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Abstract The Protein Structural Initiative (PSI) at the US

National Institutes of Health (NIH) is funding four large-

scale centers for structural genomics (SG). These centers

systematically target many large families without structural

coverage, as well as very large families with inadequate

structural coverage. Here, we report a few simple metrics

that demonstrate how successfully these efforts optimize

structural coverage: while the PSI-2 (2005-now) contrib-

uted more than 8% of all structures deposited into the PDB,

it contributed over 20% of all novel structures (i.e.

structures for protein sequences with no structural repre-

sentative in the PDB on the date of deposition). The

structural coverage of the protein universe represented by

today’s UniProt (v12.8) has increased linearly from 1992 to

2008; structural genomics has contributed significantly to

the maintenance of this growth rate. Success in increasing

novel leverage (defined in Liu et al. in Nat Biotechnol

25:849–851, 2007) has resulted from systematic targeting

of large families. PSI’s per structure contribution to novel

leverage was over 4-fold higher than that for non-PSI
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structural biology efforts during the past 8 years. If the

success of the PSI continues, it may just take another

*15 years to cover most sequences in the current UniProt

database.

Keywords Protein structure determination �
Structural genomics � Evolution � Protein universe

Abbreviations

3D Three-dimensional

3D structure Here used exclusively to refer to the three-

dimensional coordinates of each atom in the

native conformation of a protein

HTP High-throughput

JCSG Joint Center for Structural Genomics

MCSG Midwest Center for Structural Genomics

NESG Northeast Structure Genomics Consortium

PDB Protein Data Bank of experimentally

determined 3D structures of proteins

PSI Protein structure initiative at the

NIH-NIGMS

NYSGXRC New York Structural GenomiX Research

Consortium

SG Structural genomics

UniProt Unification of SWISS-PROT, TrEMBL and

PIR protein sequence database

Introduction

Systematic targeting of the largest families

without structural coverage

The US contribution to Structural Genomics (SG), the

Protein Structure Initiative (PSI), is funded by the National

Institutes of Health-National Institute of General Medical

Sciences (NIH-NIGMS). The second 5-year phase of the

initiative, PSI-2, began in 2005. Four large-scale Structural

Genomics Centers were created for high-throughput pro-

duction of protein structures (JCSG, MCSG, NESG,

NYSGXRC), as well as six Specialized Research Centers

both charged with continuing to develop technologies

needed for large-scale protein structure determination [30].

The four large-scale production centers are currently

poised to generate over 3,000 entirely new experimental

3D structures of proteins for the biomedical research

community in addition to the over 1,300 structures that

originated from the pilot phase. At the end of the first 3 of

those 5 years, the four centers had already deposited almost

2,000 new 3D structures (data from TargetDB, [9]).

Through the development and advancements of bio-

chemical, robotic, NMR, crystallographic and computational

techniques, SG centers are decreasing the cost and time

required to determine a protein structure in order to advance

the structural coverage of sequence space and biomedical

research. The development and advancement of high-

throughput protein production and protein structure deter-

mination pipelines are critical to the eventual characterization

of protein structure space, expanding our understanding of

molecular evolution, and to address biomedical problems

such as drug discovery.

The challenges from these objectives for computational

biology are mainly twofold: (1) identify targets for which

each experimental structure will have a high leverage for

modeling and (2) focus on those targets that will likely

yield structures using current HTP methods [14, 21,

23, 37].

Metrics of success

Several metrics of success have been developed to monitor

the evolution of structural genomics during PSI [8, 18, 22].

These include (i) total numbers of PDB depositions, (ii)

numbers of distinct sequences (\98% pairwise sequence

identity) for which an experimental structure is determined,

(iii) numbers of ‘novel structures’, defined as a structure for

a protein having\30% sequence identity with any protein

structure already in the PDB, (iv) first 3D structure from a

particular domain family; (v) first 3D structure from a

particular functional class of proteins, (vi) protein struc-

tures which provide a novel testable hypothesis about

function, and other metrics. In the following paragraphs we

outline some of these metrics relating to the value of

experimental 3D structures to provide useful structural

information about homologous protein sequences.

