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Translation of EEG Spatial Filters from Resting to Motor
Imagery Using Independent Component Analysis
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1 Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, San Diego, California, United States of America,

2 Institute of Engineering in Medicine, University of California San Diego San Diego, California, United States of America

Abstract

Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio
of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and
labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have
recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our
knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been
reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes
induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the
resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to
single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine
subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states
(motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using
monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-
world environments because it is less sensitive to electrode misalignment across different sessions or days and does not
require annotated pilot data to derive spatial filters.
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Introduction

In electroencephalogram (EEG)-based brain-computer interface

(BCI) research, the motor imagery-based BCI has attracted much

attention in the past two decades [1]. A motor imagery-based BCI

translates a subject’s motor intention into a command signal

through detecting motor imagery states (e.g., imagination of left

and right hand movements) in near-real time. Pfurtscheller et al.

[2,3] developed the first motor imagery-based BCI based upon the

detection of EEG power changes, known as Event-Related

Desynchronization and Synchronization (ERD/ERS), in move-

ment-related mu (8–12 Hz) and beta (18–26 Hz) rhythms.

Wolpaw et al. [4] proposed another motor imagery-based

approach to train the users to regulate the amplitude of mu/

beta rhythms to control a 2-D cursor movement. Compared to

other commonly used EEG signals such as the event-related P300

potential and visual evoked potentials (VEPs), the motor imagery-

based BCI does not require external stimuli and could be totally

independent of muscle activities [4]; therefore, it is more

acceptable to the users.

Currently, machine-learning techniques play an important role

in implementing a motor imagery-based BCI [5,6]. Because EEG

changes during motor imagery are subject-specific in both

frequency and spatial domains, a calibration is required for

collecting labeled data to optimize spatial filters and classifiers for

each individual [7]. Furthermore, other recording parameters

(e.g., electrode position, skin contact, and system noise) and the

non-stationarity of EEG signals also pose a challenge to re-

calibrate the system across different sessions even for the same

user. The calibration procedure is always labor and time

consuming, and therefore, seriously limits the practicality of BCIs

in real-world environments.

Recently, several motor imagery-based BCI studies have

developed adaptive methods or zero-training methods to resolve

the problems caused by session-to-session and subject-to-subject

variability [8–10]. These methods were proposed based on

assumptions that there are common EEG spatial patterns across

sessions within subjects and across different subjects. Considering

large variability in anatomy across subjects, the spatial filters

derived from a subject might not be optimal for another.

Furthermore, searching reproducible session-to-session spatial

filters remains to be labor and time expensive because a good

labeled pilot data for each individual is required. An alternative

solution is to find stable state-to-state spatial filters, which could be

obtained by a short pilot session without requiring labor-intensive

labeling, such as a few minutes of resting EEG. The underlying
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assumption in the state-to-state solution is that the spatial patterns

of some function-specific EEG components (e.g., motor compo-

nents) are relatively stable from one state to another. In a motor

imagery-based BCI, it is reasonable to assume that spatial patterns

of the mu/beta components are consistently located in the primary

sensorimotor cortex under both the resting state and the motor

imagery state for each subject. Based on this hypothesis, it might

be possible to derive spatial filters based on non-labeled EEG data

recorded during a resting state and apply them to the classification

of EEG data during motor imagery BCI practices.

To realize a rest-to-work translation of EEG spatial filters, two

preconditions have to be met. First, EEG sources are spatially

stable in both the resting and working states and can be reflected

by detectable EEG oscillations. Second, the method used for

learning spatial filters is fully unsupervised so that the training data

do not require any labor-intensive annotation. Previous studies

have shown that EEG changes during motor imagery of hand

movements are pre-dominated by EEG power modulations of the

mu/beta rhythms (ERD/ERS) in the hand area, which is the

largest subarea in the sensorimotor cortex [2]. Previous studies

have also reported brain activities from default brain networks

when the brain stays in its idling state [11,12]. To be more specific,

the spontaneous mu/beta rhythms often show strong activities

during resting, indicating the idling of the primary sensorimotor

cortex [13]. Therefore, the hypothesis of this study is that spatial

patterns of EEG changes of the mu/beta rhythms in the resting

state are consistent with those associated with imagery of hand

movements. The advantages of using spatial filters from resting

EEG are two-fold: (1) it does not require labor-intensive labeling;

(2) the pilot data are readily available without requiring subjects’

attentions or actions.

An unsupervised method is needed to find spatial filters from

unlabeled resting EEG data. Independent component analysis

(ICA) is a practical solution because it can decompose overlapped

brain source activities constituting the scalp EEG into functionally

specific components [14]. Furthermore, many studies applying

ICA to decompose sets of averaged ERPs, continuous EEG

records, and/or sets of event-related EEG data trials have

demonstrated that independent motor components were very

consistent in terms of their scalp projections and spectral profiles

across different mental tasks [15–17]. We thus hypothesize that

ICA, applied to unlabeled resting EEG, may find spatial filters for

discriminating different motor imagery states.

The goal of this study is to investigate the feasibility of deriving

the state-invariant EEG spatial filters, based on resting EEG, for a

motor imagery-based BCI. The accuracies of using spatial filters

derived from resting EEG to classify single-trial EEG during

imagining left and right hand movements are compared to those

using the spatial filters derived from data collected in the motor

imagery state. In addition, this study also compares the proposed

state-to-state method to the existing session-to-session method

[10].

