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SPIN AND DECAY PARAMETERS OF THE 2: HYPERON 

Janice Button-Shafer and Deane W. Merrill 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

January 11, 1965 

ABSTRACT 

Results on the spin and decay parameters of the Z hyperon are pre­
se_nted. 1j:_hes~ have been obtaine_d from the analysis of events of the type 
K +p- K + Z produced with K beams of momentum 1.2 to 2. 7 BeV /c inci­
dent on the 72 -inch bubble chamber. Two methods of treating the data are 
presented, one involving the projection of coefficients in decay distributions 
and the other involving maximum-likelihood analysis of these distributions. 
The projection or moment method yields the better estimate of Z- spin, with 
a result favoring spin 1/2 and excluding spin 3/2 to approximately 2.5 standard 
deviations. The maximum-likelihood method gives good estimates of decay 
parameters, with a';:;' (the usual asymmetry parameter) = -0.30 ± 0. 08 and with 
the ratio f3,_Jy,_... -= o:-c)7 ± 0.19. The formalism of Byers and Fenster is 
utilized. .:=. .:=. 
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I. INTRODUCTION 

A collection of particles with spin J can be completely described in 
their rest frame by the real and imaginary parts of expectation values of spin 
operators, the number and dimensionality of which are determined by the 
spin of the particles. Knowledge of these expectation values is equivalent to 
k'nowledge of the probability amplitudes for occupation of the various J, M 
quantum-mechanical states permitted for the particles. If the particles are 
unstable, the character of their original state and the transition amplitudes 
for decay (into final states with differing orbital angular momenta) will com­
pletely determine the angular dependence of directions and polarizations of 
final-state particles. 

It has been customary to fit observed angular distributions (i.e., to 
find coefficients) with cosine series or with series of Legendre polynomials; 
the latter have the advantage of being orthogonal functions so that the addition 
of higher -order polynomials does not change lower -order coefficients in fit-· 
ting data. Dependence on azimuthal angle as well as polar angle is important 
for decays of particles with spin higher than 1/2; thus the (orthogonal) 
spherical harmonics Y LM ( 8, cp) or the (orthogonal) symmetrical-top func­
tions JPb£M• (cp, 8, 0) are convenient for the fitting of angular distributions 
(intensities, not amplitudes) of decay. (The theoretical work which nicely 
presents these ideas and which will be discussed below is that of Byers and 
Fenster. 1) 

Testing data for compatibility with various spin hypotheses may be 
possible through the determination of the highest-:erder functions needed to 
fit the decay distributions. The L of a Y LM oro<Sl MM• function equals the 
rank of the spin operator whose expectation value multiplies the function. 
This expectation value describes the original set of particles; hence, .L must 
be ~ 2J where J is the spin of the particles. In general, it is impossible to 
say whether there has been some fortuitous cancellation of high-L terms of 
decay distributions; thus the complexity of the distributions gives only a 
lower limit for J. 

Consistency checks can be mad~ in the fitting bf spin hypotheses to data, 
as the parameters of the initial state and of the decay amplitudes are over­
determined by data of decay distributions. In the specific case of a fermion 
decaying into a spinless boson plus a spin - 1/2 particle, the direction of the 
latter and also the 8, cp dependence of its three polarization components yield 
several estimates of each initial-state parameter as well as an evaluation of 
each decay parameter. However, statistical errors may be such that reason­
able values for all parameters can be found for either of two spin hypotheses 
if terms of all orders are compared simultaneously. A conclusive determina­
tion of spin is most likely if only the well-defined low -order terms of the 
various distributions are compared. (At least one nonzero term will be found 
in each of the four decay distributions if the initial fermion sample is highly 
polarized and the decay parameters are nonzero.) Since the polarization 

.components of the spin - 1/2 particle transverse to its flight direction con­
tain in their leading terms the same initial-state parameter that appears in 
leading terms of the other distributions, and in addition ·contain a J -dependent 
factor, the spin J can be extracted by comparison of only these terms. The 
best answer for spin J will be found from a sample with the highest initial 
polarization of the parent fermion (given some particular statistical error). 
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To treat the E: data reported in this article, we made separate analy­
ses of samples of events grouped according to momentum and production 
angle. None of the samples showed any large, statistically significant high­
order terms characteristic of J = 3/2 or 5/2. The J -dependent factor was 
evaluated for each sample. 

The estimation of the goodness of fit of spin hypotheses to all the data. 
required either a combination of the events at various momenta or a combi­
nation of the results for the J factor. As interpTetation of the latter appeared 
difficult, considerable effort was expended to obtain an answer from the 
former, It was evident that low-polarization samples gave weak discrimina­
tion between spin hypotheses. The most conclusive answer was obtained 
from a combination (sample D) of positive- and negative -polarization samples, 
with the omission of those samples that had very low polarization and with 
rotation of coordinates in negative -polarization samples (to. change the sign of 
PS).2 This combination of events gave dis.crimination against the spin-3/2 
hypothesis, with a confidence level of about 0. 01; it produced excellent 
agreement with spin 1/2. The decay parameters from these data were 
reasonable and in good agreement with values from a maximum-likelihood 
analysis. 

Alternative treatments of data are also presented. These include the 
analysis of all 749 S- events (with rotation of the negative -polarization 
samples} (sample C) and the separate analyses of positive-polarization and 
negative-polarization samples (involving neither high-polarization selection 
nor rotation) (samples A and B, respectively). Analysis of sample C gives a 
result which is less conclusive than that f~r sample D, but which still ex­
cludes spin 3/2. Analyses of samples A and B, without rotation, also favor 
spin 1/2, though not so strongly.':< 

The maximum-likelihood analysis of the same sets of data also favored 
spin 1/2, although the results were not so conclusive as those obtained by 
direct calculation of the 2J + 1 factor. For the high-polarization combined 
sample D, spin 3/2 was discriminated against with a confidence level of about 
0.024. On the other hand, the maximum-likelihood treatment in general 
yielded smaller errors in the estimation of the E decay parameters. Best 
values of th.e decay parameters obtained from analysis of sample D were 
a.';:;'= -0.30 ± 0.08, j3>;:;< = 0.07 ± 0.18, and'{>;::;<= 0.95 ± 0.02. (These pertain to 
sp-1n 1/2. The errors in j3 andy are correlated.) 

Many sets of fake events were generated with decay distributions cor­
responding to specified spin, decay parameters, and initial-state polariza­
tion parameters. The following facts were thus verified: (i) both methods of 
analysis correctly estimate decay parameters and pola:dzation parameters3; 
(ii) the calculated values of any parameter have a Gaussian distribution about 
the expected value, with the variance of this distribution equal to the average 
of the squared error calculated for a single "fake 11 experiment . 

... ··- A non-optimum combination (with respect to polarization) of all data gave a 
spin-3/2 confidence level of 0.15 or 0.015 for a>;:;< values of -0.48 or -0.34, -respectively. 

.. 
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II. THEORY 

One formalism convenient for determination of the S- properties is the 
treatment of Byers and Fenster, utilizing irreducible tensors as spin opera­
tors. The initial collection of s- hyperont;; is described by a density matrix 
of the form 

1 
2J +L ,,, 

p = (2J + 1)- L L (2L + 1) (T LMY T LM ( 1) 

L=O M=-L 

for any (half-integral) value of spin J. 1 This density matrix is equivalent to 
p = L: Wn Xn Xn+ in terms of a spinor Xn and a weight Wn for the state n. The 
num~er of independent(TLw's needed to describe the s-is (1/2)(2J + 1) 2 - 1. 
The TLM are spin-space operators that may be constructed from Sx, Sy, and 
Sz spin operators in a manner similar to that in which the spherical harmon­
ics YLM are constructed from the coordinates x, y, and z.4 With the (TLM) 
parameters abbreviated to tLM• the decay distributions de scribing the proc­
ess s--A+Tr- are (see Appendix A and Fig. 1): 

with 

- A 

IPA·y = Im [(if3S -yS) F(8, cj>)] 

2J 
F( e,<j>) = L L n~1 tLMli-~1 (<j>, e, 0) [ ( 2L + 1)/ 4Tr] 

112 

L 0 =1 M 

=(2J+1) 

(2) 

(Le takes on only even values of L, and L 0 takes on only odd-L values.) The 
decay parameters are given by a= 2 Re a*b/N, f3 = 2 Im a>:'b/N, and 
y = (I a 12 -lb 12 )/N, with a de~ined as the J - 1/2 decay amplitude, with b 
defined as the J + 1/2 decay amplitude, and with N equal to I a 12 +I b 12. The 
term I(8, cj>) represents the angular distribution. of the A in the =:- rest frame; 
each of the IP distributions represents the product of I(e, cj>) and a component 
of A polarization. The first polarization component is along the A l}neA of 
f).ightjA); the last two ~re those in the directions perpendicular to .!);.. (x cc 
A X (A X n) andy cc n X A, where n represents the normal to the production 
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Fig. 1. ·· A diagram of 2: production and decay is presented with (A) representing 
·the c. m. production system, and defining X, Y, and Z axes; with (B) showing 
the A direction in the E rest frame; and with (C) presenting the proton from A 
decay in .the A rest f:r;ame.. The x and y axes used for the analysis of 
polarization are shown in the blow-up of system (B). 

