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Introduction
Social network analysis (SNA) begins with data that describe the set of relationships among

the members of a system. One goal of analysis is to obtain from the low-level relational data a
higher-level description of the structure of the system which identifies various kinds of patterns
in the set of relationships. For example, it may be of interest to find cohesive clusters of network
members: those which have most of their connections with each other. It may also be of interest
to find members with similar roles: those with few mutual connections but many connections to
other similar sets of members. These two goals may be combined in the search for general
patterns, which is the aim of block-modeling (Wasserman and Faust, 1994).

As an illustration of block-modeling, consider a network or graph G(V,E) as a set of nodes
V (points, vertices) connected by a set of links E (lines, edges). For simplicity here, we will
consider networks that are binary (edges have logical value 1 if a relationship/connection
between the nodes exists, 0 if not), symmetric (an edge from node I to j implies an edge from
node j to I), and without self-loops (no edges between I and I). We may represent such a
network as the (square) adjacency matrix A = A(G) with: 

A(i,j) = 1 if i is connected to j

A(i,j) = 0 otherwise

For example:  

                    Adjacency matrix               block-model

 a b c d    e f  g h

a

b

c

d

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

!

1 0 0

0 0 1

0 1 0
e

f

0 0 0 0

0 0 0 0

0 0

0 0

1 1

1 1

g

h

0 0 0 0

0 0 0 0

1 1

1 1

0 0

0 0

where the partitions of the network on the left map onto the blocks on the right. It is easy to see
where the partitions (and hence blocks) should go in this example, since the rows and columns
are ordered to make this obvious. In general, network data is not so conveniently ordered, nor
is it so obvious where the blocks are. In this example, we see:

C the network is not connected; there are no links from the block in the upper left (a-d)
to those in the lower right (e-h);

C the upper left block is on the diagonal; it is a clique (complete graph), with a link
between every pair of nodes;

C the lower right blocks are off-diagonal and form a (complete) bipartite graph, with links
from e and f to g and h, but no links between e and f or g and h.



There are a number of methods for finding an ordering and a blocking of network data. One
approach is to choose a set of axes in the multidimensional space occupied by the network and
rotate them so that the first axis points in the direction of the greatest variability in the data; the
second axis, orthogonal to the first, points in the direction of greatest remaining variability, and
so on. This set of axes is a coordinate system that can be used to describe the relative positions
of the set of points in the data. Most of the variability in the locations of points will be accounted
for by the first few dimensions of this coordinate system. The coordinates of the points along
each axis will be an eigenvector, and the length of the projection will be an eigenvalue. The set
of all eigenvalues is the spectrum of the network. Spectral methods (eigendecomposition) have
been a part of graph theory for over a century. SNA researchers have used spectral methods
either implicitly or explicitly since the late 1960's, when computers became generally accessible
in most universities. Two of the earliest important programs were related to eigendecomposition:
Negopy (Richards, 1971; Richards and Rice, 1981) was designed for finding cohesive clusters,
and CONCOR (Breiger et al., 1975) aimed to solve the more general block-modeling problem.
The eigenvalues of a network are intimately connected to important topological features such
as maximum distance across the network (diameter), presence of cohesive clusters, long paths
and bottlenecks, bipartite-ness, and how random the network is. The associated eigenvectors can
be used as a natural coordinate system for graph visualization; they also provide methods for
discovering clusters and other local features. For a more complete discussion of these matters,
see Seary and Richards (2003).

As well as networks of people and relationships, SNA has long considered relationships
between people and events (Davis et al., 1941), co-authorship networks (Crane, 1972), and
other examples of so-called 2-mode networks (Wasserman and Faust, 1994) which involve
relationships between two types of nodes. These networks are usually shown as rectangular R
(with n1 rows and n2 columns), since in general there are not the same numbers of the two types
of nodes. As Breiger (1974) shows, 2-mode matrices can be made square by matrix
multiplication of R and its transpose RT. Another approach is to make a square A (with n1+n2

rows and columns) from R by appending RT  below and to the left of R along with necessary 0
matrices:

A = = R =

1 2 3 ... n2

1

2

:

n1

1 1 0 ... 1

0 1 1 ... 1

: : : ... :