Modeling leverage of experimental structures

Homologous proteins from different organisms, defined as

those that have evolved from a common recent ancestral

protein, usually share similar 3D structures [10, 28, 31, 35].

Therefore, the PSI does not aim at producing structures of

every protein from every organism. Instead, the PSI aims to

identify structural domains in proteins, systematically

organize these protein domains into sequence-structure

families, and determine the 3D structure of one or a few

representatives from many of these families. The ultimate

goal is to attain structural coverage for every major protein

domain family found in nature.

Almost 50,000 experimentally determined 3D structures

have been deposited into the PDB [4]. However, this

accounts for less than 1% of the *6 million protein

sequences deposited into UniProt [2]. As genome

sequencing technologies advance, sequence data is being

generated at an ever increasing pace, not only for complete
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genomes of organisms but even for entire ecologies of

hundreds or thousands of microorganisms (META

genomics) [12, 36, 39]. Accordingly, the rate of discovery

of new protein sequences will continue to increase much

faster that the rate of protein structure determination.

The fact that homologous protein domains have similar

structures enables the application of homology, or com-

parative, modeling methods [17, 32]. Comparative

modeling leverages in the information provided by each

experimental structure many fold. For example, it has been

proposed that experimental determination of 3D structures

for one representative of the largest 1,000–2,000 protein

domain families, would be sufficient to allow modeling, at

some approximate level, of more than half of all the resi-

dues in all of UniProt [21, 38].

The ‘‘modeling leverage’’ of a particular 3D structure

(modeling template) depends on several factors, including

(i) the sequence similarity between the template with

known experimental structure and target proteins of

unknown structure, (ii) the method of comparative mod-

eling, and (iii) the criteria by which a model is judged to be

‘‘useful’’. The third factor (what is good enough?) can be

especially difficult to ascertain, and rather inaccurate

models (e.g. just the overall fold) are sufficient for some

important applications of models, while other applications

may require very high accuracy models. Benchmark stud-

ies suggest that sequence similarity of [40% over [50

residues generally provide models with heavy atom root-

mean-square deviations of \2.5 Å from the true experi-

mental structure [6, 11, 16, 24–27]. However, templates

that are less sequence similar to the target structure may

provide even higher accuracy models, and models gener-

ated for more sequence similar templates may result in less

accurate models. Leverage also must be defined with

respect to what portion of the target protein can be mod-

eled from the experimental template, leading to metrics for

full protein models, protein domain models, or residue

models per experimental template. Modeling leverage also

needs to be defined with respect to a particular sequence

database; e.g. with respect to a particular version of

UniProt.

Structural coverage

The concept of modeling leverage is intimately associated

with the concept of structural coverage; i.e. the number or

percentage of a particular set of protein sequences,

domains, or residues, which can be modeled from a par-

ticular set of experimental protein templates. Structural

coverage of the protein universe (i.e. a particular version

of UniProt), of an entire proteome of an organism

(e.g. the human proteome), of an ecology of organisms

(e.g. all human gut microorganisms); or of a system of

co-functioning proteins (e.g. proteins associated with a

particular biological process), are all key metrics in mea-

suring the success of SG that depend on the definition of

modeling leverage.

Novel modeling leverage and novel coverage

Related to the concept of modeling leverage is the concept

of novel modeling leverage [22], operationally defined as

the number of proteins/domains/residues that could not be

modeled (based on the above specific definition of lever-

age) as of the date the subject experimental structure was

deposited into the public PDB [22]. The novel leverage

provided by a set of experimental 3D structures across a

particular set of protein sequences defines the novel cov-

erage provided by these structures. This concept of

leveraging experimental structures, and particularly novel

leverage, has been fundamental to the process of target

selection by large-scale centers during PSI-2. In particular,

the large-scale centers systematically target the largest

protein domain families for which we currently have little

or no structural coverage.

