UC Santa Barbara
NCGIA Technical Reports

Title
GIS Laboratory Exercises: Volume 2 Technical Issues (91-14)

Permalink
https://escholarship.org/uc/item/8295s38X

Author
Veregin, Howard (editor)

Publication Date
1991-05-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/82g5s38x
https://escholarship.org
http://www.cdlib.org/

NCGIA

National Center for
Geographic Information and Analysis

GISLaboratory Exercises:

Volume 2, Technical |ssues

Edited by

Howard Veregin
University of California, Santa Barbara

Technica Report 91-14

May 1991
Simonett Center for Spatial Analysis State University of New York
University of California 301 Wilkeson Quad, Box 610023
35 10 Phelps Hall Buffalo NY 14261-0001
Santa Barbara, CA 93106-4060 Office (716) 645-2545
Office (805) 893-8224 Fax (716) 645-5957
Fax (805) 893-8617 ncgia@ubvms.cc.buffalo.edu

ncgia@ncgia.ucsb.edu

University of Maine

348 Boardman Hall
Orono ME 04469-5711
Office (207) 581-2149
Fax (207) 581-2206
ncgia@spatial .maine.edu

Preface

This set of labsis designed to illustrate and reinforce principles presented in Volume I1: Technical Issuesin GIS of
the NCGIA Core Curriculumin GIS (units 26 to 50). Since several of these labs were originally prepared in early 1989 for the
test version of the Curriculum, they have been presented to students a number of times and have undergone extensive
revision. We have also added some new labsto the original set.

While these |labs are written for a specific software and hardware configuration, they are presented as models for
generic lab development. Please modify them to suit your own configurations and curriculum. To assist with this task, we
have included digital versions of the text. See Appendix A for more information.

Several people have contributed to the development of these labs. They were originally written by Michael
Goodchild, Karen Kemp and Howard Veregin. We would like to thank the students and faculty at the University of
Cadlifornia, Santa Barbara and other universities who participated in the evaluation of the Core Curriculum and provided
valuable revision suggestions. The National Science Foundation is also thanked for its contribution through the establishment
of the National Center for Geographic Information and Analysis.

Karen K Kemp
Santa Barbara, May 1991

Assignment 1
Coordinate Systems

Objectives: In thisassignment you will be using some simple QuickBASIC programs to convert between different
coordinate systems, make distance calculations, and draw maps on the screen.

Files: Thisassignment reguires four QuickBASIC programs (LL.BAS, GCDIST.BAS, EUCLID.BAS and
MAP.BAS) and afile containing coordinate data for Africa (AFRICA.DAT).

Coordinate System Conversions. Run the QuickBASIC program called LL.BAS to compute the latitude and
longitude for each of the pointslisted in Table 1. Points A through F were derived from 1:25,000 US Geological Survey
topographic maps of Maine. Points G and H were derived from a 1:100,000 topographic map of the area near Sydney,
Australia. Write your answers (in degrees, minutes and seconds) in the appropriate columns of the Table. Be sureto
designate latitudes with an N or an S, and longitudes with an E or aW.

1 a) Do the latitudes and longitudes you computed for the points seem to
be correct? (You will need to refer to a map to answer this.) b) Can you
account for any discrepancies you observe?

2. Compare your answers for points D and F. Can you account for the
differencein UTM Eastings for these two points?

Table 1.
UT™M UT™M UTM
Point Zone Easting Northing Latitude Longitude
A 19 416800 4627250
B 19 413390 4622340
C 19 254470 4672580
D 19 252025 4667800
E 18 737650 4667450
F 18 747975 4667800
G 56 330650 6241950
H 56 315300 6236050

Distance Calculations: Run the program GCDIST.BAS, which calculates the distance between points on the earth’'s
surface using the great circle distance formula. The program assumes a value of 6371 km for the radius of the earth. Use the
latitude and longitude values you entered into Table 1 to calculate the great circle distance between each pair of pointsin
Table 2.

Table 2.

Differenceasa
Pair of Gresat circle Euclidean percentage of
points distance (km) distance (km) Difference (km) Euclidean distance

A-B
C-D
G-H
D-F
C-E

Now examine the program and answer the following questions.
3. What computation is performed by lines 1700, 1900, 2200 and 2400?

4. a) Are all of the parentheses on line 2600 necessary? b) Write out the
line using the minimum number of parentheses needed to preserve the
meaning of the equation. c) Why would you want to use parentheses
when you don't really need them?

5. If you were to increase the estimate of the earth’'s radius by 1 percent,
how would the great circle distance estimates be affected?

6. a) What happensif you enter latitude and longitude values incorrectly
(e.q., enter charactersinstead of numbers, omit the commas, include too
many commeas, etc.)? b) What happensif you enter invalid latitude or
longitude values (e.g., latitudes greater than 90 or longitudes grester
than 180)?

Load the program called EUCLID.BAS, which calculates distances between pairs of points based on the Euclidean
distance formula. Before you run this program, you will have to make several changes, as follows:

a) Insert an message between the quotation marks on line 1900.

b) Add the appropriate line number to the GOTO statement in line 2100.
C) Find and correct the error in line 2300.

d) Add aline (number 2400) to convert the computed distance to

kilometers. (UTM Northings and Eastings are given in meters, but
your answer should be expressed in kilometers.)

Save the program once you have made these changes. Run the program to cal culate the Euclidean distance between
each pair of pointslisted in Table 2. Compute (by hand) the difference between the great circle and Euclidean distances, and
the difference as a percentage of the Euclidean distance. Enter your answersin the appropriate column in Table 2.

7. Based on your knowledge of the UTM projection, how might you
account for the differencesin the values in the last column of Table 2?

Make a printout of EUCLID.BAS and hand it in along with the assignment.

Coordinate System Conversions. Now that you have some experience with QuickBASIC programming, open
LL.BAS again. Examine the program to answer the following questions.

8. a) What are the # symbols for in line 1700 and others following it?
b) Why are they used?
9. a) What arethe ! symbolsfor in line 5300 and others following it?
b) Why are they used?
10. Lines 5000 to 5200 contain aloop that assigns a value to the elements of

an array called cmer. These elements are specified as cmer(zone), where
zone varies between 1 and 60. Using the equation given on line 5100,
calculate the value for cmer(22) and cmer(50).

cmer(22) =
cmer(50) =

11. After line 13100 you can observe occurrences of INT(LATITUDE),
INT(MIN) and INT(SEC). What doesthe INT function do and why isit
used here?

Graphics Programming: Thefina step in the assignment isto modify a QuickBASIC program (called MAP.BAS)
that displays a map of Africaon the screen using the Mercator projection. Run this program. The coastline of Africa should
appear in white. The dashed white horizontal lines are lines of latitude (parallels) ranging from 30 degrees N to 30 degrees S.
The central dashed line isthe equator.

12. a) Based on the output of the program, would you say that lines of
latitude are evenly spaced on Mercator’s projection? b. If they are not
evenly spaced, then do they get closer or father apart as you move away
from the equator?

Now examine MAP.BAS more closely. Y ou need to modify this program so that it displays a second map on top of
the Mercator map. This second map will be based on the Lambert cylindrical equal-area projection. Note that the procedure
for displaying the Mercator map is broken into three stepsin MAP.BAS. Step 1 (lines 3000 to 4000) involves converting the
longitude and latitude values for Africa (read in from the file AFRICA.DAT) into x- and y-coordinates. Step 2 (lines 5000 to
5400) draws the Mercator map by connecting adjacent x-y coordinate pairs with straight lines. Step 3 (lines 6000 to 6700)
draws the lines of latitude for Mercator’s projection.

Modifying the program to display two mapsis actually a very simpletask. Basically, steps 1 through 3 must be
reproduced between lines 6700 and 20000, making a few changesin order to display the Lambert map in a different color.
There are only three important changes you need to make:

a) The equation for computing the y-coordinate for Mercator’s
projectionis

y = LOG(TAN (p/4+j/2))
where j isthe latitude (in radians). Y ou can see this equationin

action on lines 3900 and 6500 of the program. For the Lambert
projection, the equation is

y = SIN(j)

b) The white color of the Mercator map is defined by the number 15 in
lines 5300 and 6600. To get adifferent color, use adifferent number.

Any value between 0 and 15 is acceptable. Experiment or consult
the QuickBASI C programming manual .

C) The value 8738 in line 6600 draws the lines of latitude as dashed
lines on the Mercator map. Y ou can also use this value for the
Lambert map but, since the equator is at the same location on both
maps, one of the equators will be completely hidden behind the
other. Experiment with other values here or consult the
QuickBASIC programming manual.

Once you have made the necessary changesto MAP.BAS, save the program as atext file. Y ou may want to change
the name of thefile (e.g., MAP1.BAS) to preserve the original program. Run the program after saving it. Make a printout of
your program and hand it in along with assignment.

13. Based on the output of your program, what can you say about the
relative stretching or flattening of shapes on the two projections as you
move away from the equator?

Optional: Modify the MAP.BAS program to display Tissot's Indicatrix for the parallels 0, 10, 20 and 30 degrees S.
Display the Indicatrix ellipses on the right side of the map. Superimpose the ellipses for the Lambert projection over those for
the Mercator projection. Use the same colors for the ellipses that you used for the maps themselves.

For the Lambert projection, the equations for the major and minor axes of the Indicatrix (k and h, respectively) are

SEC(j) = 1/COS(j)

k
h = COS(j)

wherej isthe latitude (in radians). For the Mercator projection, k and h are
equivalent:

k=h=SEC(j)=1/COS(j)

Y ou will need to use the CIRCLE function to draw the ellipses. The aspect ratio for the function should be defined
as h/k and the "radius’ of the ellipse should be defined as k/15 (the value of 15 is used as a simple scaling factor).

What does the Indicatrix tell you about relative amounts of angular deformation and areal exaggeration for the two
projections?

Hand in a printout of your program.

100

200
300

400
500
600

700
800

1500

1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

2550
2600
2700
2800
2850

2900
3000

3050

3100
3200

3300

3400

'GCDIST.BAS

'This program determines the great circle distance between two points.
‘It assumes a spherical earth with a radius of 6371 kilometers.

radius = 6371 'radius of earth (km)

pi = 3.14159 'pi, the famous constant
degrad = (2 * pi) / 360 'to convert degrees to radians
CLS

DO

'Get latitude and longitude of points and convert to decimal degrees.

INPUT "Enter the latitude of the first point: ", deg, min, sec

latl = (deg + (min / 60) + (sec / 3600)) * degrad

INPUT "Enter the longitude of the first point: ", deg, min, sec
lon1 = (deg + (min / 60) + (sec / 3600)) * degrad

PRINT

INPUT "Enter the latitude of the second point: ", deg, min, sec
lat2 = (deg + (min / 60) + (sec / 3600)) * degrad

INPUT "Enter the longitude of the second point: ", deg, min, sec
lon2 = (deg + (min / 60) + (sec / 3600)) * degrad

PRINT

'Compute distance between the two points.

x = (SIN(latl) * SIN(lat2)) + (COS(lat1) * COS(lat2) * COS(lon1 - lon2))
acosx = ATN(SQR(1 - (x * 2)) / x)

dist = radius * acosx

'Print distance.

PRINT "The great circle distance is"; dist; "km."
PRINT

'Get another pair of points?

PRINT "Calculate another distance? [y/n]"
IF INPUT%(1) = "n" THEN EXIT DO

LOOP

END

100

200
300

400

500

600

700
800
900
1000
1100

1150

1200
1300

1350

1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300

'LL.BAS

'This program converts UTM coordinates to latitude/longitude.
'The program handles only north latitude and west longitude.

‘Dimension arrays.
DIM cmer(61), eprm(2), orgn(2), sphin(5), grco(2), spco(2)
'Enter the UTM zone number for a point.

CLS
INPUT "Enter UTM zone (or a 0 to quit): ", utmzone
IF utmzone = 0 THEN
STOP
END IF

'Enter coordinates of the point.

INPUT "Enter UTM easting: ", utmx
INPUT "Enter UTM northing: ", utmy

'Some constants...

raddeg = 57.29578

k01 =0.75

k02 = 0.703125

k03 = 0.68359375#

k04 = 0.67291259765625#
k05 = 0.6661631419939577#
k06 = 0.9375

k07 = 1.025390625#

k08 = 1.07666015625#

k09 = 1.110271903323263 #
k10 = 0.234375

k11 = 0.41015625%#

k12 = 0.538330078125#

k13 = 0.63446044921875#
k14 = 0.068359375#

k15 = 0.15380859375#

k16 = 0.2379226684570312#
k17 = 0.01922607421875#
k18 = 0.0528717041015625#
k19 = 5.28717041015625D-03

4000 'Compute central meridians of UTM zones.

5000 FOR zone =1 TO 60
5100 cmer(zone) = (zone * 6 - 180 - 3) / raddeg
5200 NEXT zone

5250 'Constants for converting coordinates from meters.

5300 eprm(1) = 6378206!
5400 eprm(2) = 6356584!
5500 orgn(1) = 0!

5600 orgn(2) = 500000!
5700 scal = 0.9996

5800 grco(2) = utmx
5900 grco(1) = utmy
6000 utmz% = utmzone

6100 'Calculate ellipsoid parameters.

6200 asem = eprm(1)

6300 bsem = eprm(2)

6400 asq = asem * asem

6500 bsq = bsem * bsem

6600 auxl =asq-bsq

6700 eccsq=auxl / asq

6800 eps=auxl / bsq

6900 cprm =bsq/ asem

7000 eccp4 = eccsq * eccsq

7100 eccpb = eccp4 * eccsq

7200 eccp8 = eccpb * eccsq

7300 eccpl0 = eccp8 * eccsq

7400 a=1!+KkO01 * eccsq + k02 * eccp4 + k03 * eccp6 + k04 * eccp8 + k05 * eccpl0
7500 b =k01 * eccsq + k06 * eccp4 + k07 * eccp6 + k08 * eccp8 + k09 * eccp10
7600 ¢ =k10* eccp4 + k11 * eccpb + k12 * eccp8 + k13 * eccp10

7700 d =kl14 * eccpb + k15 * eccp8 + k16 * eccpl0

7800 e =k17 * eccp8 + k18 * eccp10

7900 f=Kk19 *eccpll

8000 gradml = 1! / (cprm * a)

8100 'Return to original plane coordinates.
8200 ncoo = (grco(1) - orgn(1)) / scal

8300 ecoo = (grco(2) - orgn(2)) / scal
8400 ecoosq = ecoo * ecoo

8500

8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900
10000
10100
10200
10300

10400

10500
10600

10700

10800
10900
11000
11100
11200
11300

11400

11500
11600
11800
11900
12000
12100
12200

'Iterate for phipr (latitude of point on central meridian).

phipr = gradm1 * ncoo
cphipr = COS(phipr)
sphipr = SIN(phipr)
auxl = sphipr
twocos = 2! * cphipr
aux2 = twocos * aux1
sphin(1) = aux2
even =1
FORi=3TO 10
aux3 = twocos * aux2 - auxl
auxl = aux2
aux2 = aux3
even =1 - even
IF even = 1 THEN
sphin(i / 2) = aux3
END IF
NEXT i

'Calculate meridian arc length.

temp = a * phipr - b * sphin(1) / 2! + ¢ * sphin(2) / 4! - d * sphin(3) / 6!
mrdarc = cprm * (temp + e * sphin(4) / 8! - f * sphin(5) / 10!)