Methods

1 Experimental paradigm and data recording
The dataset used in this study was provided by the Institute of

Neural Engineering at Tsinghua University [18]. Nine healthy

volunteers participated in an online BCI experiment. Figure 1

shows the paradigm of motor imagery-based BCI control with

visual feedback. The left- and right-hand movement imaginations

were designated to control vertical cursor movement on the

screen. The subject sat comfortably in an armchair, facing a

computer screen displaying visual feedback. The duration of each

trial was 8 seconds. During the first 2 seconds, while the screen

was blank, the subject was in the resting state. Immediately after

these first 2 seconds, a visual cue (arrow) was presented on the

screen, indicating the imagery task to be performed. The arrows

pointing upwards and downwards indicated the imagination of the

left hand and the right hand movement, respectively. After

3 seconds, a cursor started to move at a constant speed from the

left side to the right side of the screen. The vertical position of the

cursor was determined by the power difference of mu rhythm

between the left and right hemispheres (C3 and C4 electrodes).

After 8 seconds, a true or false mark appeared on the screen to

indicate the final result of the trial and the subject was asked to

relax and wait for the next task. At the beginning of a block, an

adaptive method was employed to optimize the classifier with the

first 10 trials (5 trials per class) [18].

32-channel EEG signals referenced to the CMS-DRL ground

(see www.biosemi.com/faq/cms&drl.htm for more information)

were recorded using a BioSemi ActiveTwo system with scalp

electrodes placed according to the modified 10–20 international

system. The signals were digitized at 256 Hz and band-pass

filtered (2–30 Hz) for further analysis. For each subject, the

experiment consisted of four blocks each including 60 trials (30

trials per class). There were 3–5 minutes breaks between two

consecutive blocks. A total of 240 trials (120 trials per class) were

recorded in one session for each subject. Three of the nine subjects

(S5, S6, and S8) participated in a second session on a different day

using the same experimental setup. The intervals between two

sessions were more than 3 weeks (26, 75, and 35 days for the three

subjects respectively).

2 Data processing and analysis
2.1 Independent component analysis. ICA is a statistical

method that aims to find linear projections of the observed data

that maximize their independence [19]. When applied in Blind

Source Separation (BSS), ICA aims to recover independent

sources using multi-channel observations of mixtures of those

sources. In the past two decades, ICA has been successfully used in

processing biomedical signals including EEG, electrocardiogram

(ECG), magnetoencephalogram (MEG), and functional magnetic

resonance imaging (fMRI) signals [20]. In EEG signal processing,

ICA has shown a good capability in separating the scalp EEG

signals into functionally independent sources, including neural

components originating from different brain areas and artifactual

components attributed to eye movements, blinks, muscle, heart,

and line noise. Due to its superiority in EEG source separation,

ICA has been successfully applied to many EEG research fields

including artifact removal, signal-to-noise ratio (SNR) enhance-

Figure 1. Experiment paradigm for the motor imagery-based
brain-computer interface.
doi:10.1371/journal.pone.0037665.g001
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ment of task-related EEG signals, and EEG source localization

[21]. Many EEG-based BCI studies have employed ICA to

enhance task-related EEG signals [22,23], and optimize electrode

positions [24,25].

Given a linear mixing model, n-channel Scalp EEG signals

x~ x1 x2 . . . xn½ � are generated by m independent sources

s~ s1 s2 . . . sm½ �:

x~As ð1Þ

where A is the n|m mixing matrix in the model. After ICA,

source signals can be estimated by applying an unmixing matrix

W(n|m) to the observed EEG data x:

ŝs~Wx x~W{1ŝs ð2Þ

where each row of W is a spatial filter for estimating an

independent component and each column of W21 consists of

electrode weights (i.e., spatial projection) of an independent

component.

As indicated in Figure 1, the 0–2 s and 2.5–4.5 s segments in a

trial were selected to represent the resting state and the motor

imagery state, respectively. For each subject, ICA was performed

on data under the two states separately. For each state, data of all

trials were concatenated to a 480-second (240 trials62 seconds)

long data segment. ICA was performed using the EEGLAB

toolbox with the extended infomax algorithm [26]. 32-channel

data were first projected to a 15-dimensional subspace using

principal component analysis (PCA). This study used PCA to

reduce the dimensionality of the data due to the following two

reasons: (1) PCA can improve the robustness of ICA, which was

unable to achieve stable decompositions in different runs because

of the small size of data in this study (480 seconds). (2) PCA can

significantly reduce the computation time and the need of large

amounts of computer memory, which in turn improves the

practicality of the proposed method in online applications. In these

data sets, the number of typical EEG components ranged from 8

to 15 (mean: 11.262.9). To guarantee the extraction of all brain

components for all subjects, this study used 15 PCs as inputs to the

ICA. Then, for each subject, ICA resulted in two sets of 15|32
spatial filters (Wrest and Wmi) and 32|15 spatial projections (W{1

rest

and W{1
mi ) corresponding to the resting and motor imagery states.

2.2 Identifying motor components. In previous studies,

ICA has shown its robustness in finding motor components, which

have characteristic features in spatial and frequency domains

[14,15,26,27]. This study used two criteria to identify motor-

related components after ICA: (1) the spatial pattern, which

suggests the source location of the component, should be

consistent with the scalp projection of the sensorimotor cortex

on each hemisphere; (2) the power spectrum density (PSD) of the

component should match the typical spectral profile of mu/beta

rhythms. In practice, a motor component should fit both criteria.

Previous studies showed that the number of motor components

varied across subjects [14,17]. On one hand, there might be

multiple motor-like ICs on one hemisphere; on the other hand,

motor components might be missing on some people. In this study,

all subjects were able to control the BCI by regulating the

amplitude of the mu rhythm on both hemispheres. Therefore, two

typical motor ICs, which represented brain activities originating

from the left and right motor areas, were expected to be extracted

by ICA. In this study, ICA extracted two motor ICs for eight

subjects and three motor ICs (two left ICs and one right IC) for

one subject (Subject 5). This study focused on the state-to-state

translation approach for obtaining EEG spatial filters. Hence,

without loss of generality, this study only selected two ICs, one for

each hemisphere, for further data analysis. In addition, Subsection

4 in the discussion section will present the result of classification

involving all three motor ICs for Subject 5.

