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Abstract: In 2020, the Eliminate Hepatitis C Initiative in the county of San Diego (COSD) was launched,
a private–public joint endeavor between the COSD and the American Liver Foundation. We use
epidemic modeling to assess whether the COSD is on track to reach its elimination targets (80% re-
duction in incidence, 65% reduction in hepatitis C virus (HCV)-related mortality by 2030 compared to
2015) and what intervention scale-up may be required. We adapted a previously developed dynamic,
deterministic model of HCV transmission and disease progression among adults in the COSD, strati-
fied by risk, age, gender, and human immunodeficiency virus (HIV) status. The model is calibrated
to detailed historical epidemiological data on HCV burden, treatment, and mortality in the COSD.
We project HCV infections and mortality under status quo HCV treatment (65%/year among people
coinfected with HCV and HIV, 0–5%/year among others) and determine what treatment scale-up
among those without HIV is required to achieve HCV elimination, with or without concomitant
reductions in injection transmission risk from 2024 onward. We project an increase in new HCV
infections in the COSD to 2213 [95% C.I.: 1069–3763] in 2030, a mean 91% relative increase between
2015 and 2030. HCV-related deaths are expected to decrease to 246 [95% C.I.: 180–295] in 2030, a
mean relative decrease of 14% compared to 2015. The incidence elimination target could be achieved
through increasing HCV treatment among those without HIV to a mean of 60%/year, similar to
the level achieved among people coinfected with HCV and HIV. Combination interventions reduce
the treatment needed; if injecting risk is reduced by 25%, then treating 48%/year could achieve
elimination. The COSD is likely not on track to reach the incidence or mortality targets, but achieving
the incidence target is possible if treatment rates overall are scaled-up to rates that have been achieved
among people coinfected with HCV and HIV. Elimination is achievable but requires committed
funding and expansion of comprehensive testing, linkage, and treatment programs alongside harm
reduction initiatives.

Keywords: people who inject drugs; elimination; hepatitis c; testing; harm reduction

1. Introduction

Hepatitis C is a liver infection caused by the hepatitis C virus (HCV), which if left
untreated can result in cirrhosis, liver failure, and death [1]. HCV transmission in the United
States most commonly occurs due to used or unsterile syringe sharing among people who
inject drugs, but vertical transmission and sexual transmission (particularly among men
who have sex with men, MSM) can also occur, although less frequently [1]. Acute infection
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is often asymptomatic, with approximately one-quarter of individuals self-clearing their
HCV infection and the remainder progressing to a chronic infection. Those with chronic
infection are often asymptomatic until they develop some form of advanced liver disease,
such as cirrhosis [1]. There is currently no effective vaccine for HCV; however, highly
effective, all-oral direct-acting antiviral treatments now exist that can cure infection in >95%
of individuals [1].

In 2015, the World Health Organization (WHO) set strategic goals to eliminate HCV as
a public health threat [2], including an 80% reduction in HCV incidence and 65% reduction
in HCV mortality by 2030 compared to the 2015 baseline [2]. Subsequently, many countries
and local jurisdictions have developed action plans to achieve these HCV elimination
targets. In 2023, the White House proposed an HCV elimination plan for the United States,
requesting USD 11 billion over five years to support testing, treatment, and education [3].
However this initiative is in Congress where it has not yet received approval [4].

The county of San Diego (COSD) in California has an estimated 55,354 individuals
with a history of HCV [5], and several associated HCV elimination initiatives. In 2018, the
University of California San Diego (UCSD) Owen Clinic, a large HIV provider in the COSD,
launched a micro-elimination initiative to scale-up HCV treatment among people coinfected
with HCV and HIV. In 2020, the Eliminate Hepatitis C Initiative in the COSD was launched,
a private–public joint endeavor between the COSD and the American Liver Foundation
to support the achievement of the WHO goals [6]. This resulted in an implementation
plan for the initiative, released in 2021, with the aim of promoting awareness of HCV and
implementing prevention, screening, linkage, and treatment for HCV to reach the WHO
incidence and mortality targets. Although our foundational work established a baseline
for HCV burden in the COSD, and recent progress has been made in scaling up treatment
among people coinfected with HCV and HIV, it is unknown what level of intervention
scale-up is required to achieve the elimination targets in the COSD. Simulation modeling
has been a tool for assessing the level of intervention scale-up required to achieve the HCV
elimination targets and whether locations are on track to achieve elimination [7].

