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Abstract Model predictive control (MPC) is a common
approach to the control of trajectory-following systems. For
nonlinear plants such as car-like robots, methods for path
planning and following have the advantage of concurrently
solving problems of obstacle avoidance, feasible trajectory
selection, and trajectory following. A prediction function
for the plant is used to simulate the trajectory with a can-
didate stream of inputs. Constraints on control inputs and
state values, used to ensure safe trajectories and to avoid
obstacles, are encoded into a cost function, and optimiza-
tion routines (at runtime) compute the trajectories and their
corresponding control inputs. Such approaches are computa-
tionally intensive, and in the nonlinear case the computational
burden generally grows as a predictive model more closely
approximates a nonlinear plant. In situations where system
safety is paramount, guaranteeing model accuracy (in order
to achieve more accurate behavior) comes at the cost of
increased computation time, which results in increased travel
time without a new solution. While the computational bur-
den of predictive methods can be addressed through model
reduction, the cost of modeling error over the prediction
horizon is high and can lead to unfeasible results. In this
paper, we consider the problem of controlling a ground vehi-
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cle under constraints and propose an algorithm that employs
two models of the vehicle for model predictive control, one
coarse and the other more accurate. We introduce a met-
ric called uncontrollable divergence and, using this metric,
propose a mechanism to select the model to use in the
predictive controller. The novel property of the metric is
that it reveals the divergence between predicted and true
states caused by return time and model mismatch. More
precisely, a map of uncontrollable divergence plotted over
the state space gives the criterion to judge where coarse
models can be tolerated when a high update rate is pre-
ferred (e.g., at high speed and small steering angles), and
where high-fidelity models are required to avoid obstacles
or make tighter curves (e.g., at large steering angles). With
this metric, we design a controller that switches at runtime
between predictive controllers in which respective models
are deployed. The algorithm is a hybrid controller, which
evaluates the proposed metric to select the discrete vehi-
cle model to use for prediction and optimization. We say
that the approach is computationally aware, in that the opti-
mization time of each predictive model is dependent on the
computation substrate used (chipset, machine architecture,
etc.); if a different computational platform is used, then the
uncontrollable divergence calculations will lead to a hybrid
controller suitable to meet the computation demands for that
platform. While the ideas are presented for the solution of
a vehicle control problem, the approach has the potential
to impact other computationally-demanding cyber-physical
systems. The paper extends (Zhang et al., Proceedings of the
international conference on cyber-physical system, Seattle,
2015) in a significant way, by demonstrating the calculation
of uncontrollable divergence on a physical platform, by char-
acterizing MPC return time as a function of the number of
obstacles, and by simulating performance with trajectories
that must navigate more obstacles.
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Keywords Vehicle control · Model predictive control
(MPC) · Hybrid control · Model error evaluation · Cyber-
physical systems (CPS)

1 Introduction

Model Predictive Control (MPC) is an established approach
to controlling a system based on simulated performance of
a predictive model, and utilizes a cost function in order to
add penalties (or reward) for constraints (goals). The result-
ing solution is optimal according to the cost function, and
is encoded as a sequence of control inputs and state pre-
dictions over a finite horizon. For systems that must track a
given trajectory under constraints,MPChas several attractive
features. It systematically handles constraints, and returns
feasible solutions: while the returned solutions may not
match the input trajectories exactly, they are optimally close
with respect to a properly chosen cost function. A specific
example of such a system is an autonomous vehicle, where
a typical goal is to steer a vehicle along (or near to) a desired
trajectory while satisfying velocity and heading constraints,
e.g., path following with a desired final heading.

As a real-time control algorithm, MPC has several limi-
tations. The online optimization process is computationally
intensivewhen a nonlinear plant predictivemodel (e.g., a car-
like robot) is used. In these cases, if the solution cannot be
expressed in closed form (Cannon and Kouvaritakis 2000),
it complicates the prediction and optimization subroutines
of MPC. Such optimization routines may not be guaranteed
to terminate in finite time (Falcone et al. 2007), and prema-
turely halting the algorithm may result in a locally optimal
solution (Parker et al. 2001). In order to mitigate these issues,
approaches in the literature fall into three major categories:

(i) Enforce timing constraints if a solution has not yet been
found;

(ii) Operate the system under performance limitations until
a solution is found; and

(iii) Select a predictive model at design time that only
approximates the plant model, but which guarantees (or
significantly improves the guarantee) that a solution will
be obtained in time.

Enforcing timing constraints [Approach (i)] can be han-
dled by the use of multiple optimization engines at runtime,
where the first one to return a feasible solution is selected.
A heavy-handed approach cancellation of the optimization
routine after a certain time, and then proceeding with the best
solution found so far. Such an approach faces the risk that no
feasible solution may have been obtained when the routine
is halted.

Operating under performance limitations [Approach (ii)]
has a few possible solutions. Continuing to execute the con-
trol inputs from the previous solution until a new, optimal,
solution is returned has a limitation in that the solution would
be for a timestep that has already passed. Thus, any new infor-
mation (e.g., obstacles to avoid)maynot have been accounted
for since the previous solution. In these scenarios, the runtime
systemmay be adapted until a viable solution is returned. As
an example, a vehicle might reduce its velocity until it a fea-
sible result is obtained. A clear limitation of this tactic is
that operation in degraded mode might affect nonfunctional
metrics (passenger comfort), even if stability can be shown.