For the purpose of online implementation, this study developed

an automatic approach for identifying the motor components.

The motor ICs were first selected manually according to the

aforementioned criteria, providing an objective basis for evaluat-

ing the proposed method. This study defined three quantitative

parameters to characterize the motor IC on each hemisphere: (1)

distance between the equivalent dipole, which was obtained using

DIPFIT plugin in EEGLAB [26], and the group mean of dipoles

of the motor component; (2) correlation between IC’s spatial

pattern and the mean of spatial patterns of the motor ICs across all

subjects; (3) EEG power ratio of the mu rhythm (10–15 Hz) to its

neighbors in the frequency band of 15–20 Hz. For each

parameter, an index could be obtained for each IC by sorting

the values of the parameter across all ICs. The index reflects the

similarity between an IC and a motor component (a smaller index

value indicates a higher similarity to a motor component, i.e.,

smaller distance, higher correlation, and larger power ratio). The

identification of the motor components combined these parame-

ters together to calculate a motor index (f) as follows:

f ~w| Idist Icorr Iratio½ �T ð3Þ

where Idist, Icorr, and Iratio are the indices corresponding to the

three parameters. The weights for the three parameters (w) were

determined toward identifying the same ICs as those selected

manually. This study used [3 1 2] as the weighting vector to adjust

the contributions of the three parameters. The left and the right

motor IC was considered separately. The IC, which had the

smallest value of f, was selected as the motor IC. ICs with residual

variance (RV) for the dipole fit higher than 20% were rejected

before this process.

This study used a leave-one-out method to calculate the first two

parameters for each subject (i.e., the group means of the dipole

location and the spatial pattern of the motor component were

obtained without the subject’s own data). For all subjects, the ICs

identified by this quantitative approach were exactly the same as

those selected manually. Figure 2 shows spatial projections and

PSDs of all independent components based on the EEG data

collected in the motor imagery state for a sample subject. Table 1

lists all parameters used for identifying the motor components. ICs

11, 12, 13, and 15 were rejected first because of their high RVs in

dipole fitting (.20%). According to the calculated motor index,

IC5 and IC7, which had the smallest index value (i.e., f = 6 and 8

for the left and the right motor IC, respectively), were identified as

the two motor components. As shown in Figure 2, they both have

a unilateral spatial distribution over the sensorimotor cortex, as

well as a mu/beta-band dominant spectral profile.

2.3 ERD/ERS during motor imagery. As mentioned

before, if the mu/beta rhythms are detectable in both the resting

state and the motor imagery state, then, it is feasible to translate

ICA-based spatial filters from the resting state to the motor

imagery state. Two well-known phenomena about ERD/ERS of

the mu/beta rhythms have been reported in previous motor

imagery studies: a contralateral ERD and an ipsilateral ERS, both

with respect to the imagined hand movements. The contralateral

ERD indicates the excitation of the hand area corresponding to

the imagined hand, whereas the ipsilateral ERS shows the

inhibition of the hand area corresponding to the resting hand

[28]. Figure 3A shows the group-averaged event-related spectral

State-to-State Translation of EEG Spatial Filters
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perturbation (ERSP) of the motor components in the motor

imagery state using the resting state as a baseline. During motor

imagery, a significant mu/beta ERD occurred over the hemi-

sphere contralateral to the imagined hand. An ERS on the

ipsilateral hemisphere also existed at a late stage of the motor

imagery period. Figure 3B shows PSDs of the motor components

extracted by applying ICA-based spatial filters derived from the

motor imagery state. Both the resting and motor imagery states

Figure 2. Scalp topographies and PSDs of all ICs from one subject. (A) Scalp topographies; (B) PSDs. IC5 and IC7, which both show a
unilateral spatial distribution over the sensorimotor cortex and a mu/beta-band dominant spectral profile, are highlighted by a black rectangle as the
selected motor components (cf. details of the identification process in Table 1).
doi:10.1371/journal.pone.0037665.g002

Table 1. Parameters for automatic identification of motor ICs on a sample subject.

Left Motor IC Right Motor IC

IC Index RV (%) Power Ratio (Iratio) Distance (Idist) Correlation (Icorr) f(I) Distance (Idist) Correlation (Icorr) f(I)

1 2.2 2.3 (4) 88 (8) 0.54 (4) 36 (5) 92 (5) 0.07 (9) 32 (4)

2 0.7 1.3 (10) 100 (10) 0.58 (3) 53 (10) 115 (9) 0.81 (2) 49 (9)

3 1.3 1.7 (8) 90 (9) 0.76 (2) 45 (8) 111 (8) 0.44 (4) 44 (8)

4 1.0 1.8 (7) 82 (7) 0.18 (10) 45 (8) 84 (4) 0.14 (7) 33 (5)

5 3.1 6.3 (1) 21 (1) 0.95 (1) 6 (1) 67 (3) 0.53 (3) 14 (2)

6 2.8 2.1 (5) 48 (2) 0.42 (6) 22 (3) 39 (2) 0.30 (5) 21 (3)

7 2.5 4.8 (2) 71 (4) 0.43 (5) 21 (2) 11 (1) 0.94 (1) 8 (1)

8 14.2 2.8 (3) 78 (5) 0.27 (7) 28 (4) 109 (7) 0.08 (8) 35 (6)

