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Spacetime thermodynamics and subsystem observables in a kinetically constrained
model of glassy systems

Robert L. Jack,"? Juan P. Garrahan,® and David Chandler?

! Rudolf Peierls Centre for Theoretical Physics, University of Oxzford, 1 Keble Road, Ozford, OX1 8NP, UK
2 Department of Chemistry, University of California, Berkeley, CA 94720-1460
ISchool of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK

In a recent article [M. Merolle et al., Proc. Natl. Acad. Sci. USA 102, 10837 (2005)] it was argued
that dynamic heterogeneity in d-dimensional glass formers is a manifestation of an order-disorder
phenomenon in the d + 1 dimensions of spacetime. By considering a dynamical analogue of the free
energy, evidence was found for phase coexistence between active and inactive regions of spacetime,
and it was suggested that this phenomenon underlies the glass transition. Here we develop these
ideas further by investigating in detail the one-dimensional Fredrickson-Andersen (FA) model in
which the active and inactive phases originate in the reducibility of the dynamics. We illustrate the
phase coexistence by considering the distributions of mesoscopic spacetime observables. We show
how the analogy with phase coexistence can be strengthened by breaking microscopic reversibility
in the FA model, leading to a non-equilibrium theory in the directed percolation universality class.

I. INTRODUCTION

The hallmarks of the glass transition [l] are a sudden
increase of relaxation times, and dynamic heterogeneity
[2]. A recent paper 3] described the idea that these phe-
nomena are manifestations of phase coexistence in space-
time. The two competing phases are an active state,
where dynamics is plentiful, and an inactive one, where
dynamics is scarce. The purpose of the current paper
is to develop these ideas by building on the results of
Ref. [3].

In the active phase of the dynamics, the existence of
the nearby inactive phase can be inferred by measuring
the distribution of any observable that quantifies dynam-
ics within a finite spacetime window [3]. These distribu-
tions display non-Gaussian tails, because of the coexist-
ing inactive phase. This is analogous to the situation
in standard phase transitions: the distribution of cavity
sizes in a fluid near liquid vapour coexistence has non-
Gaussian tails ], as does the distribution of box mag-
netization for the Ising model in the vicinity of its phase
transition. [A].

The concept of spacetime thermodynamics [3)] is illus-
trated in Fig. [l A simple picture of glassy dynamics at
low temperatures is that of diffusing excitations, which
coalesce and branch. This dynamics is reducible [€].
That is, there are two steady states, an active one with
a finite density of excitations (the “equilibrium” state),
and an inactive one with strictly zero density. Working in
the equilibrium state, the dominant fluctuations on large
length scales are spacetime regions in which there are no
excitations, as illustrated in Fig. [ We refer to these re-
gions as “bubbles” of the inactive phase. As mentioned
above, the statistics of these rare fluctuations are similar
to those at liquid-vapour phase coexistence.

Motivated by this correspondence, we characterise the
bubbles by the probability density function Poupble(l, 7)
for their spatial and temporal extents (denoted ! and 7,
respectively). For bubbles which are large compared with

the bulk correlation length of the active state we can
write:

Poubble(l, 7) o exp {— [o1l + oo1 + plr + A(l — v7)?] },
(1)
where o1 2 are “surface tensions” in the spatial and tem-
poral directions, u is the “free energy” difference between
active and inactive phases, and A controls the aspect ra-
tio of the bubbles, in conjunction with the velocity pa-
rameter v. The bubble free energy can be investigated
by considering the probability distribution functions for
observables that are averaged over finite regions of space-
time, such as the boxes in Fig. [l [3]. The tails of these
distributions are dominated by large rare bubbles which
extend over many correlation lengths of the active state.
We associate the distribution of bubble sizes with a
(spacetime) free energy that we sketch as a function of
excitation density in Fig. Bl where we show schematically
the effect of the surface tension and chemical potential-
like terms. The free energy has two minima, associated
with the active and inactive states. If the free energy dif-
ference p = 0, the system lies on a phase coexistence line.
The key point is that this situation coincides with the re-
ducibility of the dynamics; specifically, a boundary con-
dition suffices to make the system choose one phase. For
example, consider a system with periodic spatial bound-
ary conditions, as sketched in Fig. Bl If we choose our
initial condition to be the empty lattice, then this inac-
tive state persists forever; all other initial conditions lead
to the active state.

To expand on these ideas, we use the Fredrickson-
Andersen (FA) facilitated spin model [1] as an illustrative
system. We analyze the distributions of spacetime ob-
servables, such as the total amount of dynamical activity
inside a given spatial region, integrated over a finite ob-
servation time. We use the forms of these distributions to
demonstrate the coexistence between active and inactive
phases.

It is instructive to compare the FA model with two
other systems. In Ref. [§], a model with appearing and
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FIG. 1: Illustration of a trajectory in a facilitated model with
spacetime “bubbles” of the inactive state. The boxes illus-
trate finite observation spacetime windows: the top one cor-
responds to a typical region; the bottom one is a rare collective
fluctuation of size much larger than those typical of the active
state. On the right are actual trajectories from the FA model
at T = 1 for observation windows of L = 180 and tops = 320
(smaller observation windows of L = 60 are also outlined).

annihilating excitations (the so-called AA model) was
shown to have the same two point correlations as the FA
model (up to a multiplicative factor). However, the AA
model lacks a stable inactive phase, and there is no space-
time phase coexistence. We demonstrate this by consid-
ering the statistics of bubbles in that model. We conclude
that phase coexistence is a collective effect that does not
appear in two point functions. Conversely, if microscopic
reversibility is broken in the FA model then the system
moves into the directed percolation universality class ﬂﬂ]
and the two point functions and critical scaling change
qualitatively. However, the non-equilibrium model still
exhibits spacetime phase coexistence (between active and
absorbing states). In fact, the phase coexistence is more
easily observed in the resulting non-equilibrium steady
state than in the FA model at equilibrium. For this rea-
son, we argue that phase coexistence phenomena might
be more easily observed in driven glassy systems than in
equilibrium states.

