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ABSTRACT 

Isotopically pure 74Ge nanocrystals were formed in a sapphire matrix by the ion beam synthesis 

method.  In contrast to those embedded in amorphous silica, sapphire-embedded nanocrystals are 

clearly faceted and are preferentially oriented with respect to the crystalline matrix.  In situ 

transmission electron microscopy of heated samples reveals that the nanocrystals melt at 955 °C 

± 15 °C, very near to the bulk Ge melting point.  Raman spectra indicate that the sapphire-

embedded Ge nanocrystals are under compressive stress in the range of 3 - 4 GPa.  The 
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magnitude of the stress is consistent with that expected for hydrostatic pressure arising from 

solidification.  Stress relaxation was not observed for sapphire-embedded Ge nanocrystals; this is 

attributed to the slow self-diffusion rate of the alumina matrix atoms at temperatures below the 

nanocrystal melting point. 

PACS numbers: 81.07.-b, 61.46.Hk, 78.30.-j, 62.25.+g,  
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I. INTRODUCTION 

 Ge nanocrystals have been studied extensively in recent years and have been suggested 

for use in nonvolatile memory and integrated optoelectronic devices.  The majority of this work 

has focused on nanocrystals embedded in silica matrices because of the technological importance 

and wide availability of this material.  However, a few studies have reported on Ge nanocrystals 

embedded in other matrix materials such as Al2O3,1 SiC,2 AlN,3 and HfAlO.4  Because the 

surfaces and interfaces of nanoscale materials can play a dominant role in determining their 

properties, it is interesting to compare the properties of nanocrystals embedded in different 

matrices.  For example, though quantum mechanical models predict efficient size-dependent 

photoluminescence from group IV semiconductor nanocrystals, the reported luminescence from 

silica-embedded Ge nanocrystals has mostly been attributed to defects within the oxide or at the 

oxide/nanocrystal interface.5  Replacement of the matrix with a different material changes the 

nature of the defects at the nanocrystal/matrix interface and should provide information on the 

recombination mechanism.  In this report, we examine the structural properties of Ge 

nanocrystals embedded in sapphire and, when appropriate, compare their properties to those in 

the well-studied system of silica-embedded Ge nanocrystals. 

 The optical properties of Ge nanoclusters embedded in sapphire have been studied both 

theoretically6 and experimentally.7-9  However, fewer reports on the structural properties of this 

materials system are available.  Budai and co-workers formed Ge nanoparticles in sapphire 

matrices and examined the influence of substrate temperature, dose, and annealing conditions on 

the resulting nanocrystals.1  They found that amorphization of the substrate followed by 

recrystallization of γ-Al2O3 from the original α-Al2O3 could be utilized to alter orientation 

relationships between nanocrystals and matrix as well as the particle size distribution.  In the 
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present case, the implantation temperature is high enough and the dose is low enough that 

nanocrystals nucleate and grow within α-Al2O3.  Here, we further study the structural properties 

of this materials system to determine orientation relationships between the matrix and 

nanocrystals, the melting point of embedded nanocrystals, faceting, and stress generation 

mechanisms.  Our findings suggest that nanocrystals grow in the liquid phase and that significant 

stresses accumulate within the nanocrystals due to the solid-liquid phase transformation during 

cooling. 

II. EXPERIMENTAL DETAILS 

 Isotopically pure 74Ge nanocrystals were formed by multi-energy ion implantation at 150 

keV to 8×1015 cm-2, 120 keV to 6×1015 cm-2, 80 keV to 5×1015 cm-2, and 50 keV to 3×1015 cm-2 

followed by thermal annealing in sealed ampoules at 1200 °C for 1h under Ar.  Annealing was 

terminated by rapid quenching of the sealed ampoules under running cold water.  Post growth 

thermal annealing was also performed under Ar at temperatures below 1200 °C. 

 Ge concentration profiles were obtained using Rutherford backscattering spectrometry 

(RBS) with a 1.92 MeV He+ beam and a sample tilt of 50° to improve depth resolution.  