Using dynamic epidemic modeling of HCV transmission and disease progression, we
aim to assess whether the COSD is on track to achieve its HCV elimination targets and, if
not, what level of intervention scale-up will be required to meet them by 2030.

2. Methods
2.1. Model Description

We adapted a previously developed dynamic, deterministic compartmental model
of HCV transmission and disease progression among adults in the COSD [7]. The model
simulates the entire adult population of the COSD, stratified by transmission risk (the
model previously included people who inject drugs (PWID) and men who have sex with
men (MSM) as it was focused only on transmission and was subsequently extended to
incorporate former or never PWID (ex/non PWID) to track disease burden in the entire
population). The model is open, with individuals entering at age 18 into one of the pop-
ulation groups (MSM, PWID, ex/non-PWID) and leaving the model due to age-specific
mortality. Additionally, PWID can permanently cease injecting and move into the ex/non-
PWID compartments. Each group is also stratified by age (18–39, 40–54, 55–74, and 75+),
gender (male/female), HIV status (susceptible, infected) (Figure 1A), and HCV disease
stage (Figure 1B). The hepatitis C infection and disease stages are: (i) susceptible, (ii) spon-
taneous clearance from no/mild liver disease, (iii) sustained viral response (SVR) from
no/mild liver disease (iv) susceptible moderate liver disease, (v) susceptible compensated
cirrhosis, (vi) susceptible decompensated cirrhosis, (vii) susceptible hepatocellular carci-
noma, (viii) no/mild liver disease, (ix) moderate liver disease, (x) compensated cirrhosis,
(xi) decompensated cirrhosis, and (xii) hepatocellular carcinoma. We assume HIV status is
a fixed characteristic; the model does not simulate HIV transmission dynamically due to
the stable HIV prevalence among PWID and MSM in the COSD [8,9].
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Figure 1. Hepatitis C virus (HCV) transmission and disease progression model schematics for the
(A) population groups and (B) HCV infection and disease progression. SVR: sustained viral response.
MSM: men who have sex with men. PWID: people who inject drugs.

The model is dynamic, such that susceptible individuals may become infected (or
reinfected) with HCV at a rate proportional to the prevalence of active HCV infection
among their risk group, which can change over time as people are treated and cured. In
the model, HCV transmission is simulated among PWID and MSM separately based on
phylogenetic analyses in other settings indicating that these epidemics are distinct [10].
As such, although MSM may inject drugs, we classify these individuals as MSM and
assume they inject with other MSM. The model also assumes assortative mixing among
MSM by HIV status. People with HIV are assumed to have elevated susceptibility and
transmissibility for HCV compared to those without HIV [11,12]. We assumed a time-
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varying elevated risk of transmission among young PWID (aged 18–39) compared to older
PWID, which was necessary to recreate observed HCV prevalence trends by age among
PWID in San Diego [13] and also supported by data on higher overdose rates among this
group in the past decade [14].

Once acutely infected, individuals can either transition to the no/mild liver disease
compartment or spontaneously clear HCV infection and move to the spontaneous clearance
from no/mild liver disease compartment. Spontaneous clearance is reduced for those
with HIV. Individuals with chronic infection continue to progress through the disease
stages unless successfully treated. Treatment occurs at a rate that varies by population and
time. Those who have been successfully treated move into the equivalent SVR stage and
are susceptible to reinfection at a risk similar to primary infection. Successful treatment
stops any HCV-related disease progression unless an individual has already reached
the compensated cirrhosis stage or beyond, whereupon disease progression occurs at a
slower rate compared to those without SVR [15,16]. HCV-related mortality occurs from the
decompensated cirrhosis compartments and hepatocellular carcinoma compartments, and
we include a scaling factor to reduce liver-related mortality to account for liver transplant
(which is obtained through model calibration). All individuals are at risk of background
(non-HCV-related mortality), and PWID experience an elevated risk of mortality due to
drug-related causes.