" .. 
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plane). The sums are taken over L values from 0 to 2J. Only even-M values 
need be used if the e, q, coordinate system has its polar axis along the pro­
duction normal (as a consequence of parity conservation in production). The 
YLM·(e, <j>) are the usual spherical harmonics and thet/k~11 (<j>, e, 0) are the 
"symmetrical-top" functions (defined, for example, in Jacob and Wick5 ). 

· The n[ 0 and nJ 1 quantities.appearing in the above expressions contain 
Clebsch-Gordan coefficients, since these must modify the single spherical 
harmonics [of various rank (L)] that result from the combination of two decay 
amplitudes. As Byers and Fenster have shown, the exact expressions are 
the following: 

n~O = (-)J- 1/ 2 [(2J + 1)/41T] 1/ 2 C(JJL; 1/2, -1/2) 

n~ 1 = (-)J- 1/ 2 [(2J + 1)/41T] 1/ 2 G(JJL; 1/2, 1/2) 

( 3) 

[where C{j
1 

j
2 

j; m
1 

m
7

) is the usual Clebsch-Gordan coefficient]. For any 
J and a par"'ticular L, Uie second quantity is proportional to the first times the 
factor (2J + 1). In particular,6 

J - [ ] -1/2 J nL 1 - ( 2J + 1) L( L + 1) nLO . ( 4) 

As the n[ 1 quantities are contained in the· transverse-polarization terms and 
the n{o quantities in the angular -distribution and longitudinal-polarization 
terms, comparison of coefficients containing a certain tLM may be made to 
evaluate the expression 2J + 1 and hence the spin J of the :E. 

III. EXPERIMENTAL ANALYSIS 

Analysis was made of 749 events of the type 

( 5) 

obtained at K- momenta from 1.2 to 1. 7 BeV/c {and also of higher-momentum 
data discussed below). Almost half of the events were those produced by 
1.5 BeV/c K-; the remainder were data samples spaced at 100-MeV/c inter­
vals. The events treated did not include those in which either the :E- or the 
A had a length of< 0.5 em in the laboratory system; appropriate corrections 
were made for this cutoff. · With the production normal chosen as the Z axis 
and the incident K- direction chosen as the Y axis, each event was analyzed 
~o determine the e,q, angles of the A (in the :s- rest frame) and the direction 
p of the decay proton (in the A rest frame). See Fig. 1. 

A. Moment Method 

The orthogonality properties bf the YLM ( 8, <j>) and the)/ h1 (<j>, 8, 0), 

f YLM( e, <j>)Y ~'M' ( e, <j>) dQ = OLL' OMM' 
( 6) 

f j)!:r1 (<j>, 8, O)$ ~;:~(<j>, e, 0) dQ = [41T/(2L + 1)] oLL' oMM', 
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periiJ-it the finding of moments, i.e., the projection of coefficients nLo tLM 
or nL 1 tLM out ·of each of the experimental distributions correspond1ng to the 
theoretical expressions of Eq. ( 2 ). Thus, with the index k running over all 
events and with L given an even or an odd value, 

N 
J Re \' Re / 

( 1 or a:S) nLO I~ tLM = L Im y LM ( 8k• q,k) N (?a) 

k=1 

. N. . 
Re \' Re 
Im tLM = L Im y LM ( ek' (?b) 

k=1 

(2J+1) (il3-y) n~O tLM = [(2L+1)L(L+1)/4TT]
1

/
2
[[ Re+i[ Im]· 

k k 
( 7c) 

[/)~:~ (q,k' ~k' 0) (pk· ~+ ipk· yk)] (3/aA N) 

Equation ( 7c) holds only for odd L values. (Values of'{ Re tLM• 13 Re tLM• '{ Im tLM• 
and 13 Im tLM can be extracted from the last relation and a similar one for 
tL, -M with the use of the relation tL, -M = (- )M tLM·) With divisio~ by n£o or 
by (2J + 1.) ni 0 , there result from the above equations four evaluahons of . 
each odd-L tLM (times 1, a, f3, or'{) and two eval-qations of each even-L tLM 
(times 1 or a). The· spin hypothesis that would generally be considered most 
probable is that which leads to closest agreement among the various deter­
minations of each tLM for some choice of the a, 13, and'{ decay parameters 
(satisfying the constraint a 2 + 132 + '{2 = 1 ). 

An error matrix GLM, L'M' for th~ tLM parameters was constructed 
from the data, the diagonal ter;ms being the average of [(Re YLM)2 -<Re YL~] 
or [( Im Y LM)2 -<Im YLW2]. With the use of this error matrix, a x1 2 was 
formed to test moments higl?.er than those appropriate for spin J for consis­
tency with zero: 

5 

L ( 8) 

The spin - 1/2 requirement that the tLM's of order greater than t10 be zero 
was very well satisfied; the combining of XI/2 results from 10. sets of data 
(high-polarization sa:rp.ples totaling 440 events) from 1.2 through 1.7 BeV/c 
yielded a total xr;2 value of 365 when 400 was expected. (The x~;2 was of 
course also acceptable.) · 

2 . 
Three separate X 's were formed to test the equality of tLM and 

(a tLM)/a i, of fLM and (13 tLM)/13', and of tLM and('{ tLM)/y' (where the 
prime designates an assumed value of a parameter); these yielded estimates 
of a, 13, and y and also il}dicated the degree of consistency among the several 
moments containing each t'LM· 7 . Unfortunately, neither the spin x2 nor the 

... 

.. . 

.. 
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2 
decay-parameter x 1s afforded any discrimination between spin 1/2, 3/2, or 
5/2. 

It was found convenient to separate the data into various subsamples 
according to incident momentum and production angle. Parameter values 
(tLM's, a., (3, and'{) are presented for a typical sample in Table I. The size 
of each sub sample was .greater than 20 events, . as samples smaller than this 
had been observed to give abnormal results in strong-decay analyse.s of 
spin-3/2 resonances. For all. analyses, the value of a.A was taken to be 
0.62.12 -

B. Selection of Samples 

The moment analysis of subsamples yielded t 10 {or polarization Pz) 
values which varied rapidly with the incident K- momentum and with the 2: pro­
duction angle; further, the estimates for other polarization parameters, those 
appropriate for J> 1/2, were not significantly different from zero. As shown 
by the character of the relations in Eq. ( 7), discrimination between different 
Js hypotheses thus depended on a comparison of the evaluations of ( 2J + 1)t 10 
in the A transverse polarization and t10 in other distributions; hence, a 
fairly large and well-determined t10 was desirable. 

A list of the data sub samples and the values of t10 found by averaging 
t10• a t1o/aw and 'Yt10/'Yw from moment analysis are presented in Table II. 
(The a.w and 'Yw represent the best estimates to date on the 2: decay parame­
ters,l -0.48 ± 0.08 and 0.85 ± 0~·04. The former is independent of spin, whereas 
the littter changes only slightly with spin assumption. 8) As the relative values 
of the t10 estimates vary a little with the spin assumption [because of the 
(2J + 1) factor in the '{t 10 moment], these estimates were calculated for both 
spin= 1/2 and 3/2 hypotheses. However, classification of subsamples by 
relative t 10 values was found invariant under change of spin. (Maximum­
likelihood analysis yields a single evaluation of t 10 by handling all distribu­
tions simultaneously; but likelihood analysis of small data samples was found 
difficult in some cases.) 

In order to enhance the polarization or t10 value for large numbers of 
events, it was necessary to treat separately a combination of subsarriples 
with positive t 1 o estimates (called sample A below) and one with negative t10 
estimates (sample B). In addition all data were analyzed together (sample C) 
after rotation of 180° about theA in_:ident ,!< d~tion lchal}ging tl}e p~ction­
system coordinate axes from Z =n and X =KXn to Z = -n and X= -KXn) for 
the negative -polarization subsamples; this rotation changed the sign of t 1 o in 
all distributions and left unchanged a., (3, and 'Y· Finally the subsamples with 
large lt10 I estimates ( jt10 I> 0.30 or !P';:;' I> 0.52) were combined, with ro­
tation ofall negative -t1 o subs ample s (sample D). This combination contained 
440 events and yielded a high t 10 (t 1 o = 0.48 or 8-;:;< = 0.83)9; thus it provided 
good discrimination between spin hypotheses, asis shown below. The test to 
be described, involving the t 10 moments, did not make use of any constraint 
on the magnitude of t 10 ; and thus the somewhat artificial reinforcement of the 
t10 values of subsamples by rotation and high-polarization selection should 
not cause a bias (in any obvious way) for the moment test. The bias problem 
is treated further in Section III.C. (For maximum-likelihood analysis, the 
use of constraints and the bias introduced by selection are important questions 
and are discussed in detail in Sec, IILF.) 
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Table I. Parameter values from moment analyfiiS of a typical data 
. sample (59 events at 1.3 BeV /c, E:·K > 0). 
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Table II. Data samples with t 10 and j2J + 1j [Eq. (9)) evaluations from moments. 
a 

