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Abstract

Vegetation phenology plays an important role in regulating land‐atmosphere 
energy, water, and trace‐gas exchanges. Changes in spring greenup (SG) 
have been documented in the past half‐century in response to ongoing 
climate change. We use normalized difference vegetation index generated 
from NOAA's advanced very high resolution radiometer data in the Global 
Inventory Modeling and Monitoring Study project over the 1982–2005 period,
coupled with climate reanalysis (Climate Research Unit‐National Centers for 
Environmental Prediction) to investigate the SG responses to preseason 
climate change in northern temperate and boreal regions. We compared 
these observed responses to the simulated SG responses to preseason 
climate inferred from the Earth system models (ESMs) participating in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) over 1982–2005. 
The observationally inferred SG suggests that there has been an advance of 
about 1 days per decade between 1982 and 2005 in the northern midlatitude
to high latitude, with significant spatial heterogeneity. The spatial 
heterogeneity of the SG advance results from heterogeneity in the change of
the preseason climate as well as varied vegetation responses to the 
preseason climate across biomes. The SG to preseason temperature 
sensitivity is highest in forests other than deciduous needleleaf forests, 
followed by temperate grasslands and woody savannas. The SG in deciduous
needleleaf forests, open shrublands, and tundra is relatively insensitive to 
preseason temperature. Although the extent of regions where the SG is 
sensitive to preseason precipitation is smaller than the extent of regions 
where the SG is sensitive to preseason temperature, the biomes that are 
more sensitive to temperature are also more sensitive to precipitation, 
suggesting the interactive control of temperature and precipitation. In the 
mean, the CMIP5 ESMs reproduced the dominant latitudinal preseason 
climate trends and SG advances. However, large biases in individual ESMs 
for the preseason period, climate, and SG sensitivity imply needed model 
improvements to climate prediction and phenological process 
parameterizations.

1 Introduction



Vegetation phenology is the study of the seasonal life cycle of plants 
controlled by seasonal and interannual climate change. Vegetation 
phenology influences land‐atmosphere exchanges of energy, water, and 
trace gases. A shift in phenological timing has been documented in the past 
half‐century in response to ongoing climate change (Gordo & Sanz, 2010; 
Menzel, Sparks, et al., 2006; Shen, Tang, et al., 2014). The 5th Assessment 
Report (Settele et al., 2014) of the Intergovernmental Panel on Climate 
Change synthesized multiple studies to conclude that spring greenup (SG), 
the time at which plants begin to grow leaves in northern midlatitude and 
high latitude, has advanced at a rate of between 1.1 and 5.2 days per 
decade over different periods and regions.

The patterns of SG shifts have large spatial and temporal heterogeneity. 
According to the European Phyto‐phenological data set during 1951–1998, 
SG was delayed by up to 3 days per decade in east Europe, whereas in 
central and western Europe, SG advanced at the rate of >5 days per decade 
(Ahas et al., 2002). The SG advance rate based on the European Phyto‐
phenological data set over 1951–1998 in central and western Europe is 
approximately equivalent to the Europe‐wide mean advances during 1982–
2000, as derived from Pathfinder Advanced Very High Resolution Radiometer
Land Normalized Difference Vegetation Index Data (Stöckli & Vidale, 2004). 
In East Asia, SG has advanced >7 days per decade over 1982–2000, as 
determined by Global Inventory Modeling and Monitoring Study (GIMMS) 
NDVI data (Chen et al., 2005; Jeong et al., 2009; Piao et al., 2006). In North 
America, the advance of SG was up to 6 days per decade over 1985–1999, 
based on Pathfinder AVHRR Land NDVI (De Beurs & Henebry, 2005). Analysis
of GIMMS NDVI demonstrated that although the Northern Hemisphere has 
experienced an SG advance of 3–4 days per decade from 1982 to 1999, the 
advance was no longer present during 2000–2008 (Jeong et al., 2011).

Shifts in the SG are the result of dynamic plant responses to climate 
variability and change, and the shifts vary among vegetation types and 
species. Temperature has long been recognized as the dominant factor that 
alters SG, and that its effects differ between plant species (Gordo & Sanz, 
2010; Seghieri et al., 2012). The records of tree SG over 100 years from 
England (Thompson & Clark, 2008) and flowering in the northeastern U.S. 
(Miller‐Rushing & Primack, 2008) have chronicled advances of 3–8 days for 
each 1°C increase in air temperature over the 1 or 2 months preceding the 
SG or flowering. European larch in northern Italy Alpine regions has 
advanced at a rate of 7 days per °C increase in spring air temperature 
(Busetto et al., 2010). The response of SG in temperate China varied from 
advances of 9.7 days to delays of 6.3 days with a mean advance of 1.2 days 
per °C in preseason temperature increase, according to different methods to 
evaluate SG with AVHRR GIMMS‐NDVI3g data (Cong et al., 2013). The 
vegetation types with earlier mean SG in lower latitude are more sensitive to
temperature increases and show larger advances over the historical period 
(Shen, Tang, et al., 2014), and 88% of the latitudinal variability in the SG 



trend can be explained by preseason temperature (Shen et al., 2015). In 
addition to temperature control, a weaker temperature sensitivity of SG for 
some vegetation species can be attributed to changes in water availability. 
Delayed SG in response to increased air temperature has been reported in 
East Asia semiarid regions due to reduced precipitation (Shen et al., 2011; Yu
et al., 2003). In the boreal forest, the precipitation influence on SG has been 
shown not to be significant, except that heavy snowfall can cause delays in 
SG (Borner et al., 2008; Shutova et al., 2006). In high‐latitude and high‐
altitude regions, thin and early melting snowpack may cause frost damage to
vegetation (Inouye, 2008; Wipf et al., 2006). But most likely, an early 
snowmelt reflects a warmer snowmelt season, which is consistent with 
temperature controls on SG (Peng et al., 2013). The various SG responses to 
environmental factors across regions and biomes make it one of the most 
complicated issues in modeling ecosystem processes.

