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RESEARCH ARTICLE

Testing Species Assignments in Extant

Terebratulide Brachiopods: A Three-

dimensional Geometric Morphometric

Analysis of Long-Looped Brachidia

Natalia López CarranzaID*, Sandra J. Carlson

Department of Earth and Planetary Sciences, University of California, Davis, CA, United States of America

* nlopezc@ucdavis.edu

Abstract

Species of terebratulide brachiopods have been largely characterized qualitatively on the

basis of morphology. Furthermore, species-level morphological variability has rarely been

analyzed within a quantitative framework. The objective of our research is to quantify mor-

phological variation to test the validity of extant named species of terebratulide brachiopods,

focusing on the lophophore-supporting structures—the “long loops.” Long loops are the

most distinctive and complex morphological feature in terebratellidine brachiopods and are

considered to be phylogenetically and taxonomically informative. We studied eight species

with problematic species identities in three genera distributed in the North Pacific: Laqueus,

Terebratalia, and Dallinella. Given how geometrically complex long loops are, we generated

3D models from computed tomography (CT) scans of specimens of these eight species and

analyzed them using 3D geometric morphometrics. Our goal was to determine ranges of

variation and to test whether species are clearly distinguishable from one another in mor-

phospace and statistically. Previous studies have suggested that some species might be

overly split and are indistinguishable. Our results show that these extant species of terebra-

tellidines can be reliably distinguished on the basis of quantitative loop morphometrics.

Using 3D geometric morphometric methods, we demonstrate the utility of CT beyond purely

descriptive imaging purposes in testing the morphometric validity of named species. It is cru-

cial to treat species described and named from qualitative morphology as working hypothe-

ses to be tested; many macroevolutionary studies depend upon the accurate assessment of

species in order to identify and seek to explain macroevolutionary patterns. Our results pro-

vide quantitative documentation of the distinction of these species and thus engender

greater confidence in their use to characterize macroevolutionary patterns among extant ter-

ebratellidine brachiopods. These methods, however, require further testing in extinct tereb-

ratellidines, which only rarely preserve the delicate long loop in three dimensions. In

addition, molecular analyses of extant terebratellidines will test the species delimitations

supported by the morphometric analyses presented in this study. [Species determination;

morphological variability; 3D geometric morphometrics; terebratulide brachiopods; long

loops.]
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Introduction

Despite being one of the most diverse and abundant marine invertebrates in the fossil record,

particularly during the Paleozoic Era, brachiopods are often neglected in neontological studies

—partly due to their low diversity, lack of economic value, and the challenges associated with

collecting live specimens. Nonetheless, we can take advantage of the study of extant brachio-

pods to answer questions that impact both neontology and paleontology, such as species deter-

mination. The aim of our study is to quantify the morphological variation of one of the most

conspicuous and geometrically complex features in terebratulide brachiopods—the mineral-

ized loop that supports the lophophore—and test the morphological validity of extant species

in both the Western and Eastern North Pacific. The main questions driving our study are: Are

species distinct from one another in terms of their loop morphology? Given that species of ter-

ebratulide brachiopods have been formally described based on qualitative features, how accu-

rate are these designations when tested within a quantitative framework? How does variability

compare among extant Western Pacific and Eastern Pacific species? Since long loops are

highly geometrically complex, we created 3D surface models from computed tomography

(CT) scans of eight species in three genera of terebratulide brachiopods (Dallinella, Laqueus,
and Terebratalia) thought to be closely related to each other [1], and analyzed them within a

3D geometric morphometric framework.

Brachiopods and their mineralized lophophore supports

Brachiopods, a clade of bivalved lophotrochozoans [2], are highly suitable for studying and

comparing ranges of morphologic variability in both living and fossil species. Over 5,000 gen-

era have been recognized in the fossil record based on morphology, representing approxi-

mately 15,000 species [3]. Of all species, only fewer than 3% (approximately 400 species) are

still alive today, with approximately 75% classified in the order Terebratulida [4, 5].

The order Terebratulida is a clade [5–8] comprised of articulated brachiopods with endo-

punctate and commonly biconvex shells, which possess a typically astrophic hinge line (i.e.

curved, not parallel to the hinge axis), cyrtomatodont (interlocking hook-shaped) teeth, a

functional pedicle for hard-substrate attachment, and a calcareous loop—also referred to as a

brachidium—that resorbs and remineralizes over ontogeny while it provides internal support

to and positions the plectolophe lophophore in the mantle cavity [9]. The lophophore, the

feeding and respiratory organ of brachiopods, is formed by a pair of symmetrical brachia

(arms) bearing ciliated tentacles that surround the mouth and create inhalant and exhalant

currents in the mantle cavity. Although its main functions are feeding and respiration, the

lophophore has sensory functions and, in some cases, broods larvae [5, 10–15]. Lower-level

classification within the order is based on both internal and external morphology [16]; how-

ever, internal morphology is considered to play a fundamental role because it is commonly

thought that external shell morphology offers little resolution for classification, given the

smaller number of characters available and their potentially homeomorphic nature [1, 17–21].

