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Abstract

Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including
identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the
invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23
worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved
the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use
of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method
(ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii.
Southeast China and Hawaii together are the most probable sources of populations in western North America,
which then in turn served as sources for those in eastern North America. European populations are genetically
more homogeneous than North American populations, and their most probable source is northeast China, with
evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks,
and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this
species evolved between different and independent source and invasive populations. Methodological comparisons
indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated
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datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of
simulated datasets, especially when analyzing complex introduction scenarios.

Key words: Drosophila suzukii, invasion routes, random forest, approximate Bayesian computation, population
genetics.

Introduction
Biological invasions are a component of global change, and
their impact on the communities and ecosystems they invade
is substantial (Simberloff 2013). Invasive populations evolve
rapidly, via both neutral and selective evolutionary processes,
as they undergo dramatic range expansion, demographic
reshuffling and experience new selection regimes (Keller
and Taylor 2010; Dlugosch et al. 2015). While extensive liter-
ature has laid the foundations of an evolutionary framework
of biological invasions (Sakai et al. 2001; Lee 2002; Facon et al.
2006; Dlugosch et al. 2015; Estoup et al. 2016), whether evo-
lutionary processes are drivers of invasion success or out-
comes of introduction processes remains unclear.

Two of the evolutionary processes hypothesized to play a
role in invasions are demographic bottlenecks and genetic
admixture (Ellstrand and Shierenbeck 2000; Dlugosch and
Parker 2008; Rius and Darling 2014). Demographic bottle-
necks, which correspond to transitory reductions in popula-
tion size associated with invasions, can reduce genetic
variation and thus may constrain invasion success
(Edmonds et al. 2004; Dlugosch and Parker 2008; Peischl
and Excoffier 2015). A diverse array of mechanisms allows
bottlenecked populations to overcome the deleterious con-
sequences of low genetic variation and adapt to their novel
environments [reviewed in Estoup et al. (2016)]. Genetic ad-
mixture occurs when multiple introduction events derive
from genetically differentiated native or invasive populations.
Admixure can increase genetic diversity in introduced popu-
lations, potentially enhancing invasion success by increasing
genetic variation on which selection can act (Kolbe et al. 2004;
Lavergne and Molofsky 2007) or via producing entirely novel
genotypes that may facilitate colonization of novel habitats
(Dlugosch and Parker 2008; Rius and Darling 2014). It remains
unclear, however, how often genetic admixture occurs in in-
vasions and whether it acts as a true driver of invasion success
(Uller and Leimu 2011; Rius and Darling 2014).

To evaluate hypotheses regarding bottlenecks and admix-
ture, as well as adaptation or other processes that may occur
during and after introductions, we must first identify the
original native or invasive source(s) of the introductions. By
comparing introduced to likely source populations, one can
infer whether populations diverged during invasion and then
start to distinguish among evolutionary processes that drive
observed differences (Dlugosch and Parker 2008; Keller and
Taylor 2010). Typically, accurate historical data on introduc-
tions pathways are limited (Estoup and Guillemaud 2010).
Traditional population genetic approaches can describe the
genetic structure and relationships among sampled native
and invasive populations (Boissin et al. 2012), but determin-
ing origins of introduced species from population genetic

data is challenging. This challenge prompted the develop-
ment of statistical methods such as approximate Bayesian
computation (ABC; Beaumont et al. 2002). In ABC analysis,
different introduction scenarios that describe possible intro-
duction pathways are compared quantitatively, taking a
model-based Bayesian approach. Datasets matching different
scenarios are generated by simulation, and by comparing
these simulated datasets to the observed dataset, approxi-
mate posterior probabilities of the scenarios are estimated
(Bertorelle et al. 2010; Beaumont 2010). A crucial step in de-
termining the most probable introduction pathway is to for-
mally describe a finite set of possible introduction scenarios as
models (Estoup and Guillemaud 2010). These introduction
pathways should be based on temporal/historical informa-
tion about invasions where feasible, and they can be realisti-
cally complex. For example, rather than a species moving
directly from the native to invasive range, it might first pass
through another region, experiencing bottlenecks and/or ad-
mixture along the way. ABC has been applied successfully to a
wide range of case studies, from pest invasion (e.g., Harmonia
axiridis, Lombaert et al. 2014) to anthropological research
(e.g., Homo sapiens, Verdu et al. 2009) and is now widely
used by the population genetics community. However, and
despite the many advantages of ABC, it relies on massive
simulations that can render it computationally costly.
When multiple complex introduction scenarios are consid-
ered, the time and computational resources required to
choose among them can become prohibitive (Lombaert
et al. 2014). To overcome this constraint, a new algorithm
called ABC random forest (ABC-RF) has been developed
(Pudlo et al. 2016). Simulations show that ABC-RF discrimi-
nates among scenarios more efficiently than traditional ABC
methods (Pudlo et al. 2016), and thus it appears particularly
suitable for distinguishing among complex invasion pathways
(see section below New approaches).

Here, we evaluate the origins of invasive populations of
spotted-wing Drosophilla suzukii (Matsumura 1931), includ-
ing where and whether they passed through bottlenecks in
populations size, or experienced admixture between geneti-
cally distinct groups. We use this invasion to illustrate the use
of ABC-RF, and as a case study to compare it to a more
standard ABC method. Drosophila suzukii is a representative
of the melanogaster group and is historically distributed in
Southeast Asia, covering a large portion of China, Japan,
Thailand and neighboring countries (Asplen et al. 2015).
Unlike most drosophilid species, D. suzukii females display a
large serrated ovipositor (Atallah et al. 2014) allowing them to
lay eggs in ripening fruits, and they are thus a major threat to
the agricultural production of stone fruits and berries (Lee
et al. 2011). The presence of the species outside of its native
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range was first recorded in the Hawaiian archipelago in the
early 1980’s (Kaneshiro 1983) but no further spread was ob-
served until the late 2000’s when D. suzukii was almost syn-
chronously recorded in the southwest of the USA and
southern Europe (Hauser 2011; Calabria et al. 2012). By
2015, the species had spread throughout most of the
North-American and European continents and reached the
southern hemisphere in Brazil (Depr�a et al. 2014). Drosophila
suzukii represents a particularly appealing biological model for
gaining further insights into the evolutionary factors associ-
ated with invasion success. As a closely related species of the
model insect Drosophila melanogaster, its short generation
time and viability in laboratory conditions facilitate experi-
mental approaches to study evolutionary events.

ABC-based analyses of DNA sequences data obtained for
six X-linked gene fragments suggest that North American and
European populations represent separate invasion events
(Adrion et al. 2014). The sources of these invasions and po-
tential admixture among different regions remain unclear.
The wide native and introduced distribution of D. suzukii
imply a potentially large number of possible sources and
hence a large number of possible introduction scenarios. By
first grouping sample size into genetic clusters, the number of
populations treated independently can be reduced some-
what (Lombaert et al. 2014), but not fully. Additionally, the
temporal proximity of invasions in the US and Europe makes
it difficult to a priori propose certain introduction scenarios
over others. Together, these features of D. suzukii’s invasion
mean that a large number of scenarios will need to be com-
pared, dramatically increasing computational requirements
for traditional ABC methods, and hence making ABC-RF
methods particularly appealing.

New Approaches
The formal description of a finite set of possible introduction
scenarios as models lays the foundation for ABC analyses, and
is outlined in Estoup and Guillemaud (2010). Choosing
among the formulated models is the central statistical prob-
lem to be overcome when reconstructing routes of invasion
from molecular data. Both theoretical arguments and simu-
lation experiments indicate that approximate posterior prob-
abilities estimated from ABC analyses for the modeled
introduction scenarios can be inaccurate, even though the
models being compared can still be ranked appropriately us-
ing numerical approximation (Robert et al. 2011). To over-
come this problem, Pudlo et al. (2016) developed a novel
approach based on a machine learning tool named “random
forests” (RF; Breiman 2001), which selects among the complex
introduction models covered by ABC algorithms. This ap-
proach enables efficient discrimination among models and
estimation of posterior probability of the best model while
being computationally less intensive.