Sample Momentum S·K 
No. (BeV/c) 

1 1.2 >0 

2 1.3 >0 

3 1.2,1.3 <0 

4 1.4 >0 

5 <0 

6 1.5 0.9-1.0 

7 0.8-0.9 

8 0.6-0.8 

9 0.4-0.6 

10 0.0-0.4 

11 -0.4-0.0 

12 -1.0--0.4 

13 1.6 

14 

15 1.7 

16 

Combined samples: 

d A (Nos. 3, 5, 6, 7, 11-16) 

B (Nos. 1, 2, 4, 8, 9, 10) 

C [A+ B (rotated)) 

D [Nos, 5, 11, 12, 14, 15, 
16 + ( 1, 2, 4, 9) rotated] 

>O 

<0 

>0 

<0 

438 

311 

749 

440 

No. events t 10(= P'E/.f3') "High" jP'Ej j2J + 1j 

22 -0.93± 0.30 ( -0. 60)b X 4. 7± 2.8 

59 -0.53± 0.18' ( -0.40) X 1.8±1.2 

31 0.09± 0.25 ( 0.15) 68± 1200 

47 -0.39± 0.17 ( .-0.45) X 2.6±2.4 

21 0.63±0.29 ( 0.25) X 3.1±2.5 

64 0,03±0.17 ( -0.10) 4.0±4.2 

47 -0.16± 0.22 ( -0.15) 4.8± 8.5 

69 -0.28±0.17 ( -0.25) 6,6±9.3 

41 -0.57± 0.21 ( -0.35) X 3.8± 3.0 

64 -0.12±0.18 (-0.15) 1.3± 2.2 

62 0.29± 0.17 ( 0.30) X 2.3± 2.9 

72 0.46± 0.14 0.45) X 12± 14 

33 -0.06± 0.24 ( -0.05) 2.5± 3.9 

21 0.43± 0.31 ( 0.40) X 1.0± 1.2 

75 0.18± 0.16 <. 0.30) c 
0.2±1.1 X 

21 0,60± 0.32 ( 0.40) X 2.4± 1. 9 

With a'E = -0.48 With a'E -0.34 

t10 j2J+1j 

0.43± 0.08 1.83± o. 70 

-0.25± 0.07 2.14±1.01 

0,30± 0.06 2.42± o. 79 0.32± 0.05 1.87± 0.59 

0.48± 0,07 2.53± o. 72 0.50± 0.07 1.96± 0.52 

a The t10 values are those calculated for spin 1/2; these change r~latively for J = 3/2 because the 
higher spin assumption depresses yt10 relatively to t10 and a t10 for each set of data. However, 
the changes are small enough that the sample classifications as to sign and magnitude of polari­
zation remain the same. 

The errors stated for j2J +1j are not standard-deviation errors. 

b The numbers in parentheses are t10 estimates obtained from likelihood calculations which fitted 
production and decay of the 'E ; these calculations, done by J. Peter Berge, evidently give good 
agreement with the .averages from moments. Spin 1/2 was assumed for the likelihood analysis. 

c The likelihood. calculation .indicates that the tfO estimate fr9m moments is low for sample 15; 
this sample was included in the combined, high-polarization sample D. 

d Samples included are predominantly those with positive polarization; however, two samples with 
negative, but low, polarizations were made part of sample A because of earlier selection on the 
basis of slightly different criteria. 
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C. Spin Analysis with Moments 

The separate projections of coefficients from the various distributions 
of Eq. (2) permitted evaluation of the following: 

2 2 
( Al3tLM) + ( AytLM) 

(1-a2)tLM 
(2J+1) 2 ::: (9) 

where [L( L+1) ]1/ 2 n-[ 1/n'Lo has been represented by A. 10 This relation holds 
for any odd-L and M combination. As the moments above L::: 1 were not sig•­
nificantly different from zero, no evaluation of Eq. ( 9) except that with L::: 1 
and M::: 0 gave definitive values of 12J +1J.. The world-average and spin- . 
independent (from A helicity) value of a>;:;<::: -0.48 ± 0.08= aw was used in the. 
denominator of Eq. ( 9). 8 The t 1o of the denominator was a weighted average 
of t10 from the longitudinal polarization and (at10)/aw from the angular dis­
tribution of the A. The last column of Table II( a) presents the evaluations of 
J2J +1J made with the t10 moments from the various samples of data. [Errors 
do not represent standard deviations, as the experimental ratio of Eq. ( 9) is 
not a normally distributed quantity.] Figure 2(a) is a plot of the same re­
sults, J2J + 1J being the radius of each point. The contributions of the 13t and 
the yt moments to each J2J + 11 evaluation are represented by the projections 
onto' the two axes. The points are expected to cluster near the positive yt 
axis. The best-defined answers correspond very roughly to the highest 
markers, the height of each marker being inversely proportional to the £rae­
tionalJ2J + 1J error of Table II( a). It is apparent that the data favor J2J + 1J::: 2 
(spin 1/2) rather than J2J + 1J:::4. (The tendency for J2J + 1J estimates. to fall 
slightly below the true value is explained below.) Figure 2(b) presents a his­
togram of J2J + 1J for the E- data subsamples and also a J2J + 1J histogram 
for a control experiment. ( 19 samples are shown in (a) and (b)). 

Figure 3(a) and(b) present estimates of 2J+1 from the same data re­
sulting from the omission of the 13t 10 term in the numerator of Eq. (9). As 
l3>;:;< is estimated to be close to zero (see Appendix B), the 2J + 1 evaluations 
a?e no more than 6o/o lower than they should be. The dropping of the 13 term 
permits a straightforward calculation of the 2J + 1 probability distr:lbution and 
shows that some of the larger J2J + 1J values are negative fluctuations (which 
may more likely fit the J::: 1/2 than the J::: 3/2 hypothesis). Figu.re 3(a) and 
(b) shows the probability distributions P(A), the quantity A being that defined 
for Eq. ( 9) and experimentally having an average of 2J + 1. The distribution 
curves were calculated for Fig. 3(a) [Fig. 3(b)] under the assumption of spin 
1/2 (spin 3/2); actual experimental errors (including correlations) and esti­
mates of t 10 (i.e., polarization) from representative data .samples were used 
as parameters in calculating the distributions. (See Appendix·c.) Correction 
for the neglect of the 13 term was found to have a scarcely discernible effect 
on the distribution curves. 

The composite, high-polarization sample of 440 E's (sample D) gave the 
following moments and errors, as determined by projection (with .J taken as 
1/2): 

.. 
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MU B-5656 

Fig. 2 (a). TP.e quantity IZJ +11 is the radial distance to each of the experi­
mental points de.signated by the "pins" on this plot. See Eq. (9) for 
identification of the components along the abscissa and the ordinate. 
(Error correlations and the non -Gaussian nature of the ZJ +1 evaluation 
tend to pull the estimates inside the expected radius.) The height of each 
pin was made inversely proportional to the fractional· error of lzJ +11 
given in Table II( a) or II( b). 
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Fig. 2 (b). The lower histogram presents the distribution in IZJ +11 of all 
data subsamples; the value·s .correspond to the radial distances .of the 
points inFig. 2(a). 

The upper histogram· presents the distribution in IZJ +11 for 
samples of rando.mly generated "mock events" which had polariza­
tion i::: 0.50 (and J = 3/2). These samples represent a control experi­
ment; they indicate only slight preference for IZJ+11 ::::: 4 because the 
smallness of the samples (each of which contained::::: 40 events) 
caused IZJ +11 fractional errors to be fairly large. 

.;": 

.... j 
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Fig. 3. Evaluations of 2J + 1 with 13 set zero are shown for 16 low-momentum 
data subsamples. Representative curves P(A) for four data samples of 
varying polarizations are shown to indicate the expected distribution of 
A(or 2J+1) estimates for each of these samples; Fig. 3(a) gives such 
curves for the hypothesis J = 1/2, and F~g. 3(b) gives the curves for 
J = 3/2. (These were calculated by the method outlined in Appendix C.) 
The values of t10 or Pz/..f3 for curves (a) through (d) were 0.51, 
0.40, 0.24, and 0~15, respectively. 
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t 10 = 0.48± 0.14 (ot oat)= -0.00019 

at10 = -0.19± 0.05 (ot 013t) = -0.00033 

13t 10 = o. 1o± o. 09 (ot oyt) = -o. ooo6z 

yt 10 = 0.47± 0.09 (oat 013t)= -0.00010 

(oat oyt) 

(o13t oyt) 

UCRL-11884 

= o.ooon 

= 0.00069 

·-
The 2J + 1 estimate was found sensitive to a';:;'.. With a';:;' = -0. 48, 
the evaluation of 2J + 1 from sample D (with th';; l3t10 term ';.eglected) yielded -< 
2J + 1 = 2.52.11 A probability distribution for 2J + 1 from this large sample 
was calculated for both spin hypotheses; the parameters were the ( 1-a2)172 t)O 
and the errors given above. (See Fig. 4.) The area under the tail of the J=3/2 
curve lying below the experimental value ( determin,ed after a 6o/o correction for the 
13 term) was found to be 0.024 times the totalarea of the distribution curve. 
The data thus indicate rather. a small probability for the hypothesis .of spin 3/2 
even though the quantity 13 has probably been overestimated. (See Appendix B.) 

