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Abstract

Use of Effective Theories in Nuclear Physics

by

Satoru Inoue
Doctor of Philosophy in Physics

University of California, Berkeley

Professor Wick Haxton, Chair

Approximations are inevitable in solving realistic physics problems, and reliability of cal-
culations depends on evaluation of how much error is associated with the approximations.
One method to quantify errors is building effective theories, which organize successive ap-
proximations as a power series in some small parameter. We apply effective theories to two
problems in nuclear physics.

One is the calculation of atomic electric dipole moments (EDMs). EDMs are of interest
as a probe of CP-violating physics. For atoms, EDM signals can be thought of as departures
from Schiff theorem, which states that a neutral system of point-like, nonrelativistic charges
that interact only electrostatically has no net EDM. We show how each of the conditions
for Schiff theorem are violated in actual atoms by expanding the Breit interaction between
the electrons and the nucleus in spherical multipoles. We see that EDM signals arising from
violations of the Schiff limit can be organized as a power series in RN/RA, the ratio between
the spatial sizes of the nucleus and the atom. This ratio is of order 10−5, and the power series
in this parameter would have quantifiable errors. We identify the contributions to atomic
EDM that correspond to the so-called Schiff moment, and give the general considerations
for other contributions that may be of the same order as the Schiff moment in powers of
RN/RA.

The other problem is nucleon-nucleon (NN) interaction. The difficulty in describing
this basic interaction is the fine tuning that exists between the long-range attraction and
short-range repulsion in the NN potential. An effective theory of NN interaction must
separate these two length scales. In order to achieve this separation, we introduce a harmonic
oscillator (HO) basis, and restrict the calculation to a finite Hilbert space (P-space) of states
with energies below some cutoff Λ~ω. HO eigenstates contains a length scale, the oscillator
length b, which we choose to be 1.7fm, as an intermediate scale. We show that, despite
the short-range nature of HO states, restricted wavefunctions contain enough information
to reconstruct phase shifts. Projecting wavefunctions into this space throws away both the
long-range physics due to the kinetic energy, and the short-range physics due to the strong
interactions. We derive an equation in the P-space whose solution is the P-space restriction
of the full-space scattering wavefunction, and identify the components of the equation that
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treat the long-range and short-range physics, respectively. The long-range information is
encoded in what we call the tilde states, which are modification to the HO wavefunction
with slower decay as r →∞. The short-range information is modeled by a contact-gradient
expansion, which is essentially a power series in a/b, where a is the length scale associated
with the repulsive core in the NN potential. The behavior of the theory is investigated using
a toy model of a spherical square well with a repulsive core.
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Chapter 1

Atomic Electric Dipole Moment

1.1 Introduction

Ever since the first attempt by Purcell and Ramsey [1], physicists have made successively
more precise measurements of electric dipole moments (EDMs). Although EDMs have never
been observed in fundamental particles, nucleons, and atoms, this lack of signal has acted as
tests of particle physics models. EDM experiments, like other precision measurements, are
places where nuclear and atomic experimentalists can make contributions to the search for
physics beyond the Standard Model (SM); precision measurements and collider experiments,
being sensitive to different aspects of new physics, act as complementary pieces in this quest.
Recent developments in cosmology suggest that there are beyond-SM sources of CP violation
(CPV), which may be observed in EDM experiments; this acts as added motivation for the
experimental effort.

EDM for a non-degenerate system violates CP symmetry. Such a system can be charac-
terized by only one vector—its spin. So its intrinsic EDM, if it exists, must be either aligned
or anti-aligned with the spin, and results in a Lagrantian term d~σ · ~E, where ~σ is the spin
of the particle, and ~E is an external electric field. Under time reversal, ~σ → −~σ, while ~E is
left invariant. Thus, the EDM term violates T symmetry, and by CPT theorem, this implies
that CP is also violated. Since σ is an axial vector and E is a polar vector, the EDM term
violates P as well.

CP violation has been observed in neutral kaon and B meson systems, and the Standard
Model explains this by a phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Another
potential source of CPV in the Standard Model is the so-called θ term in QCD. The most
stringent limit on the parameter θ̄ comes from neutron EDM experiment and is θ̄ . 10−10.
θ̄ can be written as a phase angle and, a priori, can take any value between −π and π.
Why this is so small is called the strong CP problem. One possible resolution is that the
spontaneous breaking of Peccei-Quinn symmetry forces θ̄ to be 0 [2]. If this is correct,
then there exist axions, Goldstone bosons corresponding to the broken symmetry [3]. As
axions are candidates to be (part of) the dark matter that make up the majority of the
matter content of the universe, probing CPV in the strong sector may provide information
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for cosmology.
A more intimate connection between CPV and cosmology is the baryon asymmetry of the

universe (BAU). From cosmic microwave background (CMB), distribution of galaxies, and
supernova measurements of the Hubble constant, the latest estimate of the baryon-to-photon
ratio in the energy density of the universe is [4]

η = (6.19± 0.15)× 10−10. (1.1)

In the standard cosmological picture, this nonzero value cannot be explained simply as the
result of some initial condition in the universe, because any initial baryon number density
would be vastly diluted by inflation. What is required is a mechanism, called baryogenesis,
to produce the BAU after inflation. As Sakharov noted [5], baryogenesis requires (1) baryon
number violation, (2) C and CP violation, and (3) non-equilibrium dynamics. The first
two conditions are needed to preferentially produce baryons over antibaryons, and the third
condition prevents ”washout”—in equilibrium, particles with the same mass would end up
with the same density. Although the SM does satisfy all three conditions, it is thought that
SM processes are insufficient to account for the observed asymmetry, and various models
involving physics beyond the SM have been proposed (See [6] for reviews). One class of
baryogenesis models, called electroweak (EW) baryogenesis, is the most accessible to ex-
periments. EW baryogenesis posits that baryogenesis occurred during the EW symmetry
breaking era, i.e. the new physics for baryogenesis appears at the TeV scale. This is the
energy scale that EDM experiments are starting to probe.

Atomic EDMs are intriguing from a number of perspectives. One is that atoms involve
electrons as well as hadrons, meaning different sources of CPV can contribute to their EDM.
In general, paramagnetic atoms are more sensitive to electron EDMs, whereas diamagnetic
atoms are more sensitive to CPV inside the nucleus. Since multiple CPV sources can con-
tribute to the EDM of a particular atom, measurements on multiple atomic species are
needed to disentangle each contribution.

One obstacle to measuring atomic EDMs is the shielding effect identified by Schiff [7]. His
theorem states that an electrically neutral system cannot have a net EDM if its constituents
are non-relativistic and point-like, and interact only electrostatically. The Schiff theorem
can be understood at the classical level. A neutral system in an external electric field ~Eext

does not accelerate. This means that at the location of each of the charged particles in the
system, the net electric field is 0, i.e. other charges produce an electric field that exactly
cancels out the external field. Changing ~Eext does not alter the situation; charges will be
rearranged so that the net field at the location of each of the charged particles will again be
0. Since no particle in the system is experiencing a net electric field, there cannot be any
energy shift due to constituent EDMs.

Fortunately, all 3 conditions for the Schiff theorem are only approximately true in atoms.
The conditions are evaded as follows: (a) atomic electrons, especially in heavy atoms, cannot
be described non-relativistically, (b) the nucleus has finite size, (c) and the constituents have
non-electrostatic interactions. The effects of relativistic electrons are especially strong in
heavy paramagnetic atoms. One example is 205Tl, whose EDM was interpreted as one of the
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best limits on electron EDM [8]. In experiments on diamagnetic atoms, on the other hand,
the effects of corrections to (b) and (c) can be more important. Traditionally, CPV effects in
the nucleus that are not screened by the electrons have been quantified by the Schiff moment,
which is the dipole component of the finite-size correction (e.g. [7, 12]). Following Liu et
al. [9], we take a more general approach to the corrections and show that there are other
comparable contributions to atomic EDM from nuclear CPV sources, such as those from M2

and C3 moments, although these particular contributions vanish for atoms with small total
angular momentum or nuclear spin. The smallest current limit for an atomic EDM, from
199Hg, sets limits on various CPV effects in the nucleus [10]. Planned EDM experiments
include paramagnetic 211Fr and diamagnetic 221Rn, 223Rn, and 225Ra [11]. The last there are
interesting due to the possibility that octupole deformation in the nucleus, which enhances
the Schiff moment [12]. The goal for theory is to clarify how a CPV source translates to
atomic EDMs, and quantify the errors in the calculation so that experimental results can be
evaluated in terms of CPV parameters in the underlying physics.

Our approach to the problem takes the following steps:

1. We express the electron-nucleus interaction using the Breit interaction [13], which is
the Coulomb interaction with relativistic corrections, up to O(α2). This takes account
of the relativistic motion of the electrons as well as the non-electrostatic interactions
in the atom.

2. The Breit interaction is separated into 2 parts; one part corresponds to the electron-
nucleus interaction in the limit of a point nucleus, and the other part is the correction
due to the fact that electrons can penetrate inside the nucleus. This takes account of
the finite size of the nucleus.

3. We then expand the interaction in terms of electronic and nuclear multipole operators.
Multipole operators describe the charge and current distributions of electrons and the
nucleus, and carry definite angular momentum. We see that the multipoles appear
with leading factors of the form,

4πα

RA

(
RN

RA

)n
(1.2)

for some integer n, where RN is the typical nuclear size, and RA is the typical atomic
size. Since RN/RA is of order 10−5, this ratio acts as a small parameter to organize
the calculation.

4. The total atomic Hamiltonian H is separated into the unperturbed Hamiltonian H0

and perturbation V ′. We will choose H0 so that its eigenstate can be written as a
tensor product of an electronic wavefunction and a nuclear wavefunction, each having
been calculated with no consideration for backreaction.

5. Perturbation theory gives the ground state of the system, |g.s. >, which is written as

|g.s. >= |0 > +|1 > +|2 > + . . . , (1.3)
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where |0 > is the unperturbed ground state, and |n > denotes corrections to |0 > with
n insertions of the perturbation V ′. The atomic EDM signal is proportional to

< g.s.|~d|g.s. >=< g.s.|~de|g.s. > + < g.s.|~dN |g.s. > (1.4)

where ~de and ~dN are the electronic and nuclear dipole operators.

6. Schiff cancellation is effected by the use of displacement operator, A. The expected
leading order (LO) contributions to the EDM from the nuclear dipole operator is seen
to cancel out against part of the next-to-leading (NLO) contribution from the electronic
dipole operator. To be more specific, polarization of the electron cloud due to the C1-
C1 interaction between the electron-nucleus interaction produces a signal that is equal
and opposite to that of a nuclear EDM. Since the cancellation is demonstrated in terms
of operators, we can show that analogous cancellations also take place at higher orders
in the perturbative expansion.

7. With Schiff cancellation in place, a general expression for the EDM signal can be
given. It is important to ensure that the natural size of the contribution is at least of
the same order as the Schiff moment (3 powers of RN/RA), and that the term has the
right symmetry properties to be an EDM. Up to this point, no reference to a specific
atom has been made.

8. Finally, the expression is evaluated by introducing atomic and nuclear wavefunctions.

The rest of this chapter is organized in accordance with these steps. In section 1.2,
we define the Hamiltonian, make the separation between the point-nucleus limit and the
penetration correction in the electron-nucleus interaction, then expand in terms of spherical
multipole operators. In section 1.3, the perturbative scheme is set up, and the relation
between matrix elements in the perturbation theory to the atomic EDM signal is given.
Section 1.4 demonstrates Schiff cancellation using the displacement operator. In section 1.5
we give the answer that is leading order in perturbation, after discussing how symmetry
arguments eliminate many multipoles from contributing.

1.2 The Hamiltonian

The Hamiltonian that we consider for the atom is

H = Te + TN + Vee + VeN + VeÑ + VNN + VNÑ . (1.5)

Subscripts e and N represent electrons and the nucleus, respectively, and Ñ indicates that
the interaction with the nucleus violates CP. For our calculation, all of the CPV physics is
assumed to come from the nucleus.
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Looking at the terms of H in more detail,

Te = −
Z∑
i=1

1

2me

−→
∇2
i (1.6)

is the total kinetic energy of the atomic electrons, whose coordinates are given by ~xi, with i
running from 1 to Z.

TN = −
A∑
i=1

1

2mN

−→
∇2
N,i (1.7)

is the kinetic energy of the nucleons.
Vee is the interaction among the electrons, and we write

He = Te + Vee − Zα
∫
d3x

ρe(~x)

x
(1.8)

as the electronic Hamiltonian, taking into account the Coulomb interaction between the point
nucleus and the electrons and the two-body interactions among the electrons. Similarly,
HNN +HNÑ is the interaction among the nucleons, and

HN = TN + VNN + VNÑ (1.9)

is the nuclear Hamiltonian, solved in nuclear structure calculations.
The Breit interaction gives the electron-nucleus interaction in our calculation,

VeN + VeÑ = −α
∫∫

d3xd3y

[
ρe(~x)ρN(~y)

|~x− ~y|

−1

2

(
~je(~x)�~jN(~y)

|~x− ~y|
+
~je(~x)� (~x− ~y) ~jN(~y)� (~x− ~y)

|~x− ~y|3

)]
.

(1.10)

ρe and ρN are the electronic and nuclear charge densities, and ~je and ~jN are the electronic
and nuclear current densities (densities for the electrons are defined with a minus sign to
take care of the negative charge). The first line is the Coulomb interaction between the
nucleus and the electrons, and the second line gives the magnetic and transverse electric
interactions due to electromagnetic currents. We use the angular momentum conventions of
Varshalovich [14]. Scalar product � is defined as

Al �Bl ≡
∑
m

(−1)mAlmBl,−m. (1.11)

The Breit interaction can be separated into the electron-nucleus interaction in the point-
nucleus limit, and corrections due to electrons penetrating the nucleus (see appendices A.1
and A.2 for the detailed calculation).

VeN + VeÑ = V point
eN + V pen

eN . (1.12)
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Expanding V point
eN and V pen

eN in electronic and nuclear multipoles,

V point
eN = −4πα

RA

[
∞∑
l=0

1

2l + 1

(
RN

RA

)l
CA
l � CN

l

+
∞∑
l=1

{
1

2l + 1

(
RN

RA

)l
TAmag,l � TNmag,l

+
1

2l + 1

(
RN

RA

)l+1

TAel,l � T
′N
el,l

+
1

2l + 1

(
RN

RA

)l−1

T
′A
el,l � TNel,l

}]
. (1.13)

and

V pen
eN = −4πα

RA

(
∞∑
l=0

1

2l + 1

Z∑
i=1

[
CA+
l (i)� CN−

l (i)− CA−
l (i)� CN+

l (i)
]

+
∞∑
l=1

{
1

2l + 1

Z∑
i=1

[
TA+

mag,l(i)� T
N−
mag,l(i)− T

A−
mag,l(i)� T

N+
mag,l(i)

]
+

1

2l + 1

Z∑
i=1

[
TA+

el,l (i)� T ′N−
el,l (i)− TA−el,l (i)� T ′N+

el,l (i)
]

+
1

2l + 1

Z∑
i=1

[
T

′A+
el,l (i)� TN−el,l (i)− T ′A−

el,l (i)� TN+
el,l (i)

]})
. (1.14)

The multipole operators in the point-nucleus term are the charge multipoles

CN
lm ≡

∫
d3y

(
y

RN

)l
Ylm(Ωy)ρN(~y)

CA
lm ≡

∫
d3x

(
RA

x

)l+1

Ylm(Ωx)ρe(~x) =
Z∑
i=1

(
RA

xi

)l+1

Ylm(Ωi), (1.15)

the transverse magnetic multipoles

TNmag,l ≡
1

Rl
N

∫
d3y yl ~Ymll1(Ωy) ·~jN(~y) =

∫
d3y

(
y

RN

)l [
Yl(Ωy)⊗~jN(~y)

]
l

TAmag,l ≡Rl+1
A

∫
d3x

1

xl+1
~Ymll1(Ωx) ·~je(~x) =

Z∑
i=1

(
RA

xi

)l+1

[Yl(Ωi)⊗ ~αi(~xi)]l , (1.16)
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and the transverse electric multipoles

TNel,l ≡
1

Rl−1
N

∫
d3y

[−→
∇ ×

(
yl ~Ymll1(Ωy)

)]
·~jN(~y)

=i
√

(l + 1)(2l + 1)

∫
d3y

(
y

RN

)l−1 [
Yl−1(Ωy)⊗~jN(~y)

]
l

T
′N
el,l ≡

1

Rl+1
N

∫
d3y

[
−→
∇ ×

(
− yl+2

2(2l + 3)
~Ymll1(Ωy)

