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ABSTRACT OF THE DISSERTATION

Physical Principles of Virus Capsid Assembly and Genome Packaging

by

Yinan Dong

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2023

Dr. Roya Zandi, Chairperson

Single-stranded RNA viruses efficiently encapsulate their genome into a protein

shell called the capsid. Understanding the physical principles underlying the formation of

virus capsid assembly and genome packaging is of great interest because of their potential

applications in blocking viral infections and various areas of bio-nanotechnology, such as

drug delivery and gene therapy.

The first part of the thesis investigates the encapsidation of single-stranded RNAs

into virus capsid. Electrostatic interactions between the positive charges in the capsid

protein’s N-terminal tail and the negatively charged genome have been postulated as the

main driving force for virus assembly. Recent experimental results indicate that the N-

terminal tails with the same number of charges and same lengths package different amounts

of RNA, which reveals that electrostatics alone cannot explain all the observed outcomes of

the RNA self-assembly experiments. Using a mean-field theory, we show that the combined

effect of genome configurational entropy and electrostatic interaction can explain to some

extent the amount of packaged RNA with mutant proteins where the location and number
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of charges on the tails are altered and shed light on many experimental results relevant to

BMV assembly.

The second part focuses on understanding the physical principles of virus capsid

assembly, specifically for the difficult cases of the assembly of nonspherical structures such

as Human Immunodeficiency Viruses (HIV). For HIV shells, while there are often 5 defects

at the smaller and 7 at the larger caps, defect positions vary from one HIV structure to

another. Currently, there is no clear understanding of what determines the position of the

defects as the surfaces with non-zero Gaussian curvature such as the conical shell of HIV

grow. To tackle this issue, in this thesis, we take the first step and solve an intermediate

problem of characterizing the structure of an elastic network constrained to lie on a frozen

curved surface by continuum elasticity theory. We provide an exact solution to this problem

without resorting to any approximation in terms of geometric quantities.
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Chapter 1

Introduction

1.1 Structures of viruses

Viruses, the simplest biological organisms, primarily consist of a genome, which

can be either RNA or DNA, enclosed within a protective protein capsid. Capsids act as

protein shells safeguarding the genome from the harsh external environment. Some viruses,

like the retrovirus HIV-1, may contain a lipid envelope that provides protection to their

capsids.

The generalized life cycle of viruses includes adsorption, entry, uncoating, am-

plication, assembly, and release. Absorption during which the virus attaches to the host

cell membrane. Different viruses employ distinct entry strategies. Most viruses without

envelopes enter cells through endocytosis. Upon entry, the capsid undergoes disassembly

during the uncoating process, releasing its genome. The released genome utilizes the host

cell’s machinery to replicate itself and produce capsid proteins (CPs). Subsequently, the

newly generated CPs assemble around the genomes, forming new virions that exit the cell
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to infect other cells. The assembly of CPs into the viral shell has garnered considerable

attention over the past two decades, and significant progress has been made in under-

standing the physics underlying this process through experimental and theoretical studies

[68, 147, 31, 50].

Viruses are classified based on various factors. From an architectural standpoint,

viruses can exhibit cylindrical shape (e.g., tobacco mosaic virus, as shown in Fig. 1.1a),

spherical shape (e.g., cowpea chlorotic mottle virus, as depicted in Fig. 1.1b), or conical

shape (e.g., human immunodeficiency viruses, as seen in Fig. 1.1c). In terms of genome type,

viruses are distinguished as single-stranded (ss) RNA, double-stranded (ds) RNA, single-

stranded DNA (ssDNA), or double-stranded DNA (dsDNA). Other classification factors

include the host organism, the utilization of reverse transcriptase during replication, and

the presence of an envelope.

Most spherical viruses exhibit the remarkable property of adopting icosahedral

symmetry (IO). Within the icosahedral structure, proteins are arranged in pentagonal and

hexagonal units, with pentamers evenly distributed on the capsid surface. An intriguing

aspect of viruses is their ability to spontaneously assemble into highly symmetric IO struc-

tures, both in vivo and, in some cases, in vitro. A significant milestone was achieved in 1967

when Bancroft et al. successfully reconstituted the first spherical virus, CCMV, in vitro.

It is noteworthy that although most spherical viruses vary in size, ranging from 20nm to

100nm in diameter, they possess icosahedral symmetry. Triangulation number, calculated

based on the Casper and Klug model [26], provides a method to categorize icosahedral

structures with different numbers of subunits. The triangulation number T is defined as
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a b c d

Figure 1.1: Cryo microscopy images of (a) tobacco mosaic virus (TMV) [55] (b) cowpea
chlorotic mottlevirus [5] (c) human immunodeficiency viruses (HIV) [57] (d) bacteriophage
P22 [145]

follows:

T = h2 + hk + k2. (1.1)

the variables h and k represent the number of steps connecting adjacent pentamers along

the principal vectors of a hexagonal lattice. The total count of protein subunits in an

icosahedral capsid is 60 times the triangulation number (T) Notably, regardless of the

capsid’s size, there are always 12 pentamers present, while the remaining protein subunits

arrange themselves as hexamers. The values of h and k, being positive integers, determine

specific triangulation numbers (e.g., T = 1, 3, 4, 7, etc.). It is noteworthy that the formation

of highly symmetric structures, including icosahedral architectures, is not limited to viruses

alone, as various biological structures such as clathrin vesicles also undergo self-assembly

using protein subunits [32, 40].
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1.2 Virus self-assembly

Numerous studies have demonstrated the spontaneous self-assembly of small single-

stranded RNA (ssRNA) viruses in vitro, taking place outside of living cells in solutions

containing virus coat protein subunits and the viral genome. During this process, the

capsid proteins encapsulate the genome (RNA or DNA) to form a stable and protective

shell. Remarkably, virus coat proteins exhibit the ability to co-assemble with various car-

gos, including RNAs from unrelated viruses, synthetic polyanions, and negatively charged

nanoparticles [132, 76, 69]. This encapsidation property relies on the electrostatic inter-

action between the positively charged protein subunits and the negatively charged cargos

[125, 117, 99, 89, 153, 127]. Leveraging this encapsidation feature, viruses have found diverse

applications in bio-nanotechnology, such as gene therapy and drug delivery.

Both experimental and theoretical investigations have contributed to our under-

standing of the physical factors that govern the efficient assembly and stability of small

virus particles. In-vitro experiments have elucidated the role of pH and salt concentration

in the assembly of viruses like CCMV [58]. Furthermore, X-ray scattering techniques have

been employed to unravel the self-assembly pathways of viral capsids encapsulating RNA

genomes or other polyelectrolytes [34]. Extensive theoretical research has been conducted

to unravel the mysteries surrounding the life cycle of viruses. Elasticity theory, for instance,

has shed light on viruses entry into a cell and the architectural properties of viral capsids

[44, 150, 149]. Polymer physics has been widely applied to understand genome configura-

tions during the co-assembly process [109, 52, 124].
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1.3 Overview

Through both experimental and theoretical investigations, our understanding of

the physical mechanisms governing the virus self-assembly has significantly advanced. How-

ever, there are still many questions that need to be answered. How does the charge distri-

bution on the N-terminal tails of capsid protein impact the optimal number of nucleotides

packaged? What determines the defect positions of viruses with non-spherical structures

like Human Immunodeficiency Viruses (HIV)? To answer these questions, our study em-

ploys field theory and elasticity theory to investigate the intricate process of virus assembly.

Through this interdisciplinary approach, we aim to uncover key insights into the fundamen-

tal principles driving virus capsid assembly and genome packaging, advancing our knowledge

for innovative strategies in viral infection prevention and gene therapy applications.

Electrostatic interactions between the positive charges in the capsid protein’s N-

terminal tails and the negatively charged genome have been postulated as the main driving

force for virus assembly. In Chapter 2, a mean-field theory is employed to demonstrate

that the combined effect of genome configurational entropy and electrostatics can explain

to some extent the amount of the packaged RNA with mutant proteins, where alterations

are made to the locations and number of charges on the N-terminal tails. We have been able

to show that the specific locations and spacing of charges along the N-terminal tails play a

crucial role in determining the amount of packaged RNA, effectively providing a qualitative

explanation for the experimental findings reported by Ni et al. [99]. Furthermore, we

demonstrate a reduction in free energy for RNA segments exhibiting a higher number of

branch points.
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The simplicity of virus structures reflects a fundamental connection between the

elasticity theory [77] and the theory of defects [98, 29] built upon topology and differen-

tial geometry. The task of characterizing the structure of an elastic network confined to a

fixed curved surface arises in various scientific disciplines and has been addressed by diverse

methodologies, most notably, extending linear elasticity or through effective defect interac-

tion models. In Chapter 3, we present a novel solution to this problem by employing exact

nonlinear elasticity, eliminating the need for approximations based on geometric quantities.

This allows us to consider previously challenging or unfeasible factors, such as finite line

tension, explicit dependence on the Poisson ratio, and the determination of particle posi-

tions throughout the lattice. Furthermore, we discuss the implications of our findings for

the characterization of virus assembly.
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Chapter 2

Effect of the charge distribution of

virus coat proteins on the length of

packaged RNAs and RNA

secondary structure on genome

pakcaging

2.1 Abstract

Single-stranded RNA viruses efficiently encapsulate their genome into a protein

shell called the capsid. Electrostatic interactions between the positive charges in the capsid

protein’s N-terminal tail and the negatively charged genome have been postulated as the

7



main driving force for virus assembly. Recent experimental results indicate that the N-

terminal tail with the same number of charges and same lengths packages different amounts

of RNA, which reveals that electrostatics alone cannot explain all the observed outcomes of

the RNA self-assembly experiments. Using a mean-field theory, we show that the combined

effect of genome configurational entropy and electrostatics can explain to some extent the

amount of packaged RNA with mutant proteins where the location and number of charges

on the tails are altered. We also we show that for simple icosahedral single-stranded RNA

viruses, the branched topology due to the RNA secondary structure is thought to lower the

free energy required to complete a virion. Understanding the factors contributing to the

virus assembly could promote the attempt to block viral infections or to build capsids for

gene therapy applications.

2.2 Introduction

Viruses have optimized the feat of packaging of their negatively charged genomes

into a protein shell called the capsid, often built from a large number of one or a few different

kinds of protein subunits [4]. Under many in vitro conditions, coat proteins of several single-

stranded RNA (ssRNA) viruses can spontaneously encapsulate all types of anionic cargos

including their native genome, linear polymers, and heterologous and nonviral RNAs[36, 12,

13, 69, 100]. The capsid proteins of several RNA viruses contain an unstructured positively

charged N-terminal domain that extends toward the center of the capsid and interacts with

the viral genome, see Fig. 2.1[23]. Although the specific sequence of the viral RNA plays

an important role in packaging [111, 131], it is now well-established that the electrostatic
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interaction between N-terminal tails and RNA is the main driving force for the formation

of viral particles and their stability [133, 80, 147].

Self-assembly studies of various ssRNA viruses have revealed that the amount of

RNA packaged depends directly on the number of positive charges on the N-terminal tails of

capsid proteins. Many experiments show that mutant virions with less positive charges on

N-terminal domain encapsidate lower amounts of RNA and mutants with increased positive

charges package more [127, 99]. For example, the experimental studies of Sivanandam et al.

show that the deletions of even one single positively charged residue of the Satellite Tobacco

Mosaic Virus (STMV) N-terminal domain results in the formation of virus particles with a

reduced amount of viral RNAs [127]. Belyi and Muthukumar as well as Hu et al. [8, 134]

also examined the relation between the total number of positive charges in the tails and

the length of the encapsidated RNA in various viruses and found a strong relation between

them.

