
UCLA
Volume III. 1986-87 - Women at Work: The Conference Papers,
May 1987

Title
An Approach to CATI Instrument Management Design Utilizing the Properties of Logical
Structures

Permalink
https://escholarship.org/uc/item/8316h7xg

Author
Futterman, Matthew

Publication Date
1987-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8316h7xg
https://escholarship.org
http://www.cdlib.org/

Institute for
Social Science Research

ISSR

Work ing Papers

 in the

Social Sciences

1987 -88

VOLUME 3. NUMBER 14

An Approach to CAT1

Instrument Management Design

Utilizing the Properties

of Logical Structures

Matthew Futterman

University of California
Los Angeles

AN APPROACH TO
UTILIZING THE

CAT1 INSTRUMENT MANAGEMENT DESIGN
PROPERTIES OF LOGICAL STRUCTURES

Matthew Futterman

ABSTRACT

This paper recognizes the increasing burden being placed on those who design
and program instruments for Computer-Assisted Telephone Interviewing (CATI)
systems, and proposes certain enhancements to CAT1 instrument management
capabilities that should be useful in easing this burden. The suggested
approach for incorporating these features is to use a design based on the
properties of the logical structure of instruments, many of which are
described. An attempt is made to demonstrate that this approach results in a
reliable, extendable and comprehensive CAT1 system design.

Within the short span of ten years or so, the perception of Computer Assisted
Telephone Interviewing (CATI) systems has undergone a dramatic change from
that of an experimental, high technology innovation to that of an
indispensable and powerful tool. This has mirrored the growing popularity and
acceptance of computers themselves.
our everyday language,

The term "personal computer" is a part of
as increasingly we see a migration of an ever-widening

range of applications from the larger mainframe and minicomputer environments
to the smaller realm of the microcomputer. Computer Assisted Personal
Interviewing (CAPI) systems are now becoming commonplace.

There are clear implications
acceptance:

for CAT1 and CAP1 as they gain greater

- As computers become more available and easier to use, the
applications that run on them are expected to become
increasingly more functional and sophisticated.

- As more people accept the idea of using a computer for a
particular application, the more it becomes necessary to make it
easy to use.

- Highly functional and sophisticated programs that are easy to
use are also difficult to write.

Highly complex questionnaires are considered for implementation on CATI/CAPI
systems more readily than was the case when CAT1 was an emerging technology.
Techniques that are impossible or difficult to implement using paper-and-
pencil methods, such as randomizing the ordering of items,
updating portions of text,

dynamically
randomizing respondent selection, to name a few,

are now commonly available on CAT1 systems.
being devised. The attitude seems to be:

New capabilities are continually

should be done on the computer;
if it can be done on the computer, it

way to do it on the computer.
if it cannot be done on the computer, find a

ISSR Working Papers Volume 3, Number 14/1988

Increasingly, a heavy burden is placed on CAT1 instrument designers, who must
contend with the often conflicting objectives of ease of use,
functionality, and program correctness.

greater
Program correctness is a particularly

important goal of the instrument designer, since an incorrectly written
instrument not only can confuse interviewers and respondents, but can cause
loss of data and propagation of errors that are sometimes difficult and costly
to correct.

How can the task of the instrument designer be made easier? What facilities
can the CAT1 system provide to the designer in order to improve his chances of
writing a correct program? What instrument management features can the CAT1
system provide? These are questions that CAT1 system designers need to answer.

The importance of program correctness and the necessity of drawing on sound
instrument design principles has been described by Nicholls and House (1987).
Two general principles pertaining to the design of Computer Assisted Data
Collection (CADAC) instruments were set forth:

- Each item of a CADAC instrument should be protected from every
general form of interviewer movement that is possible in the
CADAC system including those forms not anticipated in that
survey.

- The design of CADAC instruments for consistent correctness
should begin with analysis of the structural relationships among
its items based on their branching paths and modular design.

In order to help the instrument designer comply with the second principle,
CAT1 systems should be designed to provide him with as much information on the
structural makeup of an instrument as is possible. This would include diagrams
of the instrument's structure, the names of key items, section boundaries, and
so forth.

Beyond providing the instrument designer with valuable feedback, however, the
CAT1 system itself can benefit by using instrument structural information.
For example, the system can decide whether or not to honor an interviewer jump
request by evaluating the state of the current instrument path and the logical
relationship between the item currently on the screen and the item that is the
target of the jump request. The instrument designer need not be concerned
about coding explicit instrument instructions for the purpose of protecting
against random movement if the CAT1 system provides
automatically.

this protection

There are other ways a CAT1 system can benefit from having a complete
knowledge of an instrument's logical structure. Stored responses can
automatically be evaluated for applicability, instrument designers can code
conditional instructions without having to make "on-path" determinations,
cleaning instructions (excluding those for consistency checking) do not have
to be written, and "you-are-here" diagrams can be displayed to the interviewer
on request.

There is much to be gained, therefore, by basing a CAT1 system's instrument
management capabilities on the structural makeup of instruments. Just as the
analysis of an instrument's logical structure should be the first step in

2

An Approach to CAT1 Instrument Management Design Matthew Futterman

instrument design, so should the utilization of instrument structural
information be the first step in instrument management.

Hopefully, this paper will be of interest to the CAT1 system designer who
desires an integrated and logical approach to the task of designing a wide
range of instrument management capabilities. Emphasized here is a design
approach; indeed some of the capabilities described are already implemented on
existing CAT1 systems.

The following chapter describes CAT1 instrument logical structures and their
properties. The concluding chapter applies these properties to instrument
management issues.

STRUCTURAL PROPERTIES OF CATI INSTRUMENTS

In order to develop a strategy for designing a CAT1 system that includes the
instrument-management capabilities described in the previous section, it is
necessary to take a closer look at instruments themselves. We will begin by
describing instruments in terms of logical structures and then take a closer
look at logical structures and their properties.

Recognizing CAT1 Instruments as Logical Structures

We will use an example to illustrate an instrument with a simple logical
structure. Suppose, for example, that an instrument consists of three items:
Ql, Q2 and Q 3 as shown in Figure 2a. Ql is executed first, followed by Q2
and terminating with Q3 Note that each item contains an explicit instruction
that tells CAT1 which item to execute next.

Now look at Figure 2b. Here, the
order of the items as shown on paper
is Q2,Ql,Q3, yet note that the
branching instructions included in
each item are the same as in the
previous example. Since CAT1 uses
the instructions contained in each of
the items to determine the next item,
the order that CAT1 will present the
items is in each case Ql,Q2,Q3. This
ordering, determined by the branching
instructions contained in each of the
items, is referred to as an
instrument's LOGICAL order. The order
that the items appear on a piece of
paper or on a computer disk is called
the PHYSICAL order of instrument
items. It is important to remember
that CAT1 uses only the logical order
to determine the order in which items
are presented to the interviewer.

 Q1 - GOT0 Q2

- GOT0 Q3

 Q3 - (END)

Logical Order: Q1,Q2,Q3
Figure 2a

(Ic
Q2 - GOT0 Q3

Ql - GOT0 Q2

Q3 - (END)

Logical Order: Q1,Q2,Q3

Figure 2b

3

ISSR Working Papers Volume 3, Number 14/1988

A LOGICAL STRUCTURE may be defined as the collection of all possible logical
orderings within an instrument. In the simple instrument of Figure 2 there is
only one logical ordering of the items since each item contains UNCONDITIONAL
branching instructions. Few instruments are this simple, however, because most
instruments include CONDITIONAL branching instructions as well.

