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THEORY OF THE FULLY I ONI ZED PLASMA COLUMN WITH 
EXTERNAL PARTICLE PRODUCTION. I 

Günter Ecker 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

December 15, 1961 

ABSTRACT 

• 	There is considerable interest in the investigation ofthe plasma 
column with an external cylindrical particle source in the core of the column. 
Examples for such devices4  ae the contact-ionized cesium plasma and the 
hollow cathode discharge. ' 	With referenceto these experiments we here 
investigate theoretically the following model. An infinite cylindrical vessel 
of diameter ZR lies in a longitudinal magnetic field (B). A coaxial core of 
diameter Zr which contains electrons and ions of equal temperature T0, 
is excluded from the plasma volume. This core is the external source of 
particle, production, which provides an electron and ion current of density 
1'0  flowing into the plasma volume. These electrons and ions enter the dis-
charge at r0 and diffuse across the magnetic field towards the insulated 
wall of the container (R), where they'recombine. In this part (I) of our 
investigation we assume that volume recombination.and end effects are neg-
ligible. The effective mean.free path of electron-ion.collisions is small in 
comparision to ZR,. We calculate density and temperature distributions 
from a simultaneous solution of. the transport equations for mass, momen-
turn, and energy, In general the results cannot be presented in analytic 
form but must be determined bymachine solutions. Particularly, note-
worthy is a strong temperature variation across the discharge vessel. 
This variation has a remarkable influence on the densitydistributions. and 
makes Schottkys approach.inapplicable. The density at the edge of the core 
is determined from the eigenvalue problem as a function.of the experimental 
parameters B, F, T 0 , and R. A similarity law is given. 
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THEORY OF THE FULLY IONIZED PLASMA COLUMN WITH 
EXTERNALPARTICLEPRODUCTION, I. 

Günter Ecker 

Lawrence Radia.tion Laboratory 
le 
	 University of California 

Berkeley, California 

December 15, 1961 

INTRODUCTION 

Discrepancies between experimental results and theoretical pre-
dictions have led to the conclusion that it is desirable to get more basic 
understanding of the properties of a plasma, It is believed that a fully 
ionized plasma in.a.magnetic field could bea rewarding subject for studying 
these basic properties. The most favorable condition would be to have 
such a plasma under symmetric geometrical conditions, as for instaice in 
a cylindrical column. 

The theory of the self-sustained positive column is well-known, 1, 2 
The particles in such a column are produced within.the plasma volume by 
electron collisions with neutrals. This mechanism inherently requires high 
electrontemperatures and, with that, an external electric field. The 
difficult,ies introduced by such an external field have been discussed else-
where,' 4  

In the recent past, therefore, experiments have been proposed and 
carried out which produce the charge carriers outside of the actual plasma 
column, This can be done, e, g,, by contact ioni.zatioAl  of atoms at the metal 
surface, 	7. or by ionization in a hollow cathode, 8, ' The carriers are 
then introduced.in.the axial direction into the center of the column, where 
they form an electron-ion ensemble of given.temperature and density. This 
core is the effective particle source for the rest of. the plasma volume. 
From here particles diffuse across the magnetic field towards the wall, 
where theyrecombine, 

It is the aim of this investigation to describe—within cer.tain limits-
the plasma volume between the core and the wall. 

For this purpose we investigate the following model. The discharge 
volume is limite'd by two infinite coaxial cylinders of radius r 0  and R, 
respectively, lying in a longitudinal magnetic field (B). Within the smaller 

A 	cylinder, of radius r 0 , we have ensemble of electrons and ions of tempera- 
ture T 0 , This core is the external particle source of our discharge. It 
provides a radial-electron and ion-particle current of density r'0  which 
defines one of the boundary conditions of our problem. The electrons and 

Present address: Institute of Theoretical Physics, University of 
Bonn, Germany, 
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ions entering from the core move -across the magnetic field towards the 
wall (R) under the influence of mutual collisions and the radial electric 
field. As we neglect volume rfSombination,  all particles recombine at the 
insulated wall of the container; We assume that the effective mean free 
path of the electrons and ions is very much smaller than the extension of the 
discharge vessel (ZR), and that the concept of quasi-neutrality is applicable. 

