
UC Santa Barbara
NCGIA Technical Reports

Title
GIS Laboratory Exercises: Volume 2 Technical Issues (91-14)

Permalink
https://escholarship.org/uc/item/82g5s38x

Author
Veregin, Howard (editor)

Publication Date
1991-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/82g5s38x
https://escholarship.org
http://www.cdlib.org/

NCGIA
National Center for

Geographic Information and Analysis

GIS Laboratory Exercises:

Volume 2, Technical Issues

Edited by

Howard Veregin
University of California, Santa Barbara

Technical Report 91-14

May 1991

Simonett Center for Spatial Analysis State University of New York University of Maine
University of California 301 Wilkeson Quad, Box 610023 348 Boardman Hall
35 10 Phelps Hall Buffalo NY 14261-0001 Orono ME 04469-5711
Santa Barbara, CA 93106-4060 Office (716) 645-2545 Office (207) 581-2149
Office (805) 893-8224 Fax (716) 645-5957 Fax (207) 581-2206
Fax (805) 893-8617 ncgia@ubvms.cc.buffalo.edu ncgia@spatial.maine.edu
ncgia@ncgia.ucsb.edu

Preface

This set of labs is designed to illustrate and reinforce principles presented in Volume II: Technical Issues in GIS of
the NCGIA Core Curriculum in GIS (units 26 to 50). Since several of these labs were originally prepared in early 1989 for the
test version of the Curriculum, they have been presented to students a number of times and have undergone extensive
revision. We have also added some new labs to the original set.

While these labs are written for a specific software and hardware configuration, they are presented as models for
generic lab development. Please modify them to suit your own configurations and curriculum. To assist with this task, we
have included digital versions of the text. See Appendix A for more information.

Several people have contributed to the development of these labs. They were originally written by Michael
Goodchild, Karen Kemp and Howard Veregin. We would like to thank the students and faculty at the University of
California, Santa Barbara and other universities who participated in the evaluation of the Core Curriculum and provided
valuable revision suggestions. The National Science Foundation is also thanked for its contribution through the establishment
of the National Center for Geographic Information and Analysis.

Karen K Kemp
Santa Barbara, May 1991

Assignment 1
Coordinate Systems

Objectives: In this assignment you will be using some simple QuickBASIC programs to convert between different
coordinate systems, make distance calculations, and draw maps on the screen.

Files: This assignment requires four QuickBASIC programs (LL.BAS, GCDIST.BAS, EUCLID.BAS and
MAP.BAS) and a file containing coordinate data for Africa (AFRICA.DAT).

Coordinate System Conversions: Run the QuickBASIC program called LL.BAS to compute the latitude and
longitude for each of the points listed in Table 1. Points A through F were derived from 1:25,000 US Geological Survey
topographic maps of Maine. Points G and H were derived from a 1:100,000 topographic map of the area near Sydney,
Australia. Write your answers (in degrees, minutes and seconds) in the appropriate columns of the Table. Be sure to
designate latitudes with an N or an S, and longitudes with an E or a W.

1. a) Do the latitudes and longitudes you computed for the points seem to
be correct? (You will need to refer to a map to answer this.) b) Can you
account for any discrepancies you observe?

2. Compare your answers for points D and F. Can you account for the
difference in UTM Eastings for these two points?

Table 1.

UTM UTM UTM
Point Zone Easting Northing Latitude Longitude

A 19 416800 4627250
B 19 413390 4622340
C 19 254470 4672580
D 19 252025 4667800
E 18 737650 4667450
F 18 747975 4667800
G 56 330650 6241950
H 56 315300 6236050

Distance Calculations: Run the program GCDIST.BAS, which calculates the distance between points on the earth’s
surface using the great circle distance formula. The program assumes a value of 6371 km for the radius of the earth. Use the
latitude and longitude values you entered into Table 1 to calculate the great circle distance between each pair of points in
Table 2.

Table 2.

Difference as a
Pair of Great circle Euclidean percentage of
points distance (km) distance (km) Difference (km) Euclidean distance

A-B
C-D
G-H
D-F
C-E

Now examine the program and answer the following questions.

3. What computation is performed by lines 1700, 1900, 2200 and 2400?

4. a) Are all of the parentheses on line 2600 necessary? b) Write out the
line using the minimum number of parentheses needed to preserve the
meaning of the equation. c) Why would you want to use parentheses
when you don’t really need them?

5. If you were to increase the estimate of the earth’s radius by 1 percent,
how would the great circle distance estimates be affected?

6. a) What happens if you enter latitude and longitude values incorrectly
(e.g., enter characters instead of numbers, omit the commas, include too
many commas, etc.)? b) What happens if you enter invalid latitude or
longitude values (e.g., latitudes greater than 90 or longitudes greater
than 180)?

Load the program called EUCLID.BAS, which calculates distances between pairs of points based on the Euclidean
distance formula. Before you run this program, you will have to make several changes, as follows:

a) Insert an message between the quotation marks on line 1900.

b) Add the appropriate line number to the GOTO statement in line 2100.

c) Find and correct the error in line 2300.

d) Add a line (number 2400) to convert the computed distance to
kilometers. (UTM Northings and Eastings are given in meters, but
your answer should be expressed in kilometers.)

Save the program once you have made these changes. Run the program to calculate the Euclidean distance between
each pair of points listed in Table 2. Compute (by hand) the difference between the great circle and Euclidean distances, and
the difference as a percentage of the Euclidean distance. Enter your answers in the appropriate column in Table 2.

7. Based on your knowledge of the UTM projection, how might you
account for the differences in the values in the last column of Table 2?

Make a printout of EUCLID.BAS and hand it in along with the assignment.

Coordinate System Conversions: Now that you have some experience with QuickBASIC programming, open
LL.BAS again. Examine the program to answer the following questions.

8. a) What are the # symbols for in line 1700 and others following it?
b) Why are they used?

9. a) What are the ! symbols for in line 5300 and others following it?
b) Why are they used?

