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Corrigenda and Addendum .

1. p. ;2, 1in§'8, regd u, <u 5'u°,+ 8.

&njmy
[uy |3

2. p. 14, equationi22, read’ a

3. A modlflcatlon of the method of VI ylelds a 51gn1f1cant1y sharper

estimate. ertlng 'I'J . rJu (Z-FrJu ), we f1nd, in any range
Iu | < u < Clu I % <a <1, the estimate
o a-1 : ia—S
: —_ —=  4n]u,
T x a a it}
*) ll',TjI' —‘Ivuj| I O(IUjl + —[;,—J‘Ia—]
as |u°|~* °.
bus 1*
If HQETEET < Clu_|, then i

as luol“">° .
We note for reference that the horizontal displacement & (u)
between xhé.singular solution U(r) 'and hyperbbié ur = -1
- satisfies 6 (u) =C>(Tﬁhg9 . Thus, the results (*) and (**) are
consistent with our conjecture on the convergence of the.free

surfaces to that of the singular solution.



Tne form of the outer surface of a symmetrlc water drop suspended
from a cu‘cular aperture is determmed by tne condltlon that the mean
curvature of the surface is propo,rtlonal to the dlstrance below a hori-
zontal reference plane.  For points near which the surface can be des-

(1

cribed by a function u(x) we obtain an équatioh

u

| > % | ._
(1) — —— =-yxut )
dx, - | _UI+'|VU‘|2

for the height u(x) above the plane, o
Here % 1is a physical constant, »'> 0 when the water lies abové the
sufface,v and A is a Lagrange parameter, to be determined by the con-

straints.

In'_a specific problerh the determination of A may lead to téchnical
diffiéultiés. Formally, however, A can be tranéfdfrhed out of (1) by
adding a‘constant to u. In the present paper we inten'd'vt‘o’charac'terize
all symmetric solutions for the case A= 0. A solution correspondmg to

glven A can then be found in this famlly by transformmg back.

We shall also intr_oduce the (inessential and convénient) normalization

w =1, We then obtain, in terms of polar radius 'r, fthe equation

I

u

(2) r-.—.-’__zr:'l, = - ru
-‘l-i-'ur r

for a symmetric two dimensional surface u(r).

Not all surfaces that appear physically have a simple projection on
a base ‘p_lane..,b hence ’for a completedescrip"cion the form (2) is ove'rly‘A
restrictive. We obtain a more suitable (parametric) form of the problem
if we introduce the arc length s along a vertical secfcibri of the surface

interface, measured from the vertex (0, u

o). We are led to the system



ﬂ 1 -
ds . o r _ . _ t

du - _ . : : : : i
(3) 35 ° siny ]

_(_:1_1_‘
ds

cos ¥y

. where ¥ is the angle between a tangent to the section and the f-axis,
. measured couﬁtercldckwise from the positively directed axis to the .

tangent line,

From the point of view of general theory, one would expect a solution

of (3) to be "dete‘rm'ined, at least locally, by the initial data
(4 (0 =05 ¥(0)=0; u0)=ug;

however, the system (3) is -singular at s = 0, and because of this tne

second condltlon in (4) is superfluous (cf the d1scus51on in [4]

- The question of local existence has been studied by _Lohnstein 15].
who established the convergence of a formal power eeries expansion,
Alternatively,‘ one .coﬁld adapt the Picard method, as used by .Johnson
and Perko [6] for the capillary problem, to the case 'studiedr here,
One obtain's lt)cal_ly,‘ by these methods, a non-parvame'tr'ic solution _u(r) :

of the equation (2), which we may write in the form

(5) - (r sin*i’)?- = ru,

The mrcumetance that only one initial datum is requlred ylelds an
impo. mt s1mphucat10n for the problemn of cnaracterlzmg all solutions.

It suffices to.describe _’cne one-parameter family determined by uo, and



it is this approach we adopt in the present work.

In general, the solution u(r;uy) determined in this way cannot be
' c'ontinuedvindefinitely as solution of (5). We shall show nowever that

for any u o- the function u(r;u,) can be continued as a parametric

solution of (3) for all s ,. yielding a surface without singularitiés or

self-intersections.

- We shall characterize quanfitativély the asymptotic form of the surface
in tne case '\uo\ > 0, and we shall characterize qualitatively tne global

structure of all such surfaces.