Naturally these assumptions limit the applicability of our results to 
a certain range of the experimental parameters. in a second paper (II) the 
calculations will be extended to include end effects and volume recombination, 

BASIC EQUATIONS 

Undoubtedly the most detailed description.of such a plasma would 
be given by the distribution function in phase space. We have attempted 
such a solution using an expansion in special Laguerre polynomials, One 
arrives at an infinite set of linear equations for the expansion coefficients. 
From this the coefficients may be evaluated by an approximation precedure, 
but are represented by determinants which include heavy integral expressions. 
This general solution has the decisive disadvantage of being practically 
unintelligible, and it appeared more appropriate to use the magneto-hydro-
dynamic approach, 

Accordingly, we base our calculations on the following transport 
equations for the mass, momentum, and energy. These equations read' 1 

n 
± V ' 	d±'± = a, 	 (I) 

• 	- 	 + 	
+ ein ( 	 ±n 	 (2) ± ± 	 - 	e 

- - - 	- 	
2n 	e v d± 	 2n v. 

-v'(nv-v) ±. 	-__'=------- 	(m.v -m v - 	± 	m 	 m.+m 	-i i-- •±•±• 
± 	 1 	1 	± 

Zenv xVix 	 (3) 

where 	= electric field, 
- n particle density, 	- 	- 

- 	particl.e current density, 
drift velocity, 

= mobility due to neutral particle colisions, 
pressure tensor, 
velocity, 	- 	 - 

	

= magnetic field, 	- 
e = elementary charge, 	 - 
m= particl.e mass, 

net particle production per second and unit volume, 
and r = electron-ion -interaction parameter, 
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The bar indicates averages, over the velocity space. The indexes +, - 
refer to ions and electrons, respectively, 

Equations (1) to (3), represent six simultaneous differential equations. 
The problem is simplified considerably by the lack of a neutral gas compo-
nent, and by the concept of quasi-neutrality, which means 

(4) 

n+fl 	n. 	 (5) 

THE SCHOTTKY APPROACH 

Even with (4) and (5) the general problem is still complex. It is, 
therefore, instructive to consider the plasma first in the Schottky approxi-
mation, which has been successfully used in the case of the collision-
dominated self-sustained positive column. This approximation is based on 
the assumption that the electron and ion temperature is constant across the 
discharge, thus it omits the energy balance, Eq. (3), altogether. So, with 
Eqs. (4) and.(5), we then get the simple expression 

r = r '= - fl!L d 
 {nk(T + T )] 	 (6) 

r 	am 	Z dr 	+ 	- 

for the current density, by using 

4 nkT 0, 	 (7) 
, 	± 	± 

whereis the identity tensor, 	. 

The mass continuity equation reads 

rrink d 	 m \1 - 
2 dr 	' + 	

- 
B 	 , 

remembering that there is no particle production or destruction within the 
volume of the plasma. 

Due to the assumption of constant temperature, it is possible to 
remove the term (T+  + T ) from under the differentiation symbol, and to 
treat the interacti<on terni r as a constant, . Under these circumstances 
integration of Eq. (8) is trivial and leads with the simplified boundary 
condition . 

0, 	 (9) 

used by Schottky, 
to , 

	 n,= h 0 P n (R/ r )/ n(R/ rO )] 1 / 2 	(10) 
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The eigenvalue 	 2 

no 	[n(R/r0) 	
k 	

2 	(11) 

gives the den:sity at the edge of the core as a function of the discharge para-
meters, 

The density distribution (10) is shown in Fig. 1 together with the 
Bessel distribution known for the self-sustained positive column. Fig. 2 
gives the eigenvalue as a function of (2rrr 0 F0/R), 

GENERAL APPROACH 

In the case of the slf-sustained positive column the electron 
temperature is defined by the energy gain in the longitudinal electric field, 
and 	the energy loss through collisions with neutral atoms, As both these 
quantities do not depend on.the radial coordinate the assumption of constant 
electron temperature is reasonable. 

In the fully ionized column with external particle production the 
particles enter the discharge volume with equal energy. Moving across the 
magnetic field, they interact directly or via the ambipolar electric field, 
exchanging energy in a rather complicated way. Here the assumption of 
constant temperature is not obvious. We therefore try to include the 
temperature variation. 