We invite readers to consult Pudlo et al. (2016) to ac-
cess to detailed statistical descriptions and testing of the
ABC random forest (ABC-RF) method. Briefly, random
forest (RF) is an algorithm that learns from a database
how to predict a variable called the output from a possi-
bly large set of covariates. In our context, the database is

the reference table which includes a given number of
datasets that have been simulated for different scenarios
using parameter values drawn from prior distributions,
each dataset being summarized with a pool of statistics
(i.e., the covariates). RF aggregates the predictions of a
collection of classification or regression trees (depending
whether the output is categorical, here the scenario iden-
tity, or quantitative, here the posterior probability of the
best scenario). Each tree is built using the information
provided by a bootstrap sample of the database and man-
ages to capture one part of the dependency between the
output and the covariates. Based on these trees which are
separately poor to predict the output, an ensemble learn-
ing technique such as RF aggregates their predictions to
increase predictive performances to a high level of accu-
racy in favorable contexts (Breiman 2001). RF is currently
considered as one of the major state-of-art algorithm for
classification or regression.

In ABC random forest (ABC-RF), Pudlo et al. (2016) makes
two important advances regarding the use of summary sta-
tistics, and the identification of the most probable model. For
the summary statistics, given a pool of different metrics avail-
able, ABC-RF extracts the maximum of information from the
entire set of proposed statistics. This avoids the arbitrary
choice of a subset of statistics, which is often applied in
ABC analyses, and also avoids what in the statistical sciences
is called “the curse of dimensionality” [see Blum et al. (2013)
for a comparative review of dimension reduction methods in
ABC]. With respect to identifying the most probable model,
ABC-RF uses a classification vote system rather than the pos-
terior probabilities traditionally used in ABC analysis. The first
outcome of a ABC-RF analysis applied to a given target data-
set is hence a classification vote for each competing model,
which represents the number of times a model is selected in a
forest of n classification trees. The model with the highest
number of classification votes corresponds to the model best
suited to the target dataset among the set of competing
models. As a byproduct, this step also provides a measure
of the classification error called the prior error rate. The prior
error rate is calculated as the probability of choosing a wrong
model when drawing model index and parameter values into
priors. The second outcome of ABC-RF is an estimation of the
posterior probability of the best model that has been selected,
using a secondary random forest that regresses the model
selection error of the first-step random forest over the avail-
able summary statistics.

Pudlo et al. (2016) shows that, as compared to previous
ABC methods, ABC-RF offers at least four advantages (i) it
significantly reduces the model classification error as mea-
sured by the prior error rate; (ii) it is robust to the number
and choice of summary statistics, as RF can handle many
superfluous and/or strongly correlated statistics with no im-
pact on the performance of the method [see Blum et al.
(2013) for alternative methods of dimension reduction]; (iii)
the computing effort is considerably reduced as RF requires a
much smaller reference table compared with alternative
methods (i.e., a few thousands of simulated datasets versus
hundreds of thousands to millions of simulations per

Fraimout et al. . doi:10.1093/molbev/msx050 MBE

982

Deleted Text: ,
Deleted Text: e.g. 
Deleted Text: a
Deleted Text: `
Deleted Text: '
Deleted Text: by 
Deleted Text: `
Deleted Text: '
Deleted Text: (
Deleted Text: .
Deleted Text: )
Deleted Text: (
Deleted Text: )


compared model); and (iv) it provides more reliable estima-
tion of posterior probability of the selected model (i.e., the
model that best fit the observed dataset).

To the best of our knowledge, the present study is the first
to use the ABC-RF method for an ensemble of model choice
analyses with different levels of complexity (i.e., various num-
ber of compared models including various and sometimes
large number of parameters, sampled populations and hence
number of summary statistics) on real multi-locus microsat-
ellite datasets. Specifically, we analyze molecular data at 25
microsatellite loci from 23 D. suzukii sample sites located
across most of its native and introduced range. We con-
ducted our population genetics study in five steps. (1) We
defined focal genetic groups, and used this information to
formalize 11 sets of competing introduction scenarios. We
then choose among them in a sequential ABC-RF analysis. (2)
We compared the performance of ABC-RF to a more stan-
dard ABC method for a subset of analyses [ABC-LDA; Estoup
et al. (2012); see “Materials and Methods” section]. We
choose ABC-LDA in our comparative study because it is con-
sidered to be one of the most efficient standard ABC methods
to discriminate among models (Pudlo et al. 2016) and it is
widely used in population genetics studies (Lombaert et al.
2014, and reference therein). (3) We refined the inferred
worldwide invasion scenario by assessing the most likely or-
igins of the primary introductions from the native area. (4)
We estimated the posterior distributions under the final in-
vasion scenario of demographic parameters associated with
bottleneck and genetic admixture events. (5) Finally, we per-
formed model-posterior checking analyses to insure that the
final worldwide invasion scenario displayed a reasonable
match to the observed dataset.

Results

Origins of Invasive Genetic Groups
Prior to conducting any type of ABC analysis, focal genetic
groups must be defined by characterizing genetic diversity
and structure within and between all genotyped sample sites
using traditional statistics and clustering methods. This is
described in details in supplementary appendix S1,
Supplementary Material online. We defined seven main ge-
netic groups from our initial set of 23 sample sites (supple
mentary table S1, Supplementary Material online): Asia (sam-
ple sites CN-Lan, CN-Lia, CN-Nin, CN-Shi, JP-Tok, and JP-Sap),
Hawaii (sample site US-Haw), western US (sample sites US-
Wat, US-Sok, and US-SD), eastern US (sample sites US-Col,
US-NC, US-Wis, and US-Gen), Europe (sample sites GE-Dos,
FR-Par, FR-Bor, FR-Mon, SW-Del, SP-Bar, and IT-Tre), Brazil
(BR-PA), and La Réunion (FR-Reu).

This genetic grouping along with historical and geograph-
ical information (supplementary table S1, Supplementary
Material online) allowed us to formalize 11 nested sets of
competing invasion scenarios that we analyzed sequentially
using ABC model choice methodologies. The date that
D. suzukii was first recorded in a location was used to help
formulate the scenarios. For example, D. suzukii was first re-
corded in the continental US from California (US-Wat) in

2008 and was not recorded in the central state of Colorado
(US-Col) until 2012. US-Wat could therefore serve as a source
for US-Col, but not vice versa. We present the main analyses
in table 1. In supplementary table S2, Supplementary Material
online, a more detailed description of each competing sce-
narios considered for each analysis is provided. The 11 se-
quential ABC analyses permit step-by-step reconstruction
of the introduction history of D. suzukii worldwide. Results
for each analysis based on prior set 1 (which used bounded
uniform distributions of parameters; see “Materials and
Methods” section) and a single set of sample sites represen-
tative of the genetic groups defined above are given in table 2.
For all 11 analyses, similar ABC-RF results were obtained using
the prior set 2 (which used more peaked distributions; sup
plementary table S3, Supplementary Material online) and
considering various sets of representative sample sites (sup
plementary table S4, Supplementary Material online).

By choosing among different competing scenarios, each
analysis identifies the most probable source(s) for a given
introduced population. The results come in the form of dif-
fering levels of support for the competing introduction mod-
els. It is thus worth stressing here that the identification of the
most probable source population X (from among a finite set
of possible source populations) does not necessarily mean
that the introduced population Y originated from exactly
location X, but rather that the most probable origin of the
founders of the invasive population sampled at site Y is a
population genetically similar to the source population sam-
pled at site X. However, for sake of concision, we will use
hereafter the simplified terminology that the most probable
origin of Y is X.

After the early invasion of Hawaii (1980), the first recorded
introduction was to the genetically heterogeneous western
US, and thus that is where our main analyses start (analyses
1a–1d, table 2). We considered the three western US sample
sites in separate analyses, and we found in each case that the
best scenario included genetic admixture between Asia and
Hawaii as sources (table 2; analysis 1a–1c, mean posterior
probability of the best scenario P¼ 0.999). We subsequently
tested if this common admixture pattern resulted from a
single or multiple introduction events from Asia and/or
Hawaii, including the possibility of local colonization events
among western US sites (analysis 1d). The best invasion sce-
nario for the western US included an initial admixture event
with Asia and Hawaii as probable sources in northern
California (site US-Wat; admixture event A1 in fig. 1), followed
by (i) a local colonization southward into San Diego (US-SD)
and northward into Oregon state (US-Sok), and (ii) a second-
ary introduction event from Hawaii to Oregon (US-Sok) (A2
event in fig. 1; P¼ 0.690). This result is supported by various
genetic clustering results (fig. 1, supplementary figs. S1 and S2,
Supplementary Material online) as well as raw F-statistics
values which indicate high differentiation level between US-
Sok and other continental US sample sites and a substantially
lower FST between US-Sok and Hawaii (supplementary table
S5, Supplementary Material online). Once the invasion history
was resolved for the western US group, we inferred the most
probable source(s) of the invasive eastern US and European
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genetic groups, using two independent analyses (analyses 2a
and 2b, table 1 and supplementary table S2, Supplementary
Material online). We found evidence for a single origin for the
eastern US group corresponding to an intra-continental
spread from the San Diego area (P¼ 0.779, table 2).