)]
·~jN(~y)

=− i

{
1

2l + 3

√
l

2l + 1

∫
d3y

(
y

RN

)l+1 [
Yl+1(Ωy)⊗~jN(~y)

]
l

+
1

2

√
l + 1

2l + 1

∫
d3y

(
y

RN

)l+1 [
Yl−1(Ωy)⊗~jN(~y)

]
l

}

TAel,l ≡Rl+2
A

∫
d3x

[
−→
∇ ×

(
1

xl+1
~Ymll1(Ωx)

)]
·~je(~x)

=− i
√
l(2l + 1)

Z∑
i=1

(
RA

xi

)l+2

[Yl+1(Ωi)⊗ ~αi(~xi)]l

T
′A
el,l ≡Rl

A

∫
d3x

[
−→
∇ ×

(
1

2(2l − 1)
~Ymll1(Ωx)

)]
·~je(~x)

=i

{
−1

2

√
l

2l + 1

Z∑
i=1

(
RA

xi

)l
[Yl+1(Ωi)⊗ ~αi(~xi)]l

+
1

2l − 1

√
l + 1

2l + 1

Z∑
i=1

(
RA

xi

)l
[Yl−1(Ωi)⊗ ~αi(~xi)]l

}
. (1.17)

The multipoles that appear in V pen
eN are

CA+
l (i)� CN−

l (i) =

(
xi
RN

)l
Yl(Ωi)�

∫
d3y θ(y − xi)

(
RN

y

)l+1

Yl(Ωy)ρN(~y)

CA−
l (i)� CN+

l (i) =

(
RN

xi

)l+1

Yl(Ωi)�
∫
d3y θ(y − xi)

(
y

RN

)l
Yl(Ωy)ρN(~y) (1.18)
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TA+
mag,l(i)� T

N−
mag,l(i) =

(
xi
RN

)l
[Yl(Ωi)⊗ ~αi]l

�
∫
d3y θ(y − xi)

(
RN

y

)l+1 [
Yl(Ωy)⊗~jN(~y)

]
l

TA−mag,l(i)� T
N+
mag,l(i) =

(
RN

xi

)l+1

[Yl(Ωi)⊗ ~αi]l

�
∫
d3y θ(y − xi)

(
y

RN

)l [
Yl(Ωy)⊗~jN(~y)

]
l

TA+
el,l (i)� T ′N−

el,l (i) =i
√

(l + 1)(2l + 1)

(
xi
RN

)l−1

[Yl−1(Ωi)⊗ ~αi]l

� i

{
−1

2

√
l

2l + 1

∫
d3y θ(y − xi)

(
RN

y

)l [
Yl+1(Ωy)⊗~jN(~y)

]
l

+
1

2l − 1

√
l + 1

2l + 1

∫
d3y θ(y − xi)

(
RN

y

)l [
Yl−1(Ωy)⊗~jN(~y)

]
l

}

TA−el,l (i)� T ′N+
el,l (i) =− i

√
l(2l + 1)

(
RN

xi

)l+2

[Yl+1(Ωi)⊗ ~αi]l

� (−i)

{
1

2l + 3

√
l

2l + 1

∫
d3y θ(y − xi)

(
y

RN

)l+1 [
Yl+1(Ωy)⊗~jN(~y)

]
l

+
1

2

√
l + 1

2l + 1

∫
d3y θ(y − xi)

(
y

RN

)l+1 [
Yl−1(Ωy)⊗~jN(~y)

]
l

}
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T
′A+
el,l (i)� TN−el,l (i) =− i

{
1

2l + 3

√
l

2l + 1

(
xi
RN

)l+1

[Yl+1(Ωi)⊗ ~αi]l

+
1

2

√
l + 1

2l + 1

(
xi
RN

)l+1

[Yl−1(Ωi)⊗ ~αi]l

}

� (−i)
√
l(2l + 1)

∫
d3y θ(y − xi)

(
RN

y

)l+2 [
Yl+1(Ωy)⊗~jN(~y)

]
l

T
′A−
el,l (i)� TN+

el,l (i) =i

{
1

2

√
l

2l + 1

(
RN

xi

)l
[Yl+1(Ωi)⊗ ~αi]l

+
1

2l − 1

√
l + 1

2l + 1

(
RN

xi

)l
[Yl−1(Ωi)⊗ ~αi]l

}

� i
√

(l + 1)(2l + 1)

∫
d3y θ(y − xi)

(
y

RN

)l−1 [
Yl−1(Ωy)⊗~jN(~y)

]
l
.

(1.19)

Note that the electron coordinates are measured in atomic size RA, and the nuclear
coordinates are measured in nuclear size RN . Since these length scales have been divided
out, one expects the integrals to be of order one. This implies that the leading factors of

4πα

RA

(
RN

RA

)n
(1.20)

in all these terms correspond to the natural sizes of each operator. Since RN/RA is of
order 10−5, we use the power of this small number to organize our calculation. Terms with
n ≤ 3 are retained, as that is the order at which the Schiff moment enters. Matrix elements
of penetration multipole operators between atomic states can be reproduced by effective
operators that have natural sizes. See Appendix A.2 for these effective operators.

1.3 Perturbation Theory

We now set up the perturbation theory by writing the Hamiltonian in 2 parts:

H = H0 + V ′, (1.21)

where
H0 = He +HN . (1.22)

The electronic Hamiltonian He and the nuclear Hamiltonian HN were defined in the previous
section. The eigenvalue problem for H0 results in the unperturbed states, which have the
form

|αejeme;αNjNmN >= |αejeme >e ⊗|αNjNmN >N . (1.23)
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|αejeme >e and |αNjNmN >N are eigenstates of He and HN , respectively, with spin quantum
numbers specified by ji and mi. αe and αN represent all other quantum numbers that need
to be specified.

Here, note that the last term in the definition of He, eq. (1.8), can be rewritten in terms
of multipoles as

Zα

∫
d3x

ρe(~x)

x
=

4πα

RA

CA
0 � < CN

0 >, (1.24)

where the expectation value < CN
0 > is taken between the nuclear ground state.

With H0 specified, the perturbation becomes

V ′ =VeN + VeÑ +
4πα

RA

CA
0 � < CN

0 >

=V
′point
eN + V pen

eN , (1.25)

with the adjustment to the point-nucleus term

V
′point
eN = −4πα

RA

[
CA

0 �
(
CN

0 − < CN
0 >

)
+
∞∑
l=1

1

2l + 1

(
RN

RA

)l
CA
l � CN

l

+
∞∑
l=1

{
1

2l + 1

(
RN

RA

)l
TAmag,l � TNmag,l

+
1

2l + 1

(
RN

RA

)l+1

TAel,l � T
′N
el,l +

1

2l + 1

(
RN

RA

)l−1

T
′A
el,l � TNel,l

}]
. (1.26)

This expression makes clear that nuclear axial charge can contribute to the EDM through
(CN

0 − < CN
0 >).

From appendix A.3, the ground state of H is

|g.s. >= |0 > +|1 > +|2 > +|3 > + . . . , (1.27)

where |0 > is the ground state of H0, and |n > are the perturbative corrections with n
insertions of V ′.
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Explicitly,

|1 >=
Q0

E0 −H0

V ′|0 >

|2 >=
Q0

E0 −H0

V ′
Q0

E0 −H0

V ′|0 > − Q0

(E0 −H0)2V
′|0 >< 0|V ′|0 >

|3 >=
Q0

E0 −H0

V ′
Q0

E0 −H0

V ′
Q0

E0 −H0

V ′|0 >

− Q0

E0 −H0

V ′
Q0

(E0 −H0)2V
′|0 >< 0|V ′|0 >

− Q0

(E0 −H0)2V
′ Q0

E0 −H0

V ′|0 >< 0|V ′|0 >

+
Q0

(E0 −H0)3V
′|0 > (< 0|V ′|0 >)

2

− Q0

(E0 −H0)2V
′|0 >< 0|V ′ Q0

E0 −H0

V ′|0 > . (1.28)

Here,

Q0 ≡
∑
n6=0

|0 >< 0| (1.29)

is the projection operator out of the ground state of H0.
The energy shift experienced by the atom when you turn on the external electric field

~Eext is (from appendix A.4)

∆E =
< FMf | ~Eext · ~F |FMi >√

F (F + 1)(2F + 1)
< F ||~d||F >, (1.30)

where ~F is the total angular momentum of the atom, and

~d = ~de + ~dN =
Z∑
i=1

α~xi −
√

4π

3
αRNC

N
1 (1.31)

is the EDM operator for the atom. We see that the signal is proportional to the matrix
element of ~d between the ground state of H, and this can be expanded perturbatively in the
number of V ′ insertions as follows:

< g.s.|~d|g.s. >= < 0|~d|0 > +
(
< 0|~d|1 > + < 1|~d|0 >

)
+
(
< 0|~d|2 > + < 1|~d|1 > + < 2|~d|0 >

)
+ . . . . (1.32)
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1.4 Schiff Cancellation

The natural size of ~dN is RN/RA times that of ~de. Hence, < 0|~de|0 > is naively the LO
contribution to the atomic EDM. Writing |0 > as the tensor product of atomic and nuclear
ground states,

|0 >= |0 >e ⊗|0 >N , (1.33)

the ground state expectation value of ~de becomes

< 0|~de|0 >=< 0|~de|0 >e · < 0|0 >N=< 0|~de|0 >e, (1.34)

Since He does not contain parity violation, this term vanishes (The term is odd under reversal
of all electronic coordinates ~xi → −~xi. See discussion in subsection 1.5.2).

The next terms to be considered are the LO term from the nuclear EDM operator

< 0|~dN |0 > (1.35)

and the NLO terms from the electronic EDM operator

< 0|~de|1 > + < 1|~de|0 > . (1.36)

It is convenient now to define the displacement operator,

A ≡ 1

Z

√
4π

3

(
RN

RA

) Z∑
i=1

RA

−→
∇ i � CN

1 . (1.37)

This operator has two very useful commutator relations. The first relation connects ~de and
~dN . [

~de, A
]

=

[
Z∑
i

~xi,
1

Z

√
4π

3

(
RN

RA

) Z∑
i=1

RA
−→
∇ i � CN

1

]

= −
√

4π

3
RNC

N
1 = ~dN . (1.38)

The second relation involves the unperturbed Hamiltonian.

[A,H0] =
1

Z

√
4π

3

(
RN

RA

)([ Z∑
i=1

RA
−→
∇ i � CN

1 , HN

]

+

[
Z∑
i=1

RA
−→
∇ i � CN

1 ,

(
− 1

2me

Z∑
j=1

−→
∇2
j

)
+ Vee

]

+

[
Z∑
i=1

RA
−→
∇ i � CN

1 ,−
4πα

RA

CA
0 � < CN

0 >

])
(1.39)
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The first line will be left as [A,HN ]. The second line yields 0, as Te and Vee are invariant

under overall translation of the electron cloud, and therefore commutes with
∑

i

−→
∇ i. Finally,

evaluating the third line,

1

Z

√
4π

3

(
RN

RA

)[ Z∑
i=1

RA
−→
∇ i � CN

1 ,−
4πα

RA

CA
0 � < CN

0 >

]

=
1

Z

√
4π

3

(
RN

RA

)
×
(
−4πα

RA

)(
Z√
4π

)∑
m

(−1)m
Z∑
i=1

RA∇im

[
RA

xi
Y00

]
CN

1,−m

=− 4πα

RA

1√
3

(
RN

RA

)∑
m

(−1)m
(
− 1√

3

)
CA

1mC
N
1,−m

=
4πα

3RA

(
RN

RA

)
CA

1 � CN
1 . (1.40)

This is (−1) times the C1 term in the electron-nucleus interaction. Combining the results,

[A,H0] = [A,HN ] +
4πα

3RA

(
RN

RA

)
CA

1 � CN
1 . (1.41)

Using the form that is most useful, this lets us rewrite the interaction as

V ′ = [A,E0 −H0] + ∆V, (1.42)

with

∆V ≡V ′ − 4πα

3RA

(
RN

RA

)
CA

1 � CN
1 + [A,HN ]

=− 4πα

RA

[
CA

0 �
(
CN

0 − < CN
0 >

)
+
∞∑
l=2

1

2l + 1

(
RN

RA

)l
CA
l � CN

l

+
∞∑
l=1

{
1

2l + 1

(
RN

RA

)l
TAmag,l � TNmag,l

+
1

2l + 1

(
RN

RA

)l+1

TAel,l � T
′N
el,l +

1

2l + 1

(
RN

RA

)l−1

T
′A
el,l � TNel,l

}]
+ V pen

eN + [A,HN ]. (1.43)

As the C1 term is now moved to the commutator [A,E0−H0], the sum over the charge-charge
interaction in ∆V starts at l = 2.
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Going back to the NLO expression for the electronic dipole contribution,

< 0|~de|1 > + < 1|~de|0 >

=

(
< 0|~de

Q0

E0 −H0

[A,E0 −H0]|0 > + < 0|~de
Q0

E0 −H0

∆V |0 >
)

+

(
< 0|[A,E0 −H0]

Q0

E0 −H0

~de|0 > + < 0|∆V Q0

E0 −H0

~de|0 >
)

=− < 0|~deQ0A|0 > + < 0|AQ0
~de|0 >

+ < 0|~de
Q0

E0 −H0

∆V |0 > + < 0|~de
Q0

E0 −H0

∆V |0 >

=− < 0|[~de, A]|0 > + < 0|~de
Q0

E0 −H0

∆V |0 > + < 0|~de
Q0

E0 −H0

∆V |0 > . (1.44)

The first term exactly cancels out < 0|~dN |0 >.We can now write the LO contribution to the
atomic EDM as

dLO ≡ < 0|~dN |0 > +
(
< 0|~de|1 > + < 1|~de|0 >

)
= < 0|~de

Q0

E0 −H0

∆V |0 > + < 0|~de
Q0

E0 −H0

∆V |0 > . (1.45)

”LO” here is meant as the sum of LO terms involving ~dN and NLO terms involving ~de. For
higher orders, ”NnLO” denotes the sum of NnLO terms involving ~dN and Nn+1LO terms
involving ~de.

1.5 Preliminary Results

1.5.1 General Expression

Through straightforward algebra, the next 2 orders in V ′ yield the following EDM ex-
pressions (to save space, K = Q0/(E0 −H0) is used):

dNLO ≡
(
< 0|~dN |1 > + < 1|~dN |0 >

)
+
(
< 0|~de|2 > + < 1|~de|1 > + < 2|~de|0 >

)
= < 0|~deK∆V K∆V |0 > + < 0|∆V K~deK∆V |0 > + < 0|∆V K∆V K~de|0 >

−
(
< 0|~deK2∆V |0 > + < 0|∆V K2~de|0 >

)
< 0|∆V |0 >

+ < 0|~deK[A,∆V ]|0 > + < 0|[A,∆V ]K~de|0 > (1.46)
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and

dNNLO

≡
(
< 0|~dN |2 > + < 1|~dN |1 > + < 2|~dN |0 >

)
+
(
< 0|~de|3 > + < 1|~de|2 > + < 2|~de|1 > + < 3|~de|0 >

)
= < 0|~deK∆V K∆V K∆V |0 > + < 0|∆V K~deK∆V K∆V |0 >

+ < 0|∆V K∆V K~deK∆V |0 > + < 0|∆V K∆V K∆V K~de|0 >

−
(
< 0|~deK∆V K2∆V |0 > + < 0|∆V K~deK

2∆V |0 > + < 0|∆V K∆V K2~de|0 >

+ < 0|~deK2∆V K∆V |0 > + < 0|∆V K2~deK∆V |0 > + < 0|∆V K2∆V K~de|0 >
)

× < 0|∆V |0 >

−
(
< 0|~deK2∆V |0 > + < 0|∆V K2~de|0 >

)
< 0|∆V K∆V |0 >

+
(
< 0|~deK3∆V |0 > + < 0|∆V K3~de|0 >

)
< 0|∆V |0 >2

+ < 0|~deK∆V K[A,∆V ]|0 > + < 0|~deK[A,∆V ]K∆V |0 >
+ < 0|∆V K~deK[A,∆V ]|0 > + < 0|[A,∆V ]K~deK∆V |0 >
+ < 0|∆V K[A,∆V ]K~de|0 > + < 0|[A,∆V ]K∆V K~de|0 >

+
(
< 0|~deK∆V |0 > + < 0|∆V K~de|0 >

)
× (< 0|AK∆V |0 > − < 0|∆V KA|0 >)

−
(
< 0|~deK2[A,∆V ]|0 > + < 0|[A,∆V ]K2~de|0 >

)
< 0|∆V |0 >

+ (cont.)
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(cont.)