Loop morphology is crucial in the taxonomy and systematics of the two suborders within

Terebratulida—Terebratulidina and Terebratellidina—since they were established mainly

based on variations in this character [16, 22–24]. Individuals of the suborder Terebratulidina

are identified by their “short loops,” which develop exclusively from the crura (calcareous pro-

cesses that extend from the posterior portion of the dorsal valve) [9, 22] and do not extend

beyond half of the length of the ventral valve, while brachiopods of the suborder Terebratelli-

dina are characterized by having “long loops” [23, 25], which extend beyond half the length of
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the ventral valve (Fig 1). In the remainder of this study, we will refer to long-looped brachidia

as “long loops.” In general terms, long loops are composed of a pair of descending branches

that extend anteriorly from the crura; these curve ventrally—forming the ascending branches

—and join medially. Depending on the number and location of attachments among the vari-

ous structures (i.e. descending and ascending branches, and medial septum), six terminal

adult long loop types have been recognized [1].

Given our focus on North Pacific terebratellidine species, we studied two loop types—tra-

becular (represented in the genera Terebratalia and Dallinella, Fig 1A and 1B) and bilateral

(represented in the genus Laqueus, Fig 1C and 1D). In both bilateral and trabecular loops the

descending branches are attached to the median septum [1]; bilateral loops, additionally, pos-

sess a set of vertical connecting bands attaching the descending and ascending branches [1],

which stabilize the ascending and descending branches of the lophophore, ensuring consistent

separation of the inhalant and exhalant currents through the mantle cavity while feeding and

respiring [14, 26].

Species descriptions and issues surrounding species designations

Laqueus Dall, 1870 [27] is characterized by medium to large size, ovate and smooth shells with

a rectimarginate (i.e. planar) commissure. Laqueus erythraeus Dall, 1920 [28] (previously

referred to as Laqueus californianus or misspelled as Laqueus californicus [29]) and L. vancou-
veriensis Davidson, 1887 [30] potentially overlap in geographic distribution, particularly in

Monterey Submarine Canyon [31]. Laqueus vancouveriensis had been considered as a north-

ern subspecies of L. erythraeus (e.g. [32, 33]); however, based on its smaller valve size and

larger pedicle foramen than L. erythraeus, it has been elevated to species status [29, 34, 35].

Laqueus rubellus (Sowerby, 1846) [36], commonly found off the coast of Japan [37, 38], is very

similar in external valve morphology to L. erythraeus; however, it is considered to be a different

species mostly based on their different geographic distribution and shell coloration. Laqueus
blanfordi (Dunker, 1882) [39], also with a Japanese distribution, has oval to subpentagonal

shells, with lateral sides prominently curved outwards and a truncated anterior margin.

Described as similar to L. blanfordi, Yabe and Hatai [40] state that Laqueus quadratus differs

from the latter in having a quadrate valve outline.

Although the taxonomy of Laqueus species has been the subject of discussion (e.g. [29, 41,

42]), names have been assigned based on qualitative assessments of valve shape and species

have never been subject to further analysis, either morphological or genetic, to test their valid-

ity. It is important to note that we focused mainly on those species most commonly found in

the wild and therefore more likely to be found in museum collections—L. erythraeus, L. van-
couveriensis, and L. rubellus. However, twelve more extant Laqueus species are currently

regarded as valid [43] (S1 Appendix), but with little to no information about their variability

and comparability in morphology, ecology, or distribution.

The genus Terebratalia Beecher, 1893 [44] is characterized by medium to large shells that

display a high variability in outline shape and ornamentation. Terebratalia transversa
(Sowerby, 1846) [36], particularly known for exhibiting high ecophenotypic variability [45–

48], is distributed from Alaska to Baja California [49, 50], being the only living species of the

genus with a North American distribution [38, 51]. The name Terebratalia occidentalis (Dall,

1871) [52] has been frequently assigned to Recent specimens distributed from Monterey Bay

to Baja California [49]; however, it is now distinguished as a separate genus from Terebratalia
as Dallinella occidentalis (Dall, 1871) [52]. The genus Dallinella Thomson, 1915 [53] was estab-

lished based on folding at the valve anterior—possessing rectimarginate to uniplicate shells—

and the presence of trabecular loops. Therefore, D. occidentalis differs from T. transversa by
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having a sulcus (not a fold) on the ventral valve and a fold (not a sulcus) on the dorsal valve

[35, 49]; however, the loops of Dallinella and Terebratalia are considered to be extremely simi-

lar in shape [53]. In the Western North Pacific Ocean, Terebratalia coreanica (Adams and

Reeve, 1850) [54] shares the same general morphological characteristics with its North Ameri-

can congener.

