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Abstract

Energy barriers, which control the rates of chemical reactions, are seriously un-

derestimated by computationally-efficient semi-local approximations for the exchange-

correlation energy. The accuracy of a semi-local density functional approximation is

strongly boosted for reaction barrier heights by evaluating that approximation non-

self-consistently on Hartree-Fock electron densities, as known for about 30 years. The

conventional explanation is that Hartree-Fock theory yields the more accurate density.

This article presents a benchmark Kohn-Sham inversion of accurate coupled-cluster

densities for the reaction H2 + F → HHF → H + HF, and finds a strong, understand-

able cancellation between positive (excessively over-corrected) density-driven and large

negative functional-driven errors (expected from stretched radical bonds in the tran-

sition state) within this Hartree-Fock density functional theory. This confirms earlier

conclusions [J. Chem. Theory Comput. 2023, 19, 532–543] based on 76 barrier heights

and three less reliable, but less expensive, fully-nonlocal density-functional proxies for

the exact density.

TOC Graphic

H

F

HFDFT

wrong charge transfer

Reaction coordinate

2



Kohn-Sham density functional theory1 in principle yields exact ground-state energies and

electron densities, while constraint-satisfying approximations to its exchange-correlation en-

ergy make useful predictions2 over a vast materials space. Understanding the successes and

failures of such approximations is key to improving them. It has been known for more

than thirty years that the computationally efficient semi-local approximations, when im-

plemented self-consistently, severely underestimate the barrier heights to gas-phase chem-

ical reactions,3–6 and that their accuracy for barriers is strongly boosted by performing a

Hartree-Fock (HF) calculation and then replacing the HF exchange energy by the semi-local

exchange-correlation energy evaluated on HF densities (and occupied orbitals if needed),3–6

a procedure known as “Hartree-Fock density functional theory.” Early work was done by

Scuseria,3 Bartlett and collaborators,4,6 and Janesko and Scuseria.5 More recently, this ap-

proach has been systematized by Burke and coworkers as “density-corrected density func-

tional theory”,7–10 and has been shown to improve the average accuracy of other prop-

erties of main-group molecules11 and to remarkably improve the binding energies of wa-

ter clusters,12,13 when applied to constraint-satisfying semi-local functionals such as the

Perdew-Burke-Ernzerhof generalized gradient approximation (PBE GGA)14 or the strongly-

constrained and appropriately normed (SCAN) meta-GGA.15 The corresponding (non-self-

consistent) Hartree-Fock density functionals are known as PBE@HF and SCAN@HF. More

generally, for any density functional approximation (DFA) there is a DFA@HF. While Ref.

7 rigorously defined density-driven error relative to the exact density, more recent work on

density corrections has tended for practical reasons to take the HF density as a proxy for

the exact density.

For many systems and properties, DFA@HF energy differences can be slightly more or

slightly less accurate than those of self-consistent DFA@DFA. For compact neutral atoms and

molecules at equilibrium bond lengths (including the water monomer), there is graphical,

statistical,16 and energetic13 evidence that PBE and especially SCAN densities are mod-

estly more accurate than HF densities. SCAN exchange-correlation potentials for compact
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molecules are also reasonably accurate.17 But for large classes of systems and properties,

DFA@HF energy differences are significantly and systematically more accurate than those

of DFA@DFA, which we denote as DFA. For some of these systems and properties (dissocia-

tion limits of binding energy curves,18 electron removal energies in small negative ions19), the

reason is clearly that the more localized HF density yields the correct integer electron num-

bers on separated subsystems20 while the too-delocalized DFA density often yields spurious

non-integer values.

The conventional explanation for large systematic improvements in energy differences

from DFA@DFA to DFA@HF is that in these cases the self-interaction-free Hartree-Fock

density is significantly more accurate than the self-consistent density of a semi-local approx-

imation. That explanation is indisputable for many cases, but we now show that a different

explanation accounts for the improvements in the barrier heights to chemical reactions and

the binding energies of water clusters in going from DFA to DFA@HF.

