
UC Irvine
ICS Technical Reports

Title
New algorithms for minimum-measure simplices and one-dimensional weighted Voronoi
diagrams

Permalink
https://escholarship.org/uc/item/82r7j175

Authors
Eppstein, David
Erickson, Jeff

Publication Date
1992-06-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/82r7j175
https://escholarship.org
http://www.cdlib.org/

1^

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

New Algorithms for

Minimum-Measure Simplices and
One-Dimensional Weighted Voronoi Diagrams

David Eppstein and JefF Erickson

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 92-55

June 18, 1992

Abstract

We present two new algorithms for finding the minimum-measure
simplex determined by a set of n points in for arbitrary d > 2.
The first algorithm runs in time 0{n'^\ogn) using 0(n) space. The
only data structure used by this algorithmis a stack. The second algo
rithm runs in time Oin'^) using O(n-) space, which matches the best
known time bounds for this problem in all dimensions and exceeds the
previous best space bounds for all d > 3. We also present a new opti
mal algorithm for building one-dimensional multiplicatively weighted
Voronoi diagrams that runs in linear time if the points are already
sorted.

1 Introduction

The minimum-measure simplex problem can be stated as follows. Given
a set of n points in 7^^, find a set of d + 1 points whose convex hull has
least measure. This problem is closely related to many other problems in
computational geometry, such as detection of degeneracies.

The first non-trivial solution to the two-dimensional version of this prob
lem is due to Dobkin and Munro [8], who discovered an log^ n)-time
and 0(n^ log n)-space algorithm, using a structure that allows rapid access
to any projection of the point set. Edelsbrunner and Welzl [13] present
an algorithm that uses time O(n^logn) and space 0{n). Their algorithm
works by sweeping the arrangement of lines dual to the input points with
a vertical line. Chazelle, Guibas, and Lee [5] and Edelsbrunner, O'Rourke,
and Seidel [11] independently discovered an algorithm that uses time and
space 0{v}). Their algorithm builds the entire dual arrangement and then
finds the closest edge to each vertex. This technique generalizes immedi
ately into higher dimensions, with time and space bounds of 0{n'̂) in any

(but see [12]). The best known result in the plane is due to Edelsbrun
ner and Guibas [10], who discovered an 0(n^)-time, 0(n)-space algorithm
which works by sweeping the dual arrangement with a pseudoline. Their
technique was generalized to three dimensions by Anagnostu, Guibas, and
Polimenis [2], resulting in an algorithm which uses time 0(7i^) and space
O(n^).

We present an extremely simple algorithm that finds the minimum-
measure simplex in time 0(n'^log n) and space 0(n), for any d>2. The only
data structure this algorithm uses is a stack. A simple modification makes
the algorithm run in time 0(n'^) and space 0{n?). This matches the best
known time bounds in all dimensions, up to constant factors, and exceeds
the previous best known space bounds, for all d > 3. Our algorithm builds
several two-dimensional arrangements rather than a single d-dimensional
arrangement. Consequently, the constants hidden in the 0-notation are
smaller for our algorithm than for previous algorithms. To our knowledge,
these are the first non-trivial minimum-measure simplex algorithms to use
the same amount of space in all dimensions.

We also present a new algorithm for constructing the multiplicatively
weighted Voronoi diagram of n points on a line in time 0{n log n) and space
0(n). which is optimal. Two other optimal algorithms for this problem are
known, both due to Aurenhammer [3. 4]. Unlike either of these algorithms.

our algorithm requires only linear time if the points are already sorted
Similar results have been obtained in the plane for unweighted Voronoi di
agrams when the points are sorted in various ways. Chew and Fortune [61
present an agorithm to build the orthogonal (L, metric) Voronoi diagram
in time O(nloglogn), if the points are sorted separately by their xand y-

Xe oTobT' the orthogonaTpo^tf " tnd mqueries in time 0((m-bn)loglogm). Aggar-al et nl, [1] discovered alinear-time algorithm for building the (EucUdean)
oXeTXf^ Siven in, say, clockwise

th fj";? u ^ linear-time algo-
saXoTdf !dK of aset of npoints which have-thesarne order sorted by either of their coordinates. Ours is the first result

diagraX"^ ™"struction of weighted Voronoi

2 A Simple Minimum-Area Triangle Algorithm
We present a very simple algorithm that finds, given aset of npoints and

with p. To find the smallest triangle formed by three input points, it suffices
to run this algorithm n times, once for each input point. Our algorithm
sweeps the plane with a rotating Une through the fixed vertex.