'If difference is less than 0.1 mm, stop iterating.

auxl = ncoo - mrdarc

IF ABS(aux1) < 0.0001 THEN
GOTO 11500

ENDIF

phipr = phipr + aux1 * gradm1

GOTO 8800

'Calculate phipr- and eprm-dependent values.

tpr = sphipr / cphipr

tprsq = tpr * tpr

etapsq = eps * cphipr * cphipr

npr = asem / SQR(1! - eccsq * sphipr * sphipr)
nprsq = npr * npr

edvn = ecoo / npr

edvnsq = ecoosq / nprsq

12300

12400
12500
12600
12700
12800

12850

12900
13000
13100
13200
13300
13400
13500
13600
13700
13800
13900
14000

14200

14300

15000

'Calculate spheroidal coordinates.

temp = 5! + 3! * tprsq + 6! * etapsq * (1! - tprsq)

temp = temp + edvnsq / 30! * (61! + 90! * tprsq * (1! + .5 * tprsq))

spco(1) = phipr + tpr * edvnsq * .5 * (-1! - etapsq + edvnsq / 12! * temp)
temp =-1-2*tprsq - etapsq + (edvnsq / 20 * (5 + tprsq * (28 + 24 * tprsq)))
spco(2) = cmer(utmz%) + edvn / cphipr * (1! + edvnsq / 6! * temp)

'Calculate latitude and longitude of point.

latitude = ABS(spco(1) * raddeg)

longitude = ABS(spco(2) * raddeg)

deg = INT(latitude)

min = 60 * (latitude - deg)

sec = 60 * (min - INT(min))

PRINT

PRINT "Latitude = "; deg; "deg. "; INT(min); "min. "; INT(sec); "sec."
deg = INT(longitude)

min = 60 * (longitude - deg)

sec = 60 * (min - INT(min))

PRINT "Longitude = "; deg; "deg. "; INT(min); "min. "; INT(sec); "sec."
PRINT

'Return to beginning of program.
GOTO 800

END

100

200

300

1000
1100
1200
1300

1500

2000

2200
2400
2500
2600

3000
3100

3500
3600
3700
3800
3900
4000

5000

5200
5300
5400

6000

6300
6400
6500
6600
6700

'MAP.BAS
'This program draws a map of Africa using Mercator’s projection.
'Hard-wire the screen display parameters and dimension arrays.

CLS

SCREEN 12

WINDOW (-1, -1)-(1.6667, 1)

DIM dlong(110), dlat(110), x(110), y(110)

pi = 3.14159 'pi, the famous constant
'Read the 110 longitude and latitude values for Africa.

OPEN "AFRICA.DAT" FOR INPUT AS #1
FORi=1TO 110

INPUT #1, dlong(i), dlat(i)
NEXT

'Mercator’s projection (Step 1). Convert longitude and latitude from
'degrees to radians. Calculate x- and y-coordinates for the projection.

FORi=1TO 110
rlong = dlong(i) * 2 * pi / 360
rlat = dlat(i) * 2 * pi / 360
x(i) = rlong
y(i) = LOG(TAN(pi / 4 +rlat / 2))
NEXT

‘Mercator’s projection (Step 2). Draw the map in white (color = 15).

FORi=1TO 109
LINE (x(i), y@))-(xG + 1), yi + 1)), 15
NEXT

‘Mercator’s projection (Step 3). Draw lines of latitude as dashed lines.

FOR dparallel =-30 TO 30 STEP 10
rparallel = dparallel * 2 * pi / 360
parallel = LOG(TAN(pi / 4 + rparallel / 2))
LINE (-1, parallel)-(1.6667, parallel), 15, , 8738
NEXT

20000 END

Assignment 1
Answer Key

a) Yes, except for the Australian ones. b) The program cannot handle
south latitudes or east longitudes.

The latitude and longitude of the two points are approximately the
same. D and F are the same point. They have different UTM
coordinates because they are in two adjacent UTM zones.

Table 1.
UTM UTM UT™M
Point Zone Easting Northing Latitude Longitude
A 19 416800 4627250 41°47'40"N 70°0'4"W
B 19 413390 4622340 41°45'0"N 70°2'30"W
C 19 254470 4672580 42°10'7"N 71°58'20"W
D 19 252025 4667800 42°7'30"N 71°59'59"W
E 18 737650 4667450 41°7'30"N 72°7'30"W
F 18 747975 4667800 42°7'30"N 72°0'0"W
G 56 330650 6241950 56°17'38"S 150°15'48"E
H 56 315300 6236050 56°14'7"S 150°1'12"E
Table 2.
Difference as a
Pair of Great circle Euclidean percentage of

points distance (km) distance (km) Difference (km) Euclidean distance

A-B 5.820 5.978 -0.158 -2.645
C-D 5.388 5.369 0.019 0.356
G-H 16.313 16.445 -0.131 -0.799
D-F 0 -- different UTM zone --
C-E 13.560 — different UTM zone -

10.

11.

12.

13.

Conversion of degrees, minutes and seconds to decimal degrees.

a) No.
b) x = SIN(lat1) * SIN(lat2) + COS(latl) * COS(lat2) * COS(lon1 - lon2)
¢) To make the program easier to read.

They would also increase by 1 percent. (See line 2800).

a) The program responds with "redo from start” and then prompts for
new values. b) The program computes and prints a value for distance,
even though the value is invalid.

The degree and sign of the error varies over each UTM zone. The lowest
error occurs along the standard lines parallel to the central meridian,
and increases towards the central meridian and the edges of the zone.

a) They designate double precision variables. b) They are used when
high precision is required.

a) They designate single precision variables. b) They are used to save
memory or increase the speed of computation.

cmer(22) = -0.890
cmer(50) 2.042

The function returns the largest integer less than or equal to the
argument. It is used here to convert decimal degrees to degrees, minutes
and seconds.

a) Lines of latitude are not evenly spaced on Mercator's projection.
b) They get father apart as you move away from the equator.

The Mercator projection appears to stretch shapes more, while the
Lambert projection seems to squash them. (This is only true in a
relative sense, since the Mercator projection is actually conformal.)

Optional: Tissot's Indicatrix shows that angular deformation for the Lambert

projection increases as you move away from the equator. However, as
the ellipses always have the same area, there is no areal exaggeration
(equal-area). For the Mercator projection the ellipses are always circular,
indicating that there is no angular deformation (conformal). However,
areal exaggeration is apparent since the ellipses get larger as you move
away from the equator.

Assignment 1
Program Listing (Answer Key)

100 'EUCLID1.BAS

200 'This program determines the Euclidean distance between

300 ‘'two points based on their UTM x- and y-coordinates.

400 'It assumes that the points are in the same UTM zone.

500 'Lines 1900, 2100 and 2300 have been modified. Line 2400 has been added.

550 CLS

600 DO

800 'Get data for a pair of points.

1000 INPUT "Enter UTM zone of first point: ", zonel
1100 INPUT "Enter UTM easting of first point: ", x1
1200 INPUT "Enter UTM northing of first point: ", y1
1300 PRINT

1400 INPUT "Enter UTM zone of second point: ", zone2
1500 INPUT "Enter UTM easting of second point: ", x2
1600 INPUT "Enter UTM northing of second point: ", y2
1700 PRINT

1750 'If points are in different zones, don’t compute distance.
1800 IF zonel <> zone2 THEN

1900 PRINT "Those points are in different zones.”
2000 PRINT

2100 GOTO 2700

2200 ENDIF

2250 '‘Compute and print distance.

2300 dist = SQR(((x1 - x2) * 2) + ((y1 - y2) ~ 2))

2400 dist = dist / 1000

2500 PRINT "The Euclidean distance is"; dist; "km."
2600 PRINT

2650 'Get data for another pair of points?

2700 PRINT "Calculate another distance? [y/n]"

2800 IF INPUT$(1) = "n" THEN EXIT DO

2900 LOOP

3000 END

100

200
210
220

300

1000
1100
1200
1300

1500

2000

2200
2400
2500
2600

3000
3100

3500
3600
3700
3800
3900
4000

5000

5200
5300
5400

6000

6300
6400
6500
6600
6700

'MAP1.BAS

'This program draws a map of Africa using Mercator’s projection.
'Over this it superimposes a second map using Lambert’s
‘cylindrical equal-area projection.

'Hard-wire the screen display parameters and dimension arrays.

CLS

SCREEN 12

WINDOW (-1, -1)-(1.6667, 1)

DIM dlong(110), dlat(110), x(110), y(110)

pi = 3.14159 'pi, the famous constant
'Read the 110 longitude and latitude values for Africa.

OPEN "AFRICA.DAT" FOR INPUT AS #1
FORi=1TO 110

INPUT #1, dlong(i), dlat(i)
NEXT

'Mercator’s projection (Step 1). Convert longitude and latitude from
'degrees to radians. Calculate x- and y-coordinates for the projection.

FORi=1TO 110
rlong = dlong(i) *2 * pi / 360
rlat = dlat(i) * 2 * pi / 360
x(i) = rlong
y(i) = LOG(TAN(pi / 4 + rlat / 2))
NEXT

'Mercator's projection (Step 2). Draw the map in white (color = 15).

FORi=1TO 109
LINE (x(i), y@)-(xGi + 1), y(i + 1)), 15
NEXT

'"Mercator’s projection (Step 3). Draw lines of latitude as dashed lines.

FOR dparallel = -30 TO 30 STEP 10
rparallel = dparallel * 2 * pi / 360
parallel = LOG(TAN(pi / 4 + rparallel / 2))
LINE (-1, parallel)-(1.6667, parallel), 15, , 8738
NEXT

7000 'Lambert’s projection (Step 1). Convert longitude and latitude from
7100 'degrees to radians. Calculate x- and y-coordinates for the projection.

7500 FORi=1TO110

7600 rlong = dlong(i) * 2 * pi / 360
7700 rlat = dlat(i) * 2 * pi / 360
7800 x(i) = rlong

7900 y(i) = SIN(rlat)

8000 NEXT

9000 'Lambert’s projection (Step 2).
9100 'Draw the map in red (color = 12) or some other color.

9200 FORi=1TO 109
9300 LINE (x(i), yi)-(xG + 1), y(i + 1)), 12
9400 NEXT

10000 'Lambert’s projection (Step 3). Draw lines of latitude as dashed lines.
10100 'Change the value at the end of the LINE statement to get a different
10200 'dashed line than that used for the Mercator projection.

10300 FOR dparallel = -30 TO 30 STEP 10

10400 rparallel = dparallel * 2 * pi / 360

10500 parallel = SIN(rparallel)

10600 LINE (-1, parallel)-(1.6667, parallel), 12, , 21845
10700 NEXT

20000 END

100

200
210
220
230
240

300

1000
1100
1200
1300

1500

2000

2200
2400
2500
2600

3000
3100

3500
3600
3700
3800
3900
4000

5000
5200

5300
5400

'MAP2.BAS

'This program draws a map of Africa using Mercator’s projection.
'‘Over this it superimposes a second map using Lambert’s
‘cylindrical equal-area projection.

‘Next it draws the ellipses for Tissot's Indicatrix for the two
'projections (in appropriate colors) for latitudes 0, 10, 20 and 30 S.

'Hard-wire the screen display parameters and dimension arrays.

CLS

SCREEN 12

WINDOW (-1, -1)-(1.6667, 1)

DIM dlong(110), dlat(110), x(110), y(110)

pi = 3.14159 'pi, the famous constant
'Read the 110 longitude and latitude values for Africa.

OPEN "AFRICA.DAT" FOR INPUT AS #1
FORi=1TO 110

INPUT #1, dlong(i), dlat(i)
NEXT

'‘Mercator’s projection (Step 1). Convert longitude and latitude from
'degrees to radians. Calculate x- and y-coordinates for the projection.

FORi=1TO 110

rlong = dlong(i) *2 * pi / 360

rlat = dlat(i) * 2 * pi / 360

x(i) = rlong

y(@i) = LOG(TAN(pi / 4 + rlat / 2))
NEXT

'‘Mercator’s projection (Step 2). Draw the map in white (color = 15).
FORi=1TO 109

LINE (x(3), y)-(x(i + 1), y(i + 1)), 15
NEXT

6000

6300
6400
6500
6600
6700

6705
6710
6715
6720
6725
6730

6750
6760
6770
6780
6790
6800
6810
6820

7000
7100

7500
7600
7700
7800
7900
8000

9000
9100

9200
9300
9400

'"Mercator’s projection (Step 3). Draw lines of latitude as dashed lines.

FOR dparallel = -30 TO 30 STEP 10
rparallel = dparallel * 2 * pi / 360
parallel = LOG(TAN(pi / 4 + rparallel / 2))
LINE (-1, parallel)-(1.6667, parallel), 15, , 8738
NEXT

'"Mercator’s projection (Step 4). Calculate Indicatrix axes

'for the required parallels and then plot the ellipses.

'Note that radius of circle must be scaled (in this case,

‘divided by 15) to fit on the screen. Note that we use k (not h)
'as the so-called radius of the ellipse since the CIRCLE function
'will use this as the x-radius if aspect is less 1.

FOR dparallel = -30 TO 0 STEP 10
rparallel = dparallel * 2 * pi / 360

parallel = LOG(TAN(pi / 4 + rparallel / 2))
h =1 / COS(rparallel)
k=h
aspect=h / k
CIRCLE (1.3333, parallel), (k / 15), 15, , , aspect
NEXT
‘Lambert’s projection (Step 1). Convert longitude and latitude from

'degrees to radians. Calculate x- and y-coordinates for the projection.

FORi=1TO 110
rlong = dlong(i) * 2 * pi / 360
rlat = dlat(i) *2 * pi / 360
x(i) = rlong
y(@i) = SIN(rlat)
NEXT

‘Lambert’s projection (Step 2).
'Draw the map in red (color = 12) or some other color.

FORi=1TO 109
LINE (x(i), y@)-(x@ + 1), y(i + 1)), 12
NEXT

10000
10100
10200

10300
10400
10500
10600
10700

10705
10710

10750
10760
10770
10780
10790
10800
10810
10820

20000

'‘Lambert’s projection (Step 3). Draw lines of latitude as dashed lines.
'Change the value at the end of the LINE statement to get a different
'dashed line than that used for the Mercator projection.

FOR dparallel = -30 TO 30 STEP 10

rparallel = dparallel * 2 * pi / 360

parallel = SIN(rparallel)

LINE (-1, parallel)-(1.6667, parallel), 12, , 21845
NEXT

'‘Lambert’s projection (Step 4). Calculate Indicatrix axes
'for the required parallels and then plot the ellipses.

