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Simplifying the Surprise Exam∗

Wesley H. Holliday
University of California, Berkeley

June 30, 2015

Abstract

In this paper, I argue for a solution to the surprise exam paradox, designated student paradox,
and variations theoreof, based on an analysis of the paradoxes using modal logic. The solution to the
paradoxes involves distinguishing between two setups, the Inevitable Event and the Promised Event, and
between the two-day and n-day cases of the paradoxes. For the Inevitable Event, the problem in the
two-day case is the assumption that the student knows the teacher’s announcement; for more days, the
student can know the announcement, and the base case of the student’s backward induction is correct,
but there is a mistake in the induction step. For the Promised Event, even the base case is questionable.
After defending this analysis, I argue that it also leads to a solution to a modified version of the surprise
exam paradox, due to Ayer and Williamson, based on the idea of a conditionally expected exam.

Keywords: surprise exam paradox, designated student paradox, conditionally expected exam,
modal logic, epistemic logic

1 Introduction

According to a standard presentation of the surprise exam paradox, a teacher announces to her student that
she will give him a surprise exam during a term of n ≥ 2 days. An exam on day i is a surprise iff the student
does not know on the morning of i that an exam will be given later on i. The student, a perfect logician,
reasons as follows: “Since the exam will be a surprise, the teacher cannot wait until day n to give the exam;
because if she does, then on the morning of day n, my future self, remembering that an exam has not yet
occurred, will know that the exam has to be later on day n—so it will not be a surprise. Moreover, the
teacher cannot wait until day n− 1 to give the exam; because if she does, then on the morning of day n− 1,
my future self, still knowing that the exam will be a surprise, will also know that the teacher cannot wait
until day n (on the basis of the reasoning I just used to eliminate n), and thus, remembering that an exam
has not yet occurred, will know that the exam has to be later on day n − 1—so it will not be a surprise.”
Repeating this backward elimination argument, the student concludes that the teacher cannot give a surprise
exam. Having done so, he may be especially surprised when the exam comes on, say, day n− 1.

∗Note added May 25, 2016: For helpful feedback, I wish to thank Harvey Lederman, Jack Spencer, and the students in my
Fall 2012 graduate seminar at Berkeley on Epistemic Logic and Epistemology, during which most of this paper was written. The
paper was the basis for the discussion of the surprise exam paradox in the course on Ten Puzzles and Paradoxes of Knowledge
and Belief that I co-taught with Eric Pacuit at ESSLLI 2013 in Dusseldorf, and since then the manuscript has circulated by
email to students and colleagues at other universities (see, e.g., Rustenburg 2014). The paper has been under review at a
journal since June 30, 2015, but as I continue to receive requests for the manuscript, I am now making it publicly available as
a UC Berkeley Working Paper in Philosophy. The bibliography is now out of date, as the paper Holliday 2014b has since been
published in Thought, and the paper Holliday 2014a is forthcoming in a volume in honor of Jaakko Hintikka.
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Another version of the paradox, Sorensen’s [1984] designated student paradox, removes some of the tem-
poral aspects of the original version and thereby, according to Sorensen, undermines several analyses of the
surprise exam paradox [Harrison, 1969, McLelland and Chihara, 1975, Wright and Sudbury, 1977]. A teacher
displays to her class of n ≥ 2 perfect logicians one gold star and n− 1 silver stars. After lining the students
up, single file, she walks behind each student and sticks one of the stars on his back.1 No student can see his
own back, but each can see the backs of all students in front of him. The teacher announces that the student
with the gold star will be surprised to learn that he has it. That is, he will not know before pulling his star
off his back that it is the gold star. Student 1, at the front of the line, reasons as follows: “Since the gold star
is a surprise, the teacher did not give the gold star to student n; because if she did, then student n, seeing
all silver stars in front of him, would know he has the gold star—so it would not be a surprise. Moreover,
the teacher did not give the gold star to student n− 1; because if she did, then student n− 1, knowing the
gold star is a surprise, would also know that the teacher did not give the gold star to student n (on the basis
of the reasoning I just used to eliminate n), and thus, seeing all silver stars in front of him, would know he
has the gold star—so it would not be a surprise.” Repeating this backward elimination argument, student
1 concludes that the teacher’s announcement is false. But then when the students pull the stars off their
backs, it is, say, student n− 1 who has the gold star, and he did not know beforehand that he had the gold
star, so the teacher’s announcement was true after all.

In this paper, I argue that the solution to these paradoxes, and variations thereof, involves distinguishing
between two setups, the Inevitable Event and the Promised Event, and between the n = 2 and n > 2 cases.
For the Inevitable Event setup, in the n = 2 case the student cannot know the teacher’s announcement2 (at
least when he is clever enough to do the backward elimination reasoning), since such knowledge would lead
to impossible Moorean knowledge of the form I have the gold star but I don’t know I have it ; for n > 2,
the student can know the teacher’s announcement, and the base case of the student’s backward induction
(eliminating n) is correct, but there is a mistake in the induction step. In particular, in the designated
student paradox, when trying to eliminate student n − 1, student 1 assumes that student n − 1 knows the
teacher’s announcement;3 but if student n− 1 sees all silver stars in front of him, a possibility that student
1 has not initially eliminated (before he starts reasoning about n − 1), then student n − 1 is in essentially
the same epistemic position as student 1 in the n = 2 case, in which case student n − 1 cannot know the
teacher’s announcement (for the same reason about Moorean knowledge); it is because student 1 has not
initially eliminated this possibility (before he starts reasoning about n − 1) that he does not know that
student n− 1 knows the teacher’s announcement, so his mistake is to assume it. The same analysis, for the
Inevitable Event setup, applies to the surprise exam reasoning: the base case is correct, but the induction step
is mistaken.4 For the Promised Event setup, even the base case of the students’ reasoning is questionable.

To make the case for this analysis precisely, I follow the tradition of others who have formalized the
1Unlike Sorensen’s [1984] original presentation of the designated student paradox, in Sorensen’s [1988, 317] later presentation

of the paradox, the teacher only announces that she will put the stars on the students’ backs, without actually doing so before
the clever student starts reasoning. See the discussion of the Inevitable Event vs. the Promised Event in §4.

2Whenever I say that a student can(not) “know the teacher’s announcement,” I mean that he can(not) know that the teacher’s
announcement is true—or better, that he can(not) know the proposition expressed by the teacher’s announcement. Of course,
the student can know that the teacher made the announcement.

3Recall what the clever students said: “the teacher cannot wait until day n− 1 to give the exam; because if she does, then
on the morning of day n− 1, my future self, still knowing the exam will be a surprise. . . ” and “the teacher cannot give the gold
star to student n− 1; because if she does, then student n− 1, knowing the gold star is a surprise. . . .”

4This is not to say that the student’s only mistake for n > 2 is to assume that student n−1 knows the teacher’s announcement.
In the standard presentation of the surprise exam paradox, a later mistake—or at least an oversight—is that the student fails
to realize that when he (mistakenly) reaches the conclusion that the teacher cannot give a surprise exam, he is then susceptible
to being surprised by an exam the next day, undermining his conclusion that there cannot be a surprise exam. See §8.
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paradox in modal logic (e.g., Binkley 1968, Harrison 1969, McLelland and Chihara 1975, Sorensen 1988).
However, I formalize the paradox using a weaker proof system and set of premises (and a simpler proof)
than in many of the previous modal formalizations, thus yielding a stronger inconsistency result.

After arguing for the above analysis in more detail, comparing it to other analyses, and considering some
of its broader lessons, I discuss a modified version of the surprise exam paradox, due to Ayer [1973] and
Williamson [1992, 2000], based on the idea of a conditionally expected exam. Williamson suggests that this
modification makes for a stronger paradox. I argue that the solution to the standard version of the paradox
also leads to a solution to the modified version.

2 Modal Logic

To formalize the paradoxes, I will use a propositional modal language with a sentential operator �i and an
atomic sentence pi for each i ∈ N. For the surprise exam paradox, we can adopt the following readings:

�iϕ “the student knows on the morning of day i that ϕ”;

pi “there is an exam on the afternoon of day i”.

For the designated student paradox, we can adopt the following readings, where t is a time after the teacher
has distributed the stars on the students’ backs and made her announcement, but before the students remove
the stars:

�iϕ “the i-th student in line knows at t that ϕ”;

pi “there is a gold star on the back of the i-th student at t”.

We can now express that there is a surprise exam on day i (or a surprise gold star on student i): pi ∧¬�ipi.
Although I will mostly write about �i in terms of knowledge, much of what follows can also be applied

to rational belief. In particular, many of the results will not depend on the T axiom, �iϕ→ ϕ.
For a proof system, I use the polymodal version of the minimal normal modal logic K, the smallest

system extending propositional logic with the following rule for each i ∈ N (Chellas 1980, §4.1):

RKi
(ϕ1 ∧ · · · ∧ ϕm)→ ψ

(�iϕ1 ∧ · · · ∧�iϕm)→ �iψ
,

which states that if the premise is a theorem, so is the conclusion. In the m = 0 case, RKi is the standard
rule of Necessitation (Neci). Intuitively, RKi says that the student on day i (or the i-th student) knows
all the logical consequences of what he knows, reflecting the assumption that he is a perfect logician.5 As
Sorensen [1988] notes about the surprise exam paradox, “members of the audience are standardly assumed
to be perfect logicians who never forget and who do not overlook important facts” (254).6

There are a number of possible philosophical objections to RKi, even for ideally rational agents. From
RKi one can derive the principle (�iα∧�iβ)→ �i(α∧β), which has been questioned as a principle of belief
for rational agents [Kyburg, 1961, Makinson, 1965, Skyrms, 1967, 388], and (�iα∧�i(α→ β))→ �iβ, which
has been questioned as a principle of knowledge for rational agents, even if these agents competently deduce
all the consequences of what they know [Dretske, 1970, Nozick, 1981, Dretske, 2005].7 However, the relevant

5Moreover, RKi reflects the assumption that for every i, j ∈ N, the student on day i (or the i-th student) knows that his self
on day j (or the j-th student) is also a perfect logician. For the relevance of this to the paradoxes, see §4.

6This is not to deny that interesting aspects of the paradox (or related paradoxes) can be brought out by considering
boundedly rational agents or agents whose reasoning takes time. But for reasons of space, I will not consider such agents here.

7Note that if our agent knows α→ (β → (α ∧ β)), then the first principle is derivable from the second.
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question in this paper will be whether the use I make of RKi (e.g., in the proof of Proposition 1) involves
the kind of moves that worry epistemologists about those principles. More generally, the question about the
logic K is not whether it involves false idealizations, which it surely does for real agents; the question is
whether its false idealizations interfere with the analysis of this paper. If they do, then one should be able to
pinpoint where they do. The situation is analogous to modeling in economics or physics; false idealizations
abound, but what matters is whether they distort the analysis of the target phenomenon. In this paper I
claim that formalizing the surprise exam paradox in a normal modal logic illuminates more than it distorts.

Another reason that objections to the use of K can be avoided here is that we can adopt a different reading
of the �i operator, so that �iϕ means “ϕ is entailed by what the student knows on the morning of day i”
(or “ϕ is entailed by what the i-th student in line knows at t”).8 Then RKi is completely uncontroversial.
Moreover, we can take a “surprise exam” on day i to be one such that it is not entailed by what the student
knows on the morning of day i that there will be an exam on the afternoon of day i (cf. Sorensen 1988, 258),
which is still expressed by the same formal sentence: pi ∧ ¬�ipi. Then the clever student can carry out the
backward elimination argument using the modified definition of surprise, which I leave to the reader.

Later we will consider extensions of K with axiom schemas such as those in Figure 1 below. Given
schemas Σ1, . . . ,Σn, KΣ1 . . .Σn is the smallest extension of K that includes all instances of Σ1, . . . ,Σn. A
sentence β is provable in KΣ1 . . .Σn from a set of sentences (premises) Γ, written ‘Γ `KΣ1...Σn β’, iff there
is a sequence 〈χ1, . . . , χl〉 of sentences with β = χl such that for all 1 ≤ k ≤ l, one of the following holds:

(i) χk is an instance of a propositional tautology;

(ii) χk is an instance of one of the axiom schemas Σ1, . . . ,Σn;

(iii) χk is one of the sentences in Γ;

(iv) (RK) χk is of the form (�iϕ1 ∧ · · · ∧ �iϕm) → �iψ for some i ∈ N, and for some j < k, χj is
(ϕ1 ∧ · · · ∧ ϕm)→ ψ and `KΣ1...Σn χj ;

(v) (Modus Ponens) there are i, j < k such that χi is χj → χk.

