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Abstract This paper shows that a well designed transport system has an embedded
exchange value by serving as a market for potential exchange between consumers.
Under suitable conditions, one can improve the welfare of consumers in the system
simply by allowing some exchange of goods between consumers during transporta-
tion without incurring additional transportation cost. We propose an explicit valua-
tion formula to measure this exchange value for a given compatible transport system.
This value is always nonnegative and bounded from above. Criteria based on trans-
port structures, preferences and prices are provided to determine the existence of a
positive exchange value. Finally, we study a new optimal transport problem with an
objective taking into account of both transportation cost and exchange value.

Keywords Exchange value · Branching transport system · Ramified optimal
transportation · Utility

1 Introduction

A transport system is used to move goods from sources to targets. In build-
ing such a system, one typically aims at minimizing the total transportation cost.
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This consideration has motivated the theoretical studies of many optimal trans-
port problems. For instance, the well-known Monge-Kantorovich problem (e.g.
[1, 6, 8, 13, 15, 17, 21, 25, 28]) studies how to find an optimal transport map or
transport plan between two general probability measures with the optimality be-
ing measured by minimizing some cost function. Applications of the Monge-
Kantorovich problem to economics may be found in the literature such as [7, 18]
and [14]. The present paper gives another application by introducing the eco-
nomics notion of an “exchange value” which is suitable for a ramified transport sys-
tem. Ramified optimal transportation has been recently proposed and studied (e.g.
[3–5, 11, 16, 22, 26, 29–33]) to model a branching transport system. Such a sys-
tem favors transportation in groups via a cost function which depends concavely
on quantity. Transport systems with such branching structures are observable not
only in nature as in trees, blood vessels, river channel networks, lightning, etc. but
also in efficiently designed transport systems such as used in railway configurations
and postage delivery networks. Those studies have focused on the cost value of a
branching transport system in terms of its effectiveness in reducing transportation
cost.

In this article, we show that there is another value, named as exchange value, em-
bedded in some ramified transport systems. As an illustration, we consider a spacial
economy with two goods located at two distinct points {x1, x2} and two consumers
living at two different locations {y1, y2}. The spacial distribution is shown in Fig. 1.
Suppose consumer 1 favors good 2 more than good 1. However, good 2 may be more
expensive than good 1 for some reason such as a higher transportation fee. As a result,
she buys good 1 despite the fact that it is not her favorite. On the contrary, consumer 2
favors good 1 but ends up buying good 2, as good 1 is more expensive than good 2
for him. Given this purchase plan, a traditional transporter will ship the ordered items
in a transport system like G1 (see Fig. 1a). However, as shown in [29] etc., a trans-
port system like G2 (see Fig. 1b) with some branching structure might be more cost
efficient than G1. One may save some transportation cost by using a transport sys-
tem like G2 instead of G1. Now, we observe another very interesting phenomenon
about G2. When using this transport system, one can simply switch the items which
leads to consumer 1 getting good 2 and consumer 2 receiving good 1. This exchange

Fig. 1 Unlike a traditional
transport system G1, a ramified
transport system G2 provides an
exchange value

(A) G1 (B) G2
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of items makes both consumers better off since they both get what they prefer. More
importantly, no extra transportation cost is incurred during this exchange process. In
other words, a ramified transport system like G2 may possess an exchange value,
which cannot be found in other transport systems like G1.

The exchange value concept of a transport system that we propose here is
valuable for both economics and mathematics. Existing market theories (e.g.
[2, 9, 10, 12, 19, 20, 23, 27]) focus on the mechanism of exchanges between eco-
nomic agents in an abstract market with relatively few discussions on its form. Our
study complements the existing theories by showing that a transport system actually
serves as a concrete market whose friction for exchange depends on the structure of
the transport system as well as factors like preferences, prices, spatial distribution,
etc. The existence of such an exchange value is due to the fact that the transport
system provides a medium for potential exchange between agents. From the perspec-
tive of mathematical theory on optimal transport problem, our study provides another
rationale for ramified structure which usually implies a potential exchange value. Fur-
thermore, a new optimality criterion needs to be considered when building a transport
system which leads to a new mathematical problem. Instead of simply minimizing the
transportation cost, one might have to minimize the difference between transportation
cost and exchange value.

The remainder of this paper is organized as follows. Section 2 describes the model
environment with a brief review of consumer’s problem and related concepts from
ramified optimal transportation. Sections 3 and 4 contain the main results of the pa-
per. Section 3 proposes an explicit valuation formula to measure the exchange value
for a given compatible transport system. The exchange value is defined by solving a
maximization problem, which has a unique solution under suitable conditions. Cri-
teria based on transport structures, preferences and prices are provided to determine
the existence of a positive exchange value. We show that a reasonable combination of
these factors guarantees a positive exchange value. Section 4 studies a new optimal
transport problem with an objective taking into account of both transportation cost
and exchange value.

In this paper, we will use the following notations:

• X: a compact convex subset of a Euclidean space R
m.

• R
k+: a subset of R

k defined as {(x1, . . . , xk) ∈ R
k : xi ≥ 0, i = 1, . . . , k}.

• R
k++: a subset of R

k defined as {(x1, . . . , xk) ∈ R
k : xi > 0, i = 1, . . . , k}.

• pj : a price vector in R
k++ faced by consumer j , j = 1, . . . , �.

• qj : a consumption vector in R
k+ of consumer j , j = 1, . . . , �.

• E : an economy as defined in (2.1).
• q̄: the consumption plan as defined in (2.2).
• ej (pj , ũj ): the expenditure function of consumer j , j = 1, . . . , �, as defined

in (2.3).
• a: the atomic measure representing sources of goods, see (2.4).
• b: the atomic measure representing consumers, see (2.5).
• G: a transport path from a to b.
• q: a transport plan from a to b.
• S(q): the total expenditure function as defined in (3.1).
• �(q̄): the set of all transport paths compatible with q̄ , as defined in (3.2).
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• FG: the set of all feasible transport plans of G as defined in (3.3).
• V (G): the exchange value of a transport path G, as defined in (3.7).
• Mα(G): the transportation cost of a transport path G as defined in (4.1).