1 0 1 ... 0

0 R

RT 0

1 2 ... n1 1 2 3 ... n2

1

2

:

n1

0

1 1 0 ... 1

0 1 1 ... 1

: : : ... :

1 0 1 ... 0

1

2

3

:

n2

1 0 ... 1

1 1 ... 0

0 1 ... 1

: : ... :

1 1 ... 0

0

This shows that 2-mode networks can be represented by the square adjacency matrices of
symmetric bipartite graphs. (We will use this method for the data we describe later in this paper.)
This representation is not generally used in SNA, probably because of the extra space taken up
by the transpose and the 0 matrices. However, sparse matrix methods, which only store and



1 We have introduced some notation which will be followed throughout:
• matrices are represented by bold capitals: D
• (column-)vectors are represented by bold lower case: e 
• eigenvalues are represented by greek letters, usually with some relationship to the latin letters representing

a matrix and an eigenvector. E.g.(νi  , ni) are the eigenpairs of  Normal matrix N
• a boldface 1 refers to the vector  (1,1, ... ,1)

manipulate actual links, can allow rectangular R to be treated as square A very efficiently (Seary,
2005, p189).

The Normal Spectrum
The Normal Spectrum may be derived by considering the generalized quadratic placement

problem (Hall, 1970; Seary and Richards, 1995) leading to the generalized eigenvalue equation:

Lx = λ Dx , where1 

C D is a diagonal matrix of node degrees of G 

C L = D - A is the Laplacian matrix of G (Cvetkovic et al., 1995, Seary and Richards, 2003)

C λ is an eigenvalue

C x is a corresponding (column-)eigenvector

Assuming that D can be inverted (which it can be if every node has at least one link; i.e. no
nodes are isolated)

D-1 LX = D-1 (D - A)X = (I - D-1 A)X = μ X

where A is the adjacency matrix of G, and I is an identity matrix of proper size. In fact, we
usually take the defining equation to be

 D-1 An = Nn = νn  with  D-1 A = N  and  ν = 1−λ, where

C ν (the Greek letter nu) is an eigenvalue of the Normal matrix N and 

C n is the corresponding eigenvector.

Adding an identity matrix shifts the eigenvalues by 1 without changing the eigenvectors. Note
that for networks without isolated nodes D has an inverse and therefore an inverse square root
D-1/2. In networks with isolated nodes, the network size is effectively reduced by the number of
isolates because the analysis uses only the nodes with links. The number of eigenpairs (νi , ni) is
equal to the number of nodes n. We generally label these with i=0,...,n-1 since i=0 corresponds
to the trivial eigenpair (ν0 = 1, n0 = 1).

The Normal matrix N(G) is:

N(i,j) = 1/deg(i) if i is connected to j

N(i,j) = 0 otherwise

so that N is not symmetric. However, we can construct M = D-1/2AD-1/2, which is symmetric, and
which is similar to N (it has the same eigenvalues).



Let (νi , mi) be the eigenpairs of M. Then the eigenpairs N are:

(νi , ni) = (νi , D
-1/2mi) 

The orthonormalization condition is:

n i Dn j = δ ij = 1 if i=j, 0 otherwise

That is, the vectors are orthonormal in the D (or χ2) metric (Richards and Seary, 1997). The
Normal spectrum is referred to as the Q-spectrum in (Cvetkovic, et al., 1995). The multiplicity
of 1 as an eigenvalue is equal to the number of connected components in G. If G is bipartite, then
eigenvalues appear as pairs with opposite signs. Thus -1 is an eigenvalue if and only if G is
bipartite.

The Normal matrix N has a number of interesting properties:

C It has a trivial constant eigenvector n0 = 1 with eigenvalue ν0 = 1

C The spectrum of N is bounded by 1 = ν0 ≥ν1 ... ≥νn-1 ≥ -1

C The rows of N sum to 1 (it is a stochastic matrix)

C The spectrum of N contains a 1 for every connected component

C The eigenvalue -1 occurs if and only if G is bipartite, in which case all eigenvalues occur in
pairs with opposite signs

C N has been rediscovered a number of times: generalized or combinatorial Laplacian (Dodziuk
and Kendall, 1985; Chung, 1995); Q-spectrum (Cvetkovic, et al.,1995).

Notice also that the similar matrix M satisfies the definition of Chi-squared. In practice, it is
much simpler to solve the eigenproblem for M, since it is symmetric.