If there is no such proof, I write ‘Γ 0KΣ1...Σn β’. As usual, β is a theorem of KΣ1 . . .Σn iff β is provable
from no premises, i.e., `KΣ1...Σn β. It is important to observe the requirement in (iv) that the sentence χj

to which the RKi rule is applied must be a theorem of the logic. On this point, a word of warning: in order
to shorten proofs, I will often say that a sentence β is provable from a sentence α “using RKi,” even though
0KΣ1...Σn

α, so RKi cannot be applied to α. What I mean in such cases is that there is some obvious theorem
(usually a propositional tautology) ϕ to which RKi can be applied to obtain another theorem ϕ′ such that
β is obviously provable (as a matter of propositional logic) from α and ϕ′. By filling in the omitted steps,
the reader can check that none of the proofs involve mistaken applications of the RKi rule to non-theorems.
Finally, when I apply the m = 0 case of the RKi rule in a proof, I write ‘Neci’ instead of ‘RKi’.

Ti �iϕ→ ϕ 4i �iϕ→ �i�iϕ
Di �iϕ→ ¬�i¬ϕ 4<i �iϕ→ �i�jϕ (i < j)

Ri �iϕ→ �jϕ (i < j) 4≤i �iϕ→ �i�jϕ (i ≤ j)

Figure 1: Axiom Schemas
8See Cross 2001, §3 for a similar move in a discussion of the Knower Paradox. Also see Williamson’s [1992, 220] “know#”.
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Returning to the axiom schemas in Figure 1, a schema like Ri includes all instances of �iϕ→ �jϕ for the
fixed i and for any j > i. We could let Ri,j be the schema that includes all and only instances of �iϕ→ �jϕ

for the fixed i and fixed j, but we will not have a need to do so here. The same points apply to the other
schemas. Finally, while one might wish to adopt an axiom schema for some times/agents i but not others,
one might also wish to adopt it uniformly. To indicate the latter, let T be the schemata that includes Ti for
all i ∈ N; let D the schemata that includes Di for all i ∈ N; and so on for the other axioms.

As a final preliminary, recall that the modal depth of a modal formula is defined recursively as follows:
d(pi) = 0 for any atomic pi; d(¬ϕ) = d(ϕ); d(ϕ#ψ) = max(d(ϕ), d(ψ)) for any binary boolean connective
#; and d(�iϕ) = d(ϕ) + 1. It is a significant fact that all of the analysis in this paper will be done using the
fragment of the modal language consisting of formulas of modal depth 3 or less.

3 The n = 2 Case

To formalize the n = 2 case of the paradox, I use the following premises, which are as weak as or weaker
than any in the literature for the standard surprise exam or designated student paradox (see Appendix B):

(A) �1((p1 ∧ ¬�1p1) ∨ (p2 ∧ ¬�2p2));

(B) �1(p2 → �2¬p1);

(C) �1�2(p1 ∨ p2).

For the surprise exam paradox, (A) states that the student knows on the morning of day 1 the teacher’s
announcement that there will be a surprise exam. (B) states that the student knows on the morning of day
1 that if the exam is on the afternoon of day 2, then the student will know on the morning of day 2 that it
was not on day 1 (on the basis of memory). Finally, (C) states that the student knows on the morning of
day 1 that she will know on the morning of day 2 the part of the teacher’s announcement about an exam.

For the designated student paradox, (A) states that the first student in line, student 1, knows that the
gold star is a surprise. (B) states that student 1 knows that if student 2 has the gold star, then student 2
knows that student 1 does not have the gold star (on the basis of seeing the silver star on student 1’s back).
Finally, (C) states that student 1 knows that student 2 knows that one of them has the gold star.

Previous formalizations (see Appendix B) of the paradox use extensions of K with axiom schemas such
as those in Figure 1. However, it is easy to show that (A), (B), and (C) generate a problem with just K:

Proposition 1. {(A), (B), (C)} `K �1(p1 ∧ ¬�1p1).

Proof. Here is a simple proof, skipping purely propositional steps and some applications of RK to theorems:

(A) �1((p1 ∧ ¬�1p1) ∨ (p2 ∧ ¬�2p2)) premise

(B) �1(p2 → �2¬p1) premise

(C) �1�2(p1 ∨ p2) premise

(1)
(
�2(p1 ∨ p2) ∧�2¬p1

)
→ �2p2 by propositional logic and RK2

(2) �1

((
�2(p1 ∨ p2) ∧�2¬p1

)
→ �2p2

)
from (1) by Nec1

(3) �1(�2¬p1 → �2p2) from (C) and (2) using propositional logic and RK1
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(4) �1¬(p2 ∧ ¬�2p2) from (B) and (3) using propositional logic and RK1

(5) �1(p1 ∧ ¬�1p1) from (A) and (4) using propositional logic and RK1.

From (5) we can derive a contradiction by adding to K the “weak factivity” (cf. Fara 2010, 58) axiom schema

Ji �i¬�iϕ→ ¬�iϕ,

so we have the following inconsistency result, stronger than many previous results (see Appendix B):

Corollary 1. {(A), (B), (C)} `KJ1 ⊥.

But (5) is already paradoxical.9 If we want to add another axiom to derive a contradiction from (5), this
reflects the sense that (5) is paradoxical by itself, for both knowledge and rational belief. Of course, the
J axiom is a special case of the T axiom, �iϕ → ϕ, and Corollary 1 also holds for the minimal normal
epistemic logic, KT; but it is noteworthy that it holds even for a weaker doxastic logic such as KJ.

Two ideas in standard presentations of the surprise exam paradox are that (i) the student concludes there
can be no exam and (ii) when the exam actually occurs, the student is surprised. However, (i) and (ii) are
unnecessary, since (A), (B), and (C) generate the paradoxical (5) in K without implying (i) or (ii):

Proposition 2. {(A), (B), (C)} 0KD4<R �1¬(p1 ∨ p2) ∨ (p1 ∧ ¬�1p1) ∨ (p2 ∧ ¬�2p2).10

Proof. See Appendix A.

Thus, analyses of the paradox for n = 2 that depend on (i) and (ii) do not get to the heart of the matter.
The proof above does not even involve the student ruling out an exam on the last day, but rather a

surprise exam on the last day. However, if we add the assumption, as many authors do (see Appendix B),
that the student knows/believes on day 1 that there will be an exam on a given day only if it is a surprise,
i.e., �1((p1 → ¬�1p1)∧ (p2 → ¬�2p2)), then the student can rule out an exam on day 2, and we can derive
�1¬p2 from (4) using the assumption. In KT, the assumption already follows from the conjunction of (A),
(B), and (C), for the trivial reason that the conjunction is inconsistent in KT.

It is also noteworthy that Proposition 1 uses (C) instead of
9It is paradoxical given the meaning of p1 stated in §2. Note that it is not relevant here to claim that there are other examples

in which �i(ϕ ∧ ¬�iϕ) makes sense (for belief) and therefore that the J axiom is not valid in general (for belief). Perhaps
it could be truly said of a non-ideally rational agent that he believes a particular stereotype (as evidenced by his behavior)
and that he also believes that he does not believe the same stereotype (as evidenced by what he says). It is less clear whether
�i(ϕ∧¬�iϕ) can hold for the beliefs of an ideally rational agent. Adapting a famous example of Quine’s [1956], one might claim
that an ideally rational Ralph could believe that Ortcutt (the man he is looking at) is a spy while also believing that he (Ralph)
does not believe that Ortcutt (his nextdoor neighbor) is a spy. Or adapting a famous example of Perry’s [1977], one might claim
that Heimson, who believes he is Hume (an error in matters of fact), might also believe that it’s raining but Heimson doesn’t
believe it is. I do not think that such examples should be formalized as �i(ϕ∧¬�iϕ) (see Holliday and Perry 2014), but in any
case, our (5) obviously does not involve such “double vision” or confusions of identity. (Thanks to Jack Spencer and Harvey
Lederman for discussion here.) Another kind of case, suggested to me by Harvey Lederman, involves a sort of “propositional
double vision.” If a trustworthy oracle were to testify to the truth of a sentence in a language that Ralph doesn’t understand, or
a sentence too complex for Ralph to understand, which in fact expresses a proposition that is Moorean for Ralph, then it seems
Ralph could at least believe that the sentence is true. Whether Ralph could also believe the Moorean proposition it expresses is
less clear. In any case, as Lederman points out, this example seems more related to the surprise exam paradox, and it may help
explain Sorensen’s [1988, 312] reaction that it must be rational to believe the teacher’s announcement: the trustworthy teacher
announces something that does not look like a Moorean sentence, so it seems rational to accept it—but then a logical deduction
shows that together with other things the student believes, the announcement entails an explicitly Moorean conclusion. Since
I am assuming the student is an ideal logician, he would make the relevant deduction of an explicitly Moorean conclusion. But
then it does not seem rational for an agent to believe something that he recognizes as Moorean.

Whatever one makes of the J axiom for rational belief, remember that �i(ϕ ∧ ¬�iϕ) does not make sense for knowledge. It
also does not make sense for the alternative reading of �iϕ mentioned in §2: “ϕ is entailed by what the student knows on the
morning of day i.” For this reading, the logic should be at least as strong as KT, in which �i(ϕ ∧ ¬�iϕ) is inconsistent.

10Of course, KT derives the formula from {(A), (B), (C)}, because it derives ⊥ and everything else from {(A), (B), (C)}.
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(E) �1�2((p1 ∧ ¬�1p1) ∨ (p2 ∧ ¬�2p2)).

Thus, analyses for n = 2 that blame (E) do not get to the heart of the matter.11 According to Williamson
[2000, 138], “In ruling out a last-day examination, the pupils assume that they will still know on the last
morning that there will be a surprise examination, defined as an examination on a day when the pupils do
not know in the morning that there will be an examination that day.” However, as the previous observations
show, this need not be. It suffices for them to assume they will still know on the last morning that p1 ∨ p2.

In response to the derivation of the paradoxical (5) for Proposition 1, we must reject either one of the
premises (A), (B), (C), or the rule RKi.12 But which? I suspect that for each of (A), (B), and (C), there is
a way of filling in the surprise exam and designated student stories so that that premise should be rejected.
The surprise exam and designated student stories are usually underdescribed, preventing a unique solution.
Nonetheless, some ways of filling in the details are more natural than others. For example, it seems natural
to assume that the student in the surprise exam story knows that he has good memory, and that student 1
in the designated student story knows that the students behind him in line have good eyesight. With these
assumptions, (B) is unproblematic. The teacher’s announcement does not destroy the students’ knowledge
of good memory or good eyesight. So we should blame one of the other principles, but which?

4 The Inevitable Event vs. The Promised Event

The key to deciding which principle to blame is to distinguish two setups of the paradox: the Inevitable
Event vs. the Promised Event. This distinction applies not only to the surprise exam scenario, but to other
variations of the scenario. Perhaps the clearest examples of an Inevitable Event setup involve cards:

A group of card players (the subjects) verify that the dealer has a standard deck of ordinary
playing cards. The dealer shuffles the cards in view of the subjects. He then announces that
he will turn up, one at a time, each card in the deck. This gives us a sequence e1, e2, . . . , e52 of
situation events. The test event is the turning up of the jack of spades. The dealer announces
that the turning up of this card will ‘surprise’ the players. [McLelland and Chihara, 1975, 72]

[A] set of seven cards, known to include the Ace of Spades, is put in the man’s cell, in a place
where it cannot be tampered with, and every morning the prison chaplain comes in and draws a
card. On the day when the chaplain draws the Ace of Spades, the man is to die, provided that
he does not know that the Ace of Spades will be drawn on that day. [Ayer, 1973, 125]

When I presented the designated student paradox in §1, I essentially gave an Inevitable Event setup.
Before the students line up, the teacher clearly displays the gold star and silver stars to them; each student
sees that the others see the stars; they can communicate this to each other, etc. Then the teacher lines them
up, walks behind them, and sticks the stars to their backs. We can even suppose that the students feel the
stars on their backs by reaching around with their hands; they communicate this to each other, etc.