The glebal behavior changes qualitatively wnen luy| increases
beyond a critical value. If lu, | >>0, there 'is. an initial range for s in
| Whiéh the sufface looks like a succession of spheres centered on tne
u-akis w1th radius ~2/|u}. In all cases, the section can be expressed -

for large s in the form u(r) and has an osc111atory behavior as r ~» o,

1f u, = 0 the unique solution of (2) is given by us 0, We aésum’e A
tnrougnout this paper that u, < 0; the remammg case is obtained by a
simple cndnge of sign (2 ). We are interested part_lcularly in what happens
when ug<< 0. The resulting surfaces aré then physically unstable under
most conditions of everydé’y experience; however, the problem has an
in(.iupendéntjmatnematicél' interest (one specific feature of which we in-
dicate below) and probably also a pnysicavl interest for situations in which

gravity forces are small compared with those of surface tension, '

We néve proved in [7] the existence of avpa»rticular singular solution
of (2) that can be expressed in the form U(r) m 0<r<bd, and such
that U(r) ~_- % as r —> 0. In [8] we have presented numerical ev1dence
‘suggestmg that the symmetrlc solutioris discussed above tend umformly
to U(r ),m any fixed region u> A> -0, A particular consequence of the
analysis in the present paper'will b«, a proof of a. pr.elimin"ary form of

that conjecfuf*e, namely we shall show in section VI tnét the solutions



converge asymptotically into a neighborhood of U(r).

We remark that we know of few other studies of the problem from

(3)

a general theoretical point of view . To our knowledge the first
attempt to characterlze the shape of a water drop appears in Basnforth
and Adams [10] in wh1ch a numerlcal procedure is developed to cal-
culate the sectional form up to the first vertical point Thomson [11]
used a geometr_lcal method and was able to obtain a flgure correspon—
ding, in our notation, to u,= -7. Computational studles were greatly
.facilitated by. 'de'v'elvopment of high speed COmputers and related techniques,»
and part1cular cases have now been calculated with much larger |ug,],
see, e.g., H1da and Miura [12] and Concus and Finn (8]. Such calcu-
-latlons are suggestlve and’ mstructwe but they cannot prov1de the - A

unifying insight of a general formal descrlptlon. The present work is

intended as an initial step toward that objective.

In tniis wo’rk we study the formal solutions-of the erquatio'ns and ignore
the question of physical stability of the surfaces. With regard to this ’
related mattér the reader may wish to consult recent contributions by
. Pitts [13,14] and by Hida and Miura [12] where also further referen-

ces can be found

The central difficulty in the general study of the solutions of (2) lies

~ in the fallure of the maximum prmc1ple ‘In the part1cu1ar situation
stud1ed here a res1due of this principle remains, perm1ttm ‘us to com-
pare the solu_t1ons with those of a simpler equation. »T.h1s circumstance,
in conjunction with elementary formal rnanipulation of the eqiiation, pro-.
vides the central tool in our investigation. We proceed in a’'succession
of steps, vm.ost o‘f which are elementary aud immedlate;_'when taken to-

gether, however, they yield the requisite characterization.

‘We remark iLhat the comparison teclmique has proved effective also
in other (r elqted) contexts, and has led in particular to new information

on the behav1or of solutlons of (2) near isolated smgular points, see,



g., ['15].-7

The latter author wishes to thank J. Serrln and J. Spruck for a number

of stimu latmg conversations.

1 The case of small | ug |-

We shall prove :
(4)

Theorem i : If, ‘in the initial value problem (5, 6) there holds

u,> -2, then thc solution can be continued as a (nonparametric) solution

of the equation

for all r> O It has an infinii- of zeros. For any two successive extrema

r. rb of u(r) there nolds | u(rb)| < | u(ra) | . Asymptotically as

L — 0 the first zero _ro is the first zero of the Bessel function Jo(r),

o)
r ~ 2,405,
o

We study first the portion of the trajectory preceding the first zero,

and we note that (2) is equivalent to (5) on any interval on which |ur| <%,

(5)

Ii : Let u(r) satisfy (5) in 0< r< R and (6) at r = 0. Then
" sin¥(0) = 0,

Proof: Integrating (5) frdm_ e> 0 tor, we find

.rsm‘i'—esln‘f' —-frpudp ,
hence, using (6),

T uv'r‘. 1 5
.{7) : srn‘i'.—.__v-lj—;i.. — ;épudp

from which we conclude lim ur(r)' :
r—0

[

0. Hence there exists



r o
({ u’f(’r)»d'-r‘ =0

=

u (0) = lim ———————— = Ilim
T r—0 r A r—0

Iii Let u(r) satisfy (5) in 0<r< R and (6)'é'g_r'£ 0. I_f_u(r)<'0

in 0<r<R, then sin¥> 0 in this interval.

The proof is contuined in (7).

It follows in particular that 'u(r) — | u, < 0 ’_a's.v'r —> R, that

. . R
sin YR = lim .sin ¥(r) exists, and that
T =R o
L 1 R ,
_0<vs_m‘fR=—. —ﬁ/(') pu(p-’) dp S.l.

We‘concluvde also that if the solution curve does not cross the hyper-

bola ru =-1, then sin¥_ < 1, The following assertion covers as well ‘

o R .
the case of solution curves crossing that hyperbola, -

1iii : Under the hypotheses of Iii, if in_add_ition uoz -2, then

O<sin¥<1 _i£0'<_rs R.