Four important properties of Normal eigenpairs

The following important properties of Normal eigenpairs will be useful in understanding the
results obtained later.

1. Bipartite Representation of 2-mode networks

We can represent a 2-mode network by a square symmetric matrix with all the links in off-
diagonal corners, so that the matrix is mostly 0’s. The result is always a bipartite graph, so that
all eigenvalues occur as positive and negative pairs (eg. 1, -1, 0.93, -0.93, ...). Generally we
don’t need most of the negative eigenpairs, but the eigenvector belonging to eigenvalue -1 can
be very useful. We don’t need to explicitly construct the full matrix, nor calculate all eigenpairs.
Using sparse methods and automatic symmetrization, we only need store the links in one
direction, and can calculate only a few eigenpairs with largest eigenvalues (Seary, 2005, p189).

Assume that there are n1 items in one mode (the rows of the original matrix) and n2 items in
the other mode (the columns). Then the bipartite matrix will be square with (n1+n2) rows and
columns. Thus each eigenvector also has (n1+n2) coordinates. By the bipartite construction, the



2 For the bipartite representation, only the positive eigenvalues contribute to χ2 of the 2-mode network.

first n1 coordinates correspond to the n1 items in the first mode (the rows), and the remaining n2

coordinates correspond to the n2 items in the second mode (the columns).

For a pair of positive and negative eigenvalues of a normal spectrum, the only difference
between the corresponding eigenvectors is that the first n1 coordinates of one have opposite signs
of the first n1 coordinates of the other. In particular, the eigenvector belonging to eigenvalue -1
is the trivial constant eigenvector (1), except that the first n1 coordinates are negative. The
difference in signs can be used to identify the two modes.

2. Visualization

The eigenvectors of N can provide good visual representations of graphs which consist of
blocks of nodes with similar connections. This follows from the relationship between the
eigenvector coordinates for a node and those it is connected to (Seary and Richards, 1998). It
is evident from the definition of eigendecomposition that:

 (1)     n s
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for the ith eigenpair (νi , ni ) of N (where ni(s) is the sth component of the  ith eigenvector; “s~t”
means  “s is connected to t”)

This equation shows that for eigenvalues νi near 1, each node is approximately at the centroid
of those it is connected to. The exact difference from the centroid for node u for eigenvector ni

is:

n s n t s v ni i
s t

i i( ) ( ) deg( ) ( )
~

− = −∑ 1

For “important” eigenvalues νi  near 1, this produces very good visualization properties.
Members of a block tend to be close to one another and not close to members of other blocks.

3. Relation to χ2:

The χ2 matrix is defined in terms of the row and column marginals (sums). A typical element
is (Observed ij - Expected ij)

2 «Expected ij where 

Expected i j = 
deg( ) deg( )

deg( )

i j

i∑

We can write χ as  where the second term corresponds to the trivial eigenvectorO E E− ,

which can be dealt with separately. In matrix notation χ = D-1/2A D-1/2 which has eigenpairs  (νi,
D-1/2ni). Thus (omitting the expected term corresponding to trivial ν0 =1, n0 = 1) we have2 the
following:
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3  These data were collected by students in a course Richards taught  taught in 1988. The students watched the
children in a daycare centre (ages: 6 to 10) and, over the course of a day, noted the children they saw playing
together and, later in the day, asked each who they had played with.

This equation shows how much each dimension contributes to χ2 which is a measure of
dependence between rows and columns (or of deviation from what would be expected if the
node degrees by themselves would give a complete description of the network’s structure). In
this interpretation, if |ν1| is small (|ν1| << ν0 = 1), then χ2 is also small: there is no structure or
pattern to explain in the network beyond the node degrees, and so there is no “signal” above the
expected “background.” On the other hand, if |ν1| is close to 1, then χ2 will be large and there
is a relation between rows and columns of A, with the first eigenvector pointing in the direction
of the maximum variability in χ2. If |ν2 , ν3 ,...νk| are also large, we need k+1 eigenvectors to
describe the patterns in the χ2 matrix. Thus we can tell from the eigenvalues how many
eigenvectors we need to explain most of the χ2 of the network, and which are the most
“important” ones, since they contribute most to χ2 (Greenacre, 1984).