Again we have Eq. (8). However, it is not possible now to remove 
the term (T+ + T ) from under the differentiation symbol, and.consequently 
the corresponding formula reads 	

2 

n 	[n(T + T)] 	
- F0 r 0 B 	(T)2 

where we have used the relation 	 3 

11 = 	
/ (T/T0)2, 

Substituting further in Eq. (3), 
2 	 2 

• 	• 	• 	• = e 	
•

= e n il • 	(14) 
+- 	m 	 -+ m 

and making use of the approximation 

(nv) = 	'(iT), 	 (15) 

V 



-5- 	 UCRL-9988 

(.L?) J0 (2.4•x) 
no, Jo  (0.24) 

(IFn
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lOI 

0.5 	 -x 	10 
MU .25342 

Fig. 1. Schottky approximation of the density, distribution for 
the case of the fully ionized plasma column with external 
particle production (fl ) , and forthe collision-dominated 
self-sustained 	 positive column(— ) 
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io2° 	1022 

2iir0  
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Fig. 2. Density n0  at the edge of the particle source calculated 
as a function of (2TrF0 r 0/R)by using Schottky's approach. 
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we find 

e2n2 (T -T ) =( T ) - 	 (16a) 
m +m 	- + 	 r + 3k 	r 

2e2n2 (T -T )=(T 
m+m 	+ - 	- 	r- 	3k 	r 

+ 	4n vxv+x 	 (16b) 

Adding these equations, we have 

[( T+T).] 	
2e 	 (17) 

As would be expected, this equation states that the divergence of the energy-
current is equal to the energy loss due to ion excitation and ionization. In 
those cases under consideration the temperature of the plasma is too low 
to cause such excitation to an appreciable extent. Consequently we have 

(T+T)'. 	+*. grad( T+T)= 0, 	( 18) 

and therefore 

T++ T 	2T 0 . 	 (19) 

The sum of the average particle energies of the ions and electrons 
is constant under the conditions of our model since there is no net volume 
energy production. 

Making use of Eqs. (19) and (12), we have 

d 	2 	
C1[l(y/2)]3/2 

a — ( z ) = - 	x 	
(20) 

where 

y = T+/T0; z = n/n 0 ; x = r/R; C1 =[23/2.  R. B 2 . F0 . x0 J/[1(T 0). T0 °k n02 ]. 

(21) 

The second relation for the variables y,- z is given by Eq. (16a) 
which, after the introduction of the abbreviations (21), reads 

• 	 4e 2Rn2  
	

2eXrR\. 	
(22) 

m+m -  rdx 	3kT0 ) 
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From Eq. (22) we eliminate the radial-field component with the 
help of the momentum E4s, (2) which state 

	

F0  B - F/EL 	flX r  + -_- (nkT/e), 	(23a) 

B 
F 	- 	 - F; 	 (23b) 0- 	1 + enn(p+ i) r 

and eliminating F 0  from (23) we have 

2 2  1 + 	B+ en( + ) 	 f 
-F 	 nX +—I 	I . (24) r 	i[l + ern(+L)j 	 r dr e / 

Further, by using Eqs. (4) and(6), 

neXr = 
	

(nkT) - 
	

(nkT)] 	(25) 

or 
eXR 

kT0 	
=+ I 	g(y) , 	 (26).[-dLxy 

with 	 3/2 

g(y) y 	Ny 1 	 K 	+0 (27) 
/1 1 -0  

\• Y / 
Substituting (6) and (26) in Eq. (22), we finally arrive at the 

following two simultaneous differential equations: 

-c1 [i - (y/2)]3/2 	
(28á) 

and

dy C2(1-y) = I 	
{_ 	

+ Zg(y) I 	 (28b) 

where 
CI 

 and  02  are defined by 

F0  r0  B2 	

0 	
6 e 2  B2 . R2 	

. (28c) C = 	
2 	; 	2 	k 	 ) T0 . (m++m 1 	

kT00n0 

These equations (28) define the electron temperature T the ion tempera-
ture T+.  and the particle number density n. Of course, in addition to the 
differential equations one needs boundary conditions. At the edge of the 
core (r 0 ) we have clearly 

x0 r 0/R, y1, zl.. 	 (29a) 
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The situation at the wall of the discharge is more difficult. The 
relation (9) of Schottkys approximation is not sufficient here. We use the 
more refined boundary condition given elsewhere' °  for the case of the 
self-sustafned collision-dominated positive column. This boundary condi-
tion is deri-ved from the requirement of current continuity at the sheath 
edge of the plasma. 