Proof: Consider the relation

+(s1n‘i")r =-u,

the left side _o’f which splits the mean curvature of thfe'rotation surface
“defined by u(r) into a sum of latitudinal (x , and meridianal (x o)
. sectional cuer,’xtures.' We note by Iii that u(r) is in'cr'e'asing in

0 < r< R; thus ’-

. R
siny 1 g ~u(r)
9) =/ =- -;2 {.). p u(p) d»p >- =5

in that interval. Integrating (8) with respect to u yields, using (9),

(2 2
\uo-uR)

.1
> 1 - -
cos Y » T

R

‘which contains the assertion; We infer now frum the general existence



theorem, apphed at r = R, that the solution curve either can be continued
’ upward untxl it crosses the r-axis, or else 1t ‘tends asymptotlcally to

this" ax1s with increasing r. We may however exclude the latter possi=

b111ty '
liv: If u(r)< 0 in a< r< R< e, .then R<aexp{-' _»_.__a____ g
o , : - - g a _sm‘ifa |
Proof: ‘.From' (,5) we find r sin¥ > a sin ‘i'v,a ~in a< r< R. By Iii,

‘sin Ya> 0. Thil_s,» :

asiny
du _ . a
— = tan¥>siny> ————m—
dr - r

~and the result follows on an integration.

We have thus established that if u 2 -2 ’.chev' solution curve is in its .
initial trajectory monotonically increasing and can be continued till it
.Qros.ses the r-axis at a point r= a;. To study the .fu"rtner trvaje.ctory,

we observe that the curve.can be continued at least locally across the
axis as a selutien of (5), and we compare its _incl'inati_on at a given
~ height h with the inclination of the initial branch at an e_(jual negative

height.

Iv : If the curve can be continued monotonically to a height h above

the _‘r_-axis, then its inelination at this height is smaller than the incli-

nation of the initial branch at the hei_ght. - h, that is,
du } -
dr nho dr

Proof: We integrate (8) with respect to u between the height -h . .

— -h"’

: a_nd h, obtaining

: - hein.‘f
cosﬂ - cos‘ﬂ = f = du >0,

h T-.np "h



Ivi: Under tne conditions of I1v the curve is strictly convex

downward wnen u> O and um;< - u.

Proof: From. (s),

(_Si__rl‘l")vr = El_+1-13—)3/2 =_-u -
: r

From Iv-ahd Ivi we find
Ivii: The curve can be continued to a maximum nelgnt h

m,) = 0.

<|u|

- 1
at a pomt r: r_nl > ag, at which point sin *y(

We now pr‘l)cécd as above, compa'ring inclinatioris at corresponding
heights until the curve crosses the r-axis a second time, then com-
paring 1nc11nat10ns as in Iv, and so on. We obtain the qualitative plc-
ture indicated in Tneorem 1, of a curve oscﬂlatmg_about the r-axis
with sﬁccessiveiy décreaSing extrema (seé Fig1). We nolte also fne

additional information, yielded by the method:

Iviii ;: All inflections of the curve occur on ( monotone ) curve seg-

inents approaching the r-axis, in the sense of in‘creasing s. At any two

successive points a, B, at which |ua\ = |uﬁ| there nolds
du du
dr dr. .
£

To prove th‘e final statement of Theorem 1, we note by (7), Iii and
Iviii that | U (r;u ) | tends uniformly to zero with uo- thus the function

v(r,uo) = uo'l' u(r ‘u ) tends umformly to J (r)‘ as _uo-——.-é' 0.

II Large | uo‘l ; initial arc

If u, << 0 the above rea"soning on the benavior of the_, initial segment

fails, and so';cvijq, the results,



Figure 1.  The case ,uOZ -2 _infléc_ﬁons N

-2

ru

/'

Figure 2. - Initival comparison surfaces, uos -2 ‘/? _




(4)

Théorem 2: I_f _ 'uos -2 ﬁ, there exists a value r, béyOnd which

u(r) canriot be continued as a solution of (5). As r_sr, sin \y_) 1.

The pfoof could lproceed-by a direct study of the equation, as in
section I, We obtain more precise results and élsld develop techniques
‘that will be needed.later 1f we prdceed instead via an obvious comparison
principle. o o

i Let v(l)(r), v(z)'(r) be functions defined in a< fs b and such

(1) @), M)
r

| Suppose - sm‘i’ “(a) =z sin ‘Y.(z)(a).

that (rsiny )rz v(r sin ¥

Then siny (-”(b) > sin ‘i"(z)(b), and equality holds if and only if

v(l) = V. + const. on as< rs'_b.

The interest in II i lies in the fact that . % (r ‘s'ih ¥y )r is vxactly

twice the mean curvature of the rotation surface defined by u(r), and
this circumstance facilitates the choice of comparisbn- surfaces. In the
present case we choose as initial compar’is‘on suft_‘at:e-fhé Sphelr.é”of
constant mean curvature -u /2, with center at th_e point

(r,q) = (0, u - 2_/uo). Thus, if v(r) describes a vgrtical sectiqn of .
the sphere, there holds u(0) = v(0), u(r)< v(r) in the interval 0< r< —5

( see Fig 2 ). Using Iii, we find: ©

I ii : The solution u(r) of (5,6) can be continued at least until

u_ r
(o]

2

r= - z/uo, and sin ¥(r)< -
We nee4d also:

IT iii : A solution u(r) of (5) admits no inflections in the region

ru< -1,

Proof: From (8) follows ru+ sin¥ = 0 at any inflection.