4. Partitions

There is a large body of literature on the use of eigenvector coordinates to provide partitions
of graphs. Most of these methods use eigenpairs of the adjacency matrix (Powers, 1988) or the
Laplacian (Pothen et al., 1990). Fiedler (1975) was the first to show that Laplacian eigenpairs
could provide good approximate solutions to the min-cut problem: partition a graph into parts
with approximately equal numbers of nodes and few links between them. We can add an
additional constraint that the number of links in each part also be roughly equal by weighting the
node sets by their total degrees (Dhillon, 2001). This is exactly what a partition based on n1 from
N gives us, since n1 points in the direction of maximum variability in χ2. Similarly, further
partitions based on n2, n3, ... will also produce sets of nodes with a large number of edges in
common (as long as ν2, ν3, ... make significant contributions to χ2). Partitions based on positive
eigenvalues will produce blocks of edges on the diagonal of A, while those based on negative
eigenvalues produce nearly bipartite off-diagonal blocks, which occur in pairs if the network is
symmetric (Seary and Richards, 1995). In both cases, the concentration of links to specific parts
of the network leads to a large value of χ2 for the partition.

As an example of these properties, figure 1 shows visualizations of children at a day-care
centre3. The network is defined by observing which children “Play” with each other (all links are
therefore symmetric). Figure 1a is a two-dimensional visualization, labelled by the sex of the
children. It is clear that the x-dimension (eigenvector 1) is important (eigenvalue = 0.801) and
that the clusters on the left and right are related to sex. Figure 1b is a one-dimensional
visualization, showing the adjacency matrix as permuted by the coordinates on eigenvector 1.
It is clear that this permutation based on the maximum variability in χ2 has moved most of the
links close to the diagonal. Figure 1c shows the same adjacency matrix as permuted by the sex
of the children (boys in upper left, girls in lower right). Some clustering is evident. Figure 1d
shows the adjacency matrix permuted by the signs of eigenvector 1 (“n” for negative, “p” for
positive). The partition, which is now based on the network itself, is better than that for sex in
a sense that will be described in the next section.



4 Seary suggested the name “panigram” for the two-dimensional analog of histograms. “Histos” (ιστοσ) is
Greek for the mast of a ship, whereas a 2-dimensional sail is  “pani” (πανι) in Greek.

a) Two-dimensional visualization of Play network
based on positive Normal eigenvectors. Nodes
labelled by Sex.

b)  Play adjacency matrix permuted by Normal
eigenvector 1 coordinates. Nodes labelled by Sex.

c)  Play adjacency matrix permuted by Sex.
Nodes labelled by Sex.

d) Play adjacency matrix permuted by signs of
Normal eigenvector 1. Nodes labelled by signs.

Figure 1. Four visualizations of the Play network. 

Contingency tables and panigrams
Once a partition has been found, it is a simple matter to form a contingency table by counting

the number of links within and between each block. The quality of partitions can also be
compared by calculating the χ2 for each contingency table. These tables may be visualized by
using panigrams4. A panigram contains most of the information in a contingency table. The



percentages in the left column are the row marginals. The percentages under the columns are the
column marginals. The numbers in the cells are the column percents you would see in the
corresponding cells of the contingency table. The height of the segments in the “Totals” column
are proportional to the row marginals. The width of the other columns are proportional to the
column marginals. Thus the areas of the segments are proportional to the percent in the
corresponding cell in the contingency table. If the row variable is independent of the column
variable, the segment heights in all columns are the same as the ones in the “Totals” column. This
is not the case if the row variable is not independent of the column variable.

In table 1a and figure 2a (compare to figure 1c) we see the counts within and between a
block-model based on sex. In table 1b and figure 2b (compare to figure 1d) we see the counts
within and between a block-model based on the component signs of the first normal eigenvector.
Clearly the latter is superior based both on a larger χ2 and more within-block and fewer between-
block counts.