When investigating fossil descriptions of Terebratalia species, approximately a dozen spe-

cies from Terebratalia/Dallinella have been described for the Cenozoic of western North

America and Japan [35, 51] based on slight variations in morphology (e.g. overall size and

shell outline, ornamentation and ribbing, convexity). Therefore, quantifying morphological

variability and recognizing what constitutes species-level variation in extant specimens is

essential for determining fossil species in a more consistent and reproducible manner.

Geometric morphometrics and 3D imaging of brachiopods

Morphological variability can be quantified using morphometric-based measurements or

through geometric morphometrics. Geometric morphometrics, unlike traditional morpho-

metrics, uses landmark coordinates to analyze changes in the geometry of morphologic struc-

tures using statistical analyses [55, 56]. Landmarks are described as anatomical loci that can be

Fig 1. Trabecular and bilateral loops. a) Front and b) oblique view of the dorsal valve of Terebratalia transversa (SBMNH 616990). c) Front and d) oblique

view of dorsal valve of Laqueus vancouveriensis (USNM PAL 716055).

https://doi.org/10.1371/journal.pone.0225528.g001
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placed on a biologically or geometrically homologous point on a structure [56, 57]. Geometric

morphometrics has been a useful methodology for studying brachiopod variability, particu-

larly in the fossil record, but is not often used to test species validity (see [48, 58–64]).

With its increasing accessibility, high-resolution 3D imaging—such as CT scanning—has

become a useful, non-destructive tool for the study of small, complex, and delicate internal

structures like the loop and cardinalia (e.g. [65–72]). CT, in particular, ensures that shell char-

acters crucial for identification of genera and species of articulate brachiopods (e.g. hinge teeth

and plates, sockets) are preserved. Applying these imaging techniques broadens our ability to

quantitatively study structures that are thought to represent a rich source of taxonomic and

phylogenetic information, such as the mineralized loop.

Analyzing morphology in a quantitative manner and examining phenotypic variability in

living close relatives is an essential first step to be able to test the assumption that extant and

fossil species are comparable evolutionary entities. This study represents an effort to work at

the species level in neontology with clear implications for paleontology, where genera are com-

monly treated as proxies for species [73], by approaching species as hypotheses to be tested.

Materials & methods

To analyze long loop variability in terebratulide brachiopods, we chose Laqueus, Terebratalia,

and Dallinella as exemplar genera. Of these three genera, we focused on a total of 58 adult indi-

viduals of the following species: Laqueus erythraeus, L. vancouveriensis, L. rubellus, L. quadra-
tus, L. blanfordi, Terebratalia transversa, T. coreanica, and Dallinella occidentalis (Table 1).

The localities where the specimens were originally collected are shown in Fig 2. For detailed

information on repositories, specimen numbers, and localities see S1 Table. Since the samples

for this study consisted of non-living specimens housed in collections, no permits were

required to obtain specimens. The number of individuals analyzed is small, but was dependent

on abundance in the wild, and available access to specimens with internal structures preserved

in museum collections. Ideally, type specimens could be analyzed for their long loop morphol-

ogy; locating and imaging these delicate specimens in museum repositories can be

challenging.

CT scanning

Specimens were imaged using a MicroXCT-200 scanner from Carl Zeiss X-Ray Microscopy in

the Center for Molecular and Genomic Imaging (CMGI) at the University of California,

Davis. Once the specimens were scanned, 3D surface models were created using the software

Amira v. 6.3.0 (Thermo Scientific).

Landmark schemes and registration

Depending on the loop type (bilateral and trabecular), two landmark schemes were deter-

mined (Fig 3 and S2 Table). Landmarks were selected at the junction of different structures

(Type I) and at points where homology is defined by geometry (e.g. the maximal curvature or

the edge of a structure, Type II) on the loop, cardinal area, and septum. Additionally, three

curves were included in the analyses to capture the 3D curvature of the crus, descending and

ascending branches, and transverse band. Using Stratovan Checkpoint (Stratovan Corpora-

tion), landmarks and curves were placed on the 3D surface models of the specimens. In order

to determine the number of semilandmarks needed to accurately describe curve shape, we

tested a dataset comprised of all 58 specimens, 15 landmarks (shared between bilateral and tra-

becular loops), and a total of 69 semilandmarks (a highly dense curve sampling), using the R

function landmark sampling evaluation curve (LaSEC, from the package LaMBDA [74]).
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Using the complete dataset, LaSEC performs a generalized Procrustes analysis (GPA) of land-

mark coordinates and subsequently a principal component analysis (PCA). Then, it randomly

subsamples three landmarks from the original dataset and performs another GPA and PCA.