Approach (iii) uses a reduced-complexity predictive
model, and such an approach provides a significant margin
for robustness to potential disturbances. An example for lin-
ear systems is discussed in Zeilinger et al. (2014), where a
bounded disturbance can be added to the state update equa-
tion. Such a system could approximate a nonlinear plant,
if it could be shown that the model error is bounded. This
approach is likely to execute reliably—when executed in
some areas of the state space. However, the system must be
operated in a region of the state space where linearization is
representative of the behavior of the system. An alternative
approach utilizes a reduced order predictive model, known
to be more efficient when computing an optimal solution.
For example, using the kinematic (rather than the dynamic)
model for problems such as path planning and following.
If the model can be shown to be robust, then the approach
is appropriate; regrettably, as described in Egerstedt et al.
(1998), for car-like robots the kinematicmodel divergesmore
quickly than the dynamic model when used in prediction.

1.1 Contribution of this work

Considering the limitations of MPC and utilizing the
approaches available in the literature, we consider a unique
combination of approaches (ii) and (iii) for the control of car-
like robots. We propose the problem of controlling a ground
vehicle under constraints with an algorithm that employs two
models of the vehicle for model predictive control, with dif-
ferent accuracy when compared to the plant; the two models
also differ in time to calculate the optimal solution.Wedesign
a hybrid controller that switches between predictive models
when computing the optimal solution to the cost function.
By selecting the most appropriate model when performing
the search for the optimal control input vector, we can reduce
the time needed to compute the optimization solution (if the
vehicle needs to go fast), or we can reduce the error of the
predictive model (if the vehicle should more accurately fol-
low a trajectory). We also demonstrate how to calculate the
model error and quantify these errors by the time to calculate
a solution.
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Our proposed switching criteria relies on a novel metric,
called the uncontrollable divergence (UD) of the system. The
UD is calculated using the error of the predictivemodels with
respect to the plant model, and the state change that occurs
while awaiting the return of the optimization function. In
this paper, we take the kinematic and dynamic models of a
complex ground vehicle model and quantify the UD (within
the same MPC implementation) over the entire state space.
We show that within some region of the state space (e.g., high
speedwith low steering angle), the kinematicmodel can have
similar error as that of a high fidelity dynamical model, but
with a fasterMPCoptimization time. In this regionof the state
space, we say the kinematic (or reduced) model outperforms
the high fidelity model. The validity of this assertion comes
from the fact that divergence of the dynamical and kinematic
models is most pronounced at high speed, high turn rate:
such a large steering angle should not be used at high speeds,
since this region of the state space is deemed unsafe by the
system constraints. At low speed, the dynamical model will
outperform the kinematic model for high steering angles, but
the point is that at low speeds, the system can afford to wait
longer for the optimization routine to return, since the vehicle
is traveling slower!

This paper extends our preliminary work in Zhang et al.
(2015) by additional consideration of physical plant mod-
els in addition to the simulation models for estimating and
calculating the uncontrollable divergence. The process for
gathering these data points is different in the physical plant,
due to an inability to operate in regions of the state space
where unsafe behavior might occur, and in order to obtain
correct ground truth localization information. The experi-
mental results include more complex environments through
which the controllers can route the vehicle trajectory, demon-
strating an ability to improve on the performance of using
only one of the predictive models.

1.2 Organization

The remainder of the paper is organized as follows. We
formulate the MPC problem, describe related and relevant
approaches to overcoming uncertainty in prediction models,
and explicitly lay out themathematical forms of our own pre-
dictivemodels and cost functions in Sect. 2.We then formally
state the problem and our approach to its solution in Sect. 3.
In Sect. 4, we demonstrate how to calculate the uncontrol-
lable divergence of the simulated system and the physical
plant, and how to use that metric to define the hybrid pre-
dictive controller. We provide evidence in Sect. 5 that the
designed system improves on the timing and accuracy met-
rics for improved behavior as described in items (i), (ii), and
(iii) above. We also demonstrate that the switching condi-
tions of our controller agree with previous results in which
the velocity of the ground vehicle will be already be lim-

ited for reasons of safety, not for reasons of ensuring that the
optimization routine returns in time.

2 Background

In this section we examine related work that follows the
approaches laid out in the introduction. We then formulate
the MPC problem and describe the cost functions used, the
vehicle models we use as the predictive models for the MPC
solution, and then describe the vehicle-specific constraints
and how we define the true plant model for executing simu-
lations.

2.1 Review of MPC

Model predictive control has been particularly effective in
controlling plants whose trajectory must be controlled over
a long horizon, and was pioneered in the process indus-
try (Camacho and Bordons 1997). Early work by Garcia
(reviewed in Garcia et al. 1989) was instrumental in demon-
strating that by considering the future state value over a fixed
horizon of discrete points, that feedback control through opti-
mal control techniques could be used to optimize cost. A
thorough review of recent approaches and results can be
found in Mayne (2014), which are briefly summarized fol-
lowing the notation and setup of MPC, in order to draw
attention to the contribution of this work when our prob-
lem statement is stated. The MPC formulation is taken from
Zhang et al. (2015).

More precisely, consider the system to control be given
by the nonlinear continuous-time plant

ż = f (z, u) (1)

with state z and input u, where z and u are constrained to
belong to the set X and U , respectively. Let a discretization
of thismodel by a sample time�T be given by ẑ+ = f̂ (ẑ, û),
where ẑ, û, and f̂ are the discretizations of z, u, and f ,
respectively, and ẑ+ denotes the value of the state after a
discrete step. Let k denote discrete time. Given the state ẑ
at time k, denoted as ẑk , the algorithms in MPC compute
the evolution of the state of the discrete-time system for N
steps forward in time under the effect of input sequences of
the form Ûk = {ûk,k, ûk,k+1, . . . , ûk,k+N−1}, where ûk,k+s

denotes the value of the input at the s discrete step ahead of
the initial state ẑk , so as to solve the problem

P(ẑk) : argmin
Ûk ⊂U

JN (ẑk, Ûk) (2)

where JN (ẑk, Ûk) = ∑k+N−1
t=k �(ẑk,t , ûk,t ) + ϕ(ẑk,k+N ) is

the cost function, � is the stage cost function, and ϕ is the
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terminal cost function. Denoting an optimal sequence by
Û∗
k and the resulting optimal prediction state sequence by

�∗
k = {ẑ∗k,k+1, . . . , ẑ

∗
k,k+N−1, ẑ

∗
k,k+N }, MPC then applies to

the discretized system theM first entries in Û∗
k and then com-

putes a new optimal sequence at discrete time k + M + 1.
The parameter M ≤ N determines how often to update the
sequence of inputs.