Table 1. Contingency tables for partitions based on: a) node attribute and b) Normal eigenvector

a) Crosstabulation of sex. 
Chi-squared = 44.613 

b) Crosstabulation of np(Play)     
Chi-squared = 73.282 

COUNT
 ROW %
 COL % 

ROWS = FROM sex 
COLS = TO sex  

COUNT 
 ROW % 
 COL % 

ROWS = FROM np(Play)
COLS = TO np(Play) 

boy girl TOTAL neg pos TOTAL

boy
86
85.15%
85.15%

15
14.85%
30.61%

101
67.33%      neg

76
87.36%
87.36%

11
12.64%
17.46%

87
58.0%

girl
15 
30.61%
14.85%

34
69.39%
69.39%

49
32.67%      pos

11
17.46%
12.64%

52
82.54%
82.54%

63
42.0%

TOTAL
101
67.33%

49
32.67%

150 TOTAL 87
58.0%

63
42.0%

150

a) Panigram for partition of Play network based on
Sex.   χ2  = 44.613

b) Panigram for partition of Play network based
on signs of Normal eigenvector 1.  χ2 = 73.282

Figure 2. Panigrams for Play network with partitions based on a) node attribute and b) Normal
eigenvector 1



5  There is currently no limit (apart from memory) on the number of nodes and links that can be handled by the
Analyse and Variables modules. There is similarly no limit on the number of node and link variables that may
belong to a MultiNet data file, and new node and link variables can easily be created when desired. 

6 This dataset came from a University of Toronto study conducted by co-authors and medical researchers
Cornelia Baines and Gail McKeown-Eyssen (McKeown- Eyssen, G., Baines, C., et al. 2001). 

The MultiNet Network analysis program

MultiNet is a Windows-based computer program designed for interactive exploratory data
analysis of social and other large, sparse, multivariate networks5. It was designed for exploratory
analysis and visualization of large, complex networks, and to provide details of the values of the
link and node variables that make up the networks. Three aspects of the program are relevant
to this discussion:

C Eigenspaces: Visualize networks and create variables and partitions from graph
spectra.

C Variables: Univariate statistics and transform, combine, create and delete link
or node variables. We will make use of the Recode function which allows a
variable to be created by combining existing variables, then transformed into a
categorical variable by quantiling, for use in a contingency table.

C Analyse: Perform statistical analyses on two or three link and/or node variables.
We will create contingency tables visualized as Panigrams.

MultiNet always produces both graphical displays and textual reports; all the figures and tables
in this paper were prepared using the program.

 Figures 1d and 2b and table 1b use categorical partition variable np(Play) with two unique
values (“n” and “p”) based on the signs of Normal eigenvector 1 for the Play network. MultiNet
makes it easy to define a real-valued variable based on actual eigenvector coordinates; this
variable can then be used to perform further operations on the eigenvector coordinates, such as
selection of subsets of nodes and binning or quantiling into categories. Relationships between
categorical variables can be examined with the resulting contingency tables visualized as
Panigrams. These definitions, transformations and analyses are all that will be used in this paper.
Further and more detailed information on the program’s capabilities can be found in Seary
(2005).

A 3-mode medical network of people, symptoms, and exposures

Bipartite representation can also be used for three-mode networks, which have three types
of objects and one relationship which is meaningful only between but not within object types. An
example is a) people, b) reported symptoms, and c) exposures that were believed to produce the
symptoms6. Using the method described above in the discussion of bipartite representation of 2-
mode networks, we can represent the data as shown in Table 2.



Questionnaires were filled out by patients in general practices. They listed symptoms they had
experienced in the last year and any substances (exposures) that they thought might have caused
symptoms. Respondents were not asked to link specific symptoms to specific exposures. The
medical researchers initially categorized 68 selected symptoms into 14 types (Table 3a) and the
85 exposures into 8 types (Table 3b). The analysis described here did not link individual
symptoms to individual exposures because of the large numbers of each reported by some
patients (in one case 63 symptoms and 61 exposures). The analysis found a relationship between
types of symptoms and types of exposures reported by respondents which was unexpected to the
medical researchers. The analysis also suggested a further grouping of types of symptoms based
on obvious monotonic trends in the Food (Group A) and Standard Allergens (Group C)
exposures.

Table 2.  Bipartite representation of 2-mode networks

people symptoms exposures

1 2 ... n1 1 2 ... n2 1 2 ... n3

people

1
2
:
n1

0
reports of

symptoms*
reports of

exposures*

symptoms

1
2
3
:
n2

symptoms
reported** 0 0

exposures

1
2
:
n3

exposures
reported** 0 0

** transposed data matrix           * original data matrix 

To define the network we begin with three types of nodes: 1340 people, 68 symptoms, and
85 exposures (the network thus has a total of 1493 nodes). A link is defined between a person
and a symptom if the person reported that symptom; a link is defined between a person and an
exposure if the person reported that exposure. The resulting link variable is called “sym-exp” in
figures 3 and 4. For each person, this variable has a value for each symptom and each exposure.
The value is “1” if a person reports a particular symptom or a particular exposure; otherwise it
is “0.”