Backscattered ions were collected at an angle of 165° with a Si surface barrier detector.  Raman 

spectroscopy was performed using the 488 nm line from an Ar+ laser in a macroscopic optical 

setup with ~5 cm-1 resolution.  Transmission electron microscopy (TEM) was performed on as-

grown samples to determine the structures of nanocrystals and their size distributions.  Both 

cross-sectional and plan view samples were prepared in the standard fashion and micrographs 

were obtained using Philips CM200 & CM300 microscopes as well as a JEOL 3010.  In situ 

TEM studies of the melting point of sapphire-embedded Ge nanocrystals were performed 

between room temperature and 1000 °C ± 15 °C using a Gatan 628Ta single-tilt heating stage in 
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a JEOL 3010 electron microscope operating at 300 keV.  Direct in situ measurement of the 

diffraction patterns from Ge nanocrystals was not feasible due to the comparatively high 

intensity diffraction of the sapphire substrate.  Therefore, bright field and dark field micrographs 

were recorded in situ at 15 °C steps every 5 min with beam currents of no more than 8 µA to 

minimize sample heating.  Melting was defined by the disappearance of contrast in dark field 

images which indicates the loss of crystallinity of nanoparticles. 

III. RESULTS AND DISCUSSION 

A. Rutherford Backscattering Spectrometry 

 Figure 1 shows Ge concentration profiles obtained by RBS after implantation both before 

and after thermal annealing.  Prior to annealing, the Ge peak concentration is ~3 at. % located 

approximately 40 nm below the surface of the sample.  Subsequent to annealing at 1200 °C for 1 

h, the total Ge content is reduced from 1.95×1016 cm-2 to 1.6×1016 cm-2 and the peak shifts 

deeper into the sample due to out-diffusion of Ge from the surface during annealing.  The 

asymmetric evolution of the Ge concentration profile suggests that implantation damage may 

lead to a depth-dependent diffusion coefficient.  Additional growth attempts at higher 

temperatures (up to 1600 °C in a high temperature vacuum furnace) resulted in nearly complete 

out-diffusion of Ge from the sapphire substrate that suppressed nanocrystal formation.  These 

results demonstrate that successful nanocrystal synthesis in sapphire relies on a balance between 

the implant and annealing conditions.  In particular, low energy implantation or very high 

temperature annealing may lead to significant diffusional losses of Ge that prohibit nanocrystal 

formation near the surface.  However, under the present conditions, nanocrystal formation is 

observed. 

B. Transmission Electron Microscopy 
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 Figure 2(a) shows a cross-sectional TEM image of the near surface region of an 

implanted and annealed sample.  Significant strain fields in the implanted zone remain after 

annealing, as evidenced by the dark contrast in the 60 nm closest to the surface.  Further below 

the surface, end-of-range damage from Ge implantation is also observed.  These high contrast 

stress fields obscure the low magnification electron micrographs of Ge nanocrystals.  However, 

under higher magnification, moiré fringes arising from the overlap of sapphire and Ge crystal 

planes are observed, as shown in Fig. 2(b).  The existence of the moiré fringes indicates that not 

only are the Ge nanoparticles crystalline, but that the matrix also remains crystalline and 

recovers much of the implantation damage after thermal annealing. 

 Because the stress fields prevent low magnification electron microscopy and 

simultaneous imaging of large nanocrystal ensembles, the size distribution was obtained by 

measurements of nanocrystals at a relatively high magnification.  Figure 3 shows the size 

distribution obtained in this manner.  Unlike the near-Gaussian distribution typical of ion beam 

synthesized nanocrystals in silica, the distribution of those embedded in sapphire is nearly log-

normal.  The unusual distribution shape is a consequence of the depth dependence on nanocrystal 

sizes.  The larger nanocrystals lie predominantly near the position of the maximum Ge 

concentration, whereas the smaller crystals are located primarily in the depth range between the 

surface and the large clusters.  Although further work is required to precisely determine the 

mechanism of formation of these spatially size segregated nanocrystals, it may be that out-

diffusion of Ge from the surface reduces crystal sizes in regions near the surface.  Additionally, 

implantation damage could lead to depth dependent diffusivities that spatially influence the 

nucleation and growth rates.  
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 The structure of sapphire-embedded Ge nanocrystals was revealed through HR-TEM.  Ge 

nanocrystals embedded in amorphous silica are characterized by spherical shapes with no clear 

faceting.  However, those embedded in sapphire exhibit clearly defined facets, as shown in Fig. 