Accurate representation of phenological processes in climate models is 
essential to predict mass and energy exchange between land and the 
atmosphere and the response of surface exchange processes to climate 
change. Climate models that include dynamic leaf phenology generally use 
thermal forcing or combined thermal forcing and chilling to predict the 
timing of SG, in which SG occurs when the state of forcing (S (t)) reaches a 
critical forcing unit summation (F). In the spring warming approach, 
accumulated forcing is calculated dependent on the starting date of forcing 
accumulation and air temperature (Sarvas, 1972). The sequential approach 
assumes a similar forcing accumulation, but the date of forcing accumulation
begins when accumulated chilling units reach a critical threshold (Hänninen, 
1990; Kramer, 1994). The alternating approach assumes that the chilling and
forcing take turns accumulating from an initial start date of a single base 
temperature, in which the critical temperature threshold for SG depends on 
accumulated chilling such that with more chilling, the larger the forcing 
accumulation that is required for greenup (Cannell & Smith, 1983). Alternate 
approaches exist: e.g., Kikuzawa (1995) predicted leaf phenology based on a
carbon cost and benefit analysis and nutrient availability. In the current 
generation of Earth system models (ESMs), which couple land surface and 
atmospheric processes, the seasonality of ecosystem processes that control 
vegetation phenology is represented by using the spring warming 
approaches applied to different plant functional types (PFTs), although the 
prescription of parameters and PFT classifications vary among the models 
(Text S1). Multiple studies indicate that land surface schemes used in current
ESMs do not place sufficient emphasis on accurately modeling seasonality of 
ecosystem processes that affect vegetation phenology (Anav et al., 2013; 
Richardson et al., 2012).

In order to quantitatively evaluate the ESMs in modeling spring vegetation 
phenology and its responses to climate factors, we compare modeled spring 
phenology with satellite‐inferred spring phenology in the northern temperate
and boreal regions over 1982–2005. The main objectives of this work are to 



explore, across biomes and in observations and ESMs, (1) the preseason 
when climate exerts significant control on the SG, (2) the sensitivity of the 
SG to preseason temperature and precipitation, and (3) historical trends in 
the SG and their associated climate controls. Data and methods are 
described in section 2. The results of the analysis of the preseason climate 
that regulates the SG and sensitivities of the SG to preseason climate are 
presented in section 3. Discussions and conclusions are given in sections 4 
and 5, respectively.

2 Data and Method

2.1 Study Area

We restrict our analysis to north of 30°N, where temperate and boreal 
vegetation dominate, since that is the region where phenology is expected to
be most strongly controlled by the annual cycle of temperature and moisture
availability. We also limit our analysis to south of 80°N, due to the limited 
extent of terrestrial ecosystems beyond this latitude.

2.2 Earth System Models

We analyzed twentieth century historical simulations from ESMs participating
in CMIP5 (Taylor et al., 2012). These coupled land‐atmosphere‐ocean 
simulations were forced by time‐varying greenhouse gases, aerosols, and 
land use change. We used the first ensemble member from 11 ESMs (Table 
1) to infer SG from monthly leaf area index (LAI) between 1982 and 2005, 
which we chose to be consistent with the period of GIMMS NDVI data. To 
assess phenological control by climate, we needed daily meteorology from 
the ESMs, as monthly meteorology was too coarse to accurately infer 
sensitivity. Daily climate data (i.e., surface air temperature (tas) and daily 
precipitation (pr)) were available for 5 of the 11 ESMs.

2.3 Climate Reanalysis

The daily mean temperature (Tm) and cumulative precipitation (Pc) are 
calculated from 6‐hourly, half‐degree resolution CRU‐NCEP (Climate 



Research Unit‐National Centers for Environmental Prediction) v6 reanalysis 
to analyze the preseason climate associated with SG derived from GIMMS 
NDVI. The CRU‐NCEP v6 data set, recently extended to 2014, is a 
combination of CRU TS v3.2 0.5° × 0.5° monthly climatology and NCEP 
reanalysis 2.5° × 2.5° with 6 h time step available in near real time 
(http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings).

2.4 Satellite Data

We used the latest version of the AVHRR instrument onboard the NOAA 
satellite series NDVI data set (GIMMS3g), which spans the period from July 
1981 to December 2013 and has a spatial resolution of 1/12° and bimonthly 
temporal resolution (Pinzon & Tucker, 2014). We regridded GIMMS NDVI3g 
data to half‐degree resolution using a bilinear method to match the spatial 
resolution of the CRU‐NCEP reanalysis. We used the period 1982–2005 to 
match that of the model outputs.

In order to analyze the phenology and its response to climate across biomes,
we used global mosaics of collection 6 Moderate Resolution Imaging 
Spectroradiometer (MODIS) data products (MCD12Q1) in the International 
Geosphere‐Biosphere Programme (IGBP) classification of land cover types 
with spatial resolution of 0.5° × 0.5° to mask the model and satellite‐based 
SG results. The global mosaics of MCD12Q1 with geographic coordinates of 
latitude and longitude on the WGS 1984 coordinate reference system (EPSG: 
4326) (Channan et al., 2014) were reprojected from standard MCD12Q1 with 
500 m resolutions (Friedl et al., 2010). We used the IGBP land cover 
classification for nine biomes in 2012 (Table S1): evergreen needleleaf 
forest, deciduous needleleaf forest, deciduous broadleaf forest, mixed forest,
open shrublands, woody savannas, grassland, permanent wetland, and 
cropland. We distinguish the grassland to the north of 60°N, which is more 
likely to be tundra, from grassland in the temperate south due to their 
expected differences in climate and controls on phenology (Figure S1 in the 
supporting information).

2.5 Determination of SG and Preseason Climate

We determined the preseason following the method of Shen, Tang, et al. 
(2014), but with a different climate reanalysis product and method for 
calculating the SG.