2.2 Predictive model uncertainty

Uncertainty in MPC accounted for with min-max models
Alamo et al. (2008, 2005), but complexity of optimization
sharply increases. The use of tubes in Falugi and Mayne
(2014) permits unstructured uncertainty, as opposed to para-
meter uncertainty (Løvaas et al. 2008), to be considered
when predicting a system model through MPC. When plants
are uncertain with linear matrix inequality constraints, the
approach in Kothare et al. (1996) can show how to quantify
the performance of the predictive model.

Works such as Richards (2005), Bahadorian et al. (2012)
consider the uncertainty error originating from lineariza-
tion or bounded disturbance when designing robust MPCs.
Such approaches specify as part of the cost function the
uncertainty of the maximum possible model error and then
minimize this cost function. This min-max scheme carries
a high computational burden, but results in the minimum
error among available linearizations. Approaches to robust-
ness that do not require min-max schemes include (Zeilinger
et al. 2014), where the approach uses a quadratically con-
strained quadratic program (QCQP) suitable for following
piecewise constant references. For our work, the need to fol-
low a smooth trajectory limits the ability to use these related
approaches to mitigate uncertainty.

2.3 Optimization approaches and computation time

Clearly, the larger the parameters M and N , the longer the
computation of Û∗

k and �∗
k would take. More subtly, nonlin-

earities in the dynamics and the cost functions, as well as the
very presence of the input and state constraints, significantly
affect the computation time.

The constraints in the cost function can be set such as to
guarantee polynomial complexity of the optimization algo-
rithm for linear plants, as shown in Alamo et al. (2005,
2008). That approach uses quadratic maximization through
recursion, and is shown to be polynomial in the rank of
the constraint/cost matrix, but is limited to linear systems.
Probabilistic guarantees of completion for linear systems are
explored in Alamo et al. (2009).

Predictive control for trajectory synthesis and path follow-
ing of a car-like robot utilizes a nonlinear vehicle model with
time-varying constraints. In several applications, lineariza-

tion of the dynamics, the cost functions, and the constraints is
a plausible way to reduce computation time when lineariza-
tions can be performed off-line. Linearized MPC (LMPC)
has the advantages over nonlinear approaches due to its low
computational cost (Künhe et al. 2005) and avoidance of the
occurrence of non-convex programming which is common
inNMPC (Henson 1998). As shown in Rawlings (1999), Fal-
cone et al. (2007) and Kuhne et al. (2004), linearization is
normally performed along the previous horizon of prediction.
The key limitation of LMPC for nonlinear plants is that the
solution either diverges significantly from the plant (due to
propagation error in the linear models away from their oper-
ating region) or that the computation of the solution comes at
a high computational cost (if linearizations are performed at
runtime), or that the execution of the system is overly conser-
vative (if control inputs are selected to minimize the model
error during execution).

Several works address unbounded return time of the opti-
mizer through an approach called layering. In Falcone et al.
(2007, 2008), Bemporad and Rocchi (2011), slower dynam-
ics are assigned to an outer loop predictive controller, which
sends supervisory inputs to low-level predictive controllers
that have faster dynamics. The drawback of this approach is
that layering introduces complexities in design and imple-
mentation, and decouples the system design into different
loops of execution, making the design harder to understand.

In this work, we assume that optimization times for a
cold-start (i.e., no optimization history) of any predictive
model that we could select with our hybrid controller can
be bounded. If the optimization time cannot be bounded for
one of the models that we use, then it would not have been
used in a non-switching MPC controller.

2.4 Predictive models

Given a nonlinear system we define a family of discrete-
time equivalent systems, which will be used in MPC. Given
a discrete set Q := {0, 1, . . . , qmax} and, for each q ∈ Q, a
function f̂q : Rn×Rm → Rn , let { f̂ qP }q∈Q define a family of
right-hand sides defining discrete-time models of (1) that are
used by the predictive controller.1 The constant qmax defines
the number of available models for prediction. For each q ∈
Q, we define �̂q : Rn → Rn as the model mismatch function

�̂q(ẑ) := f̂ eP (ẑ, û) − f̂ qP (ẑ, û) (3)

which captures the error between the q-th model that is
available for MPC ( f̂ qP ) and the discretization ( f̂ eP ) of the

1 The dimension of the state of each resulting discrete-time model is
allowed to be different. In such a case, since the number of models is
finite, one can embed all of the models into the largest space of size n by
adding dummy variables. The same argument applies for the dimension
of the inputs.

123



Auton Robot (2015) 39:503–517 507
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û∗
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û∗
k,k+1

û∗
k,k+2

ẑ∗
k,k+2

ẑ∗
k,k+1

ẑk+1

Fig. 1 The solid images represent the plant, and dashed represent pre-
dicted state at future time steps. Note that, only two predicted states,
ẑ∗k,k+1 and ẑ

∗
k,k+2, are shown in the figure. The divergence between solid

and dashed lines indicates model mismatch

right-hand of the system. Note that f̂ eP is not necessarily
equivalent to f̂ , but is sufficiently accurate to serve as a ref-
erence.