FOR dparallel = -30 TO 0 STEP 10

rparallel = dparallel * 2 * pi / 360

parallel = SIN(rparallel)

h = COS(rparallel)

k=1/h

aspect=h /k

CIRCLE (1.3333, parallel), (k / 15), 12,, , aspect
NEXT

END

Assignment 2
Vector Data Structures (1)

Objectives: This assignment focuses on the manipulation of vector data. Y ou will be using QuickBASIC to
compute polygon areas, perform point-in-polygon tests and locate line intersections.

Files: Thisassignment reguires four QuickBASIC programs (PIP.BAS, DARTS.BAS, INTER.BAS and
FRACTAL.BAS) and two data files containing the vector representation of polygons (POLY GON.DAT and
POLY GON2.DAT).

Point-in-Polygon Test: The program called PIP.BAS contains a point-in-polygon algorithm that determines
whether a specified point falls within a given polygon. Before you can run this program you will have to make the following
additions between lines 100 and 5000:

a) Use the CL S statement to clear the screen.
b) Open the polygon datafile for reading. The statement to useis:
OPEN "POLYGON.DAT" FOR INPUT AS #1

c) This data file defines a polygon as a set of x,y-coordinate pairs which,
when joined by straight-line segments, describe a closed geometric
figure. In order to read in the coordinates, you will first need to
know the number of coordinates in the file. Thisnumber isgivenin
thefirst line of thefile. Read in this number and assign it to a
variable called n. The statement to use is:

INPUT #1, n

d) Use aDIM statement to dimension two arrays (called x and y) to store
the x,y-coordinate pairs. The dimension of these arrays should be
n+1 to allow the program to close the polygon (see step f).

€) Read in the x,y-coordinates from the data file and assign them to the
arrayscaled x and y. Usethefollowing "for loop" so that the
subscript for these arrays (as defined by variable i) is automatically
increased (or "incremented") by avalue of 1 each time anew
coordinate pair isread in.

FORi =1ton
INPUT #1, x(i), y(i)
NEXT

f) Close the polygon by making the last coordinate pair the same as the
first, as follows:

x(n+1) = x(1)
y(n+1) = y(1)

0) Include aline containing a DO statement. This will begin a"do loop"
that will be used when prompting the user to enter the x,y-
coordinates of a point from the keyboard.

h) Read in the x,y-coordinates of a point from the keyboard. Thiswill be
the point for which the point-in-polygon test will be performed. Use
a statement something like the following:

INPUT "Enter x-coordinate: ", xpt

Thiswill read in the x-coordinate of the point and assignitto a
variable called xpt. Include asimilar line to read the y-coordinate and
assign it to avariable called ypt.

Lines 5000 through 7700 perform the point-in-polygon test and print the results out to the screen. After line 7700,
you will need to include afew more lines.

i) Include a mechanism for performing the point-in-polygon test on
another point, should the user want to do that. Usea PRINT
statement to print a message asking the user to enter an n (for "no")
if another test is not desired. Then include the line:

IF INPUT$(1) = "n" THEN EXIT DO

Thiswill cause the program to exit the do loop should the user enter
ann. If any other character is entered, the program will return to the
DO statement (see step g).

D The last two lines of the program should contain LOOP and END
statements, respectively. Thefirst of these two lines ends the do loop
and the second ends the program.

Now that you have made these modifications, save the program. Run it to determine whether each of the points
listed in Table 1 isinside or outside of the polygon. Once the program is running to your satisfaction, make a printout to hand
in along with the assignment.

Table 1.
Point x-coordinate y-coordinate Inside or outside?
A 25 100
B 101 299.7
C 631 246
D 387.5 224
E 97 401
F 544.1 77
G 321.3 314
H 111 49
I 251 327
J 118 176

Area Estimation: A common method of estimating the area of a polygon isto overlay a grid of dots with a known
average density and count the number of "hits’ (i.e., the number of dots falling within the polygon). The area of the polygon
is estimated as the number of hits divided by the average dot density. The area estimate improves as dot density increases.

The program called DARTS.BAS calculates the area of a polygon based on this approach. Open this program and
examineit. Notethat it readsin the same polygon data you used for the PIP.BAS program.

Lines 340 and 345 of the program are used to generate a point with random x,y-coordinates. The x-coordinate
ranges from O to 639, and the y-coordinate ranges from 0 to 462. These values reflect the approximate size of the screen,
measured in pixels. Lines 510 through 670 should look familiar. Thisis the same point-in-polygon algorithm used in
PIP.BAS. Theagorithmisused to determine whether the randomly-generated point isinside or outside the polygon. If itis
outside the polygon, the program draws the point as a grey dot (line 820). If it isinside the polygon, the program draws the
point asared dot (line 930). This processis repeated until the user presses a key to temporarily suspend program execution
(lines 2000 to the end of the program). After several thousand "trials' (onetrial is equal to one random point), the program
should give afairly accurate estimate of polygon area.

Lines 1100 through 1170 are used to print out several statistics -- the number of trials, the number of hits, the
number of hits as a percentage of the number of trials, and the estimate of polygon area. These statistics are printed out on the
lower |eft of the screen. Run the program and monitor the statistics printed on the screen, with the goal of filling in Table 2.
Press any key to make the program pause temporarily. Perform as many trials as you need in order to identify the shape of
the polygon appearing in red on the screen.

1. a) What is the shape of the polygon? b) How many trials are needed to
identify this shape?

On a piece of graph paper, graph the estimate of polygon area as a function of the number of trials.

2. a) Does the area estimate appear to be stabilizing as the number of trials
increases? b) What is the best estimate of the area of the polygon?
Table 2.
Number of hitsas Polygon area
Number Number a percentage of estimate
of trials of hits number of trials (in pixels)
500
1000
1500
2000
2500
3000
3500

Other Area Estimates: The area of a polygon can also be calculated from the area of a set of trapezoids defined by
the x,y-coordinate pairs of the polygon. Write a QuickBASIC program that implements this calculation. This program will
be very similar to of PIP.BAS. Y our program should:

a) clear the screen;

b) open the polygon data file called POLY GON.DAT for reading;

c) read in the number on the first line of the data file (the number of
X,y-coordinate pairs) and assign it to avariable called n;

d) dimension two arrays (called x and y) for storing the x,y-coordinates
from the file (the dimension of the arrays should be n+1);

€) read in the x- and y-coordinates from the file and store these in the
two arrays using a for loop;

f) close the polygon;
0) initialize avariable called area (the polygon area estimate) to zero;
h) use the following FOR loop to calculate the area of the polygon

FORi =1ton
area = area+ (X(i+1) - x(i)) * (y(i+1) +y(i)) / 2
NEXT

i) print out the area of the polygon.

Be sure to include comments describing the function of each program section. Run the program to obtain the
polygon area estimate. Make a printout of the program to hand in along with the assignment.

3. What is the area estimate you obtained with your program?

On the graph you constructed previously, draw a horizontal line representing the area estimate obtained with your
program. Hand in this graph along with your assignment.

4, How does the area estimate you obtained with your program compare to
the estimates you obtained with DARTS.BAS?

Modify the program to read data from POLY GON2.DAT rather than POLY GON.DAT. Thesetwo datafiles are
identical except that the coordinate pairsin POLY GON.DAT are arranged in clockwise order, while thosein
POLY GON2.DAT arein counter-clockwise order.

5. a) What is the area estimate you obtained for POLY GON2.DAT? b) How
does this estimate compare to that obtained for POLY GON.DAT?

LineIntersection: The program called INTER.BAS finds the intersection of two straight line segments. Run the
program to compute the point of intersection for the exampleslisted in Table 3.

Table 3.

First line Second line
First Second First Second Point of
end point end point end point end point intersection
Example X y X y X y X y X y
A 100 100 300 300 300 100 100 300
B 400 100 400 300 10 250 600 250
C 400 100 400 300 400 150 500 150
D 400 100 400 300 450 150 500 150
E 100 100 300 300 200 200 400 400
F 400 100 200 200 300 150 250 175
G 100 100 300 300 300 300 100 100
6. Examples E, F and G represent a special case of intersection that the

program cannot handle. a) Explain what this special caseis. b) Explain
how E, F and G are each dlightly different examples of this special case.

Now open the program called FRACTAL.BAS. You will be using this program to find intersection points for lines
composed of multiple straight-line segments. The program first draws a straight line (in blue) across the screen. Then it
draws awiggly line (in green) using the fractal concept. The coordinates of the fractal line are determined randomly, so each
time you run the program a different line will be drawn.

Note that the end points of the straight and fractal lines are the same. Also note that the arrays for storing the x,y-
coordinates for the fractal line (i.e., X2 and y2) are now dimensioned at 65. Thisis because the fractal lineis composed of 64
individual straight-line segments (65 coordinate pairs).

The variable called w (line 1000) defines the "wiggliness' of the fractal line. Run the program with different values
of w and observe how the line changes.

7. a) What is the effect of increasing the value of w? b) What is the effect of
decreasing w? ¢) What happens when w is zero?

Modify the program so that it calculates and displays the intersections between the straight and fractal lines. The
easiest way to do thisisto insert a modified version of the line intersection algorithm between lines 4100 and 20000 of the
program. To do this, open INTER.BAS, highlight lines 4500 to 11200, and select the Copy option from the Edit menu. Now
open FRACTAL.BAS, click on line 20000, and select the Paste option from the Edit menu. This procedure will copy the line
intersection algorithm from INTER.BAS into FRACTAL.BAS.

Now make the following modifications to the algorithm:

a) Change all occurrences of x2(1) to x2(k), and all occurrences of x2(2) to

x2(k+1). Likewise, change all occurrences of y2(1) to y2(k), and all
occurrences of y2(2) to y2(k+1).

b) Replace line 10500 with the following:

CIRCLE (xi,yi), 5, 15

Thiswill draw awhite circle centered on each intersection point.

Delete the PRINT statementsin lines 10200 and 11100, and the GOTO
statement on line 10600. Do abit of cleaning up between lines 10100
and 11200, since some of the IF statements are no longer required

now that the associated PRINT statements have been deleted.

Save the program and run it several times to generate different fractal lines. Hand in a printout of the program along
with your assignment.

8.

9.

Explain the rationale for modification a, above.

a) Does the program always manage to identify the intersections between
the straight line and the fractal line? b) If not, can you explain why the
program might be missing some intersections? c) Can you suggest how
the program might be modified to fix this problem?

100

5000

5100
5200
5300
5400
5500
5600
5700
5800
5900
6000
6100
6200
6300
6400
6500
6600
6700

7000

7100
7200
7300
7400
7500
7600
7700

Assignment 2
Program Listing

'PIP.BAS
'Perform point-in-polygon test.

in=1
FORi=1TOn
IF x(i + 1) <> x(i) THEN
IF (x(i + 1) - xpt) * (xpt - x(i)) >= 0 THEN
IF x(i + 1) <> xpt OR x(i) >= xpt THEN
IF x(i) <> xpt OR x(i + 1) >= xpt THEN

b=(y(i+1)-y@)) / (xG + 1) - x())
a =y(i) - b * x(i)

yi=a+b*xpt

IF yi > ypt THEN
in=in *-1

END IF

END IF
END IF
END IF
END IF
NEXT

'Print results.

PRINT
IF in = -1 THEN

PRINT "That point is INSIDE the polygon.”
ELSE

PRINT "That point is OUTSIDE the polygon.”
END IF
PRINT

100

110
120

130
135

140

145

150

160

165
175

180
185
190
200
205
210
215
220
230
235

240
250

255
260
265
320
325

'DARTS.BAS

'This program estimates the area of a polygon based on the
‘probability of a randomly-generated point falling within it.

CLS
SCREEN 12

'‘Open the data file for reading.

OPEN "POLYGON.DAT" FOR INPUT AS #1

'‘Read in the number of points defining the outline of the polygon.
INPUT #1, n

'Dimension the arrays for the x,y-coordinates of the points.
'The dimension should be n+1 to allow the polygon to be closed.

DIM x(n + 1), y(n + 1)
'Read in the x,y-coordinates of the points.

FORi=1TOn
INPUT #1, x(i), y(
NEXT

'Close the polygon.

x(n + 1) = x(1)
y(n +1) =y(1)

'Draw a rectangle on the screen. (The dimensions of the box define
'the maximum and minimum coordinates of the random points.)

LINE (0, 0)-(639, 462), 7, B

'num = the number of trials; nin is the number of hits.
'Random generation of points is based on internal clock.

num = 0

nin =0

RANDOMIZE (TIMER)

LOCATE 30, 1

PRINT "Hit any key to pause. "

330 'Generate random x,y-coordinates for a point in the rectangle.

340 xpt = RND * 639

345 ypt = RND * 462

400 'Increase the mumber of trials by one.

410 num = num + 1

420 'Statistics to print on screen...

425 LOCATE 25,2

430 PRINT "Trials: ";

435 LOCATE 26, 2

440 PRINT "Hits: ";

445 LOCATE 27,2

450 PRINT "Percent: ";

455 LOCATE 28, 2

460 PRINT "Area: ";

500 'Point-in-polygon algorithm determines whether
505 ‘random point is in the polygon (a hit) or not.

510 in=1

520 FORi=1TOn

530 IF x(i + 1) <> x(i) THEN

540 IF (x(i + 1) - xpt) * (xpt - x(i)) >= 0 THEN
550 IF x(@i + 1) <> xpt OR x(i) >= xpt THEN
560 IF x(i) <> xpt OR x(i + 1) >= xpt THEN
570 b=(y(i+1)-y@)) / xG+1)-x({)
580 a = y(i) - b * x(i)

590 yi=a+b*xpt

600 IF yi > ypt THEN

610 in=in*-1

620 END IF

630 END IF

640 END IF

650 END IF

660 END IF

670 NEXT

800 'If the point is NOT in the polygon, draw a grey dot.
810 IF in = 1 THEN

820 PSET (xpt, ypt), 7

830 END IF

900 'If the point IS in the polygon, draw a red dot

910 ‘and increase the number of hits (nin) by 1.
920 IF in = -1 THEN

930 PSET (xpt, ypt), 12

940 nin = nin + 1

950 END IF

1000 '‘Print out statistics.

1100 LOCATE 25, 11

1110 PRINT num;

1120 LOCATE 26, 11

1130 PRINT nin;

1140 LOCATE 27,11

1150 PRINT nin / num * 100;

1160 LOCATE 28, 11

1170 PRINT nin / num * 640 * 463;

2000 'Monitor keyboard events to suspend or terminate program.
2010 'If no key is pressed, get another random point...

2100 a$ = INKEY$
2200 IF LEN(a$) = 0 THEN 340

2300 '...otherwise, pause.

2400 LOCATE 30,1
2500 PRINT "Hit q to quit or any other key to resume.";

2600 'If no other key is pressed, keep waiting...

2700 a$ = INKEY$
2800 IF LEN(a$) = 0 THEN 2700

2900 "...or, if a q is not pressed, get another random point...
3000 IF a$ <> "q" THEN 320
3100 '...otherwise, terminate the program.

