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ABSTRACT OF THE THESIS

Non-classical Behavior of BZT Gas in Isentropic Quasi-One-Dimensional Flow

by

Jingyi Zeng

Master of Science in Mechanical and Aerospace Engineering

University of California, Irvine, 2020

Professor Feng Liu Irvine, Chair

A thermodynamic property of gases called the fundamental derivative was first proposed by

Bethe(1942) and later defined as the dimensionless quantity Γ =
c4

2v3

(
∂2v

∂p2

)
s

. The sign of Γ

reflects the sign of the curvature of the isentrope in the pressure-specific volume plane. The

value of Γ significantly affects the gas behavior and flow properties. Gases at relatively low

pressure away from the critical pressure levels usually have values of Γ above 1.0. For an

ideal gas, Γ =
γ + 1

2
, where γ is the ratio of specific heats. Previous studies identified flow

behaviors of gases with Γ < 0 that are qualitatively opposite to classical gas dynamic theories

based on perfect gas laws. For example, a divergent channel accelerates a subsonic flow and

expansion shocks exist for gases with negative Γ. Although no experimental evidence has

yet been found to confirm such non-classical gas flow behaviors, present interests in the use

of super-critical heavy gases as well as pure academic curiosity call for more in-depth and

definitive studies of such gas flows. A dense gas called MDM is selected as the working

fluid in the present work. A region of negative fundamental derivative is found near the

critical point using the Van der Waals real gas Equation of State (EoS) for this heavy gas.

Contrary to previous studies, the present work considers Γ as a local thermodynamic variable
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instead of a constant in an isentropic flow or across a shock wave. Formulas of the relation

of the fundamental derivative to other thermodynamic variables are given. To compare with

the ideal gas model, the thermodynamic properties of this dense gas and the gas dynamic

behaviors near its critical point are investigated. The conservation laws have been applied

to develop the ordinary differential equation system for the quasi-one-dimensional isentropic

flow. Since analytical solutions as in the classical theory are no longer possible for the

non-ideal gas, numerical simulations are obtained for different upstream conditions. Various

seemingly counter-classical gas dynamics flow behaviors are demonstrated. For example, a

divergent-convergent nozzle is needed for transonic flow when the gas is within the negative

fundamental derivative range. These unconventional gas behaviors are vitally interrelated in

a flow of such non-ideal gas as it expands from high pressure to low pressure going through

regions of Γ > 1, 0 < Γ < 1, and Γ < 0 due to changes of its thermodynamic properties

in the isentropic expansion process. Specific counter-classical behaviors are identified and

discussed in this thesis.
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Chapter 1

Introduction

1.1 Background

Due to recently growing attention to super-critical CO2 power cycle in turbo-machinery

[1][2][3], understanding dense gas flow and its thermal behavior near or above the critical

point becomes important for improving compressor performance and engineering margins[4][5].

Besides the study of super-critical CO2 as a working fluid, research on other non-conventional

fluids and related simulations have also received attention. Different real gas equations of

state are selected to achieve more accurate results, including but not limited to the Van

der Waals(VdW), the Soave-Redlich-Kwong(SRK), and the Peng-Robinson(PR) equations

of state. The present work focuses on the analysis of dense gas behavior in quasi-1D flow

and its differences from the classical theory for the ideal gas.

Earlier studies include research on thermodynamics and transport properties of dense gas

and the gas dynamic behavior near its critical point. In 1942, Bethe [6] first used the Van

der Waals gas model to show that there was a finite region in the pressure-specific volume
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plane where the isentropes have negative curvature. When the dense gas is within this par-

ticular region, it behaves very differently from the classical analysis. Conventional perfect

gas theory states that only compression shock waves are physically possible to satisfy the

Second Law. Bethe[6], Duhem[7], Weyl[8], Courant and Friedrichs[9] and other researchers

envisaged the possibility that rarefaction shocks might occur in single-phase vapors. Later

Landau and Lifshitz [10] found a non-dimensional form of (∂2v/∂p2) to describe the gas ba-

sic behavior and defined it as the fundamental derivative Γ. In 1971, Thompson[11] showed

that the sign of this non-dimensional thermodynamic quantity determined the possibility of

forming rarefaction shocks in an arbitrary fluid. He stated that the existence of rarefaction

shocks required negative fundamental derivative and other conditions to be satisfied. Their

achievements greatly promoted the development of dense gas dynamics. To distinguish from

classical gases of low molecular complexity, a particular class of dense gas called Bethe-

Zel’dovich-Thompson (BZT) gas was named. BZT fluids have embedded regions of negative

fundamental derivative near the critical point. Some steady transonic flow behaviors of these

fluids were investigated by Cramer and Tarkenton[12].

Dense gas effects were taken into consideration in nozzle flow analyses a long time ago at the

beginning of the last century by Callendar[13]. Recent studies focused more on non-ideal

gas flow and its application. Sullivan[14] provided a review and comparison of five isentrope

equations: the polytrope, Walker, Van der Waals, Rayleigh, and Callendar models. The his-

torical development and limitation of each model were discussed. Arp et al.[15] attempted

to find the occurrence of the Gruneisen parameter which relates thermodynamic properties

to lattice vibrational spectra and has long been used in equations of state for solids[16].

Leung and Epstein[17] focused on one-dimensional isentropic flow and developed a general-

ized critical flow model for the non-ideal gas flow. By adopting the Redlich-Kwong (R-K)

equation of state, their computation results for various common gases were compared with

Johnson’s work[18] as well as the experimental data. Bober and Chow[19] also did numerical
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computation on the convergent-divergent nozzle and obtained a method for one-dimensional

non-ideal gas flow by applying the R-K equation of state. They used methane gas as work-

ing fluid and gave the plots of pressure, temperature, and area ratios as functions of Mach

number. More recently, Sirignano [20][21] discussed the real-gas modifications for compress-

ible flow at high pressures and analyzed normal compressive shock wave with supercritical

upstream thermodynamic conditions using the SRK model. Calculation results for some

common gases including argon, nitrogen, and carbon dioxide were presented.

Besides single component fluids, some non-conventional gas behaviors of multi-component

fluids have also been discussed. Different from the mixtures of ideal gases, the molecular in-

teractions between different molecules play an important role here, and the thermodynamic

properties of dense vapours of multi-component mixtures are no longer linear functions of

the mole fractions of each compound. Colonna and Silva [22] presented the procedure to

evaluate the equation of state for highly non-ideal mixtures, and the fundamental derivative

for Siloxanes. Angelino and Invernizzi [23] showed the experimental results on the thermal

stability of siloxane mixtures. Guardone et al.[24] did a review on the non-classical gas dy-

namics of mixtures, and showed numerical simulations of a supersonic expansion by using

mixtures of siloxanes and perfluorocarbons. They also gave the conclusion that the mixing

compounds of the same fluid family does not enhance the non-classical gas dynamic phe-

nomena for the considered mixtures. But more limitations need to be discussed.

These previous work focused more on the real gas effect and gave plenty of results for common

gases. Some of the cases are for gas near its critical region but does not really fall into the

negative fundamental derivative region. In contrast to their studies, the present work has

selected a family of organosilicon compound as working fluid due to the relatively large

region of negative fundamental derivatives associated with it, and considers the fundamental
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derivative as a local thermodynamic variable instead of a constant through the flow. A

complete set of theories for non-classical behavior of BZT gases including the general relation

of the fundamental derivative to other thermodynamic variables are given.

1.2 Study Approach

For dense gas flow, the ideal-gas equation of state and many thermodynamic relations based

on the ideal gas law are no longer valid when inter-molecular-forces within the fluid become

important. The differences between the ideal gas and real gas behaviors need to be under-

stood. In particular, it is necessary to develop a set of theories for non-classical gas flow.