Of particular interest is the self-assembly experiments of Ni et al. [99] who specif-

ically focused on Brome Mosaic Virus (BMV) and systematically investigated the role of

electrostatics on the amount of RNA packaged [99]. The N-terminal domain of BMV capsid

proteins is composed of 26 residues, eight of which are positively charged. The genome of

BMV consists of four RNA molecules: RNA1 (3.2 kb), RNA2 (2.9 kb), RNA3 (2.1 kb), and

RNA4 (0.9 kb). While RNA3 and RNA4 co-assemble together in one capsid, RNA1 and

RNA2 are each encapsidated separately. Quite interestingly, the total length of encapsi-

dated genome is more or less the same in each capsid. The BMV capsids of these three types

are virtually identical, i.e., have T = 3 icosahedral structures consisting of 180 copies of

9



(a) (b)

Figure 2.1: (a) A T = 3 icosahedral shell with 180 protein subunits. The darker (blue)
color shows the pentamers. The structure is similar to the BMV capsid. (b) The in-
terior of a T = 3 viral shell with N-terminal domains (pink tails) extended towards
the center of the capsid. Each N-terminal domain contains eight positive charges, not
shown in the figure. The structure in (a) is reproduced using UCSF Chimera packages
(http://www.rbvi.ucsf.edu/chimera).

the same protein with the same mechanical properties [150], see Fig. 2.1. We note that the

structural index T, introduced by Casper and Klug, defines the number of protein subunits

in viral shells, which is 60 times the T number [26]. Thus T = 1 and T = 3 capsids have

60 and 180 protein subunits, respectively.

To gain more insight into the effect of electrostatic interactions, Ni et al. [99]

made several mutants to increase the number of charges on N-terminal domains. A sum-

mary of their experimental results is presented in Fig. 2.2. In one case, they inserted eight
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residues including four positively-charged ones after residue 15 (2H15). They also exam-

ined the impact of the length of N-terminal without adding more positive charges but by

introducing six alanines and two threonines, which are neutral (2HA15). To examine if the

position of the insertions has an impact on the amount of packaged RNA, they repeated

the aforementioned experiments but introduced insertions after residue 7 and constructed

2H7 and 2HA7. Furthermore, to exclusively examine the effect of the increasing charges

while keeping the length of the N-terminal tail the same as the wild-type one, they replaced

four uncharged residues along the tail with four arginines (4R), each containing one positive

charge. They found that in all cases, the structure of capsids was almost the same even

though the amount of encapsidated RNA was different.

The spectroscopic analysis of the experiments of Ni et al. [99] reveals that as the

number of charges on the N-terminal increases, the higher amount of nucleotides per capsid

is packaged [99]. Nevertheless, it appears that the amount of encapsidated RNA increase

does depend on other factors than the number of positive charges on the N-terminals. While

the experiments clearly indicate that electrostatics plays a major role in RNA packaging, it

is not obvious whether electrostatics can explain all the effects observed in Fig 2.2. Many

theoretical and experimental studies have already shown that the length of packaged RNA

increases with the number of charges in N-terminal tails [80, 99, 127], but how the amount of

RNA encapsidated depends on the distribution and location of charges on the N-terminals

have remained elusive.

The level of branching depends upon RNA sequence, and viruses have evolved to

have highly branched and compact RNAs [65, 139]. Compactness has been shown to increase
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Figure 2.2: (a) Schematic of the sequences of N-terminal tails of six mutants used in the
experiments of Ni et al.[99]. The mutants are denoted by 2HA7, 2H7, 2HA15, 2H15, 4S
and 4R. The triangles denote the location of the insertions. For 2HA7 and 2HA15, eight
neutral amino acids are inserted into the N-terminal. For 2H7 and 2H15, four neutral and
four positive amino acids (with boldface and underlined) are inserted. The four positive
amino acids are two lysines (K) and two arginines (R), leading to the increased length of
N-terminal regions and also 720 additional positive charges per capsid. For 4S and 4R, the
length of N-terminals remains the same. In the case of 4S four neutral amino acids (MAAA)
are replaced with another four neutral amino acids and for 4R mutants, four neutral amino
acids (MAAA) are replaced with four positively charged arginines (R). (b) Spectroscopic
analysis of the number of nucleotides per virion.

the packaging efficiency both in in vitro experiments [38] and in simulation studies [126, 81].

Moreover, increased compactness seems to allow longer RNA molecules to be packaged by

viral CPs [112, 53, 81]. However, the relationship between compactness and selectivity is not

straightforward since it was shown in some conditions that linear RNAs could be packaged

more efficiently than branched RNAs of the same length [11]. An explanation could be

that a high level of branching can lead to an increased stiffness that may be detrimental for

packaging selectivity [45]. The connection between RNA structure and packaging selectivity

is then far from being thoroughly understood.

In this chapter we show that electrostatics is indeed able to explain at least to

some extent for many observed effects relevant to RNA packaging. Using the mean-field
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theory, we show that the charge discreteness, the location and the distance between the

charges along the N-terminal tails have a huge impact on the optimal number of nucleotides

packaged. Consistently with the experiments of Ni et al. [99] we find that the optimal

amount of packaged RNA depends on the location of charges within the peptide sequence

and increases non-linearly with the total number of positive charges on the capsid. We also

show that free energy is lowered for the RNA segments displaying the larger number of

branch points and the related experimental results can be found in [94].

The chapter is organized as follows. In the next section, we introduce the model

and derive the equations that we will employ later. In Section III, we present our results

corresponding to the non-uniform charge distribution along the N-terminal tails of BMV

coat proteins and branched topology due to the RNA secondary structure. Section IV

discusses the impact of the length and sequence of amino acids N-terminal tails on the the

length of encapsidated genome, and finally, we present our conclusion and summarize our

findings.

2.3 Methods

To explore the impact of N-terminal charge distribution on the length of packaged

RNA, we model RNA as a negatively charged flexible polymer. Many experiments show that

RNA acts effectively as a branched polymer in solution [64, 109]. Due to the relatively weak

strength of RNA base-pairing, the number of branch points of RNA can easily be modified

through the interaction with the positive charges of virus coat proteins. Thus, we focus

on the case of annealed branched polyelectrolyte, which allows the degree of branching of
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RNAs, a statistical quantity, to be modified [142]. Using the mean-field theory, we calculate

the free energy of the RNA confined into a spherical shell that interacts attractively with

the positive charges residing on the N-terminal domains of the capsid proteins. Under the

ground-state dominance approximation [41, 82] where only the dominating contribution to

the polymer partition function is considered, the free energy of the genome-capsid complex

in a salt solution is [15, 124, 52, 54, 80],

βF =

∫
d3r
[
a2

6 |∇Ψ(r)|2 +W
[
Ψ(r)

]
− β2e2

8πλB
|∇Φ(r)|2 − 2µ cosh

[
βeΦ(r)

]
+ βτΦ(r)Ψ2(r)

]
+

∫
d2r
[
βρ(r)Φ(r)

]
. (2.1)

where β is the inverse of temperature in the units of energy, a is the Kuhn length of the

polymer, e is the elementary charge, µ is the density of monovalent salt ions, and τ is the

linear charge density of chain. The Bjerrum length λB = e2β/4πϵ is about 0.7 nm for

water at room temperature. The dielectric permittivity of the medium ϵ is assumed to be

constant[71]. See Ref. [144] and the appendix of Ref. [54] for a step by step derivation of

Eq. (2.1), in the absence and presence of electrostatic interactions, respectively.

The field Ψ(r) is the monomer density field and Φ(r) is the electrostatic potential.

The density of positive charges on the N-terminal tails of capsid proteins is denoted by

ρ(r). The first term in Eq. (2.1) is the entropic cost of deviation from a uniform chain

density. The last two lines of Eq. (2.1) are associated with the electrostatic interactions
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between the chain segments, the capsid and the salt ions at the level of Poisson-Boltzmann

theory [15, 14, 122, 123]. The term W [Ψ] represents the free energy density associated with

the annealed branching of the polymer including the self repulsion of the polyelectrolyte

[90, 79, 49],

W [Ψ] = − 1√
a3

(feΨ+
a3

6
fbΨ

3) +
1

2
υΨ4, (2.2)

where fe and fb are the fugacities of the end and branched points of the annealed polymer,

respectively [144] and υ is the effective excluded volume for each monomer. Note that the

stem-loop or hair-pin configurations of RNA are counted as end points in this model. The

quantity 1√
a3
feΨ indicates the density of end points and

√
a3

6 fbΨ
3 the density of branch

points. The expectation number of end and branched points, Ne and Nb, are related to the

fugacities fe and fb, and can be written as

Ne = −βfe
∂F

∂fe
and Nb = −βfb

∂F

∂fb
. (2.3)

There are two additional constraints in the system. The first one corresponds to the fact

that the total number of monomers (Kuhn lengths) inside the capsid is fixed [42, 72],

N =

∫
d3r Ψ2(r). (2.4)

We impose this constraint through a Lagrange multiplier, E, introduced below. Second,
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there is a relation between the number of the end and branched points which should satisfy,

Ne = Nb + 2, (2.5)

as there is only a single polymer in each capsid and no closed loops within the secondary

structure of an RNA are allowed. The polymer is linear if fb = 0, and the number of

branched points increases with increasing value of fb. For our calculations, we vary fb and

find fe through Eq. (2.3) and Eq. (2.5). To this end, fe is not a free parameter.

Extremizing the free energy with respect to the fields Ψ(r) and Φ(r), subject to

the constrain that the total number of monomers inside capsid is constant (Eq. (2.4)), we

obtain three self-consistent non-linear coupled equations for the interior and exterior of the

capsid,

a2

6
∇2Ψ(r) = −EΨ(r) + τβΦin(r)Ψ(r) +

1

2

∂W

∂Ψ
(2.6a)

∇2Φin(r) =
1
λ2
D
sinh

[
Φin(r)

]
− τ

2λ2
Dµβe2

Ψ2(r)

− 1
2λ2

Dµβe2
ρ(r)

(2.6b)

∇2Φout(r) =
1
λ2
D
sinh

[
Φout(r)

]
(2.6c)

where λD = 1/
√
8πλBµ is the (dimensionless) Debye screening length and E is Lagrange

multiplier implementing the fixed monomer number inside capsid. The polymer concentra-

tion in the exterior of the capsid is considered to be zero, Ψ = 0. Equations (2.6) along with

the constraints shown in Eqs. (2.4) and (2.5) represent a set of coupled nonlinear differential
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equations that, subject to appropriate boundary conditions, can only be solved numerically

for the unknown parameters fe and E and fields Ψ(r) and Φ(r).

The boundary conditions for the two coupled differential Eqs. (2.6b) and (2.6c)

can be obtained by minimizing the free energy with respect to Φ(r) field on the surface of

the capsid and are,

n̂ · ∇Φin(r)|r=R = n̂ · ∇Φout(r)|r=R

Φin(r)|r=R = Φout(r)|r=R

Φout(r)|r=∞ = 0.

(2.7)

We employ Dirichlet boundary condition Ψ(r)|r=R = 0 for the monomer density field at

the capsid wall. Because of the symmetric monomer distribution, we set ∂rΨ(r)|r=0 = 0.

We emphasize that the derivations of all equations given in this section can be found in the

appendix of Ref. [54]. A more detailed derivation of the partition function and free energy

for branched polymers can be found in Ref. [144].

2.3.1 N-terminal tails

Figure 2.1 shows a T = 3 structure with 180 N-terminal tails extending into the

interior of capsid, distributed with icosahedral symmetry. Because of the repulsion between

the positive charges residing on the N-terminal tails, and the fact that RNA wraps around

them, we assume that the N-terminal tails take an extended configuration. To this end, we

model the N-terminal tails of BMV capsids as solid cylinders, see Fig. 2.3(b).We note that

the charged tails are placed inside the capsid, and we will use the same boundary conditions

for them as those given in Eq. (2.7) at the surface.
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(a) (b)

Figure 2.3: (a) The white circles indicate the locations of N-terminals on a T = 3 capsid.
(b) 3D view of inside of a T = 3 capsid with 180 protruded regions representing N-terminals.
There are eight positive charges on each cylinder (N-terminal tail) in a wild-type BMV
capsid. The positive charges are not shown in the figure.

In the next section we will examine the impact of different charge distributions

along N-terminal domains on the optimal genome length, which we will compare with the

experimental results presented in Fig. 2.2. Since most of the positive charges are residing on

the N-terminal tails, we consider that the charges of the coat proteins are only distributed

in the cylindrical regions with no charges on the capsid wall.