A forward barrier height is the energy difference between the transition state and the

separated reactants, and a reverse barrier height is the energy difference between transition

state and products. The higher the barrier height, the slower the reaction. The transition

states of chemical reactions are typically stretched radicals. The paradigm stretched rad-

ical is stretched H+
2 , where the semi-local functionals evaluated on the exact density can

make the total energy severely too negative21 for reasons discussed in Ref. 22: the exact

exchange-correlation hole is shared by two separated density fragments, while its semi-local

approximation is not. Thus the DFA error of the barrier height is not necessarily dominated

by the error of the DFA density. A more precise language is provided by the analysis of

Burke, Sim, and collaborators,7–10 who write the error of a self-consistent DFA for an energy

or energy difference E,

∆EDFA = EDFA[nDFA] − Eexact[nexact] = FE + DE, (1)
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as the sum of a functional-driven error

FE = EDFA[nexact] − Eexact[nexact] (2)

and a density-driven error

DE = EDFA[nDFA] − EDFA[nexact]. (3)

The exact electron density and exact total energy (but not the separate components of the

total energy) are defined in the same way in density functional theory and in traditional

quantum chemistry. By the variational principle, DE is negative for a self-consistent DFA.

For a DFA@HF calculation, where nDFA is replaced by nHF in Eq. (1), we define the analog

of Eq. (3) by replacement of nDFA by nHF,

DE(DFA@HF) = EDFA[nHF] − EDFA[nexact], (4)

which can then be positive. Equation (2) remains unchanged by the same replacement, and

the total error remains equal to FE + DE. With this replacement, Eq. (4) is technically a

“density difference”10 that vanishes when nHF = nexact, although it was called a “density-

driven error of nHF in Ref. 23. When DE(DFA@HF) is positive, the HF density over-corrects

the DFA density; when DE(DFA@HF) ≫ −DE(DFA) it excessively over-corrects the DFA,

and use of the HF density cannot be interpreted simply as a density correction to a DFA.

The precise evaluation of Eqs. (2)–(4) would require not only the exact energy Eexact[nexact]

and the exact density nexact(r) (both well approximated in many cases by a coupled-cluster

calculation), but also an inversion of the exact density to find the exact Kohn-Sham oc-

cupied orbitals for the evaluation of EDFA[nexact].
17,23 Accurate implementation of the in-

version has been reported for a limited number of polyatomic systems, with few tens of

electrons.24–26 To better understand the errors of the 76 barrier heights in the BH76 test
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set,27–29 Ref. 30 recently applied three fully-nonlocal proxies for the exact functional and

density in Eqs. (1)–(4), chosen to satisfy two criteria: (1) accurate self-consistent barrier

heights, and (2) nearly correct electron transfers due to nearly-linear variation of the total en-

ergy of a separated fragment between adjacent integer electron numbers.20 (The semi-local

approximations bend below the straight-line segment and are too de-localizing,20,31 while

Hartree-Fock bends above and is too localizing.31) The proxy functionals were, in order

of reliability, the long-range-corrected hybrid LC-ωPBE,32 a global hybrid of SCAN with

50% exact exchange called SCAN50 or SX-0.5, and the self-interaction corrected SCAN-

FLOSIC.33 All three showed the same pattern: a large negative functional-driven error of

PBE and SCAN, largely canceled by a large positive density-driven error when evaluated on

the HF density. The estimations of density-driven error (DE) in kcal/mol differed substan-

tially between proxies, leaving some room for doubt. For example, for the forward reaction

in Table 1 of this paper, they were (from Table S13 of Ref. 30) −1.3 (PBE@LC-ωPBE),

−4.9 (PBE@SCAN50), −6.4 (PBE@SCAN-FLOSIC), although all were significantly differ-

ent from +11.3 (PBE@HF) from Table 1, which uses an accurate CCSD(T) proxy. The

average over the three original proxies, -4.2, was not so different, from -2.2 (PBE) in Table

1.

Can we understand how all the BH76 transition states can have large negative functional-

driven errors? Such negative errors arise in the stretched radical H+
2 (see Fig. 3 of Ref.