Later it can be applied to quasi-one-dimensional nozzle flow to identify trends in the gas

dynamic behavior that are not observed in classical ideal gas flow theory. It is also impor-

tant to locate the region where the fluid exhibits negative fundamental derivative. Once

the specific regions are located, numerical simulation methods could be applied to analyze

the flow behavior in this area and to capture unconventional gas dynamic behavior such as

possible rarefaction shocks and compression fans. The specific gas behavior analysis and the

corresponding thermodynamic relations should be derived from basic conservation laws and

the real gas equation of state.

In the present work, the Van der Waals gas model is selected for numerical computation.

The Van der Waals EoS is used for its simplicity without loss of generality in uncovering

the non-classical behaviors of the BZT gas. The region of negative fundamental derivative is

located, and non-classical gas behaviors within this particular region are discussed, including

the expressions of thermodynamic properties, the relation between Mach number and flow

velocity, and the area variation of a transonic passage, etc. The isentropic exponents used

by previous researchers to describe the real gas effect are mentioned, and discussions on why
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the isentropic exponents are not used in the present work are given. How the fundamental

derivative is related to other thermodynamic variables are discussed, and the corresponding

thermodynamic relations in isentropic quasi-one-dimensional flow are derived. To show the

non-classical gas behaviours intuitively, a dense gas called MDM from the siloxanes family

is used in this thesis. Several cases of isentropic flow were run on our in-house code and the

results are presented here.
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Chapter 2

The Fundamental Derivative of Gases

2.1 Definition of the Fundamental Derivative

The definition of the fundamental derivatives and why it is so important in dense gas dynam-

ics have been discussed by Landau and Lifshitz[10] and Thompson[11]. From their theory,

the non-dimensional form of Γ is given as

Γ =
c4

2v3

(
∂2v

∂p2

)
s

(2.1)

where c is the speed of sound, v is specific volume, p is pressure and the subscript s means

the derivative is taken at constant entropy s.

2.2 Other Expressions for the Fundamental Derivative

From the definition above, the sign of Γ is related to the term

(
∂2v

∂p2

)
s

directly. Also, no

matter which gas model is used for analysis, there is no doubt that the behavior of a gas
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is associated with the curvature of the isentrope in the p − v plane, measured by

(
∂2v

∂p2

)
s

.

For a better understanding of the relationship between Γ and the unconventional dense gas

behavior, the first step is to rearrange the equation and to express Γ in terms of other

thermodynamic variables.

For general equations of state, the speed of sound c is given by

c2 =

(
∂p

∂ρ

)
s

= −v2
(
∂p

∂v

)
s

≥ 0 (2.2)

Notice

(
∂v

∂p

)
s

=
1(
∂p

∂v

)
s

(2.3)

Thus

(
∂2v

∂p2

)
s

=
∂

∂p

 1(
∂p

∂v

)
s


s

=
∂

∂v

 1(
∂p

∂v

)
s


s

1(
∂p

∂v

)
s

= −

(
∂2p

∂v2

)
s(

∂p

∂v

)3

s

(2.4)

Substituting above into Equation (2.1) and making use of Equation (2.2), we obtain

Γ =
v3

2c2

(
∂2p

∂v2

)
s

(2.5)

Equation (2.5) is used more generally than the original definition due to the common form

of polynomial equation of state. Typically pressure is given as a function of other thermo-

dynamic variables and thus it would be easier to derived the expression of

(
∂2p

∂v2

)
s

than

the expression of

(
∂2v

∂p2

)
s

. Equation (2.5) states that Γ is related to the curvature of the

7



isentrope. Under most conditions, the isentrope is a concave curve in the p− v diagram. So

conventionally Γ is supposed to be positive. For a dense gas, there can be a region near the

saturation line where Γ turns negative.

Figure 2.1: Sign of the fundamental derivative

Besides the sign of Γ, another variable to be concerned about is the speed of sound, which is

tightly coupled with Γ. The second-order partial derivative in equation (2.5) can be expressed

in terms of density and the speed of sound

(
∂2p

∂v2

)
s

=

(
∂

∂v

(
∂p

∂v

)
s

)
s

=

(
∂

∂v

(
− c

2

v2

))
s

=
1

v2

(
∂(ρc)2

∂ρ

)
s

=
2c

v3

(
∂(ρc)

∂ρ

)
s

(2.6)

which shows directly the relationship between the sound of speed and Γ

Γ =
1

c

(
∂ρc

∂ρ

)
s

= 1 +
ρ

c

(
∂c

∂ρ

)
s

= 1− v

c

(
∂c

∂v

)
s

(2.7)

Consider an expansion process. When the gas is within Γ < 1 region (non-classical gas),

equation (2.7) states that the speed of sound increases as density decreases, under isentropic

condition.

In addition to density variations, a compression or expansion process is usually reflected by

8



pressure change. Note

(
∂ρc

∂ρ

)
s

= c+ ρ

(
∂c

∂ρ

)
s

= c+
1

v

(
∂c

∂p

)
s

(
∂p

∂ρ

)
s

= c+
c2

v

(
∂c

∂p

)
s

(2.8)

Substituting it back into equation (2.7), we obtain

Γ = 1 +
c

v

(
∂c

∂p

)
s

(2.9)

Equations (2.1), (2.5), (2.7), (2.9) are four different but equivalent expressions for the fun-

damental derivative Γ in terms of different thermodynamic properties, each of which shows

a significant physical insight into the meaning of Γ. There are two demarcation lines that

are relatively important in this analysis. For a perfect gas whose isentropic process can be

expressed as pvγ = const, it is easy to show Γ =
1 + γ

2
> 1, which would be the case with a

conventional gas under normal conditions. When Γ > 1, the speed of sound increases with

pressure increasing and gas behavior is in good agreement with the classical theory. When Γ

reaches 1, equation (2.9) shows that the speed of sound remains as a constant while pressure

is increasing or decreasing, and pressure is a linear function of density only. When Γ is

smaller than 1, the speed of sound turns to decrease with increasing pressure. Accompany-

ing the change of the speed of sound, the gas starts to show some unconventional behavior.

If Γ goes further below 0, equation (2.5) shows that isentropes in this region have nega-

tive curvature and the gas dynamic behaviors are totally different or even opposite to those

based on classical theory. These unconventional behaviors will be discussed in later chapters.
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Table 2.1: Gas behavior related to the sign and value of the fundamental derivative Γ

Γ > 1

(
∂c

∂v

)
s

< 0 classical near ideal-gas behavior

0 < Γ 6 1 0 <

(
∂c

∂v

)
s

<
c

v
classical real-gas behavior

Γ 6 0

(
∂c

∂v

)
s

>
c

v
non-classical behavior

2.3 Calculation of the Fundamental Derivative from

the Equation of State

The four different expressions of the fundamental derivative Γ are listed below.

Γ =
c4

2v3

(
∂2v

∂p2

)
s

Γ =
v3

2c2

(
∂2p

∂v2

)
s

Γ =
1

c

(
∂ρc

∂ρ

)
s

= 1− v

c

(
∂c

∂v

)
s

Γ = 1 +
c

v

(
∂c

∂p

)
s

All of them are expressed in terms of derivative along an isentrope. By applying thermo-

dynamic equations and Maxwell relation, Bethe[25] gave an alternative expression for Γ by

using v and T as the independent thermodynamic state variables (see Appendix A)

Γ(T, v) =
v3

2c2

[
∂2p

∂v2
− 3T

cv

∂p

∂T

∂2p

∂T∂v
+

(
T

cv

∂p

∂T

)2 [
3

T

∂cv
∂v

+
1

T

∂p

∂T

(
1− T

cv

∂cv
∂T

)]]
(2.10)

where p = p(T, v), cv(T, v) =
∂e(T, v)

∂T
.
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Equation (2.10) provides a convenient way to calculate the value of Γ by using the equation

of state directly. For example, if substituting the ideal gas law and assuming constant specific

heats, the equation of Γ can be simplified as

Γ =
1

2

(
cp
cv

+ 1

)
=
γ + 1

2
(2.11)

which gives the value of Γ for a perfect gas.