The paper is organized as follows. In section [l we de-
fine the model, discuss its trajectories, and introduce the
observables of interest. We also show that reducibility
of the dynamics is essential to see the phase coexistence
effect. In section [l we formalise our discussion of space-
time thermodynamics by considering the distribution of
the dynamical action that is analogous to the thermo-
dynamic free energy. We consider the effect of breaking
microscopic reversibility in section [Vl

0 * S

FIG. 2: (Left) Sketch of the free energy of trajectories as
a function of excitation density m, resembling the situation
near a first order phase transition. The minima at m = p and
m = 0 correspond to the active and inactive states, respec-
tively. The parameters p, o and p are the bulk free energy
difference, bubble surface tension and order parameter, re-
spectively. The inset is a schematic “phase diagram” with a
first order line separating the active and inactive phases and
ending in a critical point. The chemical potential difference p
measures the distance from the first order line, while the sur-
face tension ¢ that from the critical point. (Right) Imposing
periodic boundary conditions in space leads to a cylindrical
spacetime region where the spatial coordinate runs around the
cylinder. We illustrate how the reducibility of the dynamics
leads to a qualitative effect of the boundary conditions on the
bulk behaviour: an initial state with no excitations remains
inactive forever, while an initial state with any finite number
of excitations remains active forever. The choice of boundary
condition affects the bulk properties of the system, regardless
of its extent: this is a signature of phase coexistence.

II. MODEL, TRAJECTORIES AND
OBSERVABLES

Kinetically constrained models (see Ref. [d] for a
comprehensive review) are defined in such a way that
their non-trivial behaviour is purely dynamical in ori-
gin. Thus, they are the natural framework for inves-
tigating dynamical heterogeneity and its consequences
ﬂﬁ, 1 d [13, 4, E] The simplest kinetically con-
strained model of all is the single-spin facilitated FA
model [6, 7] in dimension d = 1. Tt is defined for a chain of
N binary variables n; € {0, 1}, with trivial Hamiltonian
H = —J3 . n;. The model evolves under the following
Monte-Carlo (MC) dynamics. At each MC iteration a
randomly chosen site ¢ changes state according to:

probability fie™?, (2)
probability f;, (3)

ni=0 — n; =1

nizl — ni:0

where we have set J = 1 and 8 = T~'. The non-trivial
part of the dynamics is due to the facilitation function

fi = N1+ Ni—1 — Nyp1Mi—1, (4)

i.e., a spin flip on site ¢ can take place only if at least
one if its nearest neighbours is in the excited state. Since



fi does not depend on n; then the time evolution of the
model obeys detailed balance with respect to H at tem-
perature 3~ !. The mean density of up spins in the equi-
librium state is

c=(1+e))h (5)

The unit of time is an MC sweep (N attempted spin
flips).

In the following, we consider an FA model in which
N is to be taken to infinity in the thermodynamic limit.
We will take a subsystem of this model, containing L + 2
spins, {ng,...,nr+1}. The length L is to remain finite:
it is a mesoscopic quantity. A trajectory for the subsys-
tem specifies the state of the (L + 2) spins at Ntops MC
steps. The trajectory is defined within a spacetime ob-
servation box of size Lt,,s. We consider observables such
as the density of excitations within the box, for a given
trajectory

Ntobs

Mtraj = (LNtobs)71 Z Z NG, (6)

=1 7=

—

where n;. is the state of the ith spin in the 7th state of the
trajectory. Note that the boundaries ny and nz4; do not
appear in the sum. As well as a measure of dynamical
activity, mia; is also a box magnetisation, by analogy
with a spin system.

A. Distribution of the magnetisation

We consider the distribution of the trajectory activity,
or box magnetisation maj:

P(m) = Z Ptraj5(m - mtraj)- (7)

traj

The sum is over all possible trajectories of the system,
with their associated probabilities P;;aj. In the limit of
L — oo or tops — 00, the central limit theorem states
that P(m) will be sharply peaked around m = ¢, with
a variance that scales as (Ltops)~'. The observation of
Ref. [3] was that, while this is the case in the limit of
large (Ltopbs), the distribution of m remains non-trivial
even for L > ¢ and tops > 7, where E & ¢ tand 7~ ¢ 3
are the correlation length and time associated with the
zero temperature dynamical fixed point of this model.

We show various P(m) in Fig. B The bulk of P(m)
is Gaussian, and this corresponds to trajectories like the
one on the top-right of Fig. [l The tails of P(m) are
exponential for m small. This data was obtained using a
combination of transition path sampling (TPS) [16] and
umbrella sampling [17]). For details see the Appendix.
The trajectories in the tail are dominated by rare large
regions which have no excitations, like the the one on the
bottom-right of Fig. [

To explain the presence of the exponential tail, sup-
pose that we have a trajectory with an initial condi-
tion containing a large empty region of size x, and that
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FIG. 3: Distribution of trajectory magnetization P(m) at
B =1, L = 60 and various observation times. We use N = 180
which is large enough so that P(m) does not depend on N.
The exponential tails of P(m) all have similar gradients: the
dotted lines are P(m) ~ exp(om) with o = 87.