Figure 2c is an example of an
instrument with conditional branching.
Note that if the answer to Ql is "YES",
then Q2 will come next, otherwise Q3
comes next. This instrument therefore
has two logical orderings: (l)Ql,Q2 and

42 /-+ES' GOT0 Q2 ELSE Q3

(2)Ql,Q3. Note also that the logical Logical Orderings:

structure of this instrument is more (1) Q1,Q2
complex than that of the one in the (2) Ql,Q3
first example, since it consists of two Figure 2c
logical orderings.

Qi -
A further example will illustrate yet

4

IF 'YES' GOT0 Q 2 ELSE Q3

another possibility, an instrument that Q2
has both conditional and unconditional
branching. In this instrument, shown in iiT Q3
Figure 2d, if the answer to Ql is

Logical Orderings:

"YES" , then Q2 comes next, followed by
(1) Q1,Q2,Q3

Q3, otherwise Q2 is skipped and only Q3 Figure 2d
(2) Ql,Q3

follows. These two logical orderings,
summarized by notation, are:
(1)Q1,Q2,Q3 and (2)Q1,Q3

We have seen that even a very small instrument - one with only three items -
has a degree of complexity, given that there is more than one possible logical
ordering of the items. Actual instruments have hundreds, even thousands, of
items and a similar number of logical orderings. It is easy to see how quickly
both man and machine can become "lost" in such complex logical structures
unless the nature of the logical structure is well understood. For this
reason, the next section takes a closer look at logical structures.

Components of Logical Structures

In the previous section the concept of an instrument as a logical structure
was introduced. In this section we will take a closer look at logical
structures and identify some of their properties.

Points and Paths
We shall define a logical structure as a collection of all the possible
logical orderings of items in an instrument. It is convenient to think of each
item as a POINT. We can then represent a logical relationship between two
points by connecting them with a line, as shown in the diagrams below. Each
connecting line is called a PATH, and represents the possibility of a logical
ordering among the points connected by it. Points at the top of a path precede
points further down, unless an arrow is drawn to indicate otherwise.

4

An Approach to CATI Instrument Management Design Matthew Futterman

In Figure Z-la, for example, since
point A is followed by point B (that

A

%?re
the logical ordering is A,B)
is a path between points A and

I B

B in the direction of A to B (A->B). Fi gure 2-1a
As another example, Figure 2-lb shows
the logical ordering of three points
A, B and C as A,B,C. Paths exist
between points A and B (A->B), B and
C (B->C) and A and C (A-X). 1

A

B

C

Figure 2-lbSometimes there is no path between
two points. For example, if a logical
structure contains two logical
orderings, (l)C,D,G and (2)C,E,F,G,
then no path exists between points D
and E, nor between points D and F, as D F
shown in Figure 2-1c.

The Main Section, Nodes, and the Active Path
Figure 2-1c

One can learn much about a logical structure by charting all the possible
paths it contains. One way to do this is to think of a logical structure as a
MAIN SECTION. A main section always has a unique starting point called an
INITIAL NODE and a unique ending point called a TERMINAL NODE. All paths in
the main section start at the initial node and stop at the terminal node.

Figure 2-2 shows a main section with
an initial node labelled BEGIN and a
terminal node labelled END. Other
points are labelled as well. Note
that, though there are many paths,
all of them start at BEGIN and
terminate at END.

BEGIN

A path represents only the
possibility of a logical ordering
between two points and not
necessarily the existence of such an
ordering. In other words, even though
a particular path may exist, it may
not be the one actually taken. For W

example, at point C of Figure 2-2,
there are two logical orderings,
(l)C,D and (2)C,E and, therefore, a
choice of two paths to take, either
C,D or C,E. The path that is selected
is referred to as the ACTIVE PATH.
Figure 2-3 shows the same main
section as the one of Figure 2-2, but
with a bold line indicating a

END

hypothetical
Figure 2-2

active path. In this
example, path C,E is part of the
active path.

5

ISSR Working Papers F Volume 3,
A

Number 14/1988

There can be only one active path
between two points. Referring again
to Figure 2-2, we see that there are
two paths between points C and G;
(l)C,D,G and (2)C,E,F,G. In any
instance of traveling from point C to
point G, it is not possible to take
both paths simultaneously. One and
only one path must be selected. It is
possible to alter the active path,
however. For instance, after having
chosen (2)C,E,F,G as the active path,
as in Figure 2-3, we can then go back
to point C at some later time and
choose path (l)C,D,G.

Any path between the initial node and the terminal node is called a COMPLETE
PATH. A main section always has at least one complete path. Since, by
definition, there can only be one active path between two points, it follows
that there can only be one ACTIVE COMPLETE PATH between the initial node and
the terminal node.

For example, the main section of
Figure 2-4 has several complete
paths, however only the path BEGIN,A,
B,C,E,F,G,L,O,P,Q,R,X,Y,BB,CC,DD,END,
is the active complete path.

BEGIN

Notice that the complete paths of the
main section shown in Figure 2-4
have several points in common,
specifically points BEGIN, A, B, C,
G, X, CC, DD and END. This is useful
information, since it allows us to
identify, in advance, those points
that we know must be on each and

w

every complete path. In general, any
point that is on all complete paths
is called a MANDATORY POINT; any path
between two adjacent mandatory points
is called a MANDATORY PATH. Thus, in
our example, BEGIN,A,B,C is a
mandatory path. Path C,E,F,G is not a
mandatory path since mandatory points END

C and G are not adjacent to each Figure i-4
other.

Knowing whether or not a point is on the active path is useful in determining
the APPLICABILITY of a stored response or value. For example, suppose point E
in Figure 2-4 represents an item that stores a response in location @E. If we
are certain that there is indeed a path from BEGIN to E (in other words, that
E is on the active path), then we can also be certain that the value stored in

6

An Approach to CAT1 Instrument Management Design Matthew Futterman

@E is valid (APPLICABLE). On the other hand, since point D of Figure 2-4 is
not on the active path, it follows that there is no way to get from BEGIN to
D. Thus, even if there is a response stored in @D (because, for example, D was
previously on the active path), it should be ignored, since it is
INAPPLICABLE. We will summarize this property of points on the active path as
follows:

1) values stored by points on the active path are applicable

2) values stored by points not on the active path are
inapplicable

Certain points in a main section are instrumental in determining the active
path. Point C of Figure 2-4, for instance, has a special property since it
determines which of two paths is the active path. Similarly, point G selects
one of two paths, point X selects one of three paths, and so on. In general,
any point that controls which path is to be selected is called a NODE. The
circled points of Figures 2-2 through 2-4 are all nodes. (An initial node is a
node because it always determines the initial part of the active path; a
terminal node is a node because it always determines the path out of the main
section.)

A node, unless it is a terminal node or perhaps an initial node, uses
conditional branching instructions to select one and only one of two or more
paths. Assume that node C, for example, is an instrument item on the active
path that contains the following conditional branching instructions:

IF THE ANSWER TO C IS "YES"
THEN GOT0 D
ELSE GOT0 E A

A
Node

If the answer stored at C is "YES", B
then path C,D is selected, else path
C,E is selected. One and only one of Cit

the two paths must be chosen as a
q x

result of any instance of arriving at D E

node C, as shown in Figure 2-5. This
property can be stated more generally Figure 2-5

as follows:

- If a node is on the active path, that node unambiguously
determines the next portion of the active path.

It is important to emphasize that a node, in order to properly determine the
next portion of the active path, must itself be on the active path. This is
because the answers or other values that are used to evaluate the conditional
branching instructions must be applicable.

Determining the active path and knowing when and how the active path has been
altered are powerful tools that can be used effectively for instrument
management, as we will show later on.