4.  Nanocrystal synthesis is performed at 1200 °C, well above the bulk Ge melting point of 936 

°C, and in situ heating measurements (described below) indicate that Ge nanoparticles are liquid 

at the growth temperature.  Therefore, the facets of the nanocrystals are determined at the growth 

temperature by the interface energies between liquid Ge and the individual sapphire crystal 

planes.  

 The nanocrystal in Fig. 4 is partially exposed as a result of thinning during TEM sample 

preparation.  The crystal structure of the sapphire substrate is clearly visible, along with that of 

the Ge nanocrystal (upper left region of the nanocrystal).  Moiré fringes are also visible in the 

lower right region of the nanocrystal.  Fast Fourier transformation (FFT) in the sapphire substrate 

region, the Ge nanocrystal region (Ge crystal planes only), and the moiré fringe (overlapping 

nanocrystal and substrate) region reveals an invariant orientation relationship between Ge 

nanocrystals and the sapphire matrix with (111)Ge || ( 1041 )sapphire.  From this analysis, it is not 

yet possible to determine the interface normal vector.   

 In situ heating and cooling experiments were performed to determine the melting points 

of sapphire-embedded Ge nanocrystals.  It is well known that nanocrystals exhibit size-

dependent melting points as a consequence of the increasing contribution of the 

surface/interfacial free energy to the total energy of nanoparticles with decreasing crystal 

size.10,11  For the case of free standing nanocrystals, a melting point depression occurs that varies 

inversely with the particle radius.  However, for the case of embedded nanocrystals, melting 

point depression, enhancement, and even hysteresis are possible.12  In the present study, the 
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melting point determination is made based on the disappearance of individual nanocrystals in the 

dark field (DF) view.  Using this technique, we find that the sapphire-embedded nanocrystals 

melt at 955 °C ± 15 °C, which is close to the bulk melting point of 936 °C.  Upon cooling from 

the molten state, resolidification is also observed at 955 °C ± 15 °C .  Considering the 

experimental temperature measurement limitations, the melting point of nanocrystals is 

indiscernible from that of bulk Ge.  The observation that melting and solidification occur very 

close to the bulk melting point suggests that the solid Ge/sapphire and liquid Ge/sapphire 

interface energies are similar in magnitude and that neither melting nor solidification are 

kinetically hindered.12  

C. Raman Spectroscopy 

 Additional quantitative structural analysis was achieved by Raman spectroscopy.  Raman 

spectra of nanocrystals are characterized by size dependent phonon confinement effects which, 

for the case of Si and Ge, are manifested by asymmetric line broadening and red shifting due to 

breakdown of the 0=k
v

 selection rule for Stokes scattering.13,14  Figure 5 shows the Raman 

spectrum of an isotopically enriched 74Ge bulk crystal along with the spectrum from isotopically 

pure 74Ge nanocrystals embedded in sapphire.  The nanocrystal spectrum exhibits the expected 

asymmetric broadening due to phonon confinement.  However, the spectrum is considerably blue 

shifted with respect to that of the bulk reference spectrum, in disagreement with the predictions 

of phonon confinement theory.  A similar, though smaller, blue shift of Raman spectra of silica-

embedded Ge nanocrystals is frequently observed and is attributed to matrix-induced 

compressive stress on embedded nanocrystals.15-20 

i. Quantitative Stress Analysis 
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 It has been suggested that stresses on silica-embedded Ge nanocrystals arise from 

solidification expansion upon cooling from the growth temperature.21,22  Here, growth is 

performed well above the melting point of the Ge nanocrystals so that Ge clusters grow as 

molten nanodroplets that solidify in sapphire upon rapid cooling.  Because solid Ge has a lower 

density than liquid Ge, the resulting solid nanoparticles are larger than the sapphire matrix 

cavities and they are under compressive stress.  Additionally, the difference in thermal expansion 

coefficients results in a different extent of contraction for sapphire and Ge that contributes to the 

stress in the nanocrystal at room temperature.   