Here is an Inevitable Event setup of the surprise exam scenario: there is a commonly known and sacrosanct
school policy stating that whatever happens, an exam will be administered every week.

In each of these cases, it would be radical skepticism about knowledge, not a solution to the paradox,
to deny (C). In the card scenario, for example, it is a skeptical stretch to claim that although the subjects

11Though see the discussion of the 4< axiom for n > 2 in §7.
12I assume we will not need to reject propositional logic.
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“verify that the dealer has a standard deck of ordinary playing cards,” they cannot know (or rationally believe)
that later they will know (or rationally believe) that it is a standard deck of ordinary playing cards, which
contains a jack of spades.13 Some philosophers might deny the possibility of any knowledge of the future,
let alone knowledge of future knowledge. But the Inevitable Event setup of the designated student paradox
does not involve knowledge of the future, but rather knowledge of what another person knows. It would be
radical skepticism about social knowledge, not a solution to the paradox, to claim that given the preparation
described above, student 1 does not know that student 2 knows that one of them has the gold star.

I conclude that in the Inevitable Event setup, (C) is not to blame. Thus, having acquitted (B) and (C),
we have narrowed down the suspects in the Inevitable Event setup to (A) and RKi.

Observe that RKi is used in each of steps (1)-(5). If RKi is the problem, then in what step does it first
reveal itself as problematic? Consider the designated student paradox, continuing with the Inevitable Event
setup. In this case, step (1) reflects the idea that student 2 is a perfect logician who would not at the same
time believe p1 ∨ p2, believe ¬p1, and yet fail to believe p2. So far, so good it seems. Step (2) reflects the
idea that student 1 knows that student 2 is such a perfect logician, which also seems okay.

With step (3), one might raise the following objection in terms of “justification”: suppose that student
1’s justification for believing �2(p1 ∨ p2) rests on some justification he has for believing �2p1. Then it looks
suspect, the objection goes, for student 1 to engage in the following conditional proof: suppose �2¬p1; then
given the fact that �2(p1 ∨ p2) (justified by �2p1, which is incompatible with the supposition) and the fact
that 2 is a perfect logician, we conclude �2p2; hence �2¬p1 → �2p2.14 The first reply to this objection is
that in the Inevitable Event setup we are considering, student 1’s justification for believing �2(p1 ∨ p2) does
not rest on some justification for believing �2p1. Instead, student 1’s justification for believing that student
2 knows that one of them has the gold star rests on his justification for believing that student 2 saw both
the gold star and the silver star, saw and heard the teacher walk behind each of them and stick the stars
on their backs, etc., none of which is incompatible with the supposition for conditional proof that �2¬p1.
Second, if student 1 believes �2p1 and hence (I assume) ¬�2¬p1, then what is wrong with his concluding
¬�2¬p1 ∨ �2p2, i.e., �2¬p1 → �2p2? Nothing, I would say. Third, if we actually had �1�2p1, then with
just the addition of (A) and �1¬(p1 ∧ p2), we would have an even shorter proof of a contradiction in KT.
What these three points show is that trying to block RKi at step (3) is not the solution to the paradox.

Neither, it seems to me, is trying to block RKi at steps (4) or (5). Step (4) reflects the idea that student
1 uses his knowledge of �2¬p1 → �2p2 and his knowledge of p2 → �2¬p1 to deduce and come to know
p2 → �2p2, i.e., ¬(p2 ∧ ¬�2p2), by the transitivity of implication, which seems okay. In the final step,
student 1 uses his (supposed) knowledge of the disjunction in (A) and his knowledge from (4) of the negation
of the right disjunct to deduce and come to know the left disjunct by disjunctive syllogism, landing us in
the paradoxical (5). Might one claim here that the rational agent should instead retain his belief in the
disjunction in (A) and retain his belief in the negation of the right disjunct, but still refrain from believing
the left disjunct, in violation of RKi? That does not seem rational to me; instead, the rational response
would be to give up one of the beliefs (like his belief in the disjunction in (A)) that got him into this mess.
No doubt there is more to say, but I conclude that denying RKi is not the solution to the paradox.

13But what if the dealer is an expert magician who can make cards disappear without anyone noticing? Let us stipulate that
he is known not to be—and similarly for other far-fetched objections.

14Thanks to Jack Spencer for raising this issue and referring me to Hall’s [1999, 694] claim about the surprise exam: “For
consider why the student is justified in believing that, come Friday, he will justifiably believe that an exam is scheduled: his
reason for this is simply that he justifiably believes that, come Friday, the exam will already have taken place (and that he will
remember this, etc.).”
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Having acquitted (B), (C), and RKi, we now see that the solution for the n = 2 Inevitable Event scenario
is to reject (A). The (first) student cannot know, or even rationally believe, the teacher’s announcement,
given that he has the knowledge or beliefs represented in (B) and (C), which he does in this case, and given
that he is clever enough to engage in the backward elimination argument. The reason is that knowledge of
the teacher’s announcement would lead to impossible Moorean knowledge of the form I have the gold star
and I do not know that I have the gold star, and similarly for rational belief, as shown by Proposition 1.15

As noted, this conclusion assumes that we are considering a student clever enough to engage in the
backward elimination argument. If we were to consider a different, simpleminded student who would never
think of such an argument, then such a student could know the teacher’s announcement—he could know
that he will be surprised—so we could reject RK1 and accept (A). (But also note that since the teacher’s
announcement refers to the future ignorance of the student to whom it is addressed, the content of the
announcement would be different if it were addressed to a different student instead of the clever one.)

As suggested at the end of §3, this conclusion also assumes that epistemic conditions (memory, eyesight,
reasoning) for the other days/students are known to be good. If instead the clever student thinks he might
receive a damaging blow to the head at midnight between day 1 and day 2, or that the student behind him
in line might have bad eyesight or lousy reasoning skills, then we could reject (B), (C), or RK2 and accept
(A). But in the “good” n = 2 Inevitable Event setup, there seems to be no option but to deny (A).

This shows the danger of relying too much on intuitions about knowability. Against Quine [1953],
Sorensen [1988, 312] insists that the student can know the announcement when n > 1, since “If you cannot
trust your teachers, who can you trust?” But the teacher’s announcement in the “good” n = 2 Inevitable
Event setup is just as unknowable/unbelievable by the student as her announcement in the n = 1 case.

Turning to Promised Event setups, suppose the teacher in the designated student scenario never shows the
students any stars. Instead, she only claims that she will put a silver star on one of them and a gold star on
the other, who will be surprised. In this case, a defender of (A) might argue that denying (C) is not radically
skeptical; for now the only source of evidence for p1∨p2 is the teacher’s claim, rather than the students’ own
perception. If student 2 sees a silver star in front of him—call this case (∗)—then from his perspective, the
teacher’s claim that (p1 ∧ ¬�1p1) ∨ (p2 ∧ ¬�2p2) reduces to p2 ∧ ¬�2p2, which is unknowable/unbelievable
by student 2. Wright and Sudbury [1977] make the analogous point about the surprise exam scenario. But
nothing they say suggests that p1 ∨ p2 is unknowable/unbelievable by student 2. So more must be said
against (C). The defender of (A) might argue that since in case (∗) student 2 won’t know/believe the whole
of the teacher’s announcement, she might not know/believe the part of the announcement according to which
there is a gold star on one of the students; and then since student 1 cannot rule out (∗), (C) is false.

This argument raises questions about the possibility of knowing part of the teacher’s announcement
without knowing all of it. In many presentations of the surprise exam paradox, the teacher’s announcement
comes in parts.16 In other presentations, the teacher only announces “next week there will be a surprise

15In fact, on certain coarse-grained views of propositions, knowledge of the teacher’s announcement, by someone who knows
(B) and (C), would not just lead to but would constitute impossible Moorean knowledge.

16For example: “K knows at time t and thereafter that it is decreed that an event of a given kind will occur uniquely and
within K’s ken at time t + i for some integer i less than or equal to a specified number n, and that it is decreed further that
K will not know the value of ‘i’ until after (say) time t + 1 − 1

2
” [Quine, 1953, 65]; “A teacher announces to his class that

there will be an examination in the afternoon of exactly one of the following n days, where n is some positive integer, and
that the examination will take the students by surprise” [Binkley, 1968, 127]; “X is told by his instructor that there will be
an examination on either the second or the fourth of the month (but not both), but that he will not anticipate that the test
will be given on the day before it is given” [Harrison, 1969, 75]; “A judge decrees on Sunday that a prisoner shall be hanged
on noon of the following Monday, Tuesday, or Wednesday, that he shall not be hanged more than once, and that he shall not
know until the morning of the hanging the day on which it will occur” [Kaplan and Montague, 1960, 70]; “A teacher announces
in class that an examination will be held on some day during the following week, and moreover that the examination will be a
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exam.” Either way, it seems that one might know there will be an exam—since this depends only on the
teacher carrying out her intention to give one, which she sincerely expressed—even if one does not know it
will be a surprise—since this depends on the cooperation of the students’ ignorance. Yet I think one can
fill in the details of a Promised Event scenario so that (C) is plausibly false. In this sense, the question of
whether to reject (A) or (C) does not have a unique answer for the n = 2 Promised Event setup.

However, for those who accept (A) and reject (C) in some Promised Event n = 2 cases, note that it follows
from (A) using PL and RK1 that �1(p1∨p2). So rejecting (C) means rejecting �1(p1∨p2)→ �1�2(p1∨p2).
This is an instance of 4< in Figure 1, which is the principle that I will argue we should reject in the Inevitable
Event n > 2 case. Thus, the Promised Event and Inevitable Event analyses lead to a common verdict. In
§7, I will focus on making the argument against 4< in the Inevitable Event n > 2 case. This argument will
make crucial use of the result from this section that (A) is the culprit in the Inevitable Event n = 2 case.

5 Self-Refuting, Anti-Performatory, and Unassimilable Announce-

ments

Before proceeding to the n > 2 case, I want to clarify the sense in which the teacher’s announcement is
unknowable in the n = 2 Inevitable Event case discussed in §4. To do so, I need to make a distinction
between self-refuting, anti-performatory, and unassimilable announcements.

Following some of the earliest commentaries on the surprise exam paradox (O’Connor 1948, Cohen 1950),
I will call an announcement of the sentence

(N) I am not speaking now

a self-refuting announcement. As Cohen [1950, 86] notes, it could be true that I am not speaking now, and
I could silently think about this truth, but any announcement of (N) will be a false announcement, and it
will be false because of the announcement. In that sense, any announcement of (N) is self -refuting.

In recent years, the term ‘self-refuting announcement’ has been used for what I will now call an anti-
performatory announcement (see, e.g., van Benthem 2004, Holliday and Icard 2010). Suppose Ann and Bob
attend a party at which the birthdays of all attendees will be revealed at the end of the party. If Ann
announces to Bob before the end of the party

(M) You don’t know it, but my birthday is in March.

this may be an anti-performatory announcement. As Hintikka [1962, 68-69] explains:

If you know that I am well informed and if I address the words . . . to you, these words have a
curious effect which may perhaps be called anti-performatory. You may come to know that what
I say was true, but saying it in so many words has the effect of making what is being said false.

Or to put the last point a bit more carefully: one result of Ann’s true announcement of (M) is that a
subsequent announcement of (M) would be false, because as a result of Ann’s first announcement, Bob
knows that her birthday is in March. Indeed, as Hintikka points out, Bob can know that all of Ann’s first
announcement was true, including the part about his ignorance at the time of the announcement. To put
the point another way, if we consider an eternalized, non-indexical version of (M),

surprise” [Chow, 1998, 41]; “A teacher announces that he will given an examination within a month. Examinations are always
given at noon. He also announces that the exam will be a surprise exam” [Kripke, 2011, 27]
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(Me) Bob does not know it at t, but Ann’s birthday is in March,

where t is the time just before Ann’s first announcement of (M), then Bob can come to know (Me) as a
result of Ann’s announcement of (M).