7

ISSR Working Papers Volume 3, Number 14/1988

Branches, Logical Units and Junctions
Up to this point we have discussed points, paths and nodes, and how they may
be combined to form the active path. Knowing which points are on the active
path can, in turn, tell us many important things about a main section
(instrument). We will now take a closer look at these basic building blocks
and explore how they combine to form branches, logical units and junctions,
and how these constructs can be used to tell us still more about how to
determine which points are on the active path.

The portion of a path between two
adjacent nodes is called a BRANCH. ,,,,,cB
For example, in Figure 2-6 there are A&
two branches between adjacent nodes C
and G : C,D,G and C,E,F,G. (Branches sb

C,D,G, and C,E,F,G can also be
c(l),D,G

C
C(2) ,E,F,G

represented notationally as C(l),D,G E
and C(2),E,F,G, respectively.) Each D F
point on the branch is called a

+
G

MEMBER of that branch. Points C, D,
and G are, for example, each members
of branch C(l),D,G. Figure 2-6

- - -

Some other examples from Figure 2-2 of branches and their members are
G(l),H,I,J,K, L(3),Q, BEGIN,A,B,C, and X(2),Z,BB,CC,DD,END.

A branch that is on the active path
is called an ACTIVE BRANCH. A node
that is on the active path will
always have one and only one active
branch. For example, node C of Figure
2-7a is on the active path and its
active branch is C(2),E,F,G.

Control Node

The two nodes that define a branch
have special names. The first (top)
node is called the CONTROL NODE and
the second (bottom) node is called
the LINK NODE. Thus, in Figure 2-7a,
the branch C(l),D,G is bounded by /
control node C at the top and link
node G on the bottom. Note that node

Ho/'

G is also the control node
branch G(2),L as shown in
2-7b.

for the
Figure

Figure 2-7b

Except for the initial node, which is always a control node, and the terminal
node, which is always a link node, all nodes are both control and link nodes.
Whether we choose to refer to a particular node as a control node or as a link
node depends on how we view that node in relation to other points in the main
section. Generally, if we view a node in terms of how we can get to it from
other points, we think of it as a link node; if we view a node in terms of how
we can proceed from it in order to get to other points, we think of it as a
control node.

An Approach to CAT1 Instrument Management Design Matthew Futterman

Note that some branches consist only of a control node and a link node, such
as branch G(2),L of Figure 2-7b, while other branches, such as C(2),E,F,G have
one or more points between the control and link nodes.

We shall formally define the general structure of a branch as:

c(#),{p1},...pn,)1

where c is a control node
is a control node branch number
p1 through pn are points that may or may not be present
1 is a link node

In general, the set of branches that are bounded by a control node, cn, are
collectively referred to as the FAMILY of branches associated with control
node cn.

For example, in Figure 2-8, control
node L consists of a family of four
branches, specifically L(1),M,N;
L(2),O,P,Q; L(3),Q; and L(4),T,U. A
control node, along with all the
points in its family of branches, is
called a LOGICAL UNIT. Logical unit
L, for example, consists of points,
or members L,M,N,O,P,Q,T AND U.

It is possible to assess the
complexity of a main structure by
examining the complexity of its
branches and logical units. A SIMPLE
BRANCH, for example, is a branch
whose members, excluding the control
and link nodes, belong exclusively to
that branch. For example, in Figure
2-9a, points E and F are members of
branch. C(2),E,F,G exclusi
C(2),E,F,G is therefore
branch.

A COMPLEX BRANCH, on the
is a branch that shares or

vely, and
a simple

otherhand,
 or more

of its non-node members with one or
more branches. Branch N(2),R,X of
Figure 2-9b, for example, shares non-
node member R with branch Q(l),R,X,
thus both branches are complex.

Similarly, logical units can be either

Figure 2-8

G Simple Branch

Figure 2-9a

X Q(1),R,X -
Complex Branches

Figure 2-9b

simple or complex. Logical unit L of
Figure 2-8 is a SIMPLE LOGICAL UNIT because all of its non-node members belong
to it exclusively. Logical units N and Q are COMPLEX LOGICAL UNITS because
they share non-node member R.

9

ISSR Working Papers Volume 3, Number 14/1988
X

In complex branches and logical units, each set of shared Y
'\ AA

points is called an INTERSECTION and the initial point of
To

each intersection is called a JUNCTION. For example, in BB ,’
Figure 2-9b, the intersection of branches N(2),R,X and
Q(l),R,X is R,X and the junction is the first point of

cc ,f

intersection, R. As another example, in Figure 2-9c, the DD
intersection of branches X(l),Y,BB,CC,DD,END and
X(2),Z,BB,CC,DD,END is BB,CC,DD,END and the junction is
BB. Note that all points following the junctions are ~
common to the intersecting branches.

END
Figure 2-9c

This is an important property of intersecting branches and can be stated more
generally as follows:

Let us

when n branches intersect at a junction, j, j, as well as all
the points following j on the branch, are common to each of
the n branches.

take a closer look at junctions R and BB. Though they are both
junctions, BB is a member only of logical unit X, whereas R, as mentioned
earlier, is a member of two logical units, N and Q. A junction that is a
member of one and only one logical unit, such as BB, is called a SIMPLE
JUNCTION; a junction that is a member of more than one logical unit, such as
R, is called a COMPLEX JUNCTION.

A point that is a node as well as a
junction is called a JUNCTION NODE,
and exhibits the properties of both.
The main section of Figure 2-2
contains three junction nodes,
specifically G,Q and X. Junction
nodes are always link nodes for two
or more branches. Junction node Q,
for example, serves as the link node
for branch L(2),O,P,Q, as well as for
branch L(3),Q. Another example is
junction node X, which serves as a
link node for branches K(2),X;
N(1),X; N(2),R,X; Q(1),R,X; Q(2),S,X;
U(l),V,X and U(2),W,X.

As with junctions, junction nodes can
be either simple or complex. Junction
node Q, for instance, is a SIMPLE
JUNCTION NODE because it is a member
of only one logical unit, in this
case logical unit L, as in Figure 2-
10a. Junction
hand, is a
since it is a
units: K,N,Q
Figure 2-10b

node X, on the other
COMPLEX JUNCTION NODE
member of four logical
and U, as shown in

Q- Simple Junction Node

Figure 2-10a

X- Complex Junction Node

Figure 2-1Ob

10

An Approach to CAT1 Instrument Management Design Matthew Futterman

A closer look at the properties of nodes, branches, logical units and
junctions will shed some light on the varying degrees of complexity that they
contribute to the overall structure of a main section.

A simple branch, for example, has the property that any member of the branch
must necessarily precede - that is, it must be the NECESSARY PRIOR of - each
succeeding non-node member.
for example.

Consider simple branch C(2),E,F,G of Figure 2-11a,
In order to get to point F it is first necessary to pass through

points C and E. Thus point F has at least two necessary priors, points E and
C. Point E has at least one necessary prior, point C.

members of the branch can be a necessary
>

\%

In practice, this means that if we know, for
example, that C(2),E,F,G is an active
branch, as it is in Figure 2-lla, then we
know that if we are at point F, we must have C E

passed through points C and E, since C and E
/

are necessary priors of F. It is important
D ' F

to note, however, that none of the non-node 0< \

prior of link node G, since G is a junction C,E -
and can be preceded by either point D or Necessary

point F, depending on whether branch C(1) or Priors of
branch C(2) is the active branch. Point F

Figure 2-lla
On the other hand, non-node member M of
simple branch L(l),M,N of Figure 2-llb is a L T
necessary prior of link node N because N is I\
not a junction. This leads us to the M \

/

 \
I

following two conclusions: 1
N p 6__\,

8
- The members of a simple branch are

$

necessary priors of each of the M-- Necessary Prior

succeeding non-node members. of Node N

- The non-node members of a simple
branch are necessary priors of the
link node if and only if the link
node is not a junction.

