously achieves

image to image translation, source discrimination, and domain adaptation.

Our implementation outperforms state of the art on adaptation for digit classification and

semantic segmentation of driving scenes. When combined with the DenseNet architecture our

method significantly outperforms the current state of the art.

Chapter 5 is a reformatted version of “Image to Image Translation for Domain Adaptation”,

Z. Murez, S. Kolouri, D Kriegman , R. Ramamoorthi, K. Kim, IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) 2018. [MKK+17] The dissertation author was the primary

investigator and author of this paper.
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Figure 5.4: A) Input image from real Cityscapes dataset. B) Identity mapped image. C)
Translated image. D) Segmentation without domain adaptation. E) Our Segmentation. F)
Ground truth. Although our image translations might not be as visually pleasing as those in
[ZPIE17] (our architecture is not optimized for translation), they succeed in their goal of domain
adaptation.
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Chapter 6

Conclusion

We have presented work which relaxes some of the assumptions of shape from shading

and photometric stereo within a physics based framework. We have also shown that deep

learning can be applied to problems traditionally approached by physics based methods. This is

especially successful when inspiration from the physical models can be incorporated, either into

the architecture, or training data. Finally we proposed a novel method for unsupervised domain

adaptation within a deep learning framework. This has many potential applications, but one of

the most exciting is training with synthetic data, especially for physics based problems where

human annotations are often difficult to collect.

In chapter 2 we saw that due to its isotropic emission, fluorescence is an ideal input

to shape from shading and photometric stereo algorithms. We also showed that in some cases,

fluorescence can remove inter-reflections, and that when combined with reflectance can resolve the

Generalized Bas Relief ambiguity of uncalibrated photometric stereo. However, in some cases, the

fluorescence emission might not be ideally Lambertian due to differences in subsurface absorption.

The characterization of such cases requires more measurements of different fluorescent materials.

When the emitted radiance due to fluorescence is isotropic, other computer vision methods that

rely on the constant brightness assumption such as binocular stereopsis, multi view reconstruction,
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and optical flow estimation can be applied to fluorescence images. However, fluorescence typically

does not exhibit the same type of spatial/texture variation as would be found with reflectance

texture, and this might provide an alternate set of challenges.

In chapter 3 we modeled the affects of scattering to improve the quality of photometric

stereo in a scattering medium. We showed that fluorescence can be used to optically remove

backscatter with much higher signal-to-noise ratios than subtraction methods. We also showed

that forward scatter from the source can be calibrated out, and that forward scatter blur from the

object can be removed with deconvolution. Although our theory only applies to a single scattering

medium, in practice, our calibrated PSF may be taking multiple scattering effects into account.

Extending our theory to multiple scattering would provide further insight. Future work includes

removing the need to know the average object distance, removing the small surface variations

approximation, and an automated PSF calibration procedure for varying turbidities and depths.

In chapter 4 we showed that a deep convolutional neural network can be trained to solve

the traditionally physics based problem of dynamic refractive distortion correction. We collected

a large scale dataset by imaging a monitor under a tank of turbulent water. Future work includes

training the network on purely synthetic data, with the aid of domain adaptation. Another direction

is to train the network with real data but without paired examples. By this we mean that we

have access to distorted images and non-distorted images, but not to the non-distorted image

corresponding to a particular distorted image. The advantage is that this data is easy to capture,

as it only becomes difficult to capture when you require ground truth pairs. The best solution

is probably a mixture of unpaired examples combined with synthetic data. Other future work

includes dealing with other distortions including volumetric scattering and surface reflection.

In chapter 5 we proposed a novel unsupervised domain adaptation method based upon

adversarial discriminative feature matching and image-to-image translation. We evaluated our

method by achieving state-of-the-art results on benchmark domain adaptation datasets, but believe

this will be particularly useful for traditionally physics based problems where synthetic data is
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easy to generate but real data is hard to annotate (for example the problem addressed in chapter

4). Other directions for future work include multi-domain adaptation as well as combining

unsupervised domain adaptation with a few examples in the target domain. Furthermore, in these

cases each domain need not have annotations for all the classes, yielding a zero-shot-learning

hybrid.

Computer vision has recently gone from a purely academic venture to something that

is being widely used throughout industry to solve real world problems. However most of this

success has been limited to solving classification, detection and segmentation problems using

deep learning. This thesis has pushed the state-of-the-art in physics based shape reconstruction

as well as deep learning, and has brought the two closer together. Hopefully this will provide a

stepping stone for further unifying deep learning with physics based vision and lead to similar

levels of success and adoption in those problems.
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