The a';:;' value required by the too moment (A helicity) of our total data was -0. 34. . .. 
With this a';:;'~ample D analysis yielded 2J +1 =1. 92, or a spin~3/2 confidence level of 0. 0005 :·· - . 

The decay parameters found for the high-polarization (sample D) events 
by moment analysis were (assuming J = 1/2) 

a = -0. 30± 0. 09 

13 = 0. 20± 0.22 
0 93+ 0.07 y = . - 0.30 

Finail·y, possible biases may have been introduced in the calculations for 
the 440-event high-polarization sample through the selection of the events on 
the basis of high polarization or through the rotation of the "negative­
polarization" subsamples. (The former probably does not affect the 2J + 1 
calculation, as the experimental errors of the numerator and denominator 
quantities are similar and selection of high -polarization samples does not 
seem to prefer "large -denominator" samples to "large -numerator" samples 
or vice versa. (This is a statement of the "average situation" for J = 1/2 and 
J = 3/2; both spin hypotheses led to the same sample classification.) The 
problem of bias through rotation does not seem serious because all rotated 
subsamples of sampleD had the same (negative) sign for numerator and de­
nominator quantities. 

To investigate further the possibility of bias, we examine spin estimates 
from samples A, B, and C. Results were as follows (for a';:;'= -0.34): 

{ 

I2J+11 = 1.83 (±0.70) for 438 positive-polarization 
No rotation events (sample A) 
or selection: j2J + 11 = 2.14 (± 1.01) for 311 negative-polarization 

· · events (sample B) 
. . 

No polarization selection: 
. jzJ ::1-11 = 1.87 (±0.59) for 749 events with rotation of 

·negative -polarization samples 
(sample C) 

>:< With the l3t10 term included, sample D analysis yielded j2J +11 = 2. 53 or 1. 96 
for a';:;'= -0.48 or -0.34, respectively. -
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Fig. 4. The P(A) probability distribution for the 2J+1 estimate from the 
high-polarization sa~ple Dis shown for the spin hypotheses 1/2 and 
3/2. The actual estimate from the analysis of sample Dis indicated by 
the arrow. The two sets of curves and the two arrows, labelled a and 
b, correspond to different assumed values of a.':<': a) a.':<'= -0.48 and· 
b) a.>;:;<= -0.34. ...... -...... 
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These J2J + 1J results include the 13 term (and do not have Gaussian errors). 
The corresponding results for 2J + 1 with 13= 0 are 1.83, 1.59, and 1.72. The 
c.::ortfidence level for the spin-3/2 hypothesis obtained from the sample C ( 749 
ev~pts) analysi~_wa~ _ _Q_Jl~ (the. ar~a under the probability_ curve below the 
2J + 1 estimate) with a>;:;<= -0.48; it was<" 0.0005 with a>;:;<= -0.34. 

~ ~ 

An alternative method of estimating 2J + 1 frorri the bulk of the E: data is 
to average the 2J + 1 estimations from all samples (all 749 eve_nts), with each .r 

weighted by the inverse of its error squared. (Such averaging requires that 
each error squared be equivalent to the variance of each distribution, an as­
sumption that is only approximately valid.)· The weighted average of the 
I2J + 11 estimates [the values of Table II(a), also presented as radii in Fig. 2] 
is 1.64.(±0.53).':' An average of the 2J + 1 estimates with 13t set equal to zero · 
(and hence with algebraic sign of 2J + 1 included) gives a still smaller answer. 
These averages are consistent with the single evaluation from the composite 
sample D given above. 

D. Maximum-Likelihood Method 

In general, the likelihood for a set of events having certain angular con­
figurations is the product of the individual probabilities for the angular confi­
guration of each event. The probability that the ith event will have a decay 
configuration given by a set of measured angles Xi_ is the distribution function 
fi = f(xi, a), where a represents a set of parameters that may be varied ac­
cording to an assumed theoretical model. The likelihood L for N events hav­
ing measured angles xi (i = 1, 2, ... N) is given by 

N 
L = TT fi ~ ( 10) 

i=1 

A maximum-likelihood analysis consists of varying the parameters a to 
achieve a maximum in L, at which point the final values a 0 of the parameters 
a constitute a description of the experimental data. In this experiment, the 
measured angles x describe A, the momentum vector (normalized to unit 
length) of the A in the E: rest frame, and p, the momentum vector of the decay 
proton in the A rest frame. The parameters a entering into the distribution 
function fi are J, the assumed spin of the E:; az, 13:=;. and "YE:• the assumed 
decay parameters of the E:; aA, the decay asymmetry parameter of the A; and 
the initial-state polarization parameters tLM of the E:. 

,..The joint distribution function representing the probability that an event 
with A within a solid angle dQA and p within a solid angle dQP may be observed 
is 

( 11) 

.... - .... The term I( A) is the A angular distr'ibutiorii(8,cp) given in Eq. ( 2);~and IPL\_(A) is the A 
polarization distribution given by the three components IPA· A, IP A' x, and 

':' A weighted average of J2J + 11 with the use of fractional errors yields 12J +11 = 
3.6(±0.90). 
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~ _. A .·, 

IPA·Y in Eq. (2). The A decay distribution (1 +aA PA(A)·p) follows from the 
fact that the A has spin 1/2. Throughout this analysis we have used 
a A= +0.62.12 

Various simplifications may be made to ease the computation of f(A, :P) 
for a given event. These reductions are outlined in Appendix D. 

A maximum-likelihood search program was used to calculate all the 
maximum-likelihood results quoted in this paper .13 A search for the maxi­
mum likelihood in the spaceof all variable parameters is done by successive 
iterations with Newton's method: 

, Let w be the logarithm of the likelihood function L, as a function of m 
variable parameters ai(i = 1, 2, ... m). A maximum in w (and hence a maxi­
mum in L itself) is achieved when 8 w/8 a 1 = 8 w/8 a 2 = · · · = 8 w/8 am= 0. If we 
are near the maximum in L, then the parameters ai should be changed by 

where 

· E -1 8w (~a). = - (A ) . . - , 
1 . 1J 8a. 

. J . J 

A .. = 
1J 

= 
( 12) 

- (. - . ) 14 to bring us closer to the point of maximum w, where ai- a 0 i 1- 1, 2, ... m . 
Near the maximum, by a Taylor's expansion, 

1 w:::: const.-- \'(a. -a .) A .. (a. -a .) 
2 ~ 1 01 1J J OJ 

i,j 

(13) 

ifpartial derivatives higher than those of second order are small. The errors 
Oai on the parameters ai are given by (Oai)2 = Gii, where Gij =(A-i)ij· 

We see that L has the form 

Lex: e- 1/ 2X
2 
= exp[-(1/2)~ 

lJ 

-1 ] (a. -a . ) G .. (a. -a . ) 
1 Ol lJ J OJ 

( 14) 

where x2 tests the consistency of the parameters ai with the solution ai = aoi· 
If a large number of experiments are performed to determine the true parame­
ters abi describing a decaying state, we expect the individual determinations 
of'aoi to be normally distributed about a~i· The standard deviation of this 
Gaussian distribution should be approximately equal to the error calculated 
from a single experiment. (These facts 'have been borne out by an analysis of 
random events generated by a Monte Carlo program.15) 

It was desired to incorporate into the likelihood-function analysis the 
constraint a2 + ~2 + "{2 = 1. Because ~ and 'Y (entering into the trans.verse 
polarization terms) were found to be strongly correlated with each other and 
only weakly correlated with the longitudinal-polarization parameter a, the in­
dependent parameters in the search were chosen to be a and ~. where 
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( 15) 

With a. A fixed at +0.62, and with spin 1/2 assumed for the Z, ·three inde­
pendent parameters .. enter into._the likelihood function, namely a., <I?, and t 10 . 

Six add:A_tional para_meters enter into the likelihood function fo~ 1r,in 3/2, 
namely t20• Ir:i. t22,t30• and·frii t3 2 . If we wish; W.e·may hold&; tz. 2 andirii t 32 · 
equal to zero; this corresponds to a:veraging over cj>A, the a·zimuthal angle ofthe A. 

. . 
Values of tLM· a., and ci? are presented in Table III.for variou? samples 

of data under the assumptions of spin 1/2 and 3/2. (Unlike the moment 
method discussed earlier, with the maximum-likelihood analysis, all infor­
mation is used simultaneously so that one value for each tLM parameter may 
be obtained.) In one case, (sample D.) the parameters determined by the 

··moment method are given for comparison. 