For simplicity, we first consider a T = 1 capsid with only two positive charges on

each of its 60 N-terminal tails and then focus on the T = 3 capsid of BMV.
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Figure 2.4: Genome density profile inside a T = 1 capsid as a function of the distance
from the capsid center. The solid lines in the figure show the profiles along N-terminal tails,
but the dashed graphs correspond to the direction without N-terminal tails (inset). (a)
The plot illustrates the profile when the distance between the two charges is 0.2 nm with
the total number of monomers N = 658. (b) The plot corresponds to the profile when the
distance between the two charges is 1.4 nm with N = 680. See Fig. 2.5(a) for a schematic
view of charge distributions. The length of the tail is 4 nm, and the size of each charged
region is 0.2 nm. The polymers are branched with fb = 3.86. The other parameters are
salt concentration µ = 500 mM , the capsid radius R = 9 nm, and the total charge on
N-terminals Qc = 120.

2.4 Results

2.4.1 A capsid with 60 tails (T=1)

To obtain the optimal length of encapsidated genome in a T = 1 shell, we numeri-

cally solve the nonlinear coupled differential equations (2.6a), (2.6b), (2.6c), subject to the

constraints given in Eqs. (2.4) and (2.5). We operate on the nonlinear coupled differential

equations with finite element method and deal with the convergence issue employing the

Newton method [6, 7, 101].

After finding the solutions for the fields Ψ(r) and Φ(r) we insert them into Eq. (2.1)

to obtain the free energy of polymer-capsid complex, F [52, 54, 51]. To obtain the encap-
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sidation free energy, we need to calculate the free energy of a polymer free in solution and

that of a positively charged shell and then subtract them both from the polymer-capsid

complex free energy, F , given in Eq. (2.1). The capsid self-energy [F (N = 0)] due to the

electrostatic interactions is calculated through Eqs. (2.6) and (2.7) in the limit as N → 0

and should be explicitly subtracted from the polymer-capsid complex free energy, F . We

emphasize that the focus here is on the solution conditions in which the capsid proteins can

self-assemble in the absence of genome. We also note that previous works have shown that

the free energy associated with a free chain (both linear and branched) is negligible under

most experimental conditions [54, 124].

The results of our numerical calculations are given in Fig. 2.4 as a plot of the

polymer concentration profile vs. r, the distance from the center of the shell for a branched

polymer with the radius of capsid R = 9 nm at µ = 500 mM salt concentrations. The total

number of charges in the capsid is Qc = 120 with two charges on each N-terminal tail. The

length of N-terminal is 4 nm and the size of each charge is 0.2 nm (see Fig. 2.5(a)).

Figure 2.4(a) shows the genome profile if the distance between the two positive

charges along the N-terminal tails is 0.2 nm while Fig. 2.4(b) corresponds to when the

distance between the charges is 1.4 nm, see Fig. 2.5(a) for a schematic presentation of the

distribution of charges in both cases. Note that the charged amino acids are yellow and

neutral ones are blue in Fig. 2.5(a). The optimal number of monomers enclosed in the shell

for Fig. 2.4(a) is N = 658 and for Fig. 2.4(b) is N = 680. The figure clearly shows that

the polymer concentration is higher at the positions where the positive charges are located

along the tails. When the distance between two charges is less than the Debye length
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λD = 0.438 nm, there is only one maximum in the profile. As the distance between the

charges increases and goes beyond two Debye lengths, the genome density profile between

the two charges goes almost to zero.

It is important to note that we have previously studied the impact of number of

branched points, which is closely connected to the fb value, on the length of the encapsidated

genome and found that the length of genome increases with fb [52]. Since our focus in this

chapter is only on the effect of charge distribution along the N-terminals, we set fb = 3.86

for all the calculations presented here in 2.4.1 and 2.4.2. In a previous chapter, we found

that this value of fb would create similar number of branch points as in the wild-type BMV

genome [52]. The value of fb does not play an important role in our findings of the effect

of N-terminal charge distribution.

Figure 2.6 shows the encapsulation free energy as a function of N , the number of

monomers, for a T = 1 structure. The dashed line in the figure corresponds to the case

in which the distance between the charges is 0.2 nm and solid lines to when the distance

between the charges is 1.4 nm, see Fig. 2.5(a) for a schematic of two charge distributions.

As illustrated in Fig. 2.6, when the charges are closer to each other, the free energy of the

system is lower; however, the minimum of the free energy moves towards longer chains as

the distance between the charges increases.

Figure 2.5(b) shows the optimal length of encapsidated RNA as a function of the

distance between two charges along the N-terminal domains. One charge is placed at the

end of the N-terminal tail next to the capsid wall, but the location of the other varies from

the wall all the way to the tip. The figure clearly shows that as the distance between charges
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Figure 2.5: (a) Schematic of an N-terminal tail. The distance between two positive charges
along the N-terminal domain increases from bottom to top. Each yellow rectangle is 0.2
nm and denotes one positive charged amino acid. The smallest distance between the two
charges is 0.2 nm. From the shortest to the longest distance, we examine seven different
cases. The largest distance between the two charges is 2.8 nm. The charge on the right
side is next to the wall and its position is fixed. (b) Optimal length of RNA encapsulated
as a function of the distance between two charges for a capsid with radius R = 9 nm, the
tail length 4 nm and salt concentration µ = 500 mM . RNA is modeled as an annealed
branched polymer.

increases, the optimal length of the genome increases too. Thus, the location of charges

along the N-terminal domains has an impact on the amount of the polymer packaged. It

appears as the distance between the charges goes up, at some point the optimal length

of packaged genome saturates and does not keep increasing. A careful examination of

the first term in Eq. (2.1) shows that for this size of capsid and charge distribution, the

optimal genome density is too small and the impact of entropy is not strong enough to have

a significant role in the optimal length of genome. As the distance between the charges

increases and becomes more than two Debye lengths (λD = 0.438 nm for µ = 500 mM), the
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Figure 2.6: Encapsulation free energy as a function of monomer number, N . The dashed line
corresponds to the case in which the distance between the two charges is short (d = 0.2 nm)
and the solid curve to when the distance between the charges is a little bit longer (d = 1.4
nm), See Fig. 2.5(a) for a schematic of two charge distributions. The other parameters
are the capsid radius R = 9 nm, the tail length 4 nm, salt concentration µ = 500 mM
and the total positive charge on the capsid is Qc = 120. RNA is modeled as an annealed
branched polymer and its fugacity is fb = 3.86. The optimal number of packaged monomers
for d = 0.2 nm is 658 while for d = 1.4 nm is 680.

electrostatic interaction becomes very weak between the two charges. Thus, the genome will

be mostly adsorbed in the close proximity of each positive charge along the peptide. Note

that even though entropy prefers a uniform genome density, the electrostatic interaction is

much stronger and thus the optimal length of encapsidated genome first increases with the

distance between the charges and then it remains more or less constant.

2.4.2 A capsid with 180 tails (T=3)

We now examine the impact of charge distribution along the N-terminal domain

for a T = 3 capsid with 180 N-terminal tails. More specifically, we focus on the self-assembly
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studies of Ni et al. [99] in which the impact on the length of packaged RNA of the location

and distribution of positive charges along the N-terminal domains of BMV capsid proteins

were studied [99]. Fig. 2.2(a) and Fig. 2.2(b) show the distribution of charges along N-

terminal domains and the length of encapsulated RNA for different mutants, respectively.

The schematic of the charge distribution along the N-terminals for various mutants and

wild-type capsid proteins based on our model are illustrated in the left column of Fig. 2.7.

The length of N-terminal is set equal to 5 nm for the wild-type and 6.5 nm for the mutants

with eight extra amino acids. We assume all amino acids have the same size, which is set

equal to 0.2 nm. The charged amino acids are yellow and neutral ones are blue as before.

Charge distribution Virions Effective 
Free 

Energy

Optimal 
Length

Percent 
Change
(Theory)

Percent 
Change

(Experiment)
9( WT -1935.67 3478.35 N/A N/A

2HA7 -1935.67 3478.35 0 +0.2

2HA15 -1963.96 3479.95 +0.06 +2.4

2H7 -3215.13 4547.57 +30.74 +19.6

2H15 -3170.14 4536.67 +30.43 +21.2

4S -1935.67 3478.35 0 +1.7

4R -3720.75 4436.86 +27.56 +9.0

Figure 2.7: Table of seven charge distributions along N-terminals where each yellow rect-
angle represents a positively charged amino acid and blue triangles neutral ones. The table
includes the optimal encapsulation free energy of the RNA confined into a spherical shell,
the optimal length of encapsulated RNA, percent change (theory) of optimal length com-
pared to the wild-type BMV and the percent change (experiment) from Fig. 2.2. The salt
concentration is 500 mM . The radius of the capsid is 12 nm. For wild-type, 2HA7, 2HA15

and 4S, the total charge on capsid is Qc = 1440 but for 2H7, 2H15 and 4R is Qc = 2160.
The tail length for wild-type, 4S, and 4R are 5 nm while for 2HA7, 2HA15, 2H7, and 2H15

are 6.5 nm. The Debye length λD for 500 mM is 0.438 nm.
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Figure 2.8: The genome density profile vs. r, the distance from the center of the capsid
for four different charge distributions along the N-terminal domains: (a) wild-type (WT),
(b) 2HA15(M1), (c) 2HA15(M2) and (d) 2HA15. The first column in Figs. 2.7 and 2.9 show
the schematics of N-terminal tails for each case. The peaks in the RNA profiles correspond
to the position of positive charges along the N-terminal tails. As the distance between the
charges located in the middle of N-terminal tails increases, the density of genome between
the two peaks goes lower. However, the amount of RNA between two peaks due to the
entropic contribution and the range of electrostatic interaction does not drop to zero in
case of 2HA15(M1) (b). The genome density between the two peaks becomes smaller for
2HA15(M2) (c) and becomes almost zero for 2HA15.
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Following the same procedures as described above for a T = 1 structure, we first

obtain the genome profile for a given number of nucleotides and then use it to calculate

the free energy of the system. Figure 2.8 shows the genome profiles for the wild-type,

2HA15 and two other mutant proteins. The schematic of charge distribution for each case

is illustrated in Figs. 2.7 and 2.9. The total number of monomers in each plot in Fig. 2.8

is N = 1390, and the total number of charges in all capsids is Qc = 1440. There are eight

positive charges on each N-terminal tail, whose length is 6.5 nm long for mutants and 5 nm

for wild-type proteins. The genome is considered to be a branched polymer (fb = 3.86).

Charge Distribution Virions Optimal 
Length

(500mM)

Percent 
Change

(500mM)

Optimal 
Length

(300mM)

Percent 
Change
(300mM)

Optimal 
Length

(100mM)

Percent 
Change

(100mM)
2HA7(M) 3431.4 N/A 2501.00 N/A 1831.2 N/A

2HA7 3478.35 +1.37 2528.29 +1.09 1840.28 +0.50

2HA15(M1) 3522.73 +2.67 2544.39 +1.73 1847.94 +0.91

2HA15(M2) 3501.42 +2.04 2548.31 +1.89 1852.57 +1.17

2HA15(M3) 3492.47 +1.78 2541.79 +1.63 1853.44 +1.21

2HA15 3479.95 +1.41 2529.88 +1.15 1850.17 +1.04

Figure 2.9: Table of six different charge distributions along N-terminals. As before each
yellow rectangle represents an amino acid with a positive charge and blue rectangles repre-
sent neutral amino acids. The table includes the optimal length of encapsulated RNA for
three different salt concentrations, 500 mM , 300 mM and 100 mM . The distance between
the fourth positive charge (the fourth yellow rectangle) and the fifth positive charge from
top to bottom is 0.2 nm, 0.6 nm, 1.0 nm, 1.4 nm, 1.8 nm and 2.2 nm. The percent change
(theory) of the optimal length of encapsidated RNA for each mutant relative to the RNA
encapsidated by mutant 2HA7(M) is also presented in the table. The capsid radius is 12
nm and the tail length is 6.5 nm with total charges on the capsid Qc = 1440. Debye length
is λD = 0.979 nm for µ = 100 mM , λD = 0.565 nm for µ = 300 mM and λD = 0.438 nm
for 500 mM .