 A variety of methods exist for determining the stress state of a material.  In particular, x-

ray and electron diffraction provide direct measurements of the lattice parameter, thereby giving 

the most fundamental measures of stress.  In the present case, however, the small sizes of the 

nanocrystals, their broad size distribution, and the diminutive total volume of nanocrystalline 

material limit the diffraction resolution required to discern small changes of the lattice parameter 

with compression.  Although it is a less direct measure of stress, Raman spectroscopy provides 

both the sensitivity and resolution required to determine stresses on nanocrystals.   

 Cerdeira et al. derived an expression to relate the hydrostatic pressure, P, on a material to 

the change of the Raman shift.23    Here, we use a slightly modified form of this equation that is 

applicable for nanocrystals under compressive stress:15  

( )12110 23 SS
P relaxedstressed

+
−

=
γω

ωω   [1] 

where stressedω , relaxedω , and 0ω  are the Raman shifts of stressed nanocrystals embedded in 

sapphire, relaxed nanocrystals calculated according to phonon confinement theory, and the 
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isotopically enriched bulk 74Ge reference sample, respectively.  ijS  is the ijth element of the 

elastic compliance tensor and γ  is the mode-Grüneisen parameter. 

 For the case of Ge nanocrystals embedded in silica, the relaxed Raman line position, 

relaxedω , was previously determined by measurement of exposed nanocrystals after selective 

etching of the matrix.15,24  However, in the present case, no suitable selective etchant is available 

so it is not possible to directly measure the relaxed state as a reference.  Therefore, the relaxed 

line position is calculated using the commonly utilized phonon confinement model developed by 

Richter et al.25   The functional form for the Raman intensity, I, as a function of frequency, ω , 

for a system exhibiting phonon confinement is: 

( )
∫







 Γ+−

= kd
k

kC
I 3

2
0

2

2
)(

),0(
)(

ωω
ω    [2] 

where )(kω  is the average optical phonon dispersion relation over the Brillouin zone, 0Γ  is the 

bulk natural line width, and ),0( kC  are the Fourier coefficients associated with the phonon 

weighting function.  We note that the calculated Raman line shape is extremely sensitive to the 

precise choice of the phonon weighting function, ),( LrW .  However, the Gaussian weighting 

function proposed by Campbell and Fauchet26 describes the Raman spectra of Ge nanocrystals 

embedded in silica well.  Therefore, we choose the phonon weighting function of the form: 

( )222 /8exp),( LrLrW π−=   [3] 

with the associated Fourier coefficients: 

( )2222 16/exp),0( πLkkC −≅   [4] 

where L is the nanocrystal diameter.  This choice of the phonon weighting function drives the 

surface vibrational amplitude close to zero due to the matrix-induced fixed boundary condition 
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and is consistent with recent dynamical matrix calculations for Ge nanocrystals.14  An expression 

for the average phonon dispersion of Ge within the Brillouin zone, )(kω , was calculated by 

Wellner and co-workers using the Brout sum method and neutron scattering data of Nilsson and 

Nelin to be:21 

2/1
2

2
0 5766.0

43565)( 










+
−=

r

r

k
kk ωω   [5] 

where ( )kakr π2/=  is the reduced wavevector, a = 0.566 nm is the lattice parameter of bulk Ge, 

and 0ω  is the bulk zone center optical phonon frequency for isotopically enriched bulk 74Ge.   