10. Lines 5000 to 5200 contain a loop that assigns a value to the elements of
an array called cmer. These elements are specified as cmer(zone), where
zone varies between 1 and 60. Using the equation given on line 5100,
calculate the value for cmer(22) and cmer(50).

cmer(22) =

cmer(50) =

11. After line 13100 you can observe occurrences of INT(LATITUDE),
INT(MIN) and INT(SEC). What does the INT function do and why is it
used here?

Graphics Programming: The final step in the assignment is to modify a QuickBASIC program (called MAP.BAS)
that displays a map of Africa on the screen using the Mercator projection. Run this program. The coastline of Africa should
appear in white. The dashed white horizontal lines are lines of latitude (parallels) ranging from 30 degrees N to 30 degrees S.
The central dashed line is the equator.

12. a) Based on the output of the program, would you say that lines of
latitude are evenly spaced on Mercator’s projection? b. If they are not
evenly spaced, then do they get closer or father apart as you move away
from the equator?

Now examine MAP.BAS more closely. You need to modify this program so that it displays a second map on top of
the Mercator map. This second map will be based on the Lambert cylindrical equal-area projection. Note that the procedure
for displaying the Mercator map is broken into three steps in MAP.BAS. Step 1 (lines 3000 to 4000) involves converting the
longitude and latitude values for Africa (read in from the file AFRICA.DAT) into x- and y-coordinates. Step 2 (lines 5000 to
5400) draws the Mercator map by connecting adjacent x-y coordinate pairs with straight lines. Step 3 (lines 6000 to 6700)
draws the lines of latitude for Mercator’s projection.

Modifying the program to display two maps is actually a very simple task. Basically, steps 1 through 3 must be
reproduced between lines 6700 and 20000, making a few changes in order to display the Lambert map in a different color.
There are only three important changes you need to make:

a) The equation for computing the y-coordinate for Mercator’s
projection is

y = LOG (TAN (p / 4 + j / 2))

where j is the latitude (in radians). You can see this equation in
action on lines 3900 and 6500 of the program. For the Lambert
projection, the equation is

y = SIN (j)

b) The white color of the Mercator map is defined by the number 15 in
lines 5300 and 6600. To get a different color, use a different number.

Any value between 0 and 15 is acceptable. Experiment or consult
the QuickBASIC programming manual.

c) The value 8738 in line 6600 draws the lines of latitude as dashed
lines on the Mercator map. You can also use this value for the
Lambert map but, since the equator is at the same location on both
maps, one of the equators will be completely hidden behind the
other. Experiment with other values here or consult the
QuickBASIC programming manual.

Once you have made the necessary changes to MAP.BAS, save the program as a text file. You may want to change
the name of the file (e.g., MAP1.BAS) to preserve the original program. Run the program after saving it. Make a printout of
your program and hand it in along with assignment.

13. Based on the output of your program, what can you say about the
relative stretching or flattening of shapes on the two projections as you
move away from the equator?

Optional: Modify the MAP.BAS program to display Tissot’s Indicatrix for the parallels 0, 10, 20 and 30 degrees S.
Display the Indicatrix ellipses on the right side of the map. Superimpose the ellipses for the Lambert projection over those for
the Mercator projection. Use the same colors for the ellipses that you used for the maps themselves.

For the Lambert projection, the equations for the major and minor axes of the Indicatrix (k and h, respectively) are

k = SEC (j) = 1 / COS (j)
h = COS (j)

where j is the latitude (in radians). For the Mercator projection, k and h are
equivalent:

k = h = SEC (j) = 1 / COS (j)

You will need to use the CIRCLE function to draw the ellipses. The aspect ratio for the function should be defined
as h/k and the "radius" of the ellipse should be defined as k/15 (the value of 15 is used as a simple scaling factor).

What does the Indicatrix tell you about relative amounts of angular deformation and areal exaggeration for the two
projections?

Hand in a printout of your program.

Assignment 2
Vector Data Structures (I)

Objectives: This assignment focuses on the manipulation of vector data. You will be using QuickBASIC to
compute polygon areas, perform point-in-polygon tests and locate line intersections.

Files: This assignment requires four QuickBASIC programs (PIP.BAS, DARTS.BAS, INTER.BAS and
FRACTAL.BAS) and two data files containing the vector representation of polygons (POLYGON.DAT and
POLYGON2.DAT).

Point-in-Polygon Test: The program called PIP.BAS contains a point-in-polygon algorithm that determines
whether a specified point falls within a given polygon. Before you can run this program you will have to make the following
additions between lines 100 and 5000:

a) Use the CLS statement to clear the screen.

b) Open the polygon data file for reading. The statement to use is:

OPEN "POLYGON.DAT" FOR INPUT AS #1

c) This data file defines a polygon as a set of x,y-coordinate pairs which,
when joined by straight-line segments, describe a closed geometric
figure. In order to read in the coordinates, you will first need to
know the number of coordinates in the file. This number is given in
the first line of the file. Read in this number and assign it to a
variable called n. The statement to use is:

INPUT #1, n

d) Use a DIM statement to dimension two arrays (called x and y) to store
the x,y-coordinate pairs. The dimension of these arrays should be
n+1 to allow the program to close the polygon (see step f).

e) Read in the x,y-coordinates from the data file and assign them to the
arrays called x and y. Use the following "for loop" so that the
subscript for these arrays (as defined by variable i) is automatically
increased (or "incremented") by a value of 1 each time a new
coordinate pair is read in.

FOR i = 1 to n
INPUT #1, x(i), y(i)

NEXT

f) Close the polygon by making the last coordinate pair the same as the
first, as follows:

x(n+1) = x(1)
y(n+1) = y(1)

g) Include a line containing a DO statement. This will begin a "do loop"
that will be used when prompting the user to enter the x,y-
coordinates of a point from the keyboard.

h) Read in the x,y-coordinates of a point from the keyboard. This will be
the point for which the point-in-polygon test will be performed. Use
a statement something like the following:

INPUT "Enter x-coordinate: ", xpt

This will read in the x-coordinate of the point and assign it to a
variable called xpt. Include a similar line to read the y-coordinate and
assign it to a variable called ypt.