2 Consumer’s Problem and Ramified Optimal Transportation

2.1 Consumer’s Problem

Suppose there are k sources of different goods which could be purchased by � con-
sumers distributed on X. Each source xi ∈ X supplies only one type of goods, i =
1, . . . , k. Each consumer j located at yj ∈ X derives utility from consuming k goods

according to a utility function uj : R
k+ → R : (q1j , . . . , qkj ) �→ uj , j = 1, . . . , �,

where uj : R
k+ → R is continuous, concave and increasing, j = 1, . . . , �. Each con-

sumer j has an initial wealth wj > 0 and faces a price vector pj = (p1j , . . . , pkj ) ∈
R

k++, j = 1, . . . , �. We allow the prices to vary across consumers to accommodate
the situation where consumers on different locations may have to pay different prices
for the same good. This variation could be possibly due to different transportation
fees. We denote this economy as

E = (U,P,W ;x, y). (2.1)

Now, we give a brief review of a consumer’s decision problem. Discussions of
these materials can be found in most advanced microeconomics texts (e.g. [23]). Each
consumer j will choose an utility maximizing consumption plan given the price pj

and wealth wj . More precisely, the consumption plan q̄j is derived from the following
utility maximizing problem:

q̄j ∈ arg max{uj (qj ) | qj ∈ R
k+, pj · qj ≤ wj }. (2.2)

Given the continuity and concavity of uj , we know this problem has a solution.
As will be used in defining the exchange value, we also consider the expenditure

minimizing problem for a given utility level ũj > uj (0):

ej (pj , ũj ) = min{pj · qj | qj ∈ R
k+, uj (qj ) ≥ ũj }, (2.3)

which is actually a problem dual to the above utility maximization problem. The con-
tinuity and concavity of uj guarantee a solution to this minimization problem. Here,
ej (pj , ũj ) represents the minimal expenditure needed for consumer j to reach a util-
ity level ũj . Since ũj > uj (0), we know that ej (pj , ũj ) > 0. Lemma 2.1 (see [23])
shows several standard properties of the expenditure function ej .

Lemma 2.1 Suppose that uj is a continuous, increasing utility function on R
k+. The

expenditure function ej (pj , ũj ) is

(1) Homogeneous of degree one in pj .

(2) Strictly increasing in ũj and nondecreasing in pij for any i = 1, . . . , k.
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(3) Concave in pj .

(4) Continuous in pj and ũj .

The following lemma shows a nice property of ej when uj is homogeneous. This
property will be used in the next section to characterize the solution set of the maxi-
mization problem defining exchange value.

Lemma 2.2 If uj : R
k+ → R is homogeneous of degree βj > 0, then ej (pj , ũj ) is

homogeneous of degree 1
βj

in ũj , which implies

ej (pj , ũj ) = ej (pj ,1)(ũj )
1

βj .

Proof For any λ > 0, since uj is homogeneous of degree βj , we have

ej (pj , λũj )

= min{pj · qj | qj ∈ R
k+, uj (qj ) ≥ λũj }

= min{pj · qj | qj ∈ R
k+, uj ((1/λ)1/βj qj ) ≥ ũj }

= min{(λ)1/βj pj · q̃j | q̃j ∈ R
k+, uj (q̃j ) ≥ ũj }, where q̃j = (1/λ)1/βj qj ,

= (λ)1/βj ej (pj , ũj ).

Therefore, ej (pj , ũj ) is homogeneous of degree 1
βj

in ũj . �

2.2 Ramified Optimal Transportation

Let X be a compact convex subset of a Euclidean space R
m. Recall that a Radon

measure a on X is atomic if a is a finite sum of Dirac measures with positive multi-
plicities. That is

a =
k∑

i=1

miδxi

for some integer k ≥ 1 and some points xi ∈ X, mi > 0 for each i = 1, . . . , k.
In the environment of the previous section, the k sources of goods can be repre-

sented as an atomic measure on X by

a =
k∑

i=1

miδxi
, where mi =

�∑

j=1

q̄ij , (2.4)

where q̄j = (q̄1j , . . . , qkj ) is given by (2.2). Also, the � consumers can be represented
by another atomic measure on X by

b =
�∑

j=1

nj δyj
, where nj =

k∑

i=1

q̄ij . (2.5)
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Without loss of generality, we may assume that

∑

ij

q̄ij = 1,

and thus both a and b are probability measures on X.

Definition 2.1 [29] A transport path from a to b is a weighted directed graph G

consisting of a vertex set V (G), a directed edge set E(G) and a weight function
w : E(G) → (0,+∞) such that {x1, x2, . . . , xk} ∪ {y1, y2, . . . , y�} ⊆ V (G) and for
any vertex v ∈ V (G), there is a balance equation

∑

e∈E(G),e−=v

w(e) =
∑

e∈E(G),e+=v

w(e) +
⎧
⎨

⎩

mi, if v = xi for some i = 1, . . . , k,

−nj , if v = yj for some j = 1, . . . , �,

0, otherwise,
(2.6)

where each edge e ∈ E(G) is a line segment from the starting endpoint e− to the
ending endpoint e+.

Note that the balance equation (2.6) simply means the conservation of mass at
each vertex. Viewing G as a one dimensional polyhedral chain, we have the equation
∂G = b − a.

Let

Path(a,b)

be the space of all transport paths from a to b.

Definition 2.2 (e.g. [1, 28]) A transport plan from a to b is an atomic probability
measure

q =
k∑

i=1

�∑

j=1

qij δ(xi ,yj ) (2.7)

in the product space X × X such that

k∑

i=1

qij = nj and
�∑

j=1

qij = mi (2.8)

for each i and j . Denote Plan(a,b) as the space of all transport plans from a to b.