It is necessary to define what we mean by the edge of the sheath in our 
special case. The description, of the plasma by a diffusion process is 
correctdown to the point where we are about one effective mean free path 
of the ions away from the wall. From this point on, the mqtion of the ions 
should be described by the laws of free fall. Accordingly, the description 
of the plasma formulated in the preceding equations breaks down at about 
one ion mean free path away from.the wall, and we will use this point to 
define the beginning of the sheath. It is designated by-an index s. According 
to our general assumptions, the extension of the sheath is small in, compari-
son to the radius R. 

The iall boundary condition of our plasma can therefore be stated 
in the form 1  

	

rF 	(nF) 

	

00 	 rs 

	

R 	- 4 

Since we have no net volume particle production this formula is quite 
plausible. 

As the. sheath edge is practically at x= 1, the boundary conditions 
of our problem are 

x=x0 -0. y=1; z1, 	 (29c) 

1 /z 

x 
	

4x0F0 '(3lr) 	
(29d) 

SIMILARITY LAW 

Without integrating Eqs. (28) and (-29), we note an important 
feature. The, coefficients of the differential equations and the boundary 
conditions include the parameters of our problem only in certain combina-
tions. These are 

F0r0 	
B 2 	(R2\ ' 	(R '\ 

T05/2 	T 0 	t$mf) T02 IT)' 

Similar discharges have identical relative parameter values —density, 
temperature, etc. —at homolog points, This is true if the quantities (30) 
have the same values. From this we find the following rules for 
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T 0, B, R, r0,•F0, m+ 

Al.l other parameters being constant, we have similar discharges 
if 

R 	; 	F0 	i/r 0 	 (31) 

if discharges are to be similar, then a variation of one of the 
prameters given above prescribes the necessary changes for all the other 
parameters These relations are described by the following scherie; 

T O 	B 	- R/V 	 F0 r 0  

0 	 T0 	cx  T03/2 	cx T02 	cxT0 5/2 
T  

B 	 cc B 1 	cx B 	 cx B 4 " 3  

1/4 
R/ 	 cx (R/)c( R/y' cx(R/) 	R) 

F0r0 	 cx (F0r0 ) 2/ 5 	F0 r 0 )" cx(T0 r 0 ) 	c F0 r 0  

INTEGRATION AND RESULTS 

Equations (28) and (29) do not allow an analytic solution. Machine 
solutions are complicated by the fact that we are dealing with a boundary-
value problem. However, as we have several parameters at our disposal, 
we can evade this difficulty by the following procedure. 

The magnetic field B the radius R, and the core temperature T 0  
define the constant C 	Choosing values of C .I .we  integrate simultaneously 

Eqs. (29) starting from z (x) = 1 and y(x 0 ) = 1. At x = 1 we find values 
and y. By introducing tl.ese into 	(29d), we have the two ...following 

reiations 	 / 
3/2 	 2 F0 r 0  B 

C1 = 	 2 	
. 	(32a) 

kT 0 0  rn0  

and 	 . 	 - 	 / 	l/2 
4Fr 	,' m 	\ = 	00 	

3kT 0Y i) 	, 	
(32b) 

1. 

from which we calculate the parameter values 1 0 r and n0  belongingto 
these density and.temperature distributions. We a9lso have the co.rresponding 
eigenvalue n0 . An example of results of such calculations is given in 
Figs. 3(a) to 5(b) for Cs (m+  133), 
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In addition, Fig. 6 gives the eigenvalues n o  as a function of the 
magnetic field B and the effective particle production F 0r 0 . 

DISCUSSION 

The discussion uses the two parameters 
Fr 	 2 

- 

.L 	
T 	/ 	 0 

0 

The characteristic features of the relative density distributions 
z shown in Figs. 3(a), 4(a), and 5(a) may be summarized as follows: 

All distributions decrease from the edge. of the core towards the 
wall, the slope dz/dx I being stronger near the tw.o limiting cylinders than 
in between. With increasing parameter value P1  the relative density 
(and, according to Fig, 6, also the absolute density) increases in all cases. 