Lines 5000 through 7700 perform the point-in-polygon test and print the results out to the screen. After line 7700,
you will need to include a few more lines.

i) Include a mechanism for performing the point-in-polygon test on
another point, should the user want to do that. Use a PRINT
statement to print a message asking the user to enter an n (for "no")
if another test is not desired. Then include the line:

IF INPUT$(1) = "n" THEN EXIT DO

This will cause the program to exit the do loop should the user enter
an n. If any other character is entered, the program will return to the
DO statement (see step g).

j) The last two lines of the program should contain LOOP and END
statements, respectively. The first of these two lines ends the do loop
and the second ends the program.

Now that you have made these modifications, save the program. Run it to determine whether each of the points
listed in Table 1 is inside or outside of the polygon. Once the program is running to your satisfaction, make a printout to hand
in along with the assignment.

Table 1.

Point x-coordinate y-coordinate Inside or outside?

A 25 100
B 101 299.7
C 631 246
D 387.5 224
E 97 401
F 544.1 77
G 321.3 314
H 111 49
I 251 327
J 118 176

Area Estimation: A common method of estimating the area of a polygon is to overlay a grid of dots with a known
average density and count the number of "hits" (i.e., the number of dots falling within the polygon). The area of the polygon
is estimated as the number of hits divided by the average dot density. The area estimate improves as dot density increases.

The program called DARTS.BAS calculates the area of a polygon based on this approach. Open this program and
examine it. Note that it reads in the same polygon data you used for the PIP.BAS program.

Lines 340 and 345 of the program are used to generate a point with random x,y-coordinates. The x-coordinate
ranges from 0 to 639, and the y-coordinate ranges from 0 to 462. These values reflect the approximate size of the screen,
measured in pixels. Lines 510 through 670 should look familiar. This is the same point-in-polygon algorithm used in
PIP.BAS. The algorithm is used to determine whether the randomly-generated point is inside or outside the polygon. If it is
outside the polygon, the program draws the point as a grey dot (line 820). If it is inside the polygon, the program draws the
point as a red dot (line 930). This process is repeated until the user presses a key to temporarily suspend program execution
(lines 2000 to the end of the program). After several thousand "trials" (one trial is equal to one random point), the program
should give a fairly accurate estimate of polygon area.

Lines 1100 through 1170 are used to print out several statistics -- the number of trials, the number of hits, the
number of hits as a percentage of the number of trials, and the estimate of polygon area. These statistics are printed out on the
lower left of the screen. Run the program and monitor the statistics printed on the screen, with the goal of filling in Table 2.
Press any key to make the program pause temporarily. Perform as many trials as you need in order to identify the shape of
the polygon appearing in red on the screen.

1. a) What is the shape of the polygon? b) How many trials are needed to
identify this shape?

On a piece of graph paper, graph the estimate of polygon area as a function of the number of trials.

2. a) Does the area estimate appear to be stabilizing as the number of trials
increases? b) What is the best estimate of the area of the polygon?

Table 2.

Number of hits as Polygon area
Number Number a percentage of estimate
of trials of hits number of trials (in pixels)

500
1000
1500
2000
2500
3000
3500
.
.
.
.
.
.

Other Area Estimates: The area of a polygon can also be calculated from the area of a set of trapezoids defined by
the x,y-coordinate pairs of the polygon. Write a QuickBASIC program that implements this calculation. This program will
be very similar to of PIP.BAS. Your program should:

a) clear the screen;

b) open the polygon data file called POLYGON.DAT for reading;

c) read in the number on the first line of the data file (the number of
x,y-coordinate pairs) and assign it to a variable called n;

d) dimension two arrays (called x and y) for storing the x,y-coordinates
from the file (the dimension of the arrays should be n+1);

e) read in the x- and y-coordinates from the file and store these in the
two arrays using a for loop;

f) close the polygon;

g) initialize a variable called area (the polygon area estimate) to zero;

h) use the following FOR loop to calculate the area of the polygon

FOR i = 1 to n
area = area + (x(i+1) - x(i)) * (y(i+1) + y(i)) / 2

NEXT

i) print out the area of the polygon.

Be sure to include comments describing the function of each program section. Run the program to obtain the
polygon area estimate. Make a printout of the program to hand in along with the assignment.

3. What is the area estimate you obtained with your program?

On the graph you constructed previously, draw a horizontal line representing the area estimate obtained with your
program. Hand in this graph along with your assignment.

4. How does the area estimate you obtained with your program compare to
the estimates you obtained with DARTS.BAS?

Modify the program to read data from POLYGON2.DAT rather than POLYGON.DAT. These two data files are
identical except that the coordinate pairs in POLYGON.DAT are arranged in clockwise order, while those in
POLYGON2.DAT are in counter-clockwise order.

5. a) What is the area estimate you obtained for POLYGON2.DAT? b) How
does this estimate compare to that obtained for POLYGON.DAT?

Line Intersection: The program called INTER.BAS finds the intersection of two straight line segments. Run the
program to compute the point of intersection for the examples listed in Table 3.

Table 3.

First line Second line

First Second First Second Point of
end point end point end point end point intersection

Example x y x y x y x y x y

A 100 100 300 300 300 100 100 300
B 400 100 400 300 10 250 600 250
C 400 100 400 300 400 150 500 150
D 400 100 400 300 450 150 500 150
E 100 100 300 300 200 200 400 400

F 400 100 200 200 300 150 250 175
G 100 100 300 300 300 300 100 100

6. Examples E, F and G represent a special case of intersection that the
program cannot handle. a) Explain what this special case is. b) Explain
how E, F and G are each slightly different examples of this special case.

Now open the program called FRACTAL.BAS. You will be using this program to find intersection points for lines
composed of multiple straight-line segments. The program first draws a straight line (in blue) across the screen. Then it
draws a wiggly line (in green) using the fractal concept. The coordinates of the fractal line are determined randomly, so each
time you run the program a different line will be drawn.

Note that the end points of the straight and fractal lines are the same. Also note that the arrays for storing the x,y-
coordinates for the fractal line (i.e., x2 and y2) are now dimensioned at 65. This is because the fractal line is composed of 64
individual straight-line segments (65 coordinate pairs).

The variable called w (line 1000) defines the "wiggliness" of the fractal line. Run the program with different values
of w and observe how the line changes.