The most probable origin for Europe was an independent
introduction from the Asian native range (P¼ 0.716, table 2).
The European and North American invasions occurred nearly
simultaneously, and thus we also explored gene flow between
the two regions. Europe was never selected as a source for the
eastern US (analysis 3a, P¼ 0.744), no matter which sets of
sample sites were considered. In contrast, we found some
evidence of asymmetrical gene flow from the eastern US
into at least some European locations. When considering
the northern European sample site from Germany (GE-
Dos) as a target, we found that the best scenario included
an admixed origin with Asia and the eastern US (supplemen
tary table S4, Supplementary Material online, analysis 3b,
P¼ 0.488 and P¼ 0.501 for prior set 1 and 2, respectively).
In contrast, the best scenario did not include such admixture
event when considering the southern European sample site
from Italy (IT-Tre) as a target (table 2, analysis 3b, P¼ 0.510).
We therefore replicated analysis 3b on all possible combina-
tions of European and eastern US sample sites to assess the
robustness of this result and evaluate the possibility of a geo-
graphic pattern for admixture events. For each of the
European sample sites, figure 2 summarizes which replicate
analyses selected a scenario including an admixture between
eastern US and Asia or a scenario of a single introduction
from Asia (and see supplementary fig. S3, Supplementary
Material online, for results using an alternative representative
sample site for the native range). Results tended to indicate

an uneven spatial distribution of the presence of genes of
eastern US origin in Europe, following roughly a north-
south gradient. More specifically eastern US alleles were pre-
sent in northern Europe and absent, or at least not detected
by our model choice method, in southern Europe. We then
further tested whether the observed admixture in the north
corresponded to the mixing of eastern US genes with south-
ern European genes originating from the initial introduction
event from Asia versus the mixing of eastern US genes with
Asian genes introduced through a separate secondary intro-
duction event from Asia in northern Europe (analysis 4). The
best scenario was clearly that of an admixture between east-
ern US genes and southern European genes, which them-
selves had a probable origin as part of the initial
introduction event from Asia (P¼ 0.998; A3 event in fig. 1).

Finally, we found that the sampled population from Brazil
originated from North America, with genetic admixture be-
tween D. suzukii individuals from the southwest and eastern
regions of the US (analysis 5a; P¼ 0.631; A4 event in fig. 1).
Regarding the most recent invasive population from La
Réunion, we found that this island population originated
from Europe, with admixture between individuals from
northern and southern Europe (analysis 5b; P¼ 0.500; A5
event in fig. 1).

Comparison of Model Choice Analyses Using ABC-RF
versus ABC-LDA
For all 11 analyses, ABC-LDA performed well when using large
reference tables (i.e., 500,000 simulations per scenario; table 2
and supplementary table S3, Supplementary Material online).
Indeed, the prior error rates for ABC-LDA with large reference
tables were smaller than the prior error rates for ABC-RF with

Table 1. Formulation of the Model Choice Analyses that were Carried Out Successively to Reconstruct Invasion Routes of D. suzukii Using ABC.

Model
Choice
Analysis

Number of
Compared
Scenarios

Tackled Question Potential source genetic group Focal populations

1a 3 What are the origins of western US populations? Asia, Hawaii US-Wat
1b US-Sok
1c US-SD
1d 7 What are the relations among western US popu-

lations and their extra-continental sources?
Asia, Hawaii, US-Wat, US-Sok,

US-SD
US-Wat þ US-Sok
þ US-SD

2a 6 What are the origins of eastern US populations? Asia, Hawaii, western US eastern US
2b 6 What are the origins of European populations? Asia, Hawaii, western US Europe
3a 10 Is there asymmetrical gene flow from Europe to

eastern US?
Asia, Hawaii, western US, Europe eastern US

3b 10 Is there asymmetrical gene flow from eastern US
to Europe?

Asia, Hawaii, western US, eastern US Europe

4 2 Does the admixture with eastern US genes in
northern Europe result from a secondary Asian
introduction?

Asia, Hawaii, western US, eastern US,
southern Europe

northern Europe

5a 21 What are the origins of the Brazilian population? Asia, Hawaii, western US, eastern US,
southern Europe, northern Europe

Brazil

5b 21 What are the origins of La Reunion population? Asia, Hawaii, western US, eastern US,
southern Europe, northern Europe

La Reunion

NOTE.— Each numbered analysis is a comparison of a certain number of scenarios by ABC model choice. We summarize each analysis by stating the question that it addressed. A
detailed verbal description of each compared scenario is given in supplementary table S2, Supplementary Material online. The 11 analyses are nested in the sense that each
subsequent analysis use the result obtained from the previous one. For example, in Analysis 2a “What are the origins of eastern US populations” capitalizes on the history
inferred for western US populations from analysis 1d. “Potential source genetic group” indicates all the potential source populations considered in the analyses for which one
wants to identify the origin of the focal population (i.e., the target).
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small reference tables (paired t-test, t10¼2.7, P¼ 0.02).
However, ABC-RF performed better than ABC-LDA when
using small reference tables (only 10,000 simulations per sce-
nario), having lower prior error rates (paired t-test, t10¼11.6,
P< 0.0001, table 2 and supplementary table S3,
Supplementary Material online). The difference in prior error
rate was particularly marked for the complex analyses, i.e.,
those in which many introduction scenarios were compared
and many summary statistics were computed. For instance,
for the analyses 5a and 5b (21 compared scenarios and 424
summary statistics computed), prior error rates were 0.217
and 0.221 for ABC-RF versus 0.417 and 0.425 for ABC-LDA.

Regarding computational effort, we found that, for a given
observed dataset, an ABC-RF treatment to select the best
scenario and compute its posterior probability required a

ca. 50 times shorter computational duration than when pro-
cessing a ABC-LDA treatment with a traditional reference
table of large size (i.e., 500,000 simulated datasets per sce-
nario). Moreover, estimation of prior error rates with ABC-
RF took only a few additional minutes of computation time
for 10,000 pseudo-observed datasets whereas with ABC-LDA
it lasted several hours to several days (depending on the
analysis processed) for 500 pseudo-observed datasets.

The same invasion scenario had the highest probability for
all 11 analyses carried out using ABC-RF and ABC-LDA with
large number of simulated datasets (table 2 and supplemen
tary table S3, Supplementary Material online). Posterior prob-
abilities of the best scenario estimated using ABC-RF were not
systematically higher (or lower) than those using ABC-LDA
with large number of simulated datasets. In particular, there

FIG. 1. Worldwide invasion scenario of D. suzukii inferred from microsatellite data and date of first observation. Map and schematic showing
sample sites and the invasion routes taken by D. suzukii, as reconstructed by ABC-RF (Pudlo et al. 2016) on a total of 685 individuals from 23
geographic locations genotyped at 25 microsatellite loci (see results and methods for details). The native range is in dark grey, and the invasive
range is in light-gray (cf. delimitation from fig. 1 in Asplen et al. 2015). The year in which D. suzukii was first observed at each sample site is indicated
in italics. The 23 geographical locations that were sampled are represented by circles (native range), and squares, diamonds and triangles
(introduced range). Squares indicate populations that experienced weak bottlenecks (i.e., median value of bottleneck severity < 0.12, see
main text and table 3), diamonds indicate moderate bottlenecks (0.12 < bottleneck severity < 0.22) and triangles indicate strong bottlenecks
(i.e., bottleneck severity> 0.3). The colors of the symbol for the sample sites and arrows between them correspond to the different genetic groups
obtained using the clustering method BAPS (supplementary appendix S1, Supplementary Material online). The arrows indicate the most probable
invasion pathways. A1–A5 indicate five separate admixture events between different sources. O1–O3 indicate the most probable sources within
the native range for the primary introduction events. A1¼ Hawaiiþ southeast China; A2¼Watsonville (western US)þ Hawaii; A3¼ southern
Europe þ eastern US; A4 ¼ western US þ eastern US; A5 ¼ southern Europe þ northern Europe. O1 ¼ Japan; O2 ¼ southeast China; O3 ¼
northeast China.
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was no clear trend of overestimation of posterior probability
when using ABC-LDA with large number of simulated data-
sets versus ABC-RF, a potential bias suggested by Pudlo et al.
(2016). On the other hand, we found evidence of instability in
the estimation of posterior probabilities and hence model
selection when using ABC-LDA with a small numbers of sim-
ulated datasets in the reference table (i.e., 10,000 simulations
per scenario as for ABC-RF). In this case, the scenario with the
highest probability was different from that selected using ei-
ther ABC-LDA with the large reference table or ABC-RF, in
four and two of the 11 analyses when using the prior sets 1
and 2, respectively (results not shown).