this empty region persists throughout ¢.ps, leading to a
box magnetisation that is small. Now consider a tra-
jectory whose initial condition has an empty region of
size  + (Az), but is otherwise identical to the original
one. Then the probabilities of the two trajectories are
in the ratio (1 — ¢)2%, and their magnetisations differ by
approximately ¢(Ax)/L. Thus we predict

P(m) ~ (1 —¢)™/¢ = exp[(mL/c) In(1 — ¢)]. (8)
The significance of this result is that the right hand side
is independent of t,ps: increasing the observation time
changes the factor multiplying the tail in P(m), but the
gradient of the tail remains constant. Fig. Bl shows that
the gradient is indeed independent of ¢,,s. However, the
quantitative prediction for its value is accurate only to
within 20-30%. This inaccuracy arises because the large
inactive region may extend beyond the edge of the box.
Thus, adding extra down sites to the initial condition
may decrease the magnetisation by an amount less than
(¢/L).

In Fig. Bl the exponential tail of P(m) depends only
on L and not on t4hs, but this is a result of the shape of
the observation box: the behaviour of P(m) is symmetric
with respect to L and tops. In Fig. Bl we show how P(m)
changes as we change the aspect ratio of the observation
box. There is a crossover at L ~ wvtyhs, where v ~ 0.06
at § = 1. For L > vt,ps the gradient of the exponen-
tial tail is independent of .5 as described above, but for
L < vtops then the argument must be modified. Typical
trajectories at small m change their form to that shown
in Fig. @ (right). In that case, increasing the width of the
bubble does not change m; we must instead increase the
time for which the inactive state persists. Repeating the
argument leads to a situation in which the gradient of the
exponential tail is proportional to t,ps and independent
of L, see Fig. @l In other words, the gradient of the expo-
nential tail is proportional to max(L, vtsns). The spatial



FIG. 4: We show P(m) at 8 = 1 for varying L and tobs.
We use N = max(120,3L) which is large enough that the
results do not depend on N. (Top) Increasing observation
time at at fixed L = 20. (Middle) Increasing box size L at
tobs = 320. As L or tons is increased, we move from a regime
in which the tail gradient is independent of the increasing
parameter to a regime in which the gradient is proportional
to that parameter. (Bottom) We show a typical trajectory for
large tons and L = 20 where the observation box is outlined:
the size of the total spatial region shown is N = 60. For large
L the trajectories are of the form shown in Fig. [l

and temporal extent of the box enter on equal footing.
The data of Fig. Bl is consistent with the crossover from
large L to large tops occuring when t,p is of the order of
the first passage time across a bubble of size L. This time
scales as (L/v) ~ (L/c?) since the spreading velocity in
the FA model is proportional to the branching rate, c?.

Consistent with the known scaling of the FA model
in one dimension [f], we find that the temperature de-
pendent of P(m) can be accounted for by using rescaled
variables. The function

P(m/c;cL, c3tops) 9)

depends only weakly on ¢, as shown in Fig. Bl While
subleading corrections to the scaling do appear to be sig-
nificant, there is no qualitative change on lowering the
temperature. This justifies our working at inverse tem-
peratures around 3 = 1, where the data is easier to obtain
than in the more glassy regime of the FA model (8 > 1).

As a final observation in this subsection, we note that
the behaviour of P(m) for small observation boxes, cL <
1 or 3tops < 1, is different from that for large boxes. This
is shown in Fig. Bl The distribution acquires a secondary
peak at m — 0: there is a finite probability of observing
m = 0, so that P(m) diverges as m — 0. We will return
to this feature below.

B. Comparison with a model of appearing and
annihilating excitations (A A model)

In the previous subsection, the non-trivial structure in
P(m) occurs in the tails of the distribution. This be-
haviour is not linked to the universal critical correlations
in the system, but rather to mesoscopic fluctuations. We
will argue later that these rare mesoscopic fluctuations
do contain significant information about the model. We
first show explicitly the non-universality of the exponen-
tial tails of Figs. by comparing P(m) in the FA model
with the AA model, which has the same critical scal-
ing [4].

We define the AA model by specifying local moves for
a chain of binary variables:

(nia niJrl) = (17 0) e (nia niJrl) = (07 1)5 rate 76_6/
(nia niJrl) = (17 1) - (nia ni+1) = (07 0)5 rate vy

(nia ni+1) = (07 0) - (nia ni+1) = (17 1)5 rate 7672ﬁ’
where v = 2/(1 — e #)? is an arbitrary temperature

dependent factor that rescales the time, chosen for later
convenience. These rates again respect detailed balance
with respect to H = ), n;, and the inverse temperature
is 3.

Correlation functions in the steady state of the AA
model at a given temperature are related to those in
the FA model at a different temperature [§] (strictly this
holds when the facilitation function is proportional to the
number of up neighbours, not when it is equal to zero or
one as here, but there is no qualitative change to the
physics). The relationship between correlators depends
only on simple multiplicative factors, for example [§]

(nitnje)vap — ()fap =
4

T 7 ((nanje)ang — (Maae),  (10)

where (3 is the inverse temperature in the FA model and

B’ the inverse temperature in the AA model. Equation
(@) holds when

e_ﬁ/ \/1+€_B_1

S it (1)
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FIG. 5: Data showing (approximate) scaling of P(m) in the
FA model at various temperatures, scaled according to ().
We plot P(m/c): the box sizes are L = (60, 88,135); the
observation times are tobs = (320,1280,5330); and we use
N = 3L. These temperatures are not very small, so there are
subleading corrections to scaling, but there is no qualitative
change to the scaled distribution on lowering the tempera-
ture. Further, the computational time required at 8 = 2 is
quite significant, so we cannot rule out small systematic er-
rors arising from non-convergence of our TPS procedure (see
appendix).