2.4 Thermodynamic properties of MDM

The regular gases usually do not have a negative fundamental derivative region, because neg-

ative Γ requires gases of high molecular complexity. Earlier researchers had doubts about the

existence of the so-called BZT gas and the related non-classical gas behavior. Examples of

BZT fluids have been identified for certain heavy hydrocarbons and some methylsiloxanes[26].

Some behaviors of BZT fluids have been studied extensively in recent years[27], focusing on

the sonic shock and double-sonic shock. But so far there is not yet a complete set of theory

to describe how each flow variable changes along the isentrope.

In the present work, a compound gas named Octamethyltrisiloxane (also called MDM) is

chosen as the working fluid. It is an organosilicon compound with the formula C8H24O2Si3.

Organometallics are useful reagents, catalysts, and precursor materials with applications in

thin film deposition, industrial chemistry, pharmaceuticals, LED manufacturing, and others.

The chemical structure [28] and some basic properties of Octamethyltrisiloxane are given in

Table 2.2.
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(a) 2D view (b) 3D view

Figure 2.2: Chemical structure of C8H24O2Si3

Table 2.2: Properties of C8H24O2Si3

Gas C8H24O2Si3

Molecular Weight Mg = 236.53146× 10−3 (kg/mol)

Critical Pressure pc = 1410045 (Pa)

Critical Temperature Tc = 564.09 (K)

Gas Constant R = 35.1516 (J/(kg ·K))

Degree of Freedom N = 57.96

Specific Heat at constant volume cv = N ∗R (J/(kg ·K))

Constants in Van der Waals EoS a =
27R2T 2

c

64pc
(Pa ·m6/kg2)

b =
RTc
8pc

(m3/kg)

The three significant regions of Γ are marked out in the p− v plane by the Γ = 0 and Γ = 1

contour lines shown in Figure 2.3. There is a non-negligible region where the Γ is smaller than

0. Computation of this plot is based on the Van der Waals equation of state. Compared to a

12



regular gas of positive fundamental derivative, this gas shows some non-classical properties

near its critical point, which will be discussed later.

Figure 2.3: Contours of Γ in the p-v plane for MDM
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Chapter 3

General Isentropic Flow Relations for

Non-ideal Gas

The ideal gas assumption is widely used in gas dynamic analysis. An ideal gas is one that

follows the ideal gas laws at all conditions of temperature and pressure. To do so, the gas

would need to completely abide by the following assumptions:

• The gas molecules are so small that their volume is negligible compared with the volume

occupied by the gas. Therefore, the molecule can be considered as a “point mass”.

• The average distance between molecules is much larger than the characteristic length

of the molecules, and the gas molecules are constantly moving in random directions

with a distribution of speeds.

• There is neither attractive nor repulsive energy included throughout the collision of

molecules. All collisions between gas molecules or the surroundings are elastic and all

motions are frictionless. No energy is lost in collisions or in motion, or to say, the

kinetic forces will remain unchanged in gas molecules due to the lack of intramolecular

14



energy.

The ideal gas law is just an idealization or approximation to the behavior of gases. At room

temperature and pressure, real gases tend to behave very much like ideal gases. But when

gas is near its critical point, forcing its molecules closer together as the space between the

particles is diminished, the gas will behave less ideally. The unavailable volume for molecule

motion as well as the attraction and repulsion forces between the molecules need to be taken

into account. The ideal gas law does not work well under those conditions, which leads to

the necessity of investigating the thermodynamics of real gas.

It is convenient to start the analysis of unconventional gas dynamics by studying the isen-

tropic flow in a quasi-1D nozzle. Quasi-one-dimensional flow means that there are no trans-

verse variations in the flow properties. So, the properties are only changing in the direction

of the flow. Although the analysis may be regarded as an approximation to the flow in a

nozzle, the equations and thus the results are exact for an inviscid flow through a streamtube

or streamline in a three-dimensional flow field.

3.1 Speed of Sound

Consider an inviscid isentropic flow through a channel of cross-sectional area A(x), where x

represents the flow direction. The conservation of momentum is given as

ρudu+ dp = 0 (3.1)

Since the flow is isentropic, Equation (2.9) gives vdp =
cdc

Γ− 1
. Substituting the above into
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Equation (3.1) yields

udu+
cdc

Γ− 1
= 0 (3.2)

In the ideal gas situation, we are familiar with the result that as a flow accelerates its

temperature and sound speed decrease monotonically. Equation (3.2) re-states this result

for the ideal gas but reveals the opposite behavior for a real gas with Γ < 1, as shown in

Table 3.1. For a real gas with Γ < 1, the sound speed increases as the flow accelerates

downstream.

Table 3.1: Speed of sound - Velocity relation related to Γ

Γ Gas Behavior

Γ > 1 speed of sound decreases with u increasing

Γ < 1 speed of sound increases with u increasing

3.2 Isentropic Exponents

3.2.1 Definition of Real Isentropic Exponents

One is familiar with the simple and elegant thermodynamic and isentropic flow relations

based on the ideal gas assumption. The familiar isentropic relations of an ideal gas are given

below

pvγ = constant (3.3)

Tvγ−1 = constant (3.4)

Tp
1−γ
γ = constant (3.5)

where γ =
cp
cv

is the ratio of specific heats.
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The corresponding differential relations to Equations (3.3)-(3.5) are

dp

p
= −γ dv

v
(3.6)

dT

T
= −(γ − 1)

dv

v
(3.7)

dp

p
=

γ

γ − 1

dT

T
(3.8)

For a real gas, γ is no longer a constant and the above relations are in general invalid. In an

attempt to retain the same simple exponential form, Kouremenos and Kakatsios[29] proposed

the use of three different isentropic exponents corresponding to equation (3.6) - (3.8) for each

pair formed out of the variables p, v, T , expressed as γpv, γTv and γpT , respectively. Notice

these exponents are not constants. They vary with the thermodynamic state. Therefore, they

should be regarded as local exponents. For example, in the (p, v) plane the pressure-volume

exponent γpv can be defined according to Equation (3.6) as

(
dp

dv

)
s

= γpv
p

v
(3.9)

Recall the expression of the entropy change in terms of pressure and specific volume

ds =

(
∂s

∂p

)
v

dp+

(
∂s

∂v

)
p

dv = 0 (3.10)

Rearranging the partial derivatives yields

(
dp

dv

)
s

= −

(
∂s

∂v

)
p(

∂s

∂p

)
v

(3.11)

The right hand side of equation (3.11) can be re-expressed using the Maxwell relations and

17



the triple product rule

−

(
∂s

∂v

)
p(

∂s

∂p

)
v

=

(
∂p

∂T

)
s(

∂v

∂T

)
s

=

(
∂p

∂s

)
T

(
∂s

∂T

)
p(

∂v

∂s

)
T

(
∂s

∂T

)
v

= −cp
cv

(
∂T

∂v

)
p

(
∂p

∂T

)
v

=
cp
cv

(
∂p

∂v

)
T

(3.12)

where cp/T =

(
∂s

∂T

)
p

and cv/T =

(
∂s

∂T

)
v

.