2.5.1 SG and Mean SG

We first apply a piecewise logistic method (Zhang et al., 2003) to fit the 
temporal variation of vegetation index data (LAI or NDVI) to vegetation 
growth:

 (1)

where t is time in days, y(t) is the vegetation index at time t, a and b are 
fitting parameters, c + d is the maximum vegetation index value, and d is 



the initial background vegetation index, usually the minimum vegetation 
index value preceding the growing season. The SG is identified as the Julian 
date at which the rate of change in the vegetation growth (y(t)) is maximum,
which is the maximum of the second derivative of equation 1. The long‐term 
mean SG (MSG) in each pixel is averaged over the analysis years. The 
piecewise logistic method is applied to CMIP5 LAI outputs and GIMMS NDVI 
products. The LAI and NDVI‐derived SGs are comparable because NDVI and 
LAI exhibit strong linear relationship for grass (Fan et al., 2009) and shrubs 
(Green et al., 1997) and in the leaf production period for forest (Wang et al., 
2005). For the pixels with multiple growth cycles in a year, we applied this 
piecewise logistic method to the first cycle, so that SG is the Julian date at 
which the second derivative of y(t) is maximum for the first time in a year.

2.5.2 Preseason Period and Preseason Climate

We hypothesize that the temperature and precipitation variability in the 
preseason period control phenology in different ways, which include different
periods of sensitivity for the two variables. Thus, we calculate the preseason 
periods separately for temperature (PT) and precipitation (PP) to indicate the 
difference in temperature and precipitation controls on spring phenology. 
The Tm and Pc are calculated during the respective preseason periods. 
Negative interannual correlation between (1) preseason temperature and SG
and (2) preseason precipitation and SG are used to screen the data. A 
preseason calculation is only made for pixels in which the correlation 
between SG and Tm (and Pc) is negative. The preseason climate (Tm and Pc) in
each pixel is calculated in the period preceding the MSG from 15 to 120 days
with an increment of 3 days. Because we expect the relative variation in 
precipitation to be more relevant than absolute values in determining 
phenology, we use the relative variation of cumulative precipitation in 
percentage (%) of precipitation change instead of the absolute cumulative 
precipitation variation in millimeter (mm). We detrended the calculated Tm 
and Pcover the historical period. For each period preceding MSG for a given 
pixel, we calculated the Pearson's correlation coefficients (PCC) between SG 
and Tm (and Pc). We defined the period with the most negative correlation 
between SG and Tm (and Pc) as the preseason for temperature control, PT 
(and preseason for precipitation control, PP). We used daily meteorology from
the CRU‐NCEP to determine the SG and MSG for observations, and daily ESM 
output of temperature and precipitation to determine the SG and MSG for the
ESMs.

2.5.3 SG Shift and SG Response to Preseason Climate

We applied linear regression to the SG time series in each pixel to obtain the 
SG trend over 1982–2005 for ESM‐ and NDVI‐based SG. We analyzed the 
response of SG to preseason climate by calculating linear regressions 
between SG and Tm (and Pc). We also excluded the SG response to preseason
climate in pixels where no significant relationship was found (i.e., pvalue > 
0.1). We bilinearly interpolated the model simulated SG and response of SG 



to preseason climate with different model resolutions to 0.5° × 0.5°, in order 
to calculate the zonal mean SG and response of SG to preseason climate 
across IGBP land cover types.

3 Results

3.1 Observed and Modeled SG Shift

Most ESMs predicted SG shifts in the range of ±5 days per decade in the 
Northern Hemisphere, with large spatial heterogeneity (Figure 1). Most ESMs,
except Beijing Climate Center Climate System Model version 1 (BCC‐CSM1), 
Geophysical Fluid Dynamics Laboratory Earth System Model version 2 with 
Generalized Ocean Layer Dynamics (GOLD) component (GFDL‐ESM2G), and 
Norwegian Earth System Model 1 ‐ medium resolution (NorESM1‐M) (Figures 
1b, 1f, and 1l), predicted advanced the SG north of the midlatitudes, 
although the ESMs tended to predict larger SG advances than those from the
GIMMS retrievals (Figure 1a). The most significant GIMMS‐derived advances 
occurred in western Europe, and a similar response is also predicted by the 
Beijing Normal University Earth System Model (BNU‐ESM), Canadian Earth 
System Model version 2 (CanESM2), Model for Interdisciplinary Research on 
Climate Earth System Model (MIROC‐ESM), and Max‐Planck‐Institut‐Earth 
System Model Low Resolution (MPI‐ESM‐LR) ESMs (Figures 1c, 1d, 1j, and 1k).

Figure 1

Phenology shift for the spring greenup (SG) in observations (GIMMS) and ESMs over the period 1982–
2005. The black dot mask indicates significant trend (p < 0.1).



The GIMMS‐derived zonal mean SG advances throughout most of the 35–
80°N latitude range (Figure 2a). Although the individual model predictions 
show a wide spread, the mean SG shift of the multimodel mean 
approximately corresponds to the GIMMS‐derived record. North of the 
midlatitude to high‐latitude zone (45–80°N), the GIMMS‐derived SG shift is 
−0.9 ± 0.5 days per decade and the ESM mean is −1.0 ± 0.6 days per 
decade. In contrast to the multimodel mean, the GIMMS‐derived zonal mean 
indicates significant SG delays south of 34°N. The spatial correlation 
between the ESM‐ and GIMMS‐derived predictions above 45°N is highest for 
CanESM2 (r = 0.57, p < 0.01; although it has one of the highest magnitude 
biases of all ESMs between about 35 and 60°N), followed by MPI‐ESM‐LR (r = 
0.33, p < 0.01).

Figure 2

Spring greenup (SG) shift in observations (GIMMS) and CMIP5 ESMs. (a) SG changes for the zonal mean
and (b) SG changes for IGBP land cover types. The error bars on the model mean in Figure 2b are the 
standard deviation of SG shift for each ESM prediction. The numbers of pixels that were used to 
calculate the biome‐scale shift are shown in Table S2.

When we isolate changes in the SG shift to each IGBP biome classification, 
GIMMS shows that the SG advances in 8 of the 10 biomes (Figure 2b). 
However, in woody savannas and permanent wetlands, GIMMS suggests 
small SG delays (<1 day per decade). The GIMMS‐derived SG indicates that 
the deciduous broadleaf forest biome has experienced the largest SG 
advance (3.1 days per decade) followed by those of mixed forests (1.9 days 
per decade), croplands (1.2 days per decade), temperate grasslands (0.9 



days per decade), and open shrublands (0.6 days per decade), while the SG 
advances in other biomes are within ±0.5 days per decade.

