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A system to build distributed multivariate
models and manage disparate data sharing
policies: implementation in the scalable
national network for effectiveness research

Daniella Meeker1,5, Xiaoqian Jiang2, Michael E Matheny3,4, Claudiu Farcas2, Michel D’Arcy5, Laura Pearlman5, Lavanya Nookala3,
Michele E Day2, Katherine K Kim6, Hyeoneui Kim2, Aziz Boxwala2, Robert El-Kareh2, Grace M Kuo7, Frederic S Resnic8,
Carl Kesselman5, Lucila Ohno-Machado2

ABSTRACT
....................................................................................................................................................

Background Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for central-
ized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate
models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner.
Objective The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery,
workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such
as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchro-
nous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies.
Materials and Methods Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the au-
thors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical esti-
mation in the SCANNER federated network.
Results The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each
study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated
the use of these systems among institutions with highly different policies and operating under different state laws.
Discussion and Conclusion Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or inde-
pendently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing
institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks.

....................................................................................................................................................

Keywords: distributed analytics, federated research network, privacy-preserving network infrastructure, comparative effectiveness research

BACKGROUND AND SIGNIFICANCE
Several electronic networks have been formed in the past two decades
to provide support for public health surveillance, cohort discovery, and
comparative effectiveness research (CER) studies, including the HMO
Research Network,1 I2B2,2 caBIG,3 the Biomedical Informatics
Research Network,4,5 SAFTINet,6 and more recently, PCORnet.7–18

Many of these electronic networks have also developed custom soft-
ware tools as part of their implementation strategy. The majority of
networks involve research data collection for a specific study (e.g.,
clinical trials), function (e.g., pharmacovigilance), or domain (e.g., dis-
ease registries), while a few involve the use of data collected for pa-
tient care (clinical data research networks (CDRNs)) to perform basic
descriptive statistics about a selected sample cohort (e.g., counts, av-
erages), or transmit selected observations. As interest in a learning
healthcare system that can execute research studies on CDRNs in-
creases19 it is important that CER studies support advanced descrip-
tive and inferential statistics in distributed environments and allow
study-based data governance.

This work addresses requirements and solutions that can be ap-
plied in scalable ways to manage some sociotechnical issues for man-
aging analysis workflow in a distributed computing environment.
Researchers interested in multi-institutional collaborations involving
analysis of patient records face regulatory and ethical challenges that
limit the scalability of research across projects and organizations. A
widely endorsed architecture for addressing the legal and organiza-
tional barriers for using clinical data for research in US institutions has
been the distributed research network. In such clinical data networks,
data are maintained locally by each institution, and are coordinated via
a common infrastructure that shares practices and software.
Distributed networks still do not solve all problems, but they currently
represent the most practical solution in cases where physical transfer
of data is difficult (e.g., bandwidth limitations for big data, or interna-
tional regulations20 against physical hosting of data outside geographi-
cal boundaries).

Simultaneously with the growing interest in CDRNs and in
“big data,” there has been a resurgence in application of parallel
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processing algorithms based on “map-reduce”21 and related frame-
works such as the Statistical Query Oracle22 whereby iterative algo-
rithms that do not require row-level data transfer can be used to
compute the same models that would normally be based on centrally
pooled data. While it is not trivial to redevelop model estimation algo-
rithms in these architectures, significant effort has been made in the
computer science community to develop new algorithms that are
available in open source software. This approach lends itself well to
the policy requirements of federated research networks because it re-
tains data control at each site. Without the ability to centralize analysis,
most federated networks must independently estimate multivariate
models for each site in the network.23 However, a single analytic
model that can capture variation or adjust for confounders across the
entire network is still desirable. Our approach supports a natural mar-
riage of parallel computation algorithms and federated CDRN policy
management infrastructure. By creating a platform that allows addition
of novel methods to a repository by contributors both inside and out-
side the SCAlable National Network for Effectiveness Research
(SCANNER) team, we enable scalability to new methods as well as
new projects and research teams.