Figure 2.10 shows the free energy of a branched polymer packaged by the wild-

type and mutant proteins of Fig. 2.7. The symbols in the figure correspond to the optimal
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genome length for each case. The figure reveals that the encapsulation free energy of the

wild-type, 2HA7, 4S, and 2HA15 are almost the same. Note that all these mutants have

the same number of charges on their capsids. The values of the minimum free energy, the

corresponding optimal genome length, and the percent change (theory and experiment) of

encapsulated genome compared to the wild-type case are presented in Fig. 2.7.
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Figure 2.10: The encapsidation free energy as a function of monomer numbers for the
mutants presented in Fig. 2.7. 2HA7 and 4S have the same free energy as wild-type. The
additional length inserted in 2HA7 does not have a huge impact on the optimal encapsidated
genome because it does not modify the distance between the charges along the N-terminal
tails, see Fig. 2.7. The capsid radius is 12 nm and the tail length is 6.5 nm with total
charges on the capsid Qc = 1440. The salt concentration is 500 mM .

Consistent with the experimental data presented in Fig. 2.2 and the last column

of Fig. 2.7, our theoretical calculations show that as the number of positive charges on the

N-terminal tails increases, the optimal length of the genome increases too. The mutants 4R,

2H7 and 2H15 have four extra positive charges compared to wild-type proteins and they all
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encapsidate longer genomes. Both mutants 2H7 and 2H15 have longer tails compared to 4R,

and our results show that they encapsidate longer genomes, consistent with the experimental

findings. Thus the length of N-terminal tails influences the amount of packaged RNA.

While there are many similarities between the experiments presented in Fig. 2.2

and our theoretical results shown in Fig. 2.7, there are also some differences. The comparison

of the experiment and theory reveals that more genome is encapsidated by 2HA15 proteins

compared to wild-type or 2HA7 proteins, which is not observed in our calculations. Note

that to perform the numerical calculations, we consider that all amino acids have the same

effective size (0.2 nm), and the Debye length in our system is λD = 0.438 nm. Since the

parameter landscape is quite vast and there are several unknowns, instead of changing the

size of each amino acid, we modify the distance between the fourth and fifth charged amino

acids in the N-terminal tail of the mutant 2HA15. More specifically, we systematically

increase the distance between the fourth and fifth positive charges from 0.2 nm to 2.8 nm

where the 8 amino acids were inserted for the case of the mutant 2HA15 and then calculate

the optimal length of encapsidated genome for three different salt concentrations of µ = 100,

300 and 500 mM . As illustrated in Fig. 2.9, the optimal length of encapsidated genome

depends on both the distance between the fourth and fifth positively charged amino-acids

and the salt concentration. The figure reveals that as the distance increases from 0.2nm

to 2.2nm, the optimal length of the encapsidated genome first increases and then later

decreases.

To gain more insights into the experimental results, we also examined the impact

on the optimal polymer length of a uniform charge distribution along the N-terminals versus
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a tight one as presented in Fig. 2.11. As shown in the figure, for a given tail length and

number of positive charges, when the charges are distributed more uniformly along the

N-terminals, the optimal length of encapsidated genome becomes longer.

Charge Distribution Virions Effective 
Free energy

Optimal 
Length

Percent 
Change

Tight -2719.89 3387.44 N/A

Loose -2086.17 3471.32 +2.48%

Figure 2.11: Schematic of two N-terminal tails with different charge distributions. As before
each yellow rectangle represents an amino acid with a positive charge and effective size of
d = 0.2 nm and blue rectangles represent neutral amino acids but with the same size. The
table includes the effective encapsulation free energy of the RNA confined into a spherical
shell, the optimal length of encapsulated RNA, and the percent change (theory) of optimal
length of packaged RNA with respect to the first charge distribution. The salt concentration
is µ = 500 mM , and tail length is 4.5 nm for both cases. The total charge on the capsid
is Qc = 1440. When the charges are distributed more evenly, the optimal length of the
encapsidated genome increases. For the first line of the table, the distance between yellow
rectangles is either zero or 0.2 nm, while for the second one is either 0.2 nm or 0.4 nm.

2.4.3 Relationships between RNA topology and nucleocapsid structure

in a model icosahedral virus

Here, we focus our work on the cowpea chlorotic mottle virus (CCMV), a model

virus of the Bromoviridae family. Two RNA segments were used for this study: RNA2

of CCMV (C2) and RNA2 of the bovine rotavirus strain RF (RF2) [138]. These RNAs

were chosen for their similar length (2767 and 2687 nucleotides, respectively) and RF2 also

because it is not packaged as such by rotavirus capsid, in contrast to C2 by the CCMV CP.

Thus, the secondary structure of RF2 has no reason for being optimized by evolutionary

processes for packaging purpose. Moreover, because each of them codes for a different
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protein, their sequence identities are very low, with very few regions of sequence similarity.

See [94] for related experimental results.

The results of calculations are given in Fig. 2.12 as a plot of the density profile of

branch points and nucleotide density (inset graph) as a function of r, the distance from the

center of the capsid, see the section 2.3 Methods for the details. The blue dashed line is the

nucleotide density profile which was calculated by the same procedures as above in 2.4.1

and 2.4.2. The black dashed line is the density profile of branch points for C2 and the red

solid line is for RF2. The number of branch points was obtained through RNASubopt, a

program in the Vienna RNA package [87]. Generating an ensemble of secondary structures

for sequences of C2 and RF2, we calculated the thermally averaged number of branch points

from the secondary structures of each RNA. We found that while the number of monomers

for C2 and RF2 were close, i.e., 2767 and 2687, respectively, the difference between the

number of branch points was more significant: 60 for C2 and 48 for RF2. The number of

branch points for B1 was calculated previously [52] and was estimated to be 65.

Figure 2.12 clearly shows that the branch point density for C2 was larger than that

for RF2 while their nucleotide densities (inset) were almost the same. Using the profiles for

RF2 and C2, we calculated the encapsulation free energy and found that it was lower for C2

(-3367 kBT with kB the Boltzmann constant and T the temperature) than for RF2 (-3358

kBT ). Since C2 and RF2 had almost the same nucleotide density profile inside the capsid,

the difference of their encapsulated free energy was mainly due to the difference in their

number of branch points. This slight difference in free energy explains why experimentally

the nucleocapsids packaging C2 were statistically more uniform and better ordered across
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Figure 2.12: Branch density profile versus r, the distance from the center of the capsid.
The dashed black line and red solid line correspond to the branch density profiles for C2
and RF2, respectively. The dot-dashed blue line (inset graph) is the nucleotide density
profile for C2 and RF2, which is almost the same for both. The capsid radius is R = 12
nm, N-terminal tails length 4 nm, and the salt concentration 100 mM. The total number of
positive charges on the capsid interior is 1800.

the sample than those packaging RF2.

2.5 Discussion

Despite the fact that many experiments have shown that the number of nucleotides

packaged by capsid proteins increases with the number of charges on N-terminal tails,

how the amount of encapsidated RNA depends on the distribution of the charges along

and the length of the N-terminal domain of capsid proteins is not well-understood. Our

results presented in Fig. 2.5(b) for T=1 capsid and Fig. 2.7 and Fig. 2.9 for T=3 viruses

show that the electrostatic interaction alone is not sufficient to explain the dependence
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of the amount of packaged RNA on the amino sequence of N-terminal tails in the BMV

experiments [99]. For example, the amount of packaged RNA is different for the mutant

2HA15 and 2HA7 as illustrated in Fig. 2.2 whereas both have the same number of charges,

very similar charge distribution and the same peptide length. This reveals the importance

of specific interactions that depend on the exact type of amino acids, RNA secondary or

tertiary structures, and packaging sequences/signals, which involves the highly specific,

nonelectrostatic interactions between sections of RNA and capsid proteins [111, 131, 105].

Our mean-field theory does not include this effect and thus cannot explain the experimental

observation due to specific interactions; nevertheless, our theory can describe how the length

of N-terminal tails and distribution of charges along the peptide control the amount of RNA

packaged by BMV capsid proteins, consistent with the experimental data.

The simple case of two charges on the N-terminal tails of the T = 1 capsid (Fig. 2.5)

shows clearly that when the distance between two positive charges increases, the opti-

mal length of RNA encapsulated into the capsid also increases. A careful examination of

Eq. (2.1) shows that the length of the encapsulated polyelectrolyte increases with the dis-

tance in order for the chain to be uniformly distributed between the two charges, lowering

the entropy contribution (the first term in Eq. (2.1)) as much as possible. Fig. 2.5 shows

that the optimal length of genome saturates and remains more or less constant beyond

certain distance between the two charges. This is mainly due to the fact that the optimal

length of the genome for T = 1 is such that the density of genome is low. When the distance

between the charges is more than two Debye lengths (λD = 0.438 nm for µ = 500 mM),

the electrostatic interaction becomes very weak between the distant charges. It appears
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that the chain then prefers to reside only in the immediate vicinity of each positive charge

along the peptide. More specifically, as the distance between the charges increases, the

electrostatic does not promote encapsidation of longer genomes. Thus, the optimal length

of genome first increases and then it remains constant even if the distance between the

charges increases further.

Figure 2.7 shows that the case for T = 3 structure relevant to BMV experiments

is more complex. As seen in the figure, the mutant 4R whose charge is increased by sub-

stitution instead of insertion (keeping the length constant), has less encapsidated RNAs

than do 2H7 and 2H15, while all three mutants have the same number of charges on their

tails. Our calculations reveal that since 2H7 and 2H15 have longer N-terminal tails, longer

genome is necessary for the chain to uniformly wrap around the tail keeping the entropic

contribution in Eq. (2.1) low. However, the difference between the length of the genome en-

capsidated by wild-type proteins and the mutant 2HA15 proteins whose N-terminal length

is increased by insertion of eight neutral amino acids is not as pronounced in our theory as

in the experiments. This could be explained at least in part by the distance between the

charged amino acids in the peptide. To understand the impact of the distance between the

charges, we systematically examined the effect of the distance between the charges in the

middle of the N-terminal tail as illustrated in Fig. 2.9. The results presented in the figure

is quite intriguing as the optimal length of the genome first increases and then decreases

for the three different salt concentrations presented in the figure.

The large distance between the two charges along the N-terminal tail provides

more space for the genome to reside. The careful examination of Eq. (2.1) shows that
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due to the entropic consideration, the genome will be distributed more or less uniformly

along the N-terminal leading to the packaging of longer genomes. However, as the distance

between the charges increases and goes beyond two Debye length (λD = 0.438 nm for

µ = 500 mM , λD = 0.565 nm for µ = 300 mM and λD = 0.979 nm for µ = 100 mM), the

optimal length of RNA becomes shorter. This effect can be well-understood by investigating

the genome profiles presented in Fig. 2.8. When the distance between the fourth and fifth

charges is very large, there will be two distinct peaks in the genome profile with almost

no nucleotides between the charges indicating that the negatively charged RNA prefers to

be localized mainly around the positive charges. Figure 2.9 indicates that as the distance

between the charges increases, at some point the optimal length of encapsidated RNA

decreases resulting into the lower polymer density, which also reduces the entropy cost of

formation of two completely separate peaks. Since the Debye length is longer for lower salt

concentrations, the optimal length of genome starts decreasing at d = 1.8 nm for µ = 100

mM (2HA15(M3)), d = 1.4 nm for µ = 300 mM (2HA15(M2)) and d = 1.0 nm for µ = 500

mM (2HA15(M1)). While the behavior is the same for all three salt concentrations, the

effect is less pronounced as the salt concentration decreases. Figure 2.11 supports that for

a given length and number of positive charges, the more uniformly charges are dispersed

along the N-terminals, the longer the optimal length of encapsidated genome becomes.

We emphasize that the goal of this chapter has been to qualitatively explain the

experimental results and to explore the impact of entropy and electrostatic interaction that

depend on the distance between the charges and not the details of protein structures. A

better quantitative comparison between the experiments and theory can be obtained, if
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the theory includes many other effects such as counter-ion condensation, the presence of

divalent ions, structure of proteins and packaging signals discussed above. This study also

compared the structure of CCMV nucleocapsids packaging different RNA segments with

similar lengths but decreasing levels of compactness; C2 belongs to CCMV genome and

RF2 is an unrelated segment derived from rotavirus genome. Because RF2 had a lower

number of branch points than C2, theoretical calculations revealed that the free energy for

packaging RF2 was slightly higher than for packaging C2.