To differentiate the plant’s states and MPC’s predicted
states (as shown in Fig. 1), let subindex t represent the dis-
crete time over the prediction horizon N ∈ {1, 2, . . .} and
write ẑk,t to denote the predicted state at time t resulting
from the initial state ẑk and under the effect of the planned
(given) inputs ûk,k, ûk,k+1, . . . , ûk,t−1.

By convention, ẑk,k equivalent to ẑk . In this way, for a
chosen q ∈ Q, the discrete-time nonlinear model used by
MPC for prediction is

ẑk,t+1 = f̂ qP
(
ẑk,t , ûk,t

)
(4)

for each t over the prediction horizon, i.e.,

t ∈ {k, k + 1, . . . , k + N − 1}

where ẑk is fed into the prediction as the initial state.
The first input ûq∗

k,k is applied to the plant, leading to the
implicit control law

κq(ẑk) := ûq∗
k,k

where κq(ẑk) solves the problem in (2) using predictive
model q (i.e., Pq(ẑk)) Then, at k, the state of the plant under
this control law is updated via

ẑk+1 = f̂ eP
(
ẑk, κq(ẑk)

)

At the next step, k+1, the hybrid controller may select a new
value for q denoted q ′ ∈ Q, or keep it constant (q ′ = q), and
the problem Pq ′

(ẑk+1) is solved. The algorithm continues
this process indefinitely.

In this work wemust assume that the prediction models in
use are suitable for the plant under control. Our approach is
neither intended to stabilize systems with significant model
mismatch, nor to address issues of robustness to significant
structural or parameter-based error. This assumption permits
us to assume that selecting a model will not drive us to a

point of instability, since that model would otherwise not be
considered a suitable predictionmodel for anMPCcontroller.

2.5 Switched MPC

Multiple operatingmodels forMPC (Zhao et al. 2003) permit
scheduling of different linearization points, as the statemoves
to a newoperating region. The use of finite automata to switch
to different dynamical systems using logic (for piecewise
affine systems) is discussed in Bemporad andMorari (1999),
and in this paper the ability to utilize mixed-integer quadratic
programming (MIQP) as the solver, demonstrates an ability
to implement MPC solutions for systems whose model can
bewritten in closed form. The survey paper byMayne (2014)
lists the various approaches to hybrid MPC for implementa-
tion, including work by the authors in Goebel et al. (2012).

Since the switching conditions play a significant role in
any hybrid system’s stability and performance, it is necessary
to carefully craft these switching rules using tools that will
enable stable behavior. The contribution of this in essence
is its ability to jointly consider a model’s accuracy with the
time requirements that accompany that model’s complexity.
We next turn to the kinds of models considered in the work.

2.6 Vehicle models

Let us take a car-like robot with plant model f and its
discrete-time equivalent with reference right-hand side f̂ eP .
We use as our plant a simulationmodel inCarSim, configured
to approximate our physical testbed. In addition, two vehi-
cle models are selected (Q = {0, 1}) as available predictive
models for an MPC controller. The continuous-time models,
given below in (5) and (6), are discretized to obtain f̂ 0P and
f̂ 1P , respectively. The kinematic model (q = 0) is reduced
in accuracy through significant simplification from the plant;
the dynamic model (q = 1) is relatively more accurate when
compared to the plant model.

2.6.1 Complex car model

In this paper, we use the CarSim car-like robot model devel-
oped in CarSim.2 CarSim is a complex vehicle simulation
environment used inmany industrial applications to establish
a 50+ degree of freedom simulation of a ground vehicle. We
configured our model to attempt to approximate our physical
testbed, providing the same wheelbase L = 2.51m andmass
m = 1700kg as our physical testbed, a 2008FordEscapeTire
stiffness data gathered from CarSim are used in (7), repre-
sent relationships among lateral force, tire load and steering
angle, and are summarized in Fig. 2b (image generated from

2 Available from http://www.carsim.com.
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Fig. 2 a Schematic view of the vehicle model. Xv ⊥ Yv is the vehicle body-fixed coordinate. bAbsolute lateral force corresponding to tire vertical
load and slip angle (treated as steering angle in this work)

CarSim). We consider that the CarSim model represents an
actual system plant, to which we compare the behavior of
models used for prediction in our algorithm by applying to
the CarSim model the control input generated for those sim-
pler models. We will later compare how data gathered from
the physical platform differ from data gathered fromCarSim.

Regardless of which model for predictive control our
hybrid controller selects, we send the input calculated from
the MPC controller through the plant model.

2.6.2 Kinematic model

The simplest vehiclemodel considered in this paper is a kine-
matic vehicle model. We use the model from Walsh et al.
(1994): let z = [x, y, θ ]T define state as shown in Fig. 2a,
where θ is the azimuth. The model is given by

ż =
⎡

⎣
v sin θ

v cos θ
v tan δ
L

⎤

⎦ (5)

where L is a system parameter defining the length of the
vehicle base, and the control inputs u = [v, δ]T represent
velocity and steering angle.

2.6.3 Dynamic model

In contrast to the kinematic model presented in the previous
section, a more advanced model is given by the dynamical
model in Narby (2006). We customize this model by impos-
ing the following assumptions:

(i) Each tire shares the same parameters (vertical load, stiff-
ness, etc.), and the lateral forces on left side and right
side tires are symmetric;

(ii) Air resistance is negligible; and

(iii) The vehicle is front-wheel drive (and front-wheel
steered), and the slip angle equals the steering angle.