5200 END

100

110
120

150
160
170
180
190
200
210

250
260

300

400
410

505
510
520
530
600
610
620
630
640

4500

4600

5000
5010

5100
5200
5300
5400
5500
5600
5700
5800

'INTER.BAS

'This program finds the point of intersection
'for two straight-line segments.

'Dimension the arrays to store the x,y-coordinates of the end
'points of the two lines. Since we are dealing with straight line
'segments, the arrays only need to contain two elements.

'The arrays called x1 and y1 store the x,y-coordinates

'for the end points of the first line segment.

"The arrays called x2 and y2 store the x,y-coordinates

'for the end points of the second line segment.

DIM x1(2), y1(2)
DIM x2(2), y2(2)

'Begin loop to read in coordinates of end points.

CLS
DO

PRINT

PRINT "Enter the x- and y-coordinates of the end points of each line."
PRINT "Separate the coordinates with a comma."

PRINT

INPUT "First end point of first line: ", x1(1), y1(1)

INPUT "Second end point of first line: ", x1(2), y1(2)

INPUT "First end point of second line: ", x2(1), y2(1)

INPUT "Second end point of second line: ", x2(2), y2(2)

PRINT

'Initialize flag that will tell us if intersection occurs.
intersect = 1

'Find intersection point. Variables xi and yi
'define x,y-coordinates of the intersection point.

IF x1(1) <> x1(2) THEN

bl = (y1(2) - y1(1)) / (x1(2) - x1(1))

IF x2(1) <> x2(2) THEN
b2 = (y2(2) - y2(1)) / (x2(2) - x2(1))
al = y1(1) - bl *x1(1)
a2 = y2(l) -b2 * x2(1)
IF bl = b2 THEN

intersect = 0

5900 ELSE

6000 xi=-1*(@l-a2)/(bl-b2)

6100 yi=al+bl*xi

6200 END IF

6300 ELSE

6400 xi =x2(1)

6500 al = y1(1) - b1 *x1(1)

6600 yi=al +bl *xi

6700 END IF

6800 ELSE

6900 xi =x1(1)

7000 IF x2(1) <> x2(2) THEN

7100 b2 = (y2(2) - y2(1)) / (x2(2) - x2(1))
7200 a2 = y2(1) - b2 *x2(1)

7300 yi=a2 +b2 *xi

7400 ELSE

7500 intersect = 0

7600 END IF

7700 END IF

9000 '‘Print results.

10100 IF intersect = 0 THEN

10200 PRINT "Lines do not intersect.”

10300 ELSE

10400 IF (x1(1) - xi) * (xi - x1(2)) >= 0 THEN
10410 IF (x2(1) - xi) * (xi - x2(2)) >= 0 THEN
10420 IF (y1(1) - yi) * (yi - y1(2)) >= 0 THEN
10430 IF (y2(1) - yi) * (yi - y2(2)) >= 0 THEN
10500 PRINT "Lines intersect at ("; xi; ", "; yi; ")"
10600 GOTO 14100

10700 END IF

10800 END IF

10900 END IF

11000 END IF

11100 PRINT "Lines do not intersect.”

11200 END IF
14000 'Find intersection for another pair of line segments?

14100 PRINT "Find intersection for another pair of line segments? [y/n]"
14200 IF INPUT$(1) = "n" THEN EXIT DO

15000 LOOP

20000 END

100

200
300

500
600

700
720
730
740
750

800
810

890

900

990

1000
1090
1100
1110
1120
1130
1140
1150
1190
1200
1210

1220
1230

'FRACTAL.BAS

'This program draws a straight blue line
‘and a wiggly green "fractal” line.

CLS
SCREEN 12

'Dimension the arrays x1 and yl1 for storing the end points of the
'straight line (hence dimension of 2). Arrays x2 and y2 are for

'the end points of the fractal line. The dimension in this case is 65,
'as we want 64 segments in the fractal line. (Note that we ignore
'the Oth element of all arrays to avoid confusion.)

DIM x1(2), y1(2)
DIM x2(65), y2(65)

'Random number generation is based on internal clock.
RANDOMIZE (TIMER)

'Variable called w determines wiggliness of the fractal line.
w =200

'Define coordinates of end points of straight line.

x1(1) =20

y1(1) =250

x1(2) = 620

y1(2) =250

'‘Draw the line in blue.

LINE (x1(1), y1(1))»-(x1(2), y1(2)), 1

'End points of fractal line are the same as those of straight line.
x2(1) = 20

y2(1) = 250

x2(65) = 620
y2(65) = 250

1990

2000
2100
2200
2300
2310
2400
2410
2500
2600

3990
4000
4100
20000

30000

'Generate fractal line.

FORk=1TO®6
ka=64/2"k
FOR j = (ka + 1) TO 65 STEP (2 * ka)
x2(j) = (x2(j - ka) + x2(j + ka)) / 2
x2(j) = x2() + (1-2*RND) *w / 2 A k
y2() = (y2(j - ka) + y2(j + ka)) / 2
y2(3) =y2(D) + (1-2*RND)*w / 2k
NEXT
NEXT

'‘Draw fractal line in green.
FORk =1TO 64

LINE (x2(k), y2(k)}-(x2(k + 1), y2(k + 1)), 2
NEXT

END

Assignment 2

Answer Key
Table 1.

Point x-coordinate y-coordinate Inside or outside?
A 25 100 out
B 101 299.7 out
C 631 246 out
D 387.5 224 in
E 97 401 out
F 544.1 77 out
G 321.3 314 in
H 111 49 out

I 251 327 in
J 118 176 in

a) A maple leaf. b) Several thousand at minimum.

a) Depends on the maximum number of trials performed. b) The best
estimate is the one for the largest number of trials.

Estimate is 90,919.13 pixels.

Estimate is very similar to the previous ones.

a) Estimate is -90,919.13 pixels. b) Negative of other estimate.

a) They are all instances of coincident lines. b) In E, the lines share a
portion of the same line. In F, one line is a subset of the other line. In G,

the lines are identical.

a) Increasing w makes the line more wiggly. b) Decreasing w makes the
line less wiggly. ¢) When w is zero, the line is straight.

Table 2.
(NOTE: Students' answers will vary slightly.)

Number of hits as

Polygon area

Number Number a percentage of estimate
of trials of hits number of trials (in pixels)
500 137 27.35 81 029.62
1000 312 31.08 92 083.51
1500 468 30.97 91 778.80
2000 628 31.42 93 091.02
2500 785 31.38 92 858.77
3000 945 31.49 93 309.70
3500 1100 31.69 93 888.35
"dart™ method
CR=
— et -
%
i] / \{
S . trapezoid method
3 o
5 0
n
8 —
": ——
£
I
0
H
B o
T T T T T T T
0 1000 2000 3000

The program needs to find the intersections between the straight line
and all 64 pieces of the fractal line. Each piece is referenced with a value

number of trials

of k, which is incremented in the loop.

a) No. b) Rounding error means that line 10400 sometimes evaluates as
false when it is true. ¢) Change the zeros in line 10400 to a smaller value

to implement a fuzzy tolerance. (A value of -1 seems to work.)

Table 3.

First line Second line

First Second First Second Point of

end point end point end point end point intersection

Example x y X 'y X y X y x y

A 100 100 300 300 300 100 100 300 200 200

B 400 100 400 300 10 250 600 250 400 250

C 400 100 400 300 400 150 500 150 400 150
D 400 100 400 300 450 150 500 150 -- do not intersect -
E 100 100 300 300 200 200 400 400 -- do not intersect --
F 400 100 200 200 300 150 250 175 -- do not intersect --
G 100 100 300 300 300 300 100 100 -- do not intersect --

100

200

300

1000

1100

1200
1300

1400
2000
2100
2200
2300
3100
3200
3300
3400
3500

3600
3700

4000
4100

4200

4300

4400
4500

Assignment 2
Program Listing (Answer Key)

'PIP1.BAS

'Point-in-polygon program.

CLS

'Open the data file for reading.

OPEN "POLYGON.DAT" FOR INPUT AS #1

'Read in the number of points in the polygon.
'(This is the first line of POLYGON.DAT).

INPUT #1, n
'‘Dimension the arrays for storing the x,y-coordinates
'of the polygon. Dimension should be one greater than n
'to allow the program to close the polygon.
DIM x(n + 1), y(n + 1)
'Read in the x,y-coordinates for the n points.
FORi=1TOn
INPUT #1, x(i), y(i)
NEXT
'Close the polygon.

x(n + 1) = x(1)
y(n + 1) = y(1)

'Begin loop for reading in x- and y-coordinates
'of points and performing the test.

DO
'Read in the x- and y-coordinates of the point to test.

INPUT "Enter x-coordinate of the point: ", xpt
INPUT "Enter y-coordinate of the point: ", ypt

5000

5100
5200
5300
5400
5500
5600
5700
5800
5900
6000
6100
6200
6300
6400
6500
6600
6700

7000

7100
7200
7300
7400
7500
7600
7700

8000

8100
8200

9000

9100

'Perform point-in-polygon test.

in=1
FORi=1TOn
IF x(i + 1) <> x(1) THEN
IF (x(+ 1) - xpt) * (xpt - x(1)) >= 0 THEN
IF x(i + 1) <> xpt OR x(i) >= xpt THEN
IF x(i) <> xpt OR x(i + 1) >= xpt THEN

b= (y(i+1)-y@)/ xG+1)-x(i)
a=y(@)-b*x()

yi=a+b*xpt

IF yi > ypt THEN
in=in *-1

END IF

END IF
END IF
END IF
END IF
NEXT

'Print results.

PRINT
IF in = -1 THEN

PRINT "That point is INSIDE the polygon.”
ELSE

PRINT "That point is OUTSIDE the polygon.”
END IF
PRINT

'Perform point in polygon test for another point?

PRINT "Perform the test on another point? [y/n]"
IF INPUTS$(1) = "n" THEN EXIT DO

LOOP

END

100

200

300

1000

1100

1200
1300

1400
2000
2100
2200
2300
3100
3200
3300
3400
3500

3600
3700

4000
4200
4300
4400
4500
4600
4700

5000

'"AREA.BAS

'Program to compute area of a polygon based on trapezoid method.
CLS

'Open the data file for reading.

OPEN "POLYGON.DAT" FOR INPUT AS #1

'Read in the number of points in the polygon.
(This is the first line of POLYGON.DAT).

INPUT #1, n

'‘Dimension the arrays for storing the x,y-coordinates
'of the polygon. Dimension should be one greater than n
'to allow the program to close the polygon.

DIM x(n + 1), y(n + 1)
'Read in the x,y-oordinates for the n points.

FORi=1TOn
INPUT #1, x(i), y(i)
NEXT

'Close the polygon.

x(n + 1) = x(1)
y(n +1) = y(1)

'Initialize area to zero.
area =0
'Calculate and print out the area of the polygon.
FORi=1ton

area = area + (x(i + 1) -x() * (y(i + 1) + y(i)) / 2
NEXT
PRINT "The polygon has an area of ", area, "pixels."

END

100
200
300
400

500
600

700
720
730
740
750

800
810

890

900

990

1000
1090
1100
1110
1120
1130
1140
1150
1190
1200
1210

1220
1230

'FRACTAL1.BAS

'This program draws a straight blue line
‘and a wiggly green "fractal” line.
'Circles are drawn at points where the two lines intersect.

CLS
SCREEN 12

'Dimension the arrays x1 and y1 for storing the end points of the
'straight line (hence dimension of 2). Arrays x2 and y2 are for

'the end points of the fractal line. The dimension in this case is 65,
'‘as we want 64 segments in the fractal line. (Note that we ignore
'the Oth element of all arrays to avoid confusion.)

DIM x1(2), y1(2)
DIM x2(65), y2(65)

'Random number generation is based on internal clock.
RANDOMIZE (TIMER)

'Variable called w determines wiggliness of the fractal line.
w =200

'Define coordinates of end points of straight line.

x1(1) =20

y1(1) = 250

x1(2) = 620

y1(2) = 250

'Draw the line in blue.

LINE (x1(1), y1(1))-(x1(2), y1(2)), 1

'End points of fractal line are the same as those of straight line.
x2(1) =20

y2(1) = 250

x2(65) = 620
y2(65) = 250

1990 'Generate fractal line.

2000 FORk=1TO6

2100 ka=64/2"k

2200 FOR j = (ka + 1) TO 65 STEP (2 * ka)

2300 x2(j) = (x2(j - ka) + x2(j + ka)) / 2

2310 x2() = x2() + (1-2*RND) *w / 2 A k
2400 y2() = (y2(j - ka) + y2(j + ka)) / 2

2410 y2() =y2() + (1-2*RND)*w / 2"k
2500 NEXT

2600 NEXT

3990 '‘Draw fractal line in green.

4000 FORk =1TO 64

4100 LINE (x2(k), y2(k))-(x2(k + 1), y2(k + 1)), 2
4500 'Initialize a flag that will tell us when intersection occurs.
4600 intersect = 1

5000 'Find intersection point. Variables xi and yi define
5010 'x,y-coordinates of the intersection point.

5100 IF x1(1) <> x1(2) THEN

5200 bl = (y1(2) - y1(1)) / (x1(2) - x1(1))

5300 IF x2(k) <> x2(k + 1) THEN

5400 b2 = (y2(k + 1) - y2(k)) / (x2(k + 1) - x2(k))
5500 al = y1(1) - b1 *x1(1)

5600 a2 = y2(k) - b2 * x2(k)

5700 IF bl =b2 THEN

5800 intersect = 0

5900 ELSE

6000 xi=-1*(al-a2)/ (bl-b2)

6100 yi=al+bl*xi

6200 ENDIF

6300 ELSE

6400 xi = x2(k)

6500 al = y1(1) - bl * x1(1)

6600 yi=al +bl *xi

6700 END IF

6800 ELSE

6900 xi = x1(1)

7000 IF x2(k) <> x2(k + 1) THEN

7100 b2 = (y2(k + 1) - y2(k)) / (x2(k + 1) - x2(k))

7200 a2 = y2(k) - b2 * x2(k)

7300
7400
7500
7600
7700

9000

10100
10400
10410
10420
10430
10500
10700
10800
10900
11000
11200

20000

30000

yi=a2 + b2 *xi
ELSE
intersect = 0
END IF
END IF

'‘Draw circles at intersection points.

IF intersect <> 0 THEN
IF (x1(1) - xi) * (xi - x1(2)) >= 0 THEN
IF (x2(1) - xi) * (xd - x2(2)) >= 0 THEN
IF (y1(1) - yi) * (yi - y1(2)) >= 0 THEN
IF (y2(1) - yi) * (yi - y2(2)) >= 0 THEN
CIRCLE (xi, yi), 5, 15
END IF
END IF
END IF
END IF
END IF

NEXT

END

Assignment 3
Vector Data Structures (1)

Objectives: Inthisassignment you will be using pcARC/INFO to examine different types of topological overlay.