2.2. Model Parameterization and Calibration

The model was parameterized from the published literature for aspects such as HCV
natural history, treatment SVR, and age-related mortality (see Supplementary Table S1).
The model was calibrated to detailed epidemiological data from several local sources
(Table 1), with detailed PWID data obtained from a longitudinal cohort of PWID in San
Diego (La Frontera Cohort, PI Strathdee) [13]. HCV treatment among PWID was estimated
to be negligible from La Frontera [13], where among PWID residing in San Diego, HCV
RNA prevalence among Ab+ PWID was 76%, similar to that expected with spontaneous
clearance only and no treatment. This was consistent with self-reported exposure to HCV
treatment (unpublished, La Frontera). As we did not have data on HCV treatment among
HCV-infected MSM without HIV, we assumed no treatment based on little historical surveil-
lance in this group. For the remaining groups (ex/non PWID without HIV), HCV treatment
rates were estimated from general population care cascade studies in San Francisco and
nationally (approximately 5%/year) [17,18]. Time-varying HCV treatment rates among
people coinfected with HCV and HIV were obtained through model calibration (described
in our previous publication [7] and below). We simulated a piece-wise time-varying treat-
ment function to represent different treatment eras: 1996–2010 (pegylated interferon (IFN)
plus ribavirin era), 2011–2017 (first generation of direct-acting antiviral (DAA) therapies),
and 2018–2021 (broadly available IFN-free DAAs).

Table 1. HCV calibration data for the county of San Diego. PWID: people who inject drugs. MSM:
men who have sex with men.

Year
Observed Data Used

for Model Calibration
[95% C.I.]

Calibrated Model
Output

[95% C.I.]
Reference

HCV seroprevalence among
MSM coinfected with HIV 2015 0.165

[0.155, 0.176]
0.157

[0.122, 0.172] [5]

HCV seroprevalence among
all MSM 2015 0.046

[0.030, 0.061]
0.071

[0.050, 0.103] [5]

HCV seroprevalence among
PWID [age 18–39] 2021 0.46

[0.39, 0.53]
0.450

[0.407, 0.479]

La Frontera PWID
cohort with residence

in SD, unpublished [13]
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Table 1. Cont.

Year
Observed Data Used

for Model Calibration
[95% C.I.]

Calibrated Model
Output

[95% C.I.]
Reference

HCV seroprevalence among
PWID [age 40–74] 2021 0.36

[0.30, 0.43]
0.395

[0.363, 0.428]

La Frontera PWID
cohort with residence

in SD, unpublished [13]

HCV viremia prevalence
among HCV seropositive

people coinfected with HIV

2010 0.3091
[0.2705, 0.3506]

0.3082
[0.2633, 0.3400] [19]

2018 0.1849
[0.1534, 0.2212]

0.193
[0.159, 0.266] [19]

2021 0.0857
[0.0636, 0.1146]

0.095
[0.082, 0.118] [19]

Number of PWID 2007 24,991 30,075
[25,055, 37,948] [5,20]

HCV primary incidence rate
among PWID (per
100 person-years)

2021 17.14
[12.52, 21.75]

9.592
[5.184, 16.561]

La Frontera PWID
cohort with residence

in SD, unpublished [13]

HCV-related deaths 2015 290 289
[253, 316] CDC [21]

We used a two-step calibration process for the model. First, we used a simplified
submodel (simulating PWID and MSM only, neglecting ex/non-PWID) to determine trans-
mission and treatment-related parameters for these groups. This allowed us to seed the
epidemic in 1955 and run the model to achieve equilibrium prior to the recent scale-up of
treatment and changes in transmission risk. Then, we inputted these calibrated transmis-
sion and treatment parameters into the full model (simulating all risk groups), which was
initialized in 2015 based on our recent burden estimation (for non-PWID) and outputs from
the submodel (for PWID and MSM). Using this full model, we then ran a secondary cali-
bration to determine HCV-related mortality parameters based on recent mortality trends.
The final calibrated model thus was consistent with epidemiological data on both HCV
prevalence and mortality. Details of the full model and the submodel used for calibration
are found in the Supplementary Materials. Therefore, the final full model was calibrated to
data on HCV seroprevalence in 2015 among MSM (4.6% among all MSM, 16.5% among
MSM with HIV) [5,22]; HCV viremia prevalence among HCV seropositive people coin-
fected with HIV of 42.1% (2010), 18.5% (2018), and 8.5% (2021) [19]; the number of PWID in
2007 [5,20]; HCV seroprevalence of 46% and 36% among young PWID (aged 18–39) and
older PWID (aged 40–74) in 2021, respectively [13]; primary HCV incidence rate among
PWID of 17.14 per 100 person-years in 2021 [13]; and total HCV-related deaths in 2015 (290)
and 2019 (320) [21]. Calibration was obtained by varying the following parameters: trans-
mission rate among MSM, transmission rate among PWID, degree of assortative mixing
among MSM by HIV status, annual treatment rates among HIV/HCV co-infected individu-
als (1996–2010, 2011–2017, and 2018–2021), the relative risk of transmission among young
PWID (aged 18–39), start year of increased risk among young PWID, HCV-related death
rate scaling factor, and the proportion of HCV Ab+ non-PWID with previous successful
treatment in 2015.