Denoting the vehicle mass by m and the angular speed by ϕ,
this simplified dynamical model has inputs of acceleration
a and steering angular speed ω, u = [a, ω]T , as shown in
Fig. 2a and given in equation form as:

ż =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

v sin(θ)

v cos(θ)

cos(δ)a − 2
m Fy, f sin(δ)
ϕ

1
J

(
La

(
ma sin(δ) + 2Fy, f cos(δ)

) − 2LbFy,r
)

ω

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

where z = [x, y, v, θ, ϕ, δ]T , δ is the steering angle, Fy, f is
the front tire lateral force, Fy,r is the rear tire lateral force,
La is the distance between the centers of the front wheels and
the vehicle’s center of mass, Lb is the distance between the
centers of the rear wheels and the vehicle’s center of mass, J
is the rotational momentum. These forces can be computed
from

Fy, f = Cy

(

δ − Laϕ

v

)

Fy,r = Cy

(
Lbϕ

v

)

whereCy is the lateral tire stiffness. Clearly (6) is more com-
plex than (5).

3 Problem statement and approach

The problem to solve in this paper is the following:

Problem Select a model from the family of vehicle models
{ f̂ qP }q∈Q such that the error (or divergence) between the dis-
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Optimize 
with   .

Optimize 
with   .

Hybrid 
supervisor

zk
f̂e
P (zk, uk)

zk

zk

zk

uk

uk

f̂0
P

f̂1
P

Fig. 3 Closed loop system. Hybrid MPC and CarSim plant in the loop

cretized state of the plant (ẑ) and of the model (ẑk) obtained
with the same inputs is minimized.

To this end, we propose a hybrid controller which imple-
ments supervisory logic for the selection of themodel defined
by the family { f̂ qP }q∈Q to use by MPC. Suppose at time
k ∈ {0, 1, . . .}, the vehicle state ẑk is observed for an opti-
mization problem indexed by the q-th model in use (i.e.,
Pq(ẑ)), and that two alternative predictive models are avail-
able. This setting is depicted in Fig. 3, inwhich the previously
describedmodels are used to synthesize twomodel predictive
controllers: the kinematic model ( f̂ 0P ) produces the Kine-
matic MPC (KMPC) algorithm, while the dynamic model
( f̂ 1P ) produces the Dynamic MPC (DMPC) algorithm. The
commercial vehicle modeling software, CarSim, is used as
the true plant in our simulations.

To provide a solution to the stated problem, we assume
that the return time to solve Pq(ẑ) for each predictive model
q can be estimated that the quantity �tq(ẑ) provides such
estimation. After time �tq(ẑ) the system state will be ẑ′ ≈
ẑ + f̂ (ẑ, û∗

k−1,k)�tq(ẑ) when the control is received. Thus,
the vehicle state at k + 1 is given by

ẑk+1 = f̂ P
(
ẑ′k, κq(ẑ)

) = f̂ qP
(
ẑ′k, κq(ẑ)

) + �̂q(ẑ
′
k)

≈ f̂ qP
(
ẑ, κq(ẑ)

) + �̂q(ẑ)

+
(

∂ f̂ qP
(
ẑ, κq(ẑ)

)

∂ ẑ
+∂�̂q

(
ẑ, κq(ẑ)

)

∂ ẑ

)

× f̂
(
ẑ, κq(ẑ)

)
�tq(ẑ) (7)

Since ẑqk,k+1 = f̂ qP
(
ẑ, κq(ẑ)

)
, we obtain the following from

(7)3:

ẑk+1− ẑqk,k+1 ≈ �̂q(ẑ)+ ∂ f̂ P
(
ẑ, κq(ẑ)

)

∂ ẑ
f̂
(
ẑ, κq(ẑ)

)
�tq(ẑ)

(8)

3 For clarity of notation, we use ẑqk,k+1, rather than ẑ
q∗
k,k+1, even though

f̂ qP
(
ẑ, κq (ẑ)

)
produces state from the initial optimal input ûq∗

k,k =
κq (ẑk), as the notation could also indicate selection of optimal q ∈ Q.

The logic to select q when solving Pq(ẑk) should minimize
the error between prediction and the actual state at k + 1.
Then, the selection of q is given by the law

q = argmin
q∈Q

∥
∥
∥ẑk+1 − ẑqk,k+1

∥
∥
∥ (9)

We refer to the value
∥
∥
∥ẑk+1 − ẑqk,k+1

∥
∥
∥ as the uncontrollable

divergence (UD).
We will demonstrate how to calculate �̂q as a function

of v and δ. Thus, prior to running the hybrid controller, the

upper bound value of
∥
∥
∥ẑk+1 − ẑqk,k+1

∥
∥
∥ , ∀q ∈ Q over finite

samplings of bounded v and δ can be obtained. In this way,
the hybrid controller can take advantage of the switching
logic in (9).

In the next section we go through the demonstration and
calculation of the uncontrollable divergence, and describe
a way to calculate the estimated return times of the MPC
controllers to solve each Pq(ẑk). If improved estimates
to determine these numbers can be obtained, then those
approaches can be substituted.

4 Divergence and return time for plant models

The evolving state of the vehicle during the solution ofPq (ẑk)
is a chiefmetric for characterizing uncontrollable divergence.
Since the vehicle is typically moving during this time, the
state evolves for that time duration. As motivated in the
introduction, we consider that in some regions of the state
space the model divergence between the two predictive mod-
els is low, so a faster return time may be preferred, even if
that model has higher error, depending on the divergence
value.