Combining Equations (3.9), (3.11) and (3.12), we obtain the pressure-volume exponent in

terms of the state variables

γpv = −v
p

cp
cv

(
∂p

∂v

)
T

(3.13)

Similarly, the temperature-volume exponent can be defined in accordance with Equation

(3.7), as derived from the temperature-volume relation along an isentrope, i.e,

γTv = 1− v

T

(
dT

dv

)
s

(3.14)

Starting with defining the entropy as a function of temperature and specific volume s =

s(T, v), the derivatives are related as

(
dT

dv

)
s

= −

(
∂s

∂v

)
T(

∂s

∂T

)
v

(3.15)

Following the same steps as previously for the pressure-volume exponent, we obtain the

expression for the temperature-volume exponent

γTv = 1 +
v

cv

(
∂p

∂T

)
v

(3.16)
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As in the cases of deriving the previous two isentropic exponents, the pressure-temperature

exponent is defined from Equation (3.8) as

γpT
γpT − 1

=
T

p

(
dp

dT

)
s

(3.17)

We again express it in terms of only the equation of state. Note

(
dp

dT

)
s

= −

(
∂s

∂T

)
p(

∂s

∂p

)
T

(3.18)

The final expression of the pressure-temperature exponent is given as

γpT =
1

1− p

cp

(
∂v

∂T

)
p

(3.19)

Notice that the exponents as defined above are identical to γ for the ideal gas case. For

a general real gas, they are different and non-constant. However, only two of the three

are independent. Eliminating the partial derivatives, the relation between the three real

isentropic exponents is

γpv
γTv − 1

=
γpT

γpT − 1
(3.20)

3.2.2 Other Variables in Terms of Isentropic Exponents

By defining the three real isentropic exponents, other flow properties can be derived from

them or be related to them, including entropy production, speed of sound and Mach number,

etc.
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Consider the entropy change as a function of temperature and specific volume

ds =

(
∂s

∂T

)
v

dT +

(
∂s

∂v

)
T

dv (3.21)

Replacing the term

(
∂s

∂T

)
v

by
cv
T

and substituting equation (3.16) into the second term on

the right hand side in Equation (3.21) yields

ds = cv
dT

T
+ cv(γTv − 1)

dv

v
(3.22)

The speed of sound can be derived as

c2 =

(
∂p

∂ρ

)
s

= −v2
(
∂p

∂v

)
s

= γpvpv (3.23)

and thus the Mach number is

M =
u

c
=

u
√
γpvpv

(3.24)

3.3 Stagnation Properties

In fluid dynamics, the total or stagnation properties of the fluid provide a convenient reference

state of a fluid in motion. Looking into the original definition of total properties, the total

pressure and total density are the pressure and density at the stagnation point when the

fluid is brought to rest isentropically, and the total temperature is the temperature at the

stagnation point when the fluid is brought to rest adiabatically (is automatically satisfied

if the process is isentropic). At a stagnation point, the speed of the fluid is zero, and all

of the kinetic energy has been converted to internal energy and is added to the local static
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enthalpy. Classical theory has already established the analytical expression of stagnation

properties for a calorically perfect gas, which is

h0 = cpT0 (3.25)

p0 = p

[
1 +

γ − 1

2
M2

] γ
γ−1

(3.26)

T0 = T

[
1 +

γ − 1

2
M2

]
(3.27)

ρ0 = ρ

[
1 +

γ − 1

2
M2

] 1
γ−1

(3.28)

These familiar equations are no longer valid for real gases. To build up a theory of stagnation

properties for real gases, the first step is to understand the change of isentropic exponents

along the isentrope. Nederstigt [30] introduced the assumption of locally constant values

for the isentropic exponents between isentropic states. For low subsonic flows, the kinetic

energy contained in the flow is much smaller than the static enthalpy of the flow, leading

to small changes in the isentropic state so that the isentropic exponents can be assumed

to be constants along the stagnation process. But this assumption leads to an inaccurate

evaluation of the values of stagnation properties. The differences between results by applying

this assumption and the results by using the original definition (bringing the fluid to rest

isentropically and doing the integral directly for every small thermodynamic state change)

will be shown later.

To derive the total properties in terms of isentropic exponents, we start with the total

enthalpy conservation law

h0 = h+
u2

2
= constant

∆h =
u2

2
(3.29)

21



Figure 3.1: Sketch of total enthalpy definition

The expression of enthalpy change is also given by thermodynamic relation

dh = Tds+ vdp (3.30)

In an isentropic process, ds = 0. Thus, the enthalpy change from state 1 to state 2 is

h2 − h1 =

∫ 2

1

vdp =

∫ 2

1

v1

(
p1
p

) 1
γpv

dp = v1p1

(
γpv

γpv − 1

)[(
p2
p1

) γpv−1

γpv

− 1

]

∆h = vp

(
γpv

γpv − 1

)[(
p0
p

) γpv−1

γpv

− 1

]
(3.31)

Here the assumption of locally constant value of γpv is applied. In other words, equation

(3.31) is only valid for small thermodynamic state changes, and the value of γpv is updated

in each step. Both Equations (3.29) and (3.31) describes the enthalpy change through an

isentropic process. Equating Equations. (3.29) and (3.31) gives

p0
p

=

[
1 +

γpv − 1

2
M2

] γpv
γpv−1

(3.32)

22



The total pressure for real gas flow in terms of real isentropic exponents is given as

p0 = p

[
1 +

γpv − 1

2
M2

] γpv
γpv−1

(3.33)

Derived by the same procedure, the total temperature and total density in terms of real

isentropic exponents are

T0 = T

[
1 +

γpv − 1

2
M2

] γTv−1

γpv−1

(3.34)

ρ0 = ρ

[
1 +

γpv − 1

2
M2

] 1
γpv−1

(3.35)

The form of these expressions of total variables is similar to those have been commonly used

for ideal gas computation. To compare with the ideal gas law, Figures 3.2, 3.3 and 3.4 plot

the pressure, temperature and density computed by both methods. The figures show that for

very low Mach number and very high Mach number, the differences are negligible. Recalling

the assumptions made in previous sections, the real gas assumption indicates that more

internal energy is contained in the flow, and the locally constant values for the isentropic

exponents assume that the kinetic energy contained in the flow is much smaller than the

static enthalpy of the flow. These two assumptions are ambivalent especially when Mach

number is high, leading to the inaccurate evaluation of the values of stagnation properties

by using Equations (3.33), (3.34), and (3.35).
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Figure 3.2: Comparison of pressure calculated by different methods (MDM gas)

Figure 3.3: Comparison of temperature calculated by different methods (MDM gas)
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Figure 3.4: Comparison of density calculated by different methods (MDM gas)
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Besides the differences with ideal gas equations, we will also demonstrate that these expres-

sions for total properties with isentropic exponents are not accurate, especially when the

Mach number is high. As mentioned before, the computational results by using equation

(3.33), (3.34) and (3.35) are compared with the results by applying the original definition of

total properties (integrate the variables from any velocity u to rest isentropically). Figure

3.5 and 3.6 show the comparison of the total properties of an isentropic flow of MDM com-

puted by different methods. The upstream condition is pin = 1.1pc, vin = 1.0vc, Min = 0.5

and the flow ends at pb = 0.5pc. It can be seen that the total pressure and total enthalpy

are conserved by using the original definition, whereas the isentropic exponents’ expressions

cannot agree with the conservation laws. As the Mach number increases from 0.5 to 1.3, the

errors in both p0 and h0 exceed more than 10%.