Files: Thisassignment reguires part of the pcARC/INFO Green River database. Y ou will need the following
coverages:

DEVELOP apolygon coverage of areas selected for devel opment
SITES apolygon coverage of ecologically sensitive areas

Examining the Database: Use ARCPLOT to display the two coverages on the screen and examine the features that
they contain.

1. Draw a sketch map of the polygons displayed on the screen. Using the
IDENTIFY command, label each polygon on your map with the
appropriate SITES-ID or DEVELOP-ID code.

In TABLES, select the PAT file for each coveragein turn.

2. What items are contained in SITES.PAT?

3. List the area of each polygon in the SITES coverage along with its
SITES-ID code. (Ignore the external polygon.)

4, What items are contained in DEVELOP.PAT?

5. List the area of each polygon in the DEVEL OP coverage along with its

DEVELOP -ID code.

Topological Overlay: pcARC/INFO provides five different types of topological overlay. The commands are listed
below. Each command corresponds to a different combination of Boolean (or logical) operators (i.e., AND, OR and NOT).
Each command creates a new output coverage from two existing input coverages.

UNION INTERSECT IDENTITY CLIP ERASECOV

6. Draw a set of sketch maps showing the polygons that would be produced

if SITES and DEVELOP were used as the input coverages to each of the
five overlay commands.

Perform all five types of overlay using SITES as the first input coverage (i.e., the"in_cover") and DEVELOP asthe

second input coverage (i.e., the "union_cover", "intersect_cover”, etc). Give the output coverage adifferent namein each
case.

Display each of the new coveragesin ARCPLOT using the POLY GONSHADES and ARCS commands.

7. Draw a sketch map showing the polygons in each of the coverages.
How do these compare to the sketch maps you produced in question 67

Return to TABLES and select the PAT file for each of the new coveragesin turn.
8. List theitems contained in the PAT file for each coverage.

9. How are the PAT files for the coverages produced by CLIP and
ERASECOQV different from the files created with the other three

10.

11.

12.

13.

14.

15.

16.

17.

18.

commands?

What items would be contained in these PAT filesif you reversed the
order of the first and second input coverages for CLIP and ERASECOV
(i.e., you used DEVELOP asthe"in_cover" and SITES asthe "clip_cover"
or "erase_cover").

Draw a sketch map showing the polygons that would be produced by
CLIP and ERASECOQV if you reversed the order of the input coverages.

Select the PAT file for the coverage produced by the UNION command.
What isthe total area of the polygons a) common to both SITES and
DEVELOP b) found only in SITES c¢) found only in DEVELOP? (Assume
that avalue of O for any coverage-1D code indicates the external polygon

for the associated coverage.)

Select the PAT file for the coverage produced by the INTERSECT
command. a) What is the total area of the polygonsin this coverage? b)
How does this correspond to your answer for question 127

Select the PAT file for the coverage produced by the IDENTITY
command. What are the similarities and differences between this
coverage the SITES coverage?

Select the PAT file for the coverage produced by the CLIP command.
What are the similarities and differences between this coverage and the
coverage produced by the INTERSECT command?

Select the PAT file for the coverage produced by the ERASECOV
command. What are the similarities and differences between this
coverage and the coverage produced by the CLIP command?

On each of the sketch maps you drew above (question 7), label the
polygonsin each of the five new coverages using their appropriate
coverage-1D values.

Write out a Boolean expression that describes the polygons contained in
each of the new coverages (e.g., SSTES AND DEVELOP, SITES OR
DEVELOP, SITESAND NOT DEVELOP, &tc).

Assignment 3
Answer Key

.
X
5(_""'J \{ SITES-ID = 1

SITES-ID = 2 { DEVELOP-ID = 2

DEVELOP-ID = 1 O

SITES-ID = 3

DEVELOP-ID = 3

AREA, PERIMETER, SITES#, SITES-ID, NUMBER

SITES-ID AREA
1 134.522
2 164.198
3 141.235

AREA, PERIMETER, DEVELOP#, DEVELOP-ID, NAME

DEVELOP-ID AREA

1 134.364
2 146.973
3 150.599

Answers will vary from student to student.

7 & 17.

JJUPRECIIRERIY-

Memiae

INTERSECT

grenranamnassansnnn

Tanaanase:

L)JA’N.U

IDENTITY

v
it

PP

!

P R

ﬂ.mw.-w\‘“‘\

Sunenaaanaed

e,

CLIP

’

L

3
sesasmnsansomnsnsnsl
3

R
3
bt
bt

SV 4

T P PR
pecerreerierey

10.

................

ERASECOV

e e e

UNION: AREA, PERIMETER, COV#, COV-ID, SITES#, SITES-ID,
NUMBER, DEVELOP#, DEVELOP-ID, NAME

INTERSECT: AREA, PERIMETER, COV#, COV-ID, SITES#, SITES-ID,
NUMBER, DEVELOP#, DEVELOP-ID, NAME

IDENTITY: AREA, PERIMETER, COV#, COV-ID, SITES#, SITES-ID,
NUMBER, DEVELOP#, DEVELOP-ID, NAME

CLIP: AREA, PERIMETER, COV#, COV-ID, NUMBER
ERASECOV: AREA, PERIMETER, COV#, COV-ID, NUMBER
They contain no items from DEVELOP.

CLIP: AREA, PERIMETER, COV#, COV-ID, NAME

ERASECOV: AREA, PERIMETER, COV#, COV-ID, NAME

11.

TN ancannan

P

]

[~

S rennnnsasnnnmmnranssnsmssanssamsnsmnd

CLIP

e

ERASECOV

-,

vy

12,

13.

14.

15.

16.

17.

18.

a) 33.828 + 69.791 = 103.619

b) 87.094 +7.313 + 141.235 + 100.694 = 336.336
c) 16.132 + 113.144 + 48.440 + 150.599 = 328.315
a) 33.828 + 69.791 = 103.619

b) It is the same as 12 a). These are the polygons that SITES and DEVELO!
have in common.

They have the same total area (i.e., the area of the polygons in SITES).
However, in the coverage produced by IDENTITY, the SITES polygons
intersecting DEVELOP polygons are now new polygons with attributes
from DEVELOP.

They both contain the same set of two polygons (i.e., the polygons
common to SITES and DEVELOP), but the coverage produced with CLIP
has no attributes from DEVELOP.

Neither contains any attributes from DEVELOP, but in terms of the
polygons retained the two coverages are mirror images of each other.

(See question 7.)

UNION: SITES OR DEVELOP

INTERSECT: SITES AND DEVELOP
IDENTITY: SITES OR (SITES AND DEVELOP)
CLIP: SITES AND DEVELOP

ERASECOV: SITES AND (NOT DEVELOP)

Assignment 4
Raster Data Structures

Objectives: In thisassignment you will be writing a QuickBASIC program to perform run-length encoding on
raster data.

Files: Thisassignment requires two QuickBASIC programs (MAP.BAS and MAPRUN.BAS) and three data files
(ELEV.DAT, LAND.DAT and HAWAII.DAT).

Run-Length Encoding: Thefile called ELEV.DAT isaraster datafile of elevationsfor Africa. Elevation values
range from 2 (lowest elevation) to 6 (highest elevation). A value of 1is used to designate water. Thefilecalled LAND.DAT
isaraster datafile of the same area in which water has been assigned a value of 0 and land avalue of 1.

Each file contains 109 rows by 120 columns of cells. The cells are stored in "scan-line" order (i.e., beginning in the
upper left corner and proceeding left to right along each row of cells).

Run the QuickBASI C program called MAP.BAS to display each file as a map.

Write a program to run-length encode each file in scan-line order. Each line in the output file should represent a
"run” of cell values and should contain two numbers:

a) thelength of the run, measured in cells, and
b) the cell value for the run.

The following example shows the output file that would be obtained by performing run-length encoding on an input
file containing 4 rows by 5 columns of cells.

WkEFEEDND
WkFkEFEDN
wwkEk N
N WEIN
o)y 0O U1
wrE N

2
1
1
3 1 2

Input file Output file

Use your program to perform run-length encoding on the ELEV.DAT datafile. Runthe QuickBASIC program
called MAPRUN.BAS to display a map of the output file. If your program is written correctly, the map should look the same
as the one you produced earlier using MAP.BAS. Be sure that the last run of cellsis displayed on your map.

Also perform run-length encoding on the LAND.DAT datafile.

Hand in a copy of your run-length encoding program once you have it working to your satisfaction. Answer the
following questions.

1. In DOS, use DIR to calculate the "compaction ratio" for each of the two
output files. Thisratio is calculated by dividing the size of the output
file in bytes by the size of the corresponding original datafile in bytes.

2. Which of the two files has a better compaction ratio? Why?

3. Under what circumstances might you get a compaction ratio greater than 1?

Optional: Asthe attached article indicates, it is possible to make maps from poems using the Morton cell ordering
system. Write aprogram to perform thistask. The datafile called HAWAII.DAT contains the data necessary to make the
map of Hawaii refered to in the article.

GEO-POESY

Howard Veregin
Department of Geography
University of California,
Santa Barbara, California, 93106

Introduction: Recent theoretical work suggests a strong link between geography and poetry. A simple computation
allows any line of poetry to be positioned in two-dimensional space. The entire poem may be mapped as a set of points
joined by straight-line segments. By implication, maps are poems and poems are maps.

Terminology: The link between geography and poetry may be explained with reference to prosody, the inexact
science of linguistic rhythms. Essentially, a poemis acollection of lines, which are collections of words, which arein turn
collections of syllables (Preminger 1986). Prosody shows that these syllables may be differentiated according to the presence
or absence of stress. In poems, stress tends to recur in cyclical patterns. Analysis of these patterns is known as scansion, and
the taxonomical characterization of patternsis based on meter. Meter is measured in terms of aunit known asafoot. Feet are
defined by particular patterns of stressed and unstressed syllables. For instance, an iambic foot contains two syllables, the
first unstressed and the second stressed, asin the following example taken from Chaucer:

o - (%) - v - |9 - (%) -
That slip/'ry sci/ence stripped / me down / so bare

Following conventional symbology, a stressed syllable is denoted with adiacritical dash (-), an unstressed syllable
with adiacritical cusp (H), adivision between two feet with avirgule (/), and a division between two syllables with a hyphen
(-) or with ablank space if the division occurs between two words.

In addition to iambic, there are three other common types of feet encountered in English-language poetry (Nims
1974). Trochaic foot is the transpose of iambic. Anapestic foot is characterized by two unstressed syllables followed by a
stressed syllable, while in dactylic foot, a stressed syllable is followed by two unstressed syllables.

Meter also depends on the number of feet per line. In the iambic example presented above, there are 5 feet per line.
This means that the lineis denoted as |. pentameter. Similarly, atrochaic foot with 3 feet per line would be denoted as T.
trimeter, an anapestic foot with 1 foot per line would be denoted as A. monometer, etc. Although the number of feet per line
isaways an integer, it is not uncommon for a poem to contain several feet that lack one or more syllables. Such fractional
feet are called catalectic (Bain et al, 1981).

Mathematical Representation: The particular diacritical symbols used to denote whether asyllable is stressed or
unstressed are wholly arbitrary. Thus one can safely replace these symbols with any others, so long as they are capable of
differentiating between two discrete states. If one assignsa'1" to a stressed syllable and a"0" to an unstressed syllable, then
any line of poetry can be represented by a string of bits (binary digits).

For example, the string for |. pentameter is
0101010101

Thishit string isthe binary (i.e., base 2) representation of a number whose digital (i.e., base 10) representation
happensto be 341. Any line of poetry may be represented mathematically in this manner.

TheLink with Geography: These observations are closely linked to developments in modern geography pertaining
to the tessellation of two-dimensional space. Tessellation refersto the partitioning of spaceinto a set of regular, non-
overlapping, spatially exhaustive cells. Typically these cells are square in shape, by other shapes may also be used.

While tessellation itself isarelatively straightforward concept, the optima method of assigning index numbers to the
cellsisthe subject of debate (Goodchild 1989). A host of different indexing systems have been proposed, but most of these

have not been widely applied. The number of potential indexing systemsis enormous. If there are r rows and ¢ columns of
cells, then there are rc! unique ways to arrange index numbers.

One indexing system that has proved useful, however, is that proposed by G. M. Morton (Morton, no date). In
Morton’s system, there is an implicit relationship between the location of acell and itsindex number. More specifically, the
row and column positions of the cell are embedded as interleaved bit stringsin the binary representation of the cell index
number. The figure below illustrates this relationship for cell number 7 in Morton two-space, for which the row and column
positions are 3 and 1 respectively.

A corollary of thisrelationship isthat any bit string is associated with one and only one cell in Morton two-space.
Since any line of poetry can be represented as a bit string, it follows that any such line can be uniquely located in Morton two-
space. Furthermore, since a poem is composed of one or more lines, it is possible to locate each line in Morton two-space,
join these locations with straight-line segments, and call the resulting product a map.

4 116 |18 | 24 | 26 | 48 | 50

15 | 37 | 39

14 | 36 | 38

Decimal Binary Decimal
3 —» 00000011
] —» 00000001

0000000000000111 —w 7

An lllustration: Asan illustration, consider J. Diefenbaker’s poem, "The Scientist’s Lament"”, the first six lines of
which are reproduced below.

U v v - v - U U - - U v

I am a / sci-en-tist, / not a Frank / en-stein, Ed.

u U v - = - - v U - = -
I'm not an / old sewn-up / corpse with a / re-claimed head,
. v - v - U - v - v

A flat-top / type hair-do, / bolts pro-trud / ing, skin sort

U - - U Uy - v - - v -

Of green-grey / (or is it / blue?), a big / hair-y wart,

v U - - - - U - - - U v
And a pet / dog named Boo / Boo. But my / brain, it longs
U U - - - - U v U U -

For a cold, / old, dark, dank /grave. Hey, where / are my thongs?

The entire poem has been mapped into Morton two-space based on the principles described above. Theresult, as
shown in the figure below, is an accurate map of Oahu, Hawaii. Thefirst line of the poem is Kaena Point, the most westerly
point on the island. The poem then proceedsin a clockwise direction.

References
Bain, C. E., Beaty, J. & Hunter, J. P. (Eds.) (1981). The Norton Introduction to Literature, 3rd Edition. New Y ork: Norton.
Goodchild, M. F. (1989). Optimal tiling for large cartographic databases. Auto-Carto 9, 444-51.

Morton, G. M. (no date). A Computer Oriented Geodetic Data Base: With a New Technique in File Sequencing.
(Unpublished manuscript).

Nims, J. F. (1974). Western Wind. New Y ork: Random House.

Preminger, A. (Ed.) (1986). The Princeton Handbook of Poetic Terms. Princeton: Princeton University Press.

100

190

200
300

400
500

600

700

800
810
820
830
840
850

1000

Assignment 4
Program Listing

'MAP.BAS -- a program to display a raster image on the screen.
'Choose data file, set up screen.