22), while large positive functional-driven errors arise in the stretched, symmetry-unbroken

singlet or non-radical H2. All of the BH76 transition states have stretched bonds, with

total spins tabulated in Ref. 29. Of 38 forward reactions, 23 involve an odd number of

electrons, and their transition states are likely to be stretched radicals. Of the remaining

15, 5 have non-singlet transition states that are also likely to be stretched radicals, and 10

have stretched singlet or non-radical transition states. But none of these 10 dissociate to

separated fragments with strong correlation between them. 6 of these 10 do not fragment

in either the forward or reverse directions, and the remaining 4 have at most two fragments
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in either direction, at least one of which is closed-shell. Thus none of the BH76 transition

states appears to be like stretched H2.

The work of Ref. 30 suggested that this unconventional error cancellation occurs strongly,

widely and reliably for barrier heights, but the extent to which the proxies fairly represented

the exact functional could still be questioned. Here we will focus on the forward and reverse

barrier heights of the BH76 reaction H2 + F → HHF → H + HF, taking the coupled cluster

CCSD(T)/aug-cc-pV5Z34,35 energies and densities36 from the PySCF code37 to be exact.

The resulting barrier heights differ by 0.2 kcal/mol or less from the W2-F12 “exact” values

in BH76,29 which aim to reproduce CCSD(T) results in the complete basis-set limit.38 This

work and Ref. 30 together permit a firm conclusion that, for many BH76 barrier heights,

the Hartree-Fock density makes a density-driven error that largely cancels the substantial

functional-driven error of PBE or SCAN. This article also briefly discusses the possibility of

a similar error cancellation in the water clusters, and presents a possible explanation for this

unconventional error cancellation in molecules and molecular clusters.

With the help of the accurate coupled cluster method, we can evaluate the total DFA

or DFA@HF error of a barrier height from Eq. (1). But finding the separate functional-

driven [Eq. (2)] and density-driven [Eq. (3)] errors still requires an accurate determination

of the Kohn-Sham orbitals that yield the CCSD(T) density, a challenging inverse problem.

For this, we use the partial differential equation constrained optimization method of Refs.

17,25,39. In this method, the inverse problem is formulated as a constrained optimization of

the Kohn-Sham exchange-correlation potential vxc(r) and solved using a convergent finite-

element basis set. Each finite element is a fifth-order Lagrange polynomial in the x, y, and z

directions. For open-shell systems, we use a recent extension40 of the inverse formulation with

a spin-dependent exchange-correlation potential. Self-consistent DFA and DFA@HF at the

quadruple-zeta level can be found in Ref. 30; we recompute these values at the quintuple-zeta

level here. All our density-functional calculations employ the separate up- and down-spin

electron densities, not just the total density. The DFA and DFA@HF calculations were
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treated as spin-unrestricted for F, H, and the HHF transition state; and as spin-restricted

for H2 and HF. The local spin density approximation (LSDA) uses the parametrization of

Ref. 41.

Importantly, none of the functionals predicts a highly spin-contaminated transition state.

At the 5ζ level, ⟨S2⟩ is 0.75 with the exact functional, 0.77 with HF, 0.75 with LSDA and

PBE, and 0.76 with SCAN and r2SCAN.

Table 1: Barrier heights (BHs) and their functional-driven errors (FEs), and
density-driven errors (DEs) for the reaction H2 + F → HHF → H + HF. All
units are kcal/mol. (1 Hartree ≈ 627.5 kcal/mol; 1 eV ≈ 23.06 kcal/mol.) FEs and
DEs are computed by taking the CCSD(T)/aug-cc-pV5Z energies and densities
as exact. The strong density sensitivity (absolute change of BH from LSDA
to LSDA@HF ≫ 2 kcal/mol) is often taken as an indicator of the need for
HF density correction.10 However, as BH(DFA) − BH(DFA@CCSD(T)) is about 1
kcal/mol for SCAN and r2SCAN (see Table S2 of the Supporting Information),
this should not be a highly density-sensitive system for the meta-GGAs. The
sum of FE and DE yields the total error with reference to the CCSD(T)/aug-
cc-pV5Z BH.