Figure 3.5: Comparison of total pressure calculated by different methods
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Figure 3.6: Comparison of total enthalpy change calculated by different methods

Figures 3.7 and 3.8 present results for the same isentropic process outlined above. Figure

3.7 shows the variation of different exponents γpv, γTv and γpT , together with the value

of cp/cv (cp here is calculated by using Van der Waals equation of state) and (cv + R)/cv

(the γ defined in perfect gas law). Usually, the values of these exponents are larger than

1. But within the non-classical region, the isentrope is a convex curve in the p-v diagram

(as shown in Figure 2.1), leading to the value of γpv much smaller than 1. Figure 3.8 is the

isentrope plotted on a logarithmic scale, compared with an isentrope passing through the

same thermodynamic state but calculated with ideal gas assumption. As mentioned before,

the real isentropic exponents only keep constants locally and vary with the thermodynamic

state variables along the isentrope.
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Figure 3.7: Comparison of the variation of different exponents

Figure 3.8: Comparison of the real isentropic exponent γpv with ideal gas γ
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3.4 Specific Heat Function and Enthalpy

For an ideal gas, the specific heat capacities can be elegantly related to the universal gas

constant

cp − cv = R

They can also be expressed as a function of the adiabatic coefficient and the universal gas

constant

cp =
γR

γ − 1
and cv =

R

γ − 1

Enthalpy comprises a system’s internal energy. It is defined as a state function that depends

on pressure and temperature. By applying the ideal gas law, enthalpy can be simplified as

a function of temperature only.

dh = cp(T )dT , h = h(T )

Actually, this expression is under the assumption of a thermodynamic perfect gas. To be

more restricted, the calorically perfect gas assume the heat capacity to be constant, which

is, h = cpT .

The relation between the specific heat capacities for a real gas is given as

cp − cv = T

(
∂v

∂T

)
p

(
∂p

∂T

)
v

(3.36)

29



And the differential form of enthalpy change can be written as

dh =

(
∂h

∂T

)
p

dT +

(
∂h

∂p

)
T

dp (3.37)

Recall the enthalpy equation derived from Gibbs relation

dh = vdp+ Tds (3.38)

Divide by dp on both sides of equation (3.38)

(
∂h

∂p

)
T

= v + T

(
∂s

∂p

)
T

(3.39)

The second term on RHS can be rewritten by Using Maxwell relation

(
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

(3.40)

Then equation (3.39) becomes

(
∂h

∂p

)
T

= v − T
(
∂v

∂T

)
p

(3.41)

Substitute equation (3.41) into equation (3.37), the general form for calculating the enthalpy

of a non-ideal gas is given as

dh = cpdT +

[
v − T

(
∂v

∂T

)
p

]
dp (3.42)

Different gas models and equations of state can be applied to this equation. For example, the
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present work has selected the Van der Waals equation of state for numerical computation.

The equation of state is given as

p =
RT

v − b
− a

v2
(3.43)

Take partial derivative of equation (3.43)

(
∂T

∂p

)
v

= v − b (3.44)(
∂p

∂v

)
T

=
−RT

(v − b)2
+

2a

v3
(3.45)

Recall the triple product rule of partial derivative

(
∂v

∂T

)
p

(
∂T

∂p

)
v

(
∂p

∂v

)
T

= −1 (3.46)

(
∂v
∂T

)
p

then can be expressed as

(
∂v

∂T

)
p

=
v3(v − b)

RTv3 − 2a(v − b)2
(3.47)

Substituting equation (3.47) into equation (3.42), the differential form of enthalpy equation

for Van der Waals gas is

dh = cpdT +

[
v − Tv3(v − b)

RTv3 − 2a(v − b)2

]
dp (3.48)
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3.5 Mach number - Velocity Relation

Recall equation (3.2)

udu+
cdc

Γ− 1
= 0

Let M = u/c, substitute M into the equation above and simplify the result.

dM =
1

c
du− u

c2
dc

dc

c
=
du

u
− dM

M

udu+
c2

Γ− 1

(
du

u
− dM

M

)
= 0

Then, the relation between velocity and Mach number is

du

u
=

1

1 + (Γ− 1)M2

dM

M
(3.49)

Equation (3.49) shows how the Mach number would be changed with velocity. For any

classical gas with Γ > 1, Mach number always increases with the velocity monotonically.

But for a non-classical gas when Γ goes below 1, the change of Mach number would be

depending on the sign of the term 1 + (Γ − 1)M2. When M2 <
1

1− Γ
, Mach number still

increases with velocity like how it behaves in the classical gas case. Otherwise, ifM2 >
1

1− Γ
,

Mach number will decrease with velocity and therefore show some non-classical properties.

Table 3.2: Mach - Velocity relation related to Γ

Γ Gas Behavior

Γ > 1 M increases monotonically with u

Γ < 1 M increases with u only for M2 <
1

1− Γ
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3.6 Mach number - Area Relation

Classical theory has established a complete system for quasi-1D nozzle flow. Consider a

quasi-1D isentropic flow, the velocity-area relation is given as

1

u

du

dx
=
M2 − 1

A

dA

dx
(3.50)

Substituting equation (3.50) into equation (3.49), the relation between Mach number and

area change is

1

M

dM

dx
=

1 + (Γ− 1)M2

M2 − 1

1

A

dA

dx
(3.51)

Equation (3.51) states that the transition between subsonic and supersonic flow only occurs

when
dA

dx
= 0, and how the Mach number changes regarding to area ratio is related to the

sign of (1 + (Γ− 1)M2)/(M2 − 1). Conventionally, along with the increasing cross-sectional

area ratio, the Mach number increases in a supersonic flow and decreases in a subsonic flow.

But for non-classical gas cases, there are some different gas behaviors shown below.

Figure 3.9 shows that the Mach number - Area relation is behaving in the opposite way

with the conventional theory when M2 >
1

1− Γ
. Along with the increasing cross-sectional

area ratio, the Mach number decreases in a supersonic flow and increases in a subsonic

flow. To investigate the flow properties at the transonic point, the second-order derivative

with respect to area ratio change needs to be derived from equation (3.51). To avoid the
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Figure 3.9: Mach number - Area relation related to Γ (for Γ < 1)

singularity value at transonic point M = 1, apply L′Hospital′s rule to equation (3.51)

lim
M→1

dM

dx
= lim

M→1

d
dx

[
(1 + (Γ− 1)M2) M

A
dA
dx

]
d
dx

[M2 − 1]
(3.52)

When M → 1,
dA

dx
→ 0, so

lim
M→1

dM

dx
= lim

M→1

1 + (Γ− 1)M2

2AdM
dx

d2A

dx2
=

Γ

2AdM
dx

d2A

dx2
(3.53)

Rearrange the equation

(
dM

dx

)2

=
Γ

2A

d2A

dx2
(3.54)
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The LHS of equation (3.54) is always non-negative. So for gases with Γ greater than 0,

The sonic point has the minimum cross-sectional area. However, when Γ goes smaller than

0, the cross-sectional area will have the maximum value at the sonic point. Instead of the

classical convergent-divergent nozzle, here a divergent-convergent nozzle will be needed for

non-classical gas transonic flow.

Figure 3.10: Transonic nozzle related to Γ

3.7 Differential Form of Conservation Laws

As discussed before, quasi-one-dimensional (Q1D) flow means that the flow properties change

only in the direction of the flow and there are no transverse variations in the flow properties.

In practical terms, a necessary (but not sufficient) condition for using the Q1D relations

is that the channel cross-sectional area has gradual variations. This simplification is quite

helpful and leads us to some interesting results.

Consider flow through a channel in which the flow direction is taken as x and has cross-

sectional area A(x). A mono-component, single-phase fluid flows isentropically through this
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channel. The conservation equations of mass, momentum, and energy are:


dρ

ρ
+
du

u
+
dA

A
= 0

ρudu+ dp = 0

dh+ udu = 0

(3.55)

Equation (3.55) is the general form of conservation laws for isentropic Q1D flow. All the

analyses for unconventional gas behavior in the present work are based on these equations.