 Figure 5(b) shows the experimental Raman spectrum along with a simulated spectrum 

(dashed line) calculated according to Eq. 2 with Fourier coefficients and phonon dispersion curve 

given by Eqs. 4 & 5, respectively.  The finite particle size distribution is accounted for by direct 

summation of normalized simulated spectra of different sizes weighted by the measured size 

distribution.  This simulated spectrum shows the expectation for fully relaxed nanocrystals and 

gives a line position red shifted in relation to the bulk reference spectrum, in accordance with the 

expectations of the phonon confinement model.   

We can estimate the contribution to the total compressive stress on nanocrystals from 

solidification and differential thermal expansion by using continuum elasticity theory and an 

assumed, simplified geometry.  An individual nanocrystal is modeled as an elastically isotropic 

spherical precipitate of radius RGe  confined within a spherical matrix cavity of radius RAl2O3
 in 

sapphire.  We also assume that the sapphire matrix is elastically isotropic.  The nanocrystal 

surface is assumed to be in direct contact with the sapphire at all times, and the nanocrystal mass 

is held constant.  Given these assumptions, the pressure in the nanocrystal at the annealing 
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temperature can be calculated in terms of the elastic properties of the Ge and sapphire, and 

Ge/sapphire surface tension: 

PGe =
12BGeµAl2O3

[RGe − RAl2O3
]+ 3BGe 2γGe−Al2O3

RAl2O3
RGe

4µAl2O3
RGe + 3BGeRAl2O3

               [6] 

where 
32OAlµ  and GeB  are the shear modulus of sapphire and the bulk modulus of Ge, 

respectively, and 
32OAlGe−γ  is the Ge/sapphire interface energy.  To our knowledge, the solid Ge-

sapphire interface energy is not known.  We use a value of 1.3 J/m2 for 
32OAlGe−γ , which is the 

liquid Ge-sapphire interface energy calculated from the wetting angle measurements of Kaiser 

and co-workers.27  Significant differences between the liquid Ge-sapphire interface energy and 

the solid Ge-sapphire interface energy would result in large deviations of the melting point of 

nanocrystals from the bulk melting point which are not observed during in situ TEM heating 

measurements. 

The pressure in the nanocrystal is measured via Raman spectroscopy at room 

temperature, so one must take into account the coefficient of thermal expansion for Ge and 

sapphire and the volumetric change of Ge due to solidification by replacing the radii in Eq. 6 by: 

( )
( )( ) 3

1

323232

)()(
0

0

)()(1

)(1

LsSGemmeasLGeamGeGe

OAlameasOAlOAl

VVTTTTRR

TTRR

αα

α

−+−+=

−+=
  [7] 

where the superscript of 0 indicates the radii are taken at the annealing temperature, Τa. Tm is the 

measured melting point of the nanocrystals (955 °C), and measurement is performed at room 

temperature, Tmeas.  Bulk values for the thermal expansion coefficient of solid Ge ( )(sGeα ), 

molten Ge ( )(LGeα ), and sapphire (
32OAlα ) are assumed.  The volumetric expansion of Ge liquid 

to solid is 6%.21,28 
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 The solid curve in Fig. 5(b) shows the simulated spectrum calculated using the phonon 

confinement model after accounting for stress originating from the interface energy, 

solidification expansion, and differential thermal expansion.  The spectrum is calculated in the 

same manner as that given by the dashed line, but the spectral contributions from each 

nanocrystal size are shifted according to Eq. 1 using the compressive stresses calculated by Eq. 

6.  Together, solidification and differential thermal expansion lead to 2.5 GPa of compressive 

stress, independent of particle size, that results in a 8.8 cm-1 blue shift of the Raman spectrum.  

We note that the contribution from differential thermal expansion leads to a reduction of the total 

stress.  The interface energy contributes a size dependent compressive stress equivalent to 

rOAlGe 32/2γ  which leads to an additional blue shift and some sharpening of the spectrum. 