It is clear from ([IT) that the scaling behaviour and crit-
ical properties of the FA and AA models are the same.
However, their activity or magnetisation distributions are
different, as shown in Fig. [l The exponential tail is ab-
sent in the AA case. Moreover, the persistence functions
of the two models are different [the persistence function is
the probability that a site does not flip at all in an inter-
val of length ¢]. The fluctuations responsible for the tails
in P(m) can be linked to the decoupling of exchange and
persistence times in the FA model [18§], a feature which
is absent in the AA case. Both persistence functions
and subsystem probability distributions are rather non-
universal quantities, since they depend on the system at
very many times. Further, we argue below that there are
important differences between the FA and AA models:
subsystem observables like P(m) make these differences
clear where two-point functions like (n;-n;o) do not.

III. DYNAMICAL ACTION AND
THERMODYNAMIC ANALOGY

We have shown that the distribution of subsystem
magnetisations in the FA model has an exponential tail
at small magnetisation. We also showed that this tail
comes from rare mesoscopic regions of spacetime in which
there are no up spins. In this section we study the sta-
tistical mechanics of the spacetime configurations of the
subsystem. We draw an analogy between these spacetime
statistics and the thermodynamic statistics of a system
near a phase coexistence conditions.

To make this analogy concrete, we define the probabil-

| 0 ‘O.‘Ol‘ o
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FIG. 6: Plot of P(m) at 8 =1, L = 2, tobs = 160, showing
secondary maximum at small m. (Inset) Enlargement of the
secondary peak, shown in a linear scale for P(m).

ity of a trajectory being generated by some (Markovian)
dynamical rules:

Ntops—1
Prraj = H W(sry1l{sr,n0,rsnL+1,7})
T=1
X Py(51) Poc(no,e; nr+1,t), (12)

where s, = {ni,,...,nr;} represents the state of the sys-
tem at time 7; the transition probabilities are denoted by
W(s'|{s,n0,nr+1}); Poc(no,nr+1,) is the probability
of the trajectory of the two boundary spins; and Py(s1)
is the probability of the initial condition (s1). We note
that the transition probabilities into a state s,4; depend
on the state of the boundary spins as well as the state
S
It is convenient to define the dynamical action:

5traj =—In Ptraj- (13)

However, we observe that the trajectory specifies the
state of the system at Nt,ps time steps. As we take the
limit N — oo, the probability of any specific trajectory
vanishes (even though L and tops are kept finite). (If a
spin flips between times ¢ and ¢’ then it could flip on any
of the extensive number of timesteps between these times.
So the probability of any specific trajectory tends to zero
as N — co.) Taking the logarithm of a probability that
is vanishing as N — oo is a little problematic, but this
is a familiar problem. For example, it arises in calcu-
lating the entropy of systems with continuous variables.
The solution is that absolute values of the entropy (or
action) depend explicitly on small coarse-graining scales
that form part of their definitions.

Postponing this issue, the dynamical partition sum is

Z=) efmi=1 (14)

traj

The analogy with a thermodynamic partition sum should



FIG. 7: Distribution of (reduced) box magnetization in the
FA and AA models. The reduced variable © = (m — (m))/om
where 02, = ((m — (m))?) = ¢(1 — ¢)L™' is the variance
of the instantaneous magnetisation. Parameters are L = 60,
tobs = 320, N = 180; in the FA model 8 = 1; in the AA model
B (B3 =1) given by (). For the AA model P(m) is close to
Gaussian. The standard deviation o, is not trivially related
to the variance of the box magnetisation, so the fact that the
Gaussian parts of the two distributions are very similar is a
non-trivial consequence of the exact mapping between the two
models.

then be clear. We define
Z J— Z efﬁUcomf7 (15)
conf

where the sum is over configurations of a system; Ucopnt 18
the energy of a configuration; and [ is the inverse tem-
perature. The free energy is F(U)

BFU) = —In[P(U)]

— 1I1[Z 67ﬁUCOl)f5(6U — ﬁUconf)]' (16)

conf

The dynamical analogy of this quantity is then
F(E) = —m[PE)
= (Y e Sl (1)

traj

Having defined the dynamical action, we can now prove
our assertion above that reducible partitions of the dy-
namics have equal free energies. If the dynamics are re-
ducible into two partitions then we can write

Z = Pe(1) + Pie(2) (18)

where the two terms are the probabilities that an initial

condition lies in one partition or the other. The difference

in free energy density between the two phases will be
p=Jlim (Nt)""log[Pe(1)/Pe(2)] (19)

Finally, note that P,c(1) and P(2) represent probabil-
ities of initial conditions, so their logarithms are at most

O(N), and will be independent of t. Therefore the differ-
ence in free energy density vanishes in the limit of large
time. This is the reason for the purely exponential tails
in P(m) observed in the previous section.

We now consider the distribution of the dynamical ac-
tion in the FA model.