IossXr®''°r! ""i' foUowing assumptions, withoutof generality. Any of these assumptions can be relaxed without signifi-
cantly complicating our algorithm.

• The fixed vertex is the origin, which we denote o.

• Some input point is on the positive .c-axis.

• Each pair of points, possibly including the origin, defines a line with
a unique slope. In particular, no three points are colinear. Standard
perturbation arguments apply.

• All input points are in the upper halfiplane y > 0. Otherwise we
reflect any points in the lower half-plane through the origin This
operation does not affect the area of any triangle defined by the origin
and two input points.

Figure 1. Defining the separator of pi and py.

We will also assume that our input points are sorted in
the order in which a rotating sweep line would encounter them, starting
at the positive j:-axis and moving counterclockwise. We let di denote the
angle Lpiopi, measured counterclockwise from the positive a^-axis. For all
i 2 we have 0 < ^, < tt.

For each pair of input points p. and pj, such that i > j, we define their
separator as the ray from the origin parallel to See Figure 1. We let

denote the angle of the separator, measured counterclockwise from
the positive a:-a^is. Note that 0(1, j) > Oi > 9- that is, the rotating sweep
line encounters each separator after the points that define it. In particular,

may be greater than tt. For each point p,, except pi, we define
0(0 = minj<t 0(1,_;)- For all 2 < 1 < n, we have 9i < 0(0 < tt. For
consistency, we define 0(1) to be tt.

Lemma 2.1. Let pi, pj, and pk be input points such that i > j > k. Then
\ApiOpj\ < IApiOpjtl if and only if 9i < 0(j, k). •

For each input point pj, except pi, we define its partner to be the point
<li G{pi, ••-tPi-i} such that |Ap;ofp| is minimized. To find the pair of
points which form the smallest triangle with the origin, it suffices to find
each point s partner. The following lemma characterizes partners in terms
of separators.

Lemma 2.2. For each 2< i < n. the partner ofpi is the point pj with the
largest index less than i, such that 9; < 0(d).

Proof: Let pj be p.'s partner. Clearly, j < i. Suppose 9i > 0(d). Then for
some k< j, 9i > (f>{j,k), and by Lemma 2.1, |Ap,opO < |Apiopj|. On the
other hand, suppose 9i < 0(/), for some / strictly between i and j. Then

and by Lemma 2.1, |ApjOp/j < |Ap,opj|. In either case, we have
a contradiction. n

Algorithm FindPartners:
begin

push px
for i —2 to n begin

(1) while 52) <)
pop

(2) Ps, Is pi''s partner
(3) while (0(51,52) <

pop

(4) push Pi
end

I end
Figure 2. Finding each point's partner (See Lemma 2.3.)

Finally, we present our algorithm, which we call FindPartners. See
Figure 2. The algorithm maintains a stack of points, and we let p^^ denote
the top point on the stack, pg^ the next point down, and so on. We start with
just Pi on the stack, and loop through the other points in counterclockwise
order. At each iteration, we examine the stack contents in two passes,
popping off points if they can no longer be partners. The point on top of
the stack after the first pass is the current point's partner. After the second
pass, we push the current point onto the stack and continue with the next
iteration.

Lemma 2.3. Given a set of n points in the plane, sorted hy their angles
about the origin, Algorithm FindPartners finds each point's partner m
time and space 0{n).

Proof: Since each point is pushed once and popped at most once, the
algorithm clearly uses linear time and space.

Let pj denote p.'s partner. By Lemmas 2.1 and 2.2, we have 0(p) >
&i > for all k strictly between i and j. Suppose that pj is not on
the stack during the ith iteration of step (2). It must have been popped off
during the '̂th iteration of the loop, for some i > k> j. If pj were popped
in step (1), we would have 0(j) < Of. < Of. If pj were popped in step (3),
we would have 0(j) < 0(^, j). In either ca.se, we have a contradiction, so p,
must be on the stack.