The need for a standard convention

The modeling leverage value of a particular experimental

structure, or the coverage of a set of sequences by a set of

structures, depend upon the details of thresholds defined for

sequence similarity that can be expected to provide a

‘‘useful’’ model, as outlined above. There are also certain

technical issues which may or may not be accounted for in

any method of assessing novel leverage. Examples of such

issues, not used in the current work include: (i) while a

sequence may be modeled from a structure already in the

PDB on the date of deposition of subject structure, the

subject structure may allow more accurate modeling of this

sequence, and (ii) one may or may not discount the novel

modeling leverage of a particular structure by the modeling

leverage of experimentally-determined structures subse-

quently deposited in the PDB. It is simply not possible to

define universal thresholds or criteria of model accuracy

that are appropriate for the full range of applications for

which models are used. Thus, the novel leverage reported

for the same data by different groups may vary widely.

Here, we adopt as a convention the definitions and

thresholds proposed by Liu et al. [22] for assessing mod-

eling leverage, novel modeling leverage, and the

corresponding metrics of novel coverage. This is a con-

venient measure of ‘‘modelability’’ that is easily

reproducible with relatively modest computing resources

(the analysis presented here consumed less than 2 CPU-

years).
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Methods

Data set

All data about the status of structural genomics targets

were taken from TargetDB [9]. Leverage, novel leverage,

and the corresponding metrics for coverage were deter-

mined by the method of Liu et al. [22]. The basic concept is

the following. We begin with a fixed version of UniProt, in

this case release 12.8 from Feb 2008; containing 5,678,599

protein sequences with 1,851,231,082 residues. For this

version we compile the number of proteins and residues

that align (PSI-BLAST E-value 10-10, 3 iterations on

UniProt, one on PDB with background estimates based on

UniProt size; for more details see Liu et al. [22]) to any

protein of experimentally determined 3D structure depos-

ited into the PDB at a given time point T = T0. Novel

leverage is then everything that is not covered by this

simple alignment protocol and has arisen from structures

added to the PDB at T1 [ T0; total leverage is computed as

all structures in the PDB covered by this criteria.

Novel structures

We loosely referred to an experimental structure (more

precisely the structure specified by a particular PDB

identifier) as a novel structure if at least 50 residues of this

structure could be used to create novel leverage. This

implies in particular, that novelty was not at all constrained

by any particular definition in terms of the similarity of this

new coordinate set in terms of structure to any other

structure already in the PDB. When compiling per-residue

estimates for novel leverage, we did not apply any such

threshold, instead, any single residue that could not have

been modeled before counted.

Novel leverage versus novel coverage

Leverage and coverage are related metrics that differ

essentially only in the perspective they provide:

Leverage ¼ Number of proteins=residues in database DB

that can be modeled at threshold E ¼ E0

based on a structure added at time T ¼ T0:

ð1AÞ

Coverage ¼ Percentage of proteins=residues in dataset DS

that can be modeled at threshold E ¼ E0

based on a structure added at time T ¼ T0:

ð1BÞ

In the context of this work, we used the DB = UniProt

12.8 (Feb. 2008), E0 = PSI-BLAST E-value \ 10-10.

Coverage often is compiled with respect to the same

database as leverage, i.e. DS = DB. In fact, this is the

metric that we compiled for this work. However, we have

also compiled coverage values for the set of proteins in

particular organisms, e.g. focusing on the structural

coverage for the human proteome [29]. In principle,

leverage and coverage are symmetric: both can be

compiled on the same data set, and the only essential

difference is that one counts numbers, the other percentages.

Both leverage and coverage can be computed on a per-

structure, on a per-residue or on per-annum base. Fre-

quently, we also compiled those numbers as sums over all

PSI structures in light of the sum over all PDB structures

and/or over all PDB structures without those PSI-structures.

The measures for leverage and coverage as defined

above have a severe problem: they do not distinguish at all

between structures that provide new information and those

that simply confirm the information we already have in the

PDB. This effectively implies that the measures as defined

above do not capture a scientifically relevant reality. This

problem is easy to fix: all we need to do is to compile the

leverage/coverage at a given time and to then define the

novelty provided by new structures as the added leverage

and coverage. We have introduced this simple metric as

‘‘novel leverage’’ and ‘‘novel coverage’’, and defined them

by:

Novel leverage ¼ Number of proteins=residues in

database DB that could first be

modeled at threshold E ¼ E0 based

on a structure added at time T ¼ T0:

ð2AÞ
Novel coverage ¼ Percentage of proteins=residues in

database DB that could first be

modeled at threshold E ¼ E0 based

on a structure added at time T ¼ T0:

ð2BÞ

With the same choices as above: DB = UniProt 12.8,

and E0 = PSI-BLAST E-value \ 10-10. The deposition

date in the PDB entry decides whether or not a structure is

novel. One important and desired consequence of this

definition is the following. Assume you solved a structure

that has high impact in the sense that many groups use it as

a basis for molecular replacement to do more accurate

structures of the same or of a similar protein sequence.