Refining the Origins of the Primary Introduction
Events from the Native Area
Additional ABC-RF analyses were run to determine which
geographical area in the native range was the most likely
origin of each of the three primary introductions (i.e., in
Hawaii, western US, and Europe). The most probable origin
of the Hawaiian invasive population was Japan, with a mean

posterior probability of 0.959 (origin O1 in fig. 1). For
Watsonville (western US, sample site US-Wat), the most
probable source of the primary introduction from Asia was
southeast China (origin O2 in fig. 1; P¼ 0.860). Finally, for
Europe, the most probable source of the primary introduc-
tion from Asia was northeast China (origin O3 in fig. 1;
P¼ 0.855). Similar posterior probabilities were obtained using
the prior set 1 (values presented above) and the prior set 2
(results not shown). For inferences regarding Europe, similar
posterior probabilities were also obtained using various sets of
sample sites from Europe and the eastern US (results not
shown).

Estimation of Parameter Distributions for Admixture
Rate and Bottleneck Severity
We used the most probable worldwide invasion scenario (fig.
1) to estimate the posterior distributions of parameters re-
lated to bottleneck severity associated to the foundation of
new populations and genetic admixture rates between differ-
entiated sources (i.e., A1–A5 events in fig. 1).

FIG. 2. Admixed or non-admixed origin of D. suzukii in Europe inferred for each sample sites. Potential source populations include (among others)
the Asian native range (represented by the Japanese sample site JP-Tok) and the invasive genetic group from eastern US represented by one of the
four invasive sample sites collected in this area (fig. 1). Four replicate independent ABC-RF treatments corresponding to the analysis 3b (table 2)
were hence carried out for each targeted European sample site using one of the four eastern US sample site. The treatments labeled 1, 2, 3, and 4 in
the pies of the figure have been carried out with the sample sites US-NC, US-Wis, US-Gen, and US-Col, respectively. A pie quarter in blue indicates
that the best scenario corresponds to a single introduction event from Asia. A pie quarter in red indicates that the best scenario corresponds to an
admixture event between Asia and eastern US. Dates in italic correspond to the dates of first record of the European sample sites.
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The posterior distributions parameters relating to bottle-
necks and admixture substantially differed from the priors,
indicating that genetic data were informative for such param-
eters (tables 3 and 4; and see supplementary tables S6 and S7,
Supplementary Material online for results using an alternative
set of representative sample sites). Regarding bottleneck se-
verity, we found that bottlenecks tended to be more severe
for populations founded by individuals originating from a
source located on a different continent (extra-continental
origin) than for populations founded by individuals originat-
ing from a source located on the same continent (intra-con-
tinental origin; table 3 and fig. 1). The bottleneck severity for
populations founded by individuals corresponding to a com-
bination of the two types of sources (extra- and intra-
continental origins) was either weak or moderate. The stron-
gest bottleneck severity was found for the first invasive

population in Hawaii, which showed the lowest level of ge-
netic variation among all invasive populations. Bottleneck
severity values were globally slightly stronger in European
than in US populations, suggesting a smaller number of
founding individuals and/or a slower demographic recovery
in European populations.

Regarding admixture (table 4), we found that: (i) for the
first recorded invasive population in western US (i.e.,
Watsonville; sample site US-Wat), the genetic contribution
from China was substantially larger than that from Hawaii
(median value of 0.759), (ii) for the western US population
US-Sok, the secondary genetic contribution from Hawaii was
small compared to that from Watsonville (median value of
0.237), and (iii) the sample sites from northern Europe (e.g.,
GE-Dos in Germany) contained a rather low proportion of
genes originating from the eastern US (median value of

Table 3. Bottleneck Severity in Invasive Populations of D. suzukii.

Prior 1 Prior 2
Introduction Type Sample Site Mean Median Mode q5% q95% Mean Median Mode q5% q95%

Extra continental US-Haw 0.517 0.500 0.495 0.326 0.755 0.490 0.484 0.477 0.382 0.615
US-Wat 0.181 0.138 0.114 0.041 0.448 0.143 0.127 0.118 0.059 0.275
IT-Tre 0.268 0.179 0.171 0.059 0.837 0.236 0.189 0.172 0.101 0.553
BR-PA 0.158 0.126 0.104 0.020 0.407 0.208 0.193 0.172 0.067 0.399
FR-Reu 0.259 0.215 0.186 0.051 0.626 0.245 0.214 0.190 0.069 0.534

Intra-continental US-SD 0.135 0.117 0.106 0.039 0.283 0.117 0.104 0.091 0.053 0.224
US-NC 0.089 0.067 0.061 0.015 0.230 0.111 0.098 0.090 0.046 0.218

Extra þ intra
continental

US-Sok 0.116 0.099 0.088 0.027 0.250 0.119 0.106 0.099 0.052 0.229
GE-Dos 0.189 0.177 0.155 0.061 0.356 0.205 0.189 0.171 0.088 0.372

Prior values 0.628 0.199 NA 0.021 1.904 0.517 0.500 NA 0.326 0.754

NOTE.— Extra-continental introductions correspond to a long distance introduction from a source located apart from the continent of the focal population, intra-continental
introduction corresponds to an introduction event from a source located on the same continent than the focal population, and Extraþ Intra continental introduction
corresponds to a combination of the two types of sources. Mean, median and mode estimates as well as bounds of 90% credibility intervals (q5% and q95%), are indicated for
each bottleneck severity parameter. We roughly classified the estimated bottleneck severity values into three classes (represented here by the three shades of gray): weak (i.e.,
median value of bottleneck severity< 0.12, in light gray), moderate (0.12< bottleneck severity< 0.22, in gray), and strong (i.e., bottleneck severity> 0.3 in dark gray). The set of
sample sites used for the ABC estimations presented here include: (i) for the native area: Japan (JP-Tokþ JP-Sap), South-East China (CN-Nin) and North-East China (CN-
LanþCN-Lia), and (ii) for the invaded range: US-Wat, US-Sok and US-SD for western US, US-NC for eastern US, IT-Tre for southern Europe, GE-Dos for northern Europe, BR-PA
for South-America (Brazil) and FR-Reu for La Réunion island. Code names of the sample sites are the same as in fig. 1, and supplementary table S1, Supplementary Material
online in which bottleneck severity classes are also given for each sample site. See supplementary table S6, Supplementary Material online for results on a different set of
representative sample sites.

Table 4. Posterior Distributions of Admixture Rates for the Five Admixture Events Inferred for the Final Worldwide Invasion Scenario Described in
figure 1.

Admixture Event Admixture Rate (gene fraction from pop x) Mean Median Mode q5% q95%

Prior 1 A1 (US-Wat ¼ US-Haw þ CN-Nin) rUS-Wat (China – CN-Nin) 0.759 0.761 0.774 0.659 0.854
A2 (US-Sok ¼ US-Haw þ US-Wat) rUS-Sok (USA – US-Wat) 0.237 0.230 0.227 0.092 0.400
A3 (DE-Dos ¼ IT-Tre þ US-NC) rDE-Dos (USA – US-NC) 0.286 0.278 0.266 0.112 0.481
A4 (BR-PA ¼ US-NC þ US-SD) rBR-PA (USA – US-SD) 0.467 0.461 0.442 0.187 0.754
A5 (FR-Reu ¼ IT-Tre þ GE-Dos) rFR-Reu (Europe – GE-Dos) 0.388 0.380 0.426 0.132 0.670

Prior 2 A1 (US-Wat ¼ US-Haw þ CN-Nin) rUS-Wat (China – CN-Nin) 0.761 0.762 0.766 0.684 0.833
A2 (US-Sok ¼ US-Haw þ US-Wat) rUS-Sok (USA – US-Wat) 0.224 0.219 0.199 0.114 0.350
A3 (DE-Dos ¼ IT-Tre þ US-NC) rDE-Dos (USA – US-NC) 0.312 0.306 0.284 0.152 0.487
A4 (BR-PA ¼ US-NC þ US-SD) rBR-PA (USA – US-SD) 0.422 0.418 0.429 0.247 0.613
A5 (FR-Reu ¼ IT-Tre þ GE-Dos) rFR-Reu (Europe – GE-Dos) 0.370 0.368 0.356 0.178 0.569

NOTE.— Admixture events are denoted as in figure 1. Each admixture rate parameter r points to the name of the admixed site and corresponds to the fraction of genes
originating from the source site in parentheses (1 � r genes originate from the other source site). Mean, median, and mode estimates as well as bounds of 90% credibility
intervals (q5% and q95%) are indicated for each admixture parameter. Estimations assuming the prior set 1 and the prior set 2 (supplementary table S8, Supplementary Material
online) are provided. The set of representative sample sites used for the ABC estimations presented here is the same than in table 3. Code names of the population sites are the
same as in fig. 1 and supplementary table S1, Supplementary Material online. See supplementary table S7, Supplementary Material online for results on a different set of
representative sample sites.
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0.286). We found more balanced admixture rates for the
populations from Brazil (BR-PA) and La Réunion (FR-Reu),
but information on this parameter was less accurate in these
cases as indicated by large 90% credibility intervals.