As I am using the terms, anti-performatory announcements are not self-refuting. Roughly, an anti-
performatory announcement is a true announcement of a sentence with the result that subsequent announce-
ments of the sentence would be false; by contrast, a self-refuting announcement is a false announcement of
a sentence, where the announcement is false because the sentence is announced—although the proposition
expressed could have been true. Self-refuting announcement do not give listeners knowledge of the proposi-
tion expressed, since they are false announcements. By contrast, anti-performatory announcements can give
listeners knowledge of the proposition that was expressed; but they cannot give listeners knowledge of the
proposition that would be expressed by a subsequent announcement, since it would be false.17

Finally, let us turn to unassimilable announcements. Contrast (M) with

(M′) You won’t know it until the end of the party, but my birthday is in March,

announced hours before the end of the party. While Bob can come to know, before the end of the party,
that Ann’s announcement of (M) was true, can he come to know, before the end of the party, that Ann’s
announcement of (M′) was true? To put the question more directly: can Bob come to know, before the
end of the party, that he won’t know it until the end of the party, but Ann’s birthday is in March? No, he
cannot, by the standard argument from Fitch [1963]. In this sense, Ann’s announcement of (M′), unlike her
announcement of (M), is an unassimilable announcement for Bob when she makes it.

Even though Bob cannot come to know the whole content of (M′), can he come to know that Ann’s
birthday is in March from Ann’s announcing (M′)? Perhaps if Bob knew that Ann were the kind of person
whose announcements always start out with a joke, followed by the word ‘but’, followed by a real assertion,
then he could. But Ann is not that kind of person. At least in many cases, given that Bob will not come to
know all of (M′), he will not come to know the part about Ann’s birthday either. When this happens, Ann’s
announcement of (M′) will be unassimilable for Bob but true. Thus, the announcement will be unassimilable
but not self-refuting. Moreover, if Ann’s first announcement of (M′) is true, it seems that she can truly
announce (M′) again, in which case her initial announcement of (M′) was not anti-performatory.18

Some early and recent commentators on the surprise exam paradox have tried to analyze the teacher’s
announcement as a self-refuting announcement [O’Connor, 1948, Cohen, 1950] or an anti-performatory an-
nouncement [Gerbrandy, 2007]. According to my analysis, this is a mistake. To see this, consider the n = 2

Inevitable Event setup of the designated student paradox.
Suppose that after showing the two students the gold and silver stars, lining the students up, and putting

the gold star on the back of student 1, the teacher announces: “One of you has the gold star on his back
but does not know it.” This would (or could) be an anti-performatory announcement. Student 1 would
(or could) come to know that he has the gold star—by reasoning that if he did not have it, then student 2
would have known before the teacher’s latest announcement that he (student 2) had it, contradicting the
content of that announcement. But if student 1 comes to know that he has the gold star, then the teacher’s
announcement is anti-performatory in the sense described above. She cannot truly utter the same sentence

17I have been assuming the eternalist view that announcements at different times of a present-tense sentence like (M) express
different eternal propositions (see, e.g., Richard 1981); but my points could be made using temporalist language as well.

18In Holliday 2014a, I show how to formalize the dynamic distinction between unassimilable and anti-performatory announce-
ments in a framework I call Sequential Epistemic Logic.

11



again; but the students can know that when she originally made the announcement, her utterance was true.
So the announcement was not self-refuting in the sense described above.

Notice, however, that in the intended version of the paradox, the teacher does not announce, “One of you
has the gold star on his back but does not know it.” Instead, she announces, “One of you has the gold star
on his back but will not know it until he pulls the star off his back.”19 One could even insert a parenthetical
addition, as a nod toward analyses of the paradox that appeal to self-reference: “One of you has the gold star
on his back but will not know it (even after this announcement!) until he pulls the star off his back.” What
the analysis of the previous sections shows is that with the n = 2 Inevitable Event setup, this announcement
is an unassimilable announcement for student 1, assuming he is clever enough to do the backward elimination
reasoning. For if he accepts the teacher’s announcement, then he will derive that the gold star is not on the
back of student 2, in which case the teacher’s announcement reduces to

(U1) Student 1 has a gold star on his back but won’t know it until he pulls the star off his back20

which is, of course, like the unassimilable (M′) above. Because the teacher’s announcement is unassimilable
for the student, it may well be true and hence not self-refuting. Moreover, it should be possible to make the
announcement truly a second time, so it is not anti-performatory.

Similarly, in the surprise exam paradox, if the student accepts the teacher’s announcement, then he will
derive that the exam will not be on day 2, in which case the teacher’s announcement reduces to

(U2) The exam will be on day 1 but you won’t know it until the morning of day 1

which is, again, like the unassimilable (M′) above. Because the teacher’s announcement is unassimilable for
the student, it may well be true and hence not self-refuting. Moreover, it should be possible to make the
announcement truly a second time, so it is not anti-performatory.

6 Assuming a Surprise vs. Assuming an Intention to Surprise

It is worth stressing one more point before proceeding to the n > 2 case. In the classic presentation of the
surprise exam paradox, the student reasons using his supposed knowledge/rational belief, acquired from the
teacher’s announcement, that the exam will be a surprise, not just that the teacher intends or will try to
make the exam a surprise. This distinction comes out especially clearly in an eavesdropping version of the
surprise exam scenario.21 Suppose that the teacher confidentially tells a colleague in the teacher’s lounge
that she will give her student a surprise exam sometime in the next term of n days, but unbeknownst to the
teacher, her student overhears the conversation through the door to the lounge. Further suppose that the
student then starts reasoning about when the exam will be, on the assumption that the teacher intends or
will try to make it a surprise, not assuming at the outset that she will necessarily be successful.

Case 1: no one at the school had previously mentioned anything about exams. Then on the basis of
overhearing the teacher’s comment to her colleague, the student cannot rule out an exam on the last day
of the term. For as the student should allow, if the teacher thought that he (the student) had never heard
anything about exams at the school, then she could reasonably plan to surprise him by giving an exam on the
last day of the term. Thus, in this case, the student cannot even begin the backward elimination argument.

19She could add: “So, in particular, you will not know it at time t,” where t was the time picked out in our reading of �iϕ
for the designated student paradox in §2.

20And so won’t know it at the time t picked out in our reading of �iϕ for the designated student paradox in §2.
21Thanks to Barteld Kooi for raising the issue of eavesdropping examples in conversation.
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Case 2: the school had previously announced a policy of holding an exam each term; in the past, teachers
gave students advance notice of the date of each exam, but today the teacher tells her colleague that she
plans to spring the exam on her student with no advance notice. Now the student might reason that the
exam cannot be on the last day, day n, because the teacher should know that if she waits until day n to give
the exam, then he (the student) will be expecting an exam on that day, given the school policy. However,
if the student thinks the teacher might be unaware that he overheard her conversation, then it seems he
should not rule out an exam on day n − 1. For as the student should allow, if the teacher thought that he
(the student) had not overheard her conversation, then she could reasonably plan to surprise him by giving
him an exam on day n − 1, since she would have no reason to think that he had ruled out the possibility
of an exam on day n. So given what the student has overheard, it should seem consistent to him that the
teacher intends to make the exam a surprise and that she has scheduled the exam on day n− 1.

Thus, in both cases, the student should admit that he cannot run the backward elimination argument.
By contrast, if he reasons using his supposed knowledge that the exam will be a surprise, then he might
reason as before: “Since from what I overhead, the exam will be a surprise, the teacher cannot wait until
day n to give the exam; because if she does, then on the morning of day n, my future self, remembering
that an exam has not yet occurred, will know that the exam has to be later on day n—so it will not be
a surprise. Moreover, the teacher cannot wait until day n − 1 to give the exam; because if she does, then
on the morning of day n − 1, my future self, still knowing the exam will be a surprise, will also know that
the teacher cannot wait until day n (on the basis of the reasoning I just used to eliminate n), and thus,
remembering that an exam has not yet occurred, will know that the exam has to be later on day n−1—so it
will not be a surprise. . . .” Assuming the student knows there will be a surprise exam, it seems that whether
he came to know this fact from eavesdropping or from being told directly by the teacher does not matter.22

Thus, if the student reasons using his supposed knowledge of a surprise, then my diagnosis of the eaves-
dropping version of the surprise exam paradox is the same as my diagnosis of the standard version, in which
the teacher tells the student directly. Recall that for the Inevitable Event setup of the standard surprise
exam paradox with n = 2, I argued in §4 that the solution (under certain natural assumptions) is to reject
(A), the assumption that the student knows the teacher’s announcement, i.e., knows that there will be a
surprise exam. I would not deny, however, that the student might come to know from the teacher’s an-
nouncement that the teacher intends or will try to make the exam a surprise. Analyzing how the student
might reason from this assumption is interesting, since it involves analyzing how the student might predict
what the teacher might predict about what he (the student) might predict about what she might predict,
etc. The surprise exam paradox can be used as a springboard for thinking about this kind of complicated
higher-order strategic reasoning, which leads naturally to game-theoretic and probabilistic concepts. But my
goal here is more modest: it is to solve the classic version of the surprise exam paradox and related paradoxes
in which the student reasons using his supposed knowledge that the relevant event will be a surprise.

7 The n > 2 Case

Where Sk := (pk ∧ ¬�kpk), the generalizations of (A), (B), and (C) for arbitrary n are:

(An) �1(S1 ∨ · · · ∨ Sn);
22But one might reasonably ask: in a case where the student overhears the teacher’s comment, and for all he knows, she

was not aware of the eavesdropping, does the student really know that the exam will be a surprise, since that depends on the
teacher carrying out a successful plan of surprise, which might be compromised by a case of unknown eavesdropping?
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(Bn)
∧

1<k≤n
�1((pk ∨ · · · ∨ pn)→ �k¬(p1 ∨ · · · ∨ pk−1));

(Cn)
∧

1<k≤n
�1�k(p1 ∨ · · · ∨ pn).

Interestingly, while these are inconsistent in KJ for n = 2, they are consistent even in S5 for n > 2:

Proposition 3 (n = 2 vs. n > 2).

1. {(A2), (B2), (C2)} `KJ1 ⊥.

2. for n > 2, {(An), (Bn), (Cn)} 0S5 ⊥.

Proof. Part 1 is the same as Corollary 1. For part 2, see the end of this section.

Proposition 3 shows that the n = 2 and arbitrary n cases are importantly different, contrary to common
opinion in the literature.23 Yet we shall see that the solution for n = 2 leads to the solution for arbitrary n.

To formalize the paradox in the n > 2 case, we use K4<
1 (recall Figure 1) instead of K. McLelland

and Chihara [1975] first identified the role of 4< in formalizing the student’s reasoning.24 The following
proposition strengthens their result by using a weaker proof system and set of premises.

Proposition 4. For all n ∈ N, {(An), (Bn)} `K4<
1
�1(p1 ∧ ¬�1p1).

Proof. Once again, I skip purely propositional steps (‘PL’ stands for propositional logic) and some applica-
tions of RK to theorems:

(An) �1(S1 ∨ · · · ∨ Sn) premise

(Bn)
∧

1<k≤n
�1((pk ∨ · · · ∨ pn)→ �k¬(p1 ∨ · · · ∨ pk−1)) premise

(En)
∧

1<k≤n
�1�k(S1 ∨ · · · ∨ Sn) from (An) by 4<1 and PL

Now we show that the student can rule out a surprise exam on the last day n, and if the student has ruled
out day k + 1 and all later days, then he can rule out day k and all later days (for k ≥ 2):

(k + 1, 5) �1¬(Sk+1 ∨ · · · ∨ Sn) (if k = n, let ¬(Sk+1 ∨ · · · ∨ Sn) := >)

(k, 0) �1�k¬(Sk+1 ∨ · · · ∨ Sn) from (k + 1, 5) by 4<1 and PL

(k, 1)
(
�k(S1 ∨ · · · ∨ Sn) ∧�k¬(p1 ∨ · · · ∨ pk−1) ∧�k¬(Sk+1 ∨ · · · ∨ Sn)

)
→ �kpk by PL and RKk

(k, 2) �1

[(
�k(S1 ∨ · · · ∨ Sn)∧�k¬(p1 ∨ · · · ∨ pk−1)∧�k¬(Sk+1 ∨ · · · ∨ Sn)

)
→ �kpk

]
from (k, 1) by Nec1

(k, 3) �1(�k¬(p1 ∨ · · · ∨ pk−1)→ �kpk) from (En), (k, 0), and (k, 2) using RK1 and PL

(k, 4) �1¬(pk ∧ ¬�kpk) from (Bn) and (k, 3) using RK1 and PL

(k, 5) �1¬(Sk ∨ · · · ∨ Sn) from (k + 1, 5) and (k, 4) using RK1 and PL.