A. Distribution of the dynamical action

For the FA model, we have

L
1
W(ST+1|{S7'7 nor, nL+1,T}) = WO + PST+118T N Z W,L
=1

(20)
where the projector P, s takes the value of unity if s and
s’ differ in the state of exactly one spin, otherwise it is
equal to zero;

Wi = firl(1 = niri)nir +nirp1(1—nir)e™ ] (21)

accounts for transitions into state s; and

L
WO = 5ST+1,ST {1 - N_l Z [fzr(l - nir)e_ﬁ + nifi‘l’} }
=1

(22)
accounts for transitions from state s. The symbol d5 ¢ is
equal to unity if and only if states s and s’ are identical,
and the function f;; was defined in @): its value is unity
if spin 7 is free to flip; otherwise it is zero. These operators
enforce the constraint that only one spin flips on each
time step.
Taking the limit of large N, and using ([3]), we arrive
at the action for an allowed trajectory:
Et(gj) = Nupﬂips 1H(N6ﬁ> + Ndownﬂips IH(N)
Ntops L
_N_l Z Z fz‘r[(l - 7’),1'7-)6_6 + niT]
T7=1 =1

+(boundary terms), (23)

where Nypfiips = 2 ;- Mi,r+1(1 — ni7) is the total num-
ber of flips from state 0 to state 1 inside the observation
box and, similarly, Naownfiips = 2 ;. (1 — 7,7 41)n47 is the
number of flips from 1 to 0. Of course, trajectories con-
taining transitions that are not allowed by the dynamical
rules have Pi,; = 0 and their action is formally infinite;
we ignore them in what follows. As noted above, the
probability of any trajectory vanishes as N — oo, so we
must introduce a coarse-graining timescale dt. We define

Ptraj _ Z Ptraj’ ~ (J\/'&L)/\fupﬂips-‘:—J\fdwnﬂipsPtmj7 (24)

traj’(ot)

where the sum is over trajectories with the same spin
flips as the original trajectory, but the flips may happen
within an interval (t) of their original times. The second,
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FIG. 8: Distribution of the action in the FA model for L = 60,
tobs = 320, obtained with N = 180. (Top) Contour plot of the
joint probability distribution for action density and magneti-
sation P(pg,m) (obtained from 2 x 107 independent trajecto-
ries). The contours are at P(m,pg) = 10%,10,0.1,2 x 1073,
The dotted line is the prediction @3J). (Bottom) Distribution
of the action density P(pe) [where ps = £/(Ltobs)].

approximate, equality indicates that as long as (dt) is
not too large then the probability of all trajectories in
the sum will be approximately equal, and the number of
such trajectories is (N&t)Vaws, The result is that

Et(f;) = —In Ptraj
= Nupflips ln(l/e_ﬁét) + Miownflips In(1/8t)

obs
+N—1/ dr Zf” [(1 = nir)e
0

+(boundary terms), (25)

-8 + niT]

where we have converted the sum to an integral, which
is valid in the limit of large N. This definition of the
action is parametrised by the coarse-grained time scale
(6t). Typical values of Et(f;) are independent of N and ex-
tensive in L and tops. Our results do not depend qualita-
tively on dt; the numerical results below are at 6t = 1. Fi-
nally, we have no prescription for calculating the bound-
ary terms in the action; we expect these to be small, so
we neglect them in what follows.

To relate the distribution of the action to the distri-
bution of activity or magnetisation, note that facilitated
spins in the FA model (those with f; = 1) equilibrate
quickly. We define the density of facilitated spins in a

trajectory to be

Ntobs

LNtobs Z Z fzr (26)

Assuming that the facilitated spins are equilibrated, we
expect

NtObﬁ
(LNtobs) ™ > Zf” (1 —nir) ~ (1 - )y, (27)
NtObﬁ
(LNtob:, Z Z frrnz‘r = cny, (28)
Nupﬁips — Ndownﬂips — CLtobsnf; (29)

where the approximate equalities indicate that the joint
distribution of each pair of observables will be sharply
peaked around these values (see Fig. B). Further, we
expect

ng ~m(2 —c), (30)

where the approximate equality holds in a similar sense,
and m is the magnetisation or activity of a trajectory,
defined in ([@). We define the joint distribution of the
action density pe and the magnetisation by

m) = Z Ptrajé(m - mtraj) 6[p€

traj

P(ps, ( th /Ltobs)]

(31)
We show P(pg,m) in Fig. B along with the probability
distribution of pg,

P(pe) = [ dm P(pe.m). (32)

As expected, we find that the joint distribution is sharply
peaked around

pe =me(2—c¢)[2+ 5 — 21n(dt)]. (33)

We conclude that the exponential tail in the magnetisa-
tion distribution is intrinsically linked with the exponen-
tial tail in the distribution of the dynamical action.

B. Spacetime thermodynamics

We motivated our discussion of the dynamical action
by analogy with a thermodynamic free energy. We now
discuss our results in terms of this analogy.

The trajectories of Fig. [l show that a typical region
with relatively small magnetisation is a large inactive
“bubble”. While true for the FA model, this is not the
case for the AA model, nor for models of non-interacting
random walkers. In those models, trajectories with small
magnetisations do not have segregated regions of large
and small magnetisations; rather, they have a uniform



reduction in the density across the subsystem. These
models also lack exponential tails in P(m), see Fig. [
This important difference between the FA and AA mod-
els arises from the presence of an empty absorbing state
in the FA model that is absent in the AA model. We see
that despite their identical scaling and two point equilib-
rium correlations, the FA and AA models do permit very
different behaviour in certain multi-point observables.

The exponential tails in P(m) reflect an apparent sta-
bility of bubbles of the inactive phase. It is useful to think
in terms of phase coexistence between a metastable inac-
tive phase and a stable active one. The metastability of
the inactive phase is a result of the fact that there are no
transitions into or out of a state in which the spins are all
down. Consider the (dynamical) free energy for droplets
of the absorbing phase with linear size [ and temporal
extent 7. That is, define the Pyubble(l, 7) of Eq. (@) to be
the total statistical weight of all trajectories with such
an inactive region centred at the origin.