SCANNER design was informed by platforms adopted by several
CDRNs, including PopMedNet, which has been adopted by the
PCORnet Network and the MiniSentinel project,16 as well as the
SHRINE system for distributing cohort discovery queries to harmo-
nized I2B2 instances,24 which has been adopted by academic con-
sortia such as UC-ReX.25 We refer readers to two recent reviews
that cover governance and these (along with other) technical solu-
tions in greater detail.26,27 While SCANNER does have a native sys-
tem for query distribution, most of the study management services
orchestrated at the portal, such as the study registry and library of
data operations, are compatible with existing platforms for query
federation (e.g., TRIAD,28 PopMedNet,29 or Hadoop30). That is, the
SCANNER portal might be implemented with a plug-in interface to
these distribution platforms while retaining functionalities of both.
The intent of SCANNER was not to develop a query federation plat-
form, which exists already in several commercial and academic con-
texts. Rather, SCANNER is a system for reusable web services for
data operations and policy management that could be implemented
in any framework, giving users the ability to form networks for re-
search and cohort discovery on a reusable governance infrastruc-
ture. However, in order to support distributed analytic use cases,
some features for request scheduling that are distinct to the
SCANNER and other emerging platforms for REST-based parallel dis-
tributed processing were required (e.g., GridFactory31 and Apache
Spark32). While we opted to develop our own portal interface,
we could have adapted existing portal software for overlapping
functionality.

CDRNs need to flexibly support a variety of uses and governance
policies, and allow participants to select configuration options that
accommodate stakeholder needs.33 Figure 1 shows the process
model we used to generate requirements for CER functionality. The
CER process is divided into preparation and execution phases. The
process begins with a research question, iterates through design and
preparatory analyses, and a research plan that is submitted to ap-
propriate parties for approval, to generate a final list of policies that
must be enforced throughout the execution of the project. Later, in
the execution phase, some studies require implementing interven-
tions or new data collection modes, but in all cases, data must go
through several stages of processing for both policy compliance and
CER data quality validation. Using this process model, each endpoint
in a CER workflow generates a policy compliance point—an

opportunity to test for compliance with the stated policies of the re-
sources in question. The boxes colored in black represent opportuni-
ties to gain efficiencies by codifying governance, data preparation,
and policies.

We conducted a series of interviews with institutional review
board (IRB) and compliance officers and completed a regulatory con-
tent review34 to generate SCANNER requirements. This resulted in
study-centric data sharing policy management requirements that
resemble specifications that might be implemented in eIRB soft-
ware—defining staff, roles, protocols, data definitions, and analysis
methods. An important additional security requirement arising from
this analysis is the ability to support menu-driven queries for compu-
tation of analytic models, to avoid distribution of opaque analysis
programs that may introduce unknown security risks. In particular,
these included methods that enable collaborative estimation of a
single model without any need to share patient-level data. These
requirements were used to design and develop the SCANNER
system.

METHODS AND APPROACH
SCANNER software is intended to enable teams of investigators to initi-
ate and manage studies that involve exposing data resources to a se-
curely controlled network, with an emphasis on preserving the ability to
conduct multivariate analysis without centralized pooling of data.
SCANNER software is composed of a network portal, a set of web ser-
vices, and virtual machines that host data and analysis programs that
are controlled by the portal. Individual data contributors may join the
SCANNER network by implementing one or more virtual machines
and registering site authorities responsible for data stewardship.
Alternatively, a private network may be created with an independent
portal instance by downloading the SCANNER software. Joining as a
member of the SCANNER network does not confer any privileges, each
SCANNER study involves approval of data sharing policies—for example,
a prep-to-research “cohort discovery” study commonly implemented in
platforms such as SHRINE might enable all members of the study to
query data from all other members of the study to retrieve counts with-
out manual approval. Alternatively a “meta regression” study of conges-
tive heart failure might enable investigators to run analyses on posted
data sets adhering to a particular data dictionary, with some sites requir-
ing “human in the loop” approval and others enabling synchronous ac-
cess to the data set. Another option might be a single-site study where
a principal investigator (PI) queries only data from his own site. The in-
tent of SCANNER software is to clearly separate policy management
from data management and queries so that role-based-access controls
to data resources can be attributed at the level of a study rather than
coupled tightly to software.

Figure 2 is a simplified view of the SCANNER architecture, repre-
senting the most important functional aspects of SCANNER. The
SCANNER network consists of a web portal (top center) and a virtual
machine server at each node in the network (bottom). The portal
server integrates multiple components host the SCANNER website,
which presents each user a view appropriate to their role in the net-
work and the state of the different activities in which he participates.
Screenshots from the portal are displayed in Figure 3 and in the
Appendix.