Repeating the above reasoning, we eventually obtain:
23For example, Harrison [1969, 74] writes: “The form of the paradox which I shall consider is the two-day case. No loss of

generality will result . . . .”
24Later authors have also concentrated on 4<, including Hall [1999], who analyzes a version of the surprise exam paradox

involving justified belief (and degrees of belief) rather than knowledge.
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(2, 5) �1¬(S2 ∨ · · · ∨ Sn)

(2, 6) �1(p1 ∧ ¬�1p1) from (An) and (2, 5) using RK1 and PL.

Thus, by the same argument used for Corollary 1, we have

Corollary 2. {(An), (Bn)} `KJ14<
1
⊥.

We can now apply the solution for n = 2 to n > 2. Consider the Inevitable Event setup of the designated
student paradox. If student n− 1 sees all silver stars in front of him—call this possibility (?)—then he is in
essentially the same epistemic position as the first student in the n = 2 case of the story. But we have already
seen that the first student in the n = 2 case cannot know/rationally believe the teacher’s announcement;
so in (?), student n − 1 cannot know/rationally believe the teacher’s announcement either. Therefore, for
n > 2, since student 1 does not initially know whether (?) obtains (before he starts reasoning about n− 1),
he cannot know/rationally believe that student n− 1 knows/rationally believes the teacher’s announcement.
Thus, we cannot accept (En). This has two important upshots. First, if he does not know/rationally believe
that student n − 1 knows/rationally believes the teacher’s announcement, then student 1 cannot eliminate
n− 1, so his backward elimination argument is blocked. Second, for all we have seen (including Proposition
3.2 above), student 1 can know/rationally believe the teacher’s announcement (unlike in the n = 2 case).
Thus, we cannot accept axiom 4<, an instance of which is �1(S1 ∨ · · · ∨ Sn)→ �1�n−1(S1 ∨ · · · ∨ Sn).

The reason for rejecting 4< is not just worries about “temporal retention” [McLelland and Chihara, 1975,
80], because in the designated student case we are interpreting 4< as an atemporal multi-agent principle: if
student 1 knows ϕ, then she knows that the other perfect logicians—who also heard the teacher’s announce-
ment but may have additional information from perception—know ϕ. In §1, this assumption was behind
student 1’s claim that “student n− 1, knowing the gold star is a surprise, would also know that the teacher
did not give the gold star to student n (on the basis of the reasoning I just used to eliminate n).” The problem
with 4< is that it ignores the possibility of what Sorensen [1988] calls “contingent blindspots,” propositions
that are knowable by some agents, but not by others in a different epistemic situation, e.g., if that situation
includes more information from perception, as in (?) above. The difference between the present analysis and
that of Sorensen [1988, Ch. 8] is that according to the latter, student 1 cannot rule out that student n has
the gold star, because the teacher’s announcement will be a contingent blindspot for student n if student
n sees all silver stars in front of her. But as shown below, student 1 need not assume that student n will
know the teacher’s announcement in order to rule out that student n has the gold star. Hence the present
analysis, unlike that of Sorensen [1988, Ch. 8], accepts the base case of student 1’s backward elimination
argument, at least for the Inevitable Event setup. This analysis is closer to Kripke’s [2011, 36-38], except
that Kripke’s analysis turns on rejecting axiom R, understood as a temporal retention principle, whereas the
present analysis turns on rejecting 4< on the basis of contingent blindspots (but see §9 on R). It is easy to
show that R is not derivable in K4<, so by Proposition 4, R is unnecessary to generate the paradox. Our
analysis is also similar in spirit to Williamson’s [2000], except that Williamson thinks the argument is “a
reductio ad absurdum (relative to background assumptions) of the supposition that the pupils know on the
first morning that they know on the second morning that . . . they know on the last morning that there will
be an unexpected examination” (144). We have shown something stronger: we should reject the supposition
(strictly weaker than the one mentioned by Williamson) that the pupils know on the first morning that they
will know on the penultimate morning that there will be an unexpected examination. Note that no formulas
of modal depth greater than 3 are used in the proof of Proposition 4, so the higher iterations of knowledge
that Williamson mentions are not needed to derive the problematic conclusion.
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Let us see how to model the epistemic situation of the three students without 4<. Figure 2 displays a
model with three “possible worlds,” distinguished by which student has the gold star: student 1 (w1), student
2 (w2), or student 3 (w3). The labeled arrows represent the epistemic accessibility relations of students 1,
2, and 3, respectively. (Ignore the outgoing 1-arrows from w3 for the moment.) So for any student i and
formula ϕ, �iϕ is true at a world w iff ϕ is true at all worlds w′ for which there is an arrow labeled by i
pointing from w to w′. Since all of the relations are equivalence relations, S5 is sound with respect to the
model, and one can check that (A3), (B3), and (C3) are true at w1. This establishes Proposition 3.2 for
n = 3, and the construction of models for n > 3 is a straightforward generalization.

p1

w1

p2

w2

p3

w3

. . .

. . .

1 2

1, 2, 3 1, 2, 3 1, 2, 3
1

1

Figure 2: model for Proposition 3.2

World w1 in Figure 2 seems to give a natural representation of a designated student scenario. The gold
star is on the back of student 1; it is common knowledge that someone has the gold star; and everyone knows
that the student with the gold star, whoever he is, does not know he has it, so he will be surprised to learn
that he does—that is, everyone knows the teacher’s announcement. What is interesting is that although
student 1 knows that student 3 does not have the gold star, student 1 cannot rule out the following (w2):
that student 2 has the gold star and, seeing a silver star on the back of student 1, cannot rule out (w3) that
student 3 has the gold star and, seeing a silver star on the backs of students 1 and 2, knows that she (student
3) has the gold star. Hence the model falsifies �1¬p3 → �1�2¬p3 and (E3) at w1. Incidentally, note that
in the world (w3) where student 3 knows that she has the gold star, she should not know (or even believe)
that student 1 knows that she (3) has the gold star. There are a number of possibilities for what student 3
could know in this world about what student 1 knows, and I have included the outgoing arrows from w3 as a
reminder of this fact. Yet whatever worlds one connects to these arrows to represent what student 1 knows
about what 2 knows about what 3 knows about what 1 knows, the model will prove Proposition 3.2.25

What this analysis shows is that the mistake in student 1’s argument for n > 2 is in the induction step,
where he assumes that student n− 1 knows S1 ∨ · · · ∨ Sn. However, the base case of student 1’s argument,
where he rules out the possibility that student n has the gold star, does not depend on assuming that
students n − 1 or n know S1 ∨ · · · ∨ Sn.26 As shown by Proposition 5.1 below, assuming the S5-consistent
(An), (Bn), and (Cn) for n > 2 (Proposition 3.2), it follows that in the designated student scenario, student
1 can rule out that student n unknowingly has the gold star; and in the surprise exam scenario, on day 1 the
student can rule out a surprise exam on day n. If we also assume, as most authors do (see Appendix B),
that the student knows/believes that an exam (gold star) will be given on day n (to student n) only if it is
a surprise, then the student can rule out an exam (gold star) on day (student) n (Proposition 5.2). In fact,
this assumption already follows from (An), (Bn), and (Cn) for knowledge in KT (Proposition 5.3). Since

25Since the modal depth of (An), (Bn), and (Cn) is 2, the addition of worlds accessible only from w3 will not affect the truth
values of (An), (Bn), and (Cn) at w1, since the new worlds will be more than 2 steps away from w1.

26As in the n = 2 case, compare this to Williamson [2000, 138]: “In ruling out a last-day examination, the pupils assume that
they will still know on the last morning that there will be a surprise examination, defined as an examination on a day when
the pupils do not know in the morning that there will be an examination that day.”
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all of these assumptions are consistent even in S5, I see no reason to reject the base case. Rejecting (Cn)

would motivate rejecting the base case; but as noted for (C) in §3, to reject (Cn) in the Inevitable Event
setup would amount to radical skepticism. I would rather accept the base case of the student’s argument.

Proposition 5.

1. For all n ∈ N, {(An), (Bn), (Cn)} `K �1¬Sn.

2. For all n ∈ N, {(An), (Bn), (Cn),�1(pn → ¬�npn)} `K �1¬pn.27

3. For all n ∈ N, {(An), (Bn), (Cn)} `KT �1(pn → ¬�npn) ∧�1¬pn.

Proof. The proof for part 1 is a straightforward generalization of the first four steps of the proof for Proposi-
tion 1. The proof for part 2 simply uses �1¬Sn, �1(pn → ¬�npn), PL, and RK1. The proof for part 3 uses
part 2 and the fact that {(An), (Bn)} `KT �1(pn → ¬�npn), which is easy to show with PL and RK1.

8 Self-undermining Reasoning

I have argued that for the n > 2 Inevitable Event setup of the designated student paradox, the clever student
1 makes a subtle but serious mistake: he fails to take into account the possibility, which he cannot eliminate
at the beginning of his reasoning, that student n − 1 sees all silver stars in front of him, in which case he
(student n − 1) would be like student 1 in the n = 2 case, blocked (on pain of having impossible Moorean
knowledge) from knowing that the teacher’s announcement is true—contrary to what student 1 assumes
about him (student n− 1). But is this the clever student’s only mistake? Perhaps there is more than one.

Another mistake of the clever student in the surprise exam paradox seems to be that he ignores the
self-undermining nature of his reasoning. His reasoning leads to the conclusion that a surprise exam cannot
be given; but if he leaves the matter there and does not reassess, then he is especially susceptible to being
surprised by an exam (e.g., on the first day). Something has clearly gone wrong. But to fix the problem, the
answer is not for the student to restart his reasoning as follows: “having concluded that there cannot be a
surprise exam, I am now in a new state of being especially susceptible to a surprise exam. Let’s see, which
day could this surprise exam come on? It couldn’t come on day n, because . . . . And it couldn’t come on
day n − 1, because . . . .” This would lead him right back where he started, with the conclusion that there
cannot be a surprise exam, making him especially susceptible to a surprise exam again. His real mistake
was not that he stopped reasoning, failing to recognize the self-undermining nature of his reasoning so far.
The problem is that he engaged in bad reasoning to his conclusion in the first place, as explained above.
Repeating that reasoning only makes matters worse, as two (or more) wrongs don’t make a right.

There is a second sense in which the clever student’s reasoning may seem to be self-undermining: under-
mining not only the conclusion, but also the premises or intermediate steps of the reasoning. If after drawing
the conclusion that there cannot be a surprise exam, the clever student leaves the matter there and does
not reassess later, then his future selves will not believe the teacher’s announcement—but the assumption
that his future selves will know the teacher’s announcement is a crucial step in his reasoning to that very
conclusion.28 This may indeed be a mistake, but it is derivative of the original mistake, described above.