As discussed earlier, sample C contains all events from samples A and 
B, but with those from sample B rotated 180° about the beam axis .. Sample C 
has a large value of t 10 (corresponding to59o/o polarization for spin 1/2); this 
high polarization is essential for an accurate measurement of the decay 
parameters and of the spin J. In sample D, the average polarization has been 
raised to 90o/o (for spin 1/2) by omis sian of those samples having low I t10 I; 
this yields an even more accurate measurement of <I?, as shown in Table III. 

With the assumption a. = 0.62 and spin 1/2 for the S, the best values of 
the decay parameters from 1fue maximum-likelihood analysis are (for sample 
D) 

a.= -0.30±0.08 

and <I?= 0.07±0.19 

(yielding f3=0.07±0.18, y=0.95:i:0.02). These evaluations are in good agree­
ment with those given above for the moment analysis and have somewhat 
smaller errors. 

For each sample in Table III, there exists a secondary local maximum 
of w, yielding a value of w much smaller than that at the primary maximum. 
For example, with the spin- 1/2 hypothesis for sample D (the highly polarized 
sample of 440. events), we find solutions at 

and 

(primary solution) a.= -0.30 ± 0.08, <I?= 0.07 ± 0.19, t 10 = 0.52 ± 0.06, 
w=28.01 

(secondary solution) a.=+0.07± 0.16, <I?=. -3.00± o:3o, t 10 = -0.20±. 0.10, 
w = 2.44. 



Spin Parameter 

J = 1/2 too 

t10 
a 

iJ? 

f3 

y 

J = 3/2 too 

t10 

t20 
Re t

22 
Im t

22 

t30 
Re t 32 
Im t

32 
a 

iJ? 

f3 

y 

,, 

Table III. Values for tLM and decay parameters for various data samples. a 

From likelihood From moments b 

Sample Sample Sample Sample SampleD (440 events} 
A - B c D 

(438 events} (311 events} ( 749 events} ( 440 events} tLM atLM f3tLM 

1.00 1.00 1.00 1.00 1.00 -0.18± 0.14 

+0.27± 0,07 -0.45± 0.08 +0.34± 0.05 +0.52± 0,06 0.48± 0.14 -0.19± 0,05 0.10±0.09 

-0.34±0.11 -0.31± 0.10 ·0.33± 0.08 -0,30± 0.08 a = -0.30± 0.09 

+0.49± 0,38 +0.01± 0,28 +0.21±0.23 +0.07± 0.19 

+0.44± 0,32 +0.01± 0.27 +0.20±0.21 +0.07± 0.18 f3 = o;20± 0.22 

+0.83±0.17 +0.95±0.05 +0.92±0.06 +0.95±0,02 y = 0.93+0.07 
-0.30 

1.00 1.00 1.00 1.00 1.00 -0.18± 0.14 

+0.38± 0,10 -0.56± 0.11 +0.46±0,08 +0. 71± 0.09 1.07± 0,31 -0.43± 0.11 0.11± 0.10 

-0.01± 0,05 -0.01± 0.06 -0.01± 0.04 -0.03± 0.05 -0.04± 0.05 -0.01±0.14 

-0.04± 0,03 -'-0.05± 0,04 -0.01± 0.03 +0.02± 0,03 0.01± 0.03 0.05±0.10 

+0.01± 0.03 +0.02±0.04 -0,00± 0.03 +0.01±0,03 -0.01± 0.03 0.01± 0,10 

-0.03± 0,06 -0.08± 0.07 +0.02.± 0.05 +0.06±0.06 -0.08±0.11 -0.08± 0,04 -0.01± 0.08 

-0.01± 0.04 +0.03± 0.05 -0.02.± 0,03 -0,01± 0.04 -0.01± 0,07 0.04± 0,03 0.04±0.06 

-0.02± 0,04 -0.04± 0.05 -0.03± 0.03 -0.02± 0,04 0.08± 0.07 0,01± 0.03 -0.06± 0.06 

-0.36±0.12 -0.37±0.13 -0.39± 0.09 -0.37± 0.10 a = -0.38± 0.09 

+0.56± 0,36 +0.05± 0.2.9 +0.2.4± 0.23 +0.04± 0.17 

+0.49± 0,28 

I 
+0.05± 0.2.7 +0.2.2.±0.2.1 +0.04± 0.16 f3 = 0,09± 0,10 

+0. 79± 0.18 +0.93± 0.05 +0.89± 0.07 +0.93±0.04 0 92.+0.08 y = • -0.35 
~ 

Sample A: Positive -polarization sample, selected to include chiefly. sub samples 
having t

10 
> 0, 

Sample B: Negative -polarization sample. t 10 < 0, 

Sample C: Sample A and sample B combined, with events of sample B rotated 
180' about the beam axis. (Effect is to leave a, f3, andy unchanged 
and to change only the sign of t

10
, Im t 22 , t 30, andRe t

32 
of 

sample B.} 

Sample D: High-polarizati'on sample. Bins having lt10 1 "S 0.30 re­
moved. 

ytLM 

0.47±0.09 

0.52± 0 •. 10 

0.08± 0.08 

0,05± 0,06 

-0.01± 0.06 

a, All low-momentum data,1.2-1.7 BeV/c, with co:t1"~ctiorts for short A's and short :::;:•s; aA =0.62. t 00 = 1.00 required 
by normalization. 

b. A weighted average of tLM estimates from all given moments should be compared with the single tLM of the 
maximum-likelihood analysis. 

~! 
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(The likelihood function has been arbitrarily normalized .to yield w = 0 for an 
isotropic distribution function, i.e. for a= 0 and tLM {other than too)= 0. 
Only differences in values of w are of significance.) 

F. Spin Analysis by Likelihood Techniques 

The most probable spin hypothesis can be determined by comparison of 
logarithms of the likelihood function for different spin assumptions. We see 
that the spin 1j2 and 3/2 likelihood functions differ in three respects: ( i) the 
coefficients nLO multiplying the tLM contain J -dependent factors; ( ii) the 
f&in 3/2 function contains six additional parameters t 20 , f}; t 22 , t 3 o and 
rci t32; (iii) the coefficients n{, 1 multiplying the transverse polarization 
terms contain an extra factor of (2J + 1). The change in the J -dependent coef­
ficients is of no consequence,· since the tLM always occur in the combination 
nio tLM;. that is, a change in the n{, 0 will not affect the value of the likeli­
hood function at its maximum, since the tLM will merely be readjusted to 
leave the products nio tLM unchanged. 

In order to determine the most probable spin hypothesis, the factor 
(2J + 1) multiplying the transverse polarization terms in the distribution func­
tion was varied in finite steps. The logarithm of the likelihood function, after 
maximization at each value of ( 2J + 1 ), is plotted in Fig. 5 (for._sample D) as a 
function of ( 2J + 1). The lowest curve is that for the spin-1/2 form of the dis­
tribution function, containing only a, cl?, and t10 as free parameters. PointA 
on this curve has· the ( 2J + 1) factor appropriate for spin 1/2 and corresponds 
to the spin-1/2 solution for sample D in Table III. · 

The uppermost curve is that for the spin-3/2 form of the distribution 
function, containing nine free parameters, nam~ly a, cl?, t10• t 2 o, ~ t22• t30• 
andre t32· Point B on this curve has the (2J + 1) factor appropriate for spin 
3/2 a"Wd corresponds to the spin-3/2 solution for sample Din Table IIL 

The intermediate curve is obtained by setting re t22 = ~ t 32 = 0 in the 
spin-3/2 form of the distribution function, thereby efPectively ignoring the 
azimuthal distribution of the A. The resulting function has five free parame­
ters, namely a, cl?, t 1o, t20• and t30· 

Table III indicates that the moments t 20 , t 30 , ~ t 22 , and ~ t 32 for the 
::; may be zero, a necessary but not sufficient condition for proof that the spin 
of the ::; is 1/2. (Similar results were obtained for smaller samples at all 
momenta and production angles.) If the spin is really 1/2, one expects that 
the x2 defined (with error correlations neglected) by 

x1 = L 
L,M 

( L>1) 

(tLM- 0)2 

. . 2 
( otLM) 

( 16) 

should be about 6. 0 for an "average 11 experiment, where the sum includes t20• 
f}; t22• t30• and f}; t3 2 . Noting that Lex: exp [ -( 1/2) XA2] (ignoring error cor­
relations), one expects w =log L to increase by about 3.0, on the average, as 
one goes from 3 to 9 independent parameters.16 . 



-21- UCRL-11884 

25 

20 

II 

15 

I0----~--~--~~--~--~--~--
-0 2 4 6 

2J +I 

MU B-5082 

Fig. 5 .. Several plots are shown of w =ln Las a function of 2J + 1 for the 
high-polarization sample D. The symbol P represents the number· of free 
parameters (tLM's and decay parameters) used in each treatment of data. 
The lowest curve was that obtained with the usual spin-1/2 form of the 
likelihood function; the higher two included parameters required to be 
zero for spin 1/2. See text for identification of points A and B, as well as 
further description of the likelihood functions. 
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Evaluation of XA
2 

with the parameters of sample D, Table III (with 
J = 3/2) yields 2, 9 when 6. 0 is expected, . whereas the values of w = 1 n L (for 
spin 3/2)with and without the six extra parameters differ by 1.35 when 3.0 is 
expected. Hence t 20 , f}:;_ t22• t3o, and fi:i t 32 are "very" consistent with 
zero for sample D. 