−
(
< 0|~deK2∆V |0 > + < 0|∆V K2~de|0 >

)
< 0|[A,∆V ]|0 >

+
1

2

(
< 0|~deK∆V K[A, [A,E0 −H0]]|0 > + < 0|~deK[A, [A,E0 −H0]]K∆V |0 >

+ < 0|∆V K~deK[A, [A,E0 −H0]]|0 > + < 0|[A, [A,E0 −H0]]K~deK∆V |0 >

+ < 0|∆V K[A, [A,E0 −H0]]K~de|0 > + < 0|[A, [A,E0 −H0]]K∆V K~de|0 >
)

+
1

2

(
< 0|~deK[A, [A,∆V ]]|0 > + < 0|[A, [A,∆V ]]K~de|0 >

)
−
(
< 0|~deK∆V |0 > + < 0|∆V K~de|0 >

)
< 0|A2|0 >

− 1

2

(
< 0|~deK2∆V |0 > + < 0|∆V K2~de|0 >

)
< 0|[A, [A,E0 −H0]]|0 >

− 1

2

(
< 0|~deK2[A, [A,E0 −H0]]|0 > + < 0|[A, [A,E0 −H0]]K2~de|0 >

)
< 0|∆V |0 >

+
1

3

(
< 0|~deK[A, [A, [A,E0 −H0]]]|0 > + < 0|[A, [A, [A,E0 −H0]]]K~de|0 >

)
. (1.47)

1.5.2 Symmetry Considerations

There are two symmetry arguments that eliminate many terms from contributing to
the EDM. One is the parity operation on the electronic coordinates, and the other is time
reversal.

Since we assume that He is parity invariant, its ground state, |0 >e, has definite parity.
Multipole operators also have definite parity when all the electronic coordinates are reversed.
An electronic matrix element is an integral of a function of ~x over all space, so if the integrand
is odd under the transformation ~x → −~x, then the matrix element vanishes. For example,
consider the case when the ground state is odd under parity. Then under ~xi → −~xi,

< 0|CA
l |0 >e→ < 0|(−1) · (−1)lCA

l · (−1)|0 >e

=(−1)l < 0|CA
l |0 >e . (1.48)

Clearly, this result applies to even parity ground states as well. Since the symmetry trans-
formation here is a symmetry of the theory, l in eq. (1.48) must be even for the term to be
nonzero. More generally, for a term in the perturbation series to be nonzero, the total parity
of the electronic multipole operators, including ~de must be even.

Time reversal requirement is slightly more involved. For an example of how a multipole
operator transforms under T, consider CN

lm. It is helpful to use de Forest and Walecka’s
convention for the charge multipole [15], which is related to CN

lm as

C
′N
lm ≡ ilCN

lm. (1.49)
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Multipole Moment P T
Cl (−1)l (−1)l

Tmag,l (−1)l+1 (−1)l+1

Tel,l, T
′

el,l (−1)l (−1)l+1

Table 1.1: Phases acquired by multipoles under symmetry operations.

The action of time reversal operator T on the nuclear charge operator ρN is

TρN(~y)T−1 = (−1)sρN(~y), (1.50)

where s = 0 if the charge conserves T, and s = 1 if it violates T (we assume s = 0 for the
electronic charge operator). T operator also takes complex conjugates of any number. Using
these properties,

TC
′N
lmT

−1 =TilT−1

∫
d3y

(
y

RA

)l
TYlm(Ωy)T

−1TρN(~y)T−1

=(−i)l
∫
d3y

(
y

RA

)l
(−1)mYl,−m(Ωy)(−1)sρN(~y)

=(−1)l+m+sC
′N
l,−m. (1.51)

Now, consider a reduced matrix element of C
′N
lm .

< Jf ||C
′N
l ||Ji >

=

[
(−1)Jf−Mf

(
Jf l Ji
−Mf M Mi

)]−1

< JfMf |T−1TC
′N
lmT

−1T |JiMi >

=

[
(−1)Jf−Mf

(
Jf l Ji
−Mf M Mi

)]−1

(−1)l+M+Ji+Mi+s < Jf ,−Mf |C
′N
l,−m|Ji,−Mi >

∗

=

[
(−1)Jf−Mf

(
Jf l Ji
−Mf M Mi

)]−1

(−1)Ji+Mi+s < Ji,−Mi|C
′N
lm |Jf ,−Mf >

=(−1)Ji−Jf+l+s < Ji||C
′N
l ||Jf > . (1.52)

In the special case of a nuclear moment, Jf = Ji, and the matrix element vanishes if l + s
is odd. This is the expected result that even-l charge multipoles conserve T, and odd-l
multipoles violate T. Analogous calculations show that Tmag,l and Tel,l transform with the
opposite sign. These results are summarized in Table 1.1.

T (or, equivalently, CP) violation is a very small effect. It follows that any term that
includes more than one instance of T violation would be vanishingly small. This forbids, for
example, terms with two or more T-violating nuclear moments to contribute.
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1.5.3 LO contributions

From section 1.4, the leading order contributions in ∆V to the atomic EDM is,

dLO =< 0|~de
Q0

E0 −H0

∆V |0 > + < 0|~de
Q0

E0 −H0

∆V |0 > . (1.53)

Since ~de cannot cause a nuclear excitation, these terms involve ground state moments of the
nuclear multipoles that appear in ∆V . Also, the electronic multipole in ∆V must be odd
under parity, so that the combined parity with ~de becomes even. From these considerations,
the only multipoles in ∆V that can contribute up to (RN/RA)3 order are C3 and Tmag,2 in
the point-nucleus interaction, and C1 in the penetration term.

We evaluate the C3 contribution.

− 4πα

7RA

(
RN

RA

)3(
< 0||~de

Q0

E0 −H0

[
CA

3 � CN
3

]
||0 > +

+ < 0||
[
CA

3 � CN
3

] Q0

E0 −H0

~de||0 >
)

=− 4πα

7RA

(
RN

RA

)3
1(

F 1 F
−F 0 F

)∑
n′ 6=0

1

E0 − En′

(
< αejeαNjN |~de,10|α

′

ej
′

eαNjN >< α
′

ej
′

eαNjN |CA
3 � CN

3 |αejeαNjN >

+ < αejeαNjN |CA
3 � CN

3 |α
′

ej
′

eαNjN >< α
′

ej
′

eαNjN |~de,10|αejeαNjN >
)

=− 4πα

7RA

(
RN

RA

)3
1(

F 1 F
−F 0 F

)∑
n′ 6=0

1

E0 − En′
[F ] < FF10|FF >

[
−
{
j
′
e jN F
F 1 je

}{
j
′
e je 3
jN jN F

}
× < αeje||~de||α

′

ej
′

e >< α
′

ej
′

e||CA
3 ||αeje >< αNjN ||CN

3 ||αNjN >

−
{

je j
′
e 3

jN jN F

}{
je jN F
F 1 j

′
e

}
× < αeje||CA

3 ||α
′

ej
′

e >< α
′

ej
′

e||~de||αeje >< αNjN ||CN
3 ||αNjN >

]
=

4πα

7RA

(
RN

RA

)3

[F ]2
∑
n′

1

E0 − En′

{
j
′
e jN F
F 1 je

}{
j
′
e je 3
jN jN F

}
× < αNjN ||CN

3 ||αNjN >

× (< αeje||~de||α
′

ej
′

e >< α
′

ej
′

e||CA
3 ||αeje > + < αeje||CA

3 ||α
′

ej
′

e >< α
′

ej
′

e||~de||αeje >),
(1.54)
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where n′ stands for the state |α′
ej

′
eαNjN >.

The other two terms can be calculated by analogy, as only the multipolarity of C3 entered
in the calculation above. The Tmag,2 term becomes

− 4πα

5RA

(
RN

RA

)2(
< 0||~de

Q0

E0 −H0

[
TAmag,2 � TNmag,2

]
||0 > +

+ < 0||
[
TAmag,2 � TNmag,2

] Q0

E0 −H0

~de||0 >
)

=
4πα

5RA

(
RN

RA

)2

[F ]2
∑
n′

1

E0 − En′

{
j
′
e jN F
F 1 je

}{
j
′
e je 2
jN jN F

}
× < αNjN ||TNmag,2||αNjN >

×
(
< αeje||~de||α

′

ej
′

e >< α
′

ej
′

e||TAmag,2||αeje >

+ < αeje||TAmag,2||α
′

ej
′

e >< α
′

ej
′

e||~de||αeje >
)
. (1.55)

From Appendix A.2, the effective operator for the C1 penetration term is

Veff(CA
1 � CN

1 ) =
4πα

RA

1

10

√
4π

3

(
RN

RA

)3
[
R4
A

Z∑
i=1

(←−
∇ i,mδ

3(~xi) + δ3(~xi)
−→
∇ i,m

)]

�
∫
d3y

(
y

RN

)3

ρN(~y)Y1(Ωy). (1.56)

Again by analogy, the C1 penetration contribution becomes(
< 0||~de

Q0

E0 −H0

Veff (C
A
1 � CN

1 )||0 > + < 0||Veff (CA
1 � CN

1 )
Q0

E0 −H0

~de||0 >
)

=− 4πα

10RA

(
RN

RA

)3

[F ]2
∑
n′

1

E0 − En′

{
j
′
e jN F
F 1 je

}{
j
′
e je 1
jN jN F

}
× < αNjN ||

∫
d3y

(
y

RN

)3

Y1(Ωy)ρN(~y)||αNjN >

×

[
< αeje||~de||α

′

ej
′

e >< α
′

ej
′

e||R4
A

∑
i

(←−
∇ iδ

3(~xi) + δ3(~xi)
−→
∇ i

)
||αeje >

+ < αeje||R4
A

∑
i

(←−
∇ iδ

3(~xi) + δ3(~xi)
−→
∇ i

)
||α′

ej
′

e >< α
′

ej
′

e||~de||αeje >

]
. (1.57)

The usual Schiff moment is given by

~S =
e

10

(
< y2~y > − 5

3Z
< y2 >< ~y >

)
, (1.58)
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which was corrected in [9] to

~S =
e

10

[
< y2~y > − 5

3Z

〈
y2

(
1− 4

√
π

5
Y2(ŷ)

)
⊗ ~y
〉

1

]
. (1.59)

Inspection of the C1 penetration term (1.57) shows that it can be identified with the first
term in eq. (1.59). In our formalism, the other 2 terms come from [A,∆V ], with C0

penetration and C2 penetration terms in ∆V . These contributions appear at the next order
in perturbation theory. Note, however, that the C3 contribution is of the same order in
RN/RA as the Schiff moment, and the M2 term is actually larger in terms of this power
counting.

There are restrictions on the nuclear and atomic spins, from angular momentum consid-
erations:

• For the C1 contribution, there is no restriction on atomic spin, as ~de and the electronic
C1 operator can couple to form a scalar. The nuclear spin does have to be 1/2 or
greater in order to have a J = 1 moment.

• For the M2 contribution, je must be at least 1/2, and jN must be at least 1.

• For the C3 contribution, je must be at least 1, and jN must be at least 3/2.

1.5.4 NLO Summary and Conclusions

For dNLO, possible combinations of operators that can contribute to eq. (1.46), up to
(RN/RA)3 order, are: without a nuclear excitation,

• [A,CA
2 � CN

2 ]

• [A,CA
0 � CN

0 ] penetration

• [A,CA
2 � CN

2 ] penetration

• [A,MA
1 �MN

1 ]

• MA
1 �MN

1 and MA
2 �MN

2

and with a nuclear excitation, it has to be a combination of

• [A,HN ] or

• T ′A
el,1 � TNel,1

and

• MA
1 �MN

1 ,
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• T ′A
el,2 � TNel,2, or

• CA
2 � CN

2 .

Since the typical nuclear excitation energy is larger than the typical atomic excitation energy
by a factor of approximately RA/RN , the energy denominator with a nuclear excitation
counts as one more power of RN/RA. The first two contributions, as mentioned earlier,
completes the Schiff moment.

Some of the other terms at this order can be identified with terms first considered in [9].
In addition, using the Breit interaction has resulted in contributions from transverse electric
moments, and power counting based on the ratio RN/RA ensures consistent treatment of
the terms. The NLO and NNLO expressions after the implementation of Schiff cancellation,
(1.46, 1.47), is also a new result.

The effects of (CN
0 − < CN

0 >) are yet to be considered. Since this operator is not
suppressed by powers of RN/RA, it can potentially result in a relatively large EDM signal.
Also, higher order terms involving the C1 interaction can also be large in terms of power
counting, and may require special treatment. These are the next steps in this project, along
with exhausting all possible terms at NNLO and above.
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Chapter 2

Harmonic-Oscillator-Based Effective
Theory

2.1 Introduction

One of the difficulties in building an effective theory (ET) of the nucleus is that the nuclear
potential is finely tuned. The shallow binding of the deuteron and the long scattering lengths
in nucleon-nucleon (NN) scattering are very sensitive to small changes in the NN potential.
The potential is attractive at long range and highly repulsive in the short range, and a
successful ET of nucleon interactions must respect how nuclear observables result from the
interplay between these components to the potential.

The use of harmonic-oscillator (HO) basis is one way to disentangle the short- and the
long-range physics. Oscillator length, b, gives HO eigenstates a characteristic length scale,
and if we choose b to have an intermediate scale, then the short-range physics and the long-
range physics can be treated separately. Effectiveness of the traditional shell model approach
to nuclear physics was partly due to this separation of the length scales. Another reason for
shell model’s success is the center-of-mass separability in the basis of HO Slater determinants,
i.e. if all states having up to N quanta are in the model space, then the effective Hamiltonian
can be separated into the center-of-mass motion terms and relative motion terms. Despite
these virtues of shell model, its approximations are uncontrolled, compromising its reliability.
Our goal is to formulate a harmonic-oscillator-based effective theory (HOBET) that takes
advantage of the scale separation and the computational machinery in the HO basis, while
maintaining the systematic order-by-order approximation of effective theory (ET).

The final product should be similar to an effective field theory: a HOBET that contains all
the operators allowed by the symmetries as interactions. The strengths of each interaction, in
the end, should be determined by directly matching to experimental results, e.g. scattering
phase shifts. This avoids reference to any sort of high-momentum NN potential, which would
be an unnecessary intermediate step between QCD and the final ET.

The first step in building a HOBET is to introduce a cutoff Λ in the HO basis, including
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all HO states with Λ energy quanta or less in the allowed (P-) space. The point of using an
ET is to restrict all of the calculations to this finite Hilbert space, rather than carrying out
an expensive calculation in the full, infinite space. As restricting a wavefunction into P-space
strips out the long-range part of the wavefunction, it may be expected that the information
about the phase shift would be lost in the process. We show, using a toy model of a double
square well, that the longest-range behavior of the restricted wavefunction contains sufficient
information to recover the phase shift. To make the potential a model of the NN interaction,
it is attractive at long range, and has a repulsive core in the short range, and has a bound
state at the deuteron binding energy.

Then we derive an equation, which we call the master equation for the HOBET, that
resembles the Lippmann-Schwinger equation, but only acts on states in the P-space. The
contributions from states in the excluded (Q-) space are encoded in effective operators, which
will depend on the energy E of the system as well as the cutoff Λ. For the double square
well, it is possible to solve the Schrödinger equation (or the Lippmann-Schwinger equation)
analytically, and the Green’s function representation of 1/(E −H) in coordinate space can
be written down in closed form. This allows us to verify that solving the master equation
reproduces the P-space projection of the exact, full-space wavefunction.

In the actual NN potential problem, this is not a desirable path to take. Calculating the
Green’s function 1/(E−H) for the NN potential is computationally expensive, and does not
clarify what roles the short-range and long-range parts of the potential play in determining
the observables. As in [17], we define the tilde state

|α̃ >≡ E

E −QT + iε
|α > . (2.1)

The tilde state modifies the long-range behavior of the ”edge” states, the states with max-
imum nodal quantum number n for given angular momentum l. Instead of the e−r

2/2 tail
common to HO eigenstates, the tilde state tails off much more slowly, as eikr/kr, where
k =

√
2E/~ω. Examination shows that the expression here is the analytical continuation of

the tilde state in [17].
The tilde state modification to the edge state wavefunction has the effect of bringing

in long-range physics into P-space. The short-range physics is modeled by replacing the
short-range part of the effective potential by a contact-gradient series. This is equivalent to
expanding around the intermediate momentum scale q ∼ 1/b, using a small parameter (a/b),
where a is the length scale associated with the short-range repulsion of the NN interaction.
For HOBET to be successful, each successive order in the contact-gradient expansion must
produce better approximation to the actual interaction. We show the results of some of the
studies that tested this using the toy model.