 Although the stress calculations presented above rely on the approximation of a spherical 

particle in an elastically isotropic matrix, the agreement between theory and experiment is quite 

good.  Therefore, we conclude that the observed blue shift of the Raman spectrum is primarily a 

consequence of the volumetric expansion of Ge during solidification upon cooling from the 

growth temperature, differential thermal expansion, and the Gibbs-Thomson effect.  Although, 

non-hydrostatic stress components may be present due to interface registry between Ge 

nanocrystals and the sapphire matrix, these contributions to the total stress are found to be 

negligible. 

ii. Stress Relaxation 

 We recently demonstrated that Ge nanocrystals embedded in silica are under compressive 

stress and that this stress can be controllably relaxed via post growth thermal annealing.15  Stress 

relaxation occurs by the thermally activated diffusive flux of matrix atoms away from local 

regions of nanocrystal growth.  In the present study, we attempted to relax the observed 
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compressive stress by post-growth thermal annealing at temperatures both above and below the 

nanocrystal melting point (955 °C).  Figure 6(a) shows Raman spectra of sapphire embedded Ge 

nanocrystals in the as-grown state and after post-growth thermal annealing at 800 °C for 72 h and 

1100 °C for 24 h.  No stress relaxation is observed after either post annealing treatment.  Indeed, 

compressive stress increases after annealing at 1100 °C.  These observations are consistent with 

the diffusive stress relaxation mechanism observed for silica-embedded Ge nanocrystals and 

with the stress origin described in the previous section.  We further note that the surface phonon 

boundary condition does not change during post-growth thermal annealing.14 

 During annealing at 800 °C the Ge nanoparticles remain crystalline and are 

compressively strained such that a driving force exists for stress relaxation.  However, at this 

temperature self-diffusion within sapphire is exceptionally slow (DO ~ 10-28 cm2 s-1).29  

Therefore, even after a heating period of 72 h, no observable stress relaxation has occurred.  At 

1100 °C oxygen self-diffusion (DO ~10-22 cm2 s-1)29 should be rapid enough to permit observable 

stress-relaxation after 24 h.  However, at this temperature Ge nanoparticles are molten and 

contraction of Ge upon melting removes the compressive strain, and thus driving force for 

relaxation, at the annealing temperature.  The increase of stress after annealing at 1100 °C is a 

consequence of the differential thermal expansion between liquid Ge and sapphire.  During 

annealing, diffusion is sufficient for the molten nanodroplets and the sapphire cavity to reach the 

equilibrium radius.  Upon cooling, stresses again accumulate due to solidification and differential 

thermal expansion.  Figure 6(b) shows the simulated Raman spectrum which accounts for 

compressive stress after annealing with Ta = 1100 °C.  Once again, experiment and theory agree 

well and the stress generation model is sufficient to describe the observed stress.  We therefore 
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conclude that the stress enhancement after 1100 °C post-growth thermal annealing is a 

consequence of differential thermal expansion. 

IV. CONCLUSION 

 In conclusion, we synthesized 74Ge nanocrystals in sapphire by ion implantation followed 

by thermal annealing at 1200 °C.  The structural properties of these nanocrystals possess both 

differences and similarities compared to those embedded in amorphous silica.  Sapphire 

embedded nanocrystals are highly faceted and have an invariant orientation relationship to the 

sapphire matrix with (111)Ge || ( 1041 )sapphire.  In situ heating in a TEM reveals that the 

nanocrystals melt and re-solidify near the bulk melting point.  Raman spectra are well described 

by a phonon confinement model, but the line positions are blue shifted with respect to bulk as a 

consequence of significant compressive stresses.  Calculations utilizing continuum elasticity 

theory reveal that the compressive stress can be fully accounted for by solidification expansion 

upon cooling of molten nanodroplets from the growth temperature, differential thermal 

expansion, and the Gibbs-Thomson effect.  Stress relaxation, which should occur via diffusion of 

matrix atoms, does not occur over reasonable time scales because of the exceptionally slow 

motion of self-atoms at temperatures below the melting point of nanocrystals.  Above the 

melting point, the driving force for relaxation disappears as a consequence of contraction of Ge 

upon melting.  Because nanocrystals have significant potential for use in memory devices, and 

would therefore be embedded in very thin dielectric films, it is of great importance to understand 

stresses that may accumulate during growth.  Here, we have shown how such stresses may 

accumulate as a consequence of a phase change between the growth temperature and room 

temperature.  Optical measurements of sapphire-embedded Ge nanocrystals, which are beyond 
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the scope of the present work, are underway and initial results indicate that defect levels are 

responsible for broad, visible luminescence.  
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FIGURE CAPTIONS 
 