In summary, in this chapter we explore whether the variation in RNA packaging

by BMV mutants observed in the experiments of Ni et al. [99] and presented in Fig. 2.2 [99]

can be understood by the mean-field theory incorporating electrostatics, excluded volume

interaction and RNA conformational entropy. In particular, we have calculated, as a func-

tion of the number and location of charges in the peptide tails, the free energy of an RNA

confined in a spherical shell interacting with the N-terminal tails and ions. We find that

the combined effect of the electrostatic interaction and the genome entropy considerations

can shed light on many experimental data relevant to BMV assembly. While our mean-field

theory cannot explain all the experimental data, we have been able to show that the loca-

tion and the distance between charges along the N-terminal tails significantly influence the

amount of packaged RNA. Understanding the factors contributing to the virus assembly

and RNA packaging will pave the path for interfering with the different stages of the virus

life cycle.
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Chapter 3

Exact Solution for elastic networks

on curved surfaces

3.1 Abstract

The problem of characterizing the structure of an elastic network constrained to

lie on a frozen curved surface appears in many areas of science and has been addressed

by many different approaches, most notably, extending linear elasticity or through effective

defect interaction models. In this Letter, we show that the problem can be solved by

considering nonlinear elasticity in an exact form without resorting to any approximation

in terms of geometric quantities. In this way, we are able to consider different effects that

have been unwieldy or not viable to include in the past, such as a finite line tension, explicit

dependence on the Poisson ratio, or the determination of the particle positions for the entire

lattice. Several geometries with rotational symmetry are solved explicitly. Comparison with
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linear elasticity reveals an agreement that extends beyond its strict range of applicability.

Implications for the problem of the characterization of virus assembly are also discussed.

3.2 Introduction

Deciphering the design principles of life is one of the lingering mysteries facing

researchers in many areas of science. Among many biological systems, viruses, in particular,

have received much more attention as they are ubiquitous pathogens in our environment

with members infecting all kingdoms of life. Most viruses, from the simplest to the most

complicated, and from the least to the most evolved, are constituted of a protein shell (or

“capsid”) that encloses the viral genetic material (RNA or DNA) [68, 58]. Understanding

the process of virus assembly is a fundamental challenge of ever-increasing interest, not only

because it is a central stage of the viral life cycle, but also because it is the target of antiviral

therapeutic strategies. The Coronavirus Disease 2019 (COVID-19) pandemic, connected to

SARS-CoV-2 revealed more than ever the importance of identifying new ways to combat

viruses. In this context, our current understanding of virus assembly is quite limited. The

difficulties arise from the interplay between curvature and crystalline order and their role

in determining the positions of lattice defects on elastic surfaces with non-zero Gaussian

curvature [141, 104, 103, 95].

Fig. 3.1 illustrates the structure of two viruses with different geometries: (a) Herpes

Simplex Virus (HSV) with icosahedral symmetry [152] and (b) Human Immunodeficiency

Virus (HIV) [57] with a conical structure. In the case of HSV, the position of 12 pentagonal
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Figure 3.1: (a) 3D cryo-EM reconstruction of HSV [152]; (b) EM image of HIV surrounded
with the lipid envelope [57]. The result of the computer simulations of (c) an HSV [83]
and (d) an HIV with genome and membrane [100]. (e) The reference space consists of
a flat surface without a disclination or (g) with a disclination at the center. The actual
space is any manifold endowed with its natural metric. As an example, we consider (f) a
spheroid(β = 1) and (h) a sombrero(β = 3).
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defects is precise (Fig. 3.1c) to preserve the symmetry of the shell. In previous work, we

have shown that as a triangular lattice such as a HSV shell (Fig. 3.1c) [83] grows over a

spherical scaffold, defects appear one by one at the vertices of an icosahedron, explaining

how error-free structures with icosahedral order assemble. For HIV shells, while there are

often 5 defects at the smaller and 7 at the larger caps, defect positions can vary from one

HIV structure to another. The computer simulations of Ref. [100] have shown how the

presence of genome and membrane contributes to the formation of the conspicuous conical

HIV structures; nevertheless, currently, there is no clear understanding of what determines

the position of the defects as the surfaces with non-zero Gaussian curvature such as the

conical shell of HIV grow.

Capsid formation dynamics is just one example of the more general class of prob-

lems consisting of crystal growth on curved geometries. Other examples are faceted insect

eyes, liquid crystals, curved array of microlenses in optical engineering systems, other pro-

tein cages in addition to viral capsids such as platonic hydrocarbons, heat shock proteins,

ferritins, carboxysomes, silicages, multicomponent ligand assemblies, clathrin vesicles and

many other cellular organelles, as reviewed in Ref. [147], for example. These problems have

been mostly addressed by extending linear elasticity [121, 96, 3, 67, 27, 75] or through ef-

fective defect interaction models [107, 17, 16, 86, 62, 1]. Either approach brings significant

limitations: linear elasticity and its extensions impose certain approximations on geomet-

ric quantities such as Gaussian curvature (see discussion in Sec. 3.3.7, specially Eq. 3.54

and fail to satisfy global topological and geometrical constraints, most notably the Gauss

Bonnet theorem [84]. Effective defect interaction models satisfy global properties exactly,
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but with uncontrolled approximations and obvious deficiencies: they predict a universal

independence of all measurable quantities on the Poisson ratio νp and it is unknown, thus

far, how to include other relevant free energy terms such as line tension. Furthermore, it

requires computing the inverse square Laplacian, a formidable complex task beyond simple

cases.

In this chapter, we formulate general elasticity in curved surfaces based on geo-

metric invariants and solve the equations exactly. We build upon our previous results for

spherical caps [84, 85] combined with covariant elasticity [48, 97]. Thus, the approach not

only surmounts all the limitations of the previous theories, but provides an exact solution

to the problem. Furthermore the theory allows to explore the impact of line tension and

the Poisson ratio on the assembly of curved surfaces. The method is general and may be

generalized to surfaces without specific symmetries. In this way, the approach provides the

first step towards obtaining a complete theory for the self assembly of non-spherical virus

capsids.

3.3 Methods

3.3.1 Summary of the methods

The free energy of a partially formed elastic shell can be written as

F = F elastic + F bending + F abs + F line (3.1)

=

∫
d2x

√
g
[
Felastic + Fbending

]
+ F abs + F line .
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where the first and second terms correspond to the stretching and bending energies of the

patch respectively, the third term represents the attractive monomer-monomer interaction

promoting the crystal growth and the last term is associated with the cost of the rim energy

due to the fact that the subunits at the boundary have fewer neighbors than the ones at

the interior of the surface. The elastic term Felastic (see Eq. 3.9) contains a quadratic term

[77] in the strain tensor uαβ

uαβ =
1

2
[gαβ − ḡαβ] , (3.2)

where gαβ(x) is the actual metric (the metric of the curved surface) and ḡαβ(x̄) is the

reference metric describing a perfect lattice, i.e. the one consisting of equilateral triangles

(Fig. 3.1e-h). Note that the Gaussian curvature of the reference metric is zero, except

possibly, on a finite number of points that define disclination cores [84]. If aL is the lattice

constant of the perfect triangular lattice in reference space, the number of particles N >> 1

making the crystal with a given area Â is

Â =

∫
d2x

√
ḡ(x) =

∫
d2x̄

√
ḡ(x̄) =

√
3

2
Na2L . (3.3)

The second term in Eq. 3.1 can be expressed in terms of the two radii of curvature (Ri)i=1,2,

Fbending = κ

[(
1

R1
−H0

)2

+

(
1

R2
−H0

)2
]

, (3.4)

with κ the bending rigidity and H0 the mean spontaneous curvature of the constituents or

subunits. We emphasize that the free energy density, Eq. 3.1, has no trivial solution. The

only surfaces allowing zero strains have either zero Gaussian curvature: a plane or cylinder
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(q = 0) or a delta function at the origin like a cone (q = 1). The absolute minimum of

the bending rigidity implies a surface with R1 = R2 = 1
H0

, a sphere. There is no surface

that simultaneously minimizes both the elastic and bending energies. The third term in

Eq. 3.1, F abs = −ΠÂ < 0 with Π the attractive interaction per unit area due to favorable

hydrophobic contacts between subunits, is the driving force for crystal growth [96].

In this chapter we consider a frozen geometry, so the actual metric gαβ(x) is that

of the corresponding surface. The defect distribution is also given, so the reference metric

ḡαβ(x̄) is fixed as well. The problem consists of mapping the actual and reference space

x = U(x̄). In other words, U is the function that determines how the perfect lattice

in reference space maps to the deformed one in actual space, as illustrated in Fig. 3.1e-

h. For simplicity, in this chapter we consider only surfaces of revolution, defined by x =

r cos(θ), y = r sin(θ), z = f(r) with actual metric

ds2 =
(
1 + f ′(r)2

)
dr2 + r2dθ2 , (3.5)

see Fig. 3.1. Further, we consider an isotropic reference metric

ds2 = ρ′(r)2dr2 + α2ρ(r)2dθ2 = d2ρ+ α2ρ2dθ2 (3.6)

with α = 1− q
6 and q = 0,±1 corresponding to no disclination or with a disclination at the

origin. The two metrics are basically incompatible [97], that is, for a fixed f(r) there is no

choice of ρ(r) that will make the strain tensor Eq. 3.2 vanish, as their Gaussian curvatures

generally differ. In the isotropic case, the function U describing the mapping from the
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actual to reference space (or reference to actual) can be expressed as ρ(r) or r(ρ). To make

the presentation of the chapter simple, we consider a situation in which the surface is given

through f(r) (see Fig. 3.1). The elastic energy given in Eq. 3.1 denpends on ρ(r) and thus

becomes Eq. 3.15. And then the problem consists of finding the optimal ρ(r) that minimizes

the free energy Eq. 3.1. Following Ref. [84, 48], this leads to

∇ασ
αβ + (Γ̄β

γν − Γβ
γν)σ

γν = 0 , (3.7)

where σαβ is the stress tensor and Γβ
γν are the Christoffel symbols for the reference and

actual metrics (see Sec. 3.3.3). This is a one dimensional non-linear differential equation

with just one unknown ρ(r) (see Eq. 3.20). We solve Eq. 3.7 subject to the following

boundary condition,

nρσ
ρλḡλν = − τ

rA
nν . (3.8)

where τ is the line tension, nµ = gµνnν is the normal to the boundary within the surface and

rA is the curvature of the boundary. For a surface with rotational symmetry and a circular

boundary r = r0, this equation simply becomes Eq. 3.33. For a tensionless boundary,

obviously τ = 0. In Sec. 3.3.4, we provide a detailed derivation of Eq. 3.8 from the line

energy F line = τ
∮
∂D ds with ds an infinitesimal length for the boundary ∂D in actual

space. We also show how Eqs. 3.1-3.8 reduce to standard linear elasticity and provide an

explicit analytical solutions within linear elasticity for both a spheroid, f(r) = β
√
R2

0 − r2

(Fig. 3.1f) and a sombrero surface, f(r) = βR0/3
(
1− (r/R0)

2 + (r/R0)
4
)3/2

(Fig. 3.1h),

where β is a unitless number, in Sec. 3.3.7.
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To obtain the free energy of the system, we first calculate ρ(r) through Eq. 3.7,

which minimizes Eq. 3.1. The plots in Fig. 3.2 below each show the optimal ρ(r) or r(ρ)

for both spheroid and sombrero surfaces with no disclination or with one disclination at the

center. It is important to note that with the exact r(ρ), we can reconstruct the lattice in

actual space; the positions of the lattice in reference space (ρi, θi)i=1···N are known and con-

sists of N equilateral triangles with lattice constant aL (if N >> 1), see Eq. 3.3. Then, from

r(ρ), the positions in actual space (r(ρi), θi)i=1···N are obtained, as illustrated in Fig. 3.2.

Thus, we find a solution to the problem of finding the best possible triangulation consisting

of equilateral triangles that cover a given surface. Note that this solution is independent of

the underlying potential among the constituent particles, and therefore, hereon we refer to

this triangulation as the universal mapping lattice.

Plugging the solutions of ρ(r) into Eq. 3.1, we obtain the free energy of the system.