Figure 2-11b

It is more difficult to determine which points on a complex branch are
necessary priors of other points,
one junction.

since a complex branch always has at least

Consider, for instance, complex branch X(2),Z,BB,
X
' '\

CC,DD,END. Point X is a necessary prior of point Z, but YO(z ;%A
point Z is not a necessary prior of junction BB, since \

Br; ,I
I

there is an alternate path to BB, specifically Y,BB.
Continuing along the path, we next determine that BB is I

not a necessary prior of junction CC because there is
CC

another path to CC, specifically AA,CC. These

: I .

DD
observations lead us to another conclusion:

- A junction is never immediately preceded by a
necessary prior. Figure 2-12

11

ISSR Working Papers Volume 3, Number 14/1988

For this reason, it is always necessary to go back at least to the nearest
node in the direction of the initial node in order to make an unambiguous
determination of how we have arrived at a junction.

The properties of a main section allow us to determine all the necessary
priors of any point in a main section. In addition to those that we have
already identified,
this end:

here are some general rules that can be applied towards

Just as
so must
branch,

The initial node is a necessary prior of every other point.

A mandatory point is a necessary prior of every succeeding point.

The control node of a simple logical unit is a necessary prior
of every member of its logical unit.

some points must necessarily precede other points in a main section,
some points necessarily succeed others. For example, any member of a
whether simple or complex, must necessarily follow - that is, it must

be the NECESSARY SUCCESSOR of - each previous member, excluding the control
node.

C

Consider branch C(2),E,F,G of Figure 2-13, for example.
//

The necessary successors of point E are points F and G;
/ r e

for point F the necessary successor is point G. In Do’
practice, this means that if we know, for example, that

 F

\ \
C(2),E,F,G is an active branch, as it is in Figure Z-13, \ G
then we know that if we are at point E, we must pass)F,G -

through points F and G in order to eventually arrive at Necessary

the terminal node,
.

END, since F and G are necessary
Successors

successors of E. It is important to note, however, that
. of Point E

control node C is not necessarily succeeded by any of the .
members of the branch. This leads us to the following two Wh
conclusions: Figure 2-13

- The members of a branch are necessary successors of each of the
preceding non-node members.

- A node, unless it is an initial node, is never immediately
’succeeded by a necessary successor.

Here are some additional rules that can be used to identify the
successors of any point in a main section:

necessary

- The terminal node is a necessary successor of every other po

- A mandatory point is a necessary successor of every pre
point.

int.

ceding

- A link node is a necessary successor of every member of
branch of which it is a member, with the exception of the
nodes.

12

An Approach to CAT1 Instrument Management Design Matthew Futterman

Primary Nodes and Sections
Because a typical main section can be quite complex, with a proliferation of
branches, logical units and junctions,
characteristics of the entire structure.

it can be difficult to comprehend the
If we could view only a portion of a

main section at any one moment, yet still obtain a good sense of where we are
in the structure as a whole, we would be much better off. Fortunately, large
main sections tend to be organized around smaller structures that exhibit
properties very similar to those discussed above. The remaining discussion of
logical structure components will focus on identifying these smaller
structures and examining their characteristics.

A node that is a mandatory point is called a PRIMARY NODE and h a s several
important properties. For instance, recall that a node that is on the active
path always determines the next portion of the active path, and that a
mandatory point is always on the active complete path. It follows, therefore,
that a primary node always determines a portion of the active complete path.
Thus, it is useful to think of each primary node as a major control center
that ultimately determines how to get
another.

from one part of a main section to

A first step in evaluating a main
section is to identify all of its
primary nodes. The primary nodes of
the main section of Figure 2-14, for
example, are BEGIN,C,G,X and END.
Note that all the paths that lead
from one primary node ultimately lead
to the next primary node. This is a
general property of primary nodes
that leads us to the following
conclusions:

- A primary node is the
necessary prior of each
succeeding primary node.

- A primary node is the
necessary successor of each
preceding primary node.

- A primary node i the
necessary prior o f each
succeeding point down to and
including the next succeeding
primary node.

- A primary node is the
necessary successor of each
preceding point up to and
including the next previous
primary node.

BEGIN

W

cc

DD
Y

END
Figure i-14

13

ISSR Working Papers Volume 3, Number 14/1988

We shall define all the points between two adjacent primary nodes, including
the primary nodes, as a SECTION. For example, primary nodes G and X of Figure
2-15 define section G-X, which consists of the following points (members):

G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W and X

A section is very much like a main
section, and has "similar properties.
For example, a section always has a
unique starting point called a
PRIMARY CONTROL NODE and a unique
ending point called a PRIMARY LINK
NODE. All paths in the section
emanate from the primary control node
and converge at the primary link
node. All paths in section G-X, for
example, emanate from G and converge
at X.

There can be only one active path
between a section's primary control
node and its primary link node. This
path, if it exists, is called the
ACTIVE SECTION PATH, and is similar
to the active complete path of the
main section. In fact, if each and
every section in a main section has
an active section path, then we know
there is an active complete path
between the initial node and the
terminal node.

nary Control Node

Section G-X

Active Section Path - G,L,M,N,X

Figure 2-15

Examining the properties of sections reveals much about which points are part
of the mandatory path. We already know, for instance, that all primary nodes
are part of the mandatory path. In addition, some sections have a special type
of junction, called a PRIMARY JUNCTION, that is always on the mandatory path.

A primary junction is defined as a
junction that is the initial
intersection of all paths leading Y AA
from the primary control node. For
example, junction CC in section X-END
of Figure 2-16 is a primary junction
because all paths emanating from imary Junction
primary control node X converge at
junction CC. Note also that point DD,
which is on the path between primary

DD <-Mandatory Point

junction CC and primary link node
END, is a mandatory point. Cti$ _3

Figure 2-16

14

An Approach to CATI Instrument Management Design Matthew Futterman

The following rules apply to all sections:

- There can never be more than one primary junction in a section.

- The primary junction is always the junction closest to the
primary link node.

- Each point on the path between a primary junction and a primary
link node is a mandatory point

The first section of a main section is called the INITIAL SECTION. The primary
control node of the initial section is always the initial node. An initial
section that has an initial node with only one branch has a unique property,
specifically:

- Each member of an initial section with only one branch is a
mandatory point.

BEGIN
Initial section BEGIN-C of Figure 2- @ ‘Initial
17, for example, has a single path,

A

BEGIN,A,B,C. Each of these points are
mandatory and BEGIN,A,B,C is a
mandatory path.

g

Section -

: /GIN-C
/

Db: ' *;0,

There is another rule that applies to
any section that is not an initial

\,‘@I

' Mandatory Path -
BEGIN,A,B,C

section with a single path:
Figure 2-17

In a section that is not an initial section with a single path the
only mandatory points are the primary nodes, and, if present, the
primary junction and any points between the primary junction and
the primary link node.

A section is a ONE-IN-ONE-OUT structure, meaning that a single point controls
the entrance to the structure and a single point controls the exit from the
structure. In a section, these points are, respectively, the primary control
node and the primary link node. Simple branches and mandatory paths are also
one-in-one-out structures, as is another type of structure called a SUB-
SECTION. A sub-section is a simple logical unit that has only one link node,
for example, logical unit U of Figure 2-14. The table below summarizes the
entrances to and exits from the various types of one-in-one-out structures.