27Instead of adding the assumption �1(pn → ¬�npn), it suffices to add the assumption that student 1 knows there can be
at most one exam: �1

∧
1≤i<j≤n

¬(pi ∧ pj).
28This problematic aspect of the student’s reasoning is emphasized by Shear [2014].
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Compare the following objections to the clever student’s reasoning when he gets to n−1 in the Inevitable
Event setup. Objection I: if the teacher waits until day n− 1 to give the exam, a possibility you haven’t yet
ruled out, then on the morning of day n− 1 you will be in the position of student 1 in the n = 2 case, where
you can know that the teacher’s announcement is true only if you can have Moorean knowledge, which you
cannot; thus, it is a mistake to assume that you will know on day n− 1 that the teacher’s announcement is
true. Objection II: you are assuming that on day n−1 you will know—and hence believe—that the teacher’s
announcement is true. But if you continue on this path of reasoning, you will conclude that there can be no
surprise exam; and if you leave the matter there and do not reassess later, then you will not believe on day
n − 1 that the teacher’s announcement is true, contrary to what you assumed. Note that unlike Objection
II, Objection I shows that the clever student has already made a mistake in the n− 1 step, no matter where
his reasoning goes from there. Objection I aims to stop the clever student’s reasoning dead in its tracks, so
that Objection II need not apply. Also note that unlike Objection I, Objection II is not so clearly applicable
to the designated student paradox. Consider how it would go: you (clever student 1) are assuming that
student n − 1 knows—and hence believes—that the teacher’s announcement is true. But if you continue
on this path of reasoning, you will conclude that there can be no exam; and if you leave the matter there
and do not reassess later, then student n − 1 (?) will not believe that the teacher’s announcement is true,
contrary to what you assumed. Of course, there is a gap in the reasoning where the question mark appears,
since the part about student n− 1’s beliefs does not immediately follow from the part about clever student
1. Luckily, we need not try to fill the gap, because we can already point out the clever student’s mistake in
the designated student paradox with the analogue of Objection I, given at the beginning of this section.

9 Nonmonotonic Learning

The analysis of §7 not only explains why we should reject 4<, but also why we should reject R in Figure 1.
To see why, consider a two-stage version of the n = 3 Inevitable Event designated student paradox, proposed
to me by Jack Spencer. After the teacher displays the two silver stars and one gold star, she asks student 2
to close his eyes (students 1 and 3 leave their eyes open). She then tells the students that the gold star is
a surprise—whoever gets it will not know he has it until the students break out of line—and she sticks the
stars on their backs. Let t1 be the time at which all the stars are on the students’ backs, but student 2 has
his eyes closed. At t2, the teacher tells student 2 to open his eyes so that he can see what is on student 1’s
back (we can suppose that at t1, student 2 did not know whether he would be allowed to open his eyes).

From the perspective of student 1, this scenario is the same as the standard designated student scenario
(we can even suppose that student 1 was unaware of the teacher’s instruction that 2 should close his eyes).
So if student 1 can rule out that student 3 has the gold star in the standard version, as argued in §7, then
student 1 can also rule out that student 3 has the gold star in the two-stage version. Thus, we should
have �t1

1 ¬p3, i.e., at t1, student 1 knows ¬p3. Moreover, at t1, student 2’s epistemic position seems to be
essentially the same as student 1’s,29 since both have seen the stars and heard the teacher’s announcement
but neither has seen what is on anyone’s back. Thus, if student 1 can rule out that student 3 has the gold
star, so �t1

1 ¬p3, then student 2 should also be able to rule out that student 3 has the gold star, so �t1
2 ¬p3.

Indeed, for i, j ∈ {1, 2}, given

(A3)
tj
i �

tj
i ((p1 ∧ ¬�t2

1 p1) ∨ (p2 ∧ ¬�t2
2 p2) ∨ (p3 ∧ ¬�t2

3 p3))

29Except that student 2 knows that he is student 2, whereas student 1 knows that he is student 1; but as Jack Spencer also
pointed out, this asymmetry can be removed by a further modification of the scenario, which I leave to the reader.
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(B3
3)

tj
i �

tj
i (p3 → �t2

3 ¬(p1 ∨ p2))

(C3
3 )

tj
i �

tj
i �

t2
3 (p1 ∨ p2 ∨ p3),

we have the following simplified analogue of Proposition 5.

Proposition 6. For all i, j ∈ {1, 2}:

1. {(A3)
tj
i , (B

3
3)

tj
i , (C

3
3 )

tj
i } `K �

tj
i ¬(p3 ∧ ¬�t2

3 p3).

2. {(A3)
tj
i , (B

3
3)

tj
i , (C

3
3 )

tj
i } `KT �

tj
i ¬p3.

Proof. Here is a proof, which begins like the proof of Proposition 1:

(1)
(
�t2

3 (p1 ∨ p2 ∨ p3) ∧�t2
3 ¬(p1 ∨ p2)

)
→ �t2

3 p3 by PL and RKt2
3

(2) �tj
i

(
�t2

3 (p1 ∨ p2 ∨ p3) ∧�t2
3 ¬(p1 ∨ p2)

)
→ �t2

3 p3

)
from (1) by Nectji

(3) �tj
i

(
�t2

3 ¬(p1 ∨ p2)→ �t2
3 p3

)
from (C3

3 )
tj
i and (2) using PL and RKtj

i

(4) �tj
i ¬(p3 ∧ ¬�t2

3 p3) from (B3
3)

tj
i and (3) using PL and RKtj

i

(5) �tj
i (p3 → ¬(p1 ∨ p2)) from (B3

3)
tj
i using PL, Tt2

3 , and RKtj
i

(6) �tj
i (p3 → ¬�t2

3 p3) from (A3)
tj
i and (5) using PL and RKtj

i

(7) �tj
i ¬p3 from (4) and (6) using PL and RKtj

i .

Importantly, Proposition 6 does not result from an inconsistency in the premises, as shown by the
following result, similar to Proposition 3.2.

Proposition 7. For all i, j ∈ {1, 2}, {(A3)
tj
i , (B

3
3)

tj
i , (C

3
3 )

tj
i } 0S5 ⊥.30

Proof. It is an easy exercise to construct a model that makes (A3)
tj
i , (B3

3)
tj
i , and (C3

3 )
tj
i true and in which

for each k ∈ {1, 2, 3} and j ∈ {1, 2}, the accessibility relation for �tj
k is an equivalence relation.

The upshot of all this is that at t1, when student 2 has his eyes closed, student 2 can (like student 1)
know the teacher’s announcement that the gold star is a surprise, and he can know that student 3 does not
have the gold star. Yet as argued in §7, if student 2 sees a silver star on student 1’s back—whether he sees
this as soon as the teacher puts the silver star on student 1’s back or only later after opening his eyes—then
he is like the first student in the n = 2 case: if he has the knowledge represented by (A3)t22 , (B3

3)t22 , (C3
3 )t22 ,

then he can have Moorean knowledge of the form I have the gold star but I don’t know that I have it, as
shown by the following result, similar to Proposition 1.

Proposition 8.

1. {(A3)t22 , (B
3
3)t22 , (C

3
3 )t22 ,�

t2
2 ¬p1} `K �

t2
2 (p2 ∧ ¬�t2

2 p2).

2. {(A3)t22 , (B
3
3)t22 , (C

3
3 )t22 ,�

t2
2 ¬p1} `KJ2 ⊥.

Proof. Continuing the proof of Proposition 6.1 for i = j = 2, we have

(8) �t2
2 (p2 ∧ ¬�t2

2 p2) from (4), (A3)t22 , and �t2
2 ¬p1 using PL and RKt2

2 .

30This also holds with stronger principles (B3)
tj
i and (C3)

tj
i , based on (B3) and (C3), in place of (B3

3)
tj
i and (C3

3 )
tj
i .
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Like Proposition 1, Proposition 8 shows that we must reject one of the premises. In a case where student
2 has the gold star, we cannot reject �t2

2 ¬p1, since that is part of the very description of t2. So we must
reject one of (A3)t22 , (B3

3)t22 , or (C3
3 )t22 . Whichever one we reject, we have a significant result: assuming we

accept (A3)t12 , (B3
3)t12 , and (C3

3 )t12 (and I see no reason not to accept them), rejecting any one of (A3)t22 ,
(B3

3)t22 , or (C3
3 )t22 means rejecting the temporal retention principle

R′ �tj
i ϕ→ �

tk
i ϕ (j < k),

which is the same as R in Figure 1 but with the changing indices in the superscripts rather than the subscripts.
Before further discussion of the failure of R′, let us ask: which premise should we reject? As in §4,

assuming a normal setup of the story, (B3
3)t22 is unproblematic; and although in a Promised Event setup,

(C3
3 )t22 may be dubitable, in an Inevitable Event setup, (A3)t22 is the most plausible to blame. Thus, in a case

where at t2 student 2 is looking at a silver star on the back of student 1, at t2 student 2 cannot know that
the gold star is a surprise. Moreover, if he does not know that the gold star is a surprise, then we cannot
conclude that he knows that student 3 does not have the gold star. In particular, replacing (A3)t22 with

(a3)t22 �
t2
2 (p1 ∨ p2 ∨ p3),

it is easy to check the following.

Proposition 9. {(a3)t22 , (B
3)t22 , (C

3)t22 } 6`S5RR′ �
t2
2 ¬p3.

The argument so far suggests that the following is a true description of the two-stage Inevitable Event
designated student scenario:

�t1
2 ¬p3 ∧ (�t2

2 ¬p1 → ¬�t2
2 ¬p3),

which provides another counterexample to R′, since �t2
2 ¬p1 can certainly be true.

In the version of the two-stage designated student paradox where student 2 has the gold star (and students
1 and 3 know that (only) student 2 has his eyes closed at t1), we can model the epistemic situation of the
three students at t1 as in Figure 3, ignoring some possible higher-order uncertainty (and associated arrows
to worlds) that does not affect our analysis. Observe that the teacher’s announcement, S1 ∨S2 ∨S3, and the
fact that student 3 does not have the gold star, ¬p3, are common knowledge. At w2, student 3 knows that
the gold star is on student 2’s back, but students 1 and 2 do not know whether 1 or 2 has the gold star.

p1

w1

p2

w2

1, 2

1, 2, 3 1, 2, 3

Figure 3: model for time t1 of the two-stage designated student scenario

When student 2 open his eyes (and students 1 and 2 know that he has opened his eyes), the model for
t2 should look like the model in Figure 2, except that the shaded actual world should be w2. Note what has
happened in the transition between these models: student 2 has gained knowledge of ¬p1, reflected by the
fact that 2’s uncertainty between w1 and w2 has disappeared; but student 2 has also lost knowledge of the
teacher’s announcement, S1 ∨S2 ∨S3, and of ¬p3, reflected by the fact that 2’s uncertainty between w2 and
w3 has appeared (note that if this new uncertainty had not appeared, then student 2 would know p2 in the
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model for t2). To repeat, the reason student 2 can no longer know the teacher’s announcement (if he retains
the kind of cleverness that allowed him to know ¬p3 at t1) is that if he did, this knowledge would lead to
impossible Moorean knowledge of the form I have the gold star but I don’t know that I have it.

One of the important lessons of the surprise exam and designated student paradoxes is that the phe-
nomenon of contingent blindspots leads to the phenomenon of nonmonotonic learning: one can lose some
knowledge by gaining other knowledge. Of course, there are many other examples of nonmonotonic learning,
e.g., in which an agent gains knowledge of some misleading evidence against a proposition, which undermines
his previous knowledge of that proposition. This naturally leads to the question: can an agent know a propo-
sition even though (he realizes that) if one of the possibilities compatible with his knowledge obtains, then he
will no longer know that proposition? This is closely related to Kripke’s [2011, 45] puzzle about dogmatism,
about whether an agent who knows a proposition P knows that all future evidence against P is misleading
(which is, after all, implied by the truth of P ), a puzzle that Kripke says he was led to by considering the
surprise exam paradox (45n17). Kripke’s conclusion is this: “The commensense view is, for example, that
you do know that I have written certain papers on modal logic but that future evidence could lead you to
change your mind about this. So, you should rationally leave yourself open to such changes-of-mind, even
though it is the case that you know that I wrote these papers. The question is why?” (45).