Then the first structure in this family of structures is rec-

ognized for the novel information it provided on the date it

was deposited in the PDB. The problem that remains and

that we have not addressed convincingly, yet, is how to

measure the benefit of a structure that allows to build better

models for proteins for which we can already build models.
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As indicated by Eq. 2A, only sequences that match to the

sequence of the template with the minimal threshold

(E-value \ 10-10) count.

Results and discussion

Every other novel structure from the USA now from the

PSI

A primary goal of the PSI has been the development of

automation and robotics for large-scale protein structure

determination. It took a few years to scale the pipelines up

to reaching ‘‘high-throughput’’ levels; currently some 600–

800 protein structures per year (i.e. two structures per day).

Progress is evident: over 1,300 structures originated from

the pilot phase PSI-1 (2000–2005), and after 3 of the

5 years of PSI-2, the large-scale centers have already

deposited almost 2,000 new 3D structures. This success is

also evident in the increased contribution from PSI to all

experimental structures deposited into the PDB: over the

course of PSI-2 (2005/07/01–2008/09/19), PSI centers have

contributed almost 9% of all structures world-wide and all

structural genomics (SG) centers have contributed almost

18% of all structures (data not shown). As the PSI is

entirely financed by the NIGMS at the NIH in the USA, its

contribution should be compared directly to structures

deposited into the PDB from US-based laboratories: in the

first 3.25 years of PSI-2 (labeled 2005–2009, where 2009

represents only the first quarter of Year 4), PSI-2 centers

alone had contributed about 18% of all structures deposited

by US structural biology groups (Fig. 1a, cumulative sum

over gray bars). When comparing the annual contribution

from the PSI of novel structures (i.e., \ 30% sequence

identity with any other structure in the PDB at the time of

deposition) to that from all other sources (Fig. 1c), it is

noticeable that the PSI fraction has continued to increase

over its entire duration. Over the last several years, the US

contribution to all structures increases, although the non-

PSI fraction from the US shrinks. Without PSI, the US

structures and even more significantly the US novel

structures would be on decline: the US non-PSI reduction

from 2001 to 2009 is more significant than the reduction of

all other non-PSI contributors over the same time period

(Fig. 1c).

Given that novel leverage is an important criterion in

PSI-2 target selection, PSI-generated structures also pos-

sess more novel leverage than structures from non

Structural Genomic groups (Figs. 1b, d, 3a). The concept

of structural leverage has also been employed in target

selection by non-US Structural Genomics efforts such as

the RIKEN project. Despite competition to structurally

characterize unique sequences, the PSI deposits now

almost as many novel structures as all the other depositors

in the US combined (Fig. 1a), and about 30% of all novel

leverage contributed worldwide (Fig. 1d); the fraction of

novel structures per structure solved is 2–5 times higher for

PSI than for all other depositors (data not shown). In fact,

since 2005, half of the novel leverage generating structures

from the USA was determined by the PSI-2 centers

(Fig. 1a, cumulative sum over blue bars). The contribution

of PSI to the generation of novel leverage is equally

impressive (Fig. 1b, discussed in more detail below).

Worldwide SG contributed about 18% of the structures

since 2005 and about 37% of all novel protein leverage

(171/459 K, Table 1); more than three-quarters of the

novel leverage since 2005 came from PSI-2 centers

(30% = 135/459 K, Table 1).

Structural coverage of sequence space continues to

increase

We froze a version of the entire sequence space known in

Feb. 2008 (UniProt 12.8) and then estimated to what extent

the structures deposited into the PDB at a given time point

could have been used to structurally cover this sequence

universe. We compiled two separate values, one estimating

the per-protein coverage that considers a new arrival to

cover a new protein when at least 50 consecutive residues

were aligned above the threshold (E-value \ 10-10,

Methods; orange in Figs. 1b, 2a), the second a per-residue

coverage, simply an estimate of which fraction of all res-

idues can be structurally covered (purple in Figs. 1b, 2a).