STRUCTURE TYPE

section
sub-section
simple branch
mandatory path

ENTRANCE

primary control node
control node
control node
primary junction

EXIT

primary link node
link node
link node
link node

TABLE 2-l Entrances and Exits to One-In-One-Out Structures

In the next chapter, we will use the properties that we have identified here
to lay the groundwork for a CAT1 system design that incorporates many useful
instrument management features.

15

ISSR Working Papers Volume 3, Number 14/1988

USING PROPERTIES OF LOGICAL STRUCTURES IN INSTRUMENT MANAGEMENT APPLICATIONS

Now that we have identified many of the properties of logical structures, we
are ready to use them in some practical instrument management applications.
Specifically, we shall develop a model CAT1 system that can be used to
determine:

- which instrument items have applicable responses or store
applicable values

- how to evaluate logical expressions that have unanswered or
inapplicable values

- how any given instrument item is logically related to any other
instrument item

- how to allow interviewer jump requests without causing any
undesirable side effects

Before we develop our model CAT1 system, let us review some of the problems
commonly associated with CAT1 instrument management and design by taking a
look at a "basic" CAT1 system.

The Basic CAT1 System and its Limitations
CAT1 systems vary in their design and capabilities, so it is difficult to
define a "typical" system. There are elements of design that are common to
every CAT1 system that the author is familiar with, however, so we will use
these as the basis for defining a "basic" CAT1 system.

A basic CAT1 system is organized around the concept of an "item". A CAT1 item
resembles a paper and pencil item in many respects in that it has a unique
name, branching instructions and perhaps other attributes, such as text,
response storage locations, a list of valid response codes, arithmetic
calculations, and so on. However, the scope of each item is limited. An item
contains the information that the CAT1 system needs for processing a
particular portion of an instrument, but little or no information is provided
about the item's relationship to other items. This system works well if an
interview proceeds from the first item to each succeeding item based solely on
each item's branching and other instructions and without disruption by
interviewer commands. Still, precluding the use of interviewer commands is not
an acceptable alternative in most circumstances. In order to get around this
limitation, instruments written for a basic CAT1 system must incorporate
defensive measures as a means of ensuring correctness. This places an added
burden on the instrument designer and may lead to other complications. (See
Chapter 1 for a discussion of these issues.)

An alternative is to provide the CAT1 instrument designer with a CAT1 system
that minimizes the necessity for coding instruments defensively while imposing
a minimum amount of restriction on the use of interviewer commands. One way of
accomplishing this is to design a CAT1 system that goes beyond the concept of
an instrument as simply a collection of items and towards a concept that

16

An Approach to CAT1 Instrument Management Design

recognizes each item as a unique component

Matthew Futterman

of an instrument's logical
structure. Our model CAT1 system, therefore,
logical structures.

shall draw on the properties of

A Model CAT1 System
In order to keep our model from getting too complicated, we shall make some
assumptions about instrument design. First, we shall assume that all
instrument instructions correctly reflect the intentions of the instrument
designer and yield correct results if executed in the intended order and
without external alteration. Second, we shall assume that all branching
instructions are written using top-down branching, with the logical flow
always proceeding in the direction of the terminal node. The single exception
to this is for the allowance of simple loop-back branching. Finally, we shall
assume that, in order for an interview to be considered complete, each section
in the instrument must have an active complete section path. In other words,
there are no optional sections.

Our model CAT1 system will have, as its primary focus of organization, the
concept of a section as defined in the previous chapter. The discussion of the
previous chapter revealed several very useful properties of sections,
including:

In a

each item belongs to one and only one section.
to determine the general location of any item.

This makes it easy
Also, a section

contains all the information necessary for establishing the
logical relationship between any two points in the section. Thus
we can readily determine all the structures contained in a
section, such as logical units and branches.

the first item of a section unambiguously determines the active
path through the section. Thus we can determine which points in
the section are or are not on the active path simply by tracing
the active path starting with the first item of the section.

the first item of a section is always on the mandatory path. This
makes it easy to identify the circumstances under which we can
expect to 'arrive" at a section. It is also easy to determine
where a section is in relation to any other section. For example,
we can determine whether two sections are immediately adjacent,
whether one section is closer to the initial node than another
section, and so on.

a section is a one-in-one-out structure. We can utilize this
property if we choose, making it impossible to enter the section
without the "permission" of the first item of the section.
Likewise, we can make it impossible to leave the section without
the "permission" of the last item of the section. We can also
specify the type of movement allowed within the section. In short,
because a section is a one-in-one-out structure, we can, if we
choose, define a set of section access and control conditions.

basic CAT1 system, a CAT1 compiler, also called a translator or
instrument builder, scans the set of instructions that are written by the
instrument designer in programming language format, collecting the information

17

ISSR Working Papers Volume 3, Number 14/1988

it needs to have on hand for each item.
designed to do this also,

Our model CAT1 compiler will be
but in addition will have the task of collecting the

structural information it needs to organize an instrument into sections. Here
is a list of things our compiler must do in addition to its "basic" tasks:

- make a list of all items that are nodes (those items that have
conditional branching instructions).

- starting with the initial node, make an ordered list of all nodes
that are primary nodes (those nodes that are also mandatory
points). This list, which concisely defines section names and
boundaries, is called the Section List.

- create a Section Table for each section. In each Section Table,
provide a list of the points (items) that are members of the
section.

Include the following information for each member:

- type of member (point, node, junction, junction node)
- type of storage location (unique, shared, none)
- storage location pointer if the member does not
have a unique storage locat!io:y'an "activation" flag that
indicates whether the member has ever been on the active
path

- whether or not the member has a text display

Include the following information for each node:

- number of branches
- branching instructions
- for each branch, an ordered list of the names of each
branch member

- the names of branch members that are junctions or
junction nodes

Include the following information for each junction and junction
node:

- the number of logical units of which it is a member
- the name of each logical unit of which it is a member

- create a Shared Storage Location Table. This table contains the
following information for each shared storage location:

- the name of the shared storage location
- a pointer to the shared storage location
- the number of items that share the storage location
- the name of each item that shares the storage location

- collect item information in the usual way. However, to each item's
table of information, add the name of the section of which it is a
member, and whether or not it shares a storage location with any
other items.

18

An Approach to CAT1 Instrument Management Design Matthew Futterman

Table 3-l shows how a Section List and a Section Table might look after using
our model CAT1 compiler to translate the example instrument of Chapter 2,
shown here in Figure 3-l.

Wr.n.N.d). r(jn.o.0.61

An item from that
instrument, item V, is
shown in tabular form
in Table 3-3. Note that
it contains a reference
to Section G-X. The
Section List and
Section Tables will be
described in greater
detail in the examples
that follow.

ITEM TABLE V

Item Name: V
Text:
Branching: goto X
Valid Responses: 1 - 7
Storage: @V (unique)
Section: G - X

Table 3-3

BEGIN

DD

The Section List and Section Tables are information superstructures that link
subordinate information structures -- items
directly to the structure of the instrument.

-- together in a way that relates
As a result, more information is

available to the CAT1 system than before. In the sections that follow, we
shall demonstrate some of the ways our model CAT1 system can utilize this
information.

19

ISSR Working Papers Volume 3, Number 14/1988

The Active Path, Item Status, and Applicability
One of the functions associated with instrument management is to determine if
a particular stored value is applicable. In order to do this, many CAT1
systems maintain an item status indicator for each displayable item that
stores a response. Typically, item status has three values: unanswered (UN),
answered and applicable (AA) and answered but inapplicable (AI). All
displayable items that store responses begin as UN. When and if an item is
answered, its status changes to AA. If the active path is altered so that the
item is no longer on the active path, the item status becomes AI. If at a
later time the active path is altered so that the item is once again included
on the active path, the status again becomes AA, and so on (Nicholls and
House, 1987).