Most ESMs predicted that the SG advances across most biomes, except BCC‐
CSM1 and GFDL‐ESM2G. The multimodel mean SG advances across biomes 
are in the range of 0.7–1.6 days per decade. However, considerable 
variability within a given model and across a given biome are evident, 
including a few ESMs that predict a larger than observed SG advance in 
certain biomes, e.g., 4.8 days per decade in deciduous needleleaf forests 
and 3.7 days per decade in permanent wetlands by Community Climate 
System Model version 4 (CCSM4), 4.2 days per decade in deciduous 
broadleaf forests and 3.8 days per decade in woody savannas by BNU‐ESM, 
3.1 days per decade in deciduous needleleaf forests and mixed forests, 3.2 
days per decade in deciduous broadleaf forests, and 4.5 days per decade in 
croplands by CanESM2. The SG shift across biomes predicted by Hadley 
Centre Global Environmental Model version 2 Carbon Cycle (HadGEM2‐CC) is 
the best correlated to that of GIMMS (r = 0.62, p = 0.15), followed by 
CanESM2 (r = 0.41, p = 0.25), Institute of Numerical Mathematics Coupled 
Model version 4 (INM‐CM4) (r = 0.38, p = 0.28), BNU‐ESM (r = 0.31, p = 
0.39), and NorESM1‐M (r = 0.20, p = 0.58). The interbiome SG shifts 
predicted by BCC‐CSM1, CCSM4, GFDL‐ESM2G, Institut Pierre‐Simon Laplace 
Coupled Model version 5A (IPSL‐CM5A), MIROC‐ESM, and MPI‐ESM‐LR are 
negatively correlated with GIMMS‐derived values.

3.2 Observed Preseason Correlations With the SG

Because the CMIP5 ESMs are coupled land‐atmosphere‐ocean models, they 
differ from the historical record and each other both in physical process 
representation and in internal dynamics. We therefore examined the 
correlation between phenological timing and meteorology to assess whether 
the physics correlation between the ESMs and observations is consistent. In 
the northern hemisphere, the PT is usually within 2 months of the SG (43 ± 
30 days; Figure 3a). The PT in the north of central Alaska and Canada and the
south of Asia exceeds 3 months. The mean temperature during The PT (Tm) 
shows strong spatial heterogeneity; however, in general, the higher the 
latitude the lower is Tm (Figure 3b). Moreover, the high‐altitude region in 
south Asia shows a lower Tm there than in surrounding regions in the same 
latitudes. The Russian Far East and the northern North America boreal zone, 
from Alaska to the Hudson Bay, has the coldest PT with a Tm lower than 
−25°C, while the southeast of the United States and South Asia experienced 
the warmest PT (Tm > 12°C). The lower Tm at high altitudes is most 
remarkable in the Tibetan Plateau, where the Tm is more than 20°C lower 
than the other regions in the same latitude. The correlation between the 
Tmand SG indicates that the Tm control on SG is most significant over 45–
70°N, where 65.3% of the pixels have PCC greater than 0.3 (Figure 3c). 
About 76.6% of the pixels with valid SG shift show a warming trend over the 
1982–2005 period, in which 24.4% of the PT warming is greater than 0.1°C 
yr−1 and 66.7% of the pixels with a warming trend occur in Eurasia (Figure 



3d). The cooling trend occurs in the east of the Baltic Sea and the Great 
Plains of North America, in which about 13.2% of the pixels have cooling 
trend greater than 0.1°C yr−1.

Figure 3

CRU‐NCEP preseason mean temperature corresponding to GIMMS SG: (a) the duration of the preseason
period of temperature control (PT), (b) the mean temperature in PT (Tm), (c) the PCC between Tm and 
SG, and (d) the Tm trend over the 1982–2005 period.

The fraction of the northern midlatitude to high‐latitude land surface with 
preseason precipitation control is less than that for temperature control. The 
SG preseason period for precipitation (PP) is longer than PT, with the mean 
period of 59 ± 30 days (Figure 4a). The pixels (84.2%) with valid PP have a Pc 
less than 30 mm. Only 6.8% of the pixels have a Pc over 150 mm, which are 
mainly distributed in the east of North America (Figure 4b). The correlation 
between the SG and Pc is much lower than that between the Tm and SG in 
most pixels. Only 28.2% of the pixels have Pc‐SG correlations higher than 
0.3. The Pc control on SG is relatively stronger in the northeast of the 
Mediterranean Sea and east of the Baltic Sea (Figure 4c) where Pc increases 
between 1982 and 2005 (Figure 4d); the stronger control is consistent with 
expectations for Mediterranean‐type ecosystems. Pc increases in 64.9% of 
the pixels, in which 71.1% of the increase occurs in Eurasia and 3.5% of the 
increase is over 2 mm yr−1. Pc decreases occur mainly in North America, 
albeit heterogeneously, e.g., the southwest of Canada and the eastern 
coastal United States (Figure 4d).



Figure 4

CRU‐NCEP preseason cumulative precipitation corresponding to GIMMS SG: (a) the duration of the 
preseason period of precipitation control (PP), (b) the cumulative precipitation in PP (Pc), (c) the PCC 
between Pc and SG, and (d) the Pc trend over 1982–2005.

3.3 Simulated Preseason Correlations With the SG

In addition to the observations, we analyzed the preseason climate (Tm and 
Pc) for the five ESMs that made available daily temperature and precipitation 
outputs. ESMs show diverse performance in predicting the dependence of 
the SG on Tm (Figure 5). Except for CCSM4, the ESMs we analyzed tend to 
predict lower correlations between Tm and SG, as compared to CRU‐NCEP 
(Figures 3c and 3d). CCSM4 and IPSL‐CM5A resemble the observed spatial 
dependence of SG on Tm between 45 and 70°N (Figures 5a and 5g). 
However, CCSM4 estimated stronger SG dependence on Tm with PCC above 
0.5 in 81.5% of the pixels and a warming PT predicted in 90.2% of the valid 
CCSM4 pixels (Figures 5d, 5f, 5h, and 5j). The other four models also 
predicted dominant warming during PT, although the areal extent of warming
PT is much reduced with strong spatial heterogeneity. Between 30 and 80°N, 
the predicted zonal mean warming of 0.73 ± 0.15°C per decade agrees quite
well with CRU‐NCEP based warming of 0.75 ± 0.16°C per decade. CRU‐NCEP‐
based cooling in west of the Baltic Sea is partly reproduced by INM‐CM4 
(Figure 5f) and MPI‐ESM‐LR (Figure 5j). The positive bias in the zonal‐mean 
warming over 53–61°N and 73–77°N is mainly attributed to the predicted 
stronger warming in the North America (Figure 5k).