For observation windows such that vt,ns < L, the mag-
netisation of a box with a single large bubble is

m~ [l — (I/L)]. (34)

The probability of a bubble of width [ that spans the
temporal extent of the box is

P(l) ~ /OOdT P(l, 7). (35)

tobs

Assuming that A is large, so that P(I, 7) is sharply peaked
around [ = v, then

% In P(m) ~ (L/c) o1 + (02/v) + 2(p/v) L(1 —m/c)],
(36)
for m < ¢[1 — (vtobs/L)]. Unless u is very small, the term
proportional to p will dominate at large L, leading to a
Gaussian distribution. However, in the case of small p,
the distribution is exponential in m, and the gradient of
this exponential tail is proportional to L and independent
of tops, as observed in Fig.Bl A similar argument holds in
the opposite regime of L < viops and m < c[1—(L/vtobs)],
which explains the exponential tails of Fig. E
We conclude that a bubble free energy of the form

Fbubble(la 7') = o1l + oo + plT + A(l — ’UT)2 (37)

with g — 07 explains the subsystem distributions for
the FA model. (Of course, we must have p > 0 since
otherwise the inactive phase would be thermodynami-
cally stable, which is not the case.) The scaling of the
data indicates that o1 ~ 02/v ~ ¢ and v ~ ¢~2. In our
thermodynamic analogy this corresponds to the situation
near a phase coexistence boundary, in which the free en-
ergy of bubbles of the metastable phase are dominated
by their surface energies. The smallness of p results from
the proximity to phase equilibrium in (d+1)-dimensional
spacetime.

Pursuing this analogy, we identify the two parameters
associated with phase coexistence. The dynamical activ-
ity, or excitation density, of the active phase is (m) = c.
The typical lengthscale associated with the bubbles is
oy ! which scales as ¢~!. Thus, the typical bubble size
and the typical spacing between up spins are scaling in
the same way as the temperature is reduced. This is a
consequence of detailed balance in the FA model, which
implies that excitations are uncorrelated at equal times:
(nir — ¢)(nr — €)) = (1 — c)3i,.

In the next section, we show how generalising the FA
model to a system which does not obey detailed balance
leads to a situation in which the typical bubble sizes are
larger than the excitation spacing. This new situation is
the usual one in systems at phase coexistence: we show
that the FA model is rather special case, because of the
extra symmetry of detailed balance.

IV. GENERALISED MODEL

The thermodynamic analogy described above leads to
an interesting question: what is the analogy of the tem-
perature parameter (§ in the dynamical system? By anal-
ogy with ([[H), we define:

bFp(€) = —In[R(bE)]

= —In)> e 5D — binaj)].  (38)

traj

Then we identify a new ensemble in which the probabil-
ities of trajectories are

Phanaj = 2, 750, (39)
where Z;~ 1= Ztraj Py traj. This ensemble has the action
distribution

— lnPb(S) = —[lnPb:1 (5) + (b — 1)5] (40)

Hence, if P,—;(€) has an exponential tail with gradient o
then P,(€) has a similar exponential tail with the reduced
gradient o — (b — 1). Since the magnetisation and action
are tightly correlated, the distribution of the magnetisa-
tion also has an exponential tail with reduced gradient.
As b is increased, the gradient of this tail vanishes. We
associate this vanishing with the proliferation of trajec-
tories with large bubbles. In [3] it was argued that this
proliferation would appear as a first order transition to
a state with large inactive bubbles, if an appropriate dy-
namics could be found to generate the b-ensemble.
However, any dynamics that realises the b-ensemble is
unphysical, in the sense that the transition probabilities
depend explicitly on the size of the spacetime box, and
on the position (and time) within it. However, there is a
way to generate a similar effect in a fashion that does not
have this effect. Suppose we reduce the probability of all
trajectories in our original (FA, b = 1) ensemble, accord-
ing to their magnetisation (total number of excitations).



FIG. 9: Sketch of the steady state density in the generalised
model, as a function of r, for different values of 3 with 51 >
B2 > (3. The axis r = 0 is the FA model and the axis
m = 0 is a line of critical points. The dotted line separates
the region in which DP scaling will apply from those in which
r can be treated perturbatively [so the scaling will be that of
the coagulation-diffusion (CD) fixed point]. The FA model
(r = 0) is the unique case for which the critical scaling is
coagulation-diffusion; for finite r the relevant critical point is
DP.

This is achieved by introducing an extra process whereby
up spins can flip down, even when unfacilitated. Hav-
ing reduced the probability of all trajectories in the old
ensemble, we add new trajectories that were not allowed
before (these are the trajectories containing unfacilitated
down flips).

For the trajectories that were allowed in the FA model
we will have

Pb,traj o8 exp(_gtraj)exp(_TLtobsmtraj)
= eXp(_bgtraj)a (41)

where the second approximate equality follows because
of the strong correlations between Siya; and miraj, and
we have (b — 1) ~ rLtops(m/E). Hence this procedure
should mimic the effect of increasing b.

We implement this procedure by supplementing the FA
model with the additional dynamical process

1, = 0; probability (1 — f;)r. (42)

Note that » = 0 is the FA model. For r > 0 then the
system no longer obeys detailed balance, and 3 can no
longer be interpreted as an inverse temperature. (We
require r > 0 since all probabilities must be positive.)
The introduction of the new “death” process for up spins
allows the possibility of a dynamical transition at finite
branching rate, which will be in the directed percolation
(DP) universality class [9].