We prove the a stronger property of the entire stack; at the ith iteration
of step (2), the points on the stack are stored in increasing order of the
areas of the triangles they form with p, and the origin. Step (1) insures that
the top two points on the stack are properly ordered. Assume inductively
that the ordering property holds for the first k points on the stack. If
AptOpsi^ were smaller than ApiOPsf._^, then we would have (f){sk-i,Sk) <

< (^(sfc_27-S/t-i), and Ps^-i would have been popped off the stack in the
5fc_2-th iteration of step (3). Therefore, all points on the stack are properly
ordered, and in particular, the top point is p,'s partner. •

Our algorithm is quite similar to one proposed by Galil and Giancarlo [15]
to find row minima in triangular monotone matrices. In fact, we can solve
our problem with their algorithm. If we define A[i,j] = log|ApjOpjj for all
i < j, the resulting triangular matrix A is monotone, and partners corre
spond exactly to row minima. However, since this matrix does not satisfy
Galil and Giancarlo's "closest zero property", their algorithm would require
time O(nlogn). Klawe and Kleitman [16] present a triangular monotone
matrix searching algorithm that runs in time 0{na{n)), where q(7i) is the
functional inverse of Ackerman's function. Larmore [17] presents an optimal
algorithm, whose time complexity is unknown, for the same problem. Our
algorithm improves aU these previous results for our particular class of ma
trices. In particular, even if Larmore's algorithm is linear, it is considerably
more complicated than our algorithm.

To find the smallest triangle in general, we fix each input point in turn
as the origin, sort the other points by their angles in time O(nlogn), and
call FindPartners.

Theorem 2.1. Given a set of n points in the p/ane, the minimum-area
triangle can be found in time 0(log n) and space 0(n}. •

It is possible to find all n sorted orders in O(n^) time and space by
building a dual line arrangement [9]. The order of the points around a
fixed point p is the same as the order in which their dual lines intersect the
line dual to p. Thus, we can improve our running time at the expense of
increased storage.

Theorem 2.2. Given a set of n points in the plane, the minimum-area
triangle can be found in time and space O(n^). •

3 Higher dimensions

Let 5 be a simplex in 'R'̂ with vertices p and q, and let F be one of the
two facets of 5 that does not contain the edge pq. Then the d-dimensional
measureof S is (iMll^l sin^)/d, where^ is the angle between the edge^ and
the facet F. Let 5' be the projection of 5 onto the hyperplane normal to
The {d- l)-dimensional measure of S' is |Fj sin^. Thus, to find the smallest
simplex with a particular fixed vertex p, we can fix each of the other points q
in turn as another vertex and project the problem to the hyperplane normal
to This projection immediately reduces the d-dimensional problem to
a set of 0{n) {d —l)-dimensional subproblems. Applying the projection
process to each of the subproblems recursively, we eventually get
two-dimensional subproblems. Thus, to find minimum-measure simplices in
higher dimensions, it suffices to fix all but two of the vertices and apply our
two-dimensional algorithm.

Theorem 3.1. Given a set of n points in , d > 2, the minimum-measure
simplex can he found in time 0(n'^ log n) and space 0(n). •

We can combine the sorting phases from sets of 0{n} two-dimensional
subproblems, even though each subproblem deals with a distinct set of
points, by considering the action of the algorithm in dual space. The rotating
line in each two-dimensional subproblem can be viewed as a hyperplane H
rotating about a fixed {d —2)-flat F. In dual space, this corresponds to
a point H* moving along a fixed line F" through the dual hyperplane ar
rangement. As with the two-dimensional problem, the order of the points
around F is the same as the order in which their dual hyperplanes inter
sect F". We could find all these orders by constructing the entire dual
arrangement, but that is far too space-intensive. The algorithm described
by the previous theorem effectively builds all of the one-dimensional subar-
rangements, applying the FindP.artners algorithm to each one in turn. A
faster approach is to build each two-dimensional subarrangement in G(n^)
time and space [5, 11], and apply the sweep algorithm 0{n) times to each

Theorem 3.2. Given a set of n points in R'̂ . d > 2, the minimum-measure
simplex can be found in time 0{n'') and space 0{n^). O

This approach is very similar to the one used by Edelsbrunner and
Guibas [10] to detect degeneracies in configurations of points in arbitrary di
mensions. Rather than explicitly constructing each two-dimensional subar-
rangement, their algorithm applies a topological sweep to each one, searching
for sets of three or more concurrent lines.