Figure 5

Correlations within ESMs (a, c, e, g, and i) between preseason temperature and spring greenup (SG), 
(b, d, f, h, and j) the trend of preseason temperature in each ESM, and (k) the zonal mean trend of 
preseason temperature trends across ESMs and observations. The numbers in legend indicate the 
correlation between model and CRU‐NCEP preseason temperature trend.

The ESMs that we analyzed tend to predict higher correlation between Pc and
SG than CRU‐NCEP (Figure 6; compare to Figures 4c and 4d). Only CCSM4 
resembles CRU‐NCEP in this regard, with a lower correlation between Pc and 
SG than that between Tm and SG (Figure 6a). The ESMs, other than MPI‐ESM‐
LR, reproduced the observed strong precipitation dependence of SG in the 
northeast of the Mediterranean Sea where wetting PP is predicted in 
agreement with the CRU‐NCEP (Figures 6b, 6d, 6f, 6h, and 6g). In contrast to 
the CRU‐NCEP, more areas are subject to drying PP in Eurasia in all ESMs. The
zonal mean Pc trend shows that CRU‐NCEP‐based Pc trend lies within the 95%
confidence interval of the model mean, despite the scattered predictions 
(Figure 6k). According to the latitudinal drying‐wetting transition, the 



simulated wetting PP over 33–37°N of 1.6 ± 1.1 mm per decade is consistent 
with the CRU‐NCEP derived wetting trend of 1.5 ± 1.1 mm per decade. Both 
the observations and simulations show a drying PP over 37–67°N, although 
the drying trend is larger in the simulations. No significant variation in Pc was
observed or predicted in the north of 70°N.

Figure 6

Simulated correlations (a, c, e, g, and i) between preseason precipitation and spring greenup (SG) in 
CMIP5 ESMs, (b, d, f, h, and j) the trend of preseason precipitation in ESMs, and (k) the zonal mean 
trend of preseason precipitation in observations and ESMs. The numbers in legend indicate the 
correlation between model and CRU‐NCEP preseason precipitation trend.

The intermodel differences in the correlation between the preseason climate 
and SG, as well as the trends of the preseason climate, are also associated 
with the various ESM predictions of preseason period and preseason climate 
(Figures 7 and 8). Four ESMs (not CCSM4) tend to predict longer PT than CRU‐
NCEP in some regions, e.g., eastern Asia by INM‐CM4, western Europe, and 



eastern U.S. by MPI‐ESM‐LR. CCSM4 and HadGEM2‐CC significantly 
overestimate the Tm, while INM‐CM4, IPSL‐CM5A, and MPI‐ESM‐LR 
underestimate Tm in the north of 45°N (Figure 7). The predicted PP is not 
prolonged compared to predicted PT. All five ESMs tend to overestimate Pc 
over 40–60°N in both Eurasia and North America (Figure 8). Even though we 
analyzed the preseason period and climate across biomes, the biases are still
significant for PTand Pc (Figure 9). The overestimation of the PT compared to 
that derived from CRU‐NCEP ranges from 8 to 23 days across biomes. 
Despite the overestimation, the interbiome variability of PT is captured by 
CCSM4, INMCM4, MPI‐ESM‐LR, and the multimodel mean (r ≥ = 0.79, p ≤ 
0.03). INM‐CM4, IPSL‐CM5A, MPI‐ESM‐LR, and the multimodel mean captured 
the observed interbiome variability in Tm (r ≥ =0.85, p < 0.01), while CCSM4 
and HadGEM2‐CC tend to estimate too high Tm (r ≥ 0.58, p ≤ 0.07). Tm 
ranges from 0.8 to 5°C for CCSM4 and from 4.5 to 21.8°C for HadGEM2‐CC. 
Only CCSM4 reproduced the interbiome variability in PP (r = 0.8, p < 0.01). 
All the ESMs predicted much higher Pc than CRU‐NCEP with great variability 
among the ESMs. Despite the overestimate, CCSM4 captured the interbiome 
variability in Pc (r = 0.85, p < 0.01).

Figure 7

 (a, c, e, g, and i) Duration of the preseason period of temperature control (PT) in CMIP5 ESMs and (b, d,
f, h, and j) the mean temperature during the PT (Tm), as simulated by CMIP5 ESMs, over the period 
1982–2005.



Figure 8

 (a, c, e, g, and i) Duration of the preseason period of precipitation control (PP) in CMIP5 ESMs and (b, d,
f, h, and j) the mean precipitation during the PP (Pc) as simulated by CMIP5 ESMs over the 1982–2005 
period.



Figure 9

Preseason period, as observed and simulated by CMIP5 ESMs, for (a) temperature (CRU‐NCEP_T and 
Model‐mean_T) and precipitation (CRU‐NCEP_P and Model‐mean_P) control, and (b) the mean 
temperature and (c) cumulative precipitation during the respective periods. The error bars are the 
standard deviations of preseason period, Tm and Pc in individual models.

3.4 Spring Greenup in Response to Climate

The spatial heterogeneity of SG shifts is attributed to heterogeneous 
preseason climate changes and the different responses of plants to climate 
change. We calculated the response of the SG to preseason climate by 
calculating linear regressions between time series of SG and Tm (and Pc) over 
the studied years.