Using the PC plots generated from the original dataset and the subsample dataset, an ordinary

Procrustes alignment is implemented and the sum of squared distances (PSS) between the two

is used as a measurement of fit. With every iteration, LaSEC adds one landmark to the analysis

and compares the resulting PC plot against that of the original dataset. Finally, LaSEC plots a

fit trajectory (1-PSS) according to the number of landmarks that were sampled on each itera-

tion. Ideally, the fit trajectory reaches a plateau, indicating that, regardless of the number of

landmarks used, the fit remains constant. Since loops are bilaterally symmetrical, we only

selected landmarks and semilandmarks on one half of the loop and shell.

Geometric morphometric analyses

To eliminate variation due to size that is uncorrelated with shape, translation, or rotation, we

superimposed our landmark configurations using a generalized Procrustes analysis [56]. Since

Table 1. List of species analyzed with information on loop type, geographic distribution, and number is individuals analyzed.

Species Loop type Geographic distribution Number of individuals

analyzed

Laqueus erythraeus Dall, 1920 Bilateral Northeastern Pacific, from Alaska to Southern California, USA 16

Laqueus vancouveriensis Davidson, 1887 Bilateral Northeastern Pacific, from Alaska to Washington, USA 12

Laqueus rubellus (Sowerby, 1846) Bilateral Japan 9

Laqueus quadratus Yabe & Hatai, 1934 Bilateral Japan and Taiwan 2

Laqueus blanfordi (Dunker, 1882) Bilateral Northwestern Pacific, from Kyushu Island, Japan to Kamchatka, Russia 1

Terebratalia transversa (Sowerby, 1846) Trabecular Northeastern Pacific, from Alaska Peninsula to Baja California Sur,

Mexico

8

Terebratalia coreanica (Adams & Reeve,

1850)

Trabecular Northwestern Pacific, along the coasts of the Yellow Sea and the Sea of

Japan

5

Dallinella occidentalis (Dall, 1871) Trabecular Northeastern Pacific, from Monterey Bay, CA to Baja California Sur,

Mexico

5

https://doi.org/10.1371/journal.pone.0225528.t001

Fig 2. Map of specimen localities. For more detailed information see S1 Table.

https://doi.org/10.1371/journal.pone.0225528.g002
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we analyzed a combination of landmarks and semilandmarks, semilandmarks were superim-

posed by iteratively sliding the points to minimize bending energy between the curves. Once

the Procrustes-fitted coordinates were obtained, we used exploratory data analysis, focusing

on ordination methods. To explore variability according to loop type, we analyzed the follow-

ing datasets: Laqueus (bilateral loop, n = 40; S1 Data) and Terebratalia and Dallinella (trabecu-

lar loop, n = 18; S2 Data). A principal component analysis (PCA) and a canonical variate

analysis (CVA) were implemented for each of the datasets. Both PCA and CVA use Procrus-

tes-fitted coordinates to simplify patterns of variation; however, for CVA, groups are defined a
priori. This ordination method is useful to effectively discriminate among groups, since it

rescales the axes based on within-group variation. We used CVA grouping to obtain the over-

all classification accuracy through a leave-one-out cross-validation. Finally, to examine the

general pattern of variability, we performed a principal component analysis (PCA) on all speci-

mens (shared landmarks of Laqueus, Terebratalia, and Dallinella, n = 58; S3 Data).

To test if shape is dependent on species designation and size (allometry), we performed

independent Procrustes ANOVA analyses testing landmark coordinates against species identi-

fication and against centroid size, respectively. Centroid size is defined as the square root of

the summed squared distances of each landmark to the centroid of the landmark configuration

[56]. All geometric morphometric analyses were performed in R [75] using the packages geo-

morph [76] and Morpho [77].

Results

Landmark sampling evaluation test: How many landmarks should we

include in our analyses?

After performing a Landmark Sampling Evaluation test [74] on our complete dataset, we

determined the appropriate number of semilandmarks to be included in our 3D geometric

morphometric analyses in order to fully characterize curve shape based on the median fit.

Considering our results (Fig 4) and a visual examination of our data points in 3D space, we

decided to use datasets comprised of 20 and 15 landmarks for bilateral and trabecular loops

respectively, and 21 semilandmarks (median fit> 0.95), therefore reducing redundancy on

our landmark data.

Fig 3. Landmark scheme based on different loop types. a) Bilateral loop with 20 landmarks and b) three curves based on semilandmarks (I-III). c) Trabecular

loop with 15 landmarks and d) three curves based on semilandmarks (I-III). Landmarks in pink (1–15) represent shared landmarks between bilateral and

trabecular loops; landmarks in green (16–20) represent unique landmarks found in the bilateral loop.

https://doi.org/10.1371/journal.pone.0225528.g003
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Variability in Laqueus
When analyzing individuals of the genus Laqueus (Fig 5), L. rubellus separates from other spe-

cies along PC1 (35.93% of total variance). L. erythraeus and L. vancouveriensis, however, over-

lap in shape space, with L. erythraeus displaying a wider range of variability (Fig 5A). L.