Returning to the two-stage designated student paradox, note that if at t1 the teacher were to tell student
2 that he will open his eyes at t2, and if student 2 were convinced by the analysis of this paper, then he
would realize at t1 that if one of the possibilities compatible with his knowledge obtains at t2—namely, the
possibility in which he opens his eyes and sees a silver star on the the back of student 1—then at t2 he will
no longer know that the gold star is a surprise.31 Is this compatible with student 2 knowing at t1 that the
gold star is a surprise? Kripke’s commonsense view suggests that the answer is yes. Similarly, in the original
surprise exam paradox for n = 3, on the morning of day 1 the student can know the teacher’s announcement
and yet, being convinced by the analysis of this paper, realize that if there is no exam later on day 1, then
on the morning of day 2 he will no longer know the teacher’s announcement.32

10 Other Recalcitrant Variations?

The analysis developed so far of the surprise exam and designated student paradoxes also handles Sorensen’s
[1984] two other “recalcitrant variations”: the sacrificial virgin paradox and the paradox of the undiscoverable
position. I treat the paradox of the undiscoverable position elsewhere [Holliday, 2014b], so here I will go over
only the sacrificial virgin paradox. The following is Sorensen’s [1984, 361] description of the paradox:

Every fifty years the inhabitants of a tropical paradise sacrifice a virgin to the local volcano in
an elaborate ceremony. Virgins from all around are blindfolded and brought before the volcano.
They all hold hands in a line and can only communicate one sentence: ‘No one to your right is
the sacrificial virgin’. This sentence can only be signalled by squeezing the hand of the virgin to
one’s left. The virgins are reliable and dutibound to so signal if and only if it is known to be true.
Besides all this, the virgins also know that a necessary condition for being the sacrificial virgin is
that one remain ignorant of the honour until one is tossed in. The chief must take the leftmost
virgin up to the mouth of the volcano, and if the offering is acceptable, push her in and tell the

31Note that in this case, student 2 would not be in essentially the same epistemic position as student 1 at time t1.
32As the reader may have been thinking all along in this section, since it reintroduces temporal aspects, the multi-stage

designated student scenario is very much like the original surprise exam scenario.
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rest of the virgins to go home. If the offering is unacceptable, he sends that virgin home and
repeats the procedure with the new leftmost virgin. This procedure continues until one virgin is
sacrificed, so it is known that one will be sacrificed.33 After hearing the announcement that one
virgin will be sacrificed, someone objects that the ceremony cannot take place: The rightmost
virgin knows she is rightmost since her righthand is free. She knows that if she is offered, then
none of the virgins to her left have been sacrificed. So if she is the sacrificial virgin then she will
have to be offered knowing that she is the only alternative remaining, and thus would know she
is the sacrificial virgin. Since the sacrificial virgin must not know, the rightmost virgin knows
that she is not the sacrificial virgin. This knowledge obliges her to squeeze the hand of the virgin
to her immediate left signaling the sentence ‘None of the virgins to your right is the sacrificial
virgin’. This virgin is either the leftmost virgin or a middle virgin (a middle virgin is any virgin
between the leftmost and rightmost virgins). If she is a middle virgin, she will reason that if she
is offered, she will know that none of the virgins to her left have been sacrificed. By the signal she
knows that none to her right are sacrificial virgins, and thus she will be able to deduce that she
will be sacrificed. But since the sacrificial virgin cannot know she will be sacrificed, this middle
virgin knows she will not be sacrificed. Therefore, she will squeeze the hand of the virgin to her
left, triggering the same deduction if this third virgin is a middle virgin . . . . [emphasis added]

The mistake in the reasoning can be seen by first considering the two virgin case. In this case, the leftmost
virgin cannot know, at the time that her right hand is squeezed, both that the rules of the ceremony will
hold and that none to her right are sacrificial virgins. For if she did, then given her knowledge that she is
leftmost (since she can feel her left hand free), she would have Moorean knowledge of the form I am the
sacrificial virgin but I don’t know it, which is impossible. Now consider the case of more than two virgins.
Here the mistake in the reasoning is to assume (what is cleverly omitted from Sorensen’s explicit description,
although it must be assumed) that if the second-to-rightmost virgin knows, at the time that her right hand
is squeezed, both that the rules of the ceremony will hold and that none to her right are sacrificial virgins,
then she also knows that she will know, at the time that she is brought before the volcano, both that the
rules of the ceremony will hold and that none to her right are sacrificial virgins. The problem is that if she
is brought before the volcano, a possibility that she has not eliminated at the beginning of her reasoning,
then she will be like the leftmost virgin in the two virgin case, who cannot know both that the rules of the
ceremony will hold and that none to her right are sacrificial virgins. Thus, the second-to-rightmost virgin
does not know, just after her right hand is squeezed, that she will retain the relevant knowledge; thus, she
does not know that she is not the sacrificial virgin; and thus, she should not, according to the rules of the
ceremony, squeeze the hand of the virgin to her left. All of this can be formalized for precision, but I trust
that the reader can now do so on his or her own, having seen the templates already provided.

11 Conditionally Expected Exams

In this section, I consider another version of the surprise exam paradox, due to Ayer [1973] and Williamson
[1992, 2000, Ch. 6], that removes from the teacher’s announcement the “existential assumption” that there
will be a surprise exam. Referring to the unexpected execution scenario, Ayer writes: “Suppose that the
condition were that the man should not know, on the day set for his execution, that he was to be executed
on that day if he was to be executed at all” (125). Ayer notes that this still leads to a paradox, but he does

33My footnote: this suggests an Inevitable Event setup.
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not discuss it further. By contrast, Williamson discusses this version in detail. First, for a definition, he
says that an exam is conditionally expected iff on the morning of the exam, the student knows that if there
is an exam at all during the term, it will be that day. Second, he supposes that the student knows that at
most one exam can be given during the term,34 and that the teacher announces only that there will be no
conditionally expected exam. Now the student reasons that there cannot be an exam on the last day of the
term, for then it would be conditionally expected. Hence there cannot be an exam on the penultimate day
either, for then it would also be conditionally expected, since the possibility of an exam on the last day has
already been eliminated. Repeating this backward elimination argument, the student concludes that there
will be no exam. But according to Williamson [2000], “That is absurd, for we may stipulate that in fact quite
some time before the end of term there will be an examination that is not conditionally expected” (144).

To formalize Williamson’s argument in the n = 2 case, I use the following premises:

(F ) �1(¬(p1 ∧�1((p1 ∨ p2)→ p1)) ∧ ¬(p2 ∧�2((p1 ∨ p2)→ p2)));

(G) �1(¬p1 → �2¬p1);

(H) �1¬(p1 ∧ p2).

(F ) states that the student knows the teacher’s announcement that there will be no conditionally expected
exam; (G) states that he knows that he will remember on day 2 if there was no exam on day 1; and (H) states
that he knows there will be at most one exam. All of these premises can be reinterpreted for a designated
student version of Williamson’s scenario. Whatever the interpretation, we have the following result:

Proposition 10.

1. {(F ), (G), (H)} 0S5R ⊥.

2. {(F ), (G), (H)} `K �1¬p2.

3. {(F ), (G), (H)} `KT ¬(p1 ∨ p2) and hence {�1((F ) ∧ (G) ∧ (H))} `KT �1¬(p1 ∨ p2).

Proof. It is easy to check that a model with a single world where p1 and p2 are false, with reflexive accessibility
relations for �1 and �2, demonstrates the first part of the proposition. For the second and third parts, here
is a proof, skipping purely propositional steps and some applications of RK to theorems:

(1) �2¬p1 → �2((p1 ∨ p2)→ p2) by PL and RK2

(2) �1

(
�2¬p1 → �2((p1 ∨ p2)→ p2)

)
from (1) by Nec1

(3) �1

(
¬p1 → �2((p1 ∨ p2)→ p2)

)
from (G) and (2) using RK1 and PL

(4) �1(¬p1 → ¬p2) from (F ) and (3) using RK1 and PL

(5) �1¬p2 from (H) and (4) using RK1 and PL

(6) �1((p1 ∨ p2)→ p1) from (5) using RK1 and PL

(7) ¬(p1 ∧�1((p1 ∨ p2)→ p1)) from (F ) by T and PL

(8) ¬p1 from (6) and (7) by PL
34Williamson [2000, 144] remarks that this assumption can be removed. For simplicitly, here I follow Williamson’s actual

presentation that includes the assumption.

23



(9) ¬p2 from (5) by T and PL

(10) ¬(p1 ∨ p2) from (8) and (9) by PL

(11) ((F ) ∧ (G) ∧ (H))→ ¬(p1 ∨ p2) from previous steps by PL

(12) �1((F ) ∧ (G) ∧ (H))→ �1¬(p1 ∨ p2) from (11) by RK1.

Note that if we had the 4 axiom, the “KK principle,” then the antecedent of line (12) would be derivable
from the antecedent of line (11), so �1¬(p1 ∨ p2) would be derivable from (F ), (G), and (H). But we
encounter a problem even earlier. Since Williamson says “we may stipulate that in fact quite some time
before the end of term there will be an examination that is not conditionally expected,” we already have a
problem at line (10). The assumption of p1 ∨ p2 is inconsistent with (F ), (G), and (H) in KT, so if we make
Williamson’s stipulation, then we must reject one of those premises. If the student knows that she has a
decent memory and that there is a school rule according to which at most one exam may be given within n
days (here n = 2), then (G) and (H) are unproblematic. The unique solution in this case is to reject (F ).
Once again, the student does not know the teacher’s announcement for n = 2 (recall §4).

Let us now consider n > 2. The generalizations of (F ), (G), and (H) for arbitrary n are:

(Fn) �1

( ∧
1≤k≤n

¬(pk ∧�k((p1 ∨ · · · ∨ pn)→ pk))
)
;

(Gn)
∧

1<k≤n
�1(¬(p1 ∨ · · · ∨ pk−1)→ �k¬(p1 ∨ · · · ∨ pk−1));

(Hn) �1

( ∧
1≤i<j≤n

¬(pi ∧ pj)
)
.

As before, we find that there is an important difference between the n = 2 and n > 2 cases. Compare
the following result to Proposition 3.

Proposition 11 (n = 2 vs. n > 2 again).

1. {(F 2), (G2), (H2)} `KT ¬(p1 ∨ p2).

2. For n > 2, {(Fn), (Gn), (Hn)} 0S5 ¬(p1 ∨ · · · ∨ pn).
Hence {(Fn), (Gn), (Hn)} 0S5 �1¬(p1 ∨ · · · ∨ pn).

Proof. Part 1 is the same as Proposition 10.3. For part 2, the S5 model in Figure 2 establishes the n = 3

case, since (F 3), (G3), and (H3) are all true at w1, whereas ¬(p1∨p2∨p3) is false, and the models for higher
n are straightforward generalizations.

As before, we also find that for n > 2, adding the 4< axiom generates a problem. Compare the following
result with Proposition 4.

Proposition 12.

1. For all n ∈ N, {(Fn), (Gn), (Hn)} `K4<
1
�1¬(p2 ∨ · · · ∨ pn).

2. For all n ∈ N, {(Fn), (Gn), (Hn)} `KT14<
1
¬(p1 ∨ · · · ∨ pn).

Hence {�1((Fn) ∧ (Gn) ∧ (Hn))} `KT14<
1
�1¬(p1 ∨ · · · ∨ pn).

Proof. Here is a proof, skipping purely propositional steps and some applications of RK to theorems:
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(Fn) �1

( ∧
1≤k≤n

¬(pk ∧�k((p1 ∨ · · · ∨ pn)→ pk))
)

premise

(Gn)
∧

1<k≤n
�1(¬(p1 ∨ · · · ∨ pk−1)→ �k¬(p1 ∨ · · · ∨ pk−1)) premise

(Hn) �1

( ∧
1≤i,j≤n i 6=j

¬(pi ∧ pj)
)

premise.