3.4.1 SG Sensitivities to Preseason Temperature

The Tm sensitivity of GIMMS‐based SG shifts indicates that the SG is most 
sensitive to Tm in temperate and southern boreal regions (Figures 10a–10f). 
The dominant biomes in the temperate region are deciduous broadleaf 
forests in the southeast of the United States, mixed forests in the northeast 
of the United States and Central Eurasia, temperate grasslands in midwest of
the United States and mid‐South Asia, and croplands in the central of the 
United States and the east of Europe and China. The observed sensitivities of
the SG to Tm across biomes are most significant in forests: deciduous 
broadleaf forests (−3.3 days per °C), mixed forests (−2.6 days per °C), 



evergreen needleleaf forests (−2.4 days per °C), temperate grasslands (−2.2
days per °C), croplands (−2.0 days per °C), boreal woody savannas (−1.3 
days per °C), open shrublands (−0.8 days per °C), and northern grasslands 
(−0.7 days per °C) (Figure 10g). The SG sensitivities to Tm in deciduous 
needleleaf forest are low compared with other temperate and boreal forests 
(−0.7 days per °C) (Figure 10g).

Figure 10

Temperature sensitivity of spring greenup (SG), as inferred from correlations over the period (1982–
2005) in (a) GIMMS, (b–f) ESMs, and (g) across biomes. The numbers of pixels that were used to 
calculate the biome‐scale temperature sensitivity of SG are shown in Table S3.

The ESMs demonstrated a Tm control on SG in the temperate and boreal 
regions, but none of the ESMs capture the magnitude and observed spatial 
pattern of the Tm control on SG (Figure 10). Across biomes, the modeled 
spatial transitions of Tm control on SG are not smoothly distributed, leading 
to some extreme dependence of SG on Tm. For example, Tmsensitivities of SG



for deciduous broadleaf forests by INM‐CM4 and SG for open shrublands by 
HadGEM2‐CC are as large as −8.5 days per °C (Figure 10g). CCSM4, INM‐
CM4, and MPI‐ESM‐LR tend to overestimate SG shifts in response to Tm. Even 
so, the Tm sensitivities of SG across biomes by CCSM4, INM‐CM4, and MPI‐
ESM‐LR are well spatially correlated to that by GIMMS (r > 0.72, p < 0.01) 
(Figure 11).

Figure 11

Taylor diagram showing inter‐biome temperature and precipitation sensitivities for the five ESMs 
relative to that derived from GIMMS.

3.4.2 SG Sensitivities to Preseason Precipitation

The area in which the SG shift depends strongly on Pc is relatively smaller 
than for Tm in both GIMMS‐ and ESM‐derived SG shifts (Figure 12). Only the 
region in the north of Mediterranean shows pronounced observed responses 
to Pc. Pc sensitivities of SG shift are −0.26 days %−1 (in precipitation increase)
in deciduous broadleaf forests, followed by −0.18 days %−1 in evergreen 
needleleaf forests, −0.17 days %−1 in mixed forests, −0.15 days %−1 in 
croplands, and −0.13 days %−1 in temperate grasslands. The boreal biomes, 
woody savannas (−0.07 days %−1), deciduous needleleaf forest (−0.05 days 
%−1), open shrublands (−0.04 days %−1), and northern grasslands (−0.03 
days %−1) show weak response to Pc (Figure 12g).



Figure 12

Precipitation sensitivity of spring greenup (SG), as inferred from correlations over the period (1982–
2005) in (a) GIMMS, (b–f) ESMs, and (g) across biomes. The numbers of pixels that were used to 
calculate the biome‐scale precipitation sensitivity of SG are shown in Table S3.

CCSM4, HadGEM2‐CC, INM‐CM4, and IPSL‐CM5A predicted part of the 
pronounced Pcsensitivities of SG shift in the north of Mediterranean (Figures 
12b–12e). The modeled mean biome Pc sensitivities are approximately equal 
to that derived by GIMMS (−0.20 days %−1 in deciduous broadleaf forests, 
−0.17 days %−1 in evergreen needleleaf forests, −0.18 days %−1 in mixed 
forests, −0.18 days %−1 in croplands, and −0.15 days %−1 in temperate 
grasslands). However, Pc sensitivities are significantly overestimated in the 
northern biomes (−0.16 days %−1 in woody savannas, −0.15 days %−1 in 
deciduous needleleaf forest, −0.16 days %−1 in open shrublands, and −0.24 
days %−1 in northern grasslands). Despite the overestimates, interbiome Pc 
sensitivities by IPSL‐CM5A are better correlated to GIMMS (r = 0.65, p < 
0.10) than the other models (Figure 11).

4 Discussion



4.1 Preseason Climate

The preseason climate change differs from annual and seasonal climate 
changes. The northern hemisphere spring (March, April, and May) warming is
enhanced over the 1979–2005 period relative to the northern hemisphere 
annual warming over that period (Solomon et al., 2007). The warming in 
CRU‐NCEP derived PT over 1982–2005 (0.75 °C per decade) is almost double 
the spring warming of 0.39 °C per decade over 1988–2010 (Cohen et al., 
2012). The spatial pattern of Pc agrees with the annual precipitation trend 
over 1979–2005 (Solomon et al., 2007): slight drying trend over North 
American and strong wetting trend over Eurasia. This continental 
asymmetrical pattern results in a growing Pc trend of 0.84 ± 1.37 mm per 
decade in the Northern Hemisphere. The latitudinal trend suggests that the 
PP in arid and humid areas is becoming drier and wetter, respectively. The Pc 
trend was insignificant relative to the other seasonal and annual 
precipitation trends (de Martino et al., 2013; Small et al., 2006). If annual, or 
even spring, climate is used as a proxy, the sensitivities of phenology change
can be biased. We found that vegetation tends to respond to the climate just
prior to SG rather than the climate through the whole spring season. A 
typical example is the delayed leaf emergence in the warmer spring of 2012 
compared to the colder spring of 2010 in northeastern temperature forests 
of the U.S., where positive temperature anomalies occurred immediately 
prior to the leaf emergence in 2010 rather than anomalies in the early spring
of 2012 (Friedl et al., 2014).