Some items in a typical CAT1 instrument do not store responses, so another way
must be found to track them. Rather than use item status flags, we will design
our model CAT1 system to keep track of the active path in order to make
determinations as to which stored values are applicable, and to maintain
active path information about all types of items, including those that do not
store responses.

The Section Tables described above are initialized with almost all the
information the model CAT1 system needs to have in order to track the active
path. To complete the picture, we will instruct the system to record whether
or not a particular item has ever been on the active path, unless this
information can be determined implicitly.

The procedure for determining if an item has ever been on the active path
depends on the characteristics of the item. For example, if Ql is the only
item that stores a response at location @Ql, that is, if @Ql is a UNIQUE
STORAGE LOCATION, we need only examine the value stored at @Ql to determine if
it still has its initial value (referred to here as $NIL) or if it has another
value.

Some items do not have unique storage locations but instead share their
storage locations with other items, as would be the case, for instance, if
items Q2 and Q3 both stored their responses in @Q2. @Q2 in this case is a
SHARED STORAGE LOCATION. Other items do not store responses at all, and
consequently have no associated storage locations. For items like these that
do not have unique storage locations, we need to have a flag that indicates
whether or not the item has ever been on the active path. We will instruct our
model CAT1 system to set this flag, which we shall refer to as an ACTIVATION
FLAG, whenever the item's final instructions are executed. This will be our
way of marking the item as having been on the active path at least once.
Normally an activation flag is never cleared.

We shall use the term ACTIVATED to indicate that an item has been on the
active path at least once, and INACTIVATED to indicate that an item has never
been on the active path. We will classify an item as activated if it meets any
of the following conditions:

- the item has a unique storage location that contains a value
that is not $NIL (its initial value)

20

An Approach to CAT1 Instrument Management Design

- the item has a shared storage
activation flag is set

location and its associated

Matthew Futterman

- the item does not have a storage location and its associated
activation flag is set

If none of the above conditions are met, the item shall be classified
inactivated.

Using these rules, we derive the following procedure for determining if
item is activated:

1. Determine if the item has a storage location.
If not, go to step 4.

2. Determine if the item has a shared storage location.
If so, go to step 4.

3. Determine if the stored value is $NIL.
If so, the item is inactivated.
Else the item is activated.

4. Examine the item's activation flag.
If the activation flag is set, the item is activated.
Else the item is inactivated.

as

an

It is important to note that the classification of an item as "activated" does
not imply that the value it stores, if any, is applicable. In order to make
that determination, we must find out whether the item is on the active path.
(Note one exception, however. Since our model assumes that all sections are
mandatory, we can conclude that if a primary node is activated, it is on the
active path and any value it stores is applicable.)

Using the Section Tables, we can determine if a particular point is on the
active path. First we use the procedure described above to determine whether a
particular item is activated. If it is, the next step is to find out if the
item is currently on the active path. To do that, we shall use the following
procedure:

Procedure for determining if an activated item is currently on the
active path:

1. Determine which section the item belongs to.
2. Determine if the item is a primary node.

If so, then the item is on the active path.
3. Determine if the primary control node is activated.

If not, then the item is not on the active path.
4. Determine the control node's active branch.
5. Determine if the item is a member of the active branch.

If so, then the item is on the active path.
6. Determine if the active branch link node is activated.

If not, then the item is not on the active path.
7. Determine if the active branch link node is the primary link

node.
If so, then the item is not on the active path.

8. Consider the active branch link node as the next control
node and go to step 4.

21

Volume 3, Number 14/19888ISSR Working Papers

Let us work through an example.
Assume that Figure 3-2 represents the
active section path through section
G-X and that its Section Table is the
one shown in Table 3-6. Assume also
that $NIL represents an initial value
of -1 and that these values are
stored in the following locations:

@G = 2
@L = 4
@T = 2
@V = 5

Figure 3-2 ITEM TABLE V,

Item Name: V
Text:

Branching: goto X
Valid Responses: 1 - 7
Storage: @V (unique)
Section: G - X

Table 3-5

SECTION TABLE G - X Member List Legend

Position 1: n - Node Position 2 : u - Unique storage Location
j - junction S - Shared Storage Location

Jn - Junction Node n - No Storage Location
p - Regular Point

Position 3: if Position 2 is U : @loc is storage Location Position 4:
if Position 2 is ‘ or n : Q - inactivated

d - Display
-d - No Display

1 - activated

MEMBER LIST: G(n,u,@G,d), H(p.s.0.d). I(j,u,@I,d), J(p,u.@J.d). K(n.s.O.-d), L(n.u,@L.d). M(p.u.@M,d). N(n,u.@N.d)

O(p.u.@O.d). P(p.u.@P.d). T(p.u.@T,d). Q(jn.n.0.d). U(n.n.1.d). R(j.u.@R.d). S(p.u,@S.d). V(p.u.@V,d)

W(p,u,@V,d), X(jn.n,l,d)

NODE LIST: C(2)

K(2)

L(4)

N(2)

Q(2)

U(2)

X(n)

JUNCTION LIST:

/if @G EQ 1 goto H else goto L /G(l).H.J.K: G(2).L/ /I/

/if @ H EQ 1 goto I else goto X /K(l).I,J.K; K(2).X/ /I,X/

/if @L EQ 1 goto M l lme
/L(1),M,N;

L(2).O.P.Q; L(3).Q: L(4).T,U/ /Q/
if @L EQ 2 goto 0 else / I I
if @L EQ 3 goto Q else goto T / / I I

/if @N EQ I goto X else goto R /N(I).X; N(2).R,X/ /R.X/

/if @L EQ 1 goto R else goto S /Q(l).R.X; Q(2).S.X/ /R.X/

/if @T EQ 1 goto V else goto W /U(l).V.X; U(2).U,X/ /X /

////

I(2) ,G,K

Q(1) .L

X(4) .K,N,Q,U

R(2).N.Q

TABLE 3-6 Reflects state of section as shown in Figure 3-2

Suppose we want to find out if item V is on the active path. We first need to
determine if item V is activated. Referring to item V's item table (Table 3-
5), we determine that it has a unique storage location, @V. Next we compare
the value of @V with $NIL. Since 5 is not equal to -1, we conclude that item V
is activated.

22

An Approach to CAT1 Instrument Management Design Matthew Futterman

Now we can use the procedure for determining if an item is on
We will work through the procedure step by step. (The
parentheses refer to the corresponding step numbers of
procedure described above.)

the active path.
step numbers in
the active path

1. (Step 1) From V's Item Table we determine that V
section G-X.

belongs to

2. (Step 2) Since V is not G or X, it is not a primary node.
3. (Step 3) Locate G in Section Table Member List. From Member

List, we determine that @G is a unique storage location. Since
@G = 2, G is activated.

4. (Step 4) Locate G in Node List. Evaluate conditional branching
instructions. Since @G=2, the active branch is G(2),L.

5. (Step 5) V is not a member of G(2),L.
6. (Step 6) From Member List, we determine that @L is a unique

storage location. Since @L=4, active branch link node L is
activated.

7. (Step 7) Since L is not X, L is not primary link node.
8. (Step 8) Consider L as next control node.
9. (Step 4) Locate L in Node List. Evaluate conditional branching

instructions. Since @L=4, the active branch is L(4),T,U.
10. (Step 5) V is not a member of L(4),T,U.
11. (Step 6) From Member List, we determine that U has no storage

location and that its activation flag is set. Therefore U is
activated.