Rewriting equation (3.55) with expressions from former sections gives the following:

Momentum conservation:

ρudu+ dp = 0 (3.56)

ρudu+

(
∂p

∂ρ

)
T

dρ+

(
∂p

∂T

)
ρ

dT = 0 (3.57)

Energy conservation:

dh+ udu = 0 (3.58)

cpdT +

[
v − T

(
∂v

∂T

)
p

]
dp+ udu = 0 (3.59)

In practical conditions, the upstream and the downstream pressure of the channel will be

given in most cases. To keep consistency with that, here the pressure difference is selected

as the independent variable and all the other variables will be written in terms of dp.

First of all, the velocity difference can be derived from equation (3.56) directly

du

dp
= − 1

ρu
(3.60)
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The temperature difference regarding pressure is then given by equation (3.59)

dT

dp
=
T

cp

(
∂v

∂T

)
p

(3.61)

Once the temperature equation is obtained, substitute it into the following expression of dp

dp =

(
∂p

∂ρ

)
T

dρ+

(
∂p

∂T

)
ρ

dT (3.62)

which leads to the expression of density change with pressure

dρ

dp
=

1− T
cp

(
∂p
∂T

)
ρ

(
∂v
∂T

)
p(

∂p
∂ρ

)
T

(3.63)

So far the ordinary differential equation system for quasi-1D nozzle flow calculation is ob-

tained:

du

dp
= − 1

ρu

dT

dp
=
T

cp

(
∂v

∂T

)
p

dρ

dp
=

1− T

cp

(
∂p

∂T

)
ρ

(
∂v

∂T

)
p(

∂p

∂ρ

)
T

(3.64)

To determine the local Mach number at each point, recall the Mach number-velocity relation,

equation (3.49)

du

u
=

1

1 + (Γ− 1)M2

dM

M
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The Mach number variation versus pressure is obtained by combining equation (3.49) with

equation (3.60), which gives

dM

dp
= −M(1 + (Γ− 1)M2)

1

ρu2
(3.65)
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Chapter 4

Non-classical Behavior of a BZT Gas

in Isentropic Quasi-1D Flow

To show the differences between conventional and unconventional gas behavior more clearly,

several cases were run on our in-house code. The gas MDM introduced in Chapter 2 is

selected as working fluid in the computation. There are some particular sections within the

nozzle that the negative fundamental derivative condition could be achieved. Therefore, the

unconventional gas behaviors are able to be observed. The theoretical relation discussed in

previous chapters could be proved.

Section 4.1 briefly introduces the Van der Waals gas model and the derivative relations for

the gas used in the present work. Section 4.2 and section 4.3 are isentropic cases started from

the same point in the p-v diagram (same pressure and density) but with different upstream

velocity, one in the subsonic area and the other one in the supersonic area. The inlet point

was chosen to be as close to the critical point as it could be. In this way, the isentropic process

we created will have a segment that across the negative fundamental derivative region and
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then stay in the Γ < 1 region until the nozzle outlet. The first subsonic case started at point

pin = 1.1pc, vin = 0.8vc with M = 0.5. The supersonic case started at pin = 1.1pc, vin = 0.8vc

with M = 3. Both of them have shown some interesting results which are opposite with

the conventional behavior. To compare the differences between real gas results and ideal-gas

results, two flows started from the same upstream condition but calculated by ideal-gas law

are also shown.

4.1 Van der Waals Gas Relations

Equation (2.10) has shown the method to calculate the value of the fundamental derivative

from the equation of state. Real gas equations of state like the Van der Waals equation

or Soave-Redlich-Kwong equation are commonly used in researches. The present work has

selected Van der Waals equation of state for computation, as it was the first, simplest and

best-known equation of state to account for the real gas effects. Be more specific, it has ac-

counted for inter-molecular attraction and the volume that a real gas molecule takes up. Due

to the statistical nature of thermodynamic properties, the Van der Waals equation served as

the earliest connection between the macroscopic behavior of the fluid and the microscopic

interaction of molecules.

From previous chapters and sections, the equations needed for numerical computation are

summarized here in table 4.1. All the equations are in differential form.
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Table 4.1: Quasi-1D isentropic flow equations for non-conventional gas

Flow Variable Calculation Formula

pressure dp is taken as the independent variable

density
dρ

dp
=

1− T

cp

(
∂p

∂T

)
ρ

(
∂v

∂T

)
p(

∂p

∂ρ

)
T

temperature
dT

dp
=
T

cp

(
∂v

∂T

)
p

velocity
du

dp
= − 1

ρu

cross-sectional area
dA

dp
= A

 1

ρu2
−

[
1− T

cp

(
∂p

∂T

)
ρ

(
∂v

∂T

)
p

]

ρ

(
∂p

∂ρ

)
T


Mach number

dM

dp
= −M(1 + (Γ− 1)M2)

1

ρu2

Enthalpy dh = cpdT +

[
v − T

(
∂v

∂T

)
p

]
dp

Specific Heat cp − cv = T

(
∂v

∂T

)
p

(
∂p

∂T

)
v

Fundamental Derivative Γ(T, v) =
v3

2c2

[
∂2p

∂v2
− 3T

cv

∂p

∂T

∂2p

∂T∂v
+

(
T

cv

∂p

∂T

)2 [
3
∂2p

∂T 2
+

1

T

∂p

∂T

(
1− T

cv

∂p

∂T

)]]

The solver in our in-house code is integrating the ODEs directly by using Table 4.1, with

a uniform pressure change of dp = 10−4pc between each interval. Vieta’s formulas[31] are

used to solve the EoS defined in Equation (4.1). Some expressions used in the code are

given below in Table 4.2, principally are first-order and second-order derivatives from Van
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der Waals gas model. These expressions are mathematically simple, but they nevertheless

adequately predict and explain the non-conventional gas behavior near the critical point.

Table 4.2: Relations from Van der Waals gas model

Flow Variable Calculation Formula

Equation of State p =
ρRT

1− bρ
− aρ2(

∂p

∂T

)
v

Rρ

1− bρ(
∂2p

∂T 2

)
v

0(
∂p

∂ρ

)
T

RT

(1− bρ)2
− 2aρ(

∂p

∂v

)
T

− RT

(v − b)2
+

2a

v3(
∂2p

∂v2

)
T

2RT

(v − b)3
− 6a

v4(
∂2p

∂T∂v

)
T

− RT

(v − b)2

(
∂v

∂T

)
p

−

(
∂p

∂T

)
v(

∂p

∂v

)
T

Specific Heat cp = cv

(
1− T

cv

R2

2aρ(1− bρ)2 −RT

)

Speed of Sound c =

√
v2(

RT

(v − b)2
− 2a

v3
+
T

cv

R

(v − b))2

Enthalpy h = cvT −
a

v
+ pv
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Furthermore, rewrite the Van der Waals EoS in polynomial form

Z3 − (1 +B)Z2 + AZ − AB = 0 (4.1)

where

Z =
pv

RT
, A =

pa

(RT )2
, B =

pb

RT

Here the coefficients A and B are non-dimensional parameters related to intermolecular

attraction and repulsion, respectively. For a perfect gas, A = B = 0. The value of these

coefficients can reflect how far a real gas deviates from the ideal-gas behavior.