9 6.4 1.6 (9) 131 (11) 0.23 (8) 59 (11) 123 (11) 0.27 (6) 57 (10)

10 7.8 0.5 (11) 60 (3) 0.22 (9) 40 (6) 117 (10) 0.03 (11) 63 (11)

11 54.6 - - - - - - -

12 32.3 - - - - - - -

13 53.4 - - - - - - -

14 10.2 1.9 (6) 80 (6) 0.05 (11) 41 (7) 103 (6) 0.07 (10) 40 (7)

15 78.7 - - - - - - -

doi:10.1371/journal.pone.0037665.t001
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show a typical spectral profile peaking at the mu/beta frequency

band, although the motor imagery state has an overall power

decrease. When considering motor imagery of the left hand and

the right hand separately in each component, the ERD induced by

the contralateral hand movement is stronger than the ERS

induced by the ipsilateral hand. The mu/beta rhythms appear

dominant in the PSDs under both the resting state and the motor

imagery state (Figure 3B); ICA thus could extract independent

motor-related activities from the scalp EEG data.

3 Translating spatial filters from resting to BCI practice
As mentioned above, to realize a state-to-state translation of

EEG spatial filters in a motor imagery BCI, EEG sources of motor

activities need to be spatially stable in both states and can be

reflected by detectable EEG oscillations. Because the two motor

components in the resting state and the motor imagery state have

strong similarities in EEG PSDs (Figure 3B) and spatial patterns, it

might be feasible to use the spatial filters obtained in the resting

state as estimates of the spatial filters in the motor imagery state.

The proposed method aimed to translate EEG spatial filters

from the resting state to the motor imagery state. The basic

procedure can be described as follows:

ŴW{1
motor mi~W{1

motor rest ŴWmotor mi~Wmotor rest ð4Þ

where Wmotor rest and Wmotor mi are motor-related spatial filters

for the resting state and the motor imagery state respectively.

ŴW{1
motor mi and W{1

motor rest are the corresponding spatial patterns to

the two conditions. Figure 4 illustrates the principle of the

proposed method. When considering separately, ICA can obtain

spatial filters from data under both conditions. In Figure 4, the

scalp distributions of spatial patterns and spatial filters of selected

motor ICs for a sample subject show very high similarities.

Because data in the resting state and the motor imagery state are

totally non-overlapped, the spatial filters derived from the resting

data could be used as estimates of the spatial filters for the motor

imagery data. In practice, the resting EEG data, which do not

require the subject’s attention or action, can be easily collected

before a BCI session, and therefore, can facilitate the user training

procedure required for optimizing EEG spatial filters.

Figure 3. Group-averaged ERSP and PSD for two motor components. (A) Group-averaged time-frequency distributions of ERSP for the left
motor IC and the right motor IC corresponding to left and right hand movement imaginations; (B) Group-averaged PSD of left and right motor ICs
under different conditions (RE: resting state, MI: motor imagery state, MI-L: left-hand motor imagery, MI-R: right-hand motor imagery).
doi:10.1371/journal.pone.0037665.g003

State-to-State Translation of EEG Spatial Filters
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4 Feature extraction and classification
This study compares the classification performance of the

motor-imagery BCI based on three different types of EEG features

listed below.

4.1 Monopolar scalp EEG data. Motor imagery of the left

and the right hand movement results in different spatial

distributions of mu EEG power over the sensorimotor brain

areas. To make a direct comparison with the ICA-based spatial

filtering method, electrodes C3 and C4, which represented the left

and the right sensorimotor areas on both hemispheres, were

selected for feature extraction. This study used band-pass EEG

power as features for classification. To measure EEG power, Fast

Fourier Transform (FFT) with a rectangular window function

converted the data segments during the motor imagery state (2.5–

4.5 s in each trial) into frequency-domain responses for each

channel. The resultant features for classification were accumulated

EEG power between 8 and 30 Hz at C3 and C4:

vMON~
X30 Hz

8 Hz
FFT xC3, fð Þj j2

X30 Hz

8 Hz
FFT xC4, fð Þj j2

h iT

ð5Þ

4.2 ICA-based spatial filtering. After ICA, the selected

motor-related unmixing vectors (i.e., Wmotor rest in Equation (4))

were used as spatial filters to extract motor-related EEG activities.

In this regime, ICA aimed to enhance SNR of motor-related

signals. As mentioned before, this study only selected two motor

components to represent brain activities from the left and right

sensorimotor areas. After automatic identification of the motor

ICs, FFT estimated the PSDs of the time courses of the left and

right motor components. ICA-based EEG features were defined as

follows:

vICA~
X30 Hz

8 Hz
FFT SFICA

L
:x,f

� ��� ��2h

X30 Hz

8 Hz
FFT SFICA

R
:x,f

� ��� ��2iT
ð6Þ

where SFICA
L and SFICA

R indicated the two spatial filters

corresponding to left and right motor components.

This study aimed to evaluate the state-to-state translation of

ICA-based spatial filters. ICA was applied separately to the data in

the resting state and the motor imagery state; therefore, derived

two sets of ICA-based spatial filters (i.e., Wmotor rest and

Wmotor mi). This study further evaluated the performance of the

resting-to-work translation method through comparing the classi-

fication accuracies of the two ICA-based features corresponding to

spatial filters derived from the resting and motor imagery EEG

data.

4.3 Common spatial pattern (CSP) based spatial

filtering. Previous studies have demonstrated the effectiveness

of the CSP algorithm in classifying EEG during motor imagery

[29]. To better evaluate the performance of ICA-based filtering,

the CSP-based spatial filtering was also conducted in this study.