CLs
INPUT "Enter the name of the data file: ", filename$

SCREEN 12
WINDOW SCREEN (0, 0)-(160, 120)

'Input data from file and draw the map.
OPEN filename$ FOR INPUT AS #1

FORy =1TO 109
FOR x =1 TO 120

INPUT #1, z
LINE (x, y)-(x+ 1,y + 1), 2z, BF
NEXT
NEXT
END

100 'MAPRUN.BAS -- a program to display a run-encoded raster image.

190 'Choose data file, set up screen.

200 CLS

300 INPUT "Enter the name of the data file: ", filename$
400 SCREEN 12

500 WINDOW SCREEN (0, 0)-(160, 120)
600 'Input data from file.

700 OPEN filename$ FOR INPUT AS #1
800 'Hard-wire these guys.

810 nrows = 109

820 ncols = 120

830 ncells = nrows * ncols

840 DIM z(ncells)

900 'Unzip the run-encoded data.

910 endi =0

920 DO UNTIL EOK(1)

930 starti = endi + 1

940 INPUT #1, frequency, value
950 endi = endi + frequency

960 FOR i = starti TO endi

970 z(i) = value

980 NEXT

990 LOOP

1000 ‘Display the image.

1010 FOR y =1 TO nrows

1020 FOR x = 1 TO ncols

1030 cellno = (y - 1) * ncols + x
1040 LINE (x, y)-(x + 1, y + 1), z(cellno), BF
1050 NEXT

1060 NEXT

2000 END

Assignment 4
Answer Key

Different ratios are possible, depending on the format of the run-length
encoded filee. LAND.DAT and ELEV.DAT each contain 26,488 bytes. If a
single space is left between the frequency and the cell value, the run-
length encoded versions of these files contain 2300 bytes and 10,481 bytes,
respectively. The corresponding compaction ratios are 0.087 and 0.396.

LAND.DAT yields a better compaction ratio since it has longer runs of
the same value.

You might get a compaction ratio greater than 1 when there is high-
frequency variation over space (i.e., short runs).

100

110

200

210
220
230
240
250

300

310
320
330
340

400

410
420
430

500

510
520
530
540
550
560
570
580
590

600

700

Assignment 4
Program Listing (Answer Key)

'RUN.BAS -- program to perform run-length encoding of raster data.
'NOTE: Students’ actual programs may differ from this example.
'Choose data file names, open files.

CLS

INPUT "Enter the name of the input data file: ", infile$
INPUT "Enter the name of the output data file: ", outfile$
OPEN infile$ FOR INPUT AS #1

OPEN outfile$ FOR OUTPUT AS #2

'Hard-wired dimensions...

nrows = 109

ncols = 120

ncells = nrows * ncols
DIM z(ncells)

'Read data.

FOR 1 =1 TO ncells
INPUT #1, z(i)
NEXT

'Perform run-length encoding.

count =1
FORi=1TOncells-1
IF z(i) = z(1 + 1) THEN
count = count + 1
ELSE
PRINT #2, count; z(i)
count =1
END IF
NEXT

PRINT #2, count; z(i)

END

100

105

110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

300
310
320

325

330
340

345

350
360
370

390

400
410
420
440
450
460
470
480

'POEM.BAS -- program to turn a poem into a map.
'NOTE: Students’ actual programs may differ from this example.

CLS

PRINT "This program turns poems into maps."

PRINT

PRINT "The poem is entered as a set of strings of 0s and 1s."

PRINT "A 0 is an unstressed syllable and a 1 is a stressed syllable."
PRINT

PRINT "Each 0 and 1 represents a binary digit (bit)."

PRINT "Each line of the poem is entered as a separate string of bits."
PRINT "You should leave a space between each bit."

PRINT

PRINT "Input data include the number of lines in the poem (nlines)"
PRINT "and the maximum number of syllables in a line (nsylls)."
PRINT "For those lines that have less than nsylls syllables,"

PRINT "add extra Os on the left-hand side of the bit string.”

PRINT

INPUT "How many lines does the poem have? ", nlines
INPUT "What's the maximum number of syllables per line? ", nsylls
INPUT "What is the name of the input data file? ", filename$

'Dimension some arrays and open file for reading.

DIM zamboni(nsylls), x(nlines + 1), y(nlines + 1)
OPEN filename$ FOR INPUT AS #1

'Initialize max and min coordinates.

minx = 99999
miny = 99999
maxx = -99999
maxy = -99999

'Calculate x and y coordinates for each line of the poem.

FOR i =1 TO nlines

x(i)=0

yd=0

FOR j = nsylls - 1 TO 0 STEP -1
INPUT #1, zamboni(j)

NEXT

FOR j = nsylls - 1 TO 0 STEP -1
factor = 1

490 basex =j \ 2

500 FOR k = 0 TO basex - 1

510 factor = factor * 2

520 NEXT

530 IF j MOD 2 = 1 THEN x(i) = x(i) + zamboni(j) * factor
540 IF j MOD 2 = 0 THEN y(i) = y(i) + zamboni(j) * factor
550 NEXT

560 IF x(i) < minx THEN minx = x(i)

570 IF y(i) < miny THEN miny = y(i)

580 IF x(i) > maxx THEN maxx = x(i)

590 IF y(i) > maxy THEN maxy = y(i)

600 NEXT

640 'Last coordinate is the same as the first (if the poem is a polygon).
650 x(nlines + 1) = x(1)

660 y(nlines + 1) = y(1)

690 'Ready to draw the map!

700 SCREEN 12

710 WINDOW (minx - 5, miny - 5)-(maxx + 5, maxy + 5)

800 FOR i =1 TO nlines

810 LINE (x(i), y()-(x@ + 1), yG + 1))

820 NEXT

1000 END

Assignment 5
Surface M odeling with DEMsand TINs

Objectives: In this assignment you will be examining different types of surface models. Y ou will be using
QuickBASIC to interpolate and display gridded digital elevation models (DEMs), and pcARC/INFO to examine how surfaces
can be modeled using triangulated irregular networks (TINS).

Files: The QuickBASIC part of this assignment requires four QuickBASIC programs (RELIEF.BAS,
ILLUMIN.BAS, DRAIN.BAS and INTERPOL.BAS) and two data files (DEM.DAT and SAMPLE.DAT). For the
ARC/INFO part of the assignment you will need two coverages:

FACETS apolygon coverage of triangular "facets"
EDGES a coverage containing the arcs defining these facets

Elevation M apping with Gridded DEMs. Examine the QuickBASIC program called RELIEF.BAS. This program
draws a six-color elevation map for agrid, using the elevation data stored in DEM.DAT. The program divides the range of
elevation into six classes, and each class is assigned a different color. These colors are defined in the DATA statement on
line 540 of the program. The first number defines the color of the lowest elevation class, the second number defines the color
of the second-lowest elevation class, and so on.

Run the program several times, changing the valuesin line 540 to obtain different colors for the elevation ranges.
Try to obtain a sequence of colors that conveys a sense of increasing elevation. The colors available to you are:

0 = hlack 1 = blue 2 = green 3 = cyan

4 =red 5 = magenta 6 = brown 7 = white

8 = dark gray 9 = light blue 10 = light green 11 = light cyan
12 = lightred 13 = light magenta 14 = light yellow 15 = white

After running the program, answer the following questions. (Y ou will need to monitor the statistics printed to the
screen to answer some of them.)

1 What is the best color sequence you obtained?

2. a) How many cells are in the gridded DEM? b) Assuming that the grid is
sguare (i.e., has the same number of rows and columns), how many
rows and columns arein the grid? ¢) Does your answer agree with the
number of elevation values read in by the program from DEM.DAT?

3. a) What are the maximum and minimum cell elevations (z-values)?
b) Why does the program need to compute these values?

4, How does the program divide elevations into classes for coloring?
Interpolating to a Grid: Examine the QuickBASIC program called INTERPOL.BAS. This program interpolates

the elevations (z-values) for the cellsin a gridded DEM using the x,y,z-values for a sample of randomly-selected points. The
program uses a distance-weighted interpolation method. For each cell in the grid, the elevation of the cell zc is calculated as:

n Z
2

i=1 dic
Z.=

v

2
i=1 dic

where z; = the elevation of random point i
dic = the distance between random point i and cell ¢
n = the number of random points

The program uses a set of random points stored in afile called SAMPLE.DAT to perform the interpolation. Thisfile
contains atotal of 200 points. When you run the program, you can select any humber of points between 1 and 200 as the size
of your sample. The program will read this many points from the file.

The program uses only a portion of this sample of pointsto interpolate the elevation for agiven cell. This number of
pointsit usesis defined by the size of the "neighborhood." Y ou can define the neighborhood to contain any number of points
between 1 and the total size of your sample.

To illustrate how the program works, imagine that you selected a sample size of 20 points and a neighborhood size
of 5 points. The program would read in 20 points from SAMPLE.DAT. For each cell in the grid, it would compute the
distance between the cell and each of these points. It would then select the 5 closest points to the cell to interpolate the &ll’'s
elevation.

Run the program and create an output file called DEM1.DAT (or anything except DEM.DAT so that you don't
destroy the original DEM). To minimize execution time, choose arelatively small value for the sample size (< 25) and the
neighborhood size (< 5). Now run RELIEF.BAS after changing the input file name in the program to match the output file
you just created.

5. a) In general, how does the appearance of the resulting relief map differ
from the maps you created previously? b) How might you account for
this difference?

Run INTERPOL.BAS several times, experimenting with different sample and neighborhood sizes. Note that
execution time rises dramatically as you increase the val ues of these variables.

6. How do changes in these variables affect the appearance of the map?

7. a) How do zmin and zmax compare to the val ues you obtained
originaly (question 3)? b) How might you account for any differences?

Shaded Relief Mapping with Gridded DEMs. Examine the QuickBASIC program called ILLUMIN.BAS. This
program draws a shaded relief map for the same grid you used above (i.e., DEM.DAT). The program creates this map by
calculating the slope and aspect of every cell in the grid based on the elevations of the cell’s eight neighbors. The illumination
of the cell is calculated assuming alight source (i.e., the sun) located 45 degrees above the horizon in the south-west sky.
Before computing the slope and aspect, cell elevations are scaled by a vertical exaggeration factor, which effectively stretches
the range of illumination values for the grid.

Run the program several times, experimenting with different values for the illumination angle and vertical
exaggeration factor.

8. What is the effect on the map of changing these values?

Deriving Drainage Networ ks from Gridded DEMs. Examine the QuickBASIC program called DRAIN.BAS.
This program extracts and maps the drainage network for the same grid you used above (i.e.,, DEM.DAT). It does this by
assuming that surface water can flow into any of the eight neighbors of a given cell. After determining the drainage patterns
between cells, the program draws the drainage features for those cells that drain, at minimum, the number of cells defined by
athreshold value. For example, if the threshold value was 4, then the drainage patterns would be drawn for every cell that
drained at least 4 other cells, but would not be drawn for cells draining 3 or fewer cells.

Run the program several times, experimenting with different threshold values.

9. What effect does changing the threshold value have on the appearance
of the drainage network?

10. List at least two problems with the appearance of the drainage network.

TheTIN Model: Switch to the directory containing the FACETS and EDGES coverages. Use the ARCS command
in ARCPLOT to display EDGES. Create asimple slope map by typing SHADESET COLOR to choose a shadeset file, and
POLYGONS FACETS DEGREE_SLOPE SLOPE.LUT to shadein the triangular facets with different shades of grey
based on their slopes. (The brighter the shade of grey, the steeper the slope.) Observe that the areas being filled with grey are
the same triangular patches defined by the arcsin the EDGES coverage. Y ou can use ARCS to display these arcs again.

Leave ARCPLOT and enter TABLES. Examine the arc attribute file for the EDGES coverage and the polygon
attribute file for the FACETS coverage.

11. a) List the items contained in each of these files. b) Based on the names of
these items and your knowledge of TINs, what do you think each of these
items refersto?

Select the arc attribute file for the EDGES coverage. Now use the RESELECT command to extract only those arcs
surrounding polygon # 457 (i.e., only those arcs for which the right polygon # is 457 or the left polygon # is 457). If you use
the command correctly, exactly 3 arcs should be reselected.

12. List the command you used to reselect these arcs.
13. Fill in the following data for these arcs.

FNODE# TNODE# LPOLY# RPOLY# EDGES# ZFROM ZTO
14. Draw adiagram illustrating these three arcs and showing:

a) the polygon # of the triangular facet enclosed by the arcs

b) the polygon # of each of the three adjacent triangular facets

c) the node # of each node

d) the elevation (z-value) of each node

€) the arc # of each of the three arcs

f) the direction in which each arc was digitized

Return to ARCPLOT and again display the arcsin the EDGES coverage. Use the RESELECT command as you did
before to extract only those arcs surrounding polygon # 457. (Remember that the syntax of the RESELECT command in
ARCPLOT isdifferent from that in TABLES.)

Change the line color and display the arcsin EDGES again. (There will of course only be three arcs after you do the
reselection.) Thiswill highlight polygon # 457. Now use the IDENTIFY command to obtain the polygon # of each triangular
facet adjacent to polygon # 457. Redraw the above diagram, if necessary, correcting for any misorientation.

Use the IDENTIFY command to obtain the slope and aspect of polygon # 457.

15. What slope and aspect values did you obtain?

16. Does the aspect value you obtained make sense in terms of the z-values
of the nodes in your diagram? (Aspect varies between 0 and 360 degrees,

and is measured in a clockwise direction from the 12 o’'clock position.)

Optional: Revise INTERPOL.BAS to perform interpolation based on:;

n zi

where « is a variable entered by the user. Run the program for values of «
between 1 and 3. How does changing this variable affect the appearance of the
relief map? Hand in a copy of the revised program.

Assignment 5

Program Listing
100 'RELIEF.BAS -- A program to display a relief map in 6 colors.
400 DIM z(90, 90)
410 SCREEN 12
420 CLS
430 WINDOW (-10, -10)-(134, 100)
500 'Assign colors for elevation ranges.
510 FORk=1TO®6
520 READ col(k)
530 NEXT
540 DATA 1,2,34,5,6
600 ‘Input elevation raster from file and determine zmax and zmin.
605 OPEN "DEM.DAT" FOR INPUT AS #1
610 zmax = -10000
615 zmin = 100000
630 FORi=1TO9
635 FORj=1TO 90
640 INPUT #1, z(, j)
645 IF z(i, j) > zmax THEN zmax = z(j, j)
650 IF z(i, j) < zmin THEN zmin = z(, j)
655 NEXT
660 LOCATE 21, 60: PRINT "zmin = "; zmin;
670 LOCATE 23, 60: PRINT "zmax = "; zmax
680 LOCATE 25, 60: PRINT "no. of cells ="; 1 * 90;
690 NEXT
800 'Determine color for each elevation and fill pixel.
820 FORi=1TO S0
830 FORj=1TO 90
840 IF z(i, j) = zmax THEN
850 c=6
860 ELSE
870 ¢ = INT((z(i, j) - zmin) / (zmax - zmin) * 6) + 1
880 END IF
890 LINE @, j)-G + 1, j + 1), col(c), BF
900 NEXT
910 NEXT

1000 END

10

20
30
40
50
60
70

100
105

190
200
205
210
215
220
225
230
250
255
260
265
270
275

300
305
310
315
325
330
335

400

410

600

630
640

'INTERPOL.BAS

'This program interpolates a regular 90x90 grid of elevations

'from the x,y,z-coordinates of a set of random points.