Phenology predictions rely on the very different climate driver predictions 
across the ESMs. The mean of the five participating ESMs showed a pattern 
of latitudinal warming of PT in the northern hemisphere, a wetting of PP 
between 37 and 67°N, and a drying of PP around 35°N over 1982–2005; this 
mean model behavior agrees with the CRU‐NCEP deviations. However, the 
spread across the ESM predictions and the spatial heterogeneity of the 
preseason climate trends are concealed in the model mean and zonal mean 
trends. These discrepancies are partially due to the internal dynamics of 
each model, and the relatively short period of comparison to the 
observations.

In comparison with CRU‐NCEP, ESMs generally predict much longer PT and 
slightly longer PP. The model mean of Tm across biomes is moderately close 
to the observations. All the ESMs overestimate Pc. ESMs also overestimated 
annual precipitation, which caused systematic overestimation of 
evapotranspiration (Mueller & Seneviratne, 2014). These biases in 
precipitation and evapotranspiration influence soil moisture predictions 
(Yuan & Quiring, 2017), which are usually applied to spring phenology of 
PFTs with seasonal water stress (Text S1). The discrepancies in preseason 
climate and its spatial and temporal trends indicate that constraints on 
spatial and temporal variations of preseason climate are weak. Further, 
these discrepancies can strongly affect climate mediated ecological 
processes, such as spring phenology.



We derived the preseason climate from ESM‐predicted coupled climate‐
vegetation dynamics. The reported overestimation of ESM‐predicted LAI 
attributed to wet biases (Anav et al., 2013) and growing season lengths 
(Murray‐Tortarolo et al., 2013) can lead to biases in determining the 
simulated SG and thus its correlated preseason period and climate. Another 
source of uncertainty in the ESM‐derived SG and preseason climate results 
from differences in ESM PFT classifications, which can affect LAI, and thus 
determination of phenological thresholds. For instance, in the land 
component of the ESMs, there are 15 PFTs in CCSM4 CLM4, 12 PFTs in MPI‐
ESM JSBACH and IPSL‐CM5A ORCHIDEE, and 5 PTFs in HadGEM2‐CC JULES 
(Poulter et al., 2015). The spatial distribution and represented vegetation 
dynamics of the PFTs are different in ESMs (Sitch et al., 2008).

4.2 SG Sensitivities to Climate

The GIMMS‐derived SG indicates an advancing SG in the Northern 
Hemisphere over 1982–2005, despite considerable variability across biomes 
and regions. Deciduous broadleaf forests and mixed forests show the 
greatest SG advances (3.1 and 1.9 days per decade), in response to Tm 
increases of −3.3 and −2.6 days per °C, and Pc increases of −0.26 and −0.17
days %−1, respectively. The CMIP5 ESM SG advances in temperate forests are
in the range of previously modeled and other satellite‐based results (Jeong et
al., 2011; Richardson et al., 2006; Vitasse et al., 2009), although 
interdecadal variations in SG advances (Delbart et al., 2008; Jeong et al., 
2011) are potentially ignored in the general trend in our analysis over 1982–
2005. Although the SG of evergreen needleleaf forests strongly relies on the 
Tm and Pc, the advances are much smaller than deciduous broadleaf and 
mixed forests. For the temperate and boreal woody species, it is widely 
recognized that besides accumulated temperature, chilling requirements and
photoperiod are essential for bud development and that these requirements 
differ among species (Polgar & Primack, 2011). Among forest biomes, the Tm 
and Pc sensitivities of SG shifts are low in deciduous needleleaf forests; thus, 
there is only a small SG advance over 1982–2005.

Our cropland SG estimates (from GIMMS) indicate an advance of 1.15 days 
per decade over 1982–2005 in response to preseason warming (−2.03 days 
per °C). The SG advancing trend in croplands is similar to the recorded 
trends in agricultural and horticultural events over 1951–2004 in Germany 
(Estrella et al., 2007) and wheat heading trends over 1948–2004 in the U.S. 
Great Plains (Hu et al., 2005), although the SG sensitivity is less than the 
recorded rate of −3.7 days per °C to spring temperature (Estrella et al., 
2007). Adjusted sowing dates were reported to accommodate the warming 
climate. For example, potato sowing dates advanced by about 5 days over 
1965–1999 in Finland (Hildén et al., 2005); sowing dates advanced up to 1 
month over the past 30 years ago for maize and winter wheat in France 
(Menzel, von Vopelius, et al., 2006); in the US, corn planting dates advanced 
about 10 days from 1981 to 2005, and soybean planting dates advanced 
about 12 days (Sacks & Kucharik, 2011). Our results indicate that the SG of 



crops strongly correlates with Pc (−0.15 days %−1), which may be applicable 
to nonirrigated crops. Although many studies have revealed the influence of 
water availability on crop growth and yield, the precipitation dependency of 
crop SG is rarely discussed, possibly due to the fact that water supply of 
croplands is often affected by irrigation (Li et al., 2004; Zhang & Oweis, 
1999) and crop management practice. Under water‐limited conditions, crops 
with enhanced drought stress tolerance can replace less stress‐tolerant 
species (Farooq et al., 2009; Valliyodan & Nguyen, 2006).

Biomes in the north (open shrublands, woody savannas, and northern 
grasslands) show relatively low SG sensitivities to Tm and Pc. In IGBP 
vegetation classifications, large areas of open shrublands are located in the 
northern high latitude. According to IGBP classification, open shrubland in 
the northern part of North America and Russia tundra zones are 
overestimated and can be better classified as grasslands (Friedl et al., 2010).
These northern ecosystems more closely follow the preseason climate 
sensitivities of northern grasslands. The International Tundra Experiment 
control data showed low SG advance in tundra in response to background 
temperature (Oberbauer et al., 2013). The low sensitivities of SG to Tm and Pc

are probably due to the timing of snowmelt, which also affects high Arctic 
spring phenology (Hoye et al., 2007). The effects of altered snowmelt 
patterns can even reverse the effects of warmer temperature on 
phenological processes (Bjorkman et al., 2015). A warmer winter may also 
result in chilling requirements not being met, and thus affect spring 
phenology (Yu et al., 2010), which could counter the spring warming‐caused 
SG advance.