The performance of the CSP method highly depends on subject-

specific optimization of time-frequency parameters [30]. Here, for

simplicity, the CSP method used the labeled motor imagery data

after applying an 8–30 Hz band-pass filter for each subject,

resulting in two spatial filters for extracting task-related activities

corresponding to the imagination of left and right hand

movements. Feature vectors after CSP-based spatial filtering were

defined as follows:

vCSP~
X30 Hz

8 Hz
FFT SFCSP

L
:x,f

� ��� ��2h

X30 Hz

8 Hz
FFT SFCSP

R
:x,f

� ��� ��2iT
ð7Þ

where SFCSP
L and SFCSP

R were projection vectors corresponding to

the highest and the lowest eigenvalues in the CSP processing [29].

The classification performance often improves as the number of

spatial filters increases (e.g., 3 for each class). However, to make a

fair comparison between the ICA and the CSP methods, only two

CSP filters were used for feature extraction in the present study

because only two motor ICs were selected for feature extraction in

the ICA-based method.

4.4 Classification. After feature extraction, this study used

the Fisher discriminant analysis (FDA) classifier [31] to perform

classification. The two-dimensional feature vectors (as shown in

Equations (5), (6), and (7)), which represented EEG power over

Figure 4. Diagram of translating spatial filters from the resting state to the motor imagery state. Similar spatial filters and spatial
patterns were obtained by ICA on data corresponding to the two conditions separately. Spatial filters obtained from the resting data could be used as
estimates of those from the motor imagery data.
doi:10.1371/journal.pone.0037665.g004
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motor areas of both hemispheres, were fed into the FDA classifier.

A 10|10-fold cross-validation was used to estimate the classifi-

cation accuracy for each subject.

For the ICA and the CSP methods, the training of spatial filters

used different strategies. The CSP-based spatial filter design used

the same cross-validation paradigm (i.e., only training data were

used). In the ICA processing, for simplicity, ICA was only run once

with the resting data and the motor imagery data separately. After

that, the cross-validation procedure used the same ICA-based

spatial filters. It is worth mentioning that the resting and the motor

imagery data were totally non-overlapped, but the motor imagery

data used in ICA training also included data used for testing.

Because ICA is an unsupervised learning method, this study

assumes that the overlap between ICA training and testing might

not overestimate the classification performance of the ICA method

using the motor imagery data too much.

5 Session-to-session translation
It is important to compare the proposed state-to-state transla-

tion method to other zero-training approaches, such as a session-

to-session translation method [32]. The session-to-session transla-

tion method aims to use information from a pilot session to

improve data processing of the subsequent session(s) based on the

assumption that there are common EEG patterns across sessions

within subjects. Compared to the state-to-state translation, the

session-to-session translation may have more challenges due to the

long-term non-stationarity of EEG, as well as other parameter

changes in data recording (e.g., shift of electrode positions).

Moreover, the session-to-session translation is not applicable in the

situation where annotated pilot data are not available (e.g., with a

naı̈ve subject, or a new system setup). Therefore, a state-to-state

translation might be a better solution to optimize zero-training

spatial filters for motor-related EEG activities.

To further investigate the feasibility of session-to-session

translation, data from the three subjects (S5, S6, and S8), who

participated in two separate BCI sessions on different days in this

study, were used to evaluate performance of the session-to-session

translation method. In both sessions, 32-channel EEG data using

the same electrode layouts were recorded with good signal quality.

Data process included three procedures: (1) ICA was trained with

motor imagery data in the two sessions separately to obtain spatial

filters. (2) The ICA-based spatial filters from the first session were

translated to the subsequent session from the same subject for

processing the data. (3) After applying the session-to-session spatial

filters, the classification accuracy of the second session (the same

data set used in the state-to-state translation study) was calculated

for comparison with other approaches including the monopolar

method, the ICA-based method using the same data, and the

state-to-state translation method.

Results

1 Similarity between the spatial filters derived from
resting and motor- imagery experiments

To quantitatively investigate to what extent one can translate

the motor-related spatial filters derived from resting to motor-

imagery BCI practice, this study first compares spatial patterns

and spatial filters of motor components in resting and motor-

imagery experiments. Figure 5 shows spatial patterns and spatial

filters of the motor components in the resting state and the motor

imagery state for all subjects. All the components show a typical

dipolar-like topography, which is widespread over the sensorimo-

tor cortex on left or right hemisphere of the brain, and shows the

highest amplitudes at C3 and C4 electrodes. These findings are

consistent with previous motor-related EEG studies [3]. Generally,

the motor-related spatial filters show both positive and negative

weights around the sensorimotor area, functioning through

eliminating the motor irrelevant background activities while

keeping the motor related activities. To quantitatively evaluate

the topographical similarity, this study calculated the correlations

of spatial patterns and spatial filters of the motor components

between the two states for each subject. For simplicity, the

correlations were obtained by directly computing correlation

coefficients of the 1|32 vectors (shown in Table 2). As can be

seen, spatial patterns (i.e. projections of the components to the

scalp) between the resting and the motor imagery states were very

comparable (mean correlation coefficients of 0.9560.05 and

0.9460.06 for left and right ICs) for all subjects. The spatial

filter, the unmixing vector, was more variable. For example,

spatial patterns are highly correlated for Subject 5 with correlation

coefficients of 0.92 and 0.96 for the left and right motor IC

respectively, however the correlation of spatial filters is very weak

(0.09 and 0.34 for left and right ICs). Although the spatial filters

might be different, their effectiveness for extracting the motor-

related EEG components should be as effective, judging from the

similarity of the corresponding spatial patterns. Therefore, in

practice, the selection of motor-related components was based on

the spatial patterns instead of spatial filters.