For instance, the q̄ given by (2.2) is a transport plan in Plan(a,b).
Now, we want to consider the compatibility between a transport path and a trans-

port plan [4, 29]. Let G be a given transport path in Path(a,b). From now on, we
assume that for each xi and yj , there exists at most one directed polyhedral curve gij

from xi to yj . In other words, there exists a list of distinct vertices

V (gij ) := {vi1, vi2, . . . , vih} (2.9)
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Fig. 2 A transport path from
4δx1 + 3δx2 + 4δx3 to
3δy1 + 5δy2 + 3δy3 with
g13 = 0, g31 = 0

in V (G) with xi = vi1 , yj = vih , and each [vit , vit+1] is a directed edge in E(G) for
each t = 1,2, . . . , h − 1. For some pairs of (i, j), such a curve gij from xi to yj may
fail to exist, due to reasons like geographical barriers, law restrictions, etc. If such
curve does not exist, we set gij = 0 to denote the empty directed polyhedral curve.
By doing so, we construct a matrix

g = (gij )k×� (2.10)

with each element of g being a polyhedral curve. A very simple example satisfying
these conditions is illustrated in Fig. 2.

Definition 2.3 A pair (G,q) of a transport path G ∈ Path(a,b) and a transport plan
q ∈ Plan(a,b) is compatible if qij = 0 whenever gij does not exist and

G = q · g. (2.11)

Here, (2.11) means

G =
k∑

i=1

�∑

j=1

qij gij .

In terms of edges, it says that for each edge e ∈ E(G), we have
∑

e⊆gij

qij = w(e).

For instance, the transport path in Fig. 2 can be expressed as

G = 2g11 + 2g12 + g21 + g22 + g23 + 2g32 + 2g33, (2.12)

which means that the transport plan

q = 2δ(1,1) + 2δ(1,2) + δ(2,1) + δ(2,2) + δ(2,3) + 2δ(3,2) + 2δ(3,3)

is compatible with G in (2.12).

Example 2.1 Let x∗ ∈ X \ {x1, . . . , xk, y1, . . . , y�}. We may construct a path Ḡ ∈
Path(a,b) as follows. Let

V (Ḡ) = {x1, . . . , xk} ∪ {y1, . . . , y�} ∪ {x∗},
E(Ḡ) = {[xi, x

∗] : i = 1, . . . , k} ∪ {[x∗, yj ] : j = 1, . . . , �},
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and

w([xi, x
∗]) = mi,w([x∗, yj ]) = nj

for each i and j . In this case, each gij is the union of two edges [xi, x
∗] ∪ [x∗, yj ].

Then, each transport plan q ∈ Plan(a,b) is compatible with Ḡ because for any fixed
indices i∗ ∈ {1, . . . , k} and j∗ ∈ {1, . . . , �}, we have

∑

[xi∗ ,x∗]⊆gij

qij =
�∑

j=1

qi∗j = mi∗ = w([xi∗ , x
∗])

and

∑

[x∗,yj∗ ]⊆gij

qij =
k∑

i=1

qij∗ = nj∗ = w([x∗, yj∗ ]).

3 Exchange Value of a Transport System

In a transport system, a transporter can simply ship the desired bundle to consumers
as they have initially planned. This is a universal strategy. However, we will see that
allowing the exchange of goods between consumers may make them better off with-
out incurring any additional transportation cost. In other words, there is an exchange
value embedded in some transport system.

3.1 Exchange Value

For each probability measure q = (qij ) ∈ P (X × X), we define

S(q) =
�∑

j=1

ej (pj , uj (qj )) =
�∑

j=1

min{pj · tj | tj ∈ R
k+, uj (tj ) ≥ uj (qj )}, (3.1)

where qj = (q1j , q2j , . . . , qkj ) for each j = 1, . . . , �. Here, S(q) represents the least
total expenditure for each individual j to reach utility level uj (qj ). Note, since prices
p are fixed throughout this paper, we will not mention the dependence of S on p for
simplicity of notation. One can use Lemmas 2.1 and 2.2 to prove the following lemma
which shows several properties of this function S.

Lemma 3.1 Suppose each uj is continuous, concave, and increasing on R
k+, j =

1, . . . , �. The function S(q) is

(1) Homogeneous of degree one in p = (p1, . . . , p�).

(2) Increasing in q and nondecreasing in pij for any i = 1, . . . , k, j = 1, . . . , �.

(3) Concave in p.

(4) Continuous in p and q.
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Let q̄ ∈ Plan(a,b) be the initial plan given by (2.2). Denote

�(q̄) = {G ∈ Path(a,b) | (G, q̄) is compatible}. (3.2)

Let G ∈ �(q̄) be fixed and g = (gij ) be the corresponding matrix of G as given
in (2.10). That is,

G = g · q̄.

Then, we introduce the following definition:

Definition 3.1 Each transport plan in the set

FG =
{
q ∈ P (X × X)

∣∣∣∣
q is compatible with G

uj (qj ) ≥ uj (q̄j ), j = 1, . . . , �

}
(3.3)

is called a feasible plan for G, and the set FG is called the feasible set of G.

Recall that q is compatible with G means that

qij = 0 if gij does not exist (3.4)

and

g · q = g · q̄,

in the sense that for each edge e ∈ E(G), we have an equality

∑

e⊆gij

qij = w(e), where w(e) =
∑

e⊆gij

q̄ij . (3.5)

For any feasible plan q ∈ FG, the constraint uj (qj ) ≥ uj (q̄j ) means that qj is at least
as good as q̄j for each consumer j .

Since q̄ ∈ Plan(a,b), the compatibility condition automatically implies that q ∈
Plan(a,b) whenever q ∈ FG.

Lemma 3.2 FG is a nonempty, convex and compact subset of P (X × X).