‘ Tnus, ¥ mﬁs_t continue to increase until either a vertical point-is
- reached or the curve meets again the hyperbola ru=- 1. Integrating

(8) with respect to u and using IIii yields
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1- cos ¥> - % (_u2 - u‘ou )
"Noting that 1or r> - 2/u0 there holds

a ob ‘ — —
r = [1+ 41-8/u

we conclude that a verticalvslbpe appears at a value "
. N ‘ u

v : T Ty '
(10) u < "EQ ( 1+ ‘1 - 8/ui )

which comple.tes the proof of Theorem 2.

We may use a similar procedure to estimate the '_'\"/alue‘ r. We note
that if w(r) -desé'ribes a vertical section of the spher'e' of constant mean
- ¢urvature . » .

. : u [ ———— e —

) = 2 (14 ‘1 -8/ u(z) )

1
B
with Qen’tér at (0, u + B ), then there holds .u(O) = w(0), and by II'i
u’(r) > w'(r¥) on any interval O0<r< R along which Bus - 2. This
condition is however satisfied at u = u1 by (10), herll"cev'on the entire

arc u_<usu " We conclude u(r)> w(r) until the first vertical occurs

| 1
at r f_,r1< B».l o
We note that_ at r =B, where w (r) =, the circle w(r) intersects

the hyperbolé__ ru = .2,

From II _iiiAv;/"e conclude the initial solution curve‘:i‘s ’cbhvéx in the
region ru< .- 1. This property holds in fact for the 'exl_tire arc; on the
segment of u(r) _j»bin.ing the initial poirit to the p'oi.nt"./('gfc., ué),_ on.the
hyperbola ru = -1 we obtain from (7, 8,1 ii), using the comparison
~circle v(r); | ’ o

u ' . u

) L sin y o) R 0 -
.= = o - - + — - : 4 0.
Km . (sm»‘i’)r : r ==V 2 = _V(_‘rc) o2 >

- The last relation holds whenever u = -2 2, which is t_he'con_d_ition

that v(r) and the hyperbola ru = -1, u< 0 intersect. We conclude



also from I ii ,and the relation |

| . ru 1 2 -
i = . =t = .
(12) sin ¥ 3 P (/) 0 updp ,

that ru> - 2 _oh the arc considered.
It turns out the sectional curvatures kl and % m are both monoione
decreasing on the initial arc. We have o

4 4 siny r

- ooz a . 2 k ; 1_1_=l - siny
(13) ar "1 & T3 g pudu - — ,r(_z -

by (8, 12'), Also, we have from (7,8,11ii)

d 1

o : ‘ L S sin.\y o
» _ —_— iy = = - + = ( .+
(14) T | (siny )rr u = _( 2 | )
. - + - - = o :
<-u + = (u-u) (/) puppdp <0

by the convexity of u.
3 . 3 ' . 0 y = :_
At the 1;11t1§1 pomf (0, uO) there holds “e S % 1}0/2 . From
(8,12, 11ii) follows for r> 0 on the initial arc
(15') Km< -u/2<n1‘

From (7,8} we have also ,
a -

(16) W =eu- MY s 2

m r 2,

" The ineq"‘uai_ity' (15) 'irr.xplie's o< - uo/2 , which is the meridional
curvature cf fhe_co’m'p"arison surface v(r). Comparing the surface ulr)
 with -v(r)' at cb_rréspo‘nding values of u and applying' II ii now yields

o 2 _ 2
(17) . -11>V(-_ e
o , o

'

(see Fig. 2) .

We summarize the above results:



.;12._‘

Theorem 3: Under the condition of Theorem 2, the initial arc of

1 14), is convex, with sectional

the solution curve, firom (ro, uo) to (r

curvatures nm; "y decreasing and satisfying nom < - u/2 <#y

(4)

in ro’< r< rl.“ “_There holds
u
o 8
- —_<r1<-—§—.(A1- l-uz )
o : o
(18)

For 0< r< - 2/u the arc lies beldw the comparison circle v(r) and

has smaller. curvature and for u >u>u + B the arc lies above the

comparlson c1rcle w(r) (see Fig 2 ).

Further remark The hypothe51s u0< -2 {2 of Theorem 2 could

be sharpened by usmg the comparlson surfaces - v(r) and w(r) in (7)
and iterating. A direct numerical mtegratlon of (7) ylelds [16] '
u, % - 2,5678 as the value for which a vertical flrst appears We

find 1mmed1ate1y

IIiv: Let u_  be the largest value of uo for which a vertical point

appears. If "uov = u(‘)C the vertical occurs at the second intersection of

the solution curve with the- hyperbola ru = - 1, and is an inflection

point for the solution curve ( see Fig 3 ).