2 EEG features induced by motor imagery
Figure 6 shows the PSDs of EEG at C3 and C4 electrodes and

the independent motor components after ICA-based filtering using

the resting data and the motor imagery data separately. Left- and

right-hand motor imagery induced a significant ERD/ERS of the

mu/beta rhythms at both channels and of component activations.

At C3 and C4 electrodes, spectra of EEG data could be mainly

attributed to the background alpha rhythm and the motor related

mu/beta rhythms. Because the background alpha activity was not

modulated by motor imagery, it might obscure the spectral

changes of the mu rhythm. Since ICA can separate neural

activities arising from distinct brain processes, it can separate

motor-related mu rhythm from the background alpha activity,

which in turn could enhance the SNR of motor-imagery induced

brain rhythm. As shown in Figure 6, compared to the monopolar

scalp data, ICA-based spatial filtering methods significantly

enhanced the mean power difference in alpha/beta (8–30 Hz)

between the left- and right-hand conditions (Monopolar data: C3/

0.63 db and C4/1.24 db, ICA trained with motor imagery data:

left motor IC/1.32 db and right motor IC/1.85 db, ICA trained

with resting EEG: left motor IC/1.16 db and right motor IC/

1.63 db).

3 Classification of left- and right-hand imagery
movements

The FDA classifier used three different EEG features, PSD of

EEG at C3/C4, PSD of independent motor components, and

PSD of CSP-filtered EEG, as inputs to classify single-trial motor-

imagery movements. Table 3 summarizes the results of 10610-

fold cross-validation. A paired t-test across subjects was used to test

the statistical significance of the differences between different

feature extraction methods. As expected, compared to the

monopolar method, all spatial-filtering methods achieved signifi-

cantly higher classification accuracies (87.0%, 85.9%, and 86.4%

vs. 80.4%, p,0.01). The results of ICA trained with the motor

imagery data were slightly better than those trained with the

resting data (87.0% vs. 85.9%), but the difference was not

statistically significant (p.0.1). The results of using CSP-filtered

(based on motor-imagery data) were comparable with those using
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ICA trained with motor imagery data (86.4% vs. 87.0%, p.0.1)

and resting data (86.4% vs. 85.9%, p.0.1). These findings

demonstrated the effectiveness of translating ICA-based resting

spatial filters to classifying motor imagery EEG data.

4 Across-session classification of left- and right-hand
imagery movements

The session-to-session translation of ICA-based spatial filters

was applied to three subjects who participated in two separate BCI

experiments on different days. Table 4 shows the classification

results for different methods, including the state-to-state and

session-to-session methods. Results of ICA-filtered EEG features

trained on motor imagery data are the gold standard in the Table.

The degradation in classification accuracy was expected for the

session-to-session method because of the electrode misalignment

and/or long-term non-stationary nature of the EEG. Two major

results can be found from the Table. First, the session-to-session

translation achieved higher classification accuracy than the

monopolar method (91.0% vs. 87.3%). Although the two sessions

were recorded on different days with a long interval, spatial

patterns of the motor components seemed to be relatively stable,

Figure 5. Spatial patterns and spatial filters of the motor components for all nine subjects. (A) spatial patterns of the resting state; (B)
spatial patterns of the motor imagery state; (C) spatial filters of the resting state; (D) spatial filters of the motor imagery state. Black dots in each scalp
map indicate positions of C3 and C4 electrodes. In each subfigure, the left and right motor ICs for all subjects were grouped on the left and the right
panel respectively.
doi:10.1371/journal.pone.0037665.g005

Table 2. Correlation coefficients of spatial patterns and
spatial filters between the resting state and the motor
imagery state.

Left IC Right IC

Subjects
Spatial
Pattern

Spatial
Filter

Spatial
Pattern

Spatial
Filter

S1 0.99 0.89 0.97 0.71

S2 0.84 0.06 0.87 0.76

S3 0.99 0.80 0.99 0.96

S4 0.93 0.81 0.92 0.54

S5 0.92 0.09 0.96 0.34

S6 0.99 0.90 0.99 0.97

S7 0.95 0.70 0.99 0.93

S8 0.94 0.61 0.91 0.91

S9 0.97 0.93 0.82 0.86

Mean 0.9560.05 - 0.9460.06 -

doi:10.1371/journal.pone.0037665.t002

Figure 6. Averaged power spectrum density of EEG signals in
motor imagery practice across all subjects. (A) monopolar scalp
data at C3 and C4 electrodes; (B) motor-related independent
components extracted by ICA using the motor imagery data; (C)
motor-related independent components extracted by ICA using the
resting data.
doi:10.1371/journal.pone.0037665.g006
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therefore leading to an effective session-to-session translation for

improving SNR of the motor activities. Second, the rest-to-work

translation outperformed the session-to-session translation on all

three subjects (on average, 93.0% vs. 91.0%). For the motor

components, the rest-to-work variability in a short-term period

should be less of a problem than the long-term session-to-session

variability, suggesting that the rest-to-work translation is a viable

solution for zero-training of ICA-based spatial filters in a motor

imagery-based BCI.