Fig. 1:  Concentration profiles of Ge in sapphire before and after nanocrystal growth at 1200 °C 

for 1h obtained by Rutherford backscattering spectrometry.  After annealing, the total Ge content 

is reduced due to out-diffusion of Ge from the surface. 

 

Fig. 2: Cross sectional TEM micrographs of an implanted and annealed sapphire sample 

containing Ge nanocrystals.  The lower magnification micrograph (a) shows contrast arising 

from stress fields and end of range implantation damage.  At higher magnification (b) moiré 

fringes become visible from the overlap of the crystal planes of Ge nanocrystals and the sapphire 

matrix. 

 

Fig. 3: Size distribution of Ge nanocrystals embedded in sapphire after 1200 °C annealing for 1 h 

obtained by analysis of HR-TEM images. 

 

Fig. 4: HR-TEM image of an individual partially exposed Ge nanocrystal embedded in sapphire.  

The upper left region of the nanocrystals shows the Ge lattice and the bottom right portion of the 

nanocrystal exhibits moiré fringes from the overlap of the crystal planes of the Ge nanocrystal 

and the crystalline sapphire substrate.  FFT of the image in different regions reveals a (111)Ge || 

( 1041 )sapphire orientation relationship between nanocrystals and the matrix. 

 

Fig. 5: (a) Raman spectra of isotopically enriched bulk 74Ge (○) and isotopically pure 74Ge 

nanocrystals embedded in sapphire (□).  The nanocrystal spectrum is blue shifted relative to the 

bulk reference due to compressive stress.  Lines between data points are given for clarity.  (b) 
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Raman spectrum of 74Ge nanocrystals embedded in sapphire (■) compared to simulated spectra.  

The dashed curve is the phonon confinement simulation for the case of fully relaxed nanocrystals 

and the solid curve is the simulation accounting for compressive stress on nanocrystals arising 

from solidification expansion, the Gibbs-Thomson effect, and differential thermal expansion. 

 

Fig. 6: (a) Raman spectra of 74Ge nanocrystals: as-grown (■), after post-growth thermal 

annealing at 800 °C for 72 h (○), and after post-growth thermal annealing at 1100 °C for 24 h 

(∆). The vertical dashed line gives the Raman line position of the bulk 74Ge reference sample. 

Lines between data points are given for clarity. (b) Raman spectrum of 74Ge nanocrystals 

embedded in sapphire after post-growth thermal annealing at 1100 °C for 24 h (▲). The solid 

curve is the phonon confinement simulation, including the shift due to stress, for growth at 1100 

°C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 22

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 20 40 60 80 100 120 140
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

 

 
A

to
m

ic
 F

ra
ct

io
n

Depth (nm)

 as-implanted
 1200 oC, 1h annealing

 
 
Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 23

 

 
 
 
Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 nm 

(b) 

100 nm 

(a) 



 24

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 

 
Fr

ac
tio

n

Nanocrystal Diameter (nm)  
 
Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25

 
 
 
Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ge
111 

220 

Al2O3 1104 

1012 



 26

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

260 280 300 320 340

In
te

ns
ity

 (a
.u

.)
 

Raman shift (cm-1)

 

(b)

(a)

 

 
 

 
 
Figure 5 
 
 
 
 
 
 
 
 
 
 



 27

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

260 280 300 320 340

In
te

ns
ity

 (a
.u

.)

Raman shift (cm-1)

(b)

(a)

 

 
 

 
 
Figure 6 
 