For each calibration, to capture the uncertainty in input parameters, a sample of
100 parameter sets was drawn from uncertainty distributions for each unknown parameter.
We assigned wide prior bounds to the unknown parameters and assessed our posterior
estimates to ensure our priors were sufficiently wide. These sampled parameter sets were
then used to generate 100 model fits to the observed data. Calibration was achieved using
a least-squares minimization solver in MATLAB version R2023a (lsqnonlin function) with
multiple start points (MultiStart) to ensure a global minimum was found. From the full
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calibrated model fits, runs were then excluded if the fits fell outside the 95% C.I. of the
calibration data for HCV seroprevalence in 2021 among (i) young PWID (aged 18–39) and
(ii) older PWID (aged 40–54) [13], generating a total of 76 model fits to the data.

2.3. Modeled Scenarios

The calibrated model fits were used to simulate HCV incidence and HCV-related
mortality from 2015 to 2030. We simulated a status quo scenario and also scenarios of
combination scale-up of treatment and reductions in injecting transmission risk based on
recent authorization of county founding for syringe service programs (SSP), which we
believe will likely reduce transmission risk.

• Scenario 1 (status quo): Continuation of current treatment rates (65.1% among people
coinfected with HCV and HIV, 0% among PWID and MSM without HIV, and 5%/year
among ex/non-PWID without HIV).

• Scenario 2 (scale-up to meet the 80% incidence elimination goal without injecting
transmission risk reduction from 2024 onward): Scale-up of HCV treatment among
people without HIV from 2024 onward to a rate that achieves an 80% reduction in new
HCV infections from 2030 compared to 2015. This rate was determined through model
calibration. Treatment among people coinfected with HCV and HIV is held constant
at 65%/year.

• Scenario 3 (scale-up to meet the 80% incidence elimination goal with 25% injecting
transmission risk reduction from 2024 onward): Reduction in injecting transmission
risk by 25% from 2024 onward combined with scale-up of HCV treatment among
people without HIV from 2024 onward to a rate that achieves an 80% reduction in new
HCV infections from 2030 compared to 2015. This rate was determined through model
calibration. Treatment among people coinfected with HCV and HIV is held constant
at 65%/year.

• Scenario 4 (scale-up to meet the 80% incidence elimination goal with 50% injecting
transmission risk reduction from 2024 onward): Reduction in injecting transmission
risk by 50% from 2024 onward combined with scale-up of HCV treatment among
people without HIV from 2024 onward to a rate that achieves an 80% reduction in new
HCV infections from 2030 compared to 2015. This rate was determined through model
calibration. Treatment among people coinfected with HCV and HIV is held constant
at 65%/year.

2.4. Sensitivity and Uncertainty Analyses

We performed a partial rank coefficient correlation (PRCC) uncertainty analysis to
understand how sensitive the model prediction of HCV treatment required to achieve elim-
ination without any transmission risk reduction is to uncertainty in underlying parameters.

3. Results

The calibrated model runs (n = 76) fit well to the data (Table 1). The model projects
1366 [95% C.I.: 536–2340] incident HCV infections in 2015 in the COSD, with a steady
increase to 2211 [95% C.I.: 1054–3949] new HCV infections in 2024 (Figure 2A). Similarly,
the model projects 289 [95% C.I.: 253, 316] HCV-related deaths in 2015, with a slight increase
to 301 [95% C.I.: 232–357] HCV-related deaths in 2024 (Figure 2B).