If u'O < - 5, _the upper bounds in (18) ‘can be expressed more sirhply,v

yielding

These bounds ceul_d also be improved by iteration, starting with the



Figure 3. The case u_=u
- o oc

t t +
a-c¢ a a+tc

Flgure 4, De‘lauhay surface
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comparison ‘su‘r_faces v(r) and w(r). We note for reference that the
asymptotic series obtained in. [16] by formal pertu_rbation expansion

yields, for the n-e_rm_al_ization used here,

. 2 4 -
| o 1—1—0 "33t O(uo )
(20)
' B 2 4 +81In2 -5
Uy =8 " u_ E 3_u0 M O(uo )

1 _Y@"ylezg_@_ lugl

It uo< -2 \2 then u(r) cannot be contmued beyond r, asa solution
of (2). The curve can, however be continued as a’ solutlon of the para-
met'ric system (3) as long as r remains dlfferent from zero., We study
now the behavior of this famlly of solutlons in terms of the parameter u
'asymptotlcally_as u > -, We base the dlscussmh prmc1pa11y on
II i; to do so, we introduce as comparison functiomsthe sectiomsof rotation
surfaces generated by the roulades of an ellipse, The'fbllowing result

is due to Delaunay [17]:

Let an ellipse of major axis 2a and distance 2c between focal

points, roli rigidly on an axis without slipping. Let C be the curve

’ewept out by one of the focal points. Then the surface -generated by -

rotating € about the axis has constant mean curvature. H = (2a)-1.'

We note that C is perlodlc with half-period 7 satls*‘ymg 2a< T < ma,
and that eaoh half perlod can be represented 1n the 1nterva1

a-cgsr<atec by a single valued function v(r) for whlch the equation -
(21) | '(rsiri‘i’)r':'l/a

nolds, and for which siny = 1 at the two end points (see Fig 4).
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. We proceed step by step :

The procedure of II shows that an infinite slope first appears at

(rl,u ), with bounds on (rl,ul) given by (1:8). The system (3) is non-

1 _ -
singular at (r’l‘, ul-), hence the curve can be .continued beyond this point

2

as a solution of (3,4). From (16) we find at (r'l,u

1
Y5 Uy 2 .
- + — —_ 4 =
Km> u1 2 > 2 u0 >0

so the curve turns back toward the u-axis, and can be described again
v Sl . 1
whose mean curvature is - L and for which al + ¢, Ty (see Fig 3).

2
‘Since vr(l)(rl) = e, IIi yields u, < vr(l) “?(r) és‘
(1)

(locally) as a sollition of (5).uWe compare it with a roulade v

, hence u(r)>v

lo_ngAas the continuation of both u and v as single valued function

is possible.

The curve v(l‘)(r)i can be continued toward the u-axis only until

3 . _ 2 . .
the point (al - € Uy + Tl)’_ with a, -¢; = - ul. -y >» 0; at this pqmt
the 'slope is ';again infinite. It follows there is a value Try> - fzf - T

_ u,

beyond'Which this branch of the solution curve cannot be continued as a

single valued function.

From the geometrical interpretation of 7, as the half-circumference

1
of an ellipse with major axis 2a, = - 2/u1 and focal length c,=r, -ap,
one finds tha* for large lu,l.
2 In fuy | 16

= | 16 .
(22) TiTn terTer o a3t O(_——m‘ul ).

Let us estimate ry from above. To do so, we ¢ompare u(r) with

l(r), ‘which {s determined by the conditions

a roulade v

~n 1
@) At -



G U U 4B Uy zs 2
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LA R
A RS T
(23) ,
A T2 2 2
.=/ —'"!a -c“cos® db
1 , v .
0 _
A formal estimate shows such a‘ roulaide'exists ifi- 1_11_<'- 2 \F .

. The conditions (23) are chosen so that the roulad'e can be placed -

with its lower vertical point at (r ), (see Fig 5), and so that in

u

- 1’71 v

that configuration its mean curvature will be exactly the one determined

from the right side of (5) .b'y the upper vertical. Applying I i we obtain
(1)( B

for which u(r) < u

(

' A1), o A | . ~
u.>v. (r), __YU,(I')< v r) for a_11 r<r, ! + T,

- This condition clearly holds for r near rlg since v

we vc_on_’qlude‘_it nblds on the enti_re interval Sl - 61 < r< rl, thus ,

1) A
) <ugtTy,

(1)

0 > A (r?. >ur(r) > Q/r(l)'(r) > -

on this 'inter.\)éji, and hence the solution can be coﬁ‘t_irlﬁed to the left of rl,

" at least until the value

@) r < - =P ox -p

‘. A 2 1‘
_ o 1
with '

' AL 40 : 1
(26 8= -5 ¢ O N ).