7. a) What is the effect of increasing the value of w? b) What is the effect of
decreasing w? c) What happens when w is zero?

Modify the program so that it calculates and displays the intersections between the straight and fractal lines. The
easiest way to do this is to insert a modified version of the line intersection algorithm between lines 4100 and 20000 of the
program. To do this, open INTER.BAS, highlight lines 4500 to 11200, and select the Copy option from the Edit menu. Now
open FRACTAL.BAS, click on line 20000, and select the Paste option from the Edit menu. This procedure will copy the line
intersection algorithm from INTER.BAS into FRACTAL.BAS.

Now make the following modifications to the algorithm:

a) Change all occurrences of x2(1) to x2(k), and all occurrences of x2(2) to
x2(k+1). Likewise, change all occurrences of y2(1) to y2(k), and all
occurrences of y2(2) to y2(k+1).

b) Replace line 10500 with the following:

CIRCLE (xi, yi), 5, 15

This will draw a white circle centered on each intersection point.

c) Delete the PRINT statements in lines 10200 and 11100, and the GOTO
statement on line 10600. Do a bit of cleaning up between lines 10100
and 11200, since some of the IF statements are no longer required
now that the associated PRINT statements have been deleted.

Save the program and run it several times to generate different fractal lines. Hand in a printout of the program along
with your assignment.

8. Explain the rationale for modification a, above.

9. a) Does the program always manage to identify the intersections between
the straight line and the fractal line? b) If not, can you explain why the
program might be missing some intersections? c) Can you suggest how
the program might be modified to fix this problem?

Assignment 3
Vector Data Structures (II)

Objectives: In this assignment you will be using pcARC/INFO to examine different types of topological overlay.

Files: This assignment requires part of the pcARC/INFO Green River database. You will need the following
coverages:

DEVELOP a polygon coverage of areas selected for development

SITES a polygon coverage of ecologically sensitive areas

Examining the Database: Use ARCPLOT to display the two coverages on the screen and examine the features that
they contain.

1. Draw a sketch map of the polygons displayed on the screen. Using the
IDENTIFY command, label each polygon on your map with the
appropriate SITES-ID or DEVELOP-ID code.

In TABLES, select the PAT file for each coverage in turn.

2. What items are contained in SITES.PAT?

3. List the area of each polygon in the SITES coverage along with its
SITES-ID code. (Ignore the external polygon.)

4. What items are contained in DEVELOP.PAT?

5. List the area of each polygon in the DEVELOP coverage along with its
DEVELOP -ID code.

Topological Overlay: pcARC/INFO provides five different types of topological overlay. The commands are listed
below. Each command corresponds to a different combination of Boolean (or logical) operators (i.e., AND, OR and NOT).
Each command creates a new output coverage from two existing input coverages.

UNION INTERSECT IDENTITY CLIP ERASECOV

6. Draw a set of sketch maps showing the polygons that would be produced
if SITES and DEVELOP were used as the input coverages to each of the
five overlay commands.

Perform all five types of overlay using SITES as the first input coverage (i.e., the "in_cover") and DEVELOP as the
second input coverage (i.e., the "union_cover", "intersect_cover", etc). Give the output coverage a different name in each
case.

Display each of the new coverages in ARCPLOT using the POLYGONSHADES and ARCS commands.

7. Draw a sketch map showing the polygons in each of the coverages.
How do these compare to the sketch maps you produced in question 6?

Return to TABLES and select the PAT file for each of the new coverages in turn.

8. List the items contained in the PAT file for each coverage.

9. How are the PAT files for the coverages produced by CLIP and
ERASECOV different from the files created with the other three

commands?

10. What items would be contained in these PAT files if you reversed the
order of the first and second input coverages for CLIP and ERASECOV
(i.e., you used DEVELOP as the "in_cover" and SITES as the "clip_cover"
or "erase_cover").

11. Draw a sketch map showing the polygons that would be produced by
CLIP and ERASECOV if you reversed the order of the input coverages.

12. Select the PAT file for the coverage produced by the UNION command.
What is the total area of the polygons a) common to both SITES and
DEVELOP b) found only in SITES c) found only in DEVELOP? (Assume
that a value of 0 for any coverage-ID code indicates the external polygon
for the associated coverage.)

13. Select the PAT file for the coverage produced by the INTERSECT
command. a) What is the total area of the polygons in this coverage? b)
How does this correspond to your answer for question 12?

14. Select the PAT file for the coverage produced by the IDENTITY
command. What are the similarities and differences between this
coverage the SITES coverage?

15. Select the PAT file for the coverage produced by the CLIP command.
What are the similarities and differences between this coverage and the
coverage produced by the INTERSECT command?

16. Select the PAT file for the coverage produced by the ERASECOV
command. What are the similarities and differences between this
coverage and the coverage produced by the CLIP command?

17. On each of the sketch maps you drew above (question 7), label the
polygons in each of the five new coverages using their appropriate
coverage-ID values.

18. Write out a Boolean expression that describes the polygons contained in
each of the new coverages (e.g., SITES AND DEVELOP, SITES OR
DEVELOP, SITES AND NOT DEVELOP, etc).

Assignment 4
Raster Data Structures

Objectives: In this assignment you will be writing a QuickBASIC program to perform run-length encoding on
raster data.

Files: This assignment requires two QuickBASIC programs (MAP.BAS and MAPRUN.BAS) and three data files
(ELEV.DAT, LAND.DAT and HAWAII.DAT).

Run-Length Encoding: The file called ELEV.DAT is a raster data file of elevations for Africa. Elevation values
range from 2 (lowest elevation) to 6 (highest elevation). A value of 1 is used to designate water. The file called LAND.DAT
is a raster data file of the same area in which water has been assigned a value of 0 and land a value of 1.

Each file contains 109 rows by 120 columns of cells. The cells are stored in "scan-line" order (i.e., beginning in the
upper left corner and proceeding left to right along each row of cells).

Run the QuickBASIC program called MAP.BAS to display each file as a map.

Write a program to run-length encode each file in scan-line order. Each line in the output file should represent a
"run" of cell values and should contain two numbers:

a) the length of the run, measured in cells, and

b) the cell value for the run.