Model-Posterior Checking
Like any model-based methods, ABC inferences do not reveal
the “true” evolutionary history, but allows choosing the best
among a necessarily limited set of scenarios that have been
compared and to estimate posterior distributions of param-
eters under this scenario. How well the inferred scenario-
posterior combination matches with the observed dataset
remains to be evaluated using an ABC model-posterior check-
ing analysis. When applying such an analysis on the final in-
vasion scenario detailed in figure 1, we found that, when
considering the prior set 1, only 54 of the 1141 summary
statistics used as test quantities had low posterior predictive
P-values (i.e., 0.002< ppp-values< 5%). Moreover, none of
those ppp-values values remained significant when correcting
for multiple comparisons (Benjamini and Hochberg 1995).
Similar results were obtained when assuming the prior set 2
and when considering different sets of representative sample
sites in our analyses (results not shown). These findings show
that the final worldwide invasion scenario (fig. 1, with associ-
ated parameter posterior distributions) matches the observed
dataset well. In agreement with this, the projections of the
simulated datasets on the principal component axes from the
final model-posterior combination were well grouped and
centered on the target point corresponding to the observed
dataset (supplementary fig. S4, Supplementary Material on-
line). Due to the modest size of the dataset (i.e., 25 microsat-
ellite loci), however, only situations of major inadequacy of
the model-posterior combination to the observed dataset are
likely to be identified.

Discussion
In the present paper, we decipher the routes taken by
D. suzukii in its invasion worldwide, evaluating evidence of
bottlenecks and genetic admixture associated with different
introductions, and we quantify the efficiency of ABC-RF rel-
ative to the more standard ABC-LDA method for choosing
among introduction scenarios.

A Complex Worldwide Invasion History
Prior to this study and that of Adrion et al. (2014), our un-
derstanding of the worldwide introduction pathways of
D. suzukii was based on historical and observational data,
which were incomplete and potentially misleading. Our re-
sults indicate three distinct introductions from the native
range—to Hawaii, the western side of North America and
western Europe, which accords well to findings of Adrion
et al. (2014) from a different set of markers (X-linked se-
quence data). Both the western North American introduc-
tions and at least some European populations show signs of
admixture. Hawaii and China both appear to have contrib-
uted to the western North American introductions, which
was in turn the most probable source for the introduction
into eastern North America. Similarly, China and to a lesser

extent eastern North America both appear to have contrib-
uted to the European introduction, but mostly in northern
European areas with respect to the eastern North American
contribution. The almost simultaneous invasion of North
America and Europe from Asia could be due to increased
trade between these areas facilitating transport of this species
between regions. Alternatively, or in addition, adaptation to
human-altered habitats (in this case, changes in agricultural
practices) within the native range of the species, could have
promoted invasion to similarly altered habitats worldwide
(i.e., anthropogenicaly induced adaptation to invade;
Hufbauer et al. 2012). However, the two invaded continents
were most likely colonized by flies from distinct Chinese geo-
graphic areas (fig. 1), requiring that adaptation to agriculture
occurred concomitantly at several locations within the native
range. This is possible, but not evolutionarily parsimonious,
and further data would be required to test this explanation.
Subsequent introductions from the three primary founder
locations to other locations result in a complex history of
invasion. Both primary and secondary introductions show
signs of demographic bottlenecks, and several invasive pop-
ulations have multiples sources and thus experienced genetic
admixture between differentiated native or invasive
populations.

The genetic relationships between worldwide D. suzukii
populations define the genetic variation they harbor, and
may continue to shape further spread of alleles among pop-
ulations. Gene flow among populations through continuous
dispersal or more punctual admixture events permits the
dissemination of allelic variants and new mutations, with
dramatic consequences for evolutionary trajectories
(Lenormand 2002). We found evidence for asymmetric ge-
netic admixture from North American towards (northern)
European populations. If this signal of admixture reflects re-
current and on-going dispersal events rather than a single
past secondary introduction event, then variants that arise
in North America would be more likely to spread to Europe
than the reverse. Discriminating between ongoing and past
dispersal events is tricky, however, especially for recent inva-
sions (Benazzo et al. 2015). If the occurrence of recurrent gene
flow is confirmed, then D. suzukii populations from Europe
may not lag behind American ones in evolutionary terms.
From an applied perspective, if resistance to control practices
emerges in North America, special efforts to stop the impor-
tation of D. suzukii to Europe would help prevent the evolu-
tion of resistance in Europe, and thus reduce damage to crops
(Caprio and Tabashnik 1992).

Advances in Methods for Discriminating among
Complex Models
To the best of our knowledge, the present study is the first to
use the recently developed ABC-RF method (Pudlo et al.
2016) to test competing models characterized by different
levels of complexity. To compare ABC-RF to a more standard
ABC method, we carried out a subset of model choice anal-
yses using both ABC-RF and ABC-LDA (Estoup et al. 2012).
We ran ABC-LDA analyses in two ways: with standard sized
large reference tables (500,000 simulated datasets per
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scenario) and with small reference tables (10,000 simulated
datasets per scenario, the same size as used for ABC-RF). The
performance of ABC-LDA (in terms of prior error rate) in
choosing among introduction scenarios was slightly better
than for ABC-RF, when using large reference tables.
Furthermore, for ABC-LDA with large reference tables confi-
dence in model choice (in terms of posterior probability) was
relatively comparable to ABC-RF with small reference tables.
Thus, when analyses are relatively simple or computational
resources are not limiting, ABC-LDA can provide as robust
inferences of invasion scenarios as ABC-RF.

In contrast, we found that ABC-RF out-performed ABC-
LDA when using similarly small reference tables for both types
of analyses (10,000 simulated datasets per scenario). ABC-
LDA also was unstable, choosing different scenarios in differ-
ent replicate analyses, when using small reference tables.
These empirical findings correspond well with those of
Pudlo et al. (2016), using simple models for which the true
posterior probabilities could be calculated. Pudlo et al. (2016)
demonstrated that ABC-RF provided more reliable posterior
probability of the best (true) scenario than standard ABC
methods when using the same (small) number of simulated
datasets in the reference table (see supplementary fig. S3 in
Pudlo et al. 2016). In our work, the difference in performance
between the two methods was most pronounced for com-
plex analyses (e.g., when comparing more than 10 scenarios
using more than 100 summary statistics). Thus, when analyses
are not simple, or computational resources are finite, ABC-RF
provides more robust inferences of invasion scenarios than
ABC-LDA.

The lower computation cost of ABC-RF was also evident.
For a given observed dataset, selecting the best supported
scenario and computing its posterior probability was ca. 50
times faster than when processing an ABC-LDA treatment
with a traditional reference table of large size. Moreover, es-
timation of prior error rates with ABC-RF took only a few
additional minutes of computation time whereas it lasted
several hours to several days with ABC-LDA. The conse-
quence of low computational costs is not simply in computer
time. Rather, the efficiency of ABC-RF analyses allowed us to
run replicate analyses on various sample sets, even for the
most complex D. suzukii invasion scenarios. This replication is
critical in evaluating the robustness of our statistical
inferences.

We found that, at least for some ABC-RF analyses, the
posterior probability of the best scenario and the global sta-
tistical power to choose among alternative invasion scenarios
(as measured by the prior error rate), were relatively low. For
instance, in three of the 11 analyses (analyses 3b, 5a, and 5b)
the best scenarios had relatively low probabilities (i.e., ranging
from 0.500 to 0.630) and relatively high prior error rates (i.e.,
ranging from 0.300 to 0.400). Although replicate analyses car-
ried out on different sample sets and prior sets pointed to the
same best scenario for these three analyses, such low proba-
bility values and high prior error rates suggest a moderate
level of confidence in the choice of model in these cases.
Similarly, we found that the scenario choice leading to the
conclusion of the presence versus absence of admixed genes

from the eastern US in various European sample sites relied
on probability values that were sometimes as low as 0.500.
Moreover, in a minority of cases, the best scenario was differ-
ent depending on the sample site considered as representa-
tive of the eastern US or the native area. The observed pattern
of an uneven spatial distribution of the presence of genes of
eastern US origin in Europe, following roughly a north to
south gradient, should hence be taken cautiously. The anal-
yses of additional European sample sites are needed to clarify
this issue. The above inferential uncertainties also most likely
find their sources in the relatively small number of markers
genotyped relative to the number, complexity, and similarity
of some of the competing models. Such results indicate that
there is room for improving the robustness of our inferences
at least for a subset of our analyses.