Forwards Reverse
DFA BH FE DE BH FE DE
LSDA -23.7 -20.7 -4.4 25.4 -3.8 -4.7
LSDA@HF -5.4 -20.7 13.9 43.2 -3.8 13.1
PBE -12.6 -11.8 -2.2 24.8 -6.8 -2.3
PBE@HF 0.9 -11.8 11.3 37.6 -6.8 10.5
SCAN -7.4 -7.8 -1.0 22.0 -10.6 -1.2
SCAN@HF 2.1 -7.8 8.5 30.9 -10.6 7.7
r2SCAN -6.9 -7.3 -1.0 23.8 -8.9 -1.3
r2SCAN@HF 2.5 -7.3 8.5 32.6 -8.9 7.6
CCSD(T) 1.4 0.0 0.0 33.9 0.0 0.0

Table 1 shows our numerical results. The coupled cluster “exact” barrier heights are much

smaller for the forward reaction than for the reverse. The semi-local functionals severely

underestimate the barrier heights, but there is overall improvement in the forward barriers

from LSDA to PBE to SCAN and its more computationally-efficient twin r2SCAN.42 For

these self-consistent DFAs, both FE of Eq. (2) and DE of Eq. (3) are negative, but FE

is typically much more negative. From DFA to DFA@HF, the too-delocalized DFA density
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is replaced by the too-localized Hartree-Fock density, and DE becomes strongly positive,

cancelling most of FE, especially for the more sophisticated SCAN and r2SCAN. This is the

same error pattern found for the full BH76 set from the proxy-exact estimates of Ref. 30.

By this energetic measure, the Hartree-Fock density for the transition state is actually much

less accurate than the self-consistent DFA density. But, as suggested at the end of Ref.

10, there is in principle a DFA that yields the DFA@HF total energy and a self-consistent

density expected to be more accurate than the HF density.
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Figure 1: Error of the forward energy barrier height for the reaction H2 + F → HHF → H
+ HF from SCAN (blue) and proxy-exact SCAN50 (orange), evaluated on a density na that
interpolates between the self-consistent SCAN density at a = 0 and the HF density at a = 1.
That density is found self-consistently from the exchange-correlation functional of Eq. (5).

Hartree-Fock DFT is a successful density correction to a DFA like SCAN when FE is

small in magnitude and DE(DFA) is large, as in the dissociation limits of molecular binding

energy curves or the electron affinities of atoms or small molecules, because in these cases
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the too-delocalized DFA density is qualitatively wrong while the too-localized HF density is

qualitatively right. In the barrier heights problem, however, DE(DFA) is much smaller in

magnitude than FE, so that a true density correction would leave most of the total error

uncorrected. To understand what actually happens for the barrier heights, imagine a density

na computed self-consistently from a linear interpolation of the exchange-correlation energy

Exc([n]; a) = EDFA
xc [n] + a(EHF

x [n] − EDFA
xc [n]) (0 ≤ a ≤ 1). (5)

This Exc([n]; a) functional interpolates between the DFA (a = 0) and HF (a = 1) functionals.

The error in the barrier height is due to a small density variation around a minimizing density

na, for which EDFA[na] ≈ EDFA[nDFA] + CDFAa
2, and CDFA > 0, as we now show.

Figure 1 plots the forward barrier height errors of SCAN and SCAN50 when evaluated

on na, as a function of a. The error in the SCAN50@na barrier height minimizes at 0.6

kcal/mol for a ≈ 0.43 (by spline interpolation). Taking SCAN50 as a proxy for the exact

energy functional only, then the density which is closest to the exact one lies roughly in the

range 0.3 ≲ a ≲ 0.5. Let a = abest be that value of a for which nabest ≈ nexact is closest to

the exact density. Under the simplifying assumptions that DE(DFA@na) is linear in a2, and

that EDFA[nabest ] = EDFA[nexact],

DE(DFA) ≈ −CDFAa
2
best, (6)

DE(DFA@HF) ≈ CDFA(1 − a2best) (7)

consistent with the signs and relative magnitudes of these two DEs in Table 1. In particular,

the SCAN data in Table 1 suggest CSCAN ≈ 9.5 kcal/mol and abest ≈ 0.32 for the forward

reaction, and CSCAN ≈ 8.9 kcal/mol and abest ≈ 0.37 for the reverse reaction.