The following example shows the output file that would be obtained by performing run-length encoding on an input
file containing 4 rows by 5 columns of cells.

Use your program to perform run-length encoding on the ELEV.DAT data file. Run the QuickBASIC program
called MAPRUN.BAS to display a map of the output file. If your program is written correctly, the map should look the same
as the one you produced earlier using MAP.BAS. Be sure that the last run of cells is displayed on your map.

Also perform run-length encoding on the LAND.DAT data file.

Hand in a copy of your run-length encoding program once you have it working to your satisfaction. Answer the
following questions.

1. In DOS, use DIR to calculate the "compaction ratio" for each of the two
output files. This ratio is calculated by dividing the size of the output
file in bytes by the size of the corresponding original data file in bytes.

2. Which of the two files has a better compaction ratio? Why?

3. Under what circumstances might you get a compaction ratio greater than 1?

Optional: As the attached article indicates, it is possible to make maps from poems using the Morton cell ordering
system. Write a program to perform this task. The data file called HAWAII.DAT contains the data necessary to make the
map of Hawaii refered to in the article.

GEO-POESY

Howard Veregin
Department of Geography
University of California,

Santa Barbara, California, 93106

Introduction: Recent theoretical work suggests a strong link between geography and poetry. A simple computation
allows any line of poetry to be positioned in two-dimensional space. The entire poem may be mapped as a set of points
joined by straight-line segments. By implication, maps are poems and poems are maps.

Terminology: The link between geography and poetry may be explained with reference to prosody, the inexact
science of linguistic rhythms. Essentially, a poem is a collection of lines, which are collections of words, which are in turn
collections of syllables (Preminger 1986). Prosody shows that these syllables may be differentiated according to the presence
or absence of stress. In poems, stress tends to recur in cyclical patterns. Analysis of these patterns is known as scansion, and
the taxonomical characterization of patterns is based on meter. Meter is measured in terms of a unit known as a foot. Feet are
defined by particular patterns of stressed and unstressed syllables. For instance, an iambic foot contains two syllables, the
first unstressed and the second stressed, as in the following example taken from Chaucer:

Following conventional symbology, a stressed syllable is denoted with a diacritical dash (-), an unstressed syllable
with a diacritical cusp (H), a division between two feet with a virgule (/), and a division between two syllables with a hyphen
(-) or with a blank space if the division occurs between two words.

In addition to iambic, there are three other common types of feet encountered in English-language poetry (Nims
1974). Trochaic foot is the transpose of iambic. Anapestic foot is characterized by two unstressed syllables followed by a
stressed syllable, while in dactylic foot, a stressed syllable is followed by two unstressed syllables.

Meter also depends on the number of feet per line. In the iambic example presented above, there are 5 feet per line.
This means that the line is denoted as I. pentameter. Similarly, a trochaic foot with 3 feet per line would be denoted as T.
trimeter, an anapestic foot with 1 foot per line would be denoted as A. monometer, etc. Although the number of feet per line
is always an integer, it is not uncommon for a poem to contain several feet that lack one or more syllables. Such fractional
feet are called catalectic (Bain et al, 1981).

Mathematical Representation: The particular diacritical symbols used to denote whether a syllable is stressed or
unstressed are wholly arbitrary. Thus one can safely replace these symbols with any others, so long as they are capable of
differentiating between two discrete states. If one assigns a "1" to a stressed syllable and a "0" to an unstressed syllable, then
any line of poetry can be represented by a string of bits (binary digits).

For example, the string for I. pentameter is

0101010101

This bit string is the binary (i.e., base 2) representation of a number whose digital (i.e., base 10) representation
happens to be 341. Any line of poetry may be represented mathematically in this manner.

The Link with Geography: These observations are closely linked to developments in modern geography pertaining
to the tessellation of two-dimensional space. Tessellation refers to the partitioning of space into a set of regular, non-
overlapping, spatially exhaustive cells. Typically these cells are square in shape, by other shapes may also be used.

While tessellation itself is a relatively straightforward concept, the optimal method of assigning index numbers to the
cells is the subject of debate (Goodchild 1989). A host of different indexing systems have been proposed, but most of these

have not been widely applied. The number of potential indexing systems is enormous. If there are r rows and c columns of
cells, then there are rc! unique ways to arrange index numbers.

One indexing system that has proved useful, however, is that proposed by G. M. Morton (Morton, no date). In
Morton’s system, there is an implicit relationship between the location of a cell and its index number. More specifically, the
row and column positions of the cell are embedded as interleaved bit strings in the binary representation of the cell index
number. The figure below illustrates this relationship for cell number 7 in Morton two-space, for which the row and column
positions are 3 and 1 respectively.

A corollary of this relationship is that any bit string is associated with one and only one cell in Morton two-space.
Since any line of poetry can be represented as a bit string, it follows that any such line can be uniquely located in Morton two-
space. Furthermore, since a poem is composed of one or more lines, it is possible to locate each line in Morton two-space,
join these locations with straight-line segments, and call the resulting product a map.

An Illustration: As an illustration, consider J. Diefenbaker’s poem, "The Scientist’s Lament", the first six lines of
which are reproduced below.

The entire poem has been mapped into Morton two-space based on the principles described above. The result, as
shown in the figure below, is an accurate map of Oahu, Hawaii. The first line of the poem is Kaena Point, the most westerly
point on the island. The poem then proceeds in a clockwise direction.

References

Bain, C. E., Beaty, J. & Hunter, J. P. (Eds.) (1981). The Norton Introduction to Literature, 3rd Edition. New York: Norton.

Goodchild, M. F. (1989). Optimal tiling for large cartographic databases. Auto-Carto 9, 444-51.

Morton, G. M. (no date). A Computer Oriented Geodetic Data Base: With a New Technique in File Sequencing.
(Unpublished manuscript).

Nims, J. F. (1974). Western Wind. New York: Random House.

Preminger, A. (Ed.) (1986). The Princeton Handbook of Poetic Terms. Princeton: Princeton University Press.