The qualitative behaviour of the model with finite r
is shown in Fig. @l The “dimensionless” parameter that
determines the effective size of r is the product of the
death rate and the relaxation time of the FA model:

rr ~re’’ =R, (43)

which defines R. At any finite 3 there is a directed per-
colation transition to an active state that we expect to
occur when R is of order unity. This transition is accom-
panied by a diverging static correlation length:

<”i7'>2 ~

where {pp is the length scale that diverges at the tran-
sition. On the other hand, if R = 0 then there is a
transition at ¢ = 0 that is controlled by the coagulation-
diffusion fixed point. In that case we have

(nirnjr) — elri=ril/éor, (44)

(nirnjr) = (nir)® ~ 6y;. (45)
for all ¢. We show in the figure how the crossover into
the DP critical region is always relevant if R is finite, but
does not affect the behaviour if R = 0. We note that
between two and four dimensions a similar picture holds,
but the scaling at R = 0 will be Gaussian [§].

We now consider the action distribution in the models
with finite r. The probabilities of allowed trajectories

satisfy
— 10 Pytraj = Nupfiips In(Ne?)
N jommtips N + Néi@iﬁ; In(N/r)

+N ! Z fzr nz‘r
+Nt Z Z TTir, (46)
— Nyr41)Nir i the number

where N(g(sz(/:r)lﬂips = Zi‘r fl‘r(l

of facilitated flips from 1 to 0, and Négfvitf}l%s =3 ..(1-
fir)(1 = nyr41)nir is the number of unfacilitated down
flips.

Comparing {H8) with 3), there are three new terms:
the last term is the correction (rmLtops) which reweights
the trajectories in the original ensemble according to
EI). The term proportional to the number of death
events vanishes for trajectories in the original ensemble,
but is significant for typical trajectories in the new en-
semble. It reflects the fact that the ensemble of trajec-
tories with finite r is only an approximation to the one
defined in BY). Finally, there is a small correction to the
penultimate term that arises from the fact that the death
process affects only unfacilitated spins.

By analogy with ([ZH) we define

7+ nir(1—7)]

T (death)
gt(ra?j = Nupﬂipb ( ) + Ndowntﬂlps 111(1/7‘)

+/ ObsdT Z {fl‘l’ nzr
0

i (1=r)] 4+ nirr}
(47)

where we have set the coarse-graining time scale 0t =
1 for ease of writing. We expect equations [ZZH3) to
remain true since facilitated spins are still equilibrated
at a density close to ¢ (but note that the mean density in
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FIG. 10: (Left) Action distribution in the ensemble with finite b = (1.0, 1.005, 1.001, 1.0015, 1.002, 1.003). The distribution at
b = 1 is that of Fig. Bl and is shown with symbols. To get data at b > 1 we simply use [#0) and rescale by a constant for
convenience (this data is shown as simple lines). [We reiterate that there is no physical model that realises this ensemble.]
(Right) Action distribution with varying R at L = 60, tons = 320, 8 = 1. For R > 0 we use N = 6L = 360 to ensure that
data is independent of N. The behaviour at small R is qualitatively similar to the behaviour at small b in that the gradient of
the exponential tail decreases; at larger R a secondary minimum appears. The inset shows an expanded view of the secondary
minimum that is present at R = 0.2. Samples with the action exactly equal to zero are omitted from the plot: the probability

of this happening is of the order of 1% at R = 0.2.

the system will be less than ¢: the death process reduces
the mean density). To estimate the contribution of the
new terms, we note that

Nédcach) ~ mrLtops, (48)

ownflips

which shows that the typical trajectories at finite r differ
from those of the FA model in that they have a finite
(albeit small) density of death events.

In Fig. [ we plot the distribution of the action den-
sity at finite r and compare it with the behaviour of
the b-ensemble. Since the system does not obey detailed
balance the TPS procedure becomes inefficient: data at
finite r is obtained by simple binning and histogram-
ming. We show that introducing the death process mim-
ics the b-ensemble, at least for small R and small b. We
find that the gradient of the exponential tail decreases
quickly, while the mean density of excitations decreases
more slowly. In the language of section [l increasing
r leads to a reduction in the active state density (m),
combined with a reduction in the “surface energies” o
and oy. If we reduce the temperature in the FA model
(r =0, ¢ — 0) we have g1 ~ ¢ and (m) ~ ¢, so the typi-
cal bubble size o, ! scales in the same way as the inverse
density of up spins. On the other hand, as we approach
the DP fixed point (8 finite, 7 — reit) then we expect

o1~ (r=rai)’™, (m) ~ (r—raw)™T (49)
where (vpp, Opp) =~ (1.1,0.3) are the exponents of the
DP fixed point [9] (OBpp should not be confused with the
parameter 3 that enters the transition probabilities). On
approach to criticality the mean bubble size increases
much faster than the inverse density since vpp > fpp.
The up spins cluster together, leaving large inactive re-
gions consisting only of down spins. Introducing the

death process drives the system towards a phase separa-
tion into active and inactive regions of spacetime. This
can be seen in the trajectories of Fig. [l

As we increase R and approach the DP critical point,
the situation differs from that at finite b. We observe
a crossover when the typical size of inactive regions ex-
ceeds the observation box (o1 L ~ 1). In that case, P(&,)
acquires a second peak at zero magnetisation (see the
largest value of R in Fig. [[M). This is analogous to the
situation for small boxes (¢L < 1) in the FA case (recall
Fig. B). In the thermodynamic language, it corresponds
to a second minimum in the free energy, as would be
expected near a first order phase transition. Here, the
phase transition is second order, but the finite size of the
observation box means that we observe apparently first-
order behaviour: the divergence of the correlation length
is cut off at the size of the observation box.