	

The influence of p 1  is stronger for small values of 	With increasing 
p 7  the relative density decreases, (However, this cannot be said of the 
atsolute density, because—according to Fig, 6—n 0  increases with p 2 ,) 

These features may be qualitatively understood simply from the 
mass conservation law, which requires that the radial particle current 
shall be constant across the plasma volume. 

If the diffusion coefficient were constant, the slope I dz/dx would 
be required to decrease towards the wall in proportion to l/r. However, 
in the case of a fully ionized positive column in a longtitudinal field the 
effective transverse diffusion coefficient is not only propo.rtional to the. 
particle density but also inversely proportional to the squareof the magnetic 
field [see Eq. (6)].  This mean:s that I dz/dxl  should increase again in 
regions of small particle density. Consequently, starting from the edge 
of the core, I dz/dx  I should first be expected to decrease because of the 
increase in r, but then, approaching regions of low particle density, should 
increase again due to the decrease in the effective diffusion coefficient. 
This agrees well withthe analytic result. An increase in the magnetic 
field means an increase in the parameter p 2 . It decreases the diffusion 
coefficient, and therefore requires in general a larger slope I dz/dx I 
and, with that, a decrease in the relative density— again in agreement with 
the analytic results. From an increase of p 1  we would expect—and Fig, 6 
confirms this—an increase in the absolute density across the plasma volume. 
An increase of Pi  would also increase the effective diffusion coefficient, 
which results in a decrease of I dz/dx 1, as demonstrated by the curves of 
Figs. 3(a) to 5(a), 

As T0  is a constant experimental parameter, the relative temperature 
distributions y(x) shown in Figs. 3(b) to 5(b) are proportional to the absolute 
temperature distributions. We see that .the temperature variation is in 
general not at all negligible, The ion temperature always decreases. In 
some cases it decreases monotonically towards the wall, but it can also 
show a minimum—or even a minimum and a maximum—as a function of x. 
As parameter p 1  increases, the temperature decrease is reduced. This 
influence becomes stronger as the parameter p 2  becomes smaller, As 
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8.78 

5.35 

-336 

05 

=1.02 

(&R)2_ 	[G2.cm2 

1 • 	L°K 

0 1 
Ox0 	 0.5 	 1 

x 
MU.25544 

Fig. 3(a). Relative density distribution z(x) = n(x)/n for P2 = 	. 
and various parameter values of p 1  [see Eq. (33)f, calculated 
from Eqs. (28) and (29) for theexample of cesium. 
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1 

ro8j5/2 

5.35 

36 

OK 

-1.02 

2 	 [G2.cm2 (BR) = 

0 

0 
U x0 	 05 

x 	 MU .255 45 

Fig. 3(b). Relative temperature distribution y(x) = T+(x)/T for 
p2 = 35.5 and various parameter values of Pi  [see ]q. (33)], 
calculated from Eqs. (28) and (29) for the example of cesium. 

C 



Sam 	 1JCRL-9988 

Pr 
0 0 10.1123 
To /2 

525 

1 

.344 

16.7 

= 11.87 

= 532 

1.27 

(BR)2_ 	[G2m2] 

To  - 

UI 
0 xo 	 • 0.5 

x 
- 	-- 	 MU .25546 - 

Fig. 4(a). Relative density distribution z(x) = n(x)/n for p = 355 and 
various parameter values of p 1  [see Eq. (33)], ca2lculated from 
Eqs. (28) and (29) for the example of cesium. 
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x 70 412.3 

-878 	-62.5 
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16.7 

11.87 

-5.32 

(BR)2 	 [G2cm2 1 27 
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LO 
Ox0  05 

x 
MU .2 5 547 

Fig. 4(b). Relative temperature distribution y(x) = T+(x)/T0 for p 2  = 355 
and various parameter values of p 1  [see Eq. (33)], calculated 
from.Eqs. (28) and (29) for the example of cesium 
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105  

xi 8  =205 
,.- 	 ,. 5/2 

'0 

57.8 

32.2 

.2.92 

2 	 [G2.cm2 (BR)7055 [ °K 
a 

o x0  05 
x 

MU. 25548 

Fig. 5(a). Relative density distribution z(x) = n(x)/n for p2 = 1065 
and various parameter values of p 1  [see Eq. (33)f, calculated 
from Eqs. (28) and (29) for the example of cesium. 
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1 
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1512 	