Table 3a. Categories of Symptoms (n = number in category, N=total number reported)

Category n N Group Examples

#

#

#

#

#

#

Neurocognitive

Affect/Mood

Vegetative

Energy

Musculoskeletal

Endocrine

9

6

3

2

5

1

3147

3051

 743

 751

1283

 253

A   

A   

A   

A   

A   

A   

forgetfulness, trouble finding words

feeling tense, depressed

sleeping more, compulsive sleepiness

tiredness, general weakness

muscle pain, muscle weakness

fast heartbeat

#

#

#

#

#

Headache

Gastro-intestinal

Connective

Cardiovascular

Sensory

2

6

1

1

6

1250

3129

 292

 277

1236

B   

B   

B   

B   

B   

other headache, migraine

excess gas, bloating

burning eye

irregular heartbeat

light sensitive, bad taste

#

#

#

Infection

Allergy

Miscellaneous

4

12

10

1841

4323

 3641

C   

C   

C   

sore throat, hoarse voice

itchy eye, watery eye

sinus fullness, sinus headache

TOTAL 68 25217

Table 3b. Categories of Exposures (n=number in category, N=total number reported)

Category n N  Group Examples

# Food 29 2002 A   coffee, dairy products

#

#

#

#

#

#

Environmental

Home/Work

Furnishings

Grooming

Renovation

Pharmaceuticals

11

15

10

 4

 3

 5

947

1005

 620

587

 232

 240

B   

B   

B   

B   

B   

B   

tobacco smoke, auto exhaust

household cleaners, disinfectants

TV screen, carpet

perfume, cosmetics

paint, sawdust

prescription, non-prescription medicine

# Standard Allergens 6 1480 C   pollen, house dust

TOTAL 85 7113

Figure 3 shows nodes placed according to the coordinates of eigenvectors 1, 3, and 5. In
Figure 3a and 3b the green dots correspond to people, the magenta dots to symptoms and the
cyan dots to exposures. Since the first eigenvector with eigenvalue -1 perfectly captures
bipartite-ness, the two parts of the bipartite network (people and symptoms or exposures) each
lie along straight lines in the direction of the Y-axis. People report so many symptoms and exposures
(high degrees) that the lines representing links obscure the display, so they are turned off in



a) Bipartite (people on left, symptoms and ex-
posures on right) nature captured perfectly by
eigenvector 1, but the lines hide the relationships.

b)  With lines off and display rotated slightly,
clustering on the right becomes clearly visible.           
 

c) Close-up of symptoms (1-15) and exposures (16-23) labelled by type. Upper and lower extremes show a
relationship between symptom and exposure types. Coloured by symptom and exposure groups.

Figure 3. Eigenspace displays of 3-mode symptom-exposure-people medical data.



7 In bipartite graphs, eigenvalues come in pairs with opposite signs. The eigenvectors associated with each pair
contain the same values, but the component values for one part have signs reversed, repeating the bipartite-ness
captured by eigenvalue -1. For this reason, we did not use eigenvectors 2 and 4 because the eigenvalues they
are associated with are the negative copies of 3 and 5.

8 The cross-tab tables visualized by these panigrams are large — the first one has 15 rows and 10 columns (and
marginal rows and columns) resulting in about 500 numbers (including row, column percentages, and counts).
Please email the authors if you wish to see these tables.

Figure 3b, which is also rotated slightly around the Y-axis for clarity. Eigenvector 37 captures the
difference in frequency of symptoms and exposures, separating the higher frequency symptoms
from lower frequency exposures. As the totals in tables 3a and 3b show, the fre-quencies of
symptoms and exposures are quite different with 25,217 symptoms reported (mean of 18.82
symptoms per person) and only 7,113 exposures reported (mean of 5.31 exposures per person).
Eigenvector 5 captures the simultaneous clustering of symptoms and exposures. Figure 3c
shows more detail of the symptoms and exposures nodes labelled by the types assigned by the
medical researchers. Both symptoms and exposures cluster by type, with extremes belonging to
Neurocognitive symptoms and Food exposures at the upper left and right, and Allergic
Symptoms and Standard Allergen Exposures at the lower left and right.