quadratus and L. blanfordi plot closer in morphospace to East Pacific species than to L. rubel-
lus, separating from L. erythraeus and L. vancouveriensis along PC2. In terms of morphology

(Fig 5D), from positive to negative PC1 scores, the cardinalia elongates posteriorly while the

Fig 4. Sampling curve from landmark sampling evaluation test (LaSEC) [74] on Laqueus, Terebratalia, and Dallinella dataset (15 landmarks and 69

semilandmarks). A fit value of 1 indicates that no morphometric information is added when landmark number increases, providing an indication of the

minimum meaningful number of landmarks. Gray lines represent iterations of subsampling; black line shows median fit corresponding to every landmark;

vertical dashed black lines correspond to number of landmarks at fit values of 0.90, 0.95 and 0.99.

https://doi.org/10.1371/journal.pone.0225528.g004
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crural process elongates ventrally, and the descending and ascending branches are reduced in

length. Therefore, plotted towards positive PC1 scores we observe longer loops with respect to

the cardinalia; as we move towards negative values, loops and cardinalia become similar in

length. In the case of PC2 (15.81% of total variance), the changes in morphology are mostly

related to the length of the ascending branch, with specimens with longer ascending branches

(L. erythraeus and L. vancouveriensis) plotted towards positive PC2 scores. Laqueus erythraeus
is distinguished from L. vancouveriensis along PC3 (11.97% of total variance), only with a min-

imum overlap between them (Fig 5B). Specimens of L. rubellus cluster together without any

overlap with other species. L. quadratus and L. blanfordi score positively along PC3. As we

move towards negative PC3 scores, loops become less laterally curved and the crural process

decreases in size.

Fig 5. Principal component analysis (PCA) and canonical variate analysis (CVA) of Laqueus species with associated shape changes in loop morphology.

a) PC1-PC2; b) PC1-PC3; c) CVA; d) specimens with the most negative to most positive PC score values. PC1: L. rubellus USNM PAL 7160785 (PC1-) and L.

vancouveriensis USNM PAL 716055 (PC1+). PC2: L. quadratus USNM PAL 716076 (PC2-) and L. erythraeus DAV:SJCLab 0008 (PC2+). PC3: L.

vancouveriensis USNM 716058 (PC3-) and L. erythraeus DAV:SJCLab 0007 (PC3+).

https://doi.org/10.1371/journal.pone.0225528.g005

Table 2. Mahalanobis distances between species means in Laqueus (bold) and cross-validated classification results in percentages. Overall classification accuracy of

100%.

Laqueus erythraeus Laqueus quadratus Laqueus rubellus Laqueus vancouveriensis
Laqueus erythraeus 100%

Laqueus quadratus 11.482 100%

Laqueus rubellus 11.027 14.141 100%

Laqueus vancouveriensis 7.588 13.650 11.987 [100%]

https://doi.org/10.1371/journal.pone.0225528.t002
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Since we only had access to one scanned individual of L. blanfordi, we removed this species

from the CVA, given that a leave-one-out cross-validation is also performed to test specimen

classification. Our CVA plot (Fig 5C) shows that species are clearly separated in shape space,

with conspecific individuals clustering together. The overall classification accuracy is 100%,

with all individuals being classified correctly to their respective species (Table 2). This result is

particularly relevant for L. erythraeus/L. vancouveriensis, given that there has been consider-

able debate as to whether they represent one or two species (see [29]). Based on loop morphol-

ogy, every single individual was assigned to its named species. As part of the CVA,

Mahalanobis distances were calculated (Table 2). Mahalanobis distances are an excellent way

of measuring differences between groups since within-group variation is transformed isotropi-

cally, eliminating within-group variation directionality, therefore representing only the dis-

tances between group means [78]. Considering Mahalanobis distances, the two most

morphologically distant species are L. rubellus and L. quadratus, while the two most similar

are L. erythraeus and L. vancouveriensis. This result is consistent with our predictions; we

expected the East Pacific species, L. erythraeus and L. vancouveriensis, to be the most similar in

morphology, especially since they have been identified historically as a single species [29].

Considering the differences in overall body size between species, we tested if loop shape

was dependent on size (shape ~ size) and determined that size has a statistically significant

effect on loop shape in Laqueus (p = 0.001). Given this result, we tested if size and species des-

ignation (shape ~ size + species) were independent in their effects on shape using a Procrustes

ANOVA. Our results indicate that size and species are dependent on each other (p = 0.001)

and there is no common allometric component among Laqueus species, meaning that the pat-

tern of shape variation with respect to size itself varies between species (i.e. different species

have different patterns of shape change with regards to size). Similarly, we tested if loop shape

is statistically different among species (shape ~ species) and we found that each species has a

statistically significantly different loop (p = 0.001), indicating that, based on loop morphology

alone, species of Laqueus are statistically distinct from one another.