Proof Clearly FG �= ∅ as q̄ ∈ FG. Also FG is convex since it is the intersection of
two convex sets

{q ∈ P (X × X) | g · q = G, qij = 0 if gij = 0} and

�∏

j=1

{qj ∈ P (X × X) | uj (qj ) ≥ uj (q̄j )},

where the convexity of each {qj ∈ P (X × X) | uj (qj ) ≥ uj (q̄j )} comes from the
concavity of uj . Since each uj is continuous, we have FG is a closed subset of
P (X × X) and hence it is compact. �
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Note that when G = Ḡ as constructed in Example 2.1, we have

FḠ = {q ∈ Plan(a,b) | uj (qj ) ≥ uj (q̄j ), j = 1, . . . , �}.
Clearly, for each G ∈ Path(a,b), we have

q̄ ∈ FG ⊆ FḠ. (3.6)

Definition 3.2 Let E be an economy as in (2.1). For each transport path G ∈ �(q̄),
we define the exchange value of G by

V (G; E ) = max
q∈FG

S(q) − S(q̄), (3.7)

where S is given by (3.1). Without causing confusion, we may simply denote V (G; E )

by V (G).

Since S is a continuous function on a compact set, the exchange value function V :
� → [0,∞) is well defined. Furthermore, for each q ∈ FG, given uj (qj ) ≥ uj (q̄j )

for all j , we have

S(q) ≥ S(q̄). (3.8)

Remark 1 Our way of defining the feasibility set FG guarantees that the exchange
value is not obtained at the expense of increasing transportation cost. This is because
the compatibility condition ensures that replacing q̄ by any feasible plan q ∈ FG will
not change the transportation cost Mα(G) (to be defined later in (4.1)), as the quantity
on each edge e of G is set to be w(e).

The following proposition shows that the exchange value is always nonnegative
and bounded from above.

Proposition 3.1 For any G ∈ �(q̄),

0 ≤ V (G) ≤ V (Ḡ).

Proof This follows from the definition as well as (3.6). �

Example 3.1 Let’s return to the example discussed in introduction. More pre-
cisely, suppose u1(q11, q21) = q11 + 3q21, w1 = 1/2, p1 = (1,6) and u2(q12, q22) =
3q12 + q22, w2 = 1/2, p2 = (6,1). By solving (2.2), i.e.

q̄1 ∈ arg max{u1(q11, q21) | p1 · q1 ≤ w1}
= arg max{q11 + 3q21 | q11 + 6q21 ≤ 1/2}
= {(1/2,0)},

we find q̄1 = (1/2,0). Similarly, we have q̄2 = (0,1/2). This gives the initial plan

q̄ =
(

1/2 0
0 1/2

)
.
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Now, solving expenditure minimization problems (2.3) yields

e1(p1, ũ1) = min{p1 · q1 | q1 ∈ R
2+, u1(q1) ≥ ũ1}

= min{q11 + 6q21 | (q11, q21) ∈ R
2+, q11 + 3q21 ≥ ũ1}

= ũ1.

Similarly, we have e2(p2, ũ2) = ũ2. From these, we get

S(q) = e1(p1, u1(q1)) + e2(p2, u2(q2)) = u1(q1) + u2(q2)

for each probability measure q ∈ P (X × X). Now, we find the exchange value em-
bedded in the transport systems G1 and G2 as given in Fig. 1.

• G1: The associated feasible set is

FG1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
q =

(
q11 q12
q21 q22

)
∈ P (X × X)

∣∣∣∣∣∣∣∣∣

q11 = 1/2, q21 = 0,

q12 = 0, q22 = 1/2,

q11 + 3q21 ≥ u1(q̄1) = 1/2,

3q12 + q22 ≥ u2(q̄2) = 1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
= {q̄}.

Thus, the exchange value of G1 is

V (G1) = max
q∈FG1

S(q) − S(q̄) = S(q̄) − S(q̄) = 0.

• G2: The associated feasible set is

FG2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
q =

(
q11 q12
q21 q22

)
∈ P (X × X)

∣∣∣∣∣∣∣∣∣

q11 + q12 = 1/2, q21 + q22 = 1/2,

q11 + q21 = 1/2,

q11 + 3q21 ≥ u1(q̄1) = 1/2,

3q12 + q22 ≥ u2(q̄2) = 1/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{
q =

(
q11 1/2 − q11

1/2 − q11 q11

)∣∣∣∣
q11 ≤ 1/2,

q11 ≥ 0

}
.

Thus, we have the following exchange value

V (G2) = max
q∈FG2

S(q) − S(q̄)

= max
q∈FG2

{(q11 + 3q21) + (3q12 + q22)} − 1

= max
0≤q11≤ 1

2

{(q11 + 3(1/2 − q11)) + (3(1/2 − q11) + q11)} − 1

= max
0≤q11≤ 1

2

{3 − 4q11} − 1 = 2.
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A positive exchange value of a transport system indicates that there exists some
extra value embedded in the system by some exchange of goods between consumers.
For this consideration, we will explore explicit conditions ensuring a positive ex-
change value. Basically, there are three factors affecting the exchange value: transport
structures, preferences and prices. In the rest of this section, we will study how these
three factors affect the exchange value, and in particular the existence of a positive
exchange value.

3.2 Transport Structures and Exchange Value

For any G ∈ �(q̄), define

K(q̄,G) = {q ∈ P (X × X) | q is compatible with G},
and

U(q̄) = {q ∈ P (X × X) | uj (qj ) ≥ uj (q̄j ), j = 1, . . . , �}.
Then,

FG = K(q̄,G) ∩ U(q̄).

Clearly, the structure of a transport system influences the exchange value through
K(q̄,G). For this consideration, this subsection will focus on the properties of
K(q̄,G) whose implications on exchange value will be self-evident in the follow-
ing subsections.

Proposition 3.2 K(q̄,G) is a polygon of dimension N(G) + χ(G) − (k + �), where
χ(G) is the Euler Characteristic number of G, and N(G) is the total number of
existing gij ’s in G.