2.2 Formalism

First, we choose the oscillator length b. b is a free parameter in the theory, but we wish
to choose a value that is longer than the length scale of the repulsive core, and shorter than



24

the length scale associated with small deuteron binding and large scattering lengths. As in
[17], we use b = 1.7fm, roughly the range of the tail in the NN potential. The dependence
of the theory on this parameter is a topic for future investigation.

Once b is chosen, the usual three-dimensional harmonic oscillator (HO) Hamiltonian can
be solved, and the set of HO eigenstates is the basis that we will conduct our calculations.
Each HO state is labeled by the nodal quantum number n and angular momentum l. Our
convention is that the lowest lying states have the nodal quantum number n = 1. The energy
eigenvalues are given by

H|nl >= ~ω(2n+ l − 1/2)|nl >, (2.2)

and we will write the coordinate space wavefunction as

< r|nl >= Rnl(r)Ylm(Ω). (2.3)

The form of this wavefunction is given in appendix B.1.
Next, we pick the cutoff for the ET, parametrized by an integer Λ. States with energies

up to (Λ + 3/2)~ω are included in the model space (3/2~ω is the ground state energy).
Projection operator into the model space (P-space) can be written

P =

2n+l≤Λ∑
nl

|nl >< nl|. (2.4)

Projection operator out of the P-space, and into the Q-space, is then

Q = 1− P. (2.5)

For the time being, we use Λ = 8, but observing the changes in the ET as this parameter
(much like b) is adjusted is one way to investigate the properties of this theory.

2.3 Phase Shift

In HOBET, only the P-space projection of wavefunctions appear explicitly. As HO
wavefunctions have Gaussian tails that quickly goes to 0, one may wonder if projecting a
scattering wavefunction into a finite space of HO states would destroy the information about
the asymptotic behavior. Before embarking on ET calculations, we will demonstrate that
P-space projection preserves enough information for us to recover the phase shift.

Let
< r|ψl >= ψl(r)Ylm(Ω) (2.6)

be the partial wave with angular momentum l for the full-space solution of the Schrödinger
equation, H|ψ >= E|ψ >, and

< r|P |ψl >= ψ
(P )
l (r)Ylm(Ω) (2.7)
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be its P-space projection.
Consider integrals of the form∫ ∞

0

r2dr r2m+le−r
2/2Rnl(r), (2.8)

where m is a non-negative integer. These integrals vanish when m < n. This allows us to
identify the longest-range information in ψl(r) that remains intact after P-space projection.
To see this, explicitly expand ψl(r) in HO basis.

ψl(r) =
∞∑
n=1

< r|nl >< nl|ψl >=
∞∑
n=1

cn,ψRnl(r), (2.9)

with the definition cn,ψ ≡< nl|ψl >. Then the P-space projection is

ψ
(P )
l (r) =

∞∑
n=1

< r|nl >< nl|P |ψl >=
nmax∑
n=1

cn,ψRnl(r), (2.10)

where nmax is the largest integer n that satisfies 2n+ l ≤ Λ.
Using the fact that the integral (2.8) vanishes for m < nmax,

I(m) ≡
∫ ∞

0

r2dr r2m+le−r
2/2ψl(r)

=
∞∑
n=1

∫ ∞
0

r2dr r2m+le−r
2/2Rnl(r)

=
nmax∑
n=1

∫ ∞
0

r2dr r2m+le−r
2/2Rnl(r)

=

∫ ∞
0

r2dr r2m+le−r
2/2ψ

(P )
l (r). (2.11)

Evaluating the integral using the projected wavefunction yields the same answer as using
the full wavefunction. In particular, I(nmax) and I(nmax − 1) are the integrals that capture
the two longest-range behaviors of ψl(r) that is preserved in the P-space projection.

If these moments receive most of their weights from points outside the strong core, then
their values are only sensitive to the asymptotic part of the wavefunction, and contain
information about the phase shift. To test this, we replace the true wavefunction by its
asymptotic form,

ψl(r)→ A (cos δljl(kr)− sin δlnl(kr)) , (2.12)

where jl(r) and nl(r) are the usual spherical Bessel functions, and k ≡
√

2E/~ω; the test is
whether this replacement affects the long-range moments or not.
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Making the replacement,

I(m)→ A

∫ ∞
0

r2dr r2m+le−r
2/2 (cos δljl(kr)− sin δlnl(kr)) . (2.13)

Integrals involving the spherical Bessel functions can be evaluated:

Ij(m) ≡
∫ ∞

0

r2dr r2m+le−r
2/2jl(kr)

=2mkle−k
2/2

√
π

2

Γ(m+ l + 3/2)

Γ(l + 3/2)
1F1(−m; l + 3/2; k2/2) (2.14)

and

In(m) ≡
∫ ∞

0

r2dr r2m+le−r
2/2nl(kr)

=− 2m+le−k
2/2

√
πkl+1

Γ(m+ 1)Γ(l + 1/2)1F1(−l −m− 1/2; 1/2− l; k2/2), (2.15)

where 1F1(a; b; c) is the confluent hypergeometric function, as defined in [18]. Having evalu-
ated the integrals, we can write

I(nmax)→A (cos δlIj(nmax)− sin δlIn(nmax))

I(nmax − 1)→A (cos δlIj(nmax − 1)− sin δlIn(nmax − 1)) . (2.16)

If the replacement of the wavefunction by its asymptotic piece has only small effects on the
values of the moments, we can solve for cot δl to obtain

k cot δl ≈ k
In(nmax)I(nmax − 1)− In(nmax − 1)I(nmax)

Ij(nmax)I(nmax − 1)− Ij(nmax − 1)I(nmax)
. (2.17)

We need 2 integrals I(nmax) and I(nmax − 1) so that the arbitrary constant factor A can
be removed. Once we have P |ψ > as a function of k, It is straightforward to expand the
right-hand side in power series of k, and this can be compared to the true effective range
expansion (the left-hand side).

We introduce a toy model for the NN potential for this comparison. It is a mildly
attractive square well with a strongly repulsive core. Specifically, we use the potential

V (r) =


V1, r < a1

−V2, a1 < r < a2

0, r > a2,
(2.18)

where a1 = 0.25fm, a2 = 1.7fm, V1 = 40×54.531MeV, and V2 = 54.531MeV (note the minus
sign in the definition of V ).
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The lengths were chosen to match the typical length scales in the NN potential, and the
strength of the potential was chosen so that the potential has a bound state at the deuteron
binding energy, E = −2.22452MeV. Although the deuteron wavefunction contains l = 2
components, the model should be sufficient for capturing the relevant features of the NN po-
tential. The square well is useful because it is solvable analytically; scattering wavefunctions
can be written in closed form using standard functions, with explicit dependence on k.

By analytically solving the Schrödinger equation (or the equivalent Lippmann-Schwinger
equation) analytically, we obtain the exact expression for the phase shift in the 1S0 channel,
δ0. Then, expanding k cot δ0 in powers of k gives the usual effective range expansion,

k cot δ0 = −0.457721 + 0.323155k2 + 1.15663× 10−2k4 + 4.23022× 10−4k6 + . . . . (2.19)

The test is to project the exact scattering wavefunction (written as a function of k) into
P-space, then use the procedure described above to find the approximate effective range
expansion, and compare with the exact result. Numerical calculation on Mathematica gives
the series

k cot δ0 ≈ −0.457725 + 0.323136k2 + 1.15749× 10−2k4 + 4.22876× 10−4k6 + . . . . (2.20)

The fractional errors in the approximated coefficients of k2n are 1.0 × 10−5 : 5.9 × 10−6 :
7.4×10−4 : 3.5×10−4. This shows that the long-range moments are insensitive to the interior
parts of the wavefunction and that the P-space projection of the scattering wavefunction does
contain sufficient information for reconstructing the asymptotic behavior with high precision.

2.4 Master Equation

The equation that we use to find P |ψ > is inspired by both the Bloch-Horowitz equation
and the Lippmann-Schwinger equation.

Bloch-Horowitz equation for an eigenvalue problem H|ψ >= E|ψ > is given by

HeffP |ψ >= EP |ψ >, (2.21)

where the energy-dependent effective Hamiltonian Heff is defined as

Heff ≡H +HQ
1

E −QH
QH

=
E

E − TQ

[
T − TQT

E
+ V + V

1

E −QH
QV

]
E

E −QT
. (2.22)

The form in the second line was derived in one of the appendices of [19]. This equation
prescribes a method to obtain the P-space restriction of an eigenstate of H, using effective
operators in P-space that implicitly take account of the Q-space effects.
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The Lippmann-Schwinger equation is

|ψ >= |φ > +
1

E − T + iε
V |ψ > . (2.23)

This is an equation that is typically solved self-consistently for |ψ >; the equation picks out
the eigenstate of H that is asymptotically an unperturbed incoming wave plus an outgoing
wave that has been altered by the potential. (+iε) in the denominator ensures that the
scattering term has only an outgoing wave component in the r →∞ limit.

In order to derive the master equation, we start with a rewritten version of the Lippmann-
Schwinger equation:

|ψ >= |φ > +
1

E −H + iε
V |φ > . (2.24)

Projecting this into P space,

P |ψ >= P |φ > +P
1

E −H + iε
V |φ > . (2.25)

Using the relation

1

E −H + iε
=

1

E −HQ+ iε
+

1

E −H + iε
HP

1

E −HQ+ iε

=

(
1 +

1

E −H + iε
HP

)
1

E −HQ+ iε
, (2.26)

the scattered wave (the last term) in eq. (2.25) can be written as

P
1

E −H + iε
V |φ >=P

(
1 +

1

E −H + iε
HP

)
1

E −HQ+ iε
V |φ >

=PMP
1

E −HQ+ iε
V |φ >, (2.27)

where

M ≡ 1 +Mpp +M2
pp +M3

pp + · · · = 1

1−Mpp

(2.28)

with

Mpp ≡ P
1

E −HQ+ iε
HP. (2.29)

Mpp is suggestive of the Bloch-Horowitz effective Hamiltonian, eq. (2.22), and it allows a
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useful rewrite:

Mpp ≡P
1

E −HQ+ iε
HP

=PH
1

E −QH + iε
P

=PT
1

E −QH + iε
P + PV

1

E −QH + iε
P

=PT

(
1

E −QT + iε
+

1

E −QT + iε
QV

1

E −QH + iε

)
P + PV

1

E −QH + iε
P

=PT
1

E −QT + iε
P + P

(
T

1

E −QT + iε
Q+ 1

)
V

1

E −QH + iε
P

=PT
1

E −QT + iε
P + P

E

E − TQ+ iε
V

1

E −QH + iε
P

=PT
1

E −QT + iε
P + P

E

E − TQ+ iε

(
V + V

1

E −QH + iε
QV

)
1

E −QT + iε
P.

(2.30)

Rewriting the last part of the scattered wave,

1

E −HQ+ iε
V =

1

E − TQ+ iε
V +

1

E − TQ+ iε
V Q

1

E −HQ+ iε
V

=
1

E − TQ+ iε

(
V + V

1

E −QH + iε
QV

)
. (2.31)

Putting these ingredients together, we get the master equation,

P |ψ >= P |φ > +PMP
1

E − TQ+ iε

(
V + V

1

E −QH + iε
QV

)
|φ > . (2.32)

2.5 Tilde State

In order to evaluate the matrix elements in the master equation, we need an expression
for the tilde state,

|α̃ >≡ E

E −QT + iε
|α > . (2.33)

For non-edge states (states that are not at the boundary between the P-space and the Q-
space), QT |α >= 0, and so

|α̃ >= |α > . (2.34)

For an edge state, the tilde state can be expanded in HO basis as

E

E −QT + iε
|nl >=

∞∑
i=0

g̃i(k
2;n, l)|n+ i, l > . (2.35)
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In [17], an iterative scheme to find the coefficients g̃i was given for E < 0 (k2 < 0). However,
this scheme is not useful in the E > 0 case, because g̃i does not vanish quickly as i→∞.

Instead of the iteration method, we should adapt the Green’s function method, which is
also given in [17], to the E > 0 case. Key observation is that

(E − T )|α̃ >=P

[
E − T E

E −QT + iε

]
P |α >

=

[
P

1

E − T + iε
P

]−1

|α >, (2.36)

so the tilde state can be written

|α̃ >=
1

E − T + iε

[
P

1

E − T + iε
P

]−1

|α > . (2.37)

It is easier to evaluate 1/(E−T + iε) in momentum space than in coordinate space, since
T is diagonal in momentum space. First, the momentum space expression for this operator
is (detailed derivations are given in the appendix B.2)

< p′| 1

E − T + iε
|p >=

2

~ω
1

k2 − p2 + iε
(2π)3δ3(~p− ~p′

). (2.38)

As is well known, HO wavefunctions are Fourier transforms of themselves, but up to a
constant that depends on the normalization convention:

< p|nlm >=

∫
d3r < p|r >< r|nlm >

=

∫
d3r e−i~p·~r

√
2(n− 1)!

Γ(n+ l + 1/2)
L
l+1/2
n−1 (r2)rle−r

2/2Ylm(Ω)

=(2π)3/2(−i)l(−1)n−1

√
2(n− 1)!

Γ(n+ l + 1/2)
ple−p

2/2L
l+1/2
n−1 (p2)Ylm(Γp). (2.39)

Expanding the Laguerre polynomials,

< n′lm| 1

E − T + iε
|nlm >

=
2

~ω

n−1∑
m=0

n′−1∑
m′=0

(−1)m+m′+n+n′√
4(n− 1)!(n′ − 1)!Γ(n+ l + 1/2)Γ(n′ + l + 1/2)

m!m′!(n− 1−m)!(n′ − 1−m′)!Γ(l +m+ 3/2)Γ(l +m′ + 3/2)
×

×
∫ ∞

0

dp p2l+2m+2m′+2e−p
2

k2 − p2 + iε
. (2.40)
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The last integral can be turned into a principal value integral, then evaluated:∫ ∞
0

dp p2Ne−p
2

k2 − p2 + iε

=− 1

2

[
P
∫ ∞

0

du
uN−1/2e−u

u− k2
+ iπk2N−1e−k

2

]
=
e−k

2

2

[
(N − 1/2)(−k2)N−1/2Γ(N − 1/2)γ(1/2−N,−k2)− iπk2N−1

]
, (2.41)

where γ(a, z) = Γ(a)−Γ(a, z) is the lower incomplete gamma function. The matrix elements
of 1/(E − T + iε) in the HO basis are

< n′lm| 1

E − T + iε
|nlm > (2.42)

=
1

~ω

n−1∑
m=0

n′−1∑
m′=0

(−1)m+m′+n+n′+1
√

4(n− 1)!(n′ − 1)!Γ(n+ l + 1/2)Γ(n′ + l + 1/2)

m!m′!(n− 1−m)!(n′ − 1−m′)!Γ(l +m+ 3/2)Γ(l +m′ + 3/2)
(2.43)

× e−k2
[
(N − 1/2)(−k2)N−1/2Γ(N − 1/2)γ(1/2−N,−k2)− iπk2N−1

]
, (2.44)

where N ≡ l +m+m′ + 1.
Now that the matrix elements of 1/(E − T + iε) in the HO basis are known,[

P
1

E − T + iε
P

]−1

(2.45)

can be calculated by matrix inversion. In practice, we expand the answers as power series in
k and keep only up to O(k6), as that is the highest order we consider for the effective range
expansion. Here, define a ket |αnlm > and its radial wavefunction Rα

nl(r) as follows:

|αnlm >≡
[
P

1

E − T + iε
P

]−1

|nlm >

Rα
nl(r)Ylm(Ω) = < r|αnlm > . (2.46)

This function acts as the driving term for the Green’s function equation (2.37). The action
of the operator 1/(E − T + iε) is given by the integration kernel

g
(0)
l (r1, r2) = −ikjl(kr<)h

(1)
l (kr>), (2.47)

where h
(1)
l is the spherical Hankel function of the first kind. This was constructed from 2

solutions to the equation (E − T )|φ >= 0 (the Helmholtz equation, in coordinate space),

which satisfy the boundary conditions. jl(kr) is regular at the origin, and h
(1)
l (kr) asymptotes

to an outgoing wave as r →∞.
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Eq. (2.37) turns into the following equation to find the tilde state:

< r|α̃ >=R̃α
nlYlm(Ω)

=− ikYlm(Ω)

[∫ r

0

r′2dr′jl(kr
′)h

(1)
l (kr)Rα

nl(r
′)

+

∫ ∞
r

r′2dr′jl(kr)h
(1)
l (kr′)Rα

nl(r
′)

]
. (2.48)

For negative k2, the integral in eq. (2.40) can be done without taking the principal part,
and it is ∫ ∞

0

dp p2Ne−p
2

k2 − p2 + iε
= −e

−k2

2
(−k2)N−1/2Γ(N + 1/2)Γ(1/2−N,−k2). (2.49)

Numerical tests have confirmed that using this expression reproduces the tilde state obtained
from the recursion method. The difference between eq. (2.41) and (2.49) is 0 ifN is an integer
(which is satisfied) and k is in the upper half of the complex plane. Thus, the tilde state we
have for E > 0 is the correct analytic continuation from the bound state expression.