If these six moments are actually zero, the separation (measured for 
many different experiments) between the upper and lower curves in Fig. 5 
sho.uld be distributed about an "average" value near 3. 0. The actual separa­
tion for a given experiment, however, tells us little about the spin J unless 
the separation is signifi·cantly greater than 3.0 (proving inconsistency with 
spin 1/2). Accordingly, no conclusions should be drawn from comparison of 
w = .l.n L at points A and B. 

Interpreting (2J+ 1) as a variable parameter, we obtain from Fig. 5 the 
value (2J + 1) = 2.0+8·'1. (We note that this result is nicely consistent with that 
from moment analys'is, given above.) The value of (2J + 1) is not strongly de­
pendent on whether the 3-, 5-, or 9 -parameter form of the likelihood function 
is used. A more direct comparison between the two hypotheses is obtained by 
measuring w, with a fixed number of parameters, at the two points 
(2J+1)=2 and(2J+1)=4. We obtain [w(2J+1=2)-w(2J+1=4)] =2.54, 2.46, 
and 2.20 for the 3-, 5-, and 9-parameter function .respectively. This cor­
responds to rejection of the spin-3/2 hypothesis with a confidence level of 
about 0.015, or 2.2 standard deviations. 

One more important fact has not yet been utilized; namely, that the 
values of tLM inay not exceed certain limits and these limits are dependent 
upon spin. 

First, the lLM must be such that the distribution function is positive 
for all values of A and p. The solutions listed in Table III have this character 
without further constraining the tLM· 

Second, Byers and Fenster 1 have defined the tLM such that t10 for any 
spin J is related to the expectation value of the spin operator Sz by 
t1o = [ 1/r.J J(J +1)'] (Sz), so that 

lt1o I ~ J 
"..J(J+1) 

( 17) 

This constraint upon t 10 is equtvalent to the inequality derived by Lee and 
Yang; 17 

A 1 
!(cos e A>l = I<A·n>l~ 2J + 2 . ( 18) 

An even more stringent constraint is imposed by the requirement that the 
diagonal elements of the density matrix (which are the occupation probabili­
ties of the various spin states) be real and nonnegative. The density matrix p 
is of the form given in Eq. ( 1), where 
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(
1 ) J 1. J sz 

T = · and T = 
00 .. 1 10 .JJ(J+1) 

= ~1 (~-;~ .. -J) 
.JJ(J+1) 

If the tLM values are equal to zero for L:;:::. 2, the nonnegative conditions on the 
two corner matrix elements of p become 

~ J 1 ± 3 t >-: 0 whereby 
.JJ(J+1) 10 ~ ' 

lt 10 ~~ 3~ .J J(J+1) if tLM :::::CO for L:;:::. 2. 

Hence lt 10 1:!!;-lf = 0.578 for spin 1/2, and 

I I< 1 Is_ . I t 10 _ '3 "V '3 - 0.430 for spm3 2. 

This constraillt upon t10 is equivalen:t to a second inequa. lity of Lee and Yang:17 

l(cos 8A)I=I(A·n)l :!!;1/6J if no powers higher than.cos 8Aappear in the 
lambda angular distribution. 

From Table III, we see that t 10 for the spin-1/2 assumption does not ex­
ceed the limit of 0.5 78 for any of the samples A, B, C, or D. However, for the 
spin 3/2 assumption, the limit of 0.430 is exceeded for samples B, C, and D. 
For these samples, application of the density -matrix constraint will obviously 
result in reduced values of w =I. n L for the spin 3/2 hypothesis. 

In Table IV we present values of.6.w = [w(2J+1 =2) -w(2J+1 =4)], with 
and without density-matrix constraints. (These results are for the 3-parame­
ter likelihood function.in each case; values of .6-w from the 5- and 9-parame­
ter functions are nearly identical in every case.) See Fig. 6 for distributions. 

Table IV. Values bf .6-w =:: [w(2J+1=2) -w(2J+1=4)] 
for 3 -parameter likelihood function. a 

Sample 
Without 

density -matrix 
constraint 

Positive -polarization 
sample A(438 events) 

Negative -polarization 
sample B ( 311 events) 

Combined, with rotation 
of negative -polariza­
tion events. Sample C 
( 749 events) 

Combined, with rotation 
and with selection of high­
polarization events. 
Sample D(440 events) 

0.50 

2.36 

2.32 

2.54 

With density -matrix 
constraint 

(diagonal elements :;:::. 0) 

0.50 

3.12' 

2.39 

a. Values of .6-w from the 5- and 9 -parameter form of the likeli­
hood function are almost the same as those presented here,. 

b. The value 6.w=6.78 is believed to be biased. (See Sec. III.F.) 
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(b) 

____ _l 
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J = 1/2' 

, 
/ 

... <J=I/2 
---~ J= 312\ . 

Moment prediction~ 
1\ II 

A·n 

MU B-5660 

Fig. 6. (a) Angular distribution [I(8)] f'or sampleD events. The solid curves 
represent likelihoo'd solutions (with density -matrix constraints imposed); 
the dashed curves are constructed from moments: ' 

(b) Longitudinal polarization [ (IP·A)X a..L\/3] vs A·n. Only the J = 1/2 
curve (dashed) is shown from moment analysis .. 

(c) One component of transverse polarization [(IP.x),X a..L\/3] vs .A.n. 
The ordinate is proportional to 13~ and to 2J +1. Dashed curve same as in 
Fig. 6(b). 

(d) The other component of transverse polarization [(LP~y)Xa..L\/3] con­
taining yo;::. and 2J +1. The dashed curves are predictions from moment 
analysis- [based on t10 moments of Figs. 6(a) and 6(b)], curve (a) being the 
J = 1/2 prediction and curve {b) being the J = 3/2 prediction. (The spin-3/2 
likelihood solutions have been adjusted to satisfy constraints, ·whereas the 
moment curves have not:) . . . ' 

•• 
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Application of the density -matrix constraint may possibly give biased 
results where events have been selected or rotated to yield a high value of 
average polarization. Through statistical fluctuations, it may be possible for 
a selected and/ or rotated sample (even if really of spin. 3/2) to have a high 
enough average value of t 1o to favor strongly spin 1/2. For this reason, we 
choose to disregard the value of b.w = 6. 78 in Table IV (for sample D with the 
density-matrix constraint). (The value of b.w = 2.39 for sample C may be 

"- biased as well, although the rotation of negative -polarization events alone 
probably cannot bias likelihood calculations if the signs of polarizations of the 
subsamples are reasonably well defined.) We are using randomly generated 
events to investigate thoroughly the possible biases introduced through rota­
tion and selection of events. 

At present it seems that neither rotation nor selection introduces signi­
ficant biases if the density-matrix constraint is not imposed in the likelihood 
calculation. Accordingly, the most definitive results for spin from the 
maximum-likelihood method are those from sample D, for which the differ­
ence between tn L for spin 1/2 and spin 3/2 is 2.54; if L(J = 3/2)/L(J = 1/2) 
can be interpreted as having a Gaussian distribution, then this difference cor­
responds to discrimination against spin 3/2 by 2.25 standard deviations (or a 
confidence level of 0.024).18 

Output frorri the random-event generator has been used to test the likeli­
hood function; answers agreed well with the known characteristics of faked 
events and also compared very well with results on the faked events from 
moment analysis. The same fake -event generator is being used to investigate 
the distribution of values of the maximum-likelihood function itself, as a func­
tion of decay parameters and number of events. 

IV. ADDITIONAL DATA 

Analysis was made of additional data, 224 events, from the 
K-tp-.:S-tK+ reaction obtained at momenta of 2.4 to 2.7 BeV/c. Polariza­
tion of the:=;- was higher at these momenta than in the 1.2 to 1.7 BeV/c range; 
the low number of events, however,. led to somewhat inconclusive results. 

The data were subdivided for moment analysis into the three samples 
presented in Table II( b). :J'he 12J + 11 evaluations from moments have been 
added to Fig. 2; they give further support to the 2J + 1 = 2 or SJ(in-1/2 hypothe­
sis. Weighted averaging of the three evaluations yields j2J + 11 =1. 8 7 ± 0. 99. 
However, the analysis of all data samples (high-momentum) combined yields 
2J + 1 = 3..4 and j2J + 1 I= 3.8 ± 2.1 (with f3 omitted and included, respectively). 
These could satisfy either the J = 1/2 or 3/2 hypothesis. The decay parame­
ters found by moments are a.= -0.22, f3 = 0.47, andy= 0.86. (For the evalua­
tion of j2J + 1J. this unusually small value of ja.j and the large value of f3 mani­
fest themselves in a higher j2J + 1\value than that found for other data yielding 
.more nearly normal estimates of decay parameters.) Thus, the confidence 
level for J = 3/2 is not much reduced by consideration of the 2.4 to 2. 7 BeV /c 
data. 