While the former per-protein measure is intuitive, it

requires the definition of an ad hoc threshold (50 residues).

This has to be done because most structures in the PDB

contain single domains while over 75% of proteins in

nature appear to contain multiple domains [19–21, 34]. If

one domain of a protein can be modeled then this consti-

tutes an important advance and ought to be considered.

The PSI contribution to the coverage added by US

structures is now exceeding the 50% mark, i.e. PSI-2

contributes more novel leverage, and hence more coverage

than all other US efforts (Fig. 1b). With this increase, the

US contribution to the novel leverage worldwide continues

to increase (Fig. 1b). Interestingly, the contribution of non-

PSI SG, which peaked in 2004–2007, has contributed rel-

atively little to the worldwide annual novel leverage, while

novel leverage contributions from non-US, non-SG groups

has been relatively constant at *40% annually.

Overall, the structural coverage of UniProt 12.8 increased

slowly, up until about 1992 (Fig. 2a). After that, structural

coverage increased at roughly a constant annual rate. The

growth slowed down slightly toward the onset of structural

genomics, because, despite the continued annual increase

in the number of structures determined, it is getting
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increasingly difficult to succeed for proteins that have so far

eluded structure determination. Novel leverage becomes an

increasingly evasive objective. The advent of structural

genomics countered this development and returned the

growth in structural coverage to almost constant annual

rates. During the course of PSI, the overall structural cov-

erage for UniProt 12.8 has approximately doubled (Table 1)

from *22 to *45% per-protein coverage (Fig. 2a).

If we reset the coverage clock to zero at the beginning of

PSI, and compute the gain over the structural coverage in a

given year (Fig. 2b), we note that between 2000 and 2008

the per-protein structural coverage of UniProt 12.8

increased by about 26 percentage points (Fig. 2b: sum over

all contributions; Table 1: 1,485/5,679 K) corresponding,

by 2008, to an overall per-protein coverage around 45%.

Some 22% of the increase in per-residue and per-protein

structural coverage provided by all structures deposited

worldwide came essentially from four PSI large-scale

centers, compared with *34 and *40% increase in the

structural coverage of UniProt 12.8 by all non-PSI US

and all non-SG, non-US groups, respectively, in the same

time frame (Fig. 2b). Note that the precise values here

depend crucially on the parameters chosen. Our restriction

to E-values B 10-10 implies that the inferred structural

models are of relatively high reliability and cover most of

the aligned regions [16, 25]; higher leverage and coverage

can be achieved at the expense of accuracy [3, 17, 27,

33].

Fig. 1 PSI annual throughput as percentage of the worldwide PDB

and the US-PDB. a Annual statistics for the fraction of structures

determined by the PSI (Protein Structure Initiative at NIH’s NIGMS)

distinguishing between the contribution to all structures deposited in a

given year (gray bars), and the contribution toward novel structures

(blue bars). In this context, we considered any structure that yielded

novel leverage for at least 50 consecutive residues as a ‘‘novel

structure’’. The PSI contribution to novel leverage is 2–3 times higher

than its contribution to all structures. 100% marks all structures

determined by US-laboratories. b While panel (a) shows the fractions

of structures, panel (b) shows the fraction of novel leverage added in

each year (i.e. PSI novel leverage/US-PDB novel leverage), in terms

of per-protein (orange) and per-residue (purple) values. Panels (c)

and (d) distinguish between the contribution from the PSI, from the

US without PSI, from structural genomics (SG) without the PSI and

from all other depositors. In particular, we distinguish the contribu-

tion to all structures (c) and that to all novel leverage (d). Note that in

all figures the years refer to PSI grant years, e.g. 2001 refers to the

period of July 2000–June 2001. The last entry (labeled 2009) marks

an incomplete year from July 2008–September 2008 corresponding to

the first quarter of year 4 of PSI-2
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PSI per-protein gain in novel leverage is 3–4 fold

higher than PDB without PSI

The success of PSI-2 in increasing novel leverage in a

competitive environment is being demonstrated most

clearly when we compile the annual increase in novel

structural coverage per deposited structure. The per-

structure leverage of PSI has consistently been 5–8 times

higher than the corresponding number for non-SG struc-

tures (Fig. 3a). At the same time, the novel leverage of

a deposited experimental structure has decreased

significantly over the past 8 years, both for the PSI, SG

non-PSI, and non-SG structures: it is getting increasingly

difficult to achieve the high novel leverage values that PSI

structures obtained in the earlier years of the program.