For the toy model, the solution to the full Schrödinger equation is known analytically,
and the Green’s function 1/(E −H + iε) can be evaluated in coordinate space. This allows
a direct test of the master equation and the evaluation of matrix elements, as follows.

Consider

1

E −HQ+ iε
− 1

E − TQ+ iε

=
1

E − TQ+ iε
(E − TQ)

1

E −HQ+ iε
− 1

E − TQ+ iε
(E −HQ)

1

E −HQ+ iε

=
1

E − TQ+ iε
V Q

1

E −HQ+ iε
. (2.50)

Using this relation, the operator Mpp can be rewritten as

Mpp =PT
1

E −QT + iε
P

+ P
E

E − TQ+ iε

(
V + V

1

E −QH + iε
QV

)
1

E −QT + iε
P

=PT
1

E −QT + iε
P

+ P
E

E − TQ+ iε

(
V + V Q

1

E −HQ+ iε
V

)
1

E −QT + iε
P

=PT
1

E −QT + iε
P + P

E

E −HQ+ iε
V

1

E −QT + iε
P. (2.51)
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Writing this in terms of 1/(E − T + iε) and 1/(E −H + iε),

Mpp =PT
1

E − T + iε

[
P

1

E − T + iε
P

]−1

+

[
P

1

E −H + iε
P

]−1
E

E −H + iε
V

1

E − T + iε

[
P

1

E − T + iε
P

]−1

. (2.52)

Similarly, the master equation is rewritten as

P |ψ >=P |φ > +PMP
1

E −HQ+ iε
V |φ >

=P |φ > +PM

[
P

1

E −H + iε
P

]−1
1

E −H + iε
V |φ > . (2.53)

The expression for the free Green’s function 1/(E − T + iε) has been given earlier. To
evaluate the Green’s function for the full Hamiltonian, consider two radial wavefunctions
that solve the square well problem; one solution, R<(r), is regular at the origin, and the
other, R>(r), is asymptotically an outgoing wave as r → ∞. Then the Green’s function is
given by the kernel

gl(r1, r2) =
2

~ωW [R<, R>](r)
R<(r<)R>(r>), (2.54)

where W [R<, R>](r) is the Wronskian of the two wavefunctions. Numerical calculation using
Mathematica showed that P |ψ > obtained from the master equation matches the P-space
projection of the analytical solution to the Lippmann-Schwinger equation. This is a useful
check on the derivation of eq. (2.32) and its numerical implementation.

2.6 Contact-Gradient Expansion

The starting point for contact-gradient expansion for HOBET is the contact-gradient
expansion used in the plane wave basis. All contact-gradient operators up to N3LO are
given in Table 2.1. In the plane wave basis, the contact-gradient expansion amounts to a
power series in k2 around momentum 0, since

−→
∇2ei

~k·~r ≡ −k2ei
~k·~r → 0 (2.55)

as k → 0. In HOBET, the series expansion should be around momentum k ∼ 1/b. In [17],
it was demonstrated that replacing contact-gradient operators by

O → Ō = er
2/2Oer

2/2 (2.56)

results in a series expansion around this intermediate scale. The matrix elements of Ō
between HO eigenstates and tilde states are given in appendix B.3.
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Transitions LO NLO NNLO N3LO

3S1 ↔3 S1 δ(r) (
←−
∇2δ(r) + δ(r)

−→
∇2)

←−
∇2δ(r)

−→
∇2 (

←−
∇4δ(r)

−→
∇2 +

←−
∇2δ(r)

−→
∇4)

or 1S0 ↔1 S0 (
←−
∇4δ(r) + δ(r)

−→
∇4) (

←−
∇6δ(r) + δ(r)

−→
∇6)

3S1 ↔3 D1 (
←−
D0δ(r) + δ(r)

−→
D0) (

←−
∇2δ(r)

−→
D0 +

←−
D0δ(r)

−→
∇2) (

←−
∇4δ(r)

−→
D0 +

←−
D0δ(r)

−→
∇4)

(δ(r)
−→
∇2−→D0 +

←−
D0←−∇2δ(r)) (

←−
∇2δ(r)

−→
∇2−→D0 +

←−
D0←−∇2δ(r)

−→
∇2)

(δ(r)
−→
∇4−→D0 +

←−
D0←−∇4δ(r))

1D2 ↔1 D2
←−
D2δ(r)

−→
D2 (

←−
D2←−∇2δ(r)

−→
D2 +

←−
D2δ(r)

−→
∇2−→D2

or 3DJ ↔3 DJ

3D3 ↔3 G3 (
←−
D2δ(r)

−→
G2 +

←−
G2δ(r)

−→
D2)

1P1 ↔1 P1
←−
∇δ(r)

−→
∇ (

←−
∇
←−
∇2δ(r)

−→
∇ +

←−
∇δ(r)

−→
∇2−→∇)

←−
∇
←−
∇2δ(r)

−→
∇2−→∇

or 3PJ ↔3 PJ (
←−
∇
←−
∇4δ(r)

−→
∇ +

←−
∇δ(r)

−→
∇4−→∇)

3P2 ↔3 F2 (
←−
∇δ(r)

−→
F 1 +

←−
F 1δ(r)

−→
∇) (

←−
∇
←−
∇2δ(r)

−→
F 1 +

←−
F 1δ(r)

−→
∇2−→∇)

(
←−
∇δ(r)

−→
∇2−→F 1 +

←−
F 1←−∇2δ(r)

−→
∇)

1F3 ↔1 F3
←−
F 3δ(r)

−→
F 3

or 3FJ ↔3 FJ

Table 2.1: The bare contact-gradient operators. Operator definitions are ~D2
M = (∇⊗∇)2M ,

~D0
0 = [(σ(1) ⊗ σ(2))2 ⊗ D2]00, ~F 3

M = (∇ ⊗ D2)3M , ~F 1
M = [(σ(1) ⊗ σ(2))2 ⊗ F 3]1M , ~G4

M =

(D2 ⊗D2)4M , and ~G2
M = [(σ(1)⊗ σ(2))2 ⊗G4]2M . (From [17])

This replacement has the virtue of eliminating operator mixing. The LO coefficient,
a3S1
LO is determined solely from the (n′, n) = (1, 1) matrix element, as higher-order contact-

gradient operators do not contribute to this matrix element. Similarly, the NLO coefficient
is determined from the (1, 2) matrix element, and NNLO and N3LO results do not affect this
value, and so on for each operator.

As in [17], the contact-gradient expansion replaces the expression

V
1

E −QH + iε
QV. (2.57)

There are 2 replacements. The first is in the operator Mpp,

Mpp =PT
1

E −QT + iε
P

+ P
E

E − TQ+ iε

(
V + V

1

E −QH + iε
QV

)
1

E −QT + iε
P

→PT 1

E −QT + iε
P

+ P
E

E − TQ+ iε

(
V +

∑
i=LO,NLO,...

Ōi

)
1

E −QT + iε
P. (2.58)
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The second replacement acts directly on the free state |φ >,

P |ψ >=P |φ > +PMP
1

E − TQ+ iε

(
V + V

1

E −QH + iε
QV

)
|φ >

→P |φ > +PMP
1

E − TQ+ iε

(
V +

∑
i=LO,NLO,...

Ōi

)
|φ > . (2.59)

2.7 Square-Well Results

Since the square well allows all the matrix elements in the master equation to be written
down as a power series in k, we can find the contact-gradient coefficients by matching to the
matrix elements of

< ñ′|V 1

E −QH + iε
QV |ñ > . (2.60)

The (n′, n) = (1, 1) matrix element is compared with the (1, 1) matrix element of the LO
operator (delta function) to determine aLO, then the (1, 2) matrix element is compared to
that of the NLO operator, etc. One way to see what kind of physics is being captured by
the contact-gradient expansion is to examine how the coefficients respond to changes in the
square well parameters.

Such a test was performed for the LO coefficient, aLO, by adjusting the radius and
strength of the core. For our original potential that reproduces deuteron binding energy
(a1 = 0.25fm, a2 = 1.7fm, V1 = 40 × 54.531MeV, V2 = 54.531MeV), the LO coefficient has
the value

aLO = −7.58182MeV. (2.61)

Repeating an argument in [17], it is reasonable to assume that rescattering in Q-space
effectively results in a potential of the form

V0e
−r2/a2 , (2.62)

having some strength V0 and range a. Comparing the matrix elements of this potential and of
the contact-gradient operators, this ansatz gives the behavior of contact-gradient coefficients
as

aNnLO ∼ V0

(
a2

a2 + b2

)n+3/2

. (2.63)

For the square well with a highly repulsive core, V0 should be roughly proportional to the
height of the core V1, and a should approximately be the core radius a1. From this argument,
the prediction for aLO is that it is determined by V1a

3
1 when a1 is small compared to b.

The results of redefining the radius of the core a1 to a
′
1 = a1/2, a1/4, and a1/8 are shown

in Figure 2.1. One sees that the LO coefficient aLO depends roughly linearly on the new
potential height V

′
1 . Also, it is interesting to look at the height of the core, V1, that is

required to keep aLO constant. The Figure 2.2 shows the result of this test. As a
′
1 is taken
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to values that are less than 1/100 of the scattering length b, the LO coefficient is almost
entirely determined by the combination a

′3
1 V

′
1 . This exercise shows that, as predicted, the

LO term in the HOBET contact-gradient expansion captures the overall strength of the core,
as measured by a3V0.

Returning to the original square well potential, contact-gradient coefficients for all terms
up to N3LO can be determined by matching the numerically evaluated matrix elements

< ñ′|V 1

E −QH + iε
QV |ñ > . (2.64)

Truncating the contact-gradient expansion at each order, the master equation can be solved
for P |ψ >, and this P-space wavefunction can in turn be used to calculate k cot δ0. The
ET is working if there is a systematic convergence to the full solution as more terms in the
contact-gradient expansion are added.

One problem that we encounter when k cot δ0 is extracted from the approximate solution
for P |ψ > is that k cot δ0 is seen to contain odd powers of k with small imaginary coef-
ficients. For example, the effective range expansion calculated using the contact-gradient
series truncated at LO is

k cot δ0 ≈− 0.479119 + 3.43056× 10−3ik + 0.315273k2 + 6.91152× 10−4ik3

+ 0.0105398k4 + 7.57313× 10−5ik5 + 0.000338711k6. (2.65)

Since local, real potentials lead to k cot δ0 that is real and contains only even powers of k, it
would be an indication of a serious mistake if replacing V (r) by a delta function introduced
such imaginary parts. But that is not what was done in our calculation. What was replaced
by the contact-gradient expansion was not V (r), but the non-local interaction

< ñ′|V 1

E −QH + iε
QV |ñ > . (2.66)

The imaginary parts appear to be a consequence of approximating this in a way that does
not ensure that the resulting wavefunction is real. In tests with smaller P-spaces, it was
shown that approximating (2.66) by a contact-gradient expansion continues to introduce
odd powers of k in the final answer, until all matrix elements have been matched and the
contact-gradient expansion is identical to (2.66).

What may be a more serious problem is that there are 2 places in the master equation
where the contact gradient expansion is inserted (see eqs. (2.58) and (2.59)), and matrix
elements that are being replaced by the contact-gradient operators are not identical in the
2 cases. Matching to the matrix elements of (2.66) was motivated by the replacement in eq.
(2.58), and the contact-gradient expansion would reproduce these matrix elements exactly
if we used enough operators to account for all independent matrix elements. However, the
matrix elements that are being replaced in eq. (2.59) have the form

< ñ′|V 1

E −QH + iε
QV |φ >, (2.67)



37

Figure 2.1: aLO plotted against V
′

1/V2, for 3 different values of the core radius a
′
1. The

dashed line is the value of aLO for the original potential.
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Figure 2.2: Potential height of the core, V
′

1 , that is required to maintain the same LO
contact-gradient coefficient as the core radius a

′
1 was halved repeatedly from its original

value of 0.25 fm. The potential height is plotted as a
′3
1 V

′
1 in units of b3~ω, which is expected

to be invariant for small a
′
1.
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which is not the same as (2.66). Since our procedure preferentially treats (2.66) as the matrix
elements to be reproduced, we encounter errors in approximating (2.67). In the future, this
error must either be eliminated by adjusting the procedure, or its value must be quantified
so that reliable error bars to the results of our calculations can be given.

2.8 Conclusions

This work was motivated by the conventional method of generating effective NN inter-
actions. First, a phenomenological potential is created from experimental data. Then the
high-momentum part of the potential is integrated out to produce a soft potential for use
in the HO basis. HOBET is an attempt to bypass the intermediate step, arriving at the
effective interaction immediately from experimental data.

In [17], it was shown that analytical treatment of the repeated summation of T and
representation of the short-range interaction by contact-gradient operators can produce an
effective interaction with high accuracy, with errors of order 1keV. This showed that an
effective interaction in HO basis can be constructed without referencing high-momentum
components to the potential, and suggested the possibility of going directly from data to
ET. In this dissertation, it was demonstrated using a toy model that HOBET can reproduce
the phase shift with increasing accuracy as higher order contact-gradient operators are added.

The next step in this project is to solve the reverse problem of finding the low-energy
coefficients, given phase shift information. Despite the promising result of order-by-order
improvement, the approach taken here has two problems: there are two sets of contact-
gradient series in the master equation, and the contact gradient series from ET contains odd
powers of k. Possibilities for evading these problems will be explored in the future. This may
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Figure 2.3: k cot δ0 at different orders in the HOBET contact-gradient expansion. The plots
show only the real parts of the effective range expansion. HOBET results contain small
imaginary parts (see text for discussion). In (a), solid line is the exact solution, dashed line
comes from eliminating the contact-gradient expansion, dotted line comes from truncating
at LO, dot-dashed line from truncating at NLO. In (b), the solid line is NLO, dashed line
NNLO, and dotted line N3LO.

(a) k cot δ0 obtained using contact-gradient series trun-
cated at no terms, LO, and NLO, plotted with the
exact answer.
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be in the framework of the current approach, or it may involve solving the BH equation, as
in [17], or another similar equation.
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Appendix A

Atomic Electric Dipole Moment

A.1 Multipole Analysis

We expand the Breit interaction

VeN + VeÑ = −α
∫∫

d3xd3y

[
ρe(~x)ρN(~y)

|~x− ~y|

−1

2

(
~je(~x)�~jN(~y)

|~x− ~y|
+
~je(~x)� (~x− ~y) ~jN(~y)� (~x− ~y)

|~x− ~y|3

)]
, (A.1)

in terms of electronic and nuclear multipoles.