Assignment 5
Surface Modeling with DEMs and TINs

Objectives: In this assignment you will be examining different types of surface models. You will be using
QuickBASIC to interpolate and display gridded digital elevation models (DEMs), and pcARC/INFO to examine how surfaces
can be modeled using triangulated irregular networks (TINs).

Files: The QuickBASIC part of this assignment requires four QuickBASIC programs (RELIEF.BAS,
ILLUMIN.BAS, DRAIN.BAS and INTERPOL.BAS) and two data files (DEM.DAT and SAMPLE.DAT). For the
ARC/INFO part of the assignment you will need two coverages:

FACETS a polygon coverage of triangular "facets"

EDGES a coverage containing the arcs defining these facets

Elevation Mapping with Gridded DEMs: Examine the QuickBASIC program called RELIEF.BAS. This program
draws a six-color elevation map for a grid, using the elevation data stored in DEM.DAT. The program divides the range of
elevation into six classes, and each class is assigned a different color. These colors are defined in the DATA statement on
line 540 of the program. The first number defines the color of the lowest elevation class, the second number defines the color
of the second-lowest elevation class, and so on.

Run the program several times, changing the values in line 540 to obtain different colors for the elevation ranges.
Try to obtain a sequence of colors that conveys a sense of increasing elevation. The colors available to you are:

0 = black 1 = blue 2 = green 3 = cyan
4 = red 5 = magenta 6 = brown 7 = white
8 = dark gray 9 = light blue 10 = light green 11 = light cyan
12 = light red 13 = light magenta 14 = light yellow 15 = white

After running the program, answer the following questions. (You will need to monitor the statistics printed to the
screen to answer some of them.)

1. What is the best color sequence you obtained?

2. a) How many cells are in the gridded DEM? b) Assuming that the grid is
square (i.e., has the same number of rows and columns), how many
rows and columns are in the grid? c) Does your answer agree with the
number of elevation values read in by the program from DEM.DAT?

3. a) What are the maximum and minimum cell elevations (z-values)?
b) Why does the program need to compute these values?

4. How does the program divide elevations into classes for coloring?

Interpolating to a Grid: Examine the QuickBASIC program called INTERPOL.BAS. This program interpolates
the elevations (z-values) for the cells in a gridded DEM using the x,y,z-values for a sample of randomly-selected points. The
program uses a distance-weighted interpolation method. For each cell in the grid, the elevation of the cell zc is calculated as:

The program uses a set of random points stored in a file called SAMPLE.DAT to perform the interpolation. This file
contains a total of 200 points. When you run the program, you can select any number of points between 1 and 200 as the size
of your sample. The program will read this many points from the file.

The program uses only a portion of this sample of points to interpolate the elevation for a given cell. This number of
points it uses is defined by the size of the "neighborhood." You can define the neighborhood to contain any number of points
between 1 and the total size of your sample.

To illustrate how the program works, imagine that you selected a sample size of 20 points and a neighborhood size
of 5 points. The program would read in 20 points from SAMPLE.DAT. For each cell in the grid, it would compute the
distance between the cell and each of these points. It would then select the 5 closest points to the cell to interpolate the cell’s
elevation.

Run the program and create an output file called DEM1.DAT (or anything except DEM.DAT so that you don’t
destroy the original DEM). To minimize execution time, choose a relatively small value for the sample size (< 25) and the
neighborhood size (< 5). Now run RELIEF.BAS after changing the input file name in the program to match the output file
you just created.

5. a) In general, how does the appearance of the resulting relief map differ
from the maps you created previously? b) How might you account for
this difference?

Run INTERPOL.BAS several times, experimenting with different sample and neighborhood sizes. Note that
execution time rises dramatically as you increase the values of these variables.

6. How do changes in these variables affect the appearance of the map?

7. a) How do zmin and zmax compare to the values you obtained
originally (question 3)? b) How might you account for any differences?

Shaded Relief Mapping with Gridded DEMs: Examine the QuickBASIC program called ILLUMIN.BAS. This
program draws a shaded relief map for the same grid you used above (i.e., DEM.DAT). The program creates this map by
calculating the slope and aspect of every cell in the grid based on the elevations of the cell’s eight neighbors. The illumination
of the cell is calculated assuming a light source (i.e., the sun) located 45 degrees above the horizon in the south-west sky.
Before computing the slope and aspect, cell elevations are scaled by a vertical exaggeration factor, which effectively stretches
the range of illumination values for the grid.

Run the program several times, experimenting with different values for the illumination angle and vertical
exaggeration factor.

8. What is the effect on the map of changing these values?

Deriving Drainage Networks from Gridded DEMs: Examine the QuickBASIC program called DRAIN.BAS.
This program extracts and maps the drainage network for the same grid you used above (i.e., DEM.DAT). It does this by
assuming that surface water can flow into any of the eight neighbors of a given cell. After determining the drainage patterns
between cells, the program draws the drainage features for those cells that drain, at minimum, the number of cells defined by
a threshold value. For example, if the threshold value was 4, then the drainage patterns would be drawn for every cell that
drained at least 4 other cells, but would not be drawn for cells draining 3 or fewer cells.

Run the program several times, experimenting with different threshold values.

9. What effect does changing the threshold value have on the appearance
of the drainage network?

10. List at least two problems with the appearance of the drainage network.

The TIN Model: Switch to the directory containing the FACETS and EDGES coverages. Use the ARCS command
in ARCPLOT to display EDGES. Create a simple slope map by typing SHADESET COLOR to choose a shadeset file, and
POLYGONS FACETS DEGREE_SLOPE SLOPE.LUT to shade in the triangular facets with different shades of grey
based on their slopes. (The brighter the shade of grey, the steeper the slope.) Observe that the areas being filled with grey are
the same triangular patches defined by the arcs in the EDGES coverage. You can use ARCS to display these arcs again.

Leave ARCPLOT and enter TABLES. Examine the arc attribute file for the EDGES coverage and the polygon
attribute file for the FACETS coverage.

11. a) List the items contained in each of these files. b) Based on the names of
these items and your knowledge of TINs, what do you think each of these
items refers to?