4.1 Model divergence calculation approach

Using the concepts from Schubert et al. (2008) to calculate
the model divergence, we begin to quantify the uncontrol-
lable divergence by first considering model divergence. The
predictive models will receive the same inputs as the plant
model, with a constant tire angle (δ) and velocity (v). Differ-
ences between the models are then compared throughout the
range of possible (v, δ) for the system. Figure 4a shows that
the model error is defined in the vehicle’s body-fixed coordi-
nates (Xv ⊥ Yv) as the correcting vector [ex ey eθ ]T pointing
from model to plant. With the predictive model (indexed by
q) and the plant, each starting from the same initial state ẑ
with the same constant inputs û, each diverging into model
state f̂ qP (ẑ, û) and vehicle state f̂ eP (ẑ, û) after �T , then we
have model mismatch �̂q(ẑ) = f̂ eP (ẑ, û) − f̂ qP (ẑ, û). Since
tire angle and velocity match in the predictive model and
plant, the model mismatch value is obtained by:
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Fig. 4 a The dashed and solid squares represent the model and the
plant, respectively. The bold arrow, pointing from the model to the
vehicle, is the vector of model mismatch accumulated during �T . The
scenario of control divergence. The controller minimizes the difference

between ẑk+1 and ẑ∗k,k+1. A high-fidelity model with large return time
�t can cause large divergence during the timespan�t . A reduced accu-
racy model could have smaller �t , but still produce a large divergence
during �T if the model mismatch is large
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Fig. 5 a Comparison of positional divergence rate (
∥
∥[ex ey]T

∥
∥ /�T )

of the dynamic model (the bottom surface) and the kinematic model
(the upper surface) to the plant model of CarSim. b Comparison of

azimuthal divergence rate (‖eθ‖ /�T ) of the dynamic model (the bot-
tom surface) and the kinematic model (the upper surface) to the plant
model of CarSim

∥
∥
∥�̂q(ẑ)

∥
∥
∥ =

∥
∥
∥
[
ex ey eθ

]T
∥
∥
∥

4.1.1 Divergence in CarSim

Since the plant can be readily simulated in CarSim, we can
execute detailed experiments in batch mode to gather data
points throughout the state space in order to calculate the
uncontrollable divergence. Further, we are not limited in state
estimation by noisy or time-varying data measurement units
such as GPS and inertial navigation systems. Figure 5a, b
reveal example positional and azimuthal divergence rates.

4.1.2 Divergence for the physical plant

In order to gather additional data for divergence for the physi-
cal plant, wemust describe our experiment setup for our Ford

Escape Robotic Car. In order to make safe calculations of
model divergence, all sampling was done in human-driving
mode,where inputs to the vehicle aremade by a human driver
but all data are recorded (including inputs) in order to esti-
mate the divergence of a reduced complexity plant model
with the same inputs. The ground truth for pose is based
on the same system used for vehicle state estimation when
following trajectories in a local coordinate system, so as to
prevent errors in GPS from biasing accuracy based on the
time of day that the experiments were carried out.

In Fig. 6 the datapoints gathered to build the surface func-
tions that describe model mismatch are displayed. Exper-
iments were conducted at sampled vehicle state (sampled
steering angle and sampled speed) of 20Hz while under
human control. At varying speeds, the vehicle was driven
in a controlled track to attempt to exercise as much of the
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Fig. 6 Experiment datapoints for building the physical plant model

safe state space as possible, while measuring a ground truth
trajectory.

With these results, the two charts in Fig. 7 can be gener-
ated to demonstrate the uncontrollable divergence, according
to the approach discussed in Sect. 4.1. When compared to
Fig. 5, the figures for our physical platform demonstrate a
steady-state error when compared to the data gathered for
the dynamic simulation in CarSim. Such a deviation from
the platform is expected for any model, and may be cor-
rected in future work with improved system identification.

For purposes of this paper, it influences how the uncontrol-
lable divergence is observed.

4.2 Return time of MPC

Simulations were conducted to measure the return time of
KMPC and DMPC. In Qin and Badgwell (2003) various
MPCcomputational schemes are surveyed and available ven-
dors are described. In this paper,we appliedAMPL (Richards
and How 2002) and minos (Gay and Kernighan 2002) as
our optimization tools and we use MATLAB to integrate
the optimization results into a cohesive simulation. For the
convenience of comparison, KMPC and DMPC are simu-
lated under the same circumstances (the same initial state,
obstacles and target state). We treat the optimization return
time as a black box, where the most important parameter
besides the prediction model is the number of obstacles to
consider. This is because each obstacle may show up as
N constraints into the optimization (with a horizon of N ).
The maximum number of obstacles in our simulations is
20.

Results of elapsed time are shown in Fig. 8, and the
expected values of return time are selected as 0.02 s (KMPC)
and 0.05 s for DMPC. It is important to note that even though
KMPC is expected to returnmore than twice as fast asDMPC
in these simulations (and generally in our experience), we
assume that both algorithms will return in bounded time—
else they would not have been deemed suitable predictive
models.Weare careful not to claim that our approachwill rec-
tify a design with potentially unbounded return times: rather,
we instead declare that if the optimization routine may not
return for a particular model, that it is unsuitable for use in
our framework.
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Fig. 7 a Comparison of positional divergence rate (
∥
∥[ex ey]T

∥
∥ /�T )

of the dynamic model (the bottom surface) and the kinematic model
(the upper surface) to the plant model of our physical platform. b Com-

parison of azimuthal divergence rate (‖eθ‖ /�T ) of the dynamic model
(the bottom surface) and the kinematic model (the upper surface) to the
plant model of our physical platform
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Fig. 8 Number of obstacles versus MPC return time. For each given obstacle number, random plant state and random obstacles are generated for
simulation. Samples represent the average return time. a Kinematic MPC return time. b Dynamic MPC return time

4.3 Influence of uncontrollable divergence

To study the influences of UDs on control performance, the
CarSim model is employed as the plant. Since the original
CarSim model we selected accepts open-loop throttle, brake
cylinder pressure and steering torque as control inputs, we
tuned a simple PID controller as the interface for convert-
ing target speed and steering angle (elements in ẑ∗k,k+1) to
controls on throttle, cylinder pressure and steering torque.
Zero initial state step responses of the interface controller
are shown in Fig. 9 to demonstrate its ability to stabilize
itself to the target state within the required time. As the plant
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Fig. 9 Step response of controllers that convert MPC signal into
CarSim-compatible input. The maximum acceleration is 3m/s2, which
means the maximum increasing speed difference of 10km/h may hap-
pen within 1 s. The upper figure reveals the controller’s ability to track
target speed. Similarly, the response in the bottom figure satisfies the
maximum steering speed of 22.5◦ within 1 s

is nonlinear, however, the controllers may fail to meet timing
requirements at some portions of the state space. Additional
design work can mitigate this shortcoming, should it influ-
ence our simulation results significantly.