Variability in Terebratalia and Dallinella
The PCA of Terebratalia and Dallinella distinctly separates these two genera along PC1

(59.12% of total variance), with negative PC1 scores corresponding to Dallinella and positive

scores to Terebratalia (Fig 6A and 6B). Along PC2 (16.34% of total variance), individuals of T.

transversa plot towards positive scores and T. coreanica towards negative. In terms of mor-

phology (Fig 6D), from negative to positive PC1 scores, there is shortening of the descending

and ascending branches and widening of the cardinalia, with Dallinella having more elongated

loops and narrower cardinalia than Terebratalia. Shape change along PC2 is represented

mainly by a difference in thickness—i.e. how far apart the descending and ascending branches

are from each other—with T. coreanica having thinner loops than T. transversa. Individuals of

T. coreanica overlap with T. transversa along PC3 (6.42% of variance; Fig 6B). Changes in mor-

phology along PC3 correspond to a lateral widening of the loop; wider loops plot towards posi-

tive scores. In comparison to the other species analyzed, T. transversa shows a broader range

of variability in terms of loop width.

After performing a CVA, which maximizes between-species differences, our plot (Fig 6C)

shows clear separation between Dallinella and Terebratalia along CV1. Terebratalia species

have similar CV1 scores but differ in CV2, without showing any overlap. However, overall

classification accuracy was 72.22%. Dallinella specimens were classified correctly 100% of the

time, while individuals of T. coreanica and T. transversa were assigned to their correct species

60% and 62.5% of the time, respectively (Table 3). Mahalanobis distances between Dallinella
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and Terebratalia are at least 2.5 times the interspecific distance between the two species of Ter-
ebratalia (Table 3).

When testing if shape variation is attributable to differences in size, we determined that size

does not have a statistically significant impact on shape in Terebratalia and Dallinella
(p = 0.122). Moreover, we found that species’ loops do differ in shape in a statistically signifi-

cant manner (p = 0.001). Even though exploratory methods such as CVA showed overlap and

species assignment errors between T. transversa and T. coreanica, statistical analysis using Pro-

crustes ANOVA show that they are significantly different from one another. Considering how

highly variable individuals from the genus Terebratalia are, it is not surprising that individuals

of T. transversa and T. coreanica were occasionally assigned to the incorrect species even if sta-

tistical methods analyzing loop geometric morphometrics reliably differentiate them.

Fig 6. Principal component analysis (PCA) and canonical variate analysis (CVA) of Dallinella and Terebratalia species with associated shape changes in

loop morphology. a) PC1-PC2; b) PC1-PC3; c) CVA; d) specimens with most negative to most positive PC score values. PC1: D. occidentalis SBMNH 467448

(PC1-) and T. transversa SBMNH 616986 (PC1+). PC2: T. coreanica USNM 716054 (PC2-) and T. transversa DAV:SJCLab 0011 (PC2+). PC3: T. transversa
SBMNH 616990 (PC3-) and T. coreanica USNM 716052 (PC3+).

https://doi.org/10.1371/journal.pone.0225528.g006

Table 3. Mahalanobis distances between species means in Dallinella and Terebratalia (bold) and cross-validated classification results in percentages. Overall classi-

fication accuracy of 72.22%.

Dallinella occidentalis Terebratalia coreanica Terebratalia transversa
Dallinella occidentalis 100%

Terebratalia coreanica 9.110 60% 40%

Terebratalia transversa 8.757 3.426 37.5% 62.5%

https://doi.org/10.1371/journal.pone.0225528.t003
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Combined dataset: General pattern of variability and among genera and

species

To explore the overall pattern of variability among specimens of Laqueus, Terebratalia, and

Dallinella (n = 58), we analyzed a combined dataset with a total of 15 landmarks and three

curves (21 semilandmarks). This dataset included shared landmarks between bilateral

(Laqueus) and trabecular (Terebratalia and Dallinella) loops. The principal component analy-

sis (Fig 7A and 7B) reveals that individuals from each genus tend to cluster together in shape

space, although with some overlap between Laqueus and Dallinella. The first principal compo-

nent (68.9% of total variance) separates Terebratalia from Dallinella and Laqueus. The second

principal component (7.49% of total variance) separates Laqueus from Dallinella, and sepa-

rates the two species of Terebratalia (T. transversa and T. coreanica). With respect to Laqueus,
the third principal component (6.43% of total variance) separates the West Pacific species (L.

blanfordi, L. quadratus, and L. rubellus) from the East Pacific (L. erythraeus and L.