In Figure 2, the first step in conducting a study is defining a comput-
able study protocol (1). A designated PI may initiate a new study, assign
staff to roles with varying levels of authorization, and define the detailed
data elements in the analytic data set and methods that will be invoked
after approval. The PI also nominates sites for participation. With these
specifications in place, site authorities may then log into the portal’s
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approval forms (2). During approval, the site authorities (a) approve the
set of study queries and data transfer modalities they will accept, (b) ex-
ecute the extract queries needed to create the standardized analysis
data set, and (c) post that data set to a network location, and add the re-
source address to the approval form.

With these pieces in place for each node participating in a study,
an authorized investigator on the study team may log into the portal
(4). At this point a graphical user interface (GUI) is presented where
the user can specify the sites and analytic model parameters that
have approved study protocols (e.g., selected variables within the ap-
proved data set, defining independent and dependent variables). This
request is then converted into an XML-based query (5) that is distrib-
uted to the network nodes. The query invokes the analysis package
hosted on the node and results are calculated (6). Results are retained
at the site, if the protocol specified that approval was required, the site
authority will receive an email message indicating that there is a pend-
ing result set (7). In the case of iterative map-reduce computations,
the scheduler reformats the queries for the next iteration (8). Note that
the “result manager” is the “master” where convergence algorithms
are evaluated in each iteration of map-reduce algorithms, and only
statistical aggregates are transferred. Approved results are returned
to the portal. The result handler either schedules another iteration or
returns final results to the user interface for display (9).

The main components of SCANNER are described below.

Study Manager
As described above, SCANNER data sharing policy management is
based on a study, and resembles the types of specifications adopted

by eIRB systems. A SCANNER study consists of computable proto-
cols, staff, and their roles, the underlying data resources instanti-
ating the protocol, and associated documentation. A protocol is
instantiated with data by authorized individuals at each site. The
SCANNER study manager includes GUIs for protocol specification
(shown in the Appendix) that require a study designer to define 1)
data set definitions, 2) data operations and analytics, and 3) options
for mode of transfer of results, including an optional quarantine area
so results can be inspected prior to transfer (i.e., the network can
operate in synchronous as well as asynchronous modes). Protocol
parameters are stored in the SCANNER study registry, so compo-
nents (e.g., variable definitions and processing operations) can be
reused.

A protocol must be approved and instantiated by participants.
Each node on the network assigns an individual the role for study
approval (this role might be labeled Site Principal Investigator).
Protocols are proposed to these site authorities at the time of the
study specification. At the time of agreement to participate, the site
authority defines the local parameters in the protocol (e.g., the physi-
cal location of a data resource) and registers the study information in
the SCANNER portal. Protocols are then made available in the portal.
Distributed analytics can be executed with node operations and re-
sults are returned to the portal. A prep-to-research (cohort discovery)
query informs researchers about the potential number of eligible sub-
jects. In SCANNER these queries produce NIH targeted enrollment ta-
bles for each site (Appendix, Exhibit 4). This is a special case of
distributed analytics. Cohort discovery typically limits analysis meth-
ods to count statistics.

Methods Library
SCANNER supports R, SAS, and other analytic engines that might be
hosted on network nodes. In order to accommodate multiple possible
analytic platforms for data operations, SCANNER created a “methods
library” for plug-ins that enable analytic method developers to regis-
ter new methods and code as SCANNER services. Methods plug-ins
consist of three components—graphical user interfaces (GUIs) for
users to invoke methods and see results at the portal, services to
control the distribution and accumulation of results, and programs
that are installed on the virtual machines (VMs) on each node to
execute the data analysis. Different execution engines for the
same analytic method can share the same templates for menu-
driven GUIs for specifying parameters and displaying results of dis-
tributed analyses. For example, we have two libraries for logistic re-
gression (LR) that have been fully integrated as SCANNER services.
LR is one of the most frequently applied multivariate methods to ad-
just for confounders, develop propensity scores, and develop risk
prediction tools.

To date, three methods libraries have been contributed to the
SCANNER registry: a cohort discovery method, Observational Cohort
Event Analysis and Notification System (OCEANS; http://sourceforge.
net/projects/oceans/files/) and Grid LOgistic REgression (GLORE).44

We implemented web services for two open-source distributed
analysis tools for LR. One of the LR tools performs meta-analyses us-
ing OCEANS, a statistical analysis and statistical process control tool.
OCEANS produces independent parameter estimates for each partici-
pating site, and can be viewed as tool for meta-analysis.