Select the arc attribute file for the EDGES coverage. Now use the RESELECT command to extract only those arcs
surrounding polygon # 457 (i.e., only those arcs for which the right polygon # is 457 or the left polygon # is 457). If you use
the command correctly, exactly 3 arcs should be reselected.

12. List the command you used to reselect these arcs.

13. Fill in the following data for these arcs.

FNODE# TNODE# LPOLY# RPOLY# EDGES# ZFROM ZTO

14. Draw a diagram illustrating these three arcs and showing:

a) the polygon # of the triangular facet enclosed by the arcs
b) the polygon # of each of the three adjacent triangular facets
c) the node # of each node
d) the elevation (z-value) of each node
e) the arc # of each of the three arcs
f) the direction in which each arc was digitized

Return to ARCPLOT and again display the arcs in the EDGES coverage. Use the RESELECT command as you did
before to extract only those arcs surrounding polygon # 457. (Remember that the syntax of the RESELECT command in
ARCPLOT is different from that in TABLES.)

Change the line color and display the arcs in EDGES again. (There will of course only be three arcs after you do the
reselection.) This will highlight polygon # 457. Now use the IDENTIFY command to obtain the polygon # of each triangular
facet adjacent to polygon # 457. Redraw the above diagram, if necessary, correcting for any misorientation.

Use the IDENTIFY command to obtain the slope and aspect of polygon # 457.

15. What slope and aspect values did you obtain?

16. Does the aspect value you obtained make sense in terms of the z-values
of the nodes in your diagram? (Aspect varies between 0 and 360 degrees,
and is measured in a clockwise direction from the 12 o’clock position.)

Optional: Revise INTERPOL.BAS to perform interpolation based on:

Assignment 6
Kriging and the Semivariogram

Objectives: In this assignment you will be using QuickBASIC to construct a semivariogram and perform kriging.

Files: This assignment requires one QuickBASIC program (SEMIVAR.BAS) and two data files (ELEVPTS.DAT
and PRECPTS.DAT).

The Semivariogram: Each of the two data files contains the x,y,z-coordinates of 100 random points. In
ELEVPTS.DAT the z-coordinates refer to elevations (in meters), and in PRECPTS.DAT they refer to annual precipitation (in
millimeters). Both data files were constructed from raster data files of Africa.

The QuickBASIC program called SEMIVAR.BAS computes the information necessary to construct the
semivariogram. Each line of the program’s output contains two values. The first is the distance (or spatial lag), and the
second is the computed semivariance for that spatial lag.

Run the program for each of the two data files and make a printout of each of the resulting output files. Using these
printouts, draw the semivariogram for each of the two data files, putting the spatial lag on the x-axis and the semivariance on
the y-axis. Hand in a copy of your semivariograms.

1. What is the approximate value of the sill, range and nugget for each of
the data files?

2. Is the general form of the semivariogram the same or different for the
two data files? What does this say about spatial variation of elevation
versus precipitation?

Kriging: The semivariogram can be used to perform kriging, a type of interpolation. The objective of this part of
the assignment is to use the semivariogram derived from the elevation data file to interpolate the elevation at a selected point
based on the elevations at three neighboring points. In this case the interpolated elevation or z-value (z0) is estimated as

where z1 through z3 are the observed z-values at points 1 through 3, and λ1 through λ3 are a set of weights derived
from the semivariogram. The observed z-values of the points are as follows:

Computation of the weights in the above equation is most easily achieved using matrix algebra. Most of this
computation has been done for you:

In these equations, γ(0,1) is the semi-variance for the interpolated point (point 0) and neighboring point 1, γ(0,2) is
the semi-variance for the interpolated point and neighboring point 2, and γ(0,3) is the semi-variance for the interpolated point

and neighboring point 3. These values can be obtained directly from your semivariogram data if you know the distance
between point 0 and each of the three neighboring points. Use the following distance values:

distance between point 0 and neighboring point 1: 5
distance between point 0 and neighboring point 2: 4
distance between point 0 and neighboring point 3: 3

You’re on the right track if you got a value of 5,628,776 for γ(0,1).

3. Use equations (2), (3) and (4) to compute the values of λ1, λ2 and λ3. (If
the three computed values do not sum to approximately 1.0, something
went wrong in your calculations.)

4. Use equation (1) to compute the value of z0.

Assignment 7
Uncertainty, Fuzzy Logic and Relational Databases

Objectives: In this assignment you will be using fuzzy logic in a relational database schema to manipulate
uncertainty in spatial data.

Representing Uncertainty in a Database: Uncertainty in spatial databases occurs because the features contained in
these databases are abstractions of real-world phenomena. For example, a database containing the digitized outline of the
Devereaux Slough contains uncertainty because the boundaries of the Slough change from season to season. A map of
vegetation types in the Los Padres Forest contains uncertainty because it is necessary to generalize vegetation types in order
to produce a legible map. A set of polygons representing different soil types in the Goleta Valley contains uncertainty
because the boundary between adjacent soil types may actually be a fairly wide zone in which the soil properties of one soil
type gradually merge with those of another soil type.

These example illustrate that the spatial databases you work with in a GIS are not accurate "snapshots" of the real
world, but instead are imprecise "models" in which the degree and nature of uncertainty depends on the type of data
represented and the purposes for which the database was designed.

Fuzzy logic can be used to represent uncertainty in spatial databases and manipulate this uncertainty as data are
transformed by GIS functions. One way to implement fuzzy logic is to define a "membership function" for the features in the
database. The membership function, which is usually denoted by the letter m, varies between 0.0 and 1.0 for any feature.
This value indicates the degree of uncertainty in the feature. For example, assume that you assigned a value of m to each of
the polygons in a soil map. A value of m near 1.0 would indicate little uncertainty (i.e., you are reasonable confident that the
soil type of the polygon is correct), while a value near 0.0 would indicate a great deal of uncertainty (i.e., you are not very
confident that the soil type is correct).

Your first task in this assignment is to examine how the membership function can be used to represent uncertainty.
Assume that you have digitized the two maps depicted below. The first (VEG) shows vegetation types and the second
(SLOPE) shows slope classes. Both maps cover the same geographical area. You can think of each digitized map as being
equivalent to an ARC/INFO coverage.