12. (Step 7) Since U is not X, U is not a primary link node.
13. (Step 8) Consider U as next control node.
14. (Step 4) Locate U in Node List. Evaluate conditional branching

instructions. Since @T=2, the active branch is U(2),W,X.
15. (Step 5) V is not a member of U(2),W,X.
16. (Step 6) From Member List, we determine that X has no storage

location and that its activation flag is set. Therefore X is
activated.

17. (Step 7) X is a primary link node. We conclude that V is not
on the active path.

Evaluating Conditional Instructions
Assume that item A stores an applicable value in location @A and that it
contains the following conditional branching instruction:

IF (A EQ 1) THEN GOT0 B ELSE GOT0 C

If A represents a value of 1, then the logical expression (A EQ 1) is true and
the true condition THEN GOT0 B is satisfied. If A represents any other value,
then the false condition ELSE GOT0 C is satisfied.

The evaluation of a logical expression consisting entirely of applicable
values is straightforward. Problems arise, however, if unanswered or
inapplicable values are part of a logical expression. If A is unanswered, its
initial value can be used in evaluating the logical expression. But what value
should be used for A if A is inapplicable? If, for example A stores a value
of 1, shou learly no.ld the value of A be-evaluated as' l? The answer is c

ISSR Working Papers Volume 3, Number 14/1988

of 1, should the value of A be evaluated as l? The answer is clearly no.
Unfortunately, however, a basic CAT1 system would indeed evaluate A as 1. The
correct approach is to evaluate an inapplicable response as if it were
unanswered; that is, to use its initial value. We shall instruct our model
CAT1 system, therefore, to obey this rule for evaluating logical expressions:

If i is part of a logical expression
then if @i is applicable

then i <-- @i
else i <-- $NIL

where:
@i is the contents of the storage location associated with i
$NIL is i's initial value

Simply stated, this means that when evaluating a storage location that is
referenced as part of a logical expression, the stored value is used if the
value is applicable, and the initial value is used if the value is
inapplicable or unanswered.

In order to avoid confusing the initial value with stored responses, we shall
have our CAT1 system initialize storage locations with values that never
represent responses, for example a -1 for binary data types and " ' (space)
for character data types.

Enforcing these rules allows the CAT1 instrument designer to avoid testing
explicitly to see if an item is on the active path, so long as he is aware of
the existence of $NIL, the initial value. For example, instead of coding:

IF (A EQ $NIL)
THEN

GOT0 C
ELSE

;if A is not applicable

IF (A EQ 5) GOT0 B ELSE GOT0 C

he can code instead:

;if A is applicable

IF (A EQ 5) GOT0 B ELSE GOT0 C

In this case, (A EQ 5) is true only if @A has a value of 5 and is applicable.
Any other applicable value fails the test, as do inapplicable and unanswered
values, since they are evaluated as $NIL (-1).

Though this scheme allows the instrument designer to completely avoid testing
explicitly for applicability, in some cases instructions may be more readable
if' explicit tests for
explicitly testing for

applicability are included. This is accomplished by
the'value $NIL. For example:

if A is unanswered/inapplicabIF (A EQ $NIL)
THEN

GOT0
ELSE

le

D
;; if A is applicable

IF (A LT 3) GOT0 B ELSE GOT0 C

24

An Approach to

The statements

IF (A GE

CAT1 Instrument Management Design Matthew Futterman

below accomplish the same thing without testing for $NIL:

3)
THEN

GOT0 C
ELSE

IF (A GE 0) GOT0 B ELSE GOT0 D

Rules for Allowing Random Movement - Navigating a Logical Structure
We shall use the term BRANCHING INSTRUCTION to refer to the logical flow
specifications that are present in the instrument itself, as opposed to the
term JUMP REQUEST, which shall refer to an action initiated by a person such
as an interviewer for the purpose of manually altering the order of items.
Similarly, the term BRANCH refers to a determination of logical flow specified
by a branching instruction, whereas the term JUMP refers to a manual change of
the order of items initiated by a jump request.

The item that is displayed on an interviewer's screen pending a required
action by the interviewer is called the CURRENT ITEM. The item specified by an
interviewer as part of a jump request is called the TARGET ITEM. A jump
request that is allowed by the CAT1 system is referred to as a GRANTED
request, otherwise it is a DENIED request. Upon completion of a granted
request, either the target item or another, more suitable item, becomes the
new current item, called the GRANTED ITEM. The only item instructions that are
executed as a result of a jump request are the granted item's initial
instructions and text display. If a request is denied, no instructions are
executed and the current item remains the same.

Movement from one part of an instrument to another shall be viewed with
respect to the initial and terminal nodes. Thus a jump from the current item
to the target item in the direction of the terminal node (away from the
initial node) is FORWARD movement; a jump from the current item to the target
item in the direction of the initial node (away from the terminal node) is
BACKWARD movement.

In order to navigate a logical structure successfully, it is necessary to
establish some reasonable rules of the road and then adhere to them.
Therefore, our model will conform to the following general rules:

(1) A granted item must be a suitable current item, that is, it must
have a text display that requires some action on the part of an
interviewer

(2) A granted item must be on the active path

(3) If a jump request for a target item cannot be granted, then a
suitable alternate item. if one exists. shall be used instead.
This item shall be the closest prior item relative to the target
item that meets the requirements of rules (1) and (2).

Rule (1) ensures that the granted item cannot be a hidden item
visible to the interviewer, such as an "instruction-only" item.

that is not

25

ISSR Working Papers Volume 3, Number 14/1988

By adhering to rule (2) we ensure that it will not be possible for an
interviewer to jump to an item that is not on the active path. Thus it will
always be possible to determine which items are on the active path by
following the logic of the instrument's branching instructions.

Rule (3) makes it easier for interviewers to use jump commands successfully
without having to be concerned about whether or not their target item is on
the active path. By automatically providing the interviewer with a suitable
alternative to the tarqet item when necessary, the CAT1 system makes it
possible for the interviewer to reach the

For example, suppose an interviewer is
faced with the set of circumstances
shown in Figure 3-3. Here, the current
item is D, and the interviewer wants to
jump back to item C. However, when item
A was answered, the active path A,B was
established, leaving item C, the target
item, off the active path. The jump
request for item C, therefore, must be
denied according to rule (2). At this
point, the CAT1 system has two ways in
which to respond: the jump request can
be denied and the current item remain
unchanged, or access can be granted to a
suitable alternate item that has a
potential path to the target item. Rule
(3) requires that our CAT1 system find a
suitable alternative if one exists.

target item eventually.

A- GRANTED ITEM

0

B' C- TARGET ITEM
(not on active path)

D- CURRENT ITEM \

Figure 3-3

In our example of Figure 3-3, therefore, item A is the item granted as a
result of the interviewer's jump request. By altering, as appropriate, the
response to item A, the interviewer can cause item C to become the current
item.

Now that we have defined our CAT1 system's instrument navigation rules, we
have the information we need to specify a set of instrument navigation
commands. These shall be:

FORWARD - makes the next forward item on the active path the
current item. If the current item is the forward-most
item on the active path, it has no effect

BACKWARD - makes the next backward item on the active path the
current item. If the current item is the
most item on the active path, it has no e f

JUMP [trg] - requests a jump to target item trg, where
name of an existing instrument item. The
evaluated and acted upon according to the
rules described above

backward-
ect
trg is the
request is
navigation

JUMP $BGN - jumps to the backward-most item on the act i ve path
JUMP $END - jumps to the forward-most item on the actii Ve path

Let us see how our model CAT1 system handles the JUMP [trg] command.

26

An Approach to CAT1 Instrument Management Design Matthew Futterman

Here is a procedure for the JUMP [trg] command:

1.

2.

3.

4.
5.

6.
7.