The other service implements GLORE, which was initially con-
ceived to address privacy-preserving data sharing through the NIH-
funded iDASH national center for biomedical computing35,36 and
applies principles of parallel distributed processing (PDP) and map-
reduce algorithms,21 to achieve the same parameter estimates that

Figure 1: Comparative Effectiveness Study Process
Model.
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might be achieved by centrally pooling data without requiring the re-
lease of patient-level data beyond institutional boundaries. We refer to
this as “virtually pooled” regression. PDP is architecturally and algo-
rithmically more complex than meta-analysis, and cannot be easily
implemented in distributed networks with independently operating in-
stances of programs like SAS because a centralized algorithm must
manage estimation convergence across all sites.37 With this approach,
regression parameter estimates are collected at every iteration and a
new candidate vector of coefficients is generated for testing and cor-
rection at each site until estimations converge. These methods are not
redundant, as GLORE and related parallel distributed methods can in-
crease power if data are statistically homogeneous across all
sites,37,38 while meta-regression methods like OCEANS compute inde-
pendently estimated models and are most appropriate if data are not
identically distributed at all sites. Calculation of propensity scores, for
example, can involve several sites in GLORE but can only be calculated
locally at each site in OCEANS. Other virtually pooled computing algo-
rithms such as Cox Proportional Hazards are in development as web
services for parallel distributed computation.

Software Architecture
Like many past approaches, SCANNER has adopted a Service-
Oriented Architecture for managing network activities with
web-based REST-style protocols over SSL-encrypted channels. An
exception to REST conventions is necessary for iterative analytic
methods like GLORE, which require preserving state within a net-
work node across multiple requests. The SCANNER registry and ser-
vice information model is based on PostgreSQL database hosted on
the same server as the web portal. We used the Spring framework
with Java to create the application interfaces that are based upon
the registry.39 The two analytic libraries (OCEANS and GLORE) were
both originally authored in Java, and modified for compatibility with
the SCANNER Network Web Service API. The network API currently
supports the HTTP verbs GET and POST. Both the portal and nodes
share the same general REST-style functional semantics, with XML-
and JSON-based representations of query and result specifications.
The GUI is authored in HTML, CSS, and javascript, relying on the
jQuery library for interface controls and menus. Implementing a
SCANNER node involves installing a SCANNER virtual machine and

Figure 2: Simplified view of SCANNER architecture and functions: (1) Protocol definition; (2) protocol approval; (3) data
location definition; (4) study member login and analysis request; (5) conversion into XML and distribution; (6) analysis; (7)
results ready notification; (8) next parameter estimation iteration for map-reduce algorithms; and (9) results sent to
requester.
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opening ports to the master node hosting the SCANNER hub, which
also hosts the portal. For any given analysis, data sets must conform
to the data set definition registered at the time the study protocol
was defined.

Any data model can be used to create data sets subject to queries.
SCANNER offers a “data set authoring” interface for creating comput-
able specifications for a data dictionary. We include a plug-in service

that converts this computable dictionary into SQL queries for the
Observational Medical Outcomes Partnership (OMOP) v4 common data
model (CDM). While it is not required, partners that wish to leverage
SCANNER data transformation resources for standardized multi-site
data set preparation and quality assurance can invest in creating a
data warehouse that employs terminology standards and a schema
supported by a SCANNER plug-in (currently OMOP v4). While this initial

Figure 3: Screenshots from a Distributed Multisite Logistic Regression Analysis.
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investment is not required, it is most efficient for all sites that intend
to participate in multiple studies, because it dramatically reduces data
management burden for IT staff at the site.

Figure 3 shows screenshots and the steps in specifying and exe-
cuting distributed LR analyses. In the analysis interface, a user is able
to see all approved analyses and sites for a given study. The study
(1a), the data set (1b), the sites that have agreed to participate (1c),

Box 1: SCANNER Policy Management
Features

1. Data sharing policies are managed on the basis of a
“study”—similar to some eIRB systems.

2. Any network participant may propose and lead a study
(including persistent, real-time prep-to-research cohort
discovery studies) through the network portal; participants
may elect to participate as desired, allowing spontaneous
formation of networks within the SCANNER network.