The polygon attribute tables for the two coverages are also shown below. These tables are named VEG.PAT and
SLOPE.PAT respectively. The items called "veg-id" and "slope-id" refer to the polygon numbers on the maps.

In order to use these membership function values to represent uncertainty, you will have to perform a relational
database operation known as a relational join. This operation involves merging the attributes from two different tables based
on a common item (sometimes refered to as the "key" item). For example, if you performed a relational join on VEG.PAT
and VEG.MEM, you would obtain a veg-m value of 0.8 for the polygon with a veg-id value of 1, based on the common veg-
type value of "chaparral."

Using a relational join, modify the polygon attribute tables for VEG and SLOPE by inserting the appropriate
membership function values for each polygon. Record your answers in the table below.

Manipulating Uncertainty in GIS Operations: Imagine that the two coverages are merged to create the following
coverage (called "MERGED").

How is the membership function manipulated as the coverages are merged in this way? In order to answer that
question, you first need to fill in the following polygon attribute table for MERGED based on the modified polygon attribute
tables for VEG and SLOPE.

As you can see from this table, each polygon in MERGED has two membership function values, one from each of
the two input coverages. The way in which these membership function values are combined depends on the way in which the
attributes from the two input coverages are manipulated. Consider the set of polygons in MERGED for which veg-type =
"chaparral" and slope-class = "steep". There is one polygon in this set (i.e., merged-id = 1).

The question that now arises is, "How certain are you that this polygon actually has a veg-type of chaparral and a
slope-class of steep?" To answer this question you need to combine the membership function values from the two input
coverages. In this case the combined membership function value is equal to the minimum of the veg-m and slope-m values
for the polygon. Because the question is concerned with uncertainty in both input attributes (i.e., veg-type and slope-class),
the result cannot be any more certain than the least certain of these attributes. In the example, veg-m = 0.8 and slope-m = 0.9
for the selected polygon, and therefore the combined membership function value is 0.8.

One might also ask, "How certain are you that the selected polygon actually has a veg-type of chaparral or a slope-
class of steep?" This question is based on the logical operator "or" while the previous question is based on the logical
operator "and." In the case of the or operator, the combined membership function value is defined as the maximum (rather
than the minimum) of veg-m and slope-m. Because you are concerned with uncertainty in either input attribute (not both) the
result is as certain as the most certain of these attributes. Thus the combined membership function value for the selected
polygon is 0.9.

For each set of selection criteria below, list the set of polygons that meets the criteria. Then compute the combined
membership function value for each polygon based on the specified logical operator.

Selection criteria: veg-type = "barren" and slope-class = "gentle"
Logical operator: and

Selection criteria: veg-type = "sage brush" and slope-class = "flat"
Logical operator: and

Selection criteria: veg-type = "barren" and slope-class = "steep"
Logical operator: or

Selection criteria: veg-type = "sage brush" and slope-class = "gentle"
Logical operator: or

Similarity Relations: Fuzzy logic can also be used to examine how closely a set of selected polygons conform to a
particular set of criteria. For example, imagine that you selected all polygons with veg-type = "sage brush" and slope-class =

"flat". Note that several other polygons have similar attributes but do not conform exactly to the criteria you have specified
(e.g., polygons with veg-type = "sage brush" and slope-class = "gentle"). These polygons are quite similar to the set of
polygons that you have selected, but would not actually be included in the selected set.

Such similarities can be handled using the concept of "similarity relations." A similarity relation is simply a table
indicating the degree of similarity between different values of an attribute. Consider the following two similarity relations,
the first for veg-type values and the second for slope-class values.

chaparral sage brush grass barren
chaparral 1.0 0.8 0.4 0.0
sage brush 0.8 1.0 0.6 0.0
grass 0.4 0.6 1.0 0.0
barren 0.0 0.0 0.0 1.0

steep gentle flat
steep 1.0 0.5 0.0
gentle 0.5 1.0 0.5
flat 0.0 0.5 1.0

The interpretation of these tables is relatively straightforward. For example, look at the second table, and follow the
row labelled "steep" until you hit the column labelled "gentle." The value of 0.5 indicates the degree of similarity between
"steep" and "gentle." There is more similarity between "steep" and "gentle" than between "steep" and "flat," for which the
similarity value given in the table is 0.0. Note that the similarity between any value and itself is always 1.0, and that each
table is symmetrical.

It is easier to conceptualize the similarities between slope classes than between vegetation types, but, as shown in the
second table, there may be context-dependent dimensions along which the similarity between different vegetation types can
also be measured.

With the aid of these similarity relations, it is possible to formulate "fuzzy" responses to questions about the
attributes of any polygon. For example, you might ask how closely the polygon with merged-id = 1 conforms to the criteria
of veg-type = "sage brush" and slope-class = "gentle". From MERGED.PAT you can easily determine that, for this polygon,
veg-type = "chaparral" and slope-class = "steep". The above similarity relations show that the similarity between "sage
brush" and "chaparral" is 0.8 and that the similarity between "gentle" and "steep" is 0.5. Since you asked a question involving
an and (rather than an or), the minimum of the two similarity values is used. Thus the polygon has a similarity of 0.5 to the
criteria you specified. By substituting the appropriate attribute values, the same approach can be used for any other polygon.

If the question involves an or, then the maximum of the two similarity values is used. For example, if you asked
how closely the polygon with merged-id = 1 conforms to the criteria of veg-type = "sage brush" or slope-class = "gentle", the
answer would be 0.8, the maximum of the two similarity values.

Compute how closely each polygon in MERGED conforms to the following criteria:

veg-type = "grass" and slope-class = "steep"

veg-type = "chaparral" or slope-class = "flat"

Optional: Implement the membership function concept in ARC/INFO. You can use the SITES and DEVELOP
coverages from Assignment 3. Each item in the polygon attribute table for a coverage may have its own membership
function. (You can add items to the table if you want.) Use the relational join capability of INFO to incorporate the
membership function values into the polygon attribute tables of each coverage. Use the UNION command to overlay the two
coverages and merge their attributes. Show how the membership function values from the input coverages would be
combined when manipulating the attribute data in different ways.