4 One-Dimensional AVeighted Vbronoi Diagrams

The minimum-area fixed-vertex triangle problem can be thought of as a
weighted nearest neighbor problem on the unit circle as follows. For each
input point we associate a weighted point pi on the unit circle, positioned
at the angle &i and having weight = |^|. The "distance" between two
points Pi and p, is |ApiOp |̂ = (r,rjsin {Oi ~ i9,j)/2. We can find find the
nearest neighbor of each point pi under this distance function by running the
FindPartners algorithm twice: once clockwise and once counterclockwise.

With an almost trivial modification, we have an algorithm which, given a
set 5of nmultiplicatively weighted points on aline, sorted by their positions,
finds each point's nearest weighted neighbor in linear time and space. In this
section, we describe afurther modification that produces the multiplicatively
weighted Voronoi diagram of these points, which we call sites in this context,
within the same resource bounds.

We make use of a two-dimensional interpretation of one-dimensional
weighted Voronoi diagrams which was originally presented by Aurenham-
mer [3]. We assume without loss of generality that the sites are on the
:r-axis. Each site pi has position Xi and weight Wi. For each pi, we define a
wedge Wi - {(a:, y): y > \x - Xi\/u?,}. The boundary of the union of these
wedges is a monotone polygonal chain which we denote C{S). The vertical
projection of the vertices of C(^) onto the .r-axis is essentially the multi
plicatively weighted Voronoi diagram of 5. Aurenhammer builds C(S) by
splitting Sinto two subsets 5'i and recursively building C(5i) and C(52),
and merging them in linear time using an intersection algorithm of Niev-
ergelt and Preparata [18]. We refer the interested reader to Aurenhammer's
paper for further details and relevant proofs.

We split each wedge Wi into two halves along the line x = Xi, and let
Wf^ and W-^ denote the right and left halves, respectively. The boundary
of the union of the right wedges is the right chain, denoted C^(S). See
Figure 3. We define the left chain C^{S) symmetrically. Using Nievergelt

Pi Pi Pi 'Pa

Figure 3. The right chain C^{S).

and Preparata's intersection algorithm, we can construct C(5) from the left
and right chains in linear time. The main result of this section is a linear-time
algorithm that constructs the left and right chains. We explicitly describe
the construction of the right chain; the left chain is built symmetrically.

Throughout this section, we make the following general position assump
tions: no point on the a;-axis is equidistant from more than a single pair of
sites, no site is equidistant from any two other sites, and no two sites have
the same weight. The algorithm we describe also assumes that the sites
5 = {piPn} are sorted from left to right.

For each pair of sites pi and pj, such that < < j, we define X{i,j] to
be the point on the a:-axis to the right of both sites that has the same
weighted distance from both sites. Specifically, if tu, > Wj, then X{i,j) =
[wiXj ~WjXi)f{wi —Wj). If tn, < Wj. then no such point exists, and we define
X{i,j) = 00. For each site pi, we define .Y(i) - minj<i,u,^>^,, X{i,j), where
the minimum is taken over all sites to the left of pi that have more weight.
If there are no such sites, then we define A'(i) = oo.

Lemma 4.1. Let pi and pj be two sites and let x be some arbitrary point
on the x-axis such that x > Xi > xj. Then (.r —Xi)lwi < (.-c —Xj)fwj if and
only if X < X(i,j). •

Given an arbitrary point x > xi, we define its left neighbor to be the
site Pi to the left of x minimizing {x —Xi)/wi. We can characterize the right
chain in terms of left neighbors as follows. For all x > x'l, pi is the
left neighbor of x if and only if x, < x and (.r, (.r - Xi)/wi) 6 C^{S).

Lemma 4.2. For all x > .I'l, the left neighbor of x is the site pi with the
largest index, such that Xi < x < -V(i). •

Algorithm RightChain:
begin

add (.I'l,oo) to C
add (xi,0) to C
push p\
for i ^ 2 to n begin

(1) while (Xj > X{5i,52)) begin
add (yY{si,52),^(si,52)) to C
pop

end

(2) add to C
add (Xi,0) to C

(3) while {wi > or A'(g5i) > X{si,S2))
pop

(4) push Pi
end

(5) while stack has more than one point begin
add (A'(5i,52)^V'(si,52)) to C
pop

end

add (00,(00 —Xsi)/wsi} to C
end

Figure 4. Constructing the right chain C^iS).