Thus '
‘ ' . - 2 2.
(27) , ‘.r2v< -3 - 5 " r1
..1 1
- ‘with -
" a, = 4+ O(ul “1n|u1| ).

- (28)
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We now proceed, essentially, as in the pr.vbo‘f of Theorem 2, We

note . L
(1) r vy

sin¥ > sin ¥~

1 1 '
T oy e—— 4+ — . .
2 v r(1+ )

-thﬁs" from (24-_28) we find for ‘r< Bz,

sin ¥ 3 3. -5
Y _>' so %+ Oty Infuy
We integrate (8) in u from u(B ); using that cos ‘1’ < 0 until a vertical

is reached, and that
- cos Y(B'2)> cos Y(l_)(sz) = . 1_2_1_ + O ln[u | )

We are led to a éontradiction unless the curve beco:_ngs‘- vertical before
‘u has invcrea,s;e_d‘by a value '-16u1~3. That is, a Vevx.*itic’:_'al must appear
at a value
'(29) o u ”V<'u",+‘?' - 16u,3
"2 1_ 1 1
The solutior cur ve then turns back from the ax1s at (rz, 2) and 1n1t1ates

a furmer branch

We summarize these results :

-~

Theorem 4 : From (r_,u.) the solution curve contin‘ues backwards

11)

towards the u-axis until a second vertical is reached, "at a point (rZ,‘uz)
with | ) ' :
—2—- < r, < 2 -r = B,
u T LT T2 u T 1 2
(30) P '
(1) ' A | -3
v .:(52) < uy < uptTy -\1{#16111 L
In the interval r, <r<r, there holds u < vr(l),' us v(l);

in the interval B2< r< r_ there holds u, > (/\r 1 ',‘ u< vr

1

We note in particulai- that the h‘b"ijﬁi-zontal distance vof't_he second vertical



from the axis exceeds that of the first vertical from the hyperbola

ru=- 2,

).

IITi: There is exactly one inflection between (rl-', u1) and (rz, u,

" Proof: Clear'ly, ’et least one inflection appears. .Us,ing' (8), :'we find

(ru+sinVv ) =( L - -1-) siny <0
r cos Y T -

on the arc. Hence there is at most one inflection.

We indicate briefly one further step in the procedure We construct

a roulade v( )(r) passing through (r )- with maJ_o_r axis 2a2 = - 2—,'
2

~.and a second roulade v( )(r) with a property analogous to that intro-

o (2) ' (2) o(2) (2)

duced for v( )(r) Then there holds v < u <v oL, Vi< u< vy

1n the mtervals for which the comparison makes sense, and (as before)
st111 another pomt (r u ) is found such that sin ‘f(r ) = 1. The proce- '
dure can be contmued as long as the values of |u(r)| remain suff1c1ent1y
large to Justlfy the indicated steps. : '

"“We find easily': :

CTIDEL s The'suy‘cces,sive horizontal distances of the vertical points,

from the axis and from the hyperbola, increase monotonically. ,

III iii : On each arc segment returning from the hyperbola to the

axis there is exactly one inflection., The same statement holds on the

remaining arc seguients for sufficiently large |u|.

Theorem 5: In the initial region u< 0, the entlre curve is bounded

(strictly) bétween the u-axis and the'hyperb,ola ru = -2 (see Fig 6).

" In this region, the curve can be represented by a sin-gle valued functlon

P e rl), witn | )<

- Proof: ..mce Theorern 4 and i apply to any xeturnmg arc, we

B conclude the curve cannot contact the u- ax1s The rela ion "('9)'_ shows
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the .:,:uryé does not meet the hyperbola on the initial arc starting from
(0, u ). To show this property for any forward arc, we integrate (5)

on such an arc from a vertical point (r u,.), obtaining

2j" 2]
r 2 u : rzu” r
P 2j 2 1 2,
- . = 4+ - i
_rs_ln“i’ rzj_ 2 2 gpudpv.
, Tys ,
> - :‘24] __rzu |
2. 2

from which {ru> - 2 on this arc. The same inequality shows sinV¥ > 0
on this arc; an'_analogous"‘integrationves'tablisnes the same property on

a returning arc.

IV Global behavior

“"The 'di.-;'(:ussi'on thus far shows_ thaf the soluticl)n.vvcu'rve .can be continued
upward wifhoUt self-intersections until it crosses the r-axis. For by I iii
an outward brahcn must either aéhieve a vertical‘ or cross that aXis,
and the c'omparison method of 1I yields readily that ‘a returning branch

naS‘tne-saﬂie‘property. ‘There are no horizontal p‘oin’cS, by Tlieorem 3.

We show here that'a returning branch cannot cross the r-axis. Pre-

cisely :

IVi: Eﬂ 1 = él ‘be the first point at which the solution curve meets.

the r-axis. Then 0< u'(a1)<°o. .