Why is the unconventional error cancellation between FE(DFA) and DE(DFA@HF) so

good for barrier heights? Such a reliable effect is unlikely to be accidental. Taking SCAN50

to be a proxy for the exact functional’s barrier height energy, the FE of SCAN, computed
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as the difference between the barrier-height errors in SCAN@na and SCAN50@na in Fig. 1,

strongly decreases in magnitude as a approaches 1, the HF limit. The physical reason for

this could be that SCAN and other semi-local functions become more accurate for a given

density as that density becomes more localized and more HF-like. Over the range 0 < a < 1,

SCAN varies much more strongly than proxy-exact SCAN50.

Table 2: Binding energies (BEs), functional-driven errors (FEs), and density-
driven errors (DEs) for the water dimer, using the aug-cc-pVQZ basis set.35

In the CCSD(T) columns, FEs and DEs are computed by taking the CCSD(T)
density to be nexact in Eqs. (2)–(4). In the r2SCAN50 columns, FEs and DEs are
computed using the self-consistent densities of the 50% global hybrid of r2SCAN,
r2SCAN50, as a proxy30 for the exact density nexact in Eqs. (2)–(4). In all cases,
we take the self-consistent CCSD(T) binding energy to be Eexact[nexact]. All values
are in kcal/mol.

FE DE
DFA BE CCSD(T) r2SCAN50 CCSD(T) r2SCAN50
LSDA -8.1 -2.6 -2.5 -0.4 -0.4
LSDA@HF -6.9 -2.6 -2.5 0.7 0.7
PBE -5.2 0.1 0.1 -0.2 -0.2
PBE@HF -4.4 0.1 0.1 0.6 0.6
SCAN -5.4 -0.1 -0.1 -0.2 -0.1
SCAN@HF -4.7 -0.1 -0.1 0.4 0.5
r2SCAN -5.1 0.2 0.1 -0.2 -0.1
r2SCAN@HF -4.5 0.2 0.1 0.4 0.5
r2SCAN50 -4.8
CCSD(T) -5.1

Finally we turn to the (negative-definite) binding energy of a water cluster (H2O)n, de-

fined as the energy of the bound cluster minus the energies of its n separated H2O monomers

(at their optimized geometries). SCAN is accurate for the relative energies of different

hydrogen-bond networks, and even for the binding energy of the water dimer (H2O)2, but

overestimates the binding of larger water clusters, reaching an error of about −20 kcal/mol

for (H2O)20 clusters. However, SCAN@HF reaches almost coupled-cluster accuracy for the

binding energies of the larger water clusters.12,13 Kohn-Sham inversion of a coupled cluster

density for a large water cluster is computationally prohibitive at present, but we have done

this for the water dimer in Table 2. While LSDA overbinds the water dimer by −3 kcal/mol,
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PBE, SCAN and especially r2SCAN overbind by only a few tenths of a kcal/mol, in compari-

son to CCSD(T). DFA@HF is more accurate than DFA for LSDA but not for PBE or SCAN.

Nevertheless, we still find that DFA@HF turns a small negative density-driven error of DFA

into a substantially larger positive density-driven error. In the larger water clusters, there

might again be a cancellation in DFA@HF between negative FE and positive DE. Table 2

also shows that the r2SCAN 50% global hybrid is a good proxy for the exact or CCSD(T)

density, yielding about the same FEs and DEs for the approximate functionals. However,

as its parent meta-GGA r2SCAN makes essentially zero FE for the water dimer, admixture

of exact exchange to correct errors in the r2SCAN density introduces a more substantial

FE to the r2SCAN50 BE. Composite methods like HF-r2SCAN-DC443 (with a long-range

dispersion correction) might be general-purpose practical solutions to this apparent catch-22.

Table S1 of the Supporting Information shows that our Kohn-Sham inversion is suffi-

ciently accurate for our study. Letting PBE-inv denote the density obtained from Kohn-

Sham inversion of the PBE density, the barrier heights from PBE@PBE and PBE@PBE-inv

agree within 0.4 kcal/mol. There is a small but noticeable difference, ∼ 2 kcal/mol between

DFA@HF and DFA@HF-inv (the Hartree-Fock density obtained from Kohn-Sham inversion).

This is associated with the difference in the Hartree-Fock and Kohn-Sham orbitals.