4.2 Isentropic Flow with Subsonic Inlet Condition

Consider a nozzle with an undetermined cross-sectional area. The pressure profile along

the flow direction is given as a parabolic function to show more evidently the non-classical

behavior of the cross-sectional area ratio distribution. This isentropic process was plotted

in the p-v diagram together with the two-phase line and fundamental derivative contours,

as shown in Figure 4.1. It can be seen that this isentrope is chosen to be as close to the

saturation line and the critical point as possible. Hence, there will be a longer segment in

the negative fundamental derivative region.

The fundamental derivative is a function of pressure and specific volume only. So, it can

be calculated before solving the ODE system. Figure 4.2 has shown the distribution of

fundamental derivative along the static pressure. Γ is greater than 1 at the inlet point

(p/pc = 1.1) and drops rapidly when the pressure starts to decrease. This drop happens
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Figure 4.1: Case 1: pin = 1.1pc,Min = 0.5, vin = 0.8vc

close to the critical point in the p-v diagram where the isentrope goes across multiple Γ

contours. Away from the critical point, Γ goes less than 1 and still further away, it becomes

less than 0. Then, it achieves its minimum value when the pressure equals the critical

pressure of the gas and turns back to increase gradually. Apparently, Γ keeps staying in

the Γ < 1 region until the nozzle outlet. Γ will eventually exceed 1 if the gas is going to

be expanded to very low pressure. Based on our computation results, it requires the outlet

pressure to be hundreds of times smaller than the inlet pressure.

Figure 4.3 gives the variation of non-dimensional variables A and B from equation (4.1).

As mentioned, the isentrope is chosen to keep close to the critical point, and therefore the

gas will behave least ideally. The values of A and B can show the nonideality of the gas

behavior.

Figures 4.4a and 4.4b present the difference between the cross-sectional area ratio (A/Amin)

by using ideal-gas law and Van der Waals model. Figures 4.4c and 4.4d plot the corresponding

Mach number distribution. From Figures 4.4a and 4.4c it can be found that under the ideal-
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Figure 4.2: Fundamental derivative distribution(Case 1)

gas analysis, a convergent-divergent nozzle is needed for a transonic flow, in other words,

the nozzle needs a ‘throat’ to achieve the sonic condition. The Mach number is a monotonic

function of velocity. On the contrary, non-classical theory tells a different story. The ‘throat’

is no longer necessary for the sonic point, instead there is a locally maximum area when

M = 1. Going back to Figure 3.9, when the Mach number falls into region 3 and region 4,

the Mach number - Area relation will be opposite with the one from ideal-gas theory. Also

when the Mach number exceeds 1, it is not a monotonic function of velocity anymore. Recall

equation (3.49)

du

u
=

1

1 + (Γ− 1)M2

dM

M

This equation states that the Mach number increases monotonically with u when Γ > 1

and increases with u only for M2 <
1

1− Γ
when Γ < 1 (region 1 and region 2 in Figure

3.9). Figure 4.4d clearly shows that there is an area where Mach number is decreasing with

velocity increasing (M falls into region 3 and region 4 in Figure 3.9), around p/pc = 0.9 to
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Figure 4.3: Variation of non-dimensional variables A and B (Case 1)

p/pc = 1.02. Within this range, the fundamental derivative is decreasing rapidly while the

Mach number doesn’t change too much, so M2 turns to be larger than
1

1− Γ
.

Figure 4.4b shows the relationship between the curvature of cross-sectional area change and

the fundamental derivative, as what has been discussed in equation (3.54).

(
dM

dx

)2

=
Γ

2A

d2A

dx2

The curvature of the cross-sectional area change A depends on the sign of Γ directly. When

Γ is less than zero, the area change turns to be a convex function instead of a concave func-

tion.

Look at Figure 4.4b and Figure 4.4d, there are three sonic points in total. The first one

and third one have fallen into Γ > 0 area which leads to the classical convergent-divergent

part of the nozzle. The sonic point in the middle is the interesting one. At this point, Γ is
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(a) Area, Ideal Gas Model (b) Area, Van der Waals Gas Model

(c) Mach number, Ideal Gas Model (d) Mach number, Van der Waals Gas Model

Figure 4.4: Cross-sectional area ratio and Mach number distribution (Case 1)

smaller than 0. According to equation (3.54), a divergent-convergent part will be needed. In

Figure 4.4b at around p/pc = 0.95, it is clearly shown that there is a local maximum point

corresponding with M = 1.

Figures 4.5a and 4.5b show the speed of sound distribution in comparison with the ideal-gas

model. The classical theory states that the speed of sound is a function of temperature only
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(a) Ideal Gas Model (b) Van der Waals Gas Model

Figure 4.5: Speed of sound (Case 1)

and increases with pressure increasing monotonically, while equation (2.9) shows that

Γ− 1 =
c

v

(
∂c

∂p

)
s

For a non-conventional gas flow when Γ is no longer a constant larger than 1, how the speed

of sound changes with pressure depends on the value of Γ. When Γ goes below 1, the speed

of sound decreases with increasing pressure, which is opposite to the classical theory.

Figures 4.6, 4.7, and 4.8 plot the analogous distribution of temperature, density and velocity

along the isentrope, respectively. The outlet temperature by using Van der Waals equation

does not go as low as the ideal-gas one. The reason causing this difference is that the ideal-

gas law treats the molecules of a gas as point particles with perfectly elastic collisions, while

the Van der Waals model takes into account molecular size and molecular interaction forces.

So, more internal energy is contained and thus the temperature at the same location will be

higher than the ideal-gas model.
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(a) Ideal Gas Model (b) Van der Waals Gas Model

Figure 4.6: Temperature distribution (Case 1)

Regarding the curvature change of density in Van der Waals model results, recall the defini-

tion of Γ, equation (2.1)

Γ =
c4

2v3

(
∂2v

∂p2

)
s

It states that the curvature of the density function is related to the sign of Γ. For an ideal gas,

Γ is always a positive number which leads to positive

(
∂2v

∂p2

)
s

. But for a non-conventional

gas, it will cause the density function turning from concave to convex at the Γ = 0 point.

The velocity function of the flow does not show a significant difference as previous variables.

But the velocity increment from Van der Waals model results is higher than ideal-gas results.
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(a) Ideal Gas Model (b) Van der Waals Gas Model

Figure 4.7: Density distribution (Case 1)

(a) Ideal Gas Model (b) Van der Waals Gas Model

Figure 4.8: Velocity distribution (Case 1)
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4.3 Isentropic Flow with Supersonic Inlet Condition

To keep the isentropic process staying close to the saturation line and critical point, the same

pressure profile and upstream condition with the previous case was imposed besides that the

inlet Mach number is increased to 3. The gas is expanded further more than the subsonic

case until p = 0.1pc. Here distributions of the same variable calculated by the ideal-gas

equation of state and Van der Waals model are plotted together to save space.

Figure 4.9a plots the fundamental derivative versus pressure along this isentropic process,

and displays the same trend as in the subsonic case. Γ stays in the negative area from around

p/pc = 0.88 to p/pc = 1.02. At the end of the nozzle, Γ is slightly less than 1.

Figures 4.9 and 4.10 plot the distribution of cross-sectional area, Mach number, speed of

sound, temperature, density, velocity, and non-dimensional variables A and B of the su-

personic case. Similar results with the subsonic case are obtained. The ideal-gas relations

cannot give accurate results here when the isentrope is close to the saturation line. The main

differences between Van der Waals model results and ideal-gas theory are given below.

• The Mach number is no longer a monotonic function of pressure. With decreasing

pressure, it jumps to values larger than 6 and then decreases rapidly within the negative

fundamental derivative region. With further lowering of the pressure, it rises slowly

but remains smaller than the Mach number from ideal-gas law.

• Much larger cross-sectional area ratio is needed to achieve the same pressure drop.