Suppd‘sé'.- 1’1"‘(3—1)<_ 0, or equivalently, cos ‘}'1 < 0. The curve could
then be continued backward into the negative u-plané 'ﬁill’-a.f.ir_'st vertical
(ra, ua) (see Fig 7), at which, by Theorem 5, B |
31)  ru > -2,

a a
We write (5) in thé form

_sm:\%" + (sin ¥) = -
r-o. r




"Figure 7. Proof of IV i

_'ru

_'_’1

Crus-2



and integrate with respect to u, from ua' to 0:
2

u

a

: 0 sin ¥
é - du = cosVY, +

(32) 1

T L

To.eva‘lﬁate, the left side of (32) ‘we integrate (5) ‘in r between r |

and r - :
o r 2 2

. a ro-r_

r - rsiny = - [ pudp < —=2

a o r . 2 a

r-u
+
o < 2 Ta

by (31). Thus
o | sin . Yo
(33) a . -

, r
-on the entire érc. Placing (33) into (32) yields cos ‘i’l > 0, contra-
dicting the assumption, V - '

: Now obs'i.e't've from (8) that at the 'crossing point ,é.l, the'iner;idional

curvature is negative; thus, if cos ‘1’1 = 0 there wo_uid‘ again be a back- -

~ ward branch from a, into the negative u-plane, ‘and we obtain a contra-

1
diction as above,

From IV i one sees immediately that the proof of _’I_‘héorem 1 applies

without change to the region r= a. We conclude _f‘r_om'Theorem 1-and 5:

" 'Theorem '6:> - The solution of the parametric sEteﬁlv(S,?l) defined by

" the data uo,-éan be continued indefinitely as a non-self-intersecting

curve. It has the form indicated in Figs 18, 9, 10..

V  Maximum diaméter

" We define the diameter of a (symmetric) water dfb‘p as the largest

_ -di_améter of .11 circular sections u ., at which the bounding surface

is' vertical.
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From Theorem 1,5, 6 we see that each drop has a well defined dia-
meter. It is IeSs obvious that there is a universal uppei"bound for the

diameters of all :possible'drops, independent of uo.

Theorem 7 : Let § ~ 2.47341 be the unique poSitive root of the

equation o . , ' _ .

3 _g3/2 3/4

(34) r -3 - 3 0

Then 26 exceeds the diameter of any solution of (3,"4).'-'

We base the p’rbo:f on a lemma, which ﬁalso has an independent interest.

Vi: Let u(r) represent a solution curve passing through (a, ua) '

with - 1< aué<"'0; and such that
(35) a sin,‘i’a = a/2

Suppose u(r)< 0, in asr< R. Then sin¥ > 0 on this arc eegment.

If the curve meefs_ the hyperbdla ru = - 1 in a point (-c,'uc) with .

a< c< R; then c< 31/4, and sin‘yc~> 1/2, '

Proof: We in‘teg‘rate. (5) between g and r, obtaining
(36) rsiny. —va siny = = (azu _rlue)) + % [ o%u' (o) dp
\ Tr o 2 a e 2
. . . o)
from which, if g = a,
1 2

- . V_ > _ =
(37) r smj’r = 5 T u(r) +

IS R

I'Z': -
[ pTu'(p)dp .
a o

For .r sufficiently near a, there holds sin ¥y > 0. 'Thus, if sinl‘y-bwere
’ce vanish at any poirits i‘hterior to a< r< R, there wb_i;ld be a minimum | .
r = rY > a at which this occurs. But (37) would then imply ' .

o . LY e, AP

0 —»rY sm‘i’.Y > 5—{3 pu'(p)dp > Of
a contradicti(")vn.v' Thus, siny > 0 on a< r< ¢, and henc‘e u’ (p) >0

on this interval. Setting now r = ¢ in (37) 'yields



RS

| 1 1
(38) smv‘ff-c > - 0 cu(c) 3
Finally, we note that at r = ¢ the iriclination of the 'stIu_t.ion curve can-
. 1 L
‘not exceed that of the hyperbola, Thus, sin ‘i’c < =7 ‘and
Lo : : |1 tc

| c‘.1 < 3 follows from (38).

We proceed vto.»p'rove Theorem 7, For any given 'ub, the maximum

-width is attained aﬁ a point (r2j+1, u2j+1) with 1= _r2j+1 u2j+'1'> 2,
j= 0 (see section III ). At the preceding pomt (r ) there holds
either r.2j =0 (if_-j = 0) or else sin ‘i’zJ 1. Ln elther event, (35)
' holds with 2 = r2j‘ Also - 1<« eru2J< 0, and thus’ the curve crosses
the hyperbola_.'ru =-1ata pomt (c, u') 2J< c< r23+1 Settmg
a ="'c, r= r‘zj;l_‘:"j.n (36) and applymg Vi y1e1ds usmg II iii,
3 . 3/2 - .3/4
(39) r2j+1 - Toje1 ~ 37 < O

The (smgle) p051t1ve sclution of (34) exceeds any solution of (39)

_Sln(.c j is arbltrary, We conclude 26 exceeds the dlameter of any drop.