To understand the density errors of DFA or DFA@HF, EDFA[n] must be used, as in

Eqs. (3) and (4), but there are many other ways to measure density errors that can lead

to different conclusions about the relative accuracies of the DFA and HF densities. For the

neutral water dimer, Ref. 13 set up a plane perpendicular to the bond axis, such that a

coupled cluster calculation put exactly 10 electrons on each side, and found electron transfer

errors of opposite sign for semi-local DFAs and for HF. Ref. 30 found the same behavior for

several transition states. The errors were small in magnitude, and smaller for HF than for a

few DFAs. In the cases studied here, EDFA[nHF] −EDFA[nexact] is strongly positive, but that

does not rule out Eexact[nHF] − Eexact[nDFA] being negative; the HF density could be better

than the DFA density in the sense of the exact density functional variational principle. That
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said, Fig. S1 of the Supplemental Material shows an independent measure by which the

density error of H...H...F decreases from Hartree-Fock to SCAN to CCSD(T).

In summary, we have shown that DFA@HF works for the barrier heights to chemical

reactions, and have suggested that it works for the binding energies of larger water clusters,

not because the Hartree-Fock density is more accurate than the self-consistent DFA density

but because the Hartree-Fock density creates a positive and excessive over-correction of the

DFA density-driven error that cancels much of the negative functional-driven error. The

large functional-driven error for barrier heights was estimated first in Ref. 30, and has been

refined and confirmed here. It is clear from Refs. 7–10 and from Eqs. (1)–(3) that, when the

functional-driven error of a DFA is large and its density-driven error is small in comparison,

a true density correction cannot lead to high accuracy. Future work will employ proxy-exact

functionals to test this hypothesis for larger water clusters. Clearly, improved functionals

will need the right amount of fully nonlocal density dependence, in both the exchange-

correlation energy and the exchange-correlation potential. Self-interaction corrections30,44

to DFAs, while needing improvement for some properties, appear for barrier heights to get

the right answer for the right reason, by significantly reducing both functional- and density-

driven errors.

Besides density-corrected density functional theory, there is a second evolution from HF-

DFT which is less relevant to our work but also interesting. Bartlett and collaborators45,46

have proposed a correlated orbital theory and associated QTP functionals in which the

orbital energy eigenvalues yield accurate vertical ionization energies from all the occupied

states (a condition they infer from adiabatic time-dependent density functional theory). In

their work, the (generalized) Kohn-Sham potential, and not the density, takes center stage.

As an example, they start with a four-parameter range-separated hybrid functional, then

adjust the parameters in the functional (and thus in its potential) to give a best fit of the

energy eigenvalues to the five vertical ionization energies of the water molecule.45 The same

parameters produce good vertical ionization energies and other properties in other systems,
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with low many-electron self-interaction error. This approach should not be applied to the

semi-local functionals considered here, for which all parameters satisfy other constraints

and for which the orbital energy eigenvalues are strongly contaminated by self-interaction

error. It could however be a way to improve one-electron self-interaction corrections to the

semi-local functionals.

The conclusions of Ref. 30 (cancellation of functional- and density-driven errors) for

the BH76 barrier heights in Hartree-Fock density functional theory were based upon three

(hybrid or self-interaction-corrected) proxies for the exact densities, and have been confirmed

here for the H2 + F → H + HF barriers, and their accurate Kohn-Sham inversions. A

confirmation for the full BH76 set, using a more efficient but perhaps less accurate approach

(orbital optimized MP2), has been made recently in Ref. 47. Reference48 provides recent

confirmation of our findings, with an interesting analysis of barrier-height errors with and

without a self-interaction correction. The higher accuracy of GGA, meta-GGA, and hybrid

functional densities over the Hartree-Fock density was demonstrated for isolated atoms16

and for the dipole moments of molecules at equilibrium.49

For the barrier heights to chemical reactions, as for the binding energies of equilibrium

molecules, the density-driven errors of self-consistent DFA calculations are small, as the

variational principle applied to Eq. (3) would suggest, but the functional-driven errors of

the barrier heights are large in magnitude, as in Table 1.

Supporting Information

Numerical validation of the Kohn-Sham inversion; single-point total energies with respect

to basis set size; complete basis set extrapolation; molecular geometries; analysis of density

errors of HF, SCAN, and CCSD(T) relative to Brueckner coupled-cluster doubles (CCD)

density
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