'The program uses an weighted-distance method (inverse of

'square of distance) for a neighborhood of points around each
‘grid cell. The size of the neighborhood is defined by the user.
'The user also defines the number of random points.

'Input number of random points (npts) and
'number of points in neighborhood (neigh).

CLS
INPUT "How many random points do you want to use? ", npts
IF npts <1 THEN
PRINT
PRINT "You must use at least one point.”
PRINT
GOTO 200
END IF
IF npts > 200 THEN
PRINT
PRINT "You cannot use more than 200 points."
PRINT
GOTO 200
END IF

INPUT "How many points do you want in the neighborhood? ", neighs
IF neighs > npts THEN
PRINT
PRINT "Cannot be greater than the number of random points."
PRINT
GOTO 300
END IF

'Dimension necessary arrays.
DIM prow(npts), pcol(npts), pz(npts), dist(npts), s(npts)
'Open data files.

OPEN "SAMPLE.DAT" FOR INPUT AS #1
OPEN "DEM1.DAT" FOR OUTPUT AS #2

700

710
720
730

900
910

930
940
950

2000

2100
2200

3000

3200
3300
3400
3500
3600

4000

4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650

'Read in x,y,z-coordinates for random points.

FORi=1TO npts
INPUT #1, prow(i), pcol(i), pz(i)
NEXT

'Initialize a vector that will hold the numbers 1 through npts, sorted
'by the distance between random point i and the current grid cell.

FOR i = 1 TO npts
s) =1
NEXT

'Main loop to interpolate value for each grid cell.

FORr=1TO90
FOR ¢=1TO90

‘Calculate distance between grid cell and each random point.

FORi=1TO npts

distr = r - prow(s(i))

distc = ¢ - pcol(s(i))

dist2(s(i)) = distr * distr + distc * distc
NEXT

'Sort random points by distance from current grid cell.

sorted =0
DO WHILE sorted =0
sorted =1
FORi=1TO (npts - 1)
IF dist2(s(i)) > dist2(s(i + 1)) THEN
temp = s(i)
s@) =sG+1)
si + 1) = temp
sorted =0
END IF
NEXT
LOOP

5000 'Interpolate the value for the current grid cell.

5200 numer = 0

5250 denom = 0

5300 FOR i =1 TO neighs

5350 numer = numer + (pz(s(i)) / dist2(s(i)))
5400 denom = denom + (1 / dist2(s(i)))

5450 NEXT

5500 PRINT #2, numer / denom

5550 NEXT

5600 NEXT

10000 END

100

130

150
160
170

210
220
230
240

300

310
320
330
340

400

410
420
430
460
470
480
490

600

610
620
650
660
680
690
710
720
730
740
750
760
770

1000

'ILLUMIN.BAS -- a program to create a shaded relief map.
‘exag = vertical exaggeration; sun = illumination angle.

exag =20
sun = 45
tansun = TAN(sun * 3.14159 / 180)

DIM z(90, 90)

SCREEN 12

CLS

WINDOW (-10, -10)-(134, 100)

'Assign grey scale for illumination.

FORk=1TO4
READ col(k)

NEXT

DATA 0,8,7,15

'Input elevation raster from file.

OPEN "DEM.DAT" FOR INPUT AS #1
FORi=1TO90
FORj=1TO 9
INPUT #1, z(i, j)
z(i, j) = z(i, j) * exag
NEXT
NEXT

'Step through each cell, omitting boundary cells.

FORi=2TO 89
FORj=2TO 89
b=-zG-1,j-1)-2z(G-1,))-zG-1,j+ 1)
b=(b+zi+1,j-D+z0+1L)+zG+1,j+1N /9
c=-z(i-1,j-1)-2z(G,j-1)-zG+1,j-1)
c=(c+z(-1,j+D+z0,j+D+z(i+1,j+1) /9
il = (b + ¢ + tansun)
il=i11/SQRMbA2+c”2+1)/SQR(2 + tansun ~ 2)
IFil<0THENil =0
c=INTGl *4)+ 1
LINE @, j)-G + 1, j + 1), col(c), BF
NEXT
NEXT

END

1100

1120
1130
1140

1160

1210
1220
1230
1240

1400

1410
1420
1430
1460
1470
1480

1600

1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780

'DRAIN.BAS -- a program to develop a reduced drainage network.

'Drainage net will be drawn for all cells that drain at minimum the
‘number of cells specified by threshold value. (e.g., if threshold = 2
'then drainage net will be drawn for cells that drain 2 or more cells.)

threshold = 2

DIM z(90, 90), t0i(90, 90), t0j(90, 90), counter(90, 90)
SCREEN 12

CLS

WINDOW (-10, -10)-(134, 100)

'Input elevation raster from file.

OPEN "DEM.DAT" FOR INPUT AS #1
FORi=1TO 90
FORj=1TO 90
INPUT #1, z(i, j)
NEXT
NEXT

'For each cell, determine which cell it drains into.

FORi=2TO 89
FORj=2TO 89
zmin = 1000
FORn=-1TO1
FORm=-1TO 1
IF z(i + n, j + m) < zmin THEN
zmin = z(i + n, j + m)
toi(i,) =i+ n
toji, j) =j+m
END IF
NEXT
NEXT
IF toi(i, j) = 1 AND toj(i, j) = j THEN
toi(i, j) = 0
toj(i, j) = 0
END IF
NEXT
NEXT

1900 'Initialize matrix used to accumulate flow into each cell.

1910 FORi=1TO90

1920 FORj=1TO 90
1930 counter(i, j) = 0
1940 NEXT

1950 NEXT
11000 'Follow drainage route of each cell.

11010 FORi=1TO9

11030 FORj=1TO90

11050 ix=1

11070 X =

11090 DO WHILE ix <> 0 AND jx <> 0

11110 counter(ix, jx) = counter(ix, jx) + 1
11130 ix = toi(ix, jx)

11150 jx = toj(ix, jx)

11170 LOOP

11190 NEXT

11210 NEXT
11400 '‘Draw drainage net.

11410 FORi=1TO90

11420 FORj=1TO90

11430 IF counter(i, j) >= threshold THEN

11440 IF toi(i, j) <> 0 AND toj(i, j) <> 0 THEN
11450 LINE (i, j)-(toii, j), toj(i, j))

11460 END IF

11470 END IF

11480 NEXT

11490 NEXT

12000 END

10.

11.

Assignment 5
Answer Key

(Results will vary here.)

a) 8100 b) 90 rows and 90 columns c¢) Yes, since the program contains a
nested loop withi=1to 90 and j=1 to 90.

a) 100 and 0 b) To divide the range of elevations into classes for coloring.

Equal interval slicing. Basically, the range of values is divided into six
equally-sized classes. (See line 870.)

a) They are more generalized and contain some artifacts. b) The program
is estimating the values in 8100 cells from only a few points.

Increasing either variable reduces amount of generalization and number
of artifacts.

a) New zmin is larger and new zmax is smaller. b) The map has been
generalized, so the maximum and minimum values are not as extreme.

Changing the illumination angle changes the amount of shadow. The
higher the sun, the brighter the map. As the vertical exaggeration factor
is increased, surface shape becomes more apparent.

An increase in the threshold results in a decrease in the number of
drainage features displayed on the map.

Many features are unconnected to the network. The network only
allows streams to flow in eight directions. In areas of low relief, there
are sets of parallel streams very close to each other. (Others...)

FACETS.PAT

AREA polygon area
PERIMETER polygon perimeter
FACETS# coverage#
FACETS-ID coverage-id
DEGREE_SLOPE slope in degrees
ASPECT aspect

SAREA surface area of polygon

12.

13.

14.

15.

16.

EDGES.AAT

FNODE# from node #
TNODE# to node #

LPOLY# left polygon #
RPOLY# right polygon #
LENGTH arc length

EDGES# coverage#

EDGES-ID coverage-id
DEGREE_SLOPE slope in degrees
LSLOPE slope of left polygon
RSLOPE slope of right polygon
LASPECT aspect of left polygon
RASPECT aspect of right polygon
ZFROM z-value of from node
ZTO z-value of to node

RESELECT RPOLY# = 457 OR LPOLY# = 457

FNODE# TNODE# LPOLY# RPOLY# EDGES# ZFROM ZTO

167 107 457 440 671 1240 1140
124 167 457 456 693 1180 1240
124 107 458 457 694 1180 1140
node 124
(z = 1180)

polygon polygon
456 458
node 167 node 107
(z = 1240) arc 671 (z = 1140)
polygon
440

SLOPE =7.261 ASPECT = 38.293

Yes. (Explain in terms of the direction in which the facet is facing.)

Assignment 5
Program Listing (Answer Key)

10 'INTERPOL.BAS

20 'This program interpolates a regular 90x90 grid of elevations
30 'from the x,y,z-coordinates of a set of random points.

40 'The program uses an weighted-distance method (as defined by
50 'the value of alpha) for a neighborhood of points around each
60 'grid cell. The size of the neighborhood is defined by the user.
70 'The user also defines the number of random points.

100 'Input number of random points (npts) and

105 '‘number of points in neighborhood (neigh).

190 CLS

200 INPUT "How many random points do you want to use? ", npts
205 IF npts <1 THEN

210 PRINT

215 PRINT "You must use at least one point."

220 PRINT

225 GOTO 200

230 END IF

250 IF npts > 200 THEN

255 PRINT

260 PRINT "You cannot use more than 200 points."

265 PRINT

270 GOTO 200

275 END IF

300 INPUT "How many points do you want in the neighborhood? ", neighs
305 IF neighs > npts THEN

310 PRINT

315 PRINT "Cannot be greater than the number of random points."
325 PRINT

330 GOTO 300

335 END IF

340 ‘Input value of alpha.

345 INPUT "What value of alpha do you want? ", alpha

350 IF alpha > 3 or alpha < 1 THEN

355 PRINT

360 PRINT "Alpha should be between 1 and 3."

365 PRINT

370 GOTO 345

375 END IF

380

385

400

410

600

630
640

700

710
720
730

900
910

930
940
950

2000

2100
2200

3000

3200
3300
3400
3500
3600

'Divide alpha by 2 rather than taking square root of distance in line 3500.
alpha = alpha / 2

‘Dimension arrays.

DIM prow(npts), pcol(npts), pz(npts), dist(npts), s(npts)

'‘Open data files.

OPEN "SAMPLE.DAT" FOR INPUT AS #1
OPEN "DEM1.DAT" FOR OUTPUT AS #2

'Read in x,y,z for random points.

FOR1=1TO npts
INPUT #1, prow(i), pcol(i), pz(i)
NEXT

'Initialize a vector that will hold the numbers 1 through npts, sorted
'by the distance between random point i and the current grid cell.

FORi=1TO npts
s(i) =1
NEXT

'‘Main loop to interpolate value for each grid cell.

FORr=1TO90
FORc=1TO90

'Calculate distance between grid cell and each random point.

FORi=1TOnpts

distr =r - prow(s(i))

distc = c - pcol(s(i))

dist2(s(i)) = distr * distr + distc * distc
NEXT

4000

4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650

5000

5200
5250
5300
5350
5400
5450
5500
5550
5600

10000

'Sort random points by distance from current grid cell.

sorted =0
DO WHILE sorted =0
sorted =1
FORi=1TO (npts - 1)
IF dist2(s(i)) > dist2(sd + 1)) THEN
temp = s(i)
s@)=si+1)
s(i + 1) = temp
sorted = 0
END IF
NEXT
LOOP

'Interpolate the value for the current grid cell.

numer = 0

denom = 0

FOR i =1 TO neighs
numer = numer + (pz(s(i)) / dist2(s(i)) * alpha)
denom = denom + (1 / dist2(s(i)) * alpha)

NEXT
PRINT #2, numer / denom
NEXT
NEXT
END

Assignment 6
Kriging and the Semivariogram

Objectives: In thisassignment you will be using QuickBASIC to construct a semivariogram and perform kriging.

Files: Thisassignment reguires one QuickBASIC program (SEMIVAR.BAS) and two data files (ELEVPTS.DAT
and PRECPTS.DAT).

The Semivariogram: Each of the two data files contains the x,y,z-coordinates of 100 random points. In
ELEVPTS.DAT the z-coordinates refer to elevations (in meters), and in PRECPTS.DAT they refer to annual precipitation (in
millimeters). Both data files were constructed from raster datafiles of Africa.

The QuickBASIC program called SEMIVAR.BAS computes the information necessary to construct the
semivariogram. Each line of the program’s output contains two values. Thefirst is the distance (or spatial lag), and the
second is the computed semivariance for that spatial lag.

Run the program for each of the two data files and make a printout of each of the resulting output files. Using these
printouts, draw the semivariogram for each of the two datafiles, putting the spatia lag on the x-axis and the semivariance on
the y-axis. Hand in a copy of your semivariograms.

1 What is the approximate value of the sill, range and nugget for each of
the datafiles?
2. Is the general form of the semivariogram the same or different for the

two datafiles? What does this say about spatial variation of elevation
Versus precipitation?

Kriging: The semivariogram can be used to perform kriging, atype of interpolation. The objective of this part of
the assignment is to use the semivariogram derived from the elevation data file to interpolate the elevation at a selected point
based on the elevations at three neighboring points. In this case the interpolated elevation or z-value (z0) is estimated as

Zy = 7\.1 Z] + 1222 + 7»323 (1)

where z; through z; are the observed z-values at points 1 through 3, and A, through A3 are a set of weights derived
from the semivariogram. The observed z-values of the points are as follows:

z; = 1000 zp = 1500 z3 = 2000

Computation of the weights in the above equation is most easily achieved using matrix algebra. Most of this
computation has been done for you:

A = 291x107 x¥(0,1) + 1.64x107 x¥(0,2) + 1.27x10-7 x ¥(0,3) + 0.125 (2)
Ay = 1.64x10°7 x(0,1) - 1.88x1077 x ¥(0,2) + 2.38x10-8 x ¥(0,3) + 0.430 (3)
A3 = 1.27x107 x ¥(0,1) + 2.38x10-8 x ¥(0,2) - 1.51x10°7 x ¥(0,3) + 0.446 4

In these equations, y(0,1) is the semi-variance for the interpolated point (point 0) and neighboring point 1, y(0,2) is
the semi-variance for the interpolated point and neighboring point 2, and y(0,3) is the semi-variance for the interpolated point

and neighboring point 3. These values can be obtained directly from your semivariogram dataif you know the distance
between point 0 and each of the three neighboring points. Use the following distance values:

distance between point 0 and neighboring point 1: 5

distance between point 0 and neighboring point 2: 4

distance between point 0 and neighboring point 3: 3
You'e on the right track if you got a value of 5,628,776 for y(0,1).

3. Use equations (2), (3) and (4) to compute the values of A4, A, and As. (If
the three computed values do not sum to approximately 1.0, something
went wrong in your calculations.)