A.1.1 Charge-Charge Interaction

First, consider the charge-charge term. The spherical expansion of 1/|~x− ~y| is

1

|~x− ~y|
=4π

∑
lm

1

2l + 1

rl<
rl+1
>

Y ∗lm(Ωx)Ylm(Ωy)

=4π
∑
l

1

2l + 1

yl

xl+1
Yl(Ωx)� Yl(Ωy)

+ θ(y − x)4π
∑
l

1

2l + 1

(
xl

yl+1
− yl

xl+1

)
Yl(Ωx)� Yl(Ωy). (A.2)
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Simply substituting,

− α
∫∫

d3xd3y
ρe(~x)ρN(~y)

|~x− ~y|

=− 4πα
∑
l

1

2l + 1

∫∫
d3xd3y

([
1

xl+1
ρe(~x)Yl(Ωx)

]
�
[
ylρN(~y)Yl(Ωy)

]
+ θ(y − x)

{[
xlρe(~x)Yl(Ωx)

]
�
[

1

yl+1
ρN(~y)Yl(Ωy)

]
−
[

1

xl+1
ρe(~x)Yl(Ωx)

]
�
[
ylρN(~y)Yl(Ωy)

]})
. (A.3)

Here, it is convenient to define charge multipoles

CN
lm ≡

∫
d3y

(
y

RN

)l
Ylm(Ωy)ρN(~y)

CA
lm ≡

∫
d3x

(
RA

x

)l+1

Ylm(Ωx)ρe(~y) =
Z∑
i=1

(
RA

xi

)l+1

Ylm(Ωi) (A.4)

for the first term in eq. (A.3), and

CA+
l (i)� CN−

l (i) =

(
xi
RN

)l
Yl(Ωi)�

∫
d3y θ(y − xi)

(
RN

y

)l+1

Yl(Ωy)ρN(~y)

CA−
l (i)� CN+

l (i) =

(
RN

xi

)l+1

Yl(Ωi)�
∫
d3y θ(y − xi)

(
y

RN

)l
Yl(Ωy)ρN(~y) (A.5)

for the penetration terms. Using these, eq. (A.3) can be written as

Vcharge =− α
∫∫

d3xd3y
ρe(~x)ρN(~y)

|~x− ~y|

=− 4πα

RA

∑
l

1

2l + 1

(
RN

RA

)l
CA
l � CN

l

− 4πα

RN

∑
l

Z∑
i

[
CA+
l (i)� CN−

l (i)− CA−
l (i)� CN+

l (i)
]

(A.6)
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A.1.2 Current-Current Interaction

Next, consider the current-current part of the interaction. First, expand as in the charge-
charge case:

~je(~x)�~jN(~y)

|~x− ~y|
=4π

∑
l

[
1

2l + 1

yl

xl+1
+ θ(y − x)

1

2l + 1

(
xl

yl+1
− yl

xl+1

)]
×
(
~je(~x)�~jN(~y)

)
(Yl(Ωx)� Yl(Ωy)) . (A.7)

We want to separate the electronic and nuclear coordinates so that we can define multipoles
for each. This can be achieved using 9-j symbols (coordinates are suppressed).(

~je �~jN
)

(Yl(Ωx)� Yl(Ωy))

=(−1)l+1[1][l]
[[
~je ⊗~jN

]
0
⊗ [Yl(Ωx)⊗ Yl(Ωy)]0

]
00

=(−1)l+1[1][l]
∑
l′

[[
~je ⊗ Yl(Ωx)

]
l′
⊗
[
~jN ⊗ Yl(Ωy)

]
l′

]
00

[0]2[l′]2


1 1 0
l l 0
l′ l′ 0


=(−1)l+1[1][l]

∑
l′

[l′]2
[[
~je ⊗ Yl(Ωx)

]
l′
⊗
[
~jN ⊗ Yl(Ωy)

]
l′

]
00
×
(

1

[1][l][l′]

)
=(−1)l+1

∑
l′

[l′]
[[
~je ⊗ Yl(Ωx)

]
l′
⊗
[
~jN ⊗ Yl(Ωy)

]
l′

]
00

=(−1)l+1
∑
l′

(−1)l
′
[
~je ⊗ Yl(Ωx)

]
l′
�
[
~jN ⊗ Yl(Ωy)

]
l′

=
[
~je ⊗ Yl(Ωx)

]
l−1
�
[
~jN ⊗ Yl(Ωy)

]
l−1

−
[
~je ⊗ Yl(Ωx)

]
l
�
[
~jN ⊗ Yl(Ωy)

]
l

+
[
~je ⊗ Yl(Ωx)

]
l+1
�
[
~jN ⊗ Yl(Ωy)

]
l+1

. (A.8)

Finally, consider the last term in eq. (A.1). Note that

−→
∇ 1

r
= − ~r

r3
. (A.9)

This gives us the relation

~je(~x)� (~x− ~y) ~jN(~y)� (~x− ~y)

|~x− ~y|3
=
(
~je(~x)� ~x

)(
~jN(~y)�

−→
∇y

) 1

|~x− ~y|

+
(
~je(~x)� ~y

)(
~jN(~y)�

−→
∇x

) 1

|~x− ~y|
. (A.10)
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To separate the x- and y-dependent parts, use the following relations:[
~je ⊗

−→
∇x

]
0
�
[
~jN ⊗ ~y

]
0

=
1

3

(
~je �

−→
∇x

)(
~jN � ~y

)
[
~je ⊗

−→
∇x

]
1
�
[
~jN ⊗ ~y

]
1

=−
√

3
[[
~je ⊗

−→
∇x

]
1
⊗
[
~jN ⊗ ~y

]
1

]
00

=
1

2

(
~je � ~y

)(−→
∇x �~jN

)
− 1

2

(
~je �~jN

)(−→
∇x � ~y

)
[
~je ⊗

−→
∇x

]
2
�
[
~jN ⊗ ~y

]
2

=
√

5
[[
~je ⊗

−→
∇x

]
2
⊗
[
~jN ⊗ ~y

]
2

]
00

=
1

2

(
~je � ~y

)(−→
∇x �~jN

)
+

1

2

(
~je �~jN

)(−→
∇x � ~y

)
− 1

3

(
~je �

−→
∇x

)(
~jN � ~y

)
. (A.11)

Eq. (A.10) can now be written

~je � (~x− ~y) ~jN � (~x− ~y)

|~x− ~y|3

=

(
3
[
~je ⊗ ~x

]
0
�
[
~jN ⊗

−→
∇y

]
0

+
∑
L

[
~je ⊗

−→
∇x

]
L
�
[
~jN ⊗ ~y

]
L

)
1

|~x− ~y|
, (A.12)

where L runs from 0 to 2.

Consider the first term in eq. (A.12), and expand the denominator as before.

3
[
~je ⊗ ~x

]
0
�
[
~jN ⊗

−→
∇y

]
0

1

|~x− ~y|
=
(
~je � ~x

)(
~jN �

−→
∇y

)∑
l

4π

2l + 1

rl<
rl+1
>

Yl(Ωx)� Yl(Ωy)

(A.13)
First, assume x > y, and the expression for the x < y case follows from symmetry.[(

~je � ~x
)(
~jN �

−→
∇y

)∑
l

4π

2l + 1

yl

xl+1
Yl(Ωx)� Yl(Ωy)

]
x>y

=
∑
lm

(−1)m
4π

2l + 1

[
~je · x−l

(
−
√

l + 1

2l + 1
~Yml,l+1,1(Ωx) +

√
l

2l + 1
~Yml,l−1,1(Ωx)

)]
×~jN ·

(√
l(2l + 1)yl−1 ~Yml,l−1,1(Ωy)

)
=
∑
l

4π

2l + 1

yl−1

xl

(
−
√
l(l + 1)

[
Yl+1(Ωx)⊗~je

]
l
+ l
[
Yl−1(Ωx)⊗~je

]
l

)
�
[
Yl−1(Ωy)⊗~jN

]
l
. (A.14)
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Consider the second term in eq. (A.12). For this, rewrite the tensor part first as follows:∑
L,l

([
~je ⊗

−→
∇x

]
L
�
[
~jN ⊗ ~y

]
L

)
(Yl(Ωx)Yl(Ωy))

=
∑
L,l

(−1)L+l[L][l]
[[[

~je ⊗
−→
∇x

]
L
⊗
[
~jN ⊗ ~y

]
L

]
0
⊗ [Yl(Ωx)⊗ Yl(Ωy)]0

]
00

=
∑
L,l

(−1)L+l[L][l]
∑
l′

[[[
~je ⊗

−→
∇x

]
L
⊗ Yl(Ωx)

]
l′
⊗
[[
~jN ⊗ ~y

]
L
⊗ Yl(Ωy)

]
l′

]
00

× [0]2[l′]2


L L 0
l l 0
l′ l′ 0


=
∑
L,l,l′

(−1)L+l+l′
[[
~je ⊗

−→
∇x

]
L
⊗ Yl(Ωx)

]
l′
�
[[
~jN ⊗ ~y

]
L
⊗ Yl(Ωy)

]
l′
. (A.15)

Now, including the factors of x and y,[∑
L

[
~je ⊗

−→
∇x

]
L
�
[
~jN ⊗ ~y

]
L

1

|~x− ~y|

]
x>y

=
∑
L,l,l′

(−1)L+l+l′ 4π

2l + 1

[[
~je ⊗

−→
∇x

]
L
⊗ Yl(Ωx)

]
l′
�
[[
~jN ⊗ ~y

]
L
⊗ Yl(Ωy)

]
l′

yl

xl+1
. (A.16)

We will look at the x- and y-dependent parts separately, then combine the results. The
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x-dependent part is[[
~je ⊗

−→
∇x

]
L
⊗ Yl(Ωx)

]
l′m′

x−l−1

=
∑

M,m,m1,m2

< LMlm|l′m′ >< 1m11m2|LM > je,m1∇x,m2

(
x−l−1Ylm(Ωx)

)
=

∑
M,m,m1,m2

< LMlm|l′m′ >< 1m11m2|LM >

× je,m1 êm2 ·
(√

(l + 1)(2l + 1)x−l−2 ~Yml,l+1,1(Ωx)
)

=
∑

M,m,m1,m2,q

(−1)m2 < LMlm|l′m′ >< 1m11m2|LM >< l + 1, q, 1,−m2|lm >

× je,m1

(√
(l + 1)(2l + 1)x−l−2Yl+1,q(Ωx)

)
=−

∑
m1,q

[L][l] < l + 1, q, 1,m1|l′m′ >
{
l′ l + 1 1
1 L l

}
× je,m1

(√
(l + 1)(2l + 1)x−l−2Yl+1,q(Ωx)

)
=− [L][l]

√
(l + 1)(2l + 1)

{
l′ l + 1 1
1 L l

}
x−l−2

[
Yl+1(Ωx)⊗~je

]
l′m′

. (A.17)

Evaluating the y-dependent part,[[
~jN ⊗ ~y

]
L
⊗ Yl(Ωy)

]
l′m′

=
∑

M,m,m1,m2

< LMlm|l′m′ >< 1m11m2|LM >

× jN,m1yêm2 ·

[
−
√

l + 1

2l + 1
~Yml,l+1,1(Ωy) +

√
l

2l + 1
~Yml,l−1,1(Ωy)

]

=− [L]

(
−
√
l + 1

{
l′ l + 1 1
1 L l

}
y
[
Yl+1(Ωy)⊗~jN

]
l′m′

+
√
l

{
l′ l − 1 1
1 L l

}
y
[
Yl−1(Ωy)⊗~jN

]
l′m′

)
. (A.18)
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Combining eqs. (A.17) and (A.18),

∑
L,l,l′

(−1)L+l+l′ 4π

2l + 1

[[
~je ⊗

−→
∇x

]
L
⊗ Yl(Ωx)

]
l′
�
[[
~jN ⊗ ~y

]
L
⊗ Yl(Ωy)

]
l′

yl

xl+1

=
∑
L,l,l′

(−1)L+l+l′+1 4π

2l + 1

yl+1

xl+2

× (−1)[L][l]
√

(l + 1)(2l + 1)

{
l′ l + 1 1
1 L l

}[
Yl+1(Ωx)⊗~je

]
l′

� (−1)[L]

(√
l + 1

{
l′ l + 1 1
1 L l

}[
Yl+1(Ωy)⊗~jN

]
l′

−
√
l

{
l′ l − 1 1
1 L l

}[
Yl−1(Ωy)⊗~jN

]
l′

)
=
∑
L,l,l′

(−1)L+l+l′+1(4π)[L]2
yl+1

xl+2

{
l′ l + 1 1
1 L l

}[
Yl+1(Ωx)⊗~je

]
l′

�
(

(l + 1)

{
l′ l + 1 1
1 L l

}[
Yl+1(Ωy)⊗~jN

]
l′

−
√
l(l + 1)

{
l′ l − 1 1
1 L l

}[
Yl−1(Ωy)⊗~jN

]
l′

)
=
∑
l,l′

(−1)l+l
′+1(4π)

yl+1

xl+2

[
Yl+1(Ωx)⊗~je

]
l′

�
(

(l + 1)

{
1 l l + 1
1 l′ l + 1

}[
Yl+1(Ωy)⊗~jN

]
l′

−
√
l(l + 1)

{
1 l l − 1
1 l′ l + 1

}[
Yl−1(Ωy)⊗~jN

]
l′

)
. (A.19)

l′ = l, l + 1, l + 2 are possible for the first term, and only l′ = l is allowed for the second
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term. ∑
L,l,l′

(−1)L+l+l′ 4π

2l + 1

[[
~je ⊗

−→
∇x

]
L
⊗ Yl(Ωx)

]
l′
�
[[
~jN ⊗ ~y

]
L
⊗ Yl(Ωy)

]
l′

yl

xl+1

=
∑
l

(4π)
yl+1

xl+2

×
{
−(l + 1)

1

(l + 1)(2l + 1)(2l + 3)

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl+1(Ωy)⊗~jN

]
l

+ (l + 1)

[
− 1

(l + 1)(2l + 3)

] [
Yl+1(Ωx)⊗~je

]
l+1
�
[
Yl+1(Ωy)⊗~jN

]
l+1

− (l + 1)
1

2l + 3

[
Yl+1(Ωx)⊗~je

]
l+2
�
[
Yl+1(Ωy)⊗~jN

]
l+2

−
√
l(l + 1)

1

2l + 1

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl−1(Ωy)⊗~jN

]
l

}
=
∑
l

4π

2l + 1

yl+1

xl+2

{
− 1

2l + 3

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl+1(Ωy)⊗~jN

]
l

− 2l + 1

2l + 3

[
Yl+1(Ωx)⊗~je

]
l+1
�
[
Yl+1(Ωy)⊗~jN

]
l+1

− (l + 1)(2l + 1)

2l + 3

[
Yl+1(Ωx)⊗~je

]
l+2
�
[
Yl+1(Ωy)⊗~jN

]
l+2

+
√
l(l + 1)

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl−1(Ωy)⊗~jN

]
l

}
(A.20)

To get the full expression for the current-current interaction in the point-nucleus limit,
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use eqs. (A.8), (A.14), and (A.20).[
~je(~x)�~jN(~y)

|~x− ~y|
+
~je(~x)� (~x− ~y) ~jN(~y)� (~x− ~y)

|~x− ~y|3

]
x>y

=

[
∞∑
l=1

4π

2l + 1

yl

xl+1

[
~je ⊗ Yl(Ωx)

]
l−1
�
[
~jN ⊗ Yl(Ωy)

]
l−1

−
∞∑
l=0

4π

2l + 1

yl

xl+1

[
~je ⊗ Yl(Ωx)

]
l
�
[
~jN ⊗ Yl(Ωy)

]
l

+
∞∑
l=0

4π

2l + 1

yl

xl+1

[
~je ⊗ Yl(Ωx)

]
l+1
�
[
~jN ⊗ Yl(Ωy)

]
l+1

]

+

[
−
∞∑
l=1

4π

2l + 1

yl−1

xl

√
l(l + 1)

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl−1(Ωy)⊗~jN

]
l

+
∞∑
l=1

4π

2l + 1

yl−1

xl
l
[
Yl−1(Ωx)⊗~je

]
l
�
[
Yl−1(Ωy)⊗~jN

]
l

]

+

[
−
∞∑
l=0

4π

2l + 1

yl+1

xl+2

1

2l + 3

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl+1(Ωy)⊗~jN

]
l

−
∞∑
l=0

4π

2l + 1

yl+1

xl+2

2l + 1

2l + 3

[
Yl+1(Ωx)⊗~je

]
l+1
�
[
Yl+1(Ωy)⊗~jN

]
l+1

−
∞∑
l=0

4π

2l + 1

yl+1

xl+2

(l + 1)(2l + 1)

2l + 3

[
Yl+1(Ωx)⊗~je

]
l+2
�
[
Yl+1(Ωy)⊗~jN

]
l+2

+
∞∑
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4π

2l + 1

yl+1

xl+2

√
l(l + 1)
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Yl+1(Ωx)⊗~je

]
l
�
[
Yl−1(Ωy)⊗~jN

]
l
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=
∞∑
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4π

2l + 1
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2l + 3

yl+1

xl+2

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl+1(Ωy)⊗~jN

]
l

− 4π

2l + 1
2
yl

xl+1

[
Yl(Ωx)⊗~je

]
l
�
[
Yl(Ωy)⊗~jN

]
l

+
2(l + 1)
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yl−1

xl

[
Yl−1(Ωx)⊗~je

]
l
�
[
Yl−1(Ωy)⊗~jN

]
l

−
√
l(l + 1)

yl−1

xl
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Yl+1(Ωx)⊗~je

]
l
�
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Yl−1(Ωy)⊗~jN

]
l

}
. (A.21)
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By symmetry (exchanging ~x↔ ~y and ~je ↔ ~jN),[
~je(~x)�~jN(~y)

|~x− ~y|
+
~je(~x)� (~x− ~y) ~jN(~y)� (~x− ~y)

|~x− ~y|3

]
x<y

=
∞∑
l=1

4π

2l + 1

{
2l

2l + 3

xl+1

yl+2

[
Yl+1(Ωx)⊗~je

]
l
�
[
Yl+1(Ωy)⊗~jN

]
l

− 4π

2l + 1
2
xl

yl+1

[
Yl(Ωx)⊗~je

]
l
�
[
Yl(Ωy)⊗~jN

]
l

+
2(l + 1)