Lemma 4.3. Let pi, pj, and be three sites such that i < j < k. Then
X{ijk) is between X{i,j) and X{j.k). •

For each pair of sites pi and pj, such that i < j and Wi > Wj, we define
Y(i,j) to be the the weighted distance from X(i,j) to either pi or pj. Ex
plicitly, Y{i,j) = (xj - Xi)/{— Wj). We can characterize {X{i,j),Y{i,j))
as the intersection point of the two lines y = {x—Xi)lwi and y = {x —Xj)lwj,
when that point is above the ;r-axis.

Finally, we present our algorithm, which we call RightChain. See Fig
ure 4. We sweep the .r-axis from loft to right, and maintain a stack as before.
As each site is pushed onto or popped from the stack, a point is added to a
polygonal chain C.

Lemma 4.4. For all sites /?, . if the stack is empty just before pi is pushed,
then = oo; otherwise, X(i) = X{i.Si).

Proof: By induction. The lemma clearly holds when i = 1.
Suppose the stack is not empty. Since «;,• < we know that X{i,Si)

is finite. Suppose also that A'(i) = X(i,j) < X(i,si) for some j / si. By
Lemma 4.3, we can easily show that A'{i) < X{j).

If i < -Si, then < A'(i,5i) by Lemma 4.3. By the induction
hypothesis, we have X{si,32) = A'(si). Then A'(3i,S2) < X{i,si), which
implies that was just removed from the stack. This is clearly a contra
diction.

If j > 5i, then pj cannot be on the stack. Since Xi < .Y(i) < X{j), it
must have been popped in the A-th iteration of step (3), for some k > j.
Thus, either Wk > lUj or A'(j) < X{k,j). In either case, we have A'(i) =
X{i,j) < X{k,j]. Applying Lemma 4.3, we have A:(i,A-) < A(i), which is
another contradiction. Using a similar argument, we can show that if A(i)
is finite, then the stack cannot be empty. •

Lemma 4.5. Given a set S ofn weighted points on a line, sorted by their
positions, Algorithm RightChain constructs the right chain C^(S} time
and space 0(n).

Proof: The time and space bounds are obvious.

Following the proof of Lemma 2.3, we know that after the ith iteration
of the main loop, the points on the stack areordered by increasing weighted
distance from x^. We can also show, using induction and Lemma 4.4, that
the points Psj on the stack are ordered by increasing values ofX(sj). Thus,
for all Psj on the stack, we have A'(.Sj) > x^.

We can easily conclude from these stack properties that C is monotone;
that is, its vertices are added in order from left to right. Following the
proof of Lemma 2.3, we conclude that the vertical edges of C are exactly
the vertical edges of C^(S). All that is left to prove is that the non-vertical
edges of C are correct.

Consider the non-vertical edges with endpoints between Xi and Xi+i, for
some arbitrary 1 < i < n. (For consistency, we define I'n+i = oo.) These
are exactly the edges added to C during the /th iteration of step (1), or in
step (5) when i —n. We prove by induction that these edges are correct.
The first edge starts at xi and ends at either A(/) or J-'j-fi- either case, x^
is clearly the left neighbor of all points in the range covered by that edge.

Every edge except the first one starts at X(j) = X{j,k) for some k <
j < and ends at either X{k) or ;rj+i. Suppose for some x in that range,
and for some I k, that pi is x's left neighbor. Since X{j) < x < X{k), we
have I > k and / ^ j by Lemma 4.2. If j > /, then X{j,k) < x < X{l,k),
and by Lemma 4.3, X{jJ) < A'(j), which is a contradiction. If j < /, then
by Lemma 4.3, X{j,k) < so pj was popped off the stack before pi
was pushed on. By the inductive hypothesis, this is another contradiction.
Thus, we can conclude that the edges of C are exactly the edges of
and the algorithm is correct. •