Here at the outlet of the nozzle, the area ratio is about two times the ideal-gas result.

• The speed of sound does not change too much in the ideal-gas case, whereas the

ratio of cmax to cmin is larger than 3 in the Van der Waals model results. The velocity

distribution displays the same trend as in the ideal-gas results, but the values of velocity

grow more rapidly than the velocity in ideal-gas case.
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• Under the same pressure drop, the temperature ratio is significantly larger than the

ideal-gas case while the density ratio is just slightly larger. The larger temperature

indicates that the gas contains more internal energy.
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(a) Fundamental derivative

(b) Mach number (c) Cross-sectional area ratio

Figure 4.9: Case 2: pin = 1.1pc,Min = 3, vin = 0.8vc
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(a) Speed of sound (b) Velocity

(c) Density (d) Temperature

(e) Variation of non-dimensional variables A and B

Figure 4.10: Case 2: pin = 1.1pc,Min = 3, vin = 0.8vc (Continued)

54



Chapter 5

Conclusion

Unconventional gas behavior in isentropic quasi-one-dimensional flow has been investigated

in the present work. The sign and value of the fundamental derivative Γ significantly in-

fluence the gas behavior and flow properties. For dense gas, there are certain regions that

the flow behavior is different from ordinary gas-dynamics and it should be noted that these

phenomena usually appear simultaneously. Once the region of negative fundamental deriva-

tive is located, interesting unconventional gas behaviors are explored, demonstrated, and

analyzed.

When Γ < 1, the speed of sound decreases with increasing gas pressure, and the Mach num-

ber is no longer a monotonic function of velocity. Mach number increases with velocity only

for M2 <
1

1− Γ
. When Γ < 0, the results from classical theory are inverted. To create

transonic flow, a divergent-convergent nozzle is needed instead of the traditional convergent-

divergent nozzle. Along with the increasing cross-sectional area ratio, the Mach number

increases in subsonic flow and decreases in supersonic flow.
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Besides these qualitative differences, comparing with the ideal-gas relations, the changes

of the cross-sectional area ratio, the speed of sound, the velocity and the temperature are

significantly larger to achieve the same pressure drop in an isentropic flow. A dense gas

called MDM is used as the working fluid, and the Van der Waals model is applied in the

computations of the present work.

The understanding of the physical meaning of these unconventional phenomena in quasi-1D

isentropic flow is leading us to the next step of this study, including but not limited to the

non-ideal gas behavior in one-dimensional Fanno flow and Rayleigh flow, the general jump

relation of normal shock wave, the formation of a Prandtl-Mayer wave and nonlinear wave

propagation, and further investigation in two-dimensional oblique shock. More results will

be reported in the near future. These analyses will provide us with needed insight into the

physics of such non-classical flow phenomena and preparation for numerical computation of

such flows in more general two- and three-dimensional axial compressors.

For future work beyond this Master’s thesis, the plan is to implement the unconventional

gas flow theory into our in-house code to perform numerical simulations under realistic

conditions and with realistic geometric configurations. Flat plate flow and two-dimensional

cascade flow will be calculated and viscosity will be taken into consideration. Different gas

models and numerical schemes will be compared. It is hoped that these computation results

will later be validated with experimental data and provide feedback for developing a robust

and sophisticated turbo-machinery design tool.
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Appendix A

Thermodynamic Identities

A.1 Exact Differential and Triple Product Rule

In thermodynamics, there’s a set of equations that are derived by application of Euler’s

reciprocity relation to the thermodynamic characteristic functions. Consider a function

described by three variables F = F (x, y, z). It can be differentiated as

dF = Adx+Bdy + Cdz (A.1)

The exactness criteria for this function states that

(
∂A

∂y

)
x,z

=

(
∂B

∂x

)
y,z

(A.2)(
∂A

∂z

)
x,y

=

(
∂C

∂x

)
y,z

(A.3)(
∂B

∂z

)
x,y

=

(
∂C

∂y

)
x,z

(A.4)
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where the three variables are related by the triple product relation

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (A.5)

A.2 Maxwell Relations

The general form of Gibbs equation gives that

du = Tds− pdv (A.6)

dh = vdp+ Tds (A.7)

By applying exactness criteria, the four most common Maxwell relations are

(
∂T

∂v

)
s

= −
(
∂p

∂s

)
v

(A.8)(
∂T

∂p

)
s

=

(
∂v

∂s

)
p

(A.9)(
∂s

∂v

)
T

=

(
∂p

∂T

)
v

(A.10)(
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

(A.11)

A.3 Derivation of Equation (2.10)

Equation (2.5) states that

Γ =
v3

2c2

(
∂2p

∂v2

)
s
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To derive

(
∂2p

∂v2

)
s

in terms of thermodynamic state variables, start with the first order

derivative along the isentrope

(
∂p

∂v

)
s

.

(
∂p

∂v

)
s

= −
(
∂p

∂s

)
v

(
∂s

∂v

)
p

=

(
∂T

∂v

)
s

(
∂p

∂T

)
s

=

(
∂T

∂s

)
v

(
∂s

∂v

)
T

(
∂p

∂s

)
T

(
∂s

∂T

)
p

= −T
cv

(
∂p

∂T

)
v

(
∂T

∂v

)
p

cp
T

= −cp
cv

(
∂v

∂T

)
p

(
∂p

∂v

)
T

(
∂p

∂v

)
T

(
∂T

∂p

)
v

= −

[
1 +

T

cv

(
∂v

∂T

)
p

(
∂p

∂T

)
v

][(
∂v

∂T

)
p

(
∂p

∂v

)2

T

(
∂T

∂p

)
v

]

=

(
∂p

∂v

)
T

+
T

cv

(
∂v

∂T

)
p

(
∂p

∂T

)
v

(
∂p

∂v

)
T

=

(
∂p

∂v

)
T

− T

cv

(
∂p

∂T

)2

v
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Then another differentiation gives

(
∂2p

∂v2

)
s

=


∂

((
∂p

∂v

)
T

− T

cv

(
∂p

∂T

)2

v

)
∂v


s

=

∂
((

∂p

∂v

)
s

)
∂v


T︸ ︷︷ ︸

1©

− 1

cv

(
∂p

∂T

)2

v

(
∂T

∂v

)
s︸ ︷︷ ︸

2©

+
T

c2v

(
∂p

∂T

)2

v

(
∂cv
∂v

)
s︸ ︷︷ ︸

3©

− 2T

cv

(
∂p

∂T

)
v

∂
((

∂p

∂v

)
s

)
∂T


v︸ ︷︷ ︸

4©

The four terms marked in the equation above are derived below. To keep the expression

elegant, here ∂/∂T implies that v is kept constant, and vice versa.

1© =
∂2p

∂v2
+
T

c2v

(
∂p

∂T

)2
∂cv
∂v
− 2T

cv

∂p

∂T

∂2p

∂v∂T

2© = −T
cv

∂p

∂T

3© =
∂cv
∂v
− T

cv

∂p

∂T

∂cv
∂T

4© =
∂2p

∂v∂T
− 1

cv

(
∂p

∂T

)2

+
T

c2v

(
∂p

∂T

)2
∂cv
∂T
− 2

cv

∂p

∂T

∂cv
∂v

Substitute the above expressions back into

(
∂2p

∂v2

)
s

and reorganize the equation, we obtain

(
∂2p

∂v2

)
s

=
∂2p

∂v2
− 3T

cv

∂p

∂T

∂2p

∂v∂T
+

(
T

cv

∂p

∂T

)2 [
3

T

∂cv
∂v

+
1

T

∂p

∂T

(
1− T

cv

∂cv
∂T

)]
(A.12)
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