2l − 1

xl−1

yl

[
Yl−1(Ωx)⊗~je

]
l
�
[
Yl−1(Ωy)⊗~jN

]
l

−
√
l(l + 1)

xl−1
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)[
Yl−1(Ωx)⊗~je

]
l
�
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Yl+1(Ωy)⊗~jN

]
l

}
. (A.22)

In order to organize the terms, define transverse electric multipoles

TNel,l ≡
1

Rl−1
N

∫
d3y

[−→
∇ ×

(
yl ~Ymll1(Ωy)

)]
·~jN(~y)

=i
√

(l + 1)(2l + 1)

∫
d3y

(
y

RN

)l−1 [
Yl−1(Ωy)⊗~jN(~y)

]
l

T
′N
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1

Rl+1
N
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d3y
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∇ ×
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− yl+2
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·~jN(~y)
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{
1
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√
l

2l + 1

∫
d3y

(
y

RN

)l+1 [
Yl+1(Ωy)⊗~jN(~y)

]
l

+
1

2

√
l + 1

2l + 1

∫
d3y

(
y

RN

)l+1 [
Yl−1(Ωy)⊗~jN(~y)

]
l
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A

∫
d3x
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∇ ×

(
1
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√
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(
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1
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}
(A.23)
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and transverse magnetic multipoles

TNmag,l ≡
1

Rl
N

∫
d3y yl ~Ymll1(Ωy) ·~jN(~y) =

∫
d3y

(
y
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1
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(
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[Yl(Ωi)⊗ ~αi(~xi)]l . (A.24)

With these, the interaction in the point-nucleus limit is

V point
eN =

4πα

RA

[
∞∑
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1
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(
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)l
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∞∑
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1
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1

2l + 1
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}]
. (A.25)

For the penetration terms, make the following definitions:

TA+
mag,l(i)� T

N−
mag,l(i) =

(
xi
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)l
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�
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�
∫
d3y θ(y − xi)

(
y
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]
l
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TA+
el,l (i)� T ′N−
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√
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√
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√
l + 1

2l + 1

∫
d3y θ(y − xi)

(
y

RN

)l+1 [
Yl−1(Ωy)⊗~jN(~y)

]
l

}

T
′A+
el,l (i)� TN−el,l (i) =− i

{
1

2l + 3

√
l

2l + 1

(
xi
RN

)l+1

[Yl+1(Ωi)⊗ ~αi]l

+
1

2

√
l + 1

2l + 1

(
xi
RN

)l+1

[Yl−1(Ωi)⊗ ~αi]l

}

� (−i)
√
l(2l + 1)

∫
d3y θ(y − xi)

(
RN

y

)l+2 [
Yl+1(Ωy)⊗~jN(~y)

]
l

T
′A−
el,l (i)� TN+

el,l (i) =i

{
1

2

√
l

2l + 1

(
RN

xi

)l
[Yl+1(Ωi)⊗ ~αi]l

+
1

2l − 1

√
l + 1

2l + 1

(
RN

xi

)l
[Yl−1(Ωi)⊗ ~αi]l

}

� i
√

(l + 1)(2l + 1)

∫
d3y θ(y − xi)

(
y

RN

)l−1 [
Yl−1(Ωy)⊗~jN(~y)

]
l
.

(A.26)
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The penetration correction is then

V pen
eN = −4πα

RA

(
∞∑
l=0

1

2l + 1

Z∑
i=1

[
CA+
l (i)� CN−

l (i)− CA−
l (i)� CN+

l (i)
]

+
∞∑
l=1

{
1

2l + 1

Z∑
i=1

[
TA+

mag,l(i)� T
N−
mag,l(i)− T

A−
mag,l(i)� T

N+
mag,l(i)

]
+

1

2l + 1

Z∑
i=1

[
TA+

el,l (i)� T ′N−
el,l (i)− TA−el,l (i)� T ′N+

el,l (i)
]

+
1

2l + 1

Z∑
i=1

[
T

′A+
el,l (i)� TN−el,l (i)− T ′A−

el,l (i)� TN+
el,l (i)

]})
. (A.27)

VeN + VeÑ can be written
VeN + VeÑ = V point

eN + V pen
eN (A.28)

A.2 Penetration Correction

We can put the penetration terms in a more convenient form, when it is directly sand-
wiched between atomic states. Expanding the electronic wavefunctions in Taylor series

ψ(~x) ≈ ψ(0) + ~x ·
−→
∇ψ(~x), (A.29)

Evaluating the charge multipoles first, CA+
0 and CA−

0 become∫
d3xi

(
xi
RN

)l
Ylm(Ωi)ρe(~xi)θ(y − xi)

l=0−−→δl0
√

4π

∫ y

0

x2
i dxiψ

∗
f (0)ψi(0)

=δl0

√
4πy3

3
ψ∗f (0)ψi(0) (A.30)

and ∫
d3xi

(
RN

xi

)l+1

Ylm(Ωi)ρe(~xi)θ(y − xi)
l=0−−→δl0

√
4π

∫ y

0

x2
i dxi

RN

xi
ψ∗f (0)ψi(0)

=δl0

√
4πRNy

2

2
ψ∗f (0)ψi(0). (A.31)
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Similarly for CA+
1 and CA−

1 ,∫
d3xi

(
xi
RN

)l
Ylm(Ωi)ρe(~xi)θ(y − xi)

l=1−−→δl1
∫
dΩi

∫ y

0

x2
i dxi

xi
RN

Y1m(Ωi)~xi ·
[
ψ∗f (0)

←−
∇ iψi(0) + ψ∗f (0)

−→
∇ iψi(0)

]
=δl1

√
4π

3

y5

5RN

[
ψ∗f (0)

←−
∇ i,mψi(0) + ψ∗f (0)

−→
∇ i,mψi(0)

]
(A.32)

and ∫
d3xi

(
RN

xi

)l+1

Ylm(Ωi)ρe(~xi)θ(y − xi)

l=1−−→δl1
∫
dΩi

∫ y

0

x2
i dxi

(
RN

xi

)2

Y1m(Ωi)~xi ·
[
ψ∗f (0)

←−
∇ iψi(0) + ψ∗f (0)

−→
∇ iψi(0)

]
=δl1

√
4π

3

R2
Ny

2

2

[
ψ∗f (0)

←−
∇ i,mψi(0) + ψ∗f (0)

−→
∇ i,mψi(0)

]
(A.33)

Next, consider the magnetic multipoles:∫
d3xi

(
xi
RN

)l [
Yl(Ωi)⊗~je(~xi)

]
lm
θ(y − xi)

l=1−−→δl1
∑
m1,m2

< 1m11m2|1m >

∫
dΩi

∫ y

0

x2
i dxi

xi
RN

Y1m1(Ωi)αi,m2

× ~xi ·
[
ψ∗f (0)

←−
∇ iψi(0) + ψ∗f (0)

−→
∇ iψi(0)

]
=δl1

√
4π

3

y5

5RN

[
ψ∗f (0)

[←−
∇ i ⊗ ~αi

]
1
ψi(0) + ψ∗f (0)

[−→
∇ i ⊗ ~αi

]
1
ψi(0)

]
(A.34)

∫
d3xi

(
RN

xi

)l+1 [
Yl(Ωi)⊗~je(~xi)

]
lm
θ(y − xi)

l=1−−→δl1
∑
m1,m2

< 1m11m2|1m >

∫
dΩi

∫ y

0

x2
i dxi

(
RN

xi

)2

Y1m1(Ωi)αi,m2

× ~xi ·
[
ψ∗f (0)

←−
∇ iψi(0) + ψ∗f (0)

−→
∇ iψi(0)

]
=δl1

√
4π

3

R2
Ny

2

2

[
ψ∗f (0)

[←−
∇ i ⊗ ~αi

]
1
ψi(0) + ψ∗f (0)

[−→
∇ i ⊗ ~αi

]
1
ψi(0)

]
(A.35)

Finally, consider the transverse electric terms. For l = 1, the contribution from multipoles
of the form [Y0 ⊗ ~αi]1 can be calculated easily using the C0 results in eqs. (A.30) and
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(A.31). The l = 2 case requires a new calculation:∫
d3xi

(
xi
RN

)l−1 [
Yl−1(Ωi)⊗~je(~xi)

]
lm
θ(y − xi)

l=2−−→δl2
∑
m1,m2

< 1m11m2|2m >

∫
dΩi

∫ y

0

x2
i dxi

xi
RN

Y1m1(Ωi)αi,m2

× ~xi ·
[
ψ∗f (0)

←−
∇ iψi(0) + ψ∗f (0)

−→
∇ iψi(0)

]
=δl2

√
4π

3

y5

5RN

[
ψ∗f (0)

[←−
∇ i ⊗ ~αi

]
2
ψi(0) + ψ∗f (0)

[−→
∇ i ⊗ ~αi

]
2
ψi(0)

]
, (A.36)

∫
d3xi

(
xi
RN

)l+1 [
Yl−1(Ωi)⊗~je(~xi)

]
lm
θ(y − xi)

l=2−−→δl2
∑
m1,m2

< 1m11m2|2m >

∫
dΩi

∫ y

0

x2
i dxi

(
xi
RN

)3

Y1m1(Ωi)αi,m2

× ~xi ·
[
ψ∗f (0)

←−
∇ iψi(0) + ψ∗f (0)

−→
∇ iψi(0)

]
=δl2

√
4π

3

y7

7R3
N

[
ψ∗f (0)

[←−
∇ i ⊗ ~αi

]
2
ψi(0) + ψ∗f (0)

[−→
∇ i ⊗ ~αi

]
2
ψi(0)

]
, (A.37)

and ∫
d3xi

(
RN

xi

)l [
Yl−1(Ωi)⊗~je(~xi)

]
lm
θ(y − xi)

l=2−−→δl2
∑
m1,m2

< 1m11m2|2m >

∫
dΩi

∫ y

0

x2
i dxi

(
RN

xi

)2

Y1m1(Ωi)αi,m2

× ~xi ·
[
ψ∗f (0)

←−
∇ iψi(0) + ψ∗f (0)

−→
∇ iψi(0)

]
=δl2

√
4π

3

R2
Ny

2

2

[
ψ∗f (0)

[←−
∇ i ⊗ ~αi

]
2
ψi(0) + ψ∗f (0)

[−→
∇ i ⊗ ~αi

]
2
ψi(0)

]
. (A.38)

Noting that the final results in these calculations can be reproduced by matrix elements
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of delta functions between atomic states, we can rewrite the penetration terms as follows:

− 4πα

RA

Z∑
i=1

[
CA+

0 (i)� CN−
0 (i)− CA−

0 (i)� CN+
0 (i)

]
→4πα

RA

√
4π

6

(
RN

RA

)2
[
R3
A

Z∑
i=1

δ3(~xi)

]
�
∫
d3y

(
y

RN

)2

ρN(~y)Y0(Ωy),

− 4πα

3RA

Z∑
i=1

[
CA+

1 (i)� CN−
1 (i)− CA−

1 (i)� CN+
1 (i)

]
→4πα

RA

1

10

√
4π

3

(
RN

RA

)3
[
R4
A

Z∑
i=1

(←−
∇ i,mδ

3(~xi) + δ3(~xi)
−→
∇ i,m

)]

�
∫
d3y

(
y

RN

)3

ρN(~y)Y1(Ωy),

− 4πα

3RA

Z∑
i=1

[
TA+

mag,1(i)� TN−mag,1(i)− TA−mag,1(i)� TN+
mag,1(i)

]
→4πα

RA

1

10

√
4π

3

(
RN

RA

)3
[
R4
A

Z∑
i=1

([←−
∇ i,m ⊗ ~αi

]
1
δ3(~xi) + δ3(~xi)

[−→
∇ i,m ⊗ ~αi

]
1

)]

�
∫
d3y

(
y

RN

)3 [
Y1(Ωy)⊗~jN(~y)

]
1
,
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− 4πα

3RA

Z∑
i=1

[
TA+

el,1 (i)� T ′N−
el,1 (i)− TA−el,1 (i)� T ′N+

el,1 (i)
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→4πα

RA

2

9

√
4π

(
RN

RA

)2
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R3
A
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�
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d3y

(
y

RN
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]
1
− 1

2
√

2

∫
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(
y

RN
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1

]
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3RA
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el,2 (i)� T ′N−
el,2 (i)− TA−el,2 (i)� T ′N+
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√
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)3
[
R4
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∇ i,m ⊗ ~αi

]
2
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�
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(
y

RN

)3 [
Y1(Ωy)⊗~jN(~y)
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2
−
√

3

2

∫
d3y

(
y

RN

)3 [
Y3(Ωy)⊗~jN(~y)

]
2

]
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RA

√
4π

3

(
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)2
[
R3
A
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]

�
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(
y
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]
1
−
√

2
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∫
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(
y

RN
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Y2(Ωy)⊗~jN(~y)

]
1

]
,

− 4πα

3RA

Z∑
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el,2 (i)� TN+
el,2 (i)

]
→− 4πα

RA
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√
4π

3
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RN

RA
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R4
A
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∇ i,m ⊗ ~αi

]
2
δ3(~xi) + δ3(~xi)

[−→
∇ i,m ⊗ ~αi

]
2

)]

�

[∫
d3y

(
y

RN

)3 [
Y1(Ωy)⊗~jN(~y)
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2
−
√

6

7

∫
d3y

(
y

RN
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]
2

]
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(A.39)

These effective operators apply only to cases where the bare V pen
eN is evaluated between

atomic states. For [A, V pen
eN ], a different set of effective operators need to be derived.
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A.3 Perturbation theory

Here, we give the standard results for perturbation theory in non-relativistic quantum
mechanics. First, write the Hamiltonian, H, as

H ≡ H0 + V ′. (A.40)

We have two eigenvalue problems, one for the total Hamiltonian, H, and one for the
unperturbed Hamiltonian, H0.

H|a >=Ea|a >
H0|α >=Eα|α > (A.41)

Typically, H0 is a Hamiltonian that has been solved, and H is to be solved in successive
approximations using the eigenvalues and eigenstates of H0.

First, expand the energy eigenvalue, Ea, and the eigenfunction, |a >, as

Ea =E(0)
a + E(1)

a + E(2)
a + . . .

|a >=|a(0) > +|a(1) > +|a(2) > + . . . , (A.42)

where the superscripts indicate the number of insertions of the perturbation, V ′, in the
term. Substituting these into eq. (A.41) and then matching the terms that are of the same
order in the perturbation, one can show the leading order results

E(0)
a =Eα

|a(0) >=|α >, (A.43)

and the recursion relations

E(n)
a = < a|V ′|a(n−1) >

|a(n) >=
Qa

Ea −H0

×
[(
E(1)
a − V ′

)
|a(n−1) > +E(2)

a |a(n−2) > +E(3)
a |a(n−3) > + · · ·+ E(n)

a |a(0) >
]
,

(A.44)

where Qa is the projection operator out of |a >.
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Carrying out the recursion, the results up to 3rd order in the perturbation are

E(1)
a = < a|V ′|a >

|a(1) >=
Qa

Ea −H0

V ′|a >

E(2)
a = < a|V ′ Qa

Ea −H0

V ′|a >

|a(2) >=
Qa

Ea −H0

V ′
Qa

Ea −H0

V ′|a > − Qa

(Ea −H0)2V
′|a >< a|V ′|a >

E(3)
a = < a|V ′ Qa

Ea −H0

V ′
Qa

Ea −H0

V ′|a > − < a|V ′ Qa

(Ea −H0)2V
′|a >< a|V ′|a >

|a(3) >=
Qa

Ea −H0

V ′
Qa

Ea −H0

V ′
Qa

Ea −H0

V ′|a >

− Qa

Ea −H0

V ′
Qa

(Ea −H0)2V
′|a >< a|V ′|a >

− Qa

(Ea −H0)2V
′ Qa

Ea −H0

V ′|a >< a|V ′|a >

+
Qa

(Ea −H0)3V
′|a > (< a|V ′|a >)

2

− Qa

(Ea −H0)2V
′|a >< a|V ′ Qa

Ea −H0

V ′|a > . (A.45)

A.4 Projection Theorem

For an atomic state with total angular momentum F , the energy shift due to external field
~Eext is

∆E = ~Eext· < FMf |~d|FMi > (A.46)

=
∑
m

(−1)mEext
1,−m < FMf |~d1m|FMi > (A.47)

=
∑
m

(−1)m+F−MfEext
1,−m

(
F 1 F
−Mf m Mi

)
< F ||~d||F >, (A.48)

where ~d = ~de + ~dN .
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Compare this with the expression involving the angular momentum operator ~F ,

< FMf |F1m|FMi > (A.49)

= (−1)F−Mf

(
F 1 F
−Mf m Mi

)
< F ||F ||F > (A.50)

= (−1)F−Mf

(
F 1 F
−Mf m Mi

)(
F 1 F
−F 0 F

)−1

< FF |F10|FF > (A.51)

= (−1)F−Mf

(
F 1 F
−Mf m Mi

)(
F√

F (F + 1)(2F + 1)

)−1

F (A.52)

= (−1)F−Mf

(
F 1 F
−Mf m Mi

)√
F (F + 1)(2F + 1), (A.53)

we get the following alternative expression for the energy shift

∆E =
∑
m

(−1)mEext
1,−m

(
< FMf |F1m|FMi >√
F (F + 1)(2F + 1)

)
< F ||~d||F > (A.54)

=
< FMf | ~Eext · ~F |FMi >√

F (F + 1)(2F + 1)
< F ||~d||F > . (A.55)

This shows that the reduced matrix elements of ~d are what we need to calculate the atomic
EDM response.
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Appendix B

Harmonic-Oscillator-Based Effective
Theory

B.1 Harmonic Oscillator Eigenstates

Harmonic oscillator (HO) Hamiltonian is

HHO = T + VHO =
~ω
2

(
−
−→
∇2 + r2

)
, (B.1)

where ω = ~/mb2. The coordinates are Jacobi relative coordinates for the 2 nucleons,

~r =
~r1 − ~r2√

2
, (B.2)

and lengths are measured in units of b; ~r and ~∇ are dimensionless.