Although novel leverage per structure has been drop-

ping, the total number of novel structures solved by PSI

groups has increased in each year of the program. Has this

sufficed to counterbalance the increase in the difficulty of

the task? One answer is provided by Fig. 2b: while the rate

of coverage for non-SG and non-US non-SG groups are

plateauing, the PSI curve has continued to remain almost

Fig. 2 Increase of structural coverage of UniProt. Plotted are the

percentage of proteins (orange with crossed squares) and residues

(purple with open squares) in the entire UniProt database (release

12.8 Feb. 2008) that potentially be modeled using one of the

structures in the PDB as a template, where ‘‘modelability’’ is based on

PSI-BLAST alignments (E-value \ 10-10) between the sequence of

the target and the sequence of the template of known structure. Panel

(a) shows the percentage of UniProt with structural coverage, per

year, while panel (b) on the right (coloring as in Fig. 1) zooms in to

showing the gain in coverage with respect to the onset of PSI (July

2000). Note that the absolute values of coverage depend crucially on

the values chosen for what is considered to be an acceptable model.

Our choices of E-values \ 10-10 provide relatively conservative

estimates for high-accuracy models

Table 1 Structural coverage of UniProt

Number of

proteins (in Kilo)

Number of

residues (in Mega)

PSI novel leverage

proteins (Kilo)

SG novel leverage

proteins (Kilo)

PSI novel leverage

residues (Mega)

SG novel leverage

residues (Mega)

UniProt

12.8

5,679 1,851 – – – –

3D

coverage

2000

1,389 403 – – – –

New 3D

2000–

2008

1,485 349 319 457 64 90

New 3D

2005–

2008

459 104 135 171 27 33

All values are compiled with respect to UniProt version 12.8; 3D coverage 2000, marks the structural coverage compiled as specified in Methods

(10-3 PSI-BLAST) that could have been achieved on UniProt 12.8 with the structures in the PDB by June 30, 2000; New 3D 2000–2008, marks

the addition of structural coverage over the course of the PSI (from July 1, 2000 to September 16, 2008); New 3D 2005–2008, marks the addition

of structural coverage over the course of PSI-2 (from July 1, 2005 to September 16, 2008)
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linear. Another answer is provided by the contribution to

the coverage per deposited structure with respect to the

average annual contribution by the following ratio of

fractions:

Q ¼
novel coverage generated by effort X in year Y

number of protein structures deposited by X in Y

� �

novel leverage generated by PDB in Y
number of proteins deposited in Y

� � ð3Þ

shown annually for various efforts in Fig. 3b. Values below

1 imply that effort X contributed less to the coverage per

structure than the average over the entire PDB. PSI has

consistently contributed over 3 times more than average

(Fig. 3b). The contribution of non-PSI SG has also been

very high, but in recent years non-PSI SG has reduced to

levels just above 1.

PSI has by now targeted and worked on most of the

largest 16,787 sequence-structure families with prokaryotic

representatives. PSI-2 continues to pick the largest

remaining families, however, those become smaller. The

novel leverage of all non-PSI structures in the PDB is also

decreasing. This is partly due to the same reason: the

largest families are either structurally covered or continue

to evade structure determination. Furthermore, as already

discussed, the generation of novel leverage becomes

increasingly challenging.