First, we consider the case of free boundary conditions as illustrated in Fig. 3.3. For

comparison, we show the predictions from linear elasticity, which become exact in the limit

of small curvature ( Â
R2

0
→ 0), both for the defect free case qi = 0 and a single disclination

qi = 1.

Very generally, we find that the applicability of elasticity theory extends to rela-

tively large curvatures ( Â
R2

0
≈ 1). For the spheroid, linear elasticity remains qualitatively

correct for the entire range explored, but this is not the case for the sombrero surface, see

Fig. 3.3 , where linear elasticity breaks down and cannot be extended beyond a certain

limit.
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Figure 3.2: Lattice reconstruction for both the spheroid and sombrero. The lengths R0, ρ0
and r0 are given in units of the lattice constant aL. The plots under spheroid and sombrero
surfaces indicate the corresponding mapping function from the reference to actual space.
ρ0
R0

= 0.7 for each plot. The number in the parenthesis in each figure denote (β, qi, νp, τ̂).
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3.3.2 Explicit formulas for the different quantities

In this section, we provide explicit expressions for the formulas in the main text.

The explicit form of Felastic is

Felastic =
1

2
Aαβγδuαβuγδ, (3.9)

where uαβ (see Eq. 3.2 in the main text) is the strain tensor and

Aαβγδ =
Y

1− ν2p

[
νpg

αβgγδ + (1− νp)g
αγgβδ

]
, (3.10)

with Y the Young Modulus, νp the Poisson ratio and gαβ the actual metric.

The Gaussian curvature is

K =
det(∂i∂jf)

(1 + (∇f)2
=

f ′(r)f ′′(r)

r(1 + f ′(r)2)2
, (3.11)

and the mean curvature (with the convention that Ri = R > 0, i = 1, 2 for the sphere) is

2H = −∇ ·
(

∇f

(1 + (∇f)2)1/2

)
(3.12)

= −
(

f ′′(r)

(1 + f ′(r)2)3/2
+

f ′(r)

r(1 + f ′(r)2)1/2

)
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see Ref. [147] for the details. The two curvatures can be obtained from the equation

K =
1

R1R2

2H =
1

R1
+

1

R2
, (3.13)

such that 1
R1

= H +
√
H2 −K and 1

R2
= H −

√
H2 −K with H and K given in Eqs. 3.11

and 3.12. The stress tensor is

σαβ =
1
√
g

δF

δuαβ
= Aαβγδuγδ . (3.14)

3.3.3 Particularization to surface revolution

In this section, we provide various quantities for the surfaces of revolution, defined

by x = r cos(θ), y = r sin(θ), z = f(r) with actual metric defined in Eq. 3.5. The nonzero

Christoffel symbols are given in Ref. [84] and are

symbol Γr
rr Γr

θθ Γθ
θr

reference
ρ′′(r)

ρ′(r)
− α2 ρ(r)

ρ′(r)

ρ′(r)

ρ(r)

actual
f ′(r)f ′′(r)

1 + f ′(r)2
−r

1 + f ′(r)2
1

r
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The elastic energy given in Eq. 3.1 depends on ρ(r),

F elastic

Y π
=

1

4(1− ν2p)

∫
drr(1 + f ′(r)2)1/2 (3.15)[(

1− ρ′(r)2

1 + f ′(r)2

)2

+

(
1− α2ρ(r)2

r2

)2

+

+ 2νp

(
1− ρ′(r)2

1 + f ′(r)2

)(
1− α2ρ(r)2

r2

)]

The stress tensor given in Eq. 3.14 becomes,

σrr =
Y

2(1− ν2p)(1 + f ′(r)2)

[
1− ρ′(r)2

1 + f ′(r)2
+ (3.16)

+ νp

(
1−

(
αρ(r)

r

)2
)]

σrθ = σθr = 0

σθθ =
Y

2r2(1− ν2p)

[
νp

(
1− ρ′(r)2

1 + f ′(r)2

)
+

+ 1−
(
αρ(r)

r

)2
]

Using Eq. 3.15 and Eq. 3.16, the general form of Eq. 3.7 for β = r becomes

∂rσ
rr + Γ̄r

rrσ
rr + Γ̄r

rrσ
rr + Γ̄r

θθσ
θθ + (3.17)

+Γr
rrσ

rr + Γθ
θrσ

rr = 0,

which can be written as

dσrr

dr
+
(
Γ̄r
rr + Γr

rr + Γθ
θr

)
σrr + Γ̄r

θθσ
θθ = 0 (3.18)
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The explicit form of the derivative of the stress tensor is,

dσrr

dr
=

−Y

(1− v2p)

f ′(r)f ′′(r)

(1 + f ′(r)2)2

[
1− ρ′(r)2

1 + f ′(r)2
+ (3.19)

+ νp

(
1−

(
αρ(r)

r

)2
)]

+

+
Y

(1− v2p)(1 + f ′(r)2)

[
ρ′(r)2f ′(r)f ′′(r)

(1 + f ′(r)2)2
−

− ρ′(r)ρ′′(r)

1 + f ′(r)2
+ νp

α2ρ(r)2

r3
− νp

α2ρ(r)ρ′(r)

r2

]

The equation determining ρ(r), Eq. 3.18, becomes

−f ′(r)f ′′(r)

(1 + f ′(r)2)

[
1− ρ′(r)2

1 + f ′(r)2
+ (3.20)

+ νp

(
1−

(
αρ(r)

r

)2
)]

+
1

1 + f ′(r)2
×

×
[
ρ′(r)2f ′(r)f ′′(r)

(1 + f ′(r)2)2
− ρ′(r)ρ′′(r)

1 + f ′(r)2
+ νp

α2ρ(r)2

r3
−

− νp
α2ρ(r)ρ′(r)

r2

]
+

(
ρ′′(r)

ρ′(r)
+

f ′(r)f ′′(r)

1 + f ′(r)2
+

1

r

)
×

× 1

2(1 + f ′(r)2)

[
1− ρ′(r)2

1 + f ′(r)2
+

+ νp

(
1−

(
αρ(r)

r

)2
)]

− α2ρ(r)

2r2ρ′(r)
×

×

[
νp

(
1− ρ′(r)2

1 + f ′(r)2

)
+ 1−

(
αρ(r)

r

)2
]
= 0 .
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3.3.4 Boundary condition

The boundary conditions can be obtained through the variations of F area =

F elastic + F bending in Eq. 3.1 and the reparameterizations of the actual metric,

δF area = −
∫

d2x∂ρ
(√

gσρµξ̄µ
)
=

∮
√
gdxµεµνσ

νρξ̄ρ . (3.21)

If there is a line tension τ , the contribution to the free energy is then

F line = τ

∮
ds = τ

∮ √
⟨g⟩dl = τ

∮
dxµgµνt

ν , (3.22)

where ⟨g⟩ = gµν
dxµ

dl
dxν

dl and

tµ =
1√
⟨g⟩

dxµ

dl
, (3.23)

is the unit vector (in the actual metric) tangent to the boundary curve with dxµ =
√
⟨g⟩tµdl.

The variations to the free energy Eq. 3.22 as shown in Ref. [84] then become,

δF line =
τ

2

∮
dxµδgµνt

ν = −τ

∮
dxµ∇µξνt

ν (3.24)

= τ

∮
dxµξν∇µt

ν

Since δ
(
F area + F line

)
= 0, the appropriate boundary condition is then,

τgρν∇µt
ρ = −√

gϵµρσ
ρλḡλν . (3.25)
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Note the tangent vector is

tρ∇ρt
µ = − 1

rA
nµ , (3.26)

where rA is the curvature of the curve defining the boundary. The normal to the tangent

vector can be written as

nµ =
√
gεµρt

ρ. (3.27)

The boundary condition, thus, becomes

nρσ
ρλḡλν = − τ

rA
nν . (3.28)

This condition is slightly different from the one given in Ref. [84]. This is because ξµ = ξ̄µ

so that gµνξ
ν = ξµ ̸= ξ̄µ = ḡµνξ

ν , which was overlooked in previous work.

As an example, if the problem has rotational symmetry and the boundary is a

circle r = r0, then θ(s) = s/r0. The tangent vectors then are

tr = 0 tθ =
1

r0
, (3.29)

and the normal vectors

nr =
√

1 + f ′(r0)2 nθ = 0. (3.30)

Then Eq. 3.26 becomes

tρ∇ρt
r = Γr

θθ

1

r20
= − 1

r0(1 + f ′(r0)2)
(3.31)

= − 1

r0
√
1 + f ′(r0)2

nr
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with

rA
r0

=
√
1 + f ′(r0)2. (3.32)

Finally, the boundary condition becomes equal to,

grr(r0)σ
rr(r0) = − 1√

1 + f ′(r0)2
τ

r0
. (3.33)

For a sphere f ′(r) = − r√
R2

0−r2
and thus

rA =
r0√

1−
(

r0
R0

)2 . (3.34)

3.3.5 Free energy normalization

We will consider a dimensionless free energy normalized per particle, that is

f ≡ F

Y Ā
=

2F√
3NY a2L

, (3.35)

hence the area in reference space, see Eq. 3. This area is given by

Â = π
(
1− qi

6

)
ρ20 . (3.36)

Given two systems with the same number of particles, the one with the smallest free energy

per particle, Eq. 3.35 is the stable minimum.
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3.3.6 About units

The free energy, see Eq. 1 is

F =

∫
d2x

√
g
[
Felastic + Fbending

]
+ F abs + F line . (3.37)

Note that the stress tensor, Eq. A6 is given by

σαβ =
1
√
g

δF

δuαβ
= Aαβγδuγδ = Y × (Terms that Depend on νp) (3.38)

Note also, that the ratio of the Young modulus and the line tension defines a coefficient lA

with units of length

τ

Y
≡ lA (3.39)

Therefore, through the boundary conditions Eq. 8, the quantity

σαβ

Y
= h(νp, lA) , (3.40)

does not directly depend on the Young modulus. Also,

F abs = −N∆F = − 2∆F√
3a2L

√
3

2
Na2L = −ΠÂ with Â =

∫
d2r
√
ḡ(x) . (3.41)

Therefore Π = 2∆F√
3a2L

, and Â is the area in reference space.
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The line tension term is a function of the perimeter (P ), given by

F line

Y L2
=

τ

Y L2

∮
∂D

ds ≡ τP

Y L2
. (3.42)

Finally, the free energy Eq. 3.37 is

F

L2Y
= f(νp,

lA
L
)+

κ

Y L2

∫
d2x

√
g

[(
1

R1
−H0

)2

+

(
1

R2
−H0

)2
]
+

Π

Y

Â

L2
+

τP

Y L2
, (3.43)

where L is a characteristic dimension of the system. In general we will choose L2 = Â, so

F

Y Â
= f(νp,

lA√
Â
) +

κ

Y Â

∫
d2x

√
g

[(
1

R1
−H0

)2

+

(
1

R2
−H0

)2
]
+

Π

Y
+

τP

Y Â
, (3.44)

which defines the effective linear tension τ̂ = τaL
Y Â

and dimensionless area Â/a2L, so that all

lengths are expressed in terms of the lattice constant aL.

3.3.7 Connection with linear elasticity theory

Here we show that the covariant formalism defined by Eq. 1, Eq. 2 reduce to the

known formulas from elasticity theory when the displacements are small. Within elasticity

theory, the reference metric (without disclinations)

ḡαβ = δαβ (3.45)
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The surface is described in the Monge gauge,

z = h(x, y) . (3.46)

The mapping x = U(x̄) is given by

x = x̄+ u(x̄) , (3.47)

where u is the displacement. Then, the actual metric becomes

gαβ(x̄) = ∂̄αr⃗(x̄)∂̄β r⃗(x̄) = δαβ + ∂̄αuβ + ∂̄βuα +

∂̄αuγ ∂̄βuγ + ∂̄ρh∂̄γh
(
δαρδγβ + δαρ∂̄βuγ + ∂̄αuρδβλ + ∂̄αuρ∂̄βuγ

)
≈ δαβ + ∂̄αuβ + ∂̄βuα + ∂̄αh∂̄βh (3.48)

If only linear terms in u and the leading term in h are kept the strain tensor Eq. 2 becomes

uαβ =
1

2

(
∂̄αuβ + ∂̄βuα + ∂̄αh∂̄βh

)
. (3.49)

The actual metric is

gαβ(x̄) = ḡαβ(x̄) + 2uαβ(x̄) (3.50)
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The leading elastic part of the free energy, consistent with the expansion Eq. 3.49 becomes

Felastic =
1

2

Y

1− ν2p

(
νp(u

2
αα + (1− νp)uαβuαβ

)
=

1

2

(
2µ(uαβ)

2 + λ(uαα)
2
)

(3.51)

expressed in terms of the Lame coefficients λ, µ instead of the Young modulus Y = 4µ(µ+λ)
2µ+λ

and Poisson ratio νp = λ
2µ+λ . For fixed geometry, that is for a given f , this is exactly the

same free energy and strains as used in linear elasticity theory, see for example Ref. [121].