4, Use equation (1) to compute the value of z,.

Assignment 6
Program Listing

100 'SEMIVAR.BAS

150 'This program computes the semivariance from a set of points.
200 CLS

210 INPUT "What is the name of the input file? ", infile$

220 INPUT "What do you want to call the output file? ", outfile$
250 'Open data files for input and output.

260 OPEN infile$ FOR INPUT AS #1

270 OPEN outfile$ FOR OUTPUT AS #2

300 'Hard-wire values for some key variables.

310 npts = 100 'Number of points in input file.

320 maxd = 20 '‘Approx maximum distance between cells.
400 '‘Dimension a bunch of arrays.

410 DIM x(npts), y(npts), z(npts)

420 DIM variance(maxd), count(maxd)

500 'Input the x, y and z coordinates for the points.

510 FOR i =1 TO npts

520 INPUT #1, x(@i), y(i), z@)

530 NEXT

600 ‘Initialize variance and count to zero for all spatial lags.

610 FOR k = 0 TO maxd

620 variance(k) = 0

630 count(k) = 0

640 NEXT

700 ‘Compute variance for all points separated by a given spatial lag.

710 FORi=1TO npts

715 PRINT "Working on point "; i

720 FOR j = 1 TO npts

730 xdist = x(i) - x(j)

740 ydist = y(@) - y(j)

745 zdiff = z(i) - z(j)

750 dist = SQR(xdist ~ 2 + ydist * 2)

760 disti = CINT(dist)

770 variance(disti) = variance(disti) + zdiff 2
780 count(disti) = count(disti) + 1

790 NEXT

800 NEXT

900 'Print semivariance and spatial lag.

910 FOR k = 0 TO maxd

920 IF count(k) <> 0 THEN

930 PRINT #2, k; .5 * variance(k) / count(k)
940 END IF

950 NEXT

1000 END

Assignment 6

Answer Key
Elevation: sill = 11,876,000 range = 13 nugget = 385,000
Precipitation: sill = 578,000 range =5 nugget = 7,600

The form is different. Elevation has a greater range than precipitation,
indicating that, over short distances, precipitation is more variable.

A1 =-0.501 Ay =0.719 A3 =0.782

zg = -0.501 (1000) + 0.719 (1500) + 0.782 (2000) = 2141.5

’CE-—

£ o

o =

-

Lo B

3

E 7 ELEVATION

.-

(SR

o)

8o

~

[I—

S

! —

-

£

[J—

2]

(=)
TT T T T 1T T T T 1T 1T T T 1T
0 5 10 15

spatial lag

o

O

“©

3 2

ml.f')

2]

5 2 PRECIPITATION

£ S 7

£

Q)O

SR

(o]

.HO

8 &

>(\J

s o

£ S

o

«©

(=)
T T 1T T T T T T 1T 1T T T T 11
0 5 10 15

spatial lag

Assignment 7
Uncertainty, Fuzzy Logic and Relational Databases

Objectives: In thisassignment you will be using fuzzy logic in arelational database schema to manipulate
uncertainty in spatial data.

Representing Uncertainty in a Database: Uncertainty in spatial databases occurs because the features contained in
these databases are abstractions of real-world phenomena. For example, a database containing the digitized outline of the
Devereaux Slough contains uncertainty because the boundaries of the Slough change from season to season. A map of
vegetation typesin the Los Padres Forest contains uncertainty because it is necessary to generalize vegetation types in order
to produce alegible map. A set of polygons representing different soil typesin the Goleta Valley contains uncertainty
because the boundary between adjacent soil types may actually be afairly wide zone in which the soil properties of one soil
type gradually merge with those of another soil type.

These exampleillustrate that the spatial databases you work with in a GIS are not accurate "snapshots" of the real
world, but instead are imprecise "models’ in which the degree and nature of uncertainty depends on the type of data
represented and the purposes for which the database was designed.

Fuzzy logic can be used to represent uncertainty in spatial databases and manipulate this uncertainty as data are
transformed by GIS functions. One way to implement fuzzy logic is to define a " membership function” for the featuresin the
database. The membership function, which is usually denoted by the letter m, varies between 0.0 and 1.0 for any feature.
This value indicates the degree of uncertainty in the feature. For example, assume that you assigned a value of m to each of
the polygonsin asoil map. A value of m near 1.0 would indicate little uncertainty (i.e., you are reasonable confident that the
soil type of the polygon is correct), while a value near 0.0 would indicate a great deal of uncertainty (i.e., you are not very
confident that the soil typeis correct).

Y our first task in this assignment is to examine how the membership function can be used to represent uncertainty.
Assume that you have digitized the two maps depicted below. Thefirst (VEG) shows vegetation types and the second
(SLOPE) shows slope classes. Both maps cover the same geographical area. Y ou can think of each digitized map as being
equivalent to an ARC/INFO coverage.

The polygon attribute tables for the two coverages are also shown below. These tables are named VEG.PAT and
SLOPE.PAT respectively. Theitems called "veg-id" and "slope-id" refer to the polygon numbers on the maps.

"VEG" "SLOPE"

VEG.PAT SLOPE.PAT
veg-id veg-type slope-id slope-class
1 chaparral 1 steep
2 sage brush 2 gentle
3 grass 3 flat
4 sage brush 4 gentle
5 barren 5 steep

Now assume that you have available the following tables (called VEG.MEM
and SLOPE.MEM), which indicate the membership function values for each
veg-type and slope-class value.

VEG.MEM SLOPE.MEM
veg-type veg- slope-class slope-u.
chaparral 0.8 steep 0.9
sage brush 0.7 gentle 0.8
grass 0.8 flat 0.6
barren 0.5

In order to use these membership function values to represent uncertainty, you will have to perform arelational
database operation known as arelational join. This operation involves merging the attributes from two different tables based
on acommon item (sometimes refered to as the "key" item). For example, if you performed arelational join on VEG.PAT
and VEG.MEM, you would obtain a veg-m value of 0.8 for the polygon with aveg-id value of 1, based on the common veg-
type value of "chaparral ."

Using arelational join, modify the polygon attribute tables for VEG and SLOPE by inserting the appropriate
membership function values for each polygon. Record your answers in the table below.

VEG.PAT SLOPE.PAT

veg-id veg-type veg-ii slope-id slope-class slope-i
1 chaparral 1 steep
2 sage brush 2 gentle
3 grass 3 flat
4 sage brush 4 gentle
5 barren 5 steep

Manipulating Uncertainty in GI S Operations. Imagine that the two coverages are merged to create the following

coverage (called "MERGED").

"MERGED™

How is the membership function manipulated as the coverages are merged in thisway? In order to answer that
question, you first need to fill in the following polygon attribute table for MERGED based on the modified polygon attribute
tables for VEG and SLOPE.

MERGED.PAT

merged-id _veg-id __ slope-id veg-type _ slope-class veg-ll __slope-u

As you can see from this table, each polygon in MERGED has two membership function values, one from each of
the two input coverages. The way in which these membership function values are combined depends on the way in which the
attributes from the two input coverages are manipulated. Consider the set of polygonsin MERGED for which veg-type =
"chaparral" and slope-class = "steep”. Thereisone polygon in this set (i.e., merged-id = 1).

The question that now arisesis, "How certain are you that this polygon actually has a veg-type of chaparral and a
slope-class of steep?' To answer this question you need to combine the membership function values from the two input
coverages. In this case the combined membership function value is equal to the minimum of the veg-m and slope-m values
for the polygon. Because the question is concerned with uncertainty in both input attributes (i.e., veg-type and slope-class),
the result cannot be any more certain than the least certain of these attributes. In the example, veg-m = 0.8 and slope-m = 0.9
for the selected polygon, and therefore the combined membership function value is 0.8.

One might also ask, "How certain are you that the selected polygon actually has a veg-type of chaparral or a slope-
class of steep?' This question is based on the logical operator "or" while the previous question is based on the logical
operator "and." In the case of the or operator, the combined membership function value is defined as the maximum (rather
than the minimum) of veg-m and slope-m. Because you are concerned with uncertainty in either input attribute (not both) the
result is as certain as the most certain of these attributes. Thus the combined membership function value for the selected
polygonis 0.9.

For each set of selection criteria below, list the set of polygons that meets the criteria. Then compute the combined
membership function value for each polygon based on the specified logical operator.

Selection criteria: veg-type = "barren” and slope-class = "gentle"
Logical operator: and

Selection criteria: veg-type = "sage brush" and slope-class = "flat"
Logical operator: and

Selection criteria: veg-type = "barren" and slope-class = "steep"”
Logical operator: or

Selection criteria: veg-type = "sage brush" and slope-class = "gentle"
Logical operator: or

Similarity Relations. Fuzzy logic can also be used to examine how closely a set of selected polygons conform to a
particular set of criteria. For example, imagine that you selected all polygons with veg-type = "sage brush" and slope-class =

"flat". Note that severa other polygons have similar attributes but do not conform exactly to the criteria you have specified
(e.g., polygons with veg-type = "sage brush" and slope-class = "gentl€"). These polygons are quite similar to the set of
polygons that you have selected, but would not actually be included in the selected set.

Such similarities can be handled using the concept of "similarity relations.” A similarity relation is simply atable
indicating the degree of similarity between different values of an attribute. Consider the following two similarity relations,
the first for veg-type values and the second for slope-class val ues.

chaparral sage brush grass barren
chaparral 1.0 0.8 04 0.0
sage brush 0.8 1.0 0.6 0.0
grass 04 0.6 1.0 0.0
barren 0.0 0.0 0.0 1.0
steep gentle flat
steep 1.0 0.5 0.0
gentle 0.5 1.0 0.5
flat 0.0 0.5 1.0

The interpretation of these tables isrelatively straightforward. For example, look at the second table, and follow the
row labelled "steep™ until you hit the column labelled "gentle." The value of 0.5 indicates the degree of similarity between
"steep” and "gentle." Thereis more similarity between "steep" and "gentle" than between "steep” and "flat," for which the
similarity value givenin the tableis 0.0. Note that the similarity between any value and itself is always 1.0, and that each
table is symmetrical.

It is easier to conceptualize the similarities between slope classes than between vegetation types, but, as shown in the
second table, there may be context-dependent dimensions along which the similarity between different vegetation types can
also be measured.

With the aid of these similarity relations, it is possible to formulate "fuzzy" responses to questions about the
attributes of any polygon. For example, you might ask how closely the polygon with merged-id = 1 conforms to the criteria
of veg-type = "sage brush" and slope-class = "gentle". From MERGED.PAT you can easily determine that, for this polygon,
veg-type = "chaparral" and slope-class = "steep”. The above similarity relations show that the similarity between "sage
brush" and "chaparral” is 0.8 and that the similarity between "gentle" and "steep” is 0.5. Since you asked a question involvirg
an and (rather than an or), the minimum of the two similarity valuesis used. Thus the polygon has asimilarity of 0.5 to the
criteriayou specified. By substituting the appropriate attribute values, the same approach can be used for any other polygon.

If the question involves an or, then the maximum of the two similarity valuesisused. For example, if you asked
how closely the polygon with merged-id = 1 conforms to the criteria of veg-type = "sage brush" or slope-class = "gentle", the
answer would be 0.8, the maximum of the two similarity values.

Compute how closely each polygon in MERGED conforms to the following criteria:
veg-type = "grass’ and slope-class = "steep”
veg-type = "chaparral" or dope-class = "flat"

Optional: Implement the membership function concept in ARC/INFO. Y ou can use the SITES and DEVELOP
coverages from Assignment 3. Each item in the polygon attribute table for a coverage may have its own membership
function. (You can add itemsto the tableif you want.) Usethe relational join capability of INFO to incorporate the
membership function values into the polygon attribute tables of each coverage. Use the UNION command to overlay the two
coverages and merge their attributes. Show how the membership function values from the input coverages would be
combined when manipulating the attribute datain different ways.

Assignment 7

Answer Key
VEG.PAT SLOPE.PAT
veg-id veg-type veg-u slope-id slope-class slope-i
1 chaparral 0.8 1 steep 0.9
2 sage brush 0.7 2 gentle 0.8
3 grass 0.8 3 flat 0.6
4 sage brush 0.7 4 gentle 0.8
5 barren 0.5 5 steep 0.9
MERGED.PAT
merged-id veg-id _ slope-id _ veg-type slope-class veg-il _ slope-u
1 1 1 chaparral steep 0.8 0.9
2 1 2 chaparral gentle 0.8 0.8
3 2 2 sage brush gentle 0.7 0.8
4 3 2 grass gentle 0.8 0.8
5 4 2 sage brush gentle 0.7 0.8
6 2 3 sage brush flat 0.7 0.6
7 3 3 grass flat 0.8 0.6
8 4 3 sage brush flat 0.7 0.6
9 2 4 sage brush gentle 0.7 0.8
10 3 4 grass gentle 0.8 0.8
11 4 4 sage brush gentle 0.7 0.8
12 5 4 barren gentle 0.5 0.8
13 5 5 barren steep 0.5 0.9

Selection criteria: veg-type = "barren" and slope-class = "gentle"

Logical operator: and
Selected polygons (merged-id): 12

Membership function values:

Selection criteria: veg-type = "sage brush" and slope-class = "flat"

Logical operator: and
Selected polygons (merged-id): 6

Membership function values:

0.5

0.6

8
0.6

Selection criteria: veg-type = "barren" and slope-class = "steep”
Logical operator: or

Selected polygons (merged-id): 13

Membership function values: 0.9

Selection criteria: veg-type = "sage brush" and slope-class = "gentle"
Logical -operator: or

Selected polygons (merged-id): 3 5 9 11
Membership function values: 08 08 08 .8

veg-type = "grass" and slope-class = "steep"

merged-id similarity
1 min(0.4, 1.0) = 0.4
2 min(0.4, 0.5) = 0.4
3 min(0.6, 0.5) = 0.5
4 min(0.6, 0.5) = 0.5
5 min(0.6, 0.5) = 0.5
6 min(0.6, 0.5) = 0.5
7 min(0.6, 0.5) = 0.5
8 min(0.6, 0.5) = 0.5
9 min(0.6, 0.5) = 0.5
10 min(0.6, 0.5) = 0.5
11 min(0.6, 0.5) = 0.5
12 min(0.6, 0.5) = 0.5
13 min(0.6, 0.5) = 0.5

veg-type = "chaparral” or slope-class = "flat"

merged-id similarity
1 max(1.0, 0.0) = 1.0
2 max(1.0, 0.5) = 1.0
3 max(0.8, 0.5) = 0.8
4 max(0.4, 0.5) = 0.5
5 max(0.8, 0.5) = 0.8
6 max(0.8, 1.0) = 1.0
7 max(0.4,1.0) = 1.0
8 max(0.8,1.0) = 1.0
9 max(0.8, 0.5) = 0.8
10 max(0.4, 0.5) = 0.5
11 max(0.8, 0.5) = 0.8
12 max(0.0, 0.5) = 0.5

13 max(0.0, 0.0) = 0.0