Bottlenecks and Genetic Admixture
We found strong evidence that bottlenecks and admixture
both occurred during the course of the invasion of D. suzukii.
A first sign of bottlenecks is a reduction in neutral genetic
diversity. We found that all invasive D. suzukii populations
were characterized by significantly lower genetic variation
than native ones, with a loss of 6.4% (US-Col) to 23.3%
(US-Haw) of heterozygosity and of 27.3% (US-Wat) to
54.2% (US-Haw) of allelic diversity, respectively (supplemen
tary fig. S5, Supplementary Material online). Adrion et al.
(2014) find a similar significant loss of diversity in their dataset
focused on gene sequences. Dlugosch and Parker (2008) and
Uller and Leimu (2011) reviewed studies of neutral genetic
diversity in a large number of species of animals, plants, and
fungi and compared nuclear molecular diversity within intro-
duced and source populations. Overall, they found that a loss
of variation was the most frequent feature in invasive popu-
lations. However, reductions in genetic variation were on av-
erage modest (e.g., average loss of 18.7% and 15.5% of
heterozygosity and allelic diversity, respectively; Dlugosch
and Parker 2008). The reductions observed in our study in
invasive D. suzukii populations were thus in the same range
for heterozygosity but higher for allelic diversity (cf. average
loss of 11.1% and 34.5% of heterozygosity and allelic diversity,
respectively). A larger loss of allelic diversity than heterozy-
gosity after a bottleneck is nevertheless expected by theory
(Nei et al. 1975).

The type of introduction pathway explains, at least partly,
the severity of the reduction in genetic diversity. Bottlenecks
tended to be less severe for populations founded by individ-
uals from the same continent than for populations founded
by individuals originating from a different continent. A simple
explanation for such pattern is that, due to greater proximity,
populations originating from the same continent are likely to
be initially founded by a larger numbers of individuals and
also to experience recurrent gene flow. Populations founded
by individuals from both the same and different continents
experienced weak or moderate reductions in diversity, sug-
gesting that multiple introduction pathways restore diversity.

In agreement with previous studies on invasions on simi-
larly large geographical scales (e.g., Lombaert et al. 2014 and
reference therein), we found that admixture events were
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frequent in the worldwide invasion history of D. suzukii. We
identified at least five admixture events for which sources
were native and/or invasive populations (i.e., A1–A5 events
in fig. 1). The genetic contributions of the sources were un-
balanced, except for the populations from Brazil and La
Réunion; but genetic information regarding admixture was
considerably less accurate in the latter cases, which involved
weakly differentiated source populations.

We have provided here the information necessary to eval-
uate whether bottlenecks and admixture have influenced
outcomes in this invasion. Quantitative genetics studies in
the lab focusing on the key source, bottlenecked, and ad-
mixed populations could now examine the fitness and adap-
tive potential of those groups (Lavergne and Molofsky 2007;
Facon et al. 2008; Turgeon et al. 2011).

Conclusions and Perspectives
Understanding invasion pathways provides key information
for understanding the role of evolutionary processes in bio-
logical invasions. For example, only does our research reveal
sources of invasive populations for further relevant compar-
isons using quantitative genetics studies in the lab.
Additionally, we found that the invasion of Europe by D.
suzukii was distinct from that of North America, with limited
and asymmetrical gene flow between these two main invaded
areas. This situation provides the opportunity to evaluate
evolutionary trajectories in replicate into two separate tem-
perate climate regions, similarly to research by Gilchrist et al.
(2001, 2004) on the pace of clinal evolution in the invasive
fruit fly Drosophila subobscura. There are also distinct invasion
pathways for areas with warmer climates (i.e., Hawaii, La
Réunion, and Brazil) that will make interesting comparisons.

Retracing invasion routes and making inferences about
demographic processes is only possible if there is adequate
polymorphism within populations and significant genetic dif-
ferentiation among them. As is evident here, microsatellite
data can provide enough variation to reveal important path-
ways. We concur with Adrion et al. (2014), however, that
genome-wide data (i.e., next generation sequencing
approaches) will be tremendously powerful in further dis-
criminating among complex invasion scenarios (see also
Cristescu 2015, Estoup et al. 2016). Because of the reduced
computational resources demanded by ABC-RF, this method
will be particularly useful for analysis of massive single nucle-
otide polymorphism datasets (Pudlo et al. 2016). In addition
to the selectively neutral demographic inference leading to
the reconstruction of routes of invasion, population (and
quantitative) next generation sequencing approaches are
quite promising for studying the evolution of phenotypic
traits in natural populations (Wray 2013; Gautier 2015).
Specifically, they can be used to better understand the genetic
architecture of traits underlying invasion success (Bock et al.
2015). Drosophila suzukii is a good species for such research
given (i) its short generation time and viability in laboratory
conditions, which facilitate experimental approaches to study
quantitative traits of interest (Asplen et al. 2015) and (ii) the
availability of annotated genome assemblies for this species

(Chiu et al. 2013; Ometto et al. 2013), along with the huge
amount of genomic resources available in its close relative
species D. melanogaster (Groen and Whiteman 2016).

Materials and Methods

Sampling and Genotyping
Adult D. suzukii were sampled from the field at a total of 23
localities (hereafter termed sample sites) distributed through-
out most of the native and invasive range of the species
(supplementary table S1, Supplementary Material online
and fig. 1). Samples were collected between 2013 and 2015
using baited traps and sweep nets, and stored in ethanol.
Native Asian samples consisted of a total of six sample sites
including four Chinese and two Japanese localities. Samples
from the invasive range were collected in Hawaii (1 sample
site), Continental US (7 sites), Europe (7 sites), Brazil (1 site),
and in the French island of La Réunion (1 site). For each
sample site, 15–44 adult flies were genotyped at 25 of the
28 microsatellite loci described in Fraimout et al. (2015), re-
sulting in a total of 685 genotyped individuals. Three micro-
satellite loci from Fraimout et al. (2015) (i.e., loci DS31, DS42
and DS45) were not included due to the presence of null
alleles at frequencies> 10% in some sample sites (results
not shown). DNA extraction and PCR amplification as well
as allele scoring were performed following the methodology
detailed in Fraimout et al. (2015).

General Framework for Defining Focal Population
Groups and Sets of Scenarios to Be Compared
Using ABC
One of the many challenges of ABC analyses is to optimally
define sets of sample sites to be processed chronologically as
potential sources and targets in a way that do not hamper the
computational effort. As stated in Estoup and Guillemaud
(2010) and Lombaert et al. (2014) the number and complex-
ity of competing scenarios is proportional to the number of
genetic groups to be accounted in ABC analyses. Following
Lombaert et al. (2014), we used the results obtained from
three genetic clustering methods along with historical and
geographical information to define genetic groups that could
include several sample sites (supplementary appendix S1,
Supplementary Material online). We defined seven main ge-
netic groups from our set of 23 sample sites: Asia, Hawaii,
western US, eastern US, Europe, Brazil, and La Réunion. To
make the computations less intensive with respect to com-
puter resources, ABC treatments were carried out using one
representative sample site for each genetic group per replicate
analysis. In other words, when a genetic group included more
than two sample sites, we considered the two most differen-
tiated sample sites (i.e., with the highest FST values in supple
mentary table S3, Supplementary Material online) as repre-
sentative of the group: CN-Shi and JP-Tok for the group Asia,
all three sample sites for the genetically heterogeneous
Western US group, US-NC and US-Wis for the group eastern
US, GE-Dos, and IT-Tre for the group Europe. Each of the
sample sites retained (i.e., the representative sample sites) was
included alternatively in the sample set considered for ABC
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treatments. This makes it possible to replicate analyses of
scenario choice on different sample sets representing most
of the genetic variation within and between genetic groups.
All ABC analyses described in table 1 were thus replicated
with all possible combinations of representative sample sites
available for each genetic group. This allowed us to test the
robustness of scenario choices with respect to the sample sets
considered as representative of genetic groups.