VI Convergence fo the singular solution

“ The solutions discussed in this paper are apparentiy related.to a
s'ingular'solutionv U(‘r.) of (2), whose existence we have proved in [7]

The function U(r) is defined in a deleted nelghborhood of r = 0, and there
holds asymptotlcally U(r) ~ - % , as r —>0, We have conJectured
that in any mterval O< al r< b<w, the solutlons of (3 4) admlt

a smgle valued representation u(r;u ) and converge unlformly to U(r),
a8 u — oo, Flju.ves £,9,10 show Zhe resulls o@ Ca.(cu(a'(cons

Su'opg rling Che cowy ectu.re

In this sectlon we derive a streng‘thened form of the left hand mequa-
'11ty in (30), and we .prove as a consequence a pr ehmmary (asymptotic)

-form of the conJecture To do so we 1terate the cornparlson procedure
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- ;'__'.__:_"',,_"'Fi'gure 9. ug, = -8; singular é’o‘iut‘ion"-‘ o
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" Figure 10. u

o

= -16 ; 's_ih.gula',r_ s(':):luti_on‘ )

By
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('1)(

of III, Introducing égain the function v~ '(r), and applying II i, we find

from (7, 21) :

_. () 1 |
r(sinyY -siny ") = [ p_(u-ulv)dp‘
‘ | A r . o
Co | -1 -
(40) S >/ Tp G u,)dp
= [ “pflp)dp
| r
where r . ;
: C 1 L (1) o
A R et
. ' ru r rou.
BTN ¢ D PE B S A
(42) svm_‘P} (r) e + o= (vl =)
_ 1, 1 .
) { u1r+ u,r T}
with
(43) ‘T = - r.lul ( 2\+’ rlu1
A formai if tedious estimation yields
i . A -5
JoTeflp)de = - =+ Q)
ro ‘ u
~where A*(T) has the property
(44) lim A% =1
' T —»0 '
Thus, |
‘ siny > - = (u,r+ 1 T) - A(T)
1 r 3
1 u, r
. ! 1
We conclude sin ¥ = 1 at a value
' 2 MDD L Ay L
R L O« 5 )

1 . u ‘u,
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where k(_'I“) again has the property (44).

Repeating the procedure yields

‘ . 1
(46) Fojez 7 T2i T T3 + O 5 .

L

2] : 2j -
On the other hand we find from the methods orf'v 11

= u,, - 4p (T) + o(]u

e -2-8 .
U, . . )
ez T e T Ty

(a7) .k
~ for any B, 'O:<'B< 1, and where (T) has the. pr_ope‘rfy (44),

Integr.atinig”‘(4_7) from j =0 to j=n, we find

. 1 2 2 C1-g
49 on g (ug )+ oyl By,

We place. th_is result in (46) and integrate, obtaining

) L .
(49) r, o> -*O‘ - )
2 4 2 1- | | |
v:‘n . H En+-°(|uo| B) _ uo

' This relation yields information if we choose n 86 that

_ a a
(50) | ¢, |u0| < u, < ¢, [uo| -
for positive_bcof‘lstants Cl< éz, and 0<a< 1. Then ‘. ({19) implies that
T ~ in ény' interval of the type (50), there holds asympt'oti-c':a'lly as u =,
. N L X 1-B-2q , -
‘ —
(51) lry u, | > i [1+0 (|.uo| )1

Choosing‘vﬂ suff_icig-:-ntly large that 1-8 -2q < 0, we obtain from

.(5}_1) a lower bound for | r, in the interval (50), depending only "

o nuZn! . »
on T, It follows that T cannot remain arbitrarily small, for X and p

would then bot_h‘ be clbse to unity. We heve proved: =
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' : ’ . . ‘ N . a .
", Theorem 8 : There exists a universal constant T > 0, such that

A .
on any interval of the form (50), there holds T> T at all vertical

points, for all sufficiently large |u0| .

Our result is at least suggestive of convergence to the smgulax 50-
1ut10n U(r) thls latter solution is characterlzed asymptotlcally by the

condition T~ 1,

It seems 11ke1y that a closer exammatlon of the asymptotlc relations

discussed above will yield s1gn1f10ant1y new mformatlon on the (con-

_'Jectured) convergence to U(r).

Footnotes

(1) p1 = 'or background information on the: derlvatlon of (1) see,

eg[123]

(2) p3 The remaining case can be realizedphysic;a'lly, e.g., as the

lower surface of a column of water in a glass capillary tube.

(3) -p4 We call attention however to a remarkable existence theorem

due to Wente [9]
(4) p5,9,12 This improves the result announced in [8].
(5). p5 A stronger result of this type is given in [4].
" Part of this work wes carried out while the latter author.waé at
Universitdt Bonn. The work was supported in pért by the U. S. Energy

Research and Development Administration, by the National Aeronautics and

"Space Administration, and by the National Science'Fbundation.
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