The Airy function is the solution to the equation,

1

Y0
∆̄2χ(x̄) = s(x̄)−K(x̄) , (3.52)

see Ref. [121] for a full derivation. The laplacian ∆̄ refers to a flat metric. Adding an

arbitrary disclination density is done by introducing singularities in the reference metric, as

discussed for a central disclination in the main text. It is

s(x̄) =
π

3

N∑
i=1

qiδ(x̄− x̄i) (3.53)

where x̄i are the positions of the N disclinations. The Gaussian curvature is obtained

by expanding Eq. A3 to leading order, consistent with the expansion in the actual metric

Eq. 3.48. Therefore

K(x̄) = −1

2
εαβεγρ∂̄β ∂̄ρ

(
∂̄αh∂̄γh

)
. (3.54)
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We remark that Eq. 3.52 is written in terms of a flat metric, and the only contribution from

the curved surface is through the approximated Gaussian curvature Eq. 3.54. Eq. 3.52 has

the physical interpretation of the Gaussian curvature screening the disclination density.

The explicit form of the stress tensor is obtained from the Airy function as

σρρ(ρ) =
1

ρ

dχ(ρ)

dρ
(3.55)

=
Y

2ρ2

(
qi
6
ρ2 log

(
ρ

ρ0

)
+

∫ ρ

0
dvv

∫ ρ0

v

du

u

(
df

du

)2

− ρ2

ρ20

∫ ρ0

0
dvv

∫ ρ0

v

du

u

(
df

du

)2
)

σθθ(ρ) =
1

ρ2
d2χ(ρ)

dρ2
=

1

ρ2
d(ρσρρ(ρ))

dρ

=
Y

2ρ2

(
qi
6
log

(
e
ρ

ρ0

)
+

∫ ρ0

ρ

du

u

(
df

du

)2

− 1

ρ2

∫ ρ

0
dvv

∫ ρ0

v

du

u

(
df

du

)2

− 1

ρ20

∫ ρ0

0
dvv

∫ ρ0

v

du

u

(
df

du

)2
)

.

The strain tensor is

uρρ =
1

Y

(
σρρ − νpρ

2σθθ
)
=

1

Y

(
1

ρ

d

dρ
− νp

d2

d2ρ

)
χ

uθθ =
ρ2

Y

(
ρ2σθθ − νpσ

ρρ
)
=

ρ2

Y

(
d2

d2ρ
− νp

ρ

d

dρ

)
χ . (3.56)

Note that these equations are also equivalent to Eq. 3.49

uρρ =
duρ
dρ

+
1

2
∂ρh∂ρh (3.57)

uθθ
ρ2

= −Γρ
θθuρ =

uρ
ρ
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with r(ρ) = ρ+ uρ(ρ). The free energy is

F = π

∫ ρ0

0
dρρ

(
σρρuρρ + σθθuθθ

)
. (3.58)

Finally, the mapping r(ρ) (or ρ(r)) can be obtained from solving either equation

2uρρ(ρ) = (1 + f ′(r)2)

(
dr

dρ

)2

− 1 (3.59)

2uθθ(ρ) = r2(ρ)− α2ρ2 .

The explicit solution of the previous equation, consistent at linear order is

r(ρ) = ρ− (1− α)ρ+
uθθ(ρ)

ρ
= ρ

(
1− qi

6
+

1

Y

[
d2

dρ2
− νp

ρ

d

dρ

]
χ

)
, (3.60)

Note that had we used the first equation, the solution

∫ r

0
dr
√
1 + f ′(r)2dr =

∫ ρ

0
dρ
√
1 + 2uρρ

r +
1

2

∫ r

0
f ′(r)2 = ρ+

∫ ρ

0
dρuρρ

r = ρ+

∫ ρ

0
dρ

duρ
dρ

= ρ+ uρ , (3.61)

where Eq. 3.57 has been used.

Addition of a line tension just adds the boundary condition

σρρ = − τ

ρ0
(3.62)
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to the stress tensor, and the additional free energy contribution

F line = 2πτr(ρ0) ≡ 2πτr0 . (3.63)

Analytical formulas for the Airy function, stress tensor, strain tensor, and free

energy for two different surfaces, the spheroid and sombrero are given below.

Spheroid surface

It is given by (with R0 the spheroid radius, not to be confused with r0 = ρ(r0) the

coordinate parameterizing the boundary) the equation

f(r) = β
√
R2

0 − r2 . (3.64)

The Airy function is

χ = Y
β2

16ρ20

(
−R2

0 log
(
R2

0

)(
ρ2 − 2ρ20 log

(
ρ
))

(3.65)

+ρ20

(
−ρ2 −

(
R2

0 − ρ2 +R2
0 log

(
ρ2

R2
0

))
log
(
R2

0 − ρ2
))

+ρ2
(
R2

0 − ρ20
)
log
(
R2

0 − ρ20
)
−R2

0ρ
2
0Li2

(
1− ρ2

R2
0

))
− τρ2

2rA
. (3.66)
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where Li2 is the polylogarithm function Li2(x) =
∑∞

n=1
xn

n2 .

The stress tensors is

σρρ = Y
1

24ρ2ρ20
(3R2

0β
2(ρ20 − ρ2) logR2

0 + 3β2(ρ2 −R2
0)ρ

2
0 log(R

2
0 − ρ2) +

+ ρ2(2qiρ
2
0 log

(
ρ

ρ0

)
+ 3β2(R2

0 − ρ20) log(R
2
0 − ρ20)))−

τ

rA

σθθ = Y
1

24ρ4ρ2
(−3R2

0β
2(ρ2 + ρ20) logR

2
0 + 3β2(R2

0 + ρ2)ρ20 log(R
2
0 − ρ2)

+ ρ2(2ρ20(qi + 3β2 + qi log

(
ρ

ρ0

)
) + 3β2(R2

0 − ρ20) log(R
2
0 − ρ20)))−

τ

rA

1

ρ2
.(3.67)

The strain tensors is

uρρ =
1

24ρ2ρ20
(3R2

0β
2((−1 + νp)ρ

2) log(R2
0)− 3β2(R2

0(1 + νp) +

+ (−1 + νp)ρ
2)ρ20 log(R

2
0 − ρ2) + ρ2(−2ρ20(3νpβ

2 − qi log

(
ρ

ρ0

)
+ qiνp log

(
eρ

ρ0

)
) +

+ 3(−1 + νp)β
2(ρ20 −R2

0) log(R
2
0 − ρ20))) + (νp − 1)

τ

Y rA

uθθ =
1

24ρ20
(3R2

0β
2((−1 + νp)ρ

2 − (1 + νp)ρ
2
0) log(R

2
0) + 3β2(R2

0(1 + νp)−

− (−1 + νp)ρ
2)ρ20 log(R

2
0 − ρ2) + ρ2(2ρ20(qi + 3β2 − qi(−1 + νp) log

(
ρ

ρ0

)
+

+ 3(−1 + νp)β
2(ρ20 −R2

0) log(R
2
0 − ρ20))) + ρ2(νp − 1)

τ

Y rA
. (3.68)

If we expand f(r) in powers of the spheroid radius R0,

f(r) = βR0(1−
r2

2R2
0

) . (3.69)
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The Airy function is

χ = −Y β2(ρ4 − 2ρ2ρ20)

64R2
0

+
Y qi
24

ρ2
(
ln

(
ρ

ρ0

)
− 1

2

)
− τρ2

2rA
. (3.70)

The stress tensors is

σρρ =
Y β2

16R2
0

(ρ20 − ρ2) +
Y

2ρ2

(
qi
6
ρ2 log

(
ρ

ρ0

))
− τ

rA
(3.71)

σθθ =
Y β2

16R2
0ρ

2
(ρ20 − 3ρ2) +

Y

2ρ2

(
qi
6
log

(
e
ρ

ρ0

))
− τ

rA

1

ρ2
. (3.72)

The strain tensors is

uρρ =
β2

16R2
0

(
(3νp − 1)ρ2 − (νp − 1)ρ20

)
+

1

12
qi log

(
ρ

ρ0

)
− 1

12
qiνp log

(
eρ

ρ0

)
(3.73)

+(νp − 1)
τ

Y rA

uθθ =
β2ρ2

16R2
0

(
(νp − 3)ρ2 − (νp − 1)ρ20

)
+

ρ2

12

(
−νpqi log

(
ρ

ρ0

)
+ qi log

(
eρ

ρ0

))
+ρ2(νp − 1)

τ

Y rA
.

The free energy is

F = π

(
Y

(
q2i ρ

2
0

288
− q2i β

2ρ40
192R2

0

+
β4ρ60
384R4

0

)
+

(1− νp)ρ
2
0τ

2

Y r2A

)
. (3.74)
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Sombrero surface

It is given by the equation

f(r) =
βR0

3

(
1−

(
r

R0

)2

+

(
r

R0

)4
)3/2

(3.75)

where r is the radius of the sombrero surface. The Airy function is

χ = − Y β2ρ2

57600R0
10

(
900R0

8(ρ2 − 2ρ0
2)− 1000R0

6(ρ4 − 3ρ0
4) + 675R0

4(ρ6 − 4ρ0
6)−

− 288R0
2(ρ8 − 5ρ0

8) + 80(ρ10 − 6ρ0
10)

)
− τρ2

2rA
(3.76)

The stress tensor is

σρρ =
Y β2

480

(
30(−ρ2 + ρ20)

R2
0

+
50(ρ4 − ρ40)

R4
0

+
45(−ρ6 + ρ60)

R6
0

+
24(ρ8 − ρ80)

R8
0

+

+
8(−ρ10 + ρ100 )

R10
0

)
+

Y qi
12

log

(
ρ

ρ0

)
− τ

rA
(3.77)

σθθ =
Y β2

480ρ2

(
30(−3ρ2 + ρ20)

R2
0

+
50(5ρ4 − ρ40)

R4
0

− 45(7ρ6 − ρ60)

R6
0

+
24(9ρ8 − ρ80)

R8
0

+

+
8(−11ρ10 + ρ100 )

R10
0

)
+

Y qi
12ρ2

log

(
eρ

ρ0

)
− τ

rAρ2
(3.78)
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The strain tensor is

uρρ =
β2

480

(
30((−1 + 3νp)ρ

2 − (−1 + νp)ρ
2
0)

R2
0

− 50
(−1 + 5νp)ρ

4 − (−1 + νp)ρ
4
0

R4
0

+

+
45(−1 + 7νp)ρ

6 − (−1 + νp)ρ
6
0

R6
0

− 24(−1 + 9νp)ρ
8 − (−1 + νpρ

8
0)

R8
0

+

+
8((−1 + 11νp)ρ

10 − (−1 + νp)ρ
10
0 )

R10
0

)
+

qi
12

(
log

(
ρ

ρ0

)
− νp log

(
eρ

ρ0

))
+ (3.79)

+
(−1 + νp)τ

Y rA

uθθ =
ρ2β2

480

(
30((−3 + νp)ρ

2 − (−1 + νp)ρ
2
0)

R2
0

− 50((−5 + νp)ρ
4 − (−1 + νp)ρ

4
0)

R4
0

+

+
45((−7 + νp)ρ

6 − (−1 + νp)ρ
6
0)

R6
0

− 24((−9 + νp)ρ
8 − (−1 + νp)ρ

8
0)

R8
0

+

+
8((−11 + νp)ρ

10)− (−1 + νp))ρ
10
0

R10
0

)
+

qi
12

(
log

(
eρ

ρ0

)
− νplog

(
ρ

ρ0

)))
+(3.80)