Nested ABC Analyses Processed Sequentially
Following Lombaert et al. (2014), we used historical informa-
tion (i.e., dates of first observation of each invasive popula-
tions; supplementary table S1, Supplementary Material
online) to define 11 sets of competing introduction scenarios
that were analyzed sequentially. The first set of compared
scenarios considers the second oldest invasive population
as target (the oldest one necessarily originating from the na-
tive range) and determines its introduction history. Step by
step, subsequent analyses use the results obtained from the
previous analyses, until the most recent invasive populations
are considered. Each of the 11 analyses included a set of
compared introduction scenarios where the target invasive
population (i.e., the focal population) can either directly de-
rive by a single split (i.e., introduction event) from one of the
historically compatible source populations, or be the result of
an admixture event between one of all possible combinations
of pairwise sources. For instance, in a model with one target
and two possible sources, three scenarios could be formalized
with the target population being derived from a single source
population, from the other possible source, or from an ad-
mixture between the two sources (see supplementary fig. S6
for an illustration and supplementary table S2,
Supplementary Material online for details).

The first set of scenario choice analyses 1a–1d aimed at
making inferences about the introduction pathways for the
three sample sites in western US (table 1). We first evaluated
the Asian or Hawaiian or admixed AsianþHawaiian origin of
each three western US sample sites. We then refined our
modeling by formalizing seven competing scenarios describ-
ing the possible relationships among the three western US
sample sites and their extra-continental sources (i.e., Asia and
Hawaii; analysis 1d). Once the invasion history was resolved
for the western US group, we sought to identify the popula-
tion source(s) of the eastern US and European genetic groups,
independently. Dates of first records in these two groups
widely overlap and the possibility that the western US was
a common source for both areas could not be ruled out. We
therefore compared in analysis 2a a set of six scenarios to
assess whether the eastern US group directly derived from
Asia, Hawaii, or western US or if it resulted from an admixture
event between one pair of such sources. A similar set of six
scenarios was used to assess the most likely origin of
European populations, independently from the eastern US
group (analysis 2b).

Due to the results of analyses 2a and 2b and due to the
overlap in first record dates for eastern US and Europe, we
then performed two analyses to investigate the possibility of
gene flows (i.e., admixture) between the eastern US and

European groups, considering eastern US as target population
with Europe as potential source and vice versa (analyses 3a
and 3b, reciprocally). Analysis 4 aimed at clarifying the admix-
ture in northern Europe sample sites identified in analysis 3b.
We tested whether this admixture occurred between eastern
US and a secondary introduction from Asia, or between in-
dividuals from eastern US and southern Europe. Finally, we
investigated the origins of the most recent invasive popula-
tions in Brazil and La Réunion, separately, with all older groups
and pairwise admixtures as potential sources (analyses 5a
and 5b). Note that in agreement with the genetic clustering
results (fig. 1, supplementary appendix S1 and figs. S1 and S2,
Supplementary Material online) we did not test for the pos-
sibility of Brazil being the source of La Réunion, and
reciprocally.

Historical, Demographic, and Mutational Parameters
For all scenarios formalized for ABC analyses, we modeled an
introduction event as a divergence without subsequent gene-
flow from the source population (or two source populations
in case of admixture) at a time corresponding to the date of
first record in the invaded area translated into a number of
generations (assuming 12 generation per year; Lin et al. 2014).
The divergence event was immediately followed by a bottle-
neck period characterized by a lower effective population size,
and a straight return to a stable (large) effective population
size. We modeled our uncertainty regarding the identity of
the source populations in the slightly structured native Asian
area by including native “ghost populations” (i.e., unsampled
populations) in our scenarios. Such unsampled native popu-
lations were modeled as a single split from an ancestral Asian
population (without any change in effective population size)
at a time defined by a loose flat prior, which includes zero at
the lower bound (supplementary table S8, Supplementary
Material online). See Lombaert et al. (2014) and references
therein for justifications of using unsampled populations
when modeling invasion scenarios. A detailed illustration of
the above modeling design is provided in supplementary fig.
S6, Supplementary Material online.

Prior distributions for historical, demographical, and mu-
tational parameters were defined taking into account the
historical and demographic parameter values available from
empirical studies on D. suzukii (Hauser 2011; Lin et al. 2014;
Asplen et al. 2015) and microsatellite mutational data on
D. melanogaster (Schug et al. 1998). We considered a first
set of prior distributions (hereafter termed prior set 1), which
was composed of rectangular (i.e., bounded uniforms) distri-
butions (see supplementary table S8, Supplementary Material
online). To evaluate the robustness of our ABC inferences to
prior choice, we also considered a second set of more peaked
prior distributions (hereafter termed prior set 2; supplemen
tary table S8, Supplementary Material online).

Model Choice Using ABC-RF and ABC-LDA
For all ABC-RF and ABC-LDA analyses, we used the software
DIYABC v.2.1.0 (Cornuet et al. 2014) to simulate datasets
constituting the reference tables. A reference table includes
a given number of datasets that have been simulated for

Fraimout et al. . doi:10.1093/molbev/msx050 MBE

992

Deleted Text: a
Deleted Text: p
Deleted Text: s
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
Deleted Text: eleven 
Deleted Text: eleven 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
Deleted Text:  to 
Deleted Text: Owing
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
Deleted Text: d
Deleted Text: m
Deleted Text: p
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
Deleted Text: ,
Deleted Text: <xref ref-type=
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx050/-/DC1
Deleted Text: c
Deleted Text: u
Deleted Text: a


different scenarios using parameter values drawn from prior
distributions, each dataset being summarized with a pool of
statistics.

Following Pudlo et al. (2016), ABC-RF treatments were
processed on reference tables including 10,000 simulated
datasets per scenario. Datasets were summarized using the
whole set of summary statistics proposed by DIYABC
(Cornuet et al. 2014) for microsatellite markers, describing
genetic variation per population (e.g., number of alleles),
per pair (e.g., genetic distance), or per triplet (e.g., admixture
rate) of populations, averaged over the 25 loci (see the sup
plementary table S9, Supplementary Material online for de-
tails about such statistics), plus the linear discriminant anal-
ysis (LDA) axes as additional summary statistics. The total
number of summary statistics ranged from 39 to 424 depend-
ing on the analysis (table 2). When the number of scenarios in
an analysis exceeded ten, we processed ABC-RF treatments
on reference tables including 100,000 simulated datasets to
avoid computer memory issues associated to the sub-
bootstrapping procedure processed for reference tables
with more than 100,000 simulated datasets; see the section
Practical recommendations regarding the implementation of
the algorithms in Pudlo et al. (2016). We checked that this
number was sufficient by evaluating the stability of prior error
rates (i.e., the probability to choose a wrong model when
drawing model index and parameter values into priors) and
posterior probabilities estimations on 80,000, 90,000, and
100,000 simulated datasets. The number of trees in the con-
structed random forests was fixed to n¼ 500; see Pudlo et al.
2016, Breiman 2001 for justifications of considering a forest of
500 trees and supplementary fig. S7, Supplementary Material
online for an illustration. For each ABC-RF analysis, we pre-
dicted the best scenario, estimated its posterior probabilities
and prior error rates over 10 replicate runs of the same ref-
erence table. We used the abcrf R package (v1.1.0; Pudlo et al.
2016) to perform all ABC-RF analyses. In supplementary ap
pendix S2, Supplementary Material online, we provide several
scripts written in R programming language (R Development
Core Team 2008) for computing random forest analyses in R
with the abcrf package, when starting from simulated data-
sets generated with DIYABC v.2.1.0.

For sake of methodological comparisons, we also dupli-
cated a subset of analyses using a more standard ABC method
(Beaumont et al. 2002; Cornuet et al. 2008) improved using
the regression algorithms from Estoup et al. (2012) based on
linear discriminant analysis (LDA) to avoid the curse of di-
mensionality and correlation among explanatory variables
(i.e., multi-co-linearity) during the regression step. This
method is called ABC-LDA. Following previous analyses of
this type (Lombaert et al. 2014), ABC-LDA treatments were
processed on reference tables including 500,000 simulated
datasets per scenario. As for ABC-RF, datasets were summa-
rized using the whole set of summary statistics proposed by
DIYABC (Cornuet et al. 2014). Posterior probabilities associ-
ated with each scenario were estimated by polychotomous
logistic regression (Cornuet et al. 2008), modified following
Estoup et al. (2012), on the 1% of the simulated datasets
closest to the observed dataset. We also estimated for each

analysis a prior error rate over 500 simulated datasets drawn
into priors using reference tables including 500,000 simulated
datasets per scenario. To provide a fair comparison of classi-
fication error with respect to the computational effort, prior
error rates were also estimated using reference tables includ-
ing the same number of simulated datasets per scenario as for
ABC-RF treatments (10,000 per scenario).