Without any intervention scale-up, our model projects an increase in annual new HCV
infections to 2213 [95% C.I.: 1069–3763] in 2030, failing to meet the elimination incidence
target and resulting in an increase in annual incidence by a relative 91% [95% C.I.: 1–355%]
between 2015 and 2030, alongside increasing incidence rates (Supplementary Figure S1).
Although HCV-related deaths are expected to decrease to 246 [95% C.I.: 180–295] in 2030,
this would fail to meet the 65% reduction mortality target, resulting in a relative decrease
of 14% [95% C.I.: −18–45%] between 2015 and 2030.
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Figure 2. Model projections of annual HCV incidence (A) and HCV-related mortality (B) in the COSD
(2015–2030). Mean model projections (lines), with shading denoting the 95% uncertainty interval
around the status quo scenario. Scenarios shown are: (1) status quo treatment (black solid line);
(2) treatment scale-up to achieve 80% incidence reduction without injecting transmission risk reduc-
tion from 2024 onward (green dashed line); (3) treatment scale-up to achieve 80% incidence reduction
with 25% injecting transmission risk reduction among PWID from 2024 onward (orange dash dot
line); (4) treatment scale-up to achieve 80% incidence reduction with 50% injecting transmission risk
reduction among all PWID from 2024 onward (dark red square dot line).

3.1. Treatment Needed to Reach Elimination

In order to reach the 80% incidence reduction elimination target, the model indicates
that without any harm reduction scale-up or injecting transmission risk reduction, treatment
would need to be scaled-up to 60%/year [95% C.I.: 39–98%] among people with HCV
who do not have HIV (among people coinfected with HCV and HIV, the baseline rate is
already 65%/YEAR). This level of treatment achieves the incidence target (declining to
273 [95% C.I.: 107–468] new infections in 2030) but only results in a moderate decline in
HCV-related deaths (declining to 207 [95% C.I.: 153–258] in 2030, a 28% reduction compared
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to 2015). Greater treatment rates, particularly among those most at risk of HCV-related
mortality, would be required to achieve larger reductions in mortality.

If injecting-related transmission risk reductions were achieved alongside HCV treat-
ment scale-up from 2024 onward (such as through scale-up of harm reduction interventions),
then lower treatment rates are required to reach the HCV incidence target (Figure 3). With
25% and 50% injecting transmission risk reductions among PWID, then only 48%/year
[95% C.I.: 29–80%] and 35%/year [95% C.I.: 19–63%] treatment rates among those without
HIV are required, respectively, to reach the incidence targets.
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Figure 3. Annual HCV treatment rates required to achieve the HCV incidence elimination goal
by 2030 among HCV-infected people without HIV, given varying levels of injecting transmission
risk reduction from 2024 onward in the COSD. In these scenarios, HCV treatment rates among
people coinfected with HCV and HIV remain at their baseline (65%/year). Bars indicate mean
values, and whiskers denote the lower (2.5th percentile) and upper (97.5th percentile) bounds from
the simulations.

3.2. Uncertainty Analysis

The predicted treatment rate required to achieve elimination is most sensitive to
the PWID transmission rate and the relative risk of transmission among young PWID
compared to old PWID, which accounted for 44% and 18% of the variance in the outcome,
respectively (Supplementary Figure S2). The remainder of the parameters contributed
<10% to uncertainty.

4. Discussion

Our modeling indicates that the COSD is likely not on track to reach the Eliminate
Hepatitis C Initiative’s incidence or mortality targets, but achieving the incidence target is
possible if treatment rates are scaled-up among HCV-infected individuals to rates that have
been achieved among people coinfected with HIV and HCV in the COSD. As such, we
believe elimination is achievable but requires committed funding (as was achieved through
the Ryan White program for people with HIV) and comprehensive testing, linkage, and
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treatment programs alongside harm reduction initiatives (i.e., syringe service programs;
SSPs). The recent FDA approval for point-of-care HCV RNA tests in the United States
is an important opportunity to expand and innovate initiatives to diagnose individuals
and link them with care [23]. However, these tests are only available to adults aged 22
and older, which excludes a significant proportion of PWID. Additionally, these initiatives
urgently require committed funding. Congressional approval of funding for the White
House HCV elimination initiative is urgently needed to provide funding for novel point-of-
care diagnostics and treatment. Even with this influx of funding, it is essential that testing
and treatment initiatives are focused on identifying those with ongoing transmission risk,
such as PWID. Providing HCV testing and treatment in community settings (like syringe
service programs (SSPs) and overdose prevention centers) is an effective way to reach
PWID and their partners and provide them with low-barrier care.