Discussion

1 ERD/ERS and independent motor components
To make a rest-to-work filter translation effective, scalp

distribution of ERD/ERS during motor imagery needs to be

consistent with spatial patterns of the independent motor

components. Suppose that motor imagery of the hand movement

induces similar ERD on the contralateral hemisphere, as well as

ERS on the ipsilateral hemisphere, the scalp distribution of the

power difference between left and right hand movements should

be similar to the difference of spatial patterns between the left and

right motor components. To verify this hypothesis, we calculated

the spatial distribution of power difference (8–30 Hz) between the

left and the right hand motor imagery across all subjects. Figure 7A

shows the scalp distribution of the power changes. In addition, the

difference between spatial patterns of the left and right motor

components was also computed for comparison (Figure 7B). Both

spatial distributions are widespread over the sensorimotor areas

with C3 and C4 electrodes located near the center of two lateral

sub-regions. Correlation between these two distributions was very

high (r = 0.90). The difference of ICA spatial patterns has a more

widespread distribution over the scalp, indicating that the motor

components originate from multiple subareas of the sensorimotor

cortex, whereas hand motor imagery might only modulate

subcomponents of the motor rhythms corresponding to the hand

areas. Due to the fact that the hand areas are the largest parts in

the sensorimotor areas, spatial filters optimal for extracting

independent motor components can be used as estimates of

spatial filters during motor imagery of hand movements.

2 Comparison of ICA and CSP
In the proposed state-to-state translation method, this study

used ICA to find spatial filters mainly because of its advantage in

unsupervised learning. In previous studies, the CSP method has

been more commonly used for classifying motor imagery EEG due

to its simplicity in computation and high performance in

classification [33]. The classification results of ICA and CSP in

this study showed very close performance when using the filtered

EEG power between 8 and 30 Hz (87.0% and 86.4%). Robustness

of ICA depends on the size of data and ICA has much larger

computational cost, therefore, CSP is more feasible for online

application when labeled training data are available. However,

because no labeled data were available in the resting EEG data,

CSP is not practical for the proposed rest-to-work translation

method.

In the session-to-session approach, both ICA and CSP methods

are applicable. Several recent studies have employed the CSP

method to derive zero-training spatial filters [9]. This study

demonstrated that ICA could also be used for translating spatial

filters from session to session. On three subjects, the session-to-

session translation of spatial filters achieved a significant improve-

ment in classification accuracy, compared to the method using

monopolar EEG data (91.0% vs. 87.3%). For all three subjects, the

state-to-state method outperformed the session-to-session method

(93.0% vs. 91.0%). It is worth pointing out that the performance of

the session-to-session method heavily depended on the alignment

of electrode locations from one session to another. The placement

of the electrodes was carefully aligned across sessions in this study.

The performance of session-to-session filter translations could have

been much worse if the placement was not perfectly aligned. On

the other hand, the rest-to-work filter translation is much less

sensitive to the misalignment of the electrodes.

3 Online implementation
In this study, the proposed rest-to-work translation method was

demonstrated by offline analysis using data recorded during online

Table 3. Classification accuracy (%) for all subjects using
different feature extraction methods.

Method

Subjects Monopolar ICA-mi ICA-rest CSP

S1 86 84 84 88

S2 66 70 70 72

S3 84 92 92 90

S4 86 94 88 93

S5 84 90 88 88

S6 93 96 96 92

S7 87 92 93 92

S8 85 97 95 95

S9 53 67 68 69

Mean 80.4612 87.069 85.9611 86.469

doi:10.1371/journal.pone.0037665.t003

Table 4. Classification accuracy (%) of the session-to-session
transfer method on three subjects.

Method

Subjects Monopolar ICA-mi ICA-rest Session-to-session

S5 84 90 88 85

S6 93 96 96 95

S8 85 97 95 93

Mean 87.365 94.364 93.064 91.065

doi:10.1371/journal.pone.0037665.t004

Figure 7. Spatial distributions of EEG power difference and IC
spatial pattern difference. (A) power difference between left- and
right-hand motor imagery conditions; (B) difference of spatial patterns
between left and right independent motor components obtained from
the motor imagery data.
doi:10.1371/journal.pone.0037665.g007
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BCI sessions. Toward an online implementation of the proposed

method, three specific issues need to be addressed:

(1) Data recording: In this study, the resting data comprised

interleaved data segments corresponding to the resting periods

across multiple trials. For the purpose of an online rest-to-

work translation, the resting data need to be recorded before a

BCI session. For example, few minutes of data recorded

during a resting state can be used for running ICA to obtain

spatial filters. Because no mental tasks need to be involved

during resting data recording, this procedure will not increase

much of complexity of the system use. The spatial filters

derived from the resting data can be used in the subsequent

online BCI sessions for improving the system performance.

(2) Computational cost: To make the proposed method practical,

the ICA-based processing needs to be completed with a

reasonable amount of time before a BCI session. The interval

between recording resting data and the subsequent online

BCI session must be long enough for ICA to converge to

spatial filters. In this study, the ICA processing was performed

using Matlab (Mathworks Inc.) on a workstation with Intel

Xeon w3520@2.67GHz quad processors. This procedure

took about 60 seconds, making the total time for obtaining the

ICA-based filters to be few minutes. Using a high-perfor-

mance computer or other technologies such as parallel or

cluster computing could further reduce the computation time.

(3) Zero-training classifier: The implementation of the FDA

classifier in an online motor-imagery BCI requires some

labeled training samples to optimize the parameters of the

classifier. Figure 8A plots the EEG power of left and right

motor components under left- and right-hand imagery

movements, which shows a significant asymmetry over two

hemispheres (Left IC and Right IC). Under this circumstance,

it is difficult to optimize a zero-training classifier when labeled

data are not available. However, the hemispheric asymmetry

might be relatively stable in the resting state compared to the

motor imagery state. Therefore, using EEG power of the

resting data (Figure 8B) as the baseline to calculate a weighted

power of each component (i.e., divided by the mean power of

the resting data) could result in a refined classifier. As shown

in Figure 8C, after the weighting process, the classification

could be performed by simply comparing the EEG power

between the left and the right motor IC. The zero-training

classifier can be described as follows:

u(i)~sign½ 1
wl

vl ið Þ{ 1

wr

vr ið Þ� ð8Þ

Figure 8. EEG power of motor ICs during resting and motor imagery states. (A) EEG power of motor ICs during motor imagery; (B) EEG
power of motor ICs during resting; (C) Weighted EEG power of motor ICs during motor imagery (original power divided by the mean power of the
resting data). (D) Single-trial EEG power of motor ICs during motor imagery on one subject. (E) Single-trial EEG baseline power of motor ICs during
resting. (F) Weighted single-trial EEG power of motor ICs during motor imagery. In (A), (B), and (C), each solid line connects left hand and right hand
data for a subject. The dash line indicates the line y~x.
doi:10.1371/journal.pone.0037665.g008
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where vl and vr are EEG power of the left and right motor ICs

in a single trial (i) of motor imagery, wl and wr are

precalculated mean power of the two ICs during the resting

state. The classifier (u) returns +1 or 21 corresponding to

motor imagery of the left or the right hand movement

respectively. In practice, the classifier could be combined with

the state-to-state spatial filters to implement a zero-training

BCI system. Figure 8D, E, F shows an example of this process

on a subject. For this subject, EEG power of the right motor

IC is significantly higher than that of the left motor IC;

therefore, the weighting process significantly improved

classification performance of the zero-training classifier from

69.4% to 96.9%. Across all subjects, the zero-training

classifier achieved a significant performance improvement

from 69.2614% to 83.1612%, which is very close to the

classification accuracy when using FDA (85.9611%, cf.

Table 3).

4 Classification with multiple motor ICs
ICA extracted three motor ICs (two on the left hemisphere) for

Subject 5. Figure 9A shows the scalp maps of the three motor ICs

for the resting condition. After applying the corresponding spatial

filters to the motor imagery data, the PSDs for three ICs under

Left and Right motor imagery conditions could be obtained

(Figure 9B). The r square values (i.e., the correlation between EEG

features and task labels [4]) for the band-pass power (8–30 Hz) of

the three ICs are: 0.25, 0.42, and 0.20, indicating a significant

difference between the left and right imagery conditions for all the

motor ICs.

In general, the involvement of all motor ICs might improve

classification performance through using feature combination

approaches. However, classification accuracy using with three

motor ICs was comparable with that using two motor ICs (86.6%

vs. 87.8%). The reason that the involvement of all ICs did not

achieve performance improvement lies in the following aspects: (1)

the features from the two left ICs are highly correlated with each

other (r = 0.70); (2) the generalization ability of the classifier

decreases when the feature dimension in classification increases.

Because this study had only one subject with more than two motor

ICs, the approach for combining multiple motor ICs to improve

classification performance requires further investigation.

5 Further improvement
According to the finding that spatial patterns of the motor ICs

under different mental conditions within a short-term period are

relatively stable, this study simply adapted the two ICA-based

spatial filters derived from the resting state to the motor imagery

state for enhancing EEG changes induced by the motor imagery.

Although effectiveness of the resting-to-work translation of spatial

filters has been demonstrated in this study, there are several ways

to improve the method. First, this study used ICA to decompose

the motor components from 32-channel EEG data. The SNR of

the mu/beta rhythms could be further improved by using high-

density EEG recordings with more electrodes. Second, other EEG

spatial filters such as beamformers [34] could be trained by using

the topographies of the motor ICs obtained from the resting data

as spatial constrains. System performance could be further

improved through applying feature combination techniques and

ensemble classification methods to integrate information from

different types of spatial filters.

6 Other applications
This study implemented a rest-to-work translation of spatial

filters for a motor imagery-based BCI. The basic principle of the

proposed method can be further extended to a state-to-state

translation in other applications. First, it improves data processing

in data poor environments. Because the size of task-related data is

always limited in BCI studies, a state-to-state translation can make

it possible to combine task-irrelevant (e.g., resting) data for

applying advanced data processing techniques such as the ICA-

based spatial filtering technique. Second, a more general

translation between different sensory systems (e.g., visual and

sensorimotor systems) might be possible. For example, in a hybrid

Figure 9. Spatial patterns and averaged PSDs of the three motor ICs for Subject 5. (A) Spatial patterns; (B) Averaged PSDs in motor
imagery practice.
doi:10.1371/journal.pone.0037665.g009
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BCI system [35] where motor imagery and visual attention are

employed at the same time, translating spatial filters of both the

motor imagery data and the visual attention data from one state to

another might be helpful for facilitating user training. In addition,

the state-to-state translation might be helpful for contrasting

information between different tasks, which involve common

resources in the same sensory system. For example, data of motor

imagery of hand movements can be used to construct a new

classifier to discriminate not only the two states of imagining hand

movements, but also the idling state or the motor imagery state of

foot movement [36].

7 Conclusion
This study proposed a rest-to-work translation of ICA-based

spatial filters for classifying single-trial EEG during motor imagery

of hand movements. Spatial filters derived from the resting data

and the motor imagery data showed very similar spatial patterns

and spectral profiles, verifying the hypothesis that spatial brain

patterns of the sensorimotor system are relatively stable under the

two different states. The spatial filters derived from the resting

EEG data were proved effective for improving the SNR of the

motor imagery induced EEG changes. Furthermore, spatial filters

derived from ICA based on resting and BCI practice states

provided comparable classification accuracies in discriminating

left- and right-hand motor imagery (87.0% and 85.9%). Finally, a

comparison study between the state-to-state translation and the

session-to-session translation demonstrated the superiority of the

proposed rest-to-work translation method (93.0% vs. 91.0%). In

summary, this study proposed and demonstrated a new state-to-

state translation method for optimizing EEG spatial filters using

readily available and non-labeled resting data, which could

considerably increase the practicality of online BCI systems.
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