Does this imply that attempts at experimentally deter-

mining structures for new sequence-structure families will

be doomed? Despite efforts in optimizing novel leverage

and providing structures for as yet uncharacterized domain

sequence families, structural genomics has not discovered

many truly novel structures [1, 5, 7, 8, 13, 15, 18]. Indeed,

the discovery of previously unobserved protein structure

space (new geometries and principles not seen before) is

becoming increasingly difficult [22]. This implies that (i)

we now know most protein structure geometries or folds

and (ii) on average, staying within the vicinity of known

structures is more likely to result in a successful structure

determination. By design, PSI-2 has been attempting and

succeeding in targeting proteins which are not similar to

proteins with known structures, i.e. to increase the odds of

discovering new territories through their development of

high-through pipelines and technologies. To rephrase this

in a common analogy: by focusing on protein domain

families with no structural representatives PSI-2 has sys-

tematically targeted and succeeded in reaching ‘‘higher-

hanging fruits’’.

Many other criteria for success

Structural genomics, by design, is a hypothesis-generating

instead of a hypothesis-driven endeavor. It shares this

aspect with many new high-throughput genomics projects

in the evolving molecular biology discipline although—

unlike other genomics projects—structural genomics con-

tinues to generate very high-resolution, detailed molecular

data. The success of the PSI is reflected by many aspects

which range from increasing the speed of structure deter-

mination and deposition (both dramatically increased

Fig. 3 Per-structure estimates of novel leverage. The left panel (a)

demonstrates how the non-cumulative (annual) novel leverage for

UniProt 12.8 per deposited structure decreases over time because the

task of generating high novel leverage becomes increasingly difficult.

The right panel (b) reports the relative annual coverage per deposited

structure (Q, Eq. 3). Values Q below 1 mark contributions below the

average over the entire PDB in the year. While the relative values

given in Fig. 1 vary little with the particular threshold for what is

considered to be a ‘‘useful model’’, the absolute values given in Fig. 2

and Fig. 3 depend crucially on the values chosen for what is

considered to be an acceptable model. Coloring as in Fig. 1: pink with

open circle: PSI alone; blue with open squares: structures from US

labs excluding structures claimed by PSI; red with filled triangle: SG

structures from non-PSI efforts; green with filled diamonds: structures

from outside the US not claimed by any SG consortium
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during this decade), through high literature impact and

extreme reduction in the number of papers per structure to

the push of automation and robotics which increases the

diverse biophysical measurements readily available to

researchers in related fields with different expertise.

Objective criteria that allow the monitoring of the

degree to which scientific endeavors deliver what they

promised are naturally becoming integral parts of a land-

scape in which the funding for science shrinks, while the

challenges for the scientist arguably increase, and in which

an increasing fraction of all science is funded by temporal

grants. Here, we have demonstrated that PSI-2 has been

extremely successful by the aims it posed at the start: it

contributed substantially toward the increase of novel

leverage to the extent that a future without PSI will clearly

imply a considerable lengthening of the time needed to

cover today’s protein universe.

Given that the PSI was successful in meeting the mile-

stones that the PSI commission posed, the aim now is to

finish with a wider perspective that considers the optimi-

zation of structural coverage as a means and not as an end.

One aspect of structural genomics is the adventure of

mapping unknown spaces. We seek connections to create

maps. These objectives require the coincidence of a wealth

of sequences and structures in spaces that have hardly been

experimentally covered (i.e. families of unknown function)

but appear to be extremely important, as demonstrated by

the annotations for the universal family of EVE/PUA/PUA-

like proteins enriched by structural genomics [5]. All these

connections contribute to the understanding of protein

evolution. The PSI has covered an immense fraction of the

prokaryotic sequence-space in terms of generating proto-

cols, reagents, and experimental data. This wealth is

available today through the PSI Materials Repository

(http://www.hip.harvard.edu/gateway/) and through the PSI

Knowledge Base (http://kb.psi-structuralgenomics.org/). A

relatively small fraction of the target families have so far

yielded experimental structures, but this ‘‘small’’ fraction

now contributes over one-third of the novel leverage

worldwide, providing structural templates for over 300,000

new reliable protein structure models.

Another long-term impact is the contribution toward

making structure become an integral part of molecular

biology and toward converting structure determination

from an amazing art mastered by few into a pipeline

accessible to many. Clearly the cost reduction, the devel-

opment of sophisticated semi-automated high throughput

pipelines contributed immensely to making this happen.