For the high-momentum data, (all 224 events, with no selection and no 
rotation) the decay parameters for spin 1/2 as found by maximum-likelihood 
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analysis are 

a= -0.21 ± 0.12 

~ = 0' 6 2 ± 0' 3 0 ([3 = 0 57 ± 0. 2 4' '{ = 0. 8 0 ± 0 . 1 7). 

The initial polarization was such that t 10 =0.44± 0.10 (P:=;=0.76± 0.17). Cal­
culation of the difference in the logarithms of likelihoods ( spin-1/2 form) for 
spins 1/2 and 3/2 yields w(2J + 1 = 2)- w.(2J + 1 =4) = 0.39; thus no discrimina­
tion against spin 3/Z is obtained. (The 3- and 9- parameter curves analogous 
to those qf Fig. 4 are separated by 2.5, when 3.0 is expected; thus the data 
are consistent with spin 1/2.) · 

V. CONCLUSIONS 

The best values for the decay parameters (spin 1/2) were those obtained 
by maximum-likelihood analysis from the high-polarization data (sample D): 

a = -0.30 ± 0.08 

g? = 0.07 ± 0.19, 

yielding f3 = 0.07 ± 0, 18, '{ = 0.95 ± 0.02. Results from the moment analysis 
were in close agreement. 

The conclusion that may be drawn from the calculation of 2J + 1 in the 
moment analysis is that the :=; spin. is 1/2 rather than 3/2, the latter having a 
confidence level of perhaps 0. 01. The spin-1/2 hypothesis does not give a 
poor fit for any of the data at various K- momenta. The maximum­
likelihood analysis rejects spin 3/2 with a confidence level of 0.024; and this 
result can possibly be improved. 18,19 

Another study that supports the J = 1/2 hypothesis is that by the UCLA 
group.20 From some 187 ~-K+ and.169 ~-K;r events at 1.8 and 1.95 BeV/c 
K- momenta, UCLA physicists obtain the value 2J + 1 = 1.53 ± 0.88 and inter­
pret this as approximately three standard deviations away from spin 3/2.20 

It has recently become clear that the strong discrimination against spin 
3/2 obtained by moment analysis of the combined samples (C and D), with the 
a~= -0.34 demanded by the data cannot be duplicated through the likelihood 
treatment. There are of course several characteristics that make ·the 
moment and likelihood spin tests nonequivalent. (For the former, the con­
straint on decay parameters is not included and an "external" value of a:=; 
may be introduced. ·Also, the only moment involved is t1o. whereas the like­
lihood analysis demands also the too normalization ter·m.) However, the 
strength of the moment answer must be somewhat discounted for the following 
reason. Not all the t10 estimates for th~ various subsamples (Table II) were 
well defined. Selecting the samples as to the magnitude or the sign of t10 may 
have distorted the distributions of the '{t1Q, t1o. or at1o. which were assumed 
Gaussian; further, the true value of polarization (especially for sample D) 
may have been somewhat less than that calculated. The P(A) distributions 
constructed for the combined data samples thus could be inadequate for esti-
mation of conf:ldence levels. ' 
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A more naive selection of data samples has been used. This ignored 
even the polarization information from likelihood production-decay fits made 
earlier (by J. P. Berge) and separated data into four samples: 1.2-1.4 BeVIc, 
yielding t10 = -0. 29± 0.10; 1.5 Be VIc, forward production, with t1o= -0. 20±0. 09; 

<-• 1. 5 Be VIc, backward production, with t10 = 0.40± 0.11; and 1. 6-1.7 BeV I C', 

with t10 = 0. 23± 0.12. The 2J + 1 estimates made from Eq. ( 9) for these 
samples and the appropriate probability distributions are shown in Figs. 7(a) 

·~ and 7(b). (The f3t 1o moments are found to have nearly zero values.) Only the 
1.6 -1.7 BeV lc data give good discrimination against spin 312. (These calcu­
lations were done with a~= -0.48 and would give lower spin-312 confidence 
levels with a~= -0.34.) As all the t10 estimates were fairly well defined, the 
two negative-=110 samples were treated with the rotation technique and com­
bined with the positive-t10 samples. For this combination of 749 events, a 
value of !2J +1!· equal to 2. 86 ( 2.18) was obtained with aE; = -0.48 ( -0. 34). Again, 
it is questionable whether the usual sort of probability distribution of Appen­
dix III should be used. However, if this P( A) distribution is applicable, it in­
dicates for spin 312 a confidence level of 0.15 if aE; = -0.48 and one of 0. 015 if 
aE; is -0.34. (See Fig. 7(c).) The confidence levels for spin 112 are good 
(0.22 and 0.42); those for spin 512 are poor (0.003 and< 0.0002). 
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Fig. 7. (a} Evaluations (arrows} and probability distributions of 2J +1 
for four data samples simply selected: (a} 1.2 through 1.4 Be V / c; 
(b) 1.5 BeV/c, forward production; (c) 1.5 BeV/c, backward pro­
duction; and (d) 1.6 through 1.7 BeV/c. A true spin of 1/2 is 
assumed for the calculated distributions. 

(b) Data used are the same as for Fig. ?(a}. Spin 3/2 is 
assumed for probability distributions. 

(c) Evaluation and probability distributions of 2J +1 from the 
total data, treated as a combination of the four samples used for 
Figs. ?(a} and (b) .. (See text.} Spins 1/2, 3/2, and 5/2 are assumed 
for the probability distributions. All curves are normalized so as 
to have the same area. 

,7, 
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APPENDICES 

A .. ; Decay Distributions and TLM Operators 

The decay distributions presented in Eq. ( 2) of the text can readily be 
derived by the use of helicity states for the decay A . .Since· the A has spin 1./2, 
there can be <;:>nly two states; and the decay matrix for the transition from the 
initial E: spin state .to the final A state can be only a two -by -two matrix· ( re- J' 

gardless of the magnitude of the E: spin) if the E: spin function_s are· expressed 
in the representation that has A as its quantization axis.' A rotation of the :=: 
state must be made from the J, 11 system (usually- having the production nor-
mal as quantization axis) to the {A}J::telicity system;_ as pointed out by Jacob 
and Wick,5 the rotation function)? M\_(<j>, e, 0) takes the amplitude with quantum 
numbers J, M into;·the helicity state with quantum number \.(=+1/2 or '-1/2) 
if the new quantization axis is related ·to the old by the polar angles e an.._d <j> .. -
After this rotationr the decay matrix is diagonal; as its form is a+ ba· A,· the 
two "helicity amplitudes 11 that are the diagonal elements are a+ b and a- b. 
(As usual, a is the: J - 1/2. amplitude and b the J + 1/2 amplitude for a 
parity -violating decay.) 

With density-matrix formalism, it is readily seen that the final A den­
sity matrix will contain products of two rotation functions and two helicity 
amplitudes. 21 By the use of a relation that replaces each product of c:f}_trA. -
functions with a single~ function, the diagonal terms [I( 8, <j>) and IP·A ( 8, <j>)) 
are shown to containJS) Mo or YLM( 8, <j>), whereas the off-diagonal terms 
[IP·x(8,<j>) and ~P·y(8,<j>)] contain»b 1 (<j>, ~· 0). (See Appendix ii of Byers and 
Fenster unpubllshed report, Dept. ~'fPhys:tcs, UCLA, May 27, 1963. The 
published article of reference 1 presents an expression for transverse 
polarization moments, which expression contains sums of tensor polarization 
com:[2onents times YLM functions; this is equivalent to the (k)Ivf:1_ P 11) or 
(o0h'1 t( P· x + i P: y)) implied by Eq. ( 7) of this article.) 

In matrix representation, the TLM have the following forms for spin 
1/2 and spin 3/2: TLM)mm' =C(JLJ; m' M) with m' +M=m (in the represen­
tation where TLO is diagonal) 

For spin 3/2, T _ 1 0 

[

3 

10-~ ~ 

0 0 
-1 0 

0 -1 
0 0 

T22 = ~ 2/5 [~ 

T32 =J277 D 

0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
0 
0 
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B. Effect of Setting J3 = 0 in 2J + 1 Expression [Eq. ( 9)] 

The values of (3 previously reported from experimental data give an 
average of 

(3 = +0.14 ± 0.14. ( 19) 

(This number represents the averaging of .q> determinations made at CERN, 
LRL, UCLA, EP+ (Ecole Polytechnique), and BNL+S (Brookhaven National 
Laboratory and Syracuse University), as reported by H. K. Ticho.22 The ex­
pression of Eq. (9) with (3 set equal to 0 would be correct if the ( 1- a2) term in 
the denominator were replaced by ( 1- a2 -132). Taking an overestimated (3 · 
value of 0.30 instead of 0.0 decreases this factor by 0.09/0.77 and hence in­
creases the 2J + 1 evaluation by 6 percent. Leaving the denominator unchanged, 
but compensating for the neglect of the (3 term in the numerator of Eq. ( 9) re­
quires modification of two experimentally determined parameters used to cal­
culate the 2J + 1 distribution curves; these modifications have .a very small 
effect. 