vancouveriensis).
In order to compare morphological distances among all genera and species, we performed

a CVA of all individuals of Laqueus, Terebratalia, and Dallinella, grouping by species (Fig 7C)

and genera assignments (Fig 7D). When analyzing species groupings (Fig 7C), specimens of

each species form distinct clusters in shape space, with genera separating along CV1. Even

though we decided to analyze the whole dataset, it is important to keep in mind that Laqueus
has a different loop type than Terebratalia and Dallinella; therefore, morphological distances

between Laqueus and Terebratalia/Dallinella do not fully represent the extent of morphologi-

cal difference between loop types. However, these results are informative when comparing dis-

tances among congeners (Table 4). For example, Mahalanobis distance between T. coreanica
(NW Pacific) and T. transversa (NE Pacific) is almost equal to that between L. rubellus (NW

Pacific) and L. erythraeus (NE Pacific), 15.2 and 15.32 respectively. Laqueus erythraeus and L.

vancouveriensis had the smallest distance among every pair of species, which is unsurprising

given their geographic distribution and taxonomic history. Furthermore, biogeographically,

West Pacific species (T. coreanica, L. rubellus, and L. quadratus) have positive CV2 values and

separate from the more negative values of the East Pacific species.

When grouped by genera, Dallinella, Laqueus, and Terebratalia each separate along CV1

(Fig 7D). For both CVAs, overall classification accuracy was 100%, with every specimen classi-

fied correctly to their genus and species (Tables 4 and 5).

Discussion

The results of our study indicate that the traditional approach of identifying and naming tereb-

ratulide brachiopod species, emphasizing internal and external morphological characters,

remains valid, with individuals of named species clustering together and clearly separating

from others in quantitative morphospace. Based only on long loop morphology, all of the spe-

cies analyzed are statistically different from one another, including those with a problematic

taxonomic history such as L. erythraeus/L. vancouveriensis and T. transversa/D. occidentalis.
When analyzing all species together, it was interesting to see that D. occidentalis and Tereb-

ratalia separated along the first principal component. This complete separation was not

expected since both genera share the same loop type; however, even if specimens of D. occiden-
talis have been traditionally placed within the genus Terebratalia, their loops are clearly and

statistically distinct in shape. In the case of Laqueus, every individual was correctly assigned to

its named species, even those of L. erythraeus and L. vancouveriensis, which had previously

been considered geographically distinct subspecies. Laqueus species seem to be more morpho-

logically conserved and display low levels of interspecific variability. This was not the case with
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Terebratalia, where there are some erroneous assignments between T. transversa and T. corea-
nica. This result is not surprising given the reported high morphological (ecophenotypic) vari-

ability of the genus [45–48], indicating that the ranges of morphological variability of these

two species probably overlap, even though they occur on opposite sides of the Pacific Ocean.

However, when comparing all of the species together, mean interspecific Mahalanobis dis-

tances—a measure of how different two groups are—of Laqueus erythraeus and L. vancouver-
iensis, and Terebratalia transversa and T. coreanica (15.2 and 15.32, respectively), show that

Fig 7. Principal component analysis (PCA) and canonical variate analyses (CVA) of a combined dataset (Laqueus, Terebratalia, and Dallinella). a)

PC1-PC2; b) PC1-PC3; c) CVA of species; d) CVA of genera.

https://doi.org/10.1371/journal.pone.0225528.g007

Table 4. Mahalanobis distances among species means for Dallinella, Laqueus, and Terebratalia (bold) and cross-validated classification results in percentages.

Overall classification accuracy of 100%.

Do Le Lq Lr Lv Tc Tt
Do 100%

Le 22.696 100%

Lq 35.547 18.183 100%

Lr 22.867 15.322 23.182 100%

Lv 21.862 10.972 23.826 19.052 100%

Tc 25.865 36.575 47.018 31.872 36.715 100%

Tt 21.964 34.154 45.713 30.121 34.482 15.201 100%

https://doi.org/10.1371/journal.pone.0225528.t004
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they have similar ranges of intraspecific variability when comparing samples of both East and

West Pacific distribution.

Overall, our results suggest that even when external characters are not considered (e.g. fora-

men size and shape, shell ornamentation and folding, etc.), the loop and cardinalia alone offer

sufficient resolution to discriminate among species. In terms of taxonomic classification, our

results corroborate the decision to maintain Laqueus erythraeus and Laqueus vancouveriensis
as separate species, as well as keeping Dallinella occidentalis separate from Terebratalia. Dalli-
nella was established as a separate genus based on the fold and sulcus on the valves [53], which

are considered to be an important feature in classification [19, 21]. When obtaining samples

for this study, we noticed that museum collections often retain the name Terebratalia occiden-
talis for both extant and fossil specimens of D. occidentalis; when possible, we encourage the

revision and update of the material and its respective taxonomic assignments.

Sample size and phylogenetic structure of our data

Two aspects of our study that require further discussion are the small sample sizes and the lack

of known phylogenetic relationships between taxa. The number of individuals analyzed in this

study was dependent on multiple factors, mainly the limited availability of specimens in

museum collections and the fragility of long loops. Brachiopods are not common components

in neontology museum collections and, even when present in larger numbers, long loops are

seldom intact due to the delicate nature of these mineralized supporting structures. Museum

availability of terebratulide brachiopods is, in turn, influenced by the difficulty associated with

collecting—true for many species living in subtidal depths—and commonly small population

sizes.