Now we show that the student can rule out an exam on the last day n, and if the student has ruled out day
k + 1 and all later days, then he can rule out day k and all later days (for k ≥ 2):

(k + 1, 5) �1¬(pk+1 ∨ · · · ∨ pn) (if k = n, let ¬(pk+1 ∨ · · · ∨ pn) := >)

(k, 0) �1�k¬(pk+1 ∨ · · · ∨ pn) from (k + 1, 5) by 4<1 and PL

(k, 1)
(
�k¬(p1 ∨ · · · ∨ pk−1) ∧�k¬(pk+1 ∨ · · · ∨ pn)

)
→ �k((p1 ∨ · · · ∨ pn)→ pk) by RKk and PL

(k, 2) �1

((
�k¬(p1 ∨ · · · ∨ pk−1) ∧�k¬(pk+1 ∨ · · · ∨ pn)

)
→ �k((p1 ∨ · · · ∨ pn)→ pk)) from (k, 1) by Nec1

(k, 3) �1

(
¬(p1 ∨ · · · ∨ pk−1)→ �k((p1 ∨ · · · ∨ pn)→ pk)

)
from (Gn), (k, 0), and (k, 2) using RK1 and PL

(k, 4) �1¬pk from (Hn), (Fn), and (k, 3) using RK1 and PL

(k, 5) �1¬(pk ∨ · · · ∨ pn) from (k, 0) and (k, 4) using RK1 and PL

Repeating this reasoning, we eventually obtain the following, which proves part 1:

(2, 5) �1¬(p2 ∨ · · · ∨ pn).

(2, 6) �1((p1 ∨ · · · ∨ pn)→ p1) from (2, 5) using RK1 and PL

(2, 7) ¬(p1 ∧�1((p1 ∨ · · · ∨ pn)→ p1)) from (Fn) by T1 and PL

(2, 8) ¬p1 from (2, 6) and (2, 7) by PL

(2, 9) ¬(p2 ∨ · · · ∨ pn) from (2, 5) by T1 and PL

(2, 10) ¬(p1 ∨ · · · ∨ pn) from (2, 8) and (2, 9) by PL

This completes the proof of part 2.

We have derived (2, 10), which is inconsistent with Williamson’s stipulation that an exam occurs, from
(Fn), (Gn), and (Hn) with the help of 4<. Which of these assumptions is to blame? For reasons noted
above, (Gn) and (Hn) seem unproblematic. So we can narrow the suspects down to (Fn) and 4<.

As in §7, we can apply the solution for the n = 2 case to the n > 2 case. For ease of exposition (and to
suggest connections with the designated student scenario), let us refer to the student on day i as ‘student
i’. The mistake in the clever student’s reasoning can be seen as follows. If there is an exam and it falls
on day n—call this possibility (#)—then student n − 1 is essentially in the epistemic position of student
1 in the n = 2 case of the story in which there is an exam. But we have already seen with our analysis
of Proposition 10.3 that student 1 in the n = 2 case cannot know the teacher’s announcement if there is
indeed an exam; so in (#), student n − 1 cannot know the teacher’s announcement either. Therefore, for
n > 2, since student 1 does not initially know whether (#) obtains, he cannot know that student n−1 knows
the teacher’s announcement. Yet for all we have seen (including Proposition 11.2), student 1 can know the
teacher’s announcement (unlike in the n = 2 case), as in (Fn). Hence we should not accept axiom 4<.
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However, unlike the proof for Proposition 4, the proof for Proposition 12 does not explicitly use the
assumption that student 1 knows that student n − 1 knows the teacher’s announcement. For the only
application of 4< is in the steps from (k + 1, 5) to (k, 0). Note, though, that the derivation of (k + 1, 5)

uses the fact that student 1 knows the teacher’s announcement in (k + 1, 4). Now if student n− 1 does not
know the teacher’s announcement, it would seem to be illegitimate to “project” student 1’s knowledge in
(k + 1, 5) to student n − 1 in (k, 0); for if student 1 does not know that student n − 1 knows the teacher’s
announcement, why assume that student 1 knows that student n− 1 knows something that student 1 came
to know from knowing the teacher’s announcement? We should not, so again we should not accept 4<.

This diagnosis, blaming the iteration principle 4<, is similar in spirit to that of Williamson [2000, §6.2],
though it differs in the details. According to Williamson, the argument involving conditionally expected
exams “uses the supposition that the pupils know on the first morning that they know on the second morning
that . . . they know on the last morning that there will be no conditionally expected examination to show that
there will be no examination at all” (144). However, as our proof of Proposition 12 shows, for any n > 2,
no formulas of modal depth greater than 2 are required to derive the conclusion, ¬(p1 ∨ · · · ∨ pn), which
is inconsistent with Williamson’s stipulation that an exam occurs; and no formulas of modal depth greater
than 3 are required to derive �1(¬p1 ∨ · · · ∨ pn). Thus, the higher iterations of knowledge that Williamson
mentions need not be assumed in order to derive the problematic conclusions.

Finally, note that although we should reject the induction step from (k + 1, 5) to (k, 0), as in §7 there is
no need to reject the base case of the students reasoning. Compare the following result to Proposition 5.2-3.

Proposition 13. For all n ∈ N, {(Fn), (Gn), (Hn)} `K �1¬pn.

Proof. Observe that in the proof of Proposition 12, the proof of (n, 5) only requires K, not 4<.

12 Conclusion

Several versions of the surprise exam paradox admit of a simple and uniform solution: contrary to Sorensen
[1988], in the n = 2 case the teacher’s announcement is unknowable/unbelievable by the (first) student; and
because of that fact, 4< should be rejected in the n > 2 case; thus, contrary to Quine [1953], the solution in
the n > 2 case does not involve denying that the (first) student can know the teacher’s announcement, and
contrary to Sorensen [1988], it does not involve denying the base case of the student’s reasoning.
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Appendix A: Unnecessary Assumptions

In this appendix, I return to the points about the unnecessary assumptions (i) and (ii) in §3. First, Figure
4 displays a model that proves Proposition 2 when we interpret �1 and �2 as explained in §7. It is easy
to see that KD4<R is sound with respect to this model: D is valid on any frame satisfying the seriality
condition ∀x∃yRixy; 4< is valid on any frame satisfying ∀x, y, z((R1xy ∧R2yz)→ R1xz); R is valid on any
frame satisfying ∀x, y(R2xy → R1xy); and the model in Figure 4 satisfies these conditions. The model in
Figure 4 is not supposed to represent a natural scenario, in the way that the model in Figure 2 does. Indeed,
since the model in Figure 4 satisfies �1(p1 ∧ ¬�1p1) at the left world, it is unnatural. But the point is that
�1¬(p1 ∨ p2) ∨ (p1 ∧ ¬�1p1) ∨ (p2 ∧ ¬�2p2) is false at the left world; so the model establishes the fact that
{(A), (B), (C)} 0KD4<R �1¬(p1 ∨ p2) ∨ (p1 ∧ ¬�1p1) ∨ (p2 ∧ ¬�2p2), showing that assumptions (i) and (ii)
in §3 are not necessary for generating the paradoxical result that �1(p1 ∧ ¬�1p1) from (A), (B), and (C).

p1 p2p1
11, 2

1, 2 1, 2

Figure 4: model for Proposition 2
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Appendix B: Previous Results for n = 2

In this appendix, I compare Proposition 1 of §3 with previous results in the literature for n = 2, concluding
that Proposition 1 gives a stronger result in terms of the weakness of its proof system and premises.

As noted in §3, previous formalizations of the paradox use extensions of K with axiom schemas such as:

T �iϕ→ ϕ 4 �iϕ→ �i�iϕ

D �iϕ→ ¬�i¬ϕ 4< �iϕ→ �i�jϕ (i < j)

R �iϕ→ �jϕ (i < j) 4≤ �iϕ→ �i�jϕ (i ≤ j)

Using the notation for extensions of K from §3, we can switch between thinking of KΣ1 . . .Σn as a proof
system and as the set of theorems of that proof system. Taking the latter perspective, the following fact
compares the strength of all the systems we will consider. Recall that the J axiom schema is�i¬�iϕ→ ¬�iϕ.

Fact 1 (Comparing Systems).

1. KD ( KJ ( KT;

2. KJ ( KJ4 = KD4;

3. KJ4< ( KJ4≤ = KD4≤ ( KD4R;

4. KJ4< ( KT4< ( KT4<R ( KT4R.

For each part, we leave it to the reader to verify that L ⊆ L′, by deriving the axioms of L in L′, or to verify
L 6⊆ L′ semantically, by showing that an axiom of L can be falsified in a modal model for which L′ is sound.35

The Facts below are also left to the reader as elementary exercises in finding proofs and countermodels.
In addition to using different extensions of K, other authors use different premises in formalizing the

paradox. Harrison [1969] and McLelland and Chihara [1975] use the following premises (where Y is exclusive
disjunction) and prove the results in Proposition 14:

P1 �1(p1 Y p2);

P2 �1(¬�1p1 ∧ ¬�2p2);

P3 �1(¬p1 → �2¬p1).

Proposition 14.

1. (Harrison 1969) {P1, P2, P3} `KT4R ⊥;

2. (McLelland and Chihara 1975) {P1, P2, P3} `KT4<R ⊥.

Corollary 1 is a stronger inconsistency result than Proposition 14 in the following sense:

Fact 2 (Comparison with Harrison, McLelland and Chihara).

1. KJ ( KT4<R ( KT4R;

2. {P1, P2} `K (A), {P1, P3} `K (B), and {P1} `K4< (C);
35The semantic proofs are straightforward, since all of the axioms in Fact 1 correspond to first-order conditions on the

accessibility relations Ri. The only unfamiliar case is the J axiom, which corresponds to ∀x∃y(Rixy ∧ ∀z(Riyz → Rixz)).
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3. {(A), (B)} 0KD4R P1 ∨ P2 and {(A), (B), (C)} 0KD4<R P1 ∨ P2.

In place of P2, Binkley [1968] uses

P ′2 �1((p1 → ¬�1p1) ∧ (p2 → ¬�2p2)),

which is a weakening of Harrison’s in the following sense:

Fact 3. `K P2 → P ′2 and `KT P ′2 → P2, but 0KDR (P1 ∧ P ′2)→ P2.

Thinking of �1 and �2 as operators for belief rather than knowledge, Binkley shows:

Proposition 15 (Binkley 1968). {P1, P
′
2, P3} `KD4≤ ⊥.

Corollary 1 is a stronger inconsistency result than Proposition 15 in the following sense:

Fact 4 (Comparison to Binkley).

1. KJ ( KD4≤;

2. {P1, P
′
2} `K (A), {P1, P3} `K (B), and {P1} `K4< (C);

3. {(A), (B)} 0KD4R P1 ∨ P ′2 and {(A), (B), (C)} 0KD4<R P1 ∨ P ′2.

Sorensen [1988] replaces P1 and P3 with

P ′1 �1(p1 ∨ p2) and

P ′3 �1(p2 → �2¬p1),

which is a weakening of the previous authors’ in the following sense:

Fact 5. `K (P1 ∧P3)→ (P ′1 ∧P ′3), `K (P ′1 ∧P ′3)→ P3, and `KT (P ′1 ∧P ′3)→ P1, but 0KD (P ′1 ∧P ′3)→ P1.

Modifying Harrison’s result, Sorensen proves the following:

Proposition 16 (Sorensen 1988). {P ′1, P ′2, P ′3} `KT4R ⊥.

Corollary 1 is a stronger inconsistency result than Proposition 16 in the following sense:

Fact 6 (Comparison to Sorensen).

1. KJ ( KT4R;

2. {P ′1, P ′2} `K (A), P ′3 is (B), and {P ′1} `K4< (C);

3. {(A), (B)} 0KD4R P ′2 and {(A), (B), (C)} 0KD4<R P ′2.

For the n = 2 case of the designated student paradox, Sorensen replaces all of the premises with the following
and proves the result in Proposition 17:

P ?
1 �1�2(p1 ∨ p2);

P ?
2 �1�2((p1 → ¬�1p1) ∧ (p2 → ¬�2p2));

P ?
3 �1�2(p2 → �2¬p1).
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Proposition 17 (Sorensen 1988). {P ?
1 , P

?
2 , P

?
3 } `KT ⊥.

Corollary 1 is a stronger inconsistency result than Proposition 17 in the following sense:

Fact 7 (Comparison to Sorensen).

1. KJ ( KT;

2. {P ?
1 , P

?
2 } `KT (A), {P ?

3 } `KT (B), and P ?
1 is (C);

3. {(A), (B)} 0KD4R P ?
2 and {(A), (B), (C)} 0KD4<R P ?

2 .
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