Refining the Origins of the Primary Introduction
Events from the Native Area
We refined our worldwide invasion scenario by assessing
the most probable origin of the primary introductions
from the Asian native range. To this aim, we carried out
additional ABC-RF treatments to choose which geograph-
ical area in the native range was the most likely origin of
each of the three primary introductions from Asia iden-
tified in the final invasion scenario, i.e., in Hawaii, western
US (sample site US-Wat), and Europe (fig. 1). Capitalizing
on the observed pattern of genetic differentiation among
all Asian sample sites, we considered four possible geo-
graphical origins: O1¼ Japan (represented by the sample
sites JP-Sapþ Jp-Tok that were pooled as they did not
show any significant differentiation), O2¼ South-East
China (represented by the sample site CN-Nin),
O3¼North-West China (represented by the sample sites
CN-LanþCN-Lia that were pooled as they did not show
any significant differentiation), and O4¼ South-West
China (represented by the sample site CN-Shi). In each
of these three model choice analyses (cf. one analysis per
primary introduction), we considered the previously in-
ferred introduction histories and compared four scenar-
ios corresponding to variation of those histories that only
differed by the geographical origin of the primary Asian
introduction (models O1, O2, O3, and O4). We used the
ABC-RF method with 10,000 datasets per model simu-
lated using the prior set 1 or 2, and with three replications
of the RF process. For inferences regarding Europe, we
carried out ABC-RF treatments on various sets of sample
sites from Europe and eastern US to further evaluate the
robustness of our results.

Parameter Estimation
For ABC parameter estimation, we considered a set of 12 key
sample sites representative of the inferred final invasion his-
tory (fig. 1). This set of sample sites included the three native
origins of primary introductions from the native range (O1,
O2, and O3), the Hawaiian sample (US-Haw), the three west-
ern US samples (US-Wat, US-Sok, and US-SD), the eastern US
sample US-NC, two European samples (IT-Tre and GE-Dos),
the Brazilian sample (BR-PA), and the sample from La
Réunion (FR-Reu). To evaluate the robustness of our param-
eter estimations with respect to sample sites we carried out a
second analysis replacing the sample sites US-NC, IT-Tre, and
GE-Dos by US-Wis, SP-Bar, and FR-Par, respectively. We also
replicated parameter estimations using the prior set 1 and the
prior set 2.

ABC-RF was developed to tackle the inferential issue of
model choice. So far, no RF-based solution exists to estimate
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parameter distributions under a given model (Pudlo et al.
2016). Standard ABC algorithms for parameter estimation
may suffer from the curse of dimensionality and correlation
among explanatory variables (i.e., multi-co-linearity) during
the regression step, and hence yield poor results when the
number of statistics is much too large [reviewed in Blum et al.
(2013)]. To avoid such potential problems as well as for the
sake of simplicity and computation efficiency (i.e., statistical
techniques for choosing summary statistics have not been
implemented in DIYABC; Blum et al. 2013), we used a stan-
dard ABC methodological framework (Beaumont et al. 2002;
Cornuet et al. 2008) applied to a subset of “expert-chosen”
statistics proposed in DIYABC (Brouat et al. 2014; Lombaert
et al. 2014) to estimate posterior parameter distributions un-
der the final invasion scenario. We hence considered 95 sum-
mary statistics in total: the mean number of alleles and the
mean genetic diversity (per locus and population sample), all
pairwise FST’s, and some crude estimates of admixture rates
based on the five population triplets for which admixture
events have been inferred (i.e., A1–A5 events described in
fig. 1 corresponding to five AML statistics; Choisy et al.
2004, see the DIYABC 2.1.0 user-manual p16 for details about
such statistics). Using parameter values drawn from the prior
sets 1 or 2, we produced a reference table containing 10
million simulated datasets. Following Beaumont et al.
(2002), we then used a local linear regression to estimate
the parameter posterior distributions. We took the 10,000
(1
�
/00) simulated datasets closest to our observed dataset

for the regression, after applying a logit transformation to
parameter values. We found that considering instead the
1% closest simulated datasets and/or a larger sets of summary
statistics had only weak effects on the estimated parameter
distributions, at least for the subset of parameters we were
interested in (i.e., admixture rates and bottleneck severity)
(results not shown).

We focused our investigations on the parameters related
to two types of demographic events that are considered to be
potentially important drivers of invasion success: severity of
the bottleneck associated with the foundation of new popu-
lations and genetic admixture (Estoup et al. 2016). Bottleneck
severity was defined as the ratio between the duration of the
bottleneck and the number of effective individuals during this
period (Pascual et al. 2007). Following the final invasion sce-
nario detailed in figure 1, we defined three categories of in-
troduction situations: bottleneck severity for populations
founded only by individuals originating from a different con-
tinent (e.g., sample sites US-Haw, US-Wat, IT-Tre, BR-PA, and
FR-Reu), bottleneck severity for populations founded only by
individuals originating from the same continent (e.g., sample
sites US-SD and US-NC) and bottleneck severity for popula-
tions founded by a combination of the two types of sources
(e.g., sample sites US-Sok and GE-Dos). Genetic admixture is
evident when a population is inferred to have more than one
distinct source (A1–A5 events in fig. 1).

Model-Posterior Checking
We used the ABC model-posterior checking method imple-
mented in DIYABC (Cornuet et al. 2010) to evaluate how well

the final worldwide invasion scenario with associated param-
eter posterior distributions matches with the observed data-
set. This method was largely inspired by statistical frameworks
detailed in Gelman et al. (2003) and Cook et al. (2006). The
principle is as follows: if a scenario-posterior combination fits
the observed data correctly, then data simulated under this
scenario with parameters drawn from associated posterior
distributions should be close to the observed data. The lack
of fit of the model to the data can be measured by determin-
ing the frequency at which test quantities measured on the
observed dataset are extreme with respect to the distribu-
tions of the same test quantities computed from the simu-
lated datasets (i.e., the posterior predictive distributions). In
practice, the test quantities are chosen among the large set of
ABC summary statistics proposed in the program DIYABC.
For each test quantities (q), a lack of fit of the observed data
with respect to the posterior predictive distribution can be
measured by the cumulative distribution function values de-
fined as Prob(qsimulated<qobserved). Tail-area probability can
be easily computed for each test quantityas
Prob(qsimulated<qobserved) and 1.0� Prob (qsimulated<qobserved)
for Prob (qsimulated<qobserved)� 0.5 and> 0.5, respectively.
Such tail-area probabilities, also named posterior predic-
tive P-values (i.e., ppp-values; Meng 1994), represent the
probabilities that the replicated data (simulated ABC sum-
mary statistics) could be more extreme than the observed
data (observed ABC summary statistics). In practice, ppp-
values can be interpreted as a guideline for tracking model-
posterior misfit: a few ppp-values around 0.05 are not nec-
essarily a problem whereas the presence of ppp-values
around 0.001 is rather suspect. Hence, too many observed
summary statistics falling in the tails of distributions, espe-
cially if some of those ppp-values are small (<0.001), cast
serious doubts on the adequacy of the model-posterior
combination to the observed dataset. Finally, because
ppp-values are computed for a number of (often non-
independent) test statistics, a method such as that of
Benjamini and Hochberg (1995) can be used to control
the false discovery rate (Cornuet et al. 2010).

We carried out the ABC model-posterior checking analysis
on our observed microsatellite dataset as follows. From 107

datasets simulated under the final invasion scenario detailed
in figure 1 and using the same subset of 95 statistics previously
retained for parameter estimation, we obtained a posterior
sample of 104 values from the posterior distributions of pa-
rameters, as described in the previous section Parameter es-
timation. We then simulated 104 datasets with parameter
values drawn with replacement from this posterior sample.
As underlined in many text books in statistics (Gelman et al.
2003), it is advised against performing model checking using
information that have already been used for training (i.e.,
model fitting; see also Cornuet et al. 2010 for illustrations
on simulated datasets). Optimally, model-posterior checking
should be based on test quantities that do not correspond to
the summary statistics which have been used for obtaining
the parameters posterior distributions. This is naturally pos-
sible with DIYABC as the package propose a large choice of
summary statistics. Our set of test statistics therefore
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included the 1141 remaining single, pairwise and three-
population summary statistics available in DIYABC that
were not used for previous ABC parameter estimation.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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