Addressing the effects of phylogenetic structure in our data is complicated since species

level relationships in terebratulides remain mostly unexplored. We can make assumptions

about some phylogenetic relationships: In Laqueus, we can speculate, based in geographic dis-

tributions, that L. erythraeus and L. vancouveriensis are sister taxa; however, relationships with

and among Western Pacific species have not been thoroughly tested. Based on taxonomy, we

can assume that Dallinella and Terebratalia are sister taxa and Laqueus the sister taxon of that

clade. Although we recognize the importance of analyzing phylogenetically independent data,

phylogenetic signal in our data is hard to account for in our analyses since a robust phyloge-

netic hypothesis is lacking. The addition of DNA sequence data from these species (N. López

Carranza and S. Carlson, in prep) will enable species-level phylogenetic analyses to be com-

pleted, as well as further testing of species boundaries independent of morphology.

Methodology and implications for the fossil record

Considering the complexity of long loops, quantifying morphological variation of these struc-

tures has been a difficult task. Traditionally, loops have been analyzed using different methods;

for example, in living specimens, the mineralized structures and the lophophore they support,

can be dissected and examined. Even if the loop remains intact, disarticulating the valves often

Table 5. Mahalanobis distances among genera means for Dallinella, Laqueus, and Terebratalia (bold) and cross-validated classification results in percentages.

Overall classification accuracy of 100%.

Dallinella Laqueus Terebratalia
Dallinella 100%

Laqueus 20.610 100%

Terebratalia 23.343 28.88336 100%

https://doi.org/10.1371/journal.pone.0225528.t005
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damages the interlocking hinge structures, usually by breaking the teeth, sockets, and hinge

plates, which can be diagnostic characters in species identification. For fossil specimens,

destructive techniques such as transverse serial sections have been the most widely used

approach to begin to reconstruct the complex loop morphology in three dimensions (e.g. [79–

82]). It is possible to use this technique to create 3D models by cutting a fossil into very thin

slices perpendicular to the plane of symmetry to produce successive 2D images and then stack-

ing them to generate a 3D reconstruction [83]. Even though this method can analyze samples

with low mineralogical density contrast between sedimentary matrix and specimen, it destroys

the fossil, which is not ideal for rare specimens.

Given the fragile nature of long loops, these structures are not commonly found intact and

unbroken in the fossil record [1], unless they are entombed within lithified sediments inside

an individual’s two valves. Unlike bivalved molluscs, with ligaments that open the two valves

once the adductor muscles degrade after death, cyrtomatodont brachiopods (i.e. with inter-

locking hinge teeth and sockets, all terebratulides) can and often do remain articulated after

death since contraction of the diductor muscles is required to force the valves open [14]. This

creates the possibility that loops can be preserved in fossils, although very difficult to extract in

any meaningful way other than by destructive serial sectioning. When possible (when enough

contrast exists between the fossil and rock matrix), CT is an excellent high-resolution, non-

destructive alternative to serial sectioning.

In paleontology, genera are commonly used as proxies for species, treating them as evolu-

tionary entities, a practice referred to as generification [73]. This practice must be tested with

data. Genera are thought to be easier to recognize and distinguish morphologically than spe-

cies and are thus more easily distinguishable in the fossil record (i.e. traits that identify supras-

pecific ranks are more generally distributed among individuals and thus more likely to be

preserved) [73]. This has been particularly true because few analyses have tested morphological

species boundaries in congeneric extant and extinct species of brachiopods.

Macroevolutionary processes are only discerned at the species level and above, and genera

and higher taxa are clade-level products of species-level processes. Although analyzing species

in paleontological studies can be a demanding task, requiring extensive taxonomic revisions,

expertise in systematics, access to and familiarity with large number of specimens, it is essential

for understanding morphologic variation, its causes, and evolutionary processes at the species

level. Species names and identifications should be treated as hypotheses to be tested, taking

into consideration species-delimiting criteria such as morphology, genetics, ecology, and bio-

geography. To study species in the fossil record, it is important to analyze morphology quanti-

tatively and determine how it varies, since it is the most readily available source of

evolutionary information. Moreover, working at the species level also offers a more effective

and accessible means of communicating about evolution with researchers from other disci-

plines, particularly with those studying extant organisms.

Conclusions

In summary, this study demonstrates that it is possible to discriminate extant species of the

genera Laqueus, Terebratalia and Dallinella as statistically distinct entities based on loop and

cardinalia morphology. This distinction has been assumed but never before tested quantita-

tively. Three-dimensional geometric morphometrics offers a robust quantitative approach for

testing the morphological validity of these terebratulide brachiopod species that were named

solely on the basis of qualitative morphological characters.
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