Theorem 4.1. Given a set of n weighted points on a line, sorted by
their positions, their multiplicatively weighted Voronoi diagram can be con
structed in time and space 0(n}, which is optimal. •

Corollary 4.1. Given a set of n weighted points on a line, their multi
plicatively weighted Voronoi diagram can he constructed in time O(nlogn)
and space 0(n), which is optimal. •

5 Conclusions

We have presented two new algorithms for finding minimum-measure sim-
plices in spaces of dimension two or more. One algorithm uses linear space
and is only a factor of O(log n) away from the best known time bound in all
dimensions. The other algorithm matches the best known time bound and
uses only O(n^) space in all dimensions. As a subroutine to these algorithms,
we solve a particular triangular monotone matrix searching problem in linear
time. We have also described a new optimal algorithm for constructing one-
dimensional multiplicatively weighted Voronoi diagrams, which uses only
linear time of the points are sorted.

The closely related problem of detecting degeneracies can be solved in
time 0(n^} using only linear space [10]. A minimum-measure simplex algo
rithm that runs within these bounds would be interesting. More importantly,
we have no reason to believe that a time bound of 0(n'^) is even close to
optimal for finding either minimum-measure simplices or degeneracies, since
the tightest known lower bound is fifnlogn).

References

[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear time
algorithm for computing the Voronoi diagram of a convex polygon.
Discrete Comput. Georn., 4:591-604. 1989.

[2] E. G. Anagnostu. L. J. Guibas, and V. G. Polimenis. Topological sweep
ing in three dimensions. In fnternat. Symp. SIGAL '90, volume 450 of
Lecture Notes in Computer Science, pages .310-317. Springer-Verlag,
1990.

[3] F. Aurenhammer. Theone-dimensional weighted Voronoi diagram. In
form. Process. Lett., 22:119-123, 1986.

[4] F. Aurenhammer. Power diagrams: Properties, algorithms, and appli
cations. SIAM J. Comput., 16:78-96. 1987.

[.5] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric
duaUty. 5/7,25:76-90, 1985.

[6] L. P. Chew and S. Fortune. Sorting helps for Voronoi diagrams. In 13th
Symp. Mathematical Progr.. Japan, 1988.

[7] H. Djidjev and A. Lingas. On computing the Voronoi diagram for
restricted planar figures. In 2nd Worksh. Algorithms and Data Struc
tures, volume 519 of Lecture Notes in Computer Science, pages 54-64.
Springer-Verlag, 1991.

[8] D. P. Dobkin and J. I. Munro. Efficient uses of the past. J. Algorithms,
6:455-465, 1985.

[9] H. Edelsbrunner. Geometric structures in computational complexity. In
I5th Internat. Colloq. .Autoniat. Lang. Program., volume 317 of Lecture
Notes in Computer Science, pages 201-213. Springer-Verlag, 1988.

[10] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrange
ment. .}. Comput. Syst. Sci.. 38:16.5-194, 1989.

[11] H. Edelsbrunner, J. O'Rourke. and R. Seidel. Constructing arrange
ments of lines and hyperplanes with applications. SIAM ./. Comput.,
15:341-363, 1986.

[12] H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for
hyperplane arrangments. In H. Maurer, editor, New Results and New
Trends in Computer Science, volume 555 of Lecture Notes in Computer
Science, pages 108-123. Springer-Verlag, 1991.

[13] H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional
arrangements with applications. SIAM J. Comput., 15:271-284, 1986.

[14] D. Eppstein. Finding the k smallest spanning trees. In 2nd Scand.
Worksh. Algorithm Theory, volume 447 of Lecture Notes in Computer
Science, pages 38-47. Springer-Verlag, 1990.

[15] Z. Galil and R. Giancarlo. Speeding up dynamic programming with
applications to molecular biology. Theor. Comput. Sci., 64:107-118,
1989.

[16] M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for
generalized matrix searching. SIAM J. Disc. Math., 3:81-97, 1990.

[17] L. L. Larmore. An optimal algorithm with unknown time complexity
for convex matrix searching. Inform. Process. Lett., 36:147-151,1990.

[18] J. Nievergelt and F. P. Preparata. Plane-sweep algorithms for inter
secting geometric figures. Comm. ACM, 25:739-747, 1982.