Proof For each interior vertex v of G, let {e1, e2, . . . , eh} ⊆ E(G) be the set of edges
with e−

i = v. Then, each ei corresponds to an equation of the form (3.5). Neverthe-
less, due to the balance equation (2.6), we may remove one redundant equation from
these h equations. As a result, the total number of equations of the form (3.5) equals
the total number of edges of G minus the total number of interior vertices of G. Thus,
K(q̄,G) is defined by k + � − χ(G) number of linear equations in the form of (3.5),
and (k� − N(G)) number of (3.4). This shows that K(q̄,G) is a convex polygon of
dimension

dim(K(q̄,G)) ≥ k� − (k + � − χ(G)) − (k� − N(G)) = N(G) + χ(G) − (k + �).

(3.9)
By the following Lemma 3.3, we have an inequality in the other direction. �

Lemma 3.3 The dimension of K(q̄,G) is no more than N(G) + χ(G) − (k + �).

Proof Since K(q̄,G) is defined by k� variables (qij )k×� which satisfy (3.4) and (3.5).
As the number of (3.4) is k� − N(G), it is sufficient to show that

rank(A) ≥ k� − (k� − N(G)) − (N(G) + χ(G) − (k + �)) = (k + � − χ(G)),
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where A is the coefficient matrix given by linear equations (3.5). We prove this by
using induction on the number k. When k = 1, then the coefficient matrix A(1) is in
the form of

A(1) =
(

I

B

)
,

where I is the N(G(1)) × N(G(1)) identity matrix IN(G(1)), and B is some matrix of
N(G(1)) columns. Thus, the rank of A(1) is N(G(1)). On the other hand, the Euler
Characteristic number of G(1) is

χ(G(1)) = 1 + (� − N(G(1))),

which gives

rank(A(1)) = (1 + �) − χ(G(1)). (3.10)

Now, we may use induction by assuming that

rank(A(k)) ≥ (k + �) − χ(G(k)) (3.11)

for any G(k) from k sources to � consumers. We want to show that

rank(A(k+1)) ≥ (k + � + 1) − χ(G(k+1))

for any G(k+1) from (k + 1) sources to � consumers.
Let

E
(k+1)
1 = {e ∈ E(G(k+1)) : e ⊆ gij for some i ∈ {1, . . . , k} and j ∈ {1, . . . , �}},

E
(k+1)
2 = E(G(k+1)) \ E

(k+1)
1 .

For each e ∈ E
(k+1)
2 , we know e ⊆ g(k+1)j for some j ∈ {1, . . . , �}, but e /∈ E

(k+1)
1 .

Then, for each e ∈ E
(k+1)
1 , we have

∑

1≤i≤k,1≤j≤�
e⊆gij

qij +
∑

1≤j≤�
e⊆g(k+1)j

q(k+1)j = w(e).

Also, for each e ∈ E
(k+1)
2 , we have

∑

1≤j≤�
e⊆g(k+1)j

q(k+1)j = w(e).

As a result, the matrix A(k+1) can be expressed in the form

A(k+1) =
(

A(k) B(k+1)

0 C(k+1)

)
. (3.12)
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Now, we consider a new transport path

G̃ =
∑

e∈E
(k+1)
2

w(e)[e]

from a single source (i.e. xk+1) to a few (say �̃ ) targets, which do not necessarily be-
long to the original consumers. The matrix C(k+1) here is the associated A(1) matrix
for G̃, and thus has rank (1 + �̃) − χ(G̃) = �̃ as G̃ is contractible. Also, we have

χ(G(k+1)) = χ(G(k)) + 1 − �̃.

Therefore, by (3.11) and (3.12),

rank(A(k+1)) ≥ rank(A(k)) + rank(C(k+1))

≥ (k + �) − χ(G(k)) + (1 + χ(G(k)) − χ(G(k+1)))

= (k + 1 + �) − χ(G(k+1)). �

Corollary 3.1 Suppose G ∈ �(q̄).

(1) If k + � ≥ N(G) + χ(G), then FG = {q̄}.
(2) If k + � < N(G) + χ(G) and q̄ is an interior point of the polygon K(q̄,G), then

FG is a convex set of positive dimension. In particular, FG �= {q̄}.

Proof If k + � ≥ N(G) + χ(G), the convex polygon K(q̄,G) becomes a dimension
zero set, and thus FG = {q̄}. When k + � < N(G) + χ(G), the polygon K(q̄,G) has
a positive dimension. Since each uj is concave, U(q̄) is a convex set containing q̄ .
When q̄ is an interior point of K(q̄,G), the intersection FG = K(q̄,G) ∩ U(q̄) is
still a convex set of positive dimension. Thus, FG �= {q̄}. �

Proposition 3.3 Suppose G ∈ �(q̄) satisfies the following condition: for any two
pairs (i1, i2) with i1 �= i2 and (j1, j2) with j1 �= j2, we have

V (gi1j2) ∩ V (gi2j1) = ∅, (3.13)

where V (gij ) is given in (2.9). Then, k +� ≥ N(G)+χ(G). Hence, by Corollary 3.1,
FG is a singleton {q̄}.

Proof We still use the notations that have been used in the proof of Lemma 3.3. When
k = 1, χ(G) = 1 + � − N(G), and thus k + � = N(G) + χ(G). By using induction,
we assume that the result is true for any k sources. We want to show that it holds for
k+1 sources. Suppose there are totally d edges of G(k+1) connecting the vertex xk+1,
then as discussed earlier, we may construct a transport path G̃ from a single source
xk+1 to a few targets {v1, v2, . . . , v�̃

} with vi ∈ V (G(k)). For each vj , it corresponds
to a unique g(k+1)j∗ for some j∗ ∈ {1,2, . . . , �} passing through the vertex vj . Indeed,
suppose both g(k+1)j1 and g(k+1)j2 pass through vj with j1 �= j2. Since vj ∈ V (G(k)),
there exists an i∗ ∈ {1,2, . . . , k} such that xi∗ and vj are connected by a directed curve
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lying in G(k). Then, vj ∈ gi∗j2 ∩ g(k+1)j1 , which contradicts condition (3.13). As a
result,

N(G(k+1)) = N(G(k)) + �̃.