We have shown that adding a death process to the FA
model strengthens the analogy between trajectory statis-
tics and the statistical mechanics of phase coexistence.
This death process, which breaks microscopic reversibil-
ity, can be thought of as a scheme for “driving” of the
FA model. Excitations are removed, in a way that spoils
detailed balance, so one can think of it as a “thickening”
process in analogy with what occurs in driven dense soft
materials (see e.g. [19]). In the FA model, the only length
scale is the inverse density of up spins; if r is finite then
a new length scale appears: the DP correlation length.
This allows the density of active regions to decouple from
their separation, leading to richer behaviour than that of
the FA model (which corresponds to the particular case
of the phase coexistence in which the two length scales
are equal).

Throughout this article, we have emphasised the broad
applicability of the idea of spacetime phase coexistence



FIG. 11: Sample trajectories at R = 0.1 with conditions
otherwise similar to Fig. Bl (8 = 1, L = 60 tops = 320).
(Left) Sample from centre of distribution. (Right) Sample
with myraj ~ (m)/2. Clearly there are more large inactive re-
gions in these trajectories than in those of Fig. [} increasing
R from zero leads to proliferation of large “bubbles”.

by focussing on general features of the models, such as
microscopic reversibility and reducibility of the dynam-
ics. We expect the behaviour described here to be generic
in kinetically constrained models with reducible dynam-
ics ﬂa, m, , m, m] More generally, the extent to which
this behaviour can be observed in physical (atomistic)
glass-formers remains an important question.
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APPENDIX A: TRANSITION PATH SAMPLING

We calculated probability distributions for various ob-
servables in the FA model: these were obtained by a
combination of transition path sampling (TPS) [16] and
umbrella sampling ﬂﬂ] Here we give a brief description
of the procedure used.

Transition path sampling is a Monte Carlo procedure
applied to trajectories of a dynamical system (a trajec-
tory is a particular realisation of the dynamics). We
use it to efficiently sample restricted ensembles of tra-
jectories. The procedure is well-established [16], but we
present some information regarding its application to the
FA model for completeness.

Suppose that we wish to sample trajectories with mag-
netisation m smaller than some reference value m;. The
simplest way to do this is to generate statistically in-
dependent trajectories, accepting only those that satisfy
the restriction m < my. However, if m; is much smaller
than the mean of m then this is inefficient.

Instead, we can generate unbiased trajectories satisfy-
ing the restriction by deforming a set of initial trajecto-
ries, as long as the deformations satisfy detailed balance
with respect to the probability distribution within the
constrained ensemble of trajectories. Such deformations

11

are called TPS moves. One possibility is to take a trajec-
tory of length #,ps and keep only the part with ¢ < (xtops)
with 0 < x < 1; we the generate the rest of the trajectory
using the dynamical rules prescribed for the system (we
use a continuous time Monte Carlo algorithm m]) If the
new trajectory has m < mj then it replaces the old one;
otherwise the move is rejected and we retain the old tra-
jectory. This is a “shooting” move M] We couple this
the move with the reverse procedure in which we discard
the part of the trajectory with ¢ > (ztobs) and regener-
ate the rest of the trajectory by propagating backwards
in time (since we have detailed balance then the steady
state of the FA model is invariant under time-reversal, so
this is a valid way to generate unbiased trajectories).

In addition to these moves, we also use “shifting”
moves m] in which we shift the trajectory in time, dis-
carding the parts of the new trajectory with ¢ < 0 or
t > tobs. We then regenerate the remaining parts of the
new trajectory. We find that this combination of moves
is quite efficient for exploring the restricted ensembles of
interest.

APPENDIX B: UMBRELLA SAMPLING

We use umbrella sampling ﬂﬂ] to calculate probability
distributions by measuring ratios such as

P(m < mi+1)

P(m < m;) (B1)

P =

where m; and m;y; are two cutoffs for the variable m
with mir1 < Mmy.

Consider an ensemble of all allowed trajectories for the
system, with their statistical weights. In order to mea-
sure P; ;11 we sample a restricted ensemble which con-
tains only trajectories with m < my; these trajectories
have the same weights as they would have in the orig-
inal ensemble. We then measure the probability that
m < my;41 within the restricted ensemble: this probabil-
ity is equal to P; j41.

Our procedure is as follows:

1. Start with a representative set of trajectories from
the unrestricted ensemble.

2. Choose an ordered set of cutoff magnetisations
(m1 > mg > -+ > m,) for which we will calcu-
late the probabilities P; ;1.

3. Explore the unrestricted ensemble, measuring the
fraction of trajectories with m < m;. (This is done
by sampling independent trajectories.)

4. Once we have a good enough estimate for P(m <
m1), start a restricted ensemble with trajectories
satisfying m < m;y. Typically we store N, = 100
such trajectories.



5. Explore the restricted ensemble using TPS, mea-
suring the fraction of trajectories with m < ma.
Typically this takes N,, = 100 — 10000 TPS moves
per ensemble member.

6. Once we have a good enough estimate for Pjs, we
discard all trajectories with m > msy and replace
them by trajectories with m < mg. These trajec-
tories are generated by continuing the TPS proce-
dure and accepting all trajectories that satisfy the
new constraint. The resulting set of trajectories
are not statistically independent so we equilibrate
the new ensemble by allowing it to evolve from the

12

biased initial condition. Typically we use around
N,, TPS moves per ensemble member. We test for
equilibration by tracking the fraction of trajectories
with m < mg, since this will be the quantity that
we will measure on the next step.

7. We then repeat steps 5 and 6 for increasingly
restricted ensembles. At each step, we measure

Pt

Once we have the P(m < my) and the set of P; ;41 then
it is simple to reconstruct the probability distribution of
the observable m.
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