+
(−1 + νp)τρ

2

Y rA

The free energy is

F = π

(
Y

(
q2i ρ

2
0

288
− qiβ

2ρ40(900R
8
0 − 2000R6

0ρ
2
0 + 2025R4

0ρ
4
0 − 1152R2

0ρ
6
0 + 400R8

0)

172800R10
0

+

+
β4ρ60

8870400R20
0

(23100R16
0 − 115500R014ρ

14
0 ρ20 + 278740R12

0 ρ40 − 420420R10
0 ρ60 +

+ 438075R8
0ρ

8
0 − 326480R6

0ρ010 + 171248R4
0ρ

12
0 − 59136R2

0ρ
14
0 + 11200ρ160 )

)
−(3.81)

− (−1 + νp)ρ
2
0τ

2

Y r2A

)

3.3.8 Theory of defects, inverse Laplacian square

We finally note that Eq. 3.52 can be promoted to an equation

∆2χ(x) = s(x)−K(x) (3.82)
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β = 1 β = 2 β = 3
Â
R2

0
θ θAH

Â
R2

0
θ θAH

Â
R2

0
θ θAH

Spheroid 2.13 0.75 0.73 0.68 0.43 0.36 0.32 0.29 0.27

Sombrero 5.71 1.18 1.17 3.83 1.00 0.89 0.42 0.34 0.35

Table 3.1: Transition points at which the surface with (qi = 1) and without (qi = 0) a
disclination have the same energy. Here θ = r

R0
and θAH are the predictions reported in

Ref. [1].

in terms of the actual metric. In this case, the values used for the Gaussian curvature and

the disclination density are covariant and exact. This is the starting point of the effective

theory of defects. For rotational symmetric cases, it is possible to solve the equation exactly,

at least by numerical integration.

3.4 Results

Generally, we find that the applicability of elasticity theory extends to relatively

large curvatures ( Â
R2

0
≈ 1). For the spheroid, linear elasticity remains qualitatively correct

for the entire range explored, but this is not the case for the sombrero surface, see Fig. 3.3

, where linear elasticity breaks down and cannot be extended beyond a certain limit.

The points where the qi = 0 and qi = 1 curves cross each other define whether it

is energetically favorable to have a disclination at the center or not. The results are quoted

in Table 3.1. We compare with the most recent, and to our knowledge, most accurate

predictions from Ref. [1]. Note that in some cases the differences are as high as 10%.

The case of a finite line tension is shown in Fig. 3.4. Basically, a large value of τ

overshadows all the other energies of the system resulting into the collapse of all the free
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energy plots into an almost universal curve defined by the line tension term. The overall

free energy is in some agreement with linear elasticity theory, which, as shown in the inset,

is also true for the elastic contribution, see Eq. 3.1. We provide similar plots for smaller

values of the line tension (see Fig.3.6).

In the absence of line tension, linear elasticity predicts that the free energy is a

function of the Young modulus Y alone, independent of the Poisson ratio νp in Sec. 3.3.7.

This is implicitly assumed in models of interacting defects. Within the exact non-linear

theory presented in this chapter, we show that the dependence of the Poisson ratio at

vanishing line tension is, indeed, negligible (see Fig. 3.7). However, Fig. 3.5 reveals that

there is a dependence of the Poisson ratio whenever the line tension is non-zero, see also

Fig. 3.7. We have been able to extract explicitly the dependence of ρ(r) or r(ρ) on the

Poisson ratio as the solution of the exact theory, see Figs. 3.2, 3.8 and 3.9.

As expected, for Â
R2

0
small, the results are well described by linear elasticity, but as

this value increases, they get progressively worse , and in the case of the sombrero, linear

elasticity breaks down for sufficiently large values of Â
R2

0
.

3.5 Discussion

In summary, this chapter provides an exact solution to the problem of determin-

ing the structure of crystals on a curved surface by formulating the problem in terms of

geometric invariants, which besides connecting it to the well developed field of differential
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geometry of curves and surfaces, enables, what we believe, is a transparent interpretation

of non-linear elasticity theory. In addition, we show that effects that have been difficult to

consider in the past, such as a finite line tension or dependence on the Poisson ration νp are

easily included.

Our exact solution provides a universal triangulation, as shown in Fig. 3.2, that is,

a solution to the problem of providing the optimal tiling of an arbitrary surface with triangles

as close to equilateral as possible. In previous studies, determining particle positions requires

numerical minimization methods, either through discretizations of elasticity theory [121,

135, 85] or using explicit potentials, most typically inverse power laws, on a sphere [108, 16]

and other geometries [9] as well. The problem with numerical minimizations is the cost

and instabilities that appear for both a large number of particles N and/or complicated

geometries. We note that our analytical approach does not suffer from any of these problems:

it is independent of the number of particles N , see Eq. 3.3, and is stable for any differentiable

surface.

The approach developed in this chapter allows us to understand how the pen-

tameric defects appear and interact with each other with clear implications in viral shells,

specifically for the difficult cases of the assembly of nonspherical structures similar to those

presented in Fig. 3.1. Determining the location of lattice defects in the growing shells with

non-zero Gaussian curvature in the presence of boundaries with line tension for various

values of Poisson ratio has been shown to be a very challenging task [61, 34, 47, 102].

The theory developed here paves the path for tackling the problem of crystalline growth

pathways. While in this chapter we restricted our study to a fixed geometry with a given
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number of particles and provided explicit solutions for problems with rotational symmetry,

the approach is completely general for any geometry or number of disclinations, although

its explicit description requires additional developments that will be provided in subsequent

studies.
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Figure 3.3: Free energy for a spheroid and sombrero without (qi = 0) and with (qi = 1)
a disclination at the center at τ

Y R0
≡ τ̂ = 0 (zero line tension) and at fixed Poisson ratio

νp = 0.3. The solid line corresponds to the exact results while the dashed line denotes
the analytical results within linear elasticity. The three different colors represent different
values of β = 1, 2, 3, indicating the magnitude of f(r).
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(1, 0, 0.3, 0.05)(1, 0, 0.3, 0.05)(1, 0, 0.3, 0.05)

(1, 1, 0.3, 0.05)(1, 1, 0.3, 0.05)(1, 1, 0.3, 0.05)

(2, 0, 0.3, 0.05)(2, 0, 0.3, 0.05)(2, 0, 0.3, 0.05)

(2, 1, 0.3, 0.05)(2, 1, 0.3, 0.05)(2, 1, 0.3, 0.05)

(3, 0, 0.3, 0.05)(3, 0, 0.3, 0.05)(3, 0, 0.3, 0.05)

(3, 1, 0.3, 0.05)(3, 1, 0.3, 0.05)(3, 1, 0.3, 0.05)

Figure 3.4: Free energy (Eq. 3.1) for both the spheroid and sombrero at finite line tension
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denotes the analytical results within linear elasticity.
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exact results while the dashed lines denote analytical results within linear elasticity.
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(1, 0, 0.3, 0.01)(1, 0, 0.3, 0.01)(1, 0, 0.3, 0.01)

(1, 1, 0.3, 0.01)(1, 1, 0.3, 0.01)(1, 1, 0.3, 0.01)

(2, 0, 0.3, 0.01)(2, 0, 0.3, 0.01)(2, 0, 0.3, 0.01)

(2, 1, 0.3, 0.01)(2, 1, 0.3, 0.01)(2, 1, 0.3, 0.01)

(3, 0, 0.3, 0.01)(3, 0, 0.3, 0.01)(3, 0, 0.3, 0.01)

(3, 1, 0.3, 0.01)(3, 1, 0.3, 0.01)(3, 1, 0.3, 0.01)

Figure 3.6: Free energy Eq. 1 for a spheroid and sombrero at τ̂ = 0.01. The solid lines
correspond to the exact results, while the dashed lines denote analytical results within
linear elasticity.
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Figure 3.7: Free energy Eq. 1 for the spheroid at different Poisson ratios νp = 0.3and0.8.
The solid lines correspond to the exact results while the dashed lines denote analytical
results within linear elasticity.
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Figure 3.8: Solution Eq. B4 and Eq. 3.60 for the spheroid and sombrero relatively small ρ0
compared with FIG. 3.9. The solid lines correspond to the exact result while the dashed
lines denote analytical results within linear elasticity.
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Figure 3.9: Solution Eq. B4 and Eq. 3.60 for the spheroid and sombrero with relatively
large ρ0 compared with FIG. 3.8. The solid lines correspond to the exact results while the
dashed lines denote analytical results within linear elasticity.
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Chapter 4

Conclusions

In this thesis, we investigate the physical principles underlying the formation of

virus capsid assembly and genome packaging.

In the first chapter, we focus on understanding the process of RNA packaging by

capsid proteins. Despite the fact that many experiments have shown that the number of

nucleotides packaged by capsid proteins increases with the number of charges on N-terminal

tails, how the amount of encapsidated RNA depends on the distribution of the charges

along and the length of the N-terminal domain of capsid proteins is not well understood.

By employing a mean-field theory incorporating electrostatics, excluded volume interaction,

and RNA conformational entropy, we explore the variation in RNA packaging observed in

BMV mutants observed in the experiments of Ni et al. [99]. Our calculations of the free

energy of RNA confined in a spherical shell interacting with N-terminal tails and ions reveal

that the combined effect of electrostatic interactions and genome entropy provides valuable

insights into BMV assembly. We find that the location and distance between charges along
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N-terminal tails significantly influence the amount of packaged RNA. By comparing the

structure of CCMV nucleocapsids packaging various RNA segments with similar lengths

but varying levels of compactness, our calculations further verify that the RNA segments

with a greater number of branch points exhibit a lowered free energy.

However, it is essential to note that while our mean-field theory can explain many

experimental observations, it cannot account for all the data. To achieve a better quan-

titative comparison with experimental results, we highlight the importance of considering

additional factors such as counter-ion condensation, divalent ions, protein structure, and

packaging signals.

The second chapter of the thesis focus on the elegant simplicity of virus structures

and their connection to elasticity theory and defect theories based on topology and differ-

ential geometry. The chapter addresses the challenge of characterizing the structure of an

elastic network confined to a curved surface, which arises in various scientific disciplines.

Through a novel approach using geometric invariants, the chapter provides an exact solution

for determining crystal structures on curved surfaces.

By providing an exact solution for determining crystal structures on curved sur-

faces, we formulate the problem in terms of geometric invariants, enabling a transparent

interpretation of nonlinear elasticity theory. We demonstrate the inclusion of complex ef-

fects, such as finite line tension and dependence on the Poisson ratio, in our method. Our

exact solution offers a universal triangulation, providing an optimal tiling of arbitrary sur-

faces with triangles as close to equilateral as possible. Importantly, our analytical approach

overcomes the drawbacks of numerical minimization methods, providing stability and in-
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dependence from the number of particles and surface complexity. The implications of our

findings extend to understanding pentameric defects in viral shells and the assembly of non-

spherical structures. By tackling the challenge of determining the location of lattice defects

in growing shells with non-zero Gaussian curvature and boundaries with line tension, our

theory paves the path for investigating crystalline growth pathways.

In conclusion, this thesis makes significant contributions to our understanding of

virus capsid assembly, crystalline growth pathways, and genome packaging. The insights

gained from exploring RNA packaging provide potential strategies for blocking viral infec-

tions or building capsids for gene therapy applications. Additionally, the exact solution for

elastic networks on curved surfaces paves the path for tackling the problem of crystalline

growth pathways and understanding how pentameric defects appear in nonspherical viral

shells. By combining fundamental principles of physics and mathematical tools, this work

sets the stage for further investigations and potential applications in various fields.
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Jean Mary, Jean-Philippe Renault, and Serge Pin. From protein corona to colloidal
self-assembly: The importance of protein size in protein–nanoparticle interactions.
Langmuir, 36(28):8218–8230, 2020.

[94] Laurent Marichal, Laetitia Gargowitsch, Rafael Leite Rubim, Christina Sizun,
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[107] A Pérez-Garrido, M J W Dodgson, and M A Moore. Influence of dislocations in
Thomson’s problem. Physical Review B, 56(7):3640–3643, 8 1997.
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