3. A study consists of
a. Protocols
b. Participating sites and data resources
c. Staff and roles

4. Investigator initiated studies may propose protocols and
associated data access control policies, participating sites
may approve one or more protocol and policy.

5. Study-specific data sets that are generated and exposed to
the network can be tagged with confidentiality settings.

6. Data set creation workflow and policies are separated from
data analysis queries and workflow.

7. Both synchronous (pre-approved for query and response) and
asynchronous (manually approved query and response) poli-
cies may be supported.

Box 2: SCANNER Analysis Libraries and
Data Processing Features

1. SCANNER includes an interface for authoring and specifying
the rules for creating analysis data sets—A Computable
Data Dictionary.

2. Data set rules can be parsed to generate executable
programs for extracting and transforming source data into
analytic data sets. SCANNER has created a web service that
generates SQL for one particular data model, OMOP V4
CDM.

3. SCANNER was designed to support libraries of investigator-
contributed methods for data analysis.

4. SCANNER Analysis Libraries are composed of three items:
a. user interfaces that display the query and the response,
b. the “master” query distribution and result aggregation

methods
c. the “worker” methods hosted on the VM

5. The three libraries that have been contributed include
a. A native SCANNER library for cohort discovery for prepara-

tory to research studies
b. OCEANS, a library for meta-regression
c. GLORE, a library for virtually pooled regression
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the method library (1d) and the analytic model (1e). This query and its
results are stored in a history (2) that can be accessed at a later time.
After selecting the analysis model and data set, a template associated
with the analysis model is populated with the variables in the data set,
where the user may specify parameters (in this case, dependent and
independent variables in a LR) (3). After the model has been specified,
the query is distributed to sites where execution status can be tracked
(4) and the fitted results are returned in a result template associated
with the analytic model – in this case, coefficients for the six selected
variables and the intercept for the logistic regression (5).

RESULTS
We simulated two CER studies based on real projects focusing on 1)
addition of a clinical pharmacist to the care team for medication
therapy management,40 and 2) the effectiveness of providers’ public
commitment to judicious antibiotic prescribing (Commitment).41 Data
sets were simulated using model parameters from these studies and
placed in three different institutions. The “Medication Therapy
Management Simulated” data set included a binary outcome variable
(HbA1c below 9.0%), a treatment indicator variable, 24 covariates,

and 580 records on each node. The “Commitment Simulated” data
sets included a binary outcome corresponding to prescribing prac-
tice, 5 covariates, and 10,000 records. Users with the role “Study
PI” created two SCANNER studies, “MTM Study,” and “Commitment
Study.” For each study, they proposed two analysis protocols to
three sites hosting SCANNER nodes. For both studies the Study PI
proposed protocols that requested Site PIs’ approval. The “Site PI” at
each of the three sites approved protocols and created and regis-
tered data sets to the network test nodes. The Study PI for each of
the two studies ran the protocols three times from the SCANNER por-
tal and recorded execution times. Results are shown in Table 1.

The differences between execution times can be explained in part
by the different strategies for memory management used in the differ-
ent methods. The virtual machines only had 6.4 GB of memory, and
this limitation made GLORE slower for large data sets. When this pro-
tocol is preferred, sites may add additional nodes in order to speed up
the parallel computations. The execution times were however, accept-
able for CER. These results indicate that the SCANNER infrastructure
has the capacity to handle complex study management rules and
specifications of analytic protocols necessary for multi-site CER.

Exhibit 1: Frequently Asked Questions

How are SCANNER’s virtually pooled analysis methods different from meta-analysis?
SCANNER can produce meta-analyses to estimate one model for each data set shared on a node (using the OCEANS package).

SCANNER’s virtually pooled regression methods (GLORE package) estimate a single model that is equivalent to what would be achieved by
pooling patient-level data, except that it does not require the data to be transmitted to a central location. It does so by decomposing model
estimation algorithms.42,43

Can virtually pooled analysis be implemented for all statistical models used for CER?
No, there are certain calculations that cannot be easily decomposed (e.g., XOR, clustering algorithms based on pairwise distances) and

therefore SCANNER will not always produce results that are identical to those of a centralized resource. However, all algorithms that calcu-
late sufficient statistics or gradients fit this model, covering a broad range of options. A wide variety of distributed algorithms and execution
systems for hosting algorithms are available and may be incorporated into future versions of SCANNER.