A HO eigenstate is identified with nodal quantum number n and angular momentum l,
and its coordinate wavefunction is

< r|nlm >= Rnl(r)Ylm(Ω), (B.3)

with the definition

Rnl(r) ≡

√
2(n− 1)!

Γ(n+ l + 1/2)
rle−r

2/2L
l+1/2
n−1 (r2)

=
√

2(n− 1)!Γ(n+ l + 1/2)
n−1∑
m=0

(−1)mr2m+le−r
2/2

m!(n−m− 1)!Γ(l +m+ 3/2)
. (B.4)

Lαn(r) is the associated Laguerre polynomial.
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Taking the Fourier transform, the HO wavefunction in momentum space is

< p|nlm >=

∫
d3r < p|r >< r|nlm >

=

∫
d3r e−i~p·~r

√
2(n− 1)!

Γ(n+ l + 1/2)
L
l+1/2
n−1 (r2)rle−r

2/2Ylm(Ω)

=

√
2(n− 1)!

Γ(n+ l + 1/2)

∫
dΩ

∫ ∞
0

r2dr 4π(−i)ljl(pr)Ylm(Ωp)Y
∗
lm(Ω)×

× Ll+1/2
n−1 (r2)rle−r

2/2Ylm(Ω)

=4π(−i)l
√

2(n− 1)!

Γ(n+ l + 1/2)
Ylm(Γp)

×
∫
dr rl+2e−r

2/2L
l+1/2
n−1 (p2)

√
π

2pr
Jl+1/2(pr)

=(2π)3/2(−i)l(−1)n−1

√
2(n− 1)!

Γ(n+ l + 1/2)
ple−p

2/2L
l+1/2
n−1 (p2)Ylm(Γp). (B.5)

The last integral was done using 7.421.4 of [20]. Up to a constant, the functional forms of
(B.4) and (B.5) are identical.

B.2 Evaluation of 1
E−T+iε in HO Basis

Using the coordinate space representation of the kinetic energy

T = −~ω
2

−→
∇2, (B.6)

the momentum space representation of 1/(E − T + iε) is

< p′| 1

E − T + iε
|p >=

∫
d3r < p′|r >< r| 1

E − T + iε
|r >< r|p >

=

∫
d3r e−i

~p′·~r 1

E + ~ω
2

−→
∇2 + iε

ei~p·~r

=
2

~ω
1

k2 − p2 + iε

∫
d3r ei(~p−

~p′)·~r

=
2

~ω
1

k2 − p2 + iε
(2π)3δ3(~p− ~p′). (B.7)
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Using the momentum space HO wavefunction from the last section,

< n′lm| 1

E − T + iε
|nlm >

=
2

~ω

∫
d3p

(2π)3
< n′lm|p > 1

k2 − p2 + iε
< p|nlm >

=
2

~ω

∫ ∞
0

dp p

(2π)3
(2π)3/2il(−1)n

′−1

√
2(n′ − 1)!

Γ(n′ + l + 1/2)
ple−p

2/2L
l+1/2
n′−1 (p2)Y ∗lm(Γp)×

× (2π)3/2(−i)l(−1)n−1

√
2(n− 1)!

Γ(n+ l + 1/2)
ple−p

2/2L
l+1/2
n−1 (p2)Ylm(Γp)

=
2

~ω
(−1)n+n′

√
4(n− 1)!(n′ − 1)!

Γ(n+ l + 1/2)Γ(n′ + l + 1/2)

∫ ∞
0

dp p2(l+1)e−p
2
L
l+1/2
n−1 (p2)L

l+1/2
n′−1 (p2)

k2 − p2 + iε
.

(B.8)

Expanding the Laguerre polynomials,

< n′lm| 1

E − T + iε
|nlm >

=
2

~ω
(−1)n+n′

√
4(n− 1)!(n′ − 1)!

Γ(n+ l + 1/2)Γ(n′ + l1/2)
×

×
n−1∑
m=0

n′−1∑
m′=0

(−1)m+m′
Γ(n+ l + 1/2)Γ(n′ + l + 1/2)

m!m′!(n− 1−m)!(n′ − 1−m′)!Γ(l +m+ 3/2)Γ(l +m′ + 3/2)
×

×
∫ ∞

0

dp p2l+2m+2m′+2e−p
2

k2 − p2 + iε

=
2

~ω

n−1∑
m=0

n′−1∑
m′=0

(−1)m+m′+n+n′√
4(n− 1)!(n′ − 1)!Γ(n+ l + 1/2)Γ(n′ + l + 1/2)

m!m′!(n− 1−m)!(n′ − 1−m′)!Γ(l +m+ 3/2)Γ(l +m′ + 3/2)
×

×
∫ ∞

0

dp p2l+2m+2m′+2e−p
2

k2 − p2 + iε
. (B.9)

Now, evaluate this last integral.∫ ∞
0

dp p2Ne−p
2

k2 − p2 + iε
=

∫ ∞
0

du

2
√
u

uNe−u

k2 − u+ iε

=− 1

2

∫ ∞
0

du
uN−1/2e−u

u− k2 − iε

=− 1

2

[
P
∫ ∞

0

du
uN−1/2e−u

u− k2
+ iπk2N−1e−k

2

]
. (B.10)
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The principal value integral was done using Mathematica, then simplified

P
∫ ∞

0

du
uN−1/2e−u

u− k2
= −(N − 1/2)e−k

2

(−k2)N−1/2Γ(N − 1/2)γ(1/2−N,−k2). (B.11)

Substituting this back into eq. (B.10),∫ ∞
0

dp p2Ne−p
2

k2 − p2 + iε

=
e−k

2

2

[
(N − 1/2)(−k2)N−1/2Γ(N − 1/2)γ(1/2−N,−k2)− iπk2N−1

]
. (B.12)

Finally, the Green’s function in HO basis is

< n′lm| 1

E − T + iε
|nlm >

=
1

~ω

n−1∑
m=0

n′−1∑
m′=0

(−1)m+m′+n+n′+1
√

4(n− 1)!(n′ − 1)!Γ(n+ l + 1/2)Γ(n′ + l + 1/2)

m!m′!(n− 1−m)!(n′ − 1−m′)!Γ(l +m+ 3/2)Γ(l +m′ + 3/2)

× e−k2
[
(N − 1/2)(−k2)N−1/2Γ(N − 1/2)γ(1/2−N,−k2)− iπk2N−1

]
, (B.13)

where N ≡ l +m+m′ + 1.

B.2.1 Comparison with E < 0

For k2 real and less than 0, the integral also can be done on Mathematica, this time
without using principal value:∫ ∞

0

dp p2Ne−p
2

k2 − p2 + iε
= −e

−k2

2
(−k2)N−1/2Γ(N + 1/2)Γ(1/2−N,−k2). (B.14)

The difference between this result and eq. (B.12), after using FullSimplify on Mathematica,
is

δI =
πe−k

2

2

[
−ik2N−1 + (−k2)N−1/2 secNπ −

(
1

k2

)1/2−N

tanNπ

]
. (B.15)

For integer N , secNπ = (−1)N and tanNπ = 0. So this simplifies to

δI =
πe−k

2

2

[
−ik2N−1 + (−1)N(−k2)N−1/2

]
, (B.16)

which is 0 when k is in the upper complex plane. This shows that eq. (B.12) is the correct
analytic continuation of eq. (B.14).
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B.3 Matrix Elements of Contact-Gradient Operators

This section gives the matrix elements of the contact-gradient operators between HO
eigenstates and tilde states. It follows the appendix of [17], with slight modifications to
treat the E > 0 case.

The effect of the replacement
O → Ō ≡ er

2/2Oer
2/2 (B.17)

is to make the contact-gradient operators (as listed on Table 2.1) act on the wavefunction
er

2/2RnlYlm and er
2/2R̃nlYlm rather than the usual HO wavefunctions and tilde states.

What we need are expressions that describe what happens when gradients and then a
delta function act on these wavefunctions.

From

−→
∇2er

2/2Rnl(r)Ylm(Ω) = −4
√

(n− 1)(n+ l − 1/2)er
2/2Rn−1,l(r)Ylm(Ω), (B.18)

a more general expression(−→
∇2
)p
er

2/2Rnl(r)Ylm(Ω)

=(−4)p
[

(n− 1)!Γ(n+ l + 1/2)

(n− 1− p)!Γ(n+ l + 1/2− p)

]1/2

er
2/2Rn−p,l(r)Ylm(Ω) (B.19)

can be derived.

Defining (~∇q)q0 as maximally coupled q gradients,

(−→
∇q
)
q0
er

2/2Rnl(r)Yl0(Ω)

∣∣∣∣
r=0

= δlq2
l

[
l!

(2l + 1)!!

]1/2
1

π

[
2Γ(n+ l + 1/2)

(n− 1)!

]1/2

. (B.20)

Using eq. (B.19) then eq. (B.20),(−→
∇2
)p (−→
∇q
)
q0
er

2/2Rnl(r)Yl0(Ω)

∣∣∣∣
r=0

=δlq(−1)p
(n− 1)!

(n− 1− p)!

× 2l
[

l!

(2l + 1)!!

]1/2
1

π

[
2Γ(n+ l + 1/2)

(n− 1)!

]1/2

.

(B.21)

Eq. (B.21) is sufficient for determining the matrix elements for HO basis states. In princi-
ple, matrix elements of contact-gradient operators between tilde states can also be deter-
mined, after expanding the tilde state in HO basis. However, an easier method is to start
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by recalling that

R̃α
nlYlm(Ω) =

1

E − T + iε
|αnlm >

=− ikYlm(Ω)

[∫ r

0

r′2dr′jl(kr
′)h

(1)
l (kr)Rα

nl(r
′)

+

∫ ∞
r

r′2dr′jl(kr)h
(1)
l (kr′)Rα

nl(r
′)

]
, (B.22)

and letting the gradients act on this expression.

Repeated application of Laplacian on the tilde state results in(−→
∇2
)p
er

2/2R̃α
nl(r)Ylm(Ω) = er

2/2Ylm(Ω)×{
−ik

[
fph(k2, r2)h

(1)
l (kr) + fph′(k

2, r2)2r
d

dr
h

(1)
l (kr)

] ∫ r

0

r′2dr′jl(kr
′)Rα

nl(r
′)

+−ik
[
fpj (k2, r2)jl(kr) + fpj′(k

2, r2)2r
d

dr
jl(kr)

] ∫ ∞
r

r′2dr′h
(1)
l (kr′)Rα

nl(r
′)

+ fpα(k2, r2)er
2/2Rα

nl(r)Ylm(Ω) + fp
α′ (k

2, r2)2r
d

dr

(
er

2/2Rα
nl(r)Ylm(Ω)

)
+ fp

α′′ (k
2, r2)

−→
∇2
(
er

2/2Rα
nl(r)Ylm(Ω)

)
+ fp

α3′ (k
2, r2)2r

d

dr

−→
∇2
(
er

2/2Rα
nl(r)Ylm(Ω)

)
+ fp

α4′ (k
2, r2)

−→
∇4
(
er

2/2Rα
nl(r)Ylm(Ω)

)
+ fp

α5′ (k
2, r2)2r

d

dr

−→
∇4
(
er

2/2Rα
nl(r)Ylm(Ω)

)
+ . . . } . (B.23)

Since a delta function acts on the expression at the end, only the behavior of this expression
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at r = 0 is relevant. This is given by(−→
∇2
)p
er

2/2R̃α
nl(r)Ylm(Ω)→ er

2/2Ylm(Ω)

(2l + 1)!!
×(

−ik
[
fpj (k2, 0) + 2lfp

j′
(k2, 0)

] ∫ ∞
0

r′2dr′h
(1)
l (kr′)Rα

nl(r
′)

+ 2l+1

[
2Γ(n+ l + 1/2)

π(n− 1)!

]1/2

×{[
fpα(k2, 0) + 2lfp

α′ (k
2, 0)

] (
−k2 + 3n+ l − 3/2 + g̃1(k2, n, l)

√
n(n+ l + 1/2)

)
− 4(n− 1)

[
fp
α2′ (k

2, 0) + 2lfp
α3′ (k

2, 0)
]

×
(
−k2 + 3n+ l − 5/2 + g̃1(k2, n, l)

√
n(n+ l + 1/2)

)
+ 16(n− 1)(n− 2)

[
fp
α4′ (k

2, 0) + 2lfp
α5′ (k

2, 0)
]

×
(
−k2 + 3n+ l − 7/2 + g̃1(k2, n, l)

√
n(n+ l + 1/2)

)})
. (B.24)

Nonzero coefficients in eq. (B.24) are

fpj (k2, 0) =


1 p = 0
3− k2 p = 1
15 + 4l(l + 1)− 10k2 + k4 p = 2
105 + 52l(l + 1)− 105k2 − 14l(l + 1)k2 + 21k4 − k6 p = 3

fph′(k
2, 0) = fpj′(k

2, 0) =


1 p = 1
6− k2 p = 2
45 + 4l(l + 1)− 30k2 + 3k4 p = 3

fp=1
α (k2, 0) = fp=2

α′ (k2, 0) = fp=2

α2′ (k2, 0) = fp=3

α3′ (k2, 0) = fp=3

α4′ (k2, 0) = 1

fp=2
α (k2, 0) =7− k2

fp=3
α (k2, 0) =57 + 4l(l + 1)− 18k2 + k4

fp=3

α2′ (k2, 0) =11− k2

These are identical to the result shown in [17], with the replacement κ2 → −k2, which is
as expected, as they are simply different ways of showing the dependence on E.
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The equivalent of eq. (B.21) is

(−→
∇2
)p (−→
∇q
)
q0
er

2/2R̃α
nl(r)Ylm(Ω)

∣∣∣∣
r=0

= δlq

√
l!

4π(2l + 1)!!
×{

−ik
[
fpj (k2, 0) + 2lfp

j′
(k2, 0)

] ∫ ∞
0

r′2dr′h
(1)
l (kr′)Rα

nl(r
′)

+ 2l+1

[
2Γ(n+ l + 1/2)

π(n− 1)!

]1/2

×{[
fpα(k2, 0) + 2lfp

α′ (k
2, 0)

] (
−k2 + 3n+ l − 3/2 + g̃1(k2, n, l)

√
n(n+ l + 1/2)

)
− 4(n− 1)

[
fp
α2′ (k

2, 0) + 2lfp
α3′ (k

2, 0)
]

×
(
−k2 + 3n+ l − 5/2 + g̃1(k2, n, l)

√
n(n+ l + 1/2)

)
+ 16(n− 1)(n− 2)

[
fp
α4′ (k

2, 0) + 2lfp
α5′ (k

2, 0)
]

×
(
−k2 + 3n+ l − 7/2 + g̃1(k2, n, l)

√
n(n+ l + 1/2)

)}
. (B.25)