Since we

Determine if
item. If not,
as the target
If the target
5.
If the target
5.

trg represents the name of a valid instrument
report the error to the interviewer, else use trg
item and continue.
item is a non-displayable item, then go to step

item is not on the active path, then go to step

Make the target item the granted item. Go to step 7.
Determine if there is a displayable prior item on the active
path with a path to the target item. If not, notify the
interviewer that the jump request could not be granted, else go
to step 6.
Make the alternate item the granted item. Go to step 7.
Make the granted item the current item and return control to
the interviewer.

have already developed a procedure for determining if an item is on
the active path, we can apply it to step 3 of the above procedure. We can also
use the Section List and Section Tables to determine which item, if any,
satisfies Step 5. For example:

1. If the primary control node of the target item is inactivated,
then use the forward-most displayable item on the active path
as the alternate item.

2. Else determine the forward-most activated node with a path (not
necessarily active) to the target node.

3. If the path from this node is active, then use the forward-most
displayable item as the alternate item.

4. Else if the forward-most node is displayable, then use it as
the alternate item.

5. Else determine the next-previous activated node with a path to
the target item and repeat steps 3,4 and 5 until an alternate
item is found.

The Section Tables can be utilized in a similar fashion to implement each of
the other instrument navigation commands.

Obtaining Final Data Sets, Context Diagrams and Structural Information
The model CAT1 system described here uses instrument structural logic to
determine which items are on the active path. Values, once stored, are never
erased or re-initialized (though they may be overwritten by new values). At
any given point during an interview, valid data are those values stored by
items that are on the active path. Thus, once an interview is complete (all
sections have complete active section paths) the final data set is obtained by
writing out the contents of all storage locations belonging to items that are
on the active complete path.

Context diagrams that show the structure of the instrument in various formats
and stages may be obtained by formatting the information available in each of
the Section Tables. In some contexts, such as when responding to interviewer
help requests, it may be desirable to show only the current section, or to

27

ISSR Working Papers Volume 3, Number 14/1988

show only a portion of the active path, or perhaps just a complicated segment
such as a complex branch. The instrument designer will want a complete
diagram, perhaps for debugging or as an aid in re-designing portions of the
instrument. In addition to visual information, the instrument designer can
obtain a description of each key item, such as those items that are various
types of nodes and/or junctions.

Controlling Access to One-In-One-Out Structures: A Modification to the Model
A section is important not only as a one-in-one-out logical construct but as
an application-dependent entity. For example, a lengthy instrument may contain
several sections that each have items that normally are asked as part of an
interview. It may be desirable under certain circumstances, however, such as
when the interviewer must interview an impatient respondent, to consider some
of the sections as optional so that other sections are more likely to be
included as part of the interview. A section consisting of demographic items,
for instance, might be an example of a section that should always be part of
an interview, even if it means skipping over certain other sections.

Because sections play an important role in application-dependent contexts, we
might want to consider modifying our model CAT1 system to allow sections to be
optional. By adding information to the section tables, we can incorporate the
specification of section access conditions. For example, a field could be
added to the section table specifying that the section is either MANDATORY or
OPTIONAL, two mutually-exclusive attributes that can be defined as follows:

MANDATORY - the section must have a complete active section path
in order for the main section to have a complete
active path

OPTIONAL - the section need not have a complete section path in
order for the main section to have a complete active
path

Sections often consist of subordinate one-in-one-out structures such as simple
branches, sub-sections, and mandatory paths. By setting up access fields in
the section table for
access to them in much
deliberately creating
use this capability to
system level, if, for
LOCKED and UNLOCKED:

each of these structures, it is possible to control
the same way as we would control access to sections. By
one-in-one-out structures, instrument designers could
protect critical portions of an instrument at the CAT1
instance, we define two additional access attributes,

LOCKED - the structure cannot be accessed. This is a dynamically
managed attribute that can be toggled between LOCKED
and UNLOCKED

UNLOCKED - the structure can be accessed. This is a dynamically
managed attribute that can be toggled between LOCKED
and UNLOCKED

For example, consider a portion of an instrument that consists of several
items that perform calculations. The calculations are performed correctly the
first time the items are executed, but produce incorrect results if they are
executed again. If the instrument designer chooses to organize the items so

An Approach to CAT1 Instrument Management Design Matthew Futterman

that they are part of a one-in-one-out-structure, then access to this
structure can be restricted by declaring it LOCKED after exiting it once.

Another switch, RE-INITIALIZE, could be added. If set, RE-INITIALIZE would
replace any values associated with items that belong to a specified structure
with their initial values. This switch might be useful in order to re-
calculate variables reliably without destroying stored responses.

CONCLUSIONS

The instrument designer and the CAT1 system both benefit when instrument
management design is based on the properties of logical structures. The
benefits are two-fold:

First, CAT1 instrument management capabilities are readily derived from the
database created as a result of compiling instrument structural data. These
additional capabilities can then be used by instrument designers as tools for
programming CAT1 instruments.

Second, the compiled database is useful as a source of information for man as
well as for machine. For instance, the instrument designer can use the
structural information in the database as an aid for instrument design.

Beyond this, the CAT1 system designer should recognize that there are
additional advantages to the design approach described here. Because more
information is gathered at compile time, run-time decisions can be based more
completely on read-only information and data collected as part of the
interviewing process rather than on run-time manipulations of stacks, flags or
arrays. For example, the model CAT1 system described above avoids the use of
item status flags by drawing instead on information available from the section
tables and interview data, resorting to the use of activation flags only where
absolutely necessary. Even so, the activation flag for any item need only be
updated once. Item status flags, on the other hand, must be maintained and
continually updated for all displayable items. Further, because they are
merely flags, they convey no real information.

As another example, it was demonstrated that the section tables can be
accessed on a read-only basis in order to validate or invalidate interviewer
jump requests. The procedure works without requiring the dynamic allocation of
memory, and thus there are no limitations on the number of consecutive
commands that may be entered (as when continually backing up, for example).
Compare this to those systems that require the use of a stack. Once stack
space is exhausted, or if stack space is not correctly managed, the system
will not accurately reflect the current state of the interview.

Finally, the implementation of a model similar to the one discussed above may
be tailored to the requirements and limitations of the hardware involved. For
example, where main memory is limited, only one or a few section tables need
be present in memory at any one time; on larger systems, all section tables
can be kept memory-resident. (The author believes that it is possible to keep
the size of section tables very small, on the order of a few hundred bytes.)

29

ISSR Working Papers

REFERENCES

Volume 3, Number 14/1988

Nicholls, William L., II, and Groves, Robert M. "The status of computer-
assisted telephone interviewing: Part I--Introduction and impact on
cost and timeliness of survey data." JOURNAL OF OFFICIAL STATISTICS, 2
(No. 2, 1986), 93-115.

Nicholls, William L., II, and House, Carol C. "Designing questionnaires for
computer-assisted interviewing: A focus on program correctness." 3rd
Annual Research Conference, Department of Commerce, Bureau of Census,
Baltimore, Md., 1987, 95-111.

Nicholls, William L., II; Lavender, George A.; and Shanks, J. Merrill. "An
overview of Berkeley SRC CATI." SRC Working Paper 31. Berkeley:
Survey Research Center, University of California, February 1980.

Palit, Charles, and Sharp, Harry. "Microcomputer-assisted telephone
interviewing." SOCIOLOGICAL METHODS & RESEARCH, 12 (November 1983),
169-89.

Shanks, J. Merrill. "The current status of computer-assisted telephone
interviewing: Recent progress and future prospects." SOCIOLOGICAL
METHODS & RESEARCH, 12 (November 1983), 119-42.

30