On the other hand, it is easy to see that χ(G(k+1)) = χ(G(k)) + 1 − �̃. So, by induc-
tion,

(k + 1) + � ≥ 1 + N(G(k)) + χ(G(k))

= 1 + (N(G(k+1)) − �̃) + (χ(G(k+1)) + �̃ − 1)

= N(G(k+1)) + χ(G(k+1)).

This shows that

k + � ≥ N(G) + χ(G)

for any G satisfying condition (3.13). Therefore, FG is a singleton {q̄}. �

In Proposition 3.2, we will consider an inverse problem of Proposition 3.3 under
some suitable conditions on the prices.

Given two transport paths

G1 = {V (G1),E(G1),w1 : E(G1) → [0,+∞)} and

G2 = {V (G2),E(G2),w2 : E(G2) → [0,+∞)},
we say G1 is topologically equivalent to G2 if there exists a homeomorphism h :
X → X such that

V (G2) = h(V (G1)),

E(G2) = {h(e) : e ∈ E(G1)} and

w2(h(e)) = w1(e) for each e ∈ E(G1).

Clearly, if G1 is topologically equivalent to G2, then K(q̄,G1) = K(q̄,G2). As a
result, we know V is topologically invariant:

Proposition 3.4 If G1 is topologically equivalent to G2, then V (G1) = V (G2).

As will be clear in the next section, the topological invariance of V is a very use-
ful result because it enables us to inherit many existing theories in ramified optimal
transportation when studying a new optimal transport problem there.

3.3 Preferences and Exchange Value

In this subsection, we will study the implications of preferences, which are repre-
sented by utility functions, on the exchange value. The following proposition shows
that the exchange value is zero when all consumers derive their utilities solely from
the total amount of goods they consume.
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Proposition 3.5 If uj : R
k+ → R is of the form uj (qj ) = fj (

∑k
i=1 qij ) for some

fj : [0,∞) → R for each j = 1, . . . , �, then V (G) = 0 for any G ∈ �(q̄).

Proof For any q ∈ FG, by compatibility, we know

k∑

i=1

qij =
k∑

i=1

q̄ij , j = 1, . . . , �,

which implies

uj (qj ) = fj

(
k∑

i=1

qij

)
= fj

(
k∑

i=1

q̄ij

)
= uj (q̄j ),

showing that all consumers find any feasible plan indifferent to q̄. Therefore, we get

V (G) = max
q∈FG

S(q) − S(q̄) = 0. �

From this proposition, we see that a positive exchange value may fail to exist for
arbitrary utility functions. To explore the existence of a positive exchange value, we
first study the solution set of the maximization problem (3.7).

For any G ∈ �(q̄), denote Q(G) as the solution set of the maximization problem
(3.7) defining exchange value, i.e.,

Q(G) = {q̂ ∈ FG | V (G) = S(q̂) − S(q̄)}. (3.14)

We are interested in describing geometric properties of the set Q(G). In particular, if
Q(G) contains only one element, then the problem (3.7) has a unique solution.

Proposition 3.6 For any G ∈ �(q̄),

(1) The solution set Q(G) is a compact nonempty set.

(2) If uj : R
k+ → R is homogeneous of degree βj > 0 and (uj (qj ))

1
βj is concave in

qj , j = 1, . . . , �, then Q(G) is convex.

(3) (Uniqueness) If uj : R
k+ → R is homogeneous of degree βj > 0 and (uj (qj ))

1
βj

is concave in qj satisfying the condition

(uj ((1 − λj )q̃j + λj q̂j ))
1

βj > (1 − λj )(uj (q̃j ))
1

βj + λj (uj (q̂j ))
1

βj (3.15)

for each λj ∈ (0,1), and any non-collinear q̃j , q̂j ∈ R
k+ , for each j = 1, . . . , �.

Then Q(G) is a singleton, and thus the problem (3.7) has a unique solution.

Proof Since the function S(q) is continuous in q , Q(G) becomes a closed subset of
the compact set FG, and thus Q(G) is also compact.
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If uj : R
k+ → R is homogeneous of degree βj > 0, then Lemma 2.2 implies that

ej (pj , uj (qj )) = ej (pj ,1)(uj (qj ))
1

βj and S(q) =
�∑

j=1

ej (pj ,1)(uj (qj ))
1

βj .

(3.16)

Thus, when each (uj (qj ))
1

βj is concave in qj , we have S is concave in q . Now, for
any q∗, q̃ ∈ Q(G) and λ ∈ [0,1], the convexity of FG implies (1 − λ)q∗ + λq̃ ∈ FG

and the concavity of S implies

S((1 − λ)q∗ + λq̃) − S(q̄) ≥ (1 − λ)(S(q∗) − S(q̄)) + λ(S(q̃) − S(q̄)) = V (G),

(3.17)
showing that (1 − λ)q∗ + λq̃ ∈ Q(G). Therefore, Q(G) is convex.

To prove the uniqueness, we note that (1 −λ)q∗ +λq̃ ∈ Q(G) implies an equality
in (3.17), i.e.,

(uj ((1 − λ)q∗
j + λq̃j ))

1
βj = (1 − λ)(uj (q

∗
j ))

1
βj + λ(uj (q̃j ))

1
βj (3.18)

for each λ ∈ (0,1), and each j = 1,2, . . . , �. When (uj (qj ))
1

βj is concave in qj and
satisfies (3.15), the equality (3.18) implies that q∗

j and q̃j are collinear in the sense
that q∗

j = tj q̃j for some tj ≥ 0. By (2.8),

nj =
∑

i

q∗
ij =

∑

i

tj q̃ij = tj
∑

j

q̃ij = tj nj .

Therefore, tj = 1 as nj > 0. This shows q∗ = q̃ and thus Q(G) is a singleton with an
element q̃. �

Two classes of utility functions widely used in economics satisfy conditions in
Proposition 3.6. One is Cobb-Douglas function [23]

u : R
k+ → R : u(q1, . . . , qk) =

k∏

i=1

(qi)
τi , τi > 0, i = 1, . . . , k.