When the CarSim plant is used, the vehicle trajectory
diverges from the predicted path in an obvious manner (see
the simple scenario shown in Fig. 10a, b). Such a divergence
originates from model mismatch between the kinematic and
dynamical models. Say that a predictive model has a larger
curvature than that of the plant at a given specific steering
angle and speed. At this steering angle value, the MPC pre-
dicts a certain curvature that is infeasible for the plant; thus
the vehicle could enter the obstacle zone near its edge. When
this is detected as the vehicle nears the obstacle, itwill attempt
to correct its trajectory (or it could return an infeasible solu-
tion of Pq(ẑ)). As a consequence, the predicted path could
oscillate, and the actual trajectory may not fit the obstacle
boundary well. Such errors are typical of kinematic models
where the curvature is overestimated, as the nearer the vehi-
cle gets to the obstacle, the less opportunity it has to increase
its steering angle sufficiently to avoid the obstacle.

In Fig. 11b, the uncontrollable divergences of the phys-
ical platform from its two predictive models are shown. In
contrast to the CarSim model shown in Fig. 11a, the dynam-
ical model in this example does not significantly diverge at
high speeds. However, at low speeds and tire angles it is still
superior to the kinematic model, just as the dynamical model
was for the CarSim plant.

The uncontrollable divergence for the physical plant is
clearly more significant than the CarSim plant; one mitiga-
tion to this observation is that the region of the model where
mismatch is highest is one in which it was not possible to
gather data—since this regionof themodel is one inwhich the
vehicle cannot safely operate (Whitsitt and Sprinkle 2012).
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Fig. 10 aKinematicMPC (q = 0) only; there is significant divergence
of the predicted from the plant model, which results in a path that is
unable to navigate between the two obstacles. b Dynamic MPC (q =
1) only; here the selected trajectory and its tracking are much more
aggressive

Thus, this region of the divergence calculations is based on
extrapolated data from Fig. 7.

Regardless ofmitigating factors, it is important to note that
the approach we present in this work will not resolve such
fundamental issues of model mismatch. If a selected f̂ qP is
sufficiently divergent from the plant model, then the system
could be unstable. Our approach is limited in its scope to
selecting the predictive model so that error is reduced, but
this error cannot be eliminated without accurate prediction
models.

5 Hybrid predictive controller

By replacing
∥
∥
∥�̂q

∥
∥
∥ and �tq for each q ∈ Q = {0, 1}

obtained above, we can now plot the upper bound on UDs

for our simulation model in CarSim in Fig. 11a. Recall
that the proposed switching logic in (9) is to solve argmin
for q. To improve performance at run time, we produce a
lookup table at the switching boundary in Fig. 12 based on
Fig. 11a. Thus, the switching logic is governed by query to
this table.

The abscissa and ordinate of Fig. 12 are velocity v and
steering angle δ. The region near the top of the figure (low
steering angle, and low speeds, or high speed and very low
steering angle) is where the kinematic model outperforms.
The rest of the region belongs to the dynamic model. We
denote the switching boundary (the solid line in Fig. 12)
between KMPC (q = 0) and DMPC (q = 1) by � : R ×
R → R and fit the boundary by tuning a constant c > 0.
This procedure leads to a switching boundary defined by the
surface

�(v, δ) = v − c

∣
∣
∣
∣
1

δ

∣
∣
∣
∣ = 0

The mutual constraint between speed and steering angle
described in Whitsitt and Sprinkle (2012) is also plotted in
the figure as a dashed curve. Let q ∈ Q = {0, 1} and sup-
pose the control law obtained from each MPC algorithm is
represented (with some abuse of notation due to the control
law being recalculated at every iteration) ẑ → κq(ẑ), where
q = 0 indicates KMPC and q = 1 indicates DMPC. Let
ε := [

q ẑT
]T ∈ Q × Rn . The mechanism that selects the

proper value of q, and hence the MPC controller to use, is
modeled as a hybrid controller which leads to a closed-loop
system with hybrid dynamics. The resulting hybrid system
is given by

H =

⎧
⎪⎪⎨

⎪⎪⎩

ε ∈ ({0} × C0) ∪ ({1}×C1) ε+ =
[

q
f̂
(
ẑ, κq(ẑ)

)

]

ε ∈ ({0}×D0) ∪ ({1} × D1) ε+ =
[
1 − q
ẑ

]

(10)

where � ∈ R+ is a tuned value to prevent the possibility of
several instantaneous switches between controllers. The sets
Cq and Dq are given by

C0 = {ẑ ∈ Rn : �(κ0(ẑ)) − � < 0}
D0 = {ẑ ∈ Rn : �(κ0(ẑ)) − � � 0}
C1 = {ẑ ∈ Rn : �(κ1(ẑ)) + � > 0}
D1 = {ẑ ∈ Rn : �(κ1(ẑ)) + � � 0} (11)

where as described in Sect. 2.4 we have embedded the dis-
crete state ẑ of each model such that they are all in Rn . Also,
recall that κq(·) defines the implicit control law to supply
control inputs for the next timestep. In particular, the set
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Fig. 11 Comparison of uncontrollable divergences (UDs) for a the CarSim plant, and b the physical plant. In each figure, the upper surface belongs
to KMPC, and the bottom belongs to DMPC. These two surfaces are close at some region, and diverge when v and δ increase
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Fig. 12 The region of star points and the region of dot points are where
the kinematic model and the dynamic model outperform, respectively.
The solid curve is the switching boundary between KMPC and DMPC.
The dashed line is the constraint on speed and steering angle, which
means any point locating below the dashed line is an infeasible solution

Dq defines the conditions on ẑ that trigger a change of q
according to the law 1− q, which flips the value of q at each
switch. The set Cq defines the set of points where contin-
uous evolution of the system is allowed. For more details
about this approach to hybrid systems, see Goebel et al.
(2012).