Neglecting the (3 term in Eq. ( 9) is reasonable from an experimental 
point of view, whether the true spin of the :=:- is 1/2, 3/2, or higher; the 
evaluation of the moment ~n{ 1 t10 is independent of J value anc;l is certainly 
much smaller than the yn11t10 moment (also in the numerator) in the experi­
ment reported here. From a theoretical point of view, 13 can be estimated by 
use of the expression (3/ a= tan ( Op - 0 s) or tan ( Od- 0 ) for spin 1/2 or spin 
3/2, with the experimental form of a and with estimated phase shifts. (The 
quantities OJ. denote phase shifts for f. -wave scattering of the A and rr in the 
final state of the :=:decay.) As no spin- 1/2 resonances are known for the 
A- rr system, it seems ~tnlikely that either OJ or Op for a spin- 1/2 system 
would be large. The Y1'''( 1385 MeV) (a P- 3 2 A- rr system) could influence 
the A- rr final state from a spin- 3/2 :=:; but with a width of about 55 MeV, it 
could account for a J f3J value of no more than 0.4 a or 0.16, as the phase shift 
Op for Y':' decay at a A- rr energy of 1320 MeV can be no more than 23° (and 
tli.e d-wave phase shift is probably zero). 

C. Calculation of 2J + 1 Distributions 

With knowledge of experimental errors for the f3nL tLM and the 
yn{ 1 tLM moments of Eq. (9), it is possible to calculate the distribution in 
the quantity (2J + 1) 1 given by the expression [approximately equivalent to that 
of Eq. ( 9) for the experiment reported here J 

t:l 
JxJ 

( 20) 

(The discussion below also yields the distribution for Y /X, with signs included.) 
It is assumed that the numerator moment is normally distributed (this being a 

·safe assumption for most experiments and a convenient one for calculation); 
it is also assumed that the denominator quantity X is normally distributed. 
The latter is not so rigorously true as the former, but is quite good if · 
( 1- u2)1/2 is very accurately known in comparison with the (normally distri­
buted) moment n_i0 tLM' 



-32- UCRL-11884 

As disc~ssed by Byers, 23 the probability of finding_' A in some interval 
dA, if A is determined from the ratio of two experimental quantities 

A::: Y/X, '( 21) 

1s given by 

P(A) dA = dAfP'(A,X) dX =·dAjQ(AX) R(X) o(AX,X). dX', (22) 
. . o(A,X) 

The quantities Y (or AX} and X. are assurrted to be independently deten'nined. 
Further, they are taken to be normally distributed, with standard deviations 
ax and ay, so that the probability distribution for X is 

1 2/ 2 R(X) = . . . exp -[(X -X 0 ) 2 aX] 
~ax· 

(23} 

and that for Y has a similar form. 

For the case of interest to which the above P( A) distribution is appli""' 
cable, the expected value of A is the ( 2J + 1) 1 quantity defined in Eq. ( 20}. 

It is convenient to take absolute values of Y(= ~L(L+ 1) lyn{ 1 t1ol) and 
of X(=( 1 -a2)1/Z lnJ 0 t;10 1). The expression for P(A) of Eq. (22} is valid . · 
also for P( !AI) [if al) arguments are taken to have absolute values] except 
that the forms for Q( Y) and R(X) must now include contributions from· positive 
and negative arguments; thus R(X) becomes 

R(X) 

and Q( Y) takes a similar form. Now, with all variables 
values, P(/Aj) is given by the following: 

taking only positive 

Joo . { 1 · F -F G -G 1 
X dX ( e + e + e + e ) exp - 2 

2TT ax ay 0 

P( !Al)- = 
I ' 

with F= 
xxo 

+ 
YYo 

=XX 
[ay

2 
+A(2J+1) ax

2
] 

a 2 a 2 0 a 2 a 2 
X y X y 

XX· yy 
G= 0 

+ 
0 ---and 

a 2 
X 

a 2 
.Y 
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The expressionAX has been substitutedfor Y, and (2ft 1) Xo for Yo. The 
sum of the four exponential terms of course derives· from the possibili.,. 
ties of producing a value A in four ways: Y and X. both positive, Y and X both 
negative, Y positive and X negative, and Y negative and X positive. 

The above P(IAl) expression is readily evaluated analytically; however, 
with the inclusion of error correlations such evaluation becomes rather tedi­
ous. Upon introduction of the terms € f·1 of the inverse error matrix for X 
and Y, the exponent in the P(\A!) integra1 for the positive-Y -and-positive -X 
contribution or negative-Y -and-negative -X contribution only is 

1 ' -1 [ 2 2 - ] 
2 

E XX X + X O + 2XX O 

~ €~~[A2 x 2 
+(2J+1)

2 X~ =F 2A(2J+1) XX 0 ] 

-EX~ [AX
2 

+.(2J+1) x
0
2 

+(A+2J+1) XX 0 ] 

( = <I> ) .± 

(= ~ ) 
± 

Appropriate sign changes are made for the other contributions'. The final ex­
pressionmaybewrittenas.{i9[ jAJ:, -~2J+1)] beingtheprobabilityfo'r'negative A} 

where 

P(i.A\) = p [~. ( 2J + 1)] + f [!.AI. -( 2J + 1)] 

' -1 
·¥) [lA(, ( 2J + 1)] = 1\,/det E 
(f 2;r ofoo X dX {exp (cp+ + l(;+ + ~+) 

+ exp (<I>_+ l(; __ + ~ J } . 

Numerical integration of this result gave the curves of Figs. 3 and 4 .. 
Analytical integration was used to check some of the program-calculated 
points; agreement was obtained to three or four significant figures. 

D. The Distributions of Eqs. (2) and ( 11) 

The relations in Eq. ( 2) of the text are used both for the moment method 
of analysis and for the maximum-likelihood treatment [Eq. ( 11)]. The expres­
sions as given follow directly from the helicity-amplitude derivation of decay 
distributions. They may be written more explicitly. in terms of calculable 
quantities. 

With the symmetry relation for the tLM parameters 

tL, -M = (-)M t~~ 
and an identical one for the spherical harmonics, it is evident that 

':<. ::::: ·. ::::: 
tLM YLM + tL, -M YL, -M = 2 Re (tLM YLM) . •· 

Thus all negative -M terms in I( 8, cp) and IP· .A( 8, (j>) may b~ combined with 
positive -M terms. 
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The transverse polarization expressions of Eq. ( 2) require 

where F( e, <j>) is a complex function: 

·J ... L .. 
F( e' <P) = X + i y = ( 2J + 1) L ·L n L 0 t L M i) M 1 ( <P' e' 0) [( 2 L + 1) I 4 

L 0 _M 

x·[L(L+1)]-:- 1/ 2 . 

To simplify this function, we found the following definitions .arid relations use­
ful: 

J9{:;_1. (<j>, e, 0) = e-iM<j> d~A. (e) (Ref.. 24) 

d{:;_
0 

(e)= [4Tr/(2L+1)]
1

/
2 

YLM(e, 0) (Ref. 24) 

d{:;_
1

(e) = [L(L+1)]- 1/ 2 {-M(1tcos e) d{:;_
0
(e)jsin B. 

- ..}(L -M.) (L+M+ 1) ·dk1+
1

, 0(e)}. (Ref. 25) 

Also, in addition to the symmetry relation for the tL -M• the following sym-
metry property of the d{ e) functions is useful: ' 

L 
d-.M>.. (e) (Ref. 25) 

L . 
= dM>.. (Tr-e) for odd Land odd A.. 

The expression for F( e, <j>) can be written now as a· sum over positive M 
only (for M f 0 and even): 

J L L-'- -·-
F(e,<j>) =(2J+1) 2::: L nLO [JUM1(<j>,e,o) tLM+J)M~(<j>,Tr-e,O)t~M] 

L IMI X r(2L+1)/4Tr]1/2 [L(L+1)]_;1/2 

Thus, the real and imaginary parts of the function F(e,<j>) become (for MfO 
and even) 

( zJ + 1) I: 
Lo 

\' . . J - i M<j> [ L . L· ] 
L nLO Re (·tLM e ) dM1 (e) +dM1 (Tr- e) 

IMI 
X [(2L+1)/4Tr} 1/Z [L(L+1)f 1/ 2 

( zJ + 1) L: -iM<j> [ L L ] Im ( tLM e ) dM 1 (e) - dM1 ( Tr- e) 

Lo 
X [(2L+1)/4Tr] 1/ 2 _[L( . .L+f)r 1/

2 

and wit~ substitution of the expression for d{:;_
1 

(e) in terms of spherical 
harmon1cs, 

\ 

,.., 
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l
( " \' J -iMp X(e,q,) = (2J + 1) -2 L., L, nLO Re(tLM e ) 

L 0 jM jlo 

- L. nio tLO YL1 ( e, 0)} [L( L+1)] -1/2 
Lo . 

Y(B,<j>) '=,(2J+1) {-2 L I: nio Im(tLMe-iM<j>) M YLM(B,O)/sin e}[L(L+1)(
1 

· L 0 jMjlo . 
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