The other is Constant Elasticity of Substitution function [23]

u : R
k+ → R : u(q1, . . . , qk) =

[
k∑

i=1

γi(qi)
τ

] β
τ

,

τ ∈ (0,1), β > 0, γi > 0, i = 1, . . . , k.

Proposition 3.7 Suppose uj : R
k+ → R is homogeneous of degree βj > 0 and

(uj (qj ))
1

βj is concave in qj satisfying (3.15) for each j = 1, . . . , �. For any
G ∈ �(q̄), V (G) > 0 if and only if FG �= {q̄}.
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Proof Trivially, in general, FG = {q̄} implies V (G) = 0. On the other hand, suppose
V (G) = maxq∈FG

S(q) − S(q̄) = 0, then by (3.8), we have

S(q) = S(q̄) for each q ∈ FG.

This implies Q(G) = FG. By Proposition 3.6, FG is a singleton {q̄}. �

This proposition says that each transport path G ∈ �(q̄) has a positive exchange
value as long as FG contains more than one element. Nevertheless, the result may fail
if we drop the assumptions on the utility functions. For instance, when k > 1, � > 1,
let G = Ḡ as defined in Example 2.1, and uj (qj ) = fj (

∑k
i=1 qij ) for some functions

fj : [0,10] → R (e.g. fj (x) = −x2 + 20x + 100) for all j . Then, FG = Plan(a,b) �=
{q̄}, but V (G) = 0 by Proposition 3.5.

Theorem 3.1 Suppose uj : R
k+ → R is homogeneous of degree βj > 0 and

(uj (qj ))
1

βj is concave in qj satisfying (3.15) for each j = 1, . . . , �. If k + � <

N(G) + χ(G) and q̄ is an interior point of the polygon K(q̄,G), then V (G) > 0.

Proof This follows from Proposition 3.7 and Corollary 3.1. �

3.4 Prices and Exchange Value

In this subsection, we will study the implications of prices on the exchange value. The
following proposition shows that the exchange value is zero when the price vectors
are collinear.

Proposition 3.8 If the price vectors are collinear, i.e., pj = λjp1, for some λj > 0,

j = 1, . . . , �, then V (G) = 0 for any G ∈ �(q̄).

Proof Assume that V (G) > 0. Then we know there exists a feasible plan q ∈ FG such
that uj (qj ) ≥ uj (q̄j ), j = 1, . . . , �, with at least one strict inequality. Without loss of
generality, we assume uj∗(qj∗) > uj∗(q̄j∗). For any j = 1, . . . , �, uj (qj ) ≥ uj (q̄j )

implies pj · qj ≥ pj · q̄j . If not, i.e., pj · qj < pj · q̄j , then by the monotonicity of
uj , we can find a q̃j ∈ R

k+ such that q̃j > qj ,

uj (q̃j ) > uj (qj ) ≥ uj (q̄j ) and pj · q̃j < pj · q̄j ,

contradicting the assumption that q̄j solves the utility maximization problem (2.2)
of consumer j. Furthermore, for consumer j∗, by definition of q̄j∗ , the inequality
u2(qj∗) > uj∗(q̄j∗) implies pj∗ · qj∗ > pj∗ · q̄j∗ . Thus, we know pj · qj ≥ pj · q̄j

for all j with a strict inequality for j = j∗. Since pj = λjp1, j = 1, . . . , �, we know
p1 · qj ≥ p1 · q̄j for all j with a strict inequality for j = j∗. Summing over j yields

�∑

j=1

p1 · qj >

�∑

j=1

p1 · q̄j .
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Meanwhile, the feasibility of q implies
∑�

j=1 qj = ∑�
j=1 q̄j . Multiplying both sides

by p1 leads to

�∑

j=1

p1 · qj =
�∑

j=1

p1 · q̄j ,

a contradiction. �

Corollary 3.2 If there is only one good (k = 1) or one consumer (� = 1), then
V (G) = 0 for any G ∈ �(q̄).

Proof When k = 1, define λj = pj

p1
> 0, j = 1, . . . , �. The result follows from Propo-

sition 3.8. When � = 1, for any G ∈ �(q̄), the feasible set is

FG = {q1 = (q11, . . . , qk1) ∈ Plan(a,b) | qi1 = mi = q̄i1 for each i} = {q̄1},
which clearly yields V (G) = 0. �

In the following Proposition 3.9 and Theorem 3.2, we show that non-degeneracy
conditions on the utility with respect to the transport plan which, together with some
order conditions on prices as well as some cross-intersection conditions on polyhedral
curves, ensure a positive exchange value.

Proposition 3.9 Let k = 2 and � = 2. Suppose uj is differentiable at q̄j with
∇uj (q̄j ) > 0, j = 1,2 and q̄ij > 0 for each i, j . If G ∈ �(q̄) with

V (g12) ∩ V (g21) �= ∅, and p21 > p11,p12 > p22, (3.19)

then V (G) > 0.

Proof Since g12 and g21 overlap, we denote γ2 to be the curve where g12 and g21
overlap with endpoints z1 and z2. Let γ1,γ3, γ4 and γ5 be the corresponding curves
from x1 to z1, z2 to y1, x2 to z1, and z2 to y2 respectively. Then, these γi ’s are disjoint
except at their endpoints. See Fig. 3. Now, we may express gij ’s as

Fig. 3 A positive exchange
value
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g11 = γ1 + γ2 + γ3,

g21 = γ4 + γ2 + γ3,

g12 = γ1 + γ2 + γ5,

g22 = γ4 + γ2 + γ5,

which imply

g11 + g22 = g12 + g21. (3.20)

Now, let

q̃ = q̄ +
(−ε ε

ε −ε

)
,

where ε is a sufficiently small positive number. Then, by (3.20),

g · q̃ = g ·
(

q̄ +
(−ε ε

ε −ε

))

= g · q̄ + ε(−g11 + g12 + g21 − g22) = g · q̄,

which shows that q̃ is compatible with G. Now, we show u1(q̃1) > u1(q̄1). Since
q̄1 = (q̄11, q̄21) ∈ R

2++ is derived from the utility maximization problem (2.2) of con-
sumer 1, it must satisfy the first order condition at q̄1:

∂u1(q̄1)/∂q1 = λp11 and ∂u1(q̄1)/∂q2 = λp21 (3.21)

for some λ > 0. Thus, using Taylor’s Theorem, we have

u1(q̃1) = u1(q̄1) + ∂u1(q̄1)

∂q11
(q̃11 − q̄11) + ∂u1(q̄1)

∂q21
(q̃21 − q̄21) + o(ε)

= u1(q̄1) + λp11(−ε) + λp21ε + o(ε), by (3.21)

= u1(q̄1) + λε(p21 − p11) + o(ε)

> u1(q̄1), by (3.19).