The construction of the hybrid algorithm leading to the
hybrid closed-loop system (10) permits the following asser-
tions regarding properties of its data and its dynamics:

(1) The sets C0, C1, D0, and D1 are closed;

(2) For each closed-loop trajectory, there exists a constant
λ > 0 such that the time elapsed between every consec-
utive jump is lower bounded by λ.

The first property is key since, when for each q ∈ Q the func-
tion ẑ → f̂ (ẑ, κq(ẑ)) is continuous, the closed-loop system is
a well-posed hybrid system as defined in (Goebel et al. 2012,
Definition 6.2).Well-posedness implies that, over finite hori-
zons, the closed-loop system is robust to small perturbations
and if continuous feedback laws κq induce an asymptotic sta-
bility property, this property is robust to small perturbations
(over the infinite horizon). The second property is crucial for
any switching system as it guarantees that switches do not
occur arbitrarily fast. Given that the right-hand side defining
the continuous dynamics of our hybrid system is bounded,
and the hysteresis-type switching mechanism implemented
by our construction, this guarantees that there is a dwell time
property in our closed-loop system. In order to increase the
time λ beyond what is provided by the dynamics of the sys-
tem, the value � may be increased. In the simulations shown
in Fig. 13a, λ = 1s.

The CarSim trajectory controlled by the hybrid MPC is
shown in Fig. 13a. Generally when the vehicle is turning or
ensuring it has sufficient accuracy to avoid an obstacle, it uti-
lizes the DMPC predictor; when it can go straight, it utilizes
the KMPC predictor. Intuitively this matches the reality that
the vehicle is more likely to go fast when going straight, and
that straight trajectories for a car-like robot are not that differ-
ent from Euler kinematic models. The trajectories generated
by the hybrid controller, KMPC, and DMPC are shown in
Fig. 13b, without additional annotations that demonstrate the
mode switches. The DMPC performs similar to the hybrid
controller, and each of them outperform the KMPC. The
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Fig. 13 a Trajectory generated by the hybrid controller when CarSim
is utilized as the plant. Themagenta squares are where DMPC is in use,
while the black squares represent the use of KMPC.Cyan and blue lines
are predicted path produced by DMPC and KMPC, respectively. Two
samples are selected to indicate the vehicle state during the simulation.
b Comparison of the plant trajectories between the KMPC, DMPC, and
hybrid controller (Color figure online)

advantage to the hybrid controller over the DMPC is not
just in its average return time, but its ability to drive at higher
speeds since it will be able to leverage the KMPC controller
at those speeds.

All simulations are run in real time using theCarSimplant.
The return time per planning period is shown in Fig. 14,
for each of the 3 controllers. The hybrid MPC dramatically
improves the return period over the DMPC, though KMPC
still has the fastest return time. However, as shown in the
figures, the faster return time is not sufficient if the predicted
error is so large that the vehicle cannot recover from a con-
trol input that drives it into an obstacle avoidance zone. This
happens to the KMPC trajectory (the blue line) on several
occasions, and serves as a reminder that faster return time is
not always a substitute for a more accurate model.
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Fig. 14 Comparisons of return time. These three figures, from top to
bottom, belongs to KMPC, DMPC and the hybrid controller, respec-
tively. 700–900 samples of return time are collected for each controller.
The abscissa is return time, and the ordinate is the number of the specific
return time. The solid lines are where more than 90% of return time
samples fall bellow

6 Conclusion

This work proposes a metric called uncontrollable diver-
gence, which accounts for tradeoffs of the divergence of
model and plant caused by model mismatch by normaliz-
ing the diverging models according to the effort required to
optimize with these models in a predictive controller. Based
on this metric, a mechanism for switching between multi-
ple predictive controllers is developed in order to lower the
controller’s return time while maintaining predictive accu-
racy.

We demonstrate how to calculate the uncontrollable diver-
gence for two different plant models, one of which is a
simulator, and the other of which is a physical vehicle
plant. In the case of the physical plant, experiments are
carried out to sample the data for the state space, but the
entire state space cannot be sampled due to safety consider-
ations: thus, a curve fitting approach is taken to estimate the
uncontrollable divergence across the same region as in the
simulator.

The results demonstrate the efficacy for this hybrid con-
trol approach, where the switching conditions are determined
by the uncontrollable divergence of the simulator plant to
the two predictor models. Simulations provide evidence that
even in a complex environment (n = 20 obstacles) that the
switching controller can outperform either single model pre-
dictor function.

The work is relevant to many kinds of problems in cyber-
physical systems where the runtime of a computer-in-the-
loop affects the performance of the system: if the models
usedby the computer can impact this runtime invariousways,
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then the technique proposed in this paper may be used as a
metric to determinewhether switching betweenmodels poses
a significant runtime benefit.

Future work involves investigation of the stability and
robustness of the controllers. Our formalism required the
construction of a hysteresis function to ensure that the system
does not switch rapidly between models (potentially leading
to instability). The investigation of conditions for stability
that would not require such a construction as an explicit part
of the model is key in our future work. We are also interested
in switching controllerswheremore than twopredictivemod-
els may be used, and issues of whether switching between
models must be constrained to some portions of the state
space.
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