2O5  

.32.2 

1 05 

= 1065. 
{ 

22] 

0 Xo 0.5 
x 

MU .2 5 549 

Fig. 5(b). Relative temperature distribution y(x) = T+(x)/T for 
p2  = 1065 and various parameter va1ues ofp 1  [see 	(33)], 
calculated fromEqs. (28) and (29) for, the example of cesium. 
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Fig. 6. Density n0  at t1he edge of the particle source as a function 
of [(F0 r 0/T 0 5 / 2  C 2 ], calculated for various values of p 2  
as the eigenvalue of Eqs. (28) and (29). 
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parameter p increases, the temperature distribution y(x) approaches 
a cons.tant va2lue, except for a decrease near.the core edge and near the 
wall of the vessel, 

Again these features can be qualitatively understood, remembering 
that two processes govern the change in temperature. There is the 
collective interaction of the.particles of the fully ionized column via the 
space and wall charge (ambipolar field), This interaction takes energy from 
the ions and gives it to the electrons. This effect increases with.the. mag-
netic field, The other process—the energy exchange due to individual  parti-
cle interactions—tends to decrease the temperature difference between .ions 
and electrons, 

At the edge of the core, where the two temperatures are identical, 
only the. ambipolar field is in. action, which causes a decrease in the ion 
temperature (and, with that,. an .i.ncrease in the electron temperature) as 
shown in all of the Figs, 3(b) to 5(b). This increase in temperature difference 
brings the individual energy exchange of the unlike particles into play. It 
causes an increase in dy/dx. Remembe ring that this individual exchange 
varies in pr'oportion.to the particle density, we expect dy/dx to decrease 
again in .the regions of low particle density, close to the wall. This is 
confirmed in Figs, 30) to 5(b), except in those cases where the particle 
density does not reallydecrease very much .near the wall. An inc.rease in 
p1 causes an increase in the particle density, as described in the prededing 
paragraph. This favo.rs the individual energy, exchange, and consequently 
increases the ion temperature, in agreement with the.calculated results 
shown in the Figures. An increase in the magnetic field p 7 . reduces the 
influence of heat' conduction and collective interaction, anct'so favors the 
individual energy exchange, which move the temperature distributions 
y(x) closer toy = 1, This is also demonstrated in Figs, 30) to 50), 

Finally, let us discuss Fig, 6. We note that in the appropriate 
units used. in Fig, 6 the dependence of n on F 0r 0  is practically not in-
fluenced by the value of the magnetic field p 2 . ma fi.rst approximation 
.the relation may be represented in the double logarithmic plot by a straight 
line.of slope 2/3, which justifies the.analytical representation 

n0 (6e 2 /km) h uh"3  (B' r0r0)2"3. 	 (34) 

Equation (34) or Fig, 6 may be compared with Eq,. (11) or Fig, 2, The 
inapplicability of Schottkys approach to.the present problem becomes 
obvious at once, . 
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SUMMARY 

We have calculated the qualities of an infinite fully ionized cylindrical 
plasma with external particle production and without volume recombination. 
The results were derived from the magnetohydrodynamic relations for 
the conservation of mass, momentum, and eiergy, We find that the 
Schottky approach using a constant temperature and a simplified boundary 
condition is not applicable to this problem, The general calculation, which 
includes temperature variation and utilizes a more general boundary 
condition, produces :results which cannot be represented in an anal,rtical 
form but have been determined by machine solutions for the example of 
a cesium column. The results show density and temperature distributions 
which vary strongly with the discharge parameters (r 0 , R, B, IT0, T0 ), 
The general features of these distrbution functions have been discussed 
and interpreted in physical terms. The calculations also produce the maxi-
mum density n0  at the edge of the core as the eigenvalue of the problem. The 
dependence of n o  on the experimental parameters can be reasonably 
approximated by a simple analytical relations, A general similarity law 
relating the parameters(r 0 , R, B, F0 , T 0 ) has been given. 
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