Further, we find that a combination approach of scaling up both treatment and harm-
reduction initiatives for PWID could reduce the number needed to treat to achieve the
incidence elimination goals. Evidence-based harm reduction interventions, such as opiate
agonist therapy (OAT) and SSPs, have been shown to reduce the risk of HCV transmission
by up to 80% if used in combination [24]. Although the uptake of OAT among PWID is low
in the COSD (<15% recently on OAT in the La Frontera cohort, personal communication),
initiatives during the onset of the COVID-19 pandemic (such as allowing take-home doses
and eliminating X-waivers required for prescribing buprenorphine) may serve to increase
uptake in the future. Since 2020, the number of state-authorized SSPs has quadrupled in
the COSD, which may increase syringe coverage and reduce syringe sharing among PWID
in the region. However, longitudinal monitoring is necessary to understand the impact of
this additional scale-up of SSP services on HCV incidence and subsequent mortality.

Our work is consistent with other analyses indicating that the U.S. is not on track
to reach its incidence elimination targets, but that the incidence elimination goal can be
achieved with a combined harm reduction and treatment approach [25,26]. However, our
work has a number of key uncertainties. First, there is uncertainty surrounding changing
drug markets and associated drug practices in the COSD, as well as subsequent HCV risk.
For example, recent shifts from injecting to smoking among PWID in San Francisco and
San Diego have been observed, alongside an increasing penetration of fentanyl in the drug
supply. However, the impact of these changes on HCV incidence is unclear. On the one
hand, less injecting could lead to less HCV transmission, but our recent analysis indicates
that fentanyl use predicts HCV seroconversion, even after adjusting for syringe sharing [27].
Future epidemiological and modeling work using longitudinal data from the cohort of
PWID in San Diego will enable more detailed characterization of these trends over time and
the resulting impact on HCV and mortality. Second, there is uncertainty in HCV treatment
rates among MSM without HIV and former PWID in the COSD. The COSD is currently in
the process of developing a comprehensive HCV treatment database, which will enable the
monitoring of HCV treatment and provide local data to inform updated modeling. Third,
it is important that our model is prospectively validated against future surveillance data
and updated accordingly. These limitations notwithstanding, we believe that our analysis
provides an important data-based foundation for programmatic targets to ensure HCV
elimination is achieved in the COSD.

Modeling studies like ours are useful in estimating HCV incidence (a key WHO
elimination target) in the absence of direct incidence estimation through retesting of people
at risk, which can be highly resource-intensive [28]. In settings where HCV incidence
cannot be monitored, surveillance of chronic HCV prevalence or monitoring trends in HCV
prevention and treatment combined with modeling (as presented in this study) can be a
reliable alternative [28].

In conclusion, the COSD is not on track to reach its HCV elimination targets but
could achieve them by 2030 with committed funding, scaled-up HCV testing, treatment,
harm reduction initiatives, and building on local micro-elimination efforts among people
coinfected with HCV and HIV [29,30]. Indeed, as 2030 approaches, despite progress in
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select countries, the majority of countries are not on track to reach the WHO incidence and
mortality targets [31]. In the many settings where the majority of transmission is among
PWID, more concerted efforts are needed to provide enhanced prevention, testing, and
treatment among PWID to substantially reduce HCV incidence [32].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v16121819/s1, Figure S1: Model projections of HCV incidence
rate (per 100 person-years) among PWID in San Diego County (2015–2030); Figure S2: PRCC analysis
on the HCV treatment rate required for elimination without transmission risk reductions; Table
S1: Model Parameters, Sampling Distributions, and Sources. References [33–48] are cited in the
Supplementary Materials.
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