Without structural genomics, today’s level of automation

would not have been reached at all. The development of

cheaper sequencing techniques was certainly no goal of the

human sequencing project. But those techniques have been

changing biology immensely over the last decade.

16–20 years to go to complete coverage of sequence

universe?

How much more is left to do? The following rationale

provides an over simplified answer. Firstly, we have esti-

mated that at least 20% of all residues in proteomes are

not viable targets for structural genomics because they

encode complex integral membrane proteins, long contin-

uous coiled-coils regions, long regions that are natively

unstructured, and leftovers from partial models (e.g. model

A covers domain D1 from residues 6–55, model B covers

domain D2 from residues 61–100 in a protein of 100 res-

idues; this leaves 10 residues 1–5 and 56–60 as non-viable

targets) [21]. Most of these 20% of the residues are in short

regions not assigned to a particular domain and are prob-

ably some sort of domain linkers and embellishments. Put

differently, 80% per-residue coverage implies ‘‘comple-

tion’’. Secondly, today’s coverage is about 40%, i.e. 40%

(80–40) remains to be done. Thirdly, extrapolating from

Fig. 2a, we might estimate the average annual per-residue

growth in coverage of UniProt 12.8 to be about 2.5%.

Assuming this rate to hold for the future, we would esti-

mate 16 years (40/2.5 = 16) to structurally cover whatever

remains of the UniProt 12.8 sequence database. While

sequence space continues to grow, much of this new

growth maps to domain families covered by this 80% of

current proteins sequence universe.

Clearly, the assumption of identical growth is overly

optimistic: the rate has been kept at a linear growth only

due to the focused effort of structural genomics. Given that

PSI-2 has already cloned almost all the largest viable

families, it is clear that the future leverage will be lower.

Moreover, as new genomes are sequenced, only a fraction

of these sequences map to known protein domain families,

and the uncovered protein universe continues to grow.

Furthermore, it might be argued that the 40% of the res-

idues that remain to be structurally explored will constitute

proteins that are much more challenging for structure

determination than those in the 40% of the residues that are

covered today. If so, structural genomics methods might fail

to capture those residues in these much more challenging

classes of proteins, and our assumption of a constant growth

rate might be inappropriate. True, this might be so, and we

have no scientific argument to dispel this concern. However,

we can move back into the past and pretend to estimate for

what was then the future: e.g. if we had taken the growth rate

from 1994 to 2000 to estimate the coverage of 2008, we

would have been completely right (Fig. 2a).

Where from here?

We have established structural genomics as an extremely

efficient way to discover new areas in the protein universe
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that will undoubtedly continue to invoke testable hypoth-

esis for years to come. Will the trend continue? Can we

extrapolate from today’s data, or will we need something

completely different to efficiently cover what remains?

Clearly, we have to improve structural determination for

sequence-structure families from eukaryotes. Today, it

requires some 5–10-fold more resources to determine the

structure for an average eukaryotic protein than for an

average prokaryotic protein. A considerable fraction of the

untouched sequence space falls into sequence-structure

families that exclusively represent eukaryotes. Clearly,

targeting this important domain becomes an important

objective. Another fact of PSI-2 was that structure deter-

mination has so far succeeded for less than 30% of all

families targeted. Developing techniques that allow a

substantial increase in this yield appears to be another

important goal.

The final question seems to be hovering around the issue

of how much will the part of the universe without structural

coverage differ from the part we cover today? Clearly, we

need to find ways to make structural genomics work for

types of proteins for which it has so far had only limited

success, including membrane proteins, eukaryotic proteins,

and secreted proteins. Are there any new structural prin-

ciples out there that remain to be discovered and that

totally elude today’s techniques for structure determina-

tion? Biology is so full of innovation and surprise that the

answer will clearly be in the affirmative. To which extent

this will be the case remains utter speculation. However,

we have strong evidence that a considerable part of what is

left falls into the category of proteins that are unusually

flexible, or intrinsically unstructured and that possibly do

not adopt regular structures without a binding partner. Do

we therefore have to step up in terms of complexity and

attack the problem of a structural genomics for complexes?

Clearly, this will be one of the important challenges for

both the short-term and long-term of structural genomics.
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