The analytic strategy
In order to quantify the clustering that appears visually in Figure 3, we start with a Normal

eigendecomposition of the network using for “links” the variable that describes reported
symptoms and exposures. The first and fifth eigenvectors were used to create new variables. The
values of the fifth eigenvector for symptoms and exposures were converted to missing, resulting
in a variable that contained only values for people. This variable was recoded into deciles so the
lowest ten percent of people were “1"; the next ten percent were “2", etc.

We then performed a crosstabulation of symptom reports, using the symptom’s type for rows
and the person’s Decile for columns. We did the same with exposure reports, using the
exposure’s type for rows and the person’s Decile for columns. The set of steps used to do this
analysis in MultiNet are explained in an appendix.

The results are shown graphically in panigrams in Figures 4a and 4b. In both cases, each
column of the table is represented as a bar with width proportional to the column’s marginal
percentage. In columns, segments correspond to rows of the table. The heights of these segments
are proportional to the column percentages in the corresponding cells of the table.

Discussion of results
Figure 3c suggests, and the tables8 visualized in Figure 4 confirm, that there is a relationship

between types of symptoms and types of exposures people report. People who report symptoms
in certain categories tend to report exposures in certain categories. For example, more than 50%
of the exposures reported by the people in decile 1 are Standard Allergens; almost 75% of the
symptoms they report were in Group C (and more than 35% in “Allergy”). That people who
report sensitivity to allergens tend to also report allergies is not a surprise, but at the other
extreme (of both Figure 3 and 4) is the result that more than 50% of the exposures reported by
people in decile 10 were “Food” and more than 60% of the symptoms they report were in



Group A, with most of these either Neurocognitive (23%) or Affect/Mood (20%). To our
knowledge, the relationship between Food exposures and Neurocognitive and Affect/Mood
symptoms has not been previously reported. 

a) Panigram of counts of symptom types from each of the deciles of people. Coloured by symptom groups. 

b) Panigram of counts of exposure types from each of the deciles of people. Coloured by exposure groups.

Figure 4. Panigrams based on symptom and exposure types, with people ordered by eigenvector 5. In both
panigrams, unlabelled cells contain less than 3% of their column totals.



It is clear that eigenvector 5 captures a difference between people who report symptoms
related to allergens and those who report symptoms related to food. On the basis of the trends
in eigenvector 5, we collected the categories of both symptoms and exposures into the following
groups (table 2):

C Group A has column percents which increase steadily (almost monotonically) from decile 1
to decile 10. For Exposures, this group consists of Food. For symptoms, this group includes
Neurocognitive, Affect/Mood, Vegetative, Energy, Musculoskeletal, and Endocrine, with
the first two contributing more than 50% to the counts. In figures 3c and 4, group A is
coloured red.

C Group B does not change monotonically from decile 1 to decile 10. This group is coloured
yellow.

C Group C has column percents which decrease steadily (monotonically except for one data
point) from decile 1 to decile 10. For exposures, the group consists of Standard Allergens.
For symptoms this includes categories Infection, Allergy, and Miscellaneous, with the last
two contributing about 80% of the counts. In Figures 3c and 4 group C is coloured blue.

These groupings and colourings are used in Figures 3c and 4 to show the smooth relationship
between categories (the deciles) of people and the symptoms and exposures they report.

The clusters shown in these figures arise from the relationship between the coordinates of any
node in an eigenvector and the coordinates of the nodes it is connected to. This relationship is
expressed by equation (1):

n s n t v si i
s t
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showing that coordinate ni(s), the sth component of the  ith eigenvector, is approximately at the
centroid of the coordinates of the nodes s is connected to. The approximation is exact for the
constant trivial eigenvector with eigenvalue 1 (where every node has exactly the same
coordinate). For eigenvalues far from 1 (which is the case for eigenvector 5 with eigenvalue
0.345), the coordinates can be quite far from the centroid, so that any clusters can be quite
smeared out, as we see in Figure 3c. Nevertheless, the analytic strategy outlined here can detect
small signals and suggest directions for further analysis.