Similarly, we have u2(q̃2) > u2(q̄2). This shows that q̃ ∈ FG. By Lemma 2.1, we
have S(q̃) > S(q̄), and thus

V (G) = max
q∈FG

S(q) − S(q̄) ≥ S(q̃) − S(q̄) > 0. �

Theorem 3.2 Suppose uj is differentiable at q̄j with ∇uj (q̄j ) ∈ R
k++, j = 1, . . . , �,

and q̄ ∈ R
k�++. If there exist some i1 �= i2 ∈ {1, . . . , k}, j1 �= j2 ∈ {1, . . . , �} satisfying

pi2j1 > pi1j1, pi1j2 > pi2j2 and V (gi1j2) ∩ V (gi2j1) �= ∅
for G ∈ �(q̄), then V (G) > 0.
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Fig. 4 A ramified transport
system with a positive exchange
value

Proof This follows from an analogous proof of Proposition 3.9, as shown in Fig. 4. �

To conclude this section, we’ve seen how transport structures, preferences and
prices jointly determine the exchange value. Each of these factors may lead to a zero
exchange value under very rare situations. More precisely, when the structure of the
transport system yields a singleton feasible set FG (Corollary 3.1, Proposition 3.3),
or the utility functions are merely quantity dependent (Proposition 3.5), or price vec-
tors are collinear across consumers (Proposition 3.8), the exchange value is zero.
However, under more regular situations, there exists a positive exchange value for
a ramified transport system. For instance, if the utility functions satisfy the condi-
tions in (3) of Theorem 3.1 with a non-singleton feasible set FG (Theorem 3.1) or
the transport systems are of ramified structures with some order conditions on prices
and non-degeneracy conditions on the utility (Theorem 3.2), there exists a positive
exchange value.

4 A New Optimal Transport Problem

In the previous section, we have considered the exchange value V (G) for any
G ∈ �(q̄). A natural question would be whether there exists a G∗ that maximizes
V (G) among all G ∈ �(q̄). The answer to this question has already been provided in
Proposition 3.1 as the particular transport path Ḡ ∈ �(q̄) is an obvious maximizer.
However, despite the fact that Ḡ maximizes exchange value, it may be inefficient
when accounting for transportation cost. Nevertheless, as indicated previously, one
should not neglect the benefit of obtaining an exchange value from a transport sys-
tem. As a result, it is reasonable to consider both transportation cost and exchange
value together when designing a transport system.

Recall that in [29] etc., a ramified transport system is modeled by a transport path
between two probability measures a and b. For each transport path G ∈ Path(a,b)

and any α ∈ [0,1], the Mα cost of G is defined by

Mα(G) :=
∑

e∈E(G)

w(e)αlength(e). (4.1)
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When α < 1, a “Y-shaped” path from two sources to one target is usually more prefer-
able than a “V-shaped” path. In general, a transport path with a branching structure
may be more cost efficient than the one with a “linear” structure. A transport path
G ∈ Path(a,b) is called an α-optimal transport path if it is an Mα minimizer in
Path(a,b).

For any given transport path G, Mα(G) denotes its transportation cost whereas
V (G) represents an embedded benefit which is realizable via some exchange of goods
between consumers. As a result, their difference gives the net cost of the transport
system G. Based on those discussions, we propose the following minimization prob-
lem.

Problem 4.1 Given two atomic probability measures a and b on X in an economy E
given by (2.1), find a minimizer of

Hα,σ (G) := Mα(G) − σ V (G) (4.2)

among all G ∈ �(q̄), where �(q̄) is given by (3.2), and α ∈ [0,1) and σ ≥ 0 are
fixed constants.

When the utility functions are merely quantity dependent (Proposition 3.5) or
when price vectors are collinear across consumers (Proposition 3.8), the exchange
value of any G ∈ �(q̄) is always zero. In these cases, Hα,σ (G) = Mα(G) for any
σ . Thus, the study of Hα,σ coincides with that of Mα , which can be found in ex-
isting literature (e.g. [4, 29]). However, as seen in the previous section, it is quite
possible that Hα,σ does not agree with Mα on �(q̄) for σ > 0 in a general econ-
omy E .

As V is topologically invariant (Proposition 3.4), many results that can be found
in literature about Mα still hold for Hα,σ . For instance, the Melzak algorithm for
finding an Mα minimizer [4, 16, 24] in a fixed topological class still applies to Hα,σ

because V (G) is simply a constant within each topological class. Also, as the balance
equation (2.6) still holds, one can still calculate angles between edges at each vertex
using existing formulas [29], and then get a universal upper bound on the degree of
vertices on an optimal Hα,σ path.

However, due to the existence of exchange value, one may possibly favor an op-
timal Hα,σ path instead of the usual optimal Mα path when designing a transport
system. The topological type of the optimal Hα,σ path may differ from that of the
optimal Mα path. This observation is illustrated by the following example.

Example 4.1 Let us consider the transportation from two sources to two consumers.
If we only consider minimizing Mα transportation cost, each of the three topolog-
ically different types shown in Fig. 5 may occur. However, when σ is sufficiently
large, only G2 in Fig. 5b may be selected under suitable conditions of u and p.
This is because G2 has a positive exchange value which does not exist in either G1

or G3.
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(A) G1 (B) G2 (C) G3

Fig. 5 Three topologically different transport systems
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