Can SCANNER automatically map my data into a common model? Does SCANNER require a common data model?
SCANNER is neither a platform for easing data harmonization like the Reusable OMOP and SAFTINet Interface Adaptor (ROSITA) sys-

tem,6 nor is it required that SCANNER networks harmonize all data domains to join the network. For purposes of scalability, many research
networks require mapping the entirety of source data into a CDM in a materialized data warehouse that can generate a multiplicity of data
sets. SCANNER does not include any tools for transforming or harmonizing data. In SCANNER, each analysis protocol includes a data set in
a defined format that is committed to the data set registry. SCANNER’s data set authoring interface allows users to create data set and data
processing specifications in an emerging standard format originally developed to represent data processing rules for clinical quality mea-
sures the Health Quality Measure Format (HQMF).44 These data processing specifications may be either manually interpreted at each site,
or network nodes that share a common data model for their data warehouse may author a plug-in adapter that translates Health Quality
Measure Format to executable programs. SCANNER developed such an adapter for the OMOP v4 data model. Thus, while SCANNER pro-
vides tools to encourage interoperability with a network information model, adherence to a particular standard is not required to participate
in distributed analytics.

What is involved in implementing a SCANNER at my site?
At a minimum, sites that wish to set up a SCANNER node must install a SCANNER virtual machine and open appropriate ports to the

master node hosting the SCANNER hub. For any given analysis, data sets must conform to the data set definition registered at the time the
study protocol was defined. Sites that wish to leverage SCANNER resources for standardized multi-site data set preparation and quality
assurance can invest in creating a data warehouse that employs terminology standards and a schema supported by SCANNER plug-ins
(currently OMOP v4). While this investment is not required, it is most efficient for all sites that intend to participate in more than one study,
because it dramatically reduces data management burden for IT staff at the site.

Is the SCANNER code open source? Where can I see it working?
Yes, the version of the SCANNER code described in this manuscript can be downloaded from the SCANNER website http://scanner.

ucsd.edu/.
A SCANNER infrastructure demo is available at http://scanner.ucsd.edu/images/SCANNERdemo/SCANNERdemo.html using simulated data.
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DISCUSSION
Exhibit 1 displays some frequently asked questions about SCANNER.

Limitations and Future Work
In deploying the network, some high-priority items for future work
were identified by stakeholders as outstanding features. Some items
will require further investigation, while others may be easily ad-
dressed with the addition of new analytic services (e.g., by adding R
or SAS to the software stack available on each node). Future versions
of SCANNER may take advantage of advances in computer science
community for implementing platforms for distributed processing
algorithms to dramatically enhance our methodological libraries to
include a broad array of machine-learning and regression meth-
ods.32,45,46 Data quality and harmonization also represent consider-
able challenges,47,48 particularly in distributed networks.49,50

SCANNER’s service-oriented design allows method developers to
register new methods such as these to the network with well-speci-
fied requirements for execution. Continuing to maintain and extend
SCANNER interoperability with other networks has been prioritized—
SCANNER was designed to support selection of data sets from a vari-
ety of source data, but the current automated translation service for
data extraction and processing only includes a plug-in adapter for
the OMOP V4 common data model.51 We have recently expanded
SCANNER significantly by partnering with two other networks to de-
velop a patient-centered system, patient-centered SCAlable National
Network for Effectiveness Research (pSCANNER),52 funded by
PCORI. Security hardening and scheduled testing protocols will be
refined for future uses, particularly for cases that do not fall under
HIPAA safe-harbor designation. Finally, features such as enabling
granular patient control over data access may become of increasing
importance in the near future.53

CONCLUSIONS
SCANNER has focused on systems for role-based study management
and services for “in-node” data processing and analysis—these are
services maintained centrally but executed at network nodes under full
control of data partners. The OCEANS meta-regression and GLORE “vir-
tually pooled” regression allow sites to perform computations at their
nodes and participate in overall model development without transferring
data. We encode local policies into the nodes, so that each can
participate in different types of studies without the development of a
completely new infrastructure every time a new study or
cohort discovery collaboration is added. The infrastructure
enables an “app store”–like scalability such that members of the com-
munity can author protocols, data operations, and other services and
register them to the network as collaborative projects.
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