One reviewer suggested that comparable results could be found by using methods such as
factor analysis. However,  factor analysis would necessarily require reduction over the “cases”
of the data (the people), while fitting to the “variables” (the symptoms and exposures). For
example, the default SPSS  “Factor” routine would apply Principal Components Analysis
(Joliffe, 1986) to the symmetric (and therefore square) matrix produced by correlating the
columns of variables, which loses all details about the people. Our method is similar to Corre-
spondence Analysis (Greenacre, 1984) which uses Singular Value Decomposition (Press et. al.,
1986 ) to find the  related eigenspaces of the symmetric matrices of cases and variables formed
by pre- and post-multiplying the data matrix by its transpose. Our method forms a symmetric
matrix by constructing a bipartite graph which retains all details about the cases and variables;
the cases and variables are in a single eigenspace and are given their own sets of coordinates as
the two parts of the bipartite graph. This allows easy calculations and visualizations such as
those shown in the panigrams of Figure 4.



Another reviewer suggested relating Panigrams to Mosaic displays (proposed by Hartigan
& Kleine, 1981) to represent contingency tables. Though there are superficial similarities, the
two methods were developed independently and have evolved in different directions.  Richards
developed panigrams as a way to make the information in  large crosstabulation tables easily
comprehensible (Richards, 1987).  Subsequent developments (Richards, 1988, 1993; Seary,
2005) include transposes, three-way contingency tables, three-mode ANOVA, and interactive
exploration and interpretation (e.g., Figures 2 and 4). Panigrams have always included row and
column marginals, which have never been part of Mosaic displays. In the early 1990's, Michael
Friendly extended mosaic displays so they would incorporate residuals into the tiles, allowing the
analyst to know whether the observed data deviates from an expected model. While panigrams
are  used to illustrate the column (or row) percentages and marginals in a two-dimensional
crosstab table, with colours representing the categories of row or column variables, Friendly’s
method uses colour and shading to represent the sign and magnitude of standardized residuals
from a specified loglinear model (Friendly, 1991, 1992). 

Conclusions
The results presented here show that the combination of spectral methods, for visualizing and

partitioning, and contingency tables with panigrams can lead to the extraction of unsuspected
relationships, even with high network density and low signal. In this case the categories given
by the medical researchers were a good match to the patterns in the data. Without such pre-
existing categorizations these methods can also suggest alternative ways of categorizing the data
by block models which maximize χ2 derived from spectral results.
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Appendix

Perform a Normal eigendecomposition of the network using for “links” the variable that
describes reported symptoms and exposures: 

C Use Eigenspaces !Normal  with “sym-exp” – the link variable that describes reported
symptoms and exposures

C Use Define !Variables to create two new variables (“1N-sym-exp” and “5N-sym-exp”) from
eigenvectors 1 and 5 

C Use Recode !Equation to select coordinates on the 5th eigenvector for people (and to
exclude symptoms and exposures).  This is a two-step process.  First, take advantage of the
fact that people have negative coordinates on eigenvector 1 (Figure 3):  multiply the variable
that contains eigenvector 5 by “1N-sym-exp<0" which evaluates to “1” if true and “0” if
false. The equation  (1N-sym-exp<0)*5N-sym  will make the coordinates for Symptoms and
Exposures equal to 0. This uses properties 1 (bipartiteness) and 2 (visualization) to isolate
the people.

C Use Recode !Zero ->Missing to turn these 0 coordinates into missing data, excluding them
from the next steps of the analysis. The distribution now includes only coordinates for
people.

C Use Recode !Discrete option Quantiles  to categorize the people into deciles.  Create a new
variable to specify which decile each of the 1340 people is in (“Deciles of people from
Eigenvector 5" in figure 4). This uses properties 3 and 4 to produce a partition that should
result in large χ2.

Next, perform a network crosstabulation of symptom reports where symptom type is used for
rows and Deciles for columns, then another with exposure types for rows and Deciles for
columns:  

C Use Network !Xtabs  to form contingency tables counting the types of symptoms reported
by people in each of the 10 deciles (Figure 4a).

C Use Network !Xtabs  to form contingency tables counting the types of exposures reported
by people in each of  the same 10 deciles (Figure 4b).
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