Over 1982–2005, GIMMS‐derived southern grassland SG advanced at 0.87 
days per decade in response to Tm at the rate of −2.20 days per °C and Pc at 
the rate of −0.13 days %−1. These advancement rates are comparable to the 
observed SG advance of 0.95 days per decade in China (Ma & Zhou, 2012) 
but much smaller than the recorded bloom advance of grassland species in 
the Rocky Mountains (−6.1 days per decade) (Lesica & Kittelson, 2010). In 
arid and semiarid systems, influences of water availability on vegetation 
growth obtained much concern due to water‐limited conditions. Water stress 
effects are related to both drought intensity and length (Vicente‐Serrano et 
al., 2013) and precipitation patterns of frequency and seasonal distribution 
(Miranda et al., 2011). Multiple studies indicate that SG in arid and semiarid 
regions is driven by both temperature and water (Moore et al., 2015; Shen et
al., 2011), although temperature may still be the predominant driver 
(Seghieri et al., 2012).

The five ESMs each predicted varied SG advance rates and Tm sensitivities. 
The ESM‐predicted Tm sensitivities across biomes are usually overestimated 
relative to GIMMS. INM‐CM4 and IPSL‐CM5A best represented GIMMS‐derived 
Pc sensitivities of SG across biomes. We find that the correlation between the
CCSM4 modeled Tm sensitivities for five forest biomes is highly correlated to 
that by GIMMS (r = 0.95, p < 0.01). The correlation between the CCSM4 



modeled Pc sensitivities of its SG and that by GIMMS increased from 0.39 for 
all biomes to 0.89 for nonforest biomes. Furthermore, improved LAI 
prediction by ESMs with more PFTs has been reported (Murray‐Tortarolo et 
al., 2013), which may improve predictions of LAI phenology.

4.3 Uncertainties in ESM Evaluation

In this study, we used preseason temperature and precipitation as SG 
precursors. The effects of other cues, such as accumulative chilling, snow 
cover, and photoperiod, may also play important roles in regulating the SG 
but are not typically included in ESMs. Monthly average daily maximum 
temperatures were found to be more important than minimum and mean 
temperatures in controlling interannual SG variation in Europe and the 
United States (Piao et al., 2015). In contrast, the minimum daily preseason 
temperature plays a more important role in determining SG than minimum 
daily preseason temperature over Tibetan Plateau (Shen et al., 2016). 
Observational studies that specifically analyze plant phenological controls 
amenable to ESM land model integration are required across regions, 
biomes, and topographies.

We used the GIMMS NDVI3g‐inferred SG to evaluate the simulated LAI 
inferred SG. GIMMS NDVI3g is widely used for its long time span that has the 
longest overlapping period with ESMs historical simulations (1982–2005). 
However, in this period, GIMMS NDVI3g has been criticized for potential 
quality issues. GIMMS NDVI‐inferred SG is different from SPOT NDVI and 
MODIS EVI inferred SG in Tibetan Plateau (Shen, Zhang, et al., 2014) and 
Arctic (Zeng, Jia, & Forbes, 2013) after 2001, which was attributed to quality 
issue in GIMMS NDVI, especially in most parts of the western Tibetan Plateau 
(Zhang et al., 2013). To better assess vegetation dynamics, multiple data 
sets were suggested for inter‐validation (Brown et al., 2006; Shen, Zhang, et 
al., 2014). For our analysis of SG sensitivities to climate variables, we 
skipped the pixels in which climate‐SG correlations are insignificant (p ≥ 
0.1), which can potentially screen out the NDVI‐derived SG that are not 
driven by temperature and precipitation forcing.

5 Concluding Remarks

We analyzed the spring phenology and its responses to climate change in 
north temperate and boreal regions (>30°N) with GIMMS NDVI and ESMs 
modeled LAI over 1982–2005. We first analyzed the preseason dynamics, 
defined as the period preceding spring greenup during which the mean 
temperature (Tm) and cumulative precipitation (Pt) regulate the timing of SG. 
Tm warmed ~0.75 °C decade−1 over 1982–2005, a value higher than warming
that occurred over spring and annually. The wetting preseason occurred in 
relatively humid areas and drying preseason in relatively dry areas. We next 
analyzed the phenological responses: GIMMS NDVI‐derived SG shows 
advances of about 1 day per decade in the northern midlatitudes with 
significant spatial heterogeneity. The spatial heterogeneity of SG results 



from heterogeneous climate change during the preseason and various 
responses to preseason climate across regions and vegetation biomes.

Although the extent of the regions with preseason precipitation dependency 
is smaller than that for temperature, the biomes that are more sensitive to 
temperature are also more sensitive to precipitation, suggesting an 
interactive control of temperature and precipitation. The GIMMS‐based SG in 
response to preseason climate across biomes is subject to the shortcoming 
that the effects of cues, such as accumulative chilling, snow cover, and 
photoperiod, are ignored in our analysis. Most ESMs, especially the ESM 
multimodel mean, were able to represent observationally inferred latitudinal 
preseason climate and SG trends. However, the spatial pattern, and periods 
and climate of preseason across biomes were not well represented. In 
particular, wet biases in Pc are present in all five of the ESMs that we 
analyzed. This wet bias may have affected LAI predictions, thus further 
biasing predicted SG. The discrepancies between modeled and observed 
climate controls on SG reveal the uncertainties in predicting terrestrial 
phenology and carbon cycles, including those associated with climate forcing
and land‐atmosphere interactions.

Phenology is a critical driver of coupled land‐atmosphere exchanges and C 
cycling and is expected to change in response to changing climate. Although 
the ESM multimodel mean roughly matches observationally derived trends in
SG and preseason climate, no individual ESM accurately predicted these 
trends or controls. Reducing these biases should start from reducing biases 
in climate prediction. Further, understanding of the physics that govern the 
phenological processes and how these processes can be represented in 
regional‐to‐global‐scale Earth system modeling should be further 
investigated.

Data

The CMIP5 data were downloaded through https://esgf‐node.llnl.gov/projects/
esgf‐llnl/. MODIS IGBP land cover type classification is obtained from 
http://glcf.umd.edu/data/lc/. GIMMS NDVI3g is available from 
https://nex.nasa.gov/nex/projects/1349/. The introduction to CRU‐NCEP V6 is 
available from 
http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings.
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