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Dissecting cortical astrocyte network dynamics using all-optical 
approaches 

Michelle Kimberly Cahill 

Abstract 

Astrocytes—the most abundant non-neuronal cell type in the mammalian brain—are integral 

circuit components that respond to and modulate neuronal activity. While astrocytes are 

electrically silent, they display highly dynamic intracellular Ca2+ activity. As such, measuring 

Ca2+ dynamics has become the primary method for studying astrocyte physiology. Astrocyte Ca2+ 

activity is highly heterogeneous and occurs across multiple spatiotemporal scales: from fast, 

subcellular activity to slow, synchronized activity that percolates across connected astrocyte 

networks. Additionally, astrocyte network Ca2+ activity influences a wide range of processes 

including sleep-wake dynamics, decision making and motor learning. While astrocyte network 

activity has important implications for neuronal circuit function, it remains unclear if particular 

neurotransmitter inputs contribute to specific aspects of astrocyte network activity. The primary 

focus of this dissertation is to investigate input-response dynamics in cortical astrocytes, linking 

specific neurotransmitter or neuromodulatory inputs to specific astrocyte Ca2+ activity. In 

Chapter 2, we introduce a new analysis software, AQuA, to accurately quantify heterogenous 

Ca2+ activity, which is essential for studying the nuances of astrocyte responses to different 

inputs. In Chapter 3, we use two-photon Ca2+ imaging of astrocytes while mimicking 

neurotransmitter inputs. We find that brief, subcellular inputs of GABA and glutamate lead to 

widespread, long-lasting Ca2+ responses within a connected astrocyte network. Further, we find 

that propagative events differentiate astrocyte network responses to these two major 

neurotransmitters. In Chapter 4, we expand our toolkit for probing input-response dynamics by 
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introducing a new photoactivatable compound for the release of the neuromodulator 

norepinephrine. Together, our results demonstrate that local, transient neurotransmitter inputs are 

encoded by broad cortical astrocyte networks over the course of minutes, contributing to 

accumulating evidence that significant astrocyte-neuron communication occurs across slow, 

network-level spatiotemporal scales.   
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Chapter 1: 
Introduction 

 
A defined framework for input-response dynamics in neurons 

A set of defined rules governing neuronal input-output relationships is a cornerstone of 

neuroscience. Given a specific excitatory or inhibitory neurotransmitter (NT) input, post-synaptic 

membrane potential changes that lead to action potentials can be accurately predicted. Synaptic 

release of glutamate, the major excitatory neurotransmitter in the central nervous system (CNS), 

leads to neuronal depolarization, while synaptic release of g-aminobutyric acid (GABA), the 

major inhibitory neurotransmitter in the CNS, leads to neuronal hyperpolarization. These inputs, 

causing subthreshold depolarization and hyperpolarization, sum over specific time periods and 

spatial territories to shape the activity of individual cells. If the membrane potential reaches a 

certain depolarized threshold, the neuron will fire an action potential, relaying the received signal 

onto other neurons in the circuit via release of neurotransmitters. This framework of input-

response dynamics in neurons lays out how different scales of activity, from subcellular synaptic 

activity to population-level neuronal network activity, are linked to one another, and it forms a 

foundation for understanding how the brain functions. However, neurons are not the only cell 

type in the nervous system that sense neurotransmitters. Glia, a diverse class of non-neuronal 

cells in the CNS, express numerous receptors for neurotransmitters and neuromodulators1–4. Yet, 

the set of rules governing input-response relationships in glia is poorly defined.  

 

https://sciwheel.com/work/citation?ids=12692556,2907397,15537244,1217673&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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A brief history of glia 

In 1856, the pathologist Rudolph Virchow used the term neuroglia to describe the tissue that 

exists between neuronal cells. Virchow wrote, “This connective substance forms a sort of cement 

(neuroglia) in the brain, spinal cord, and higher sensory nerves, in which the nervous elements 

are embedded.”3 Over the subsequent decades, careful observation of CNS tissue from multiple 

organisms led to the understanding that neuroglia tissue is made up of multiple cell types with 

distinct morphologies3. The most abundant of these glial cell types in the mammalian brain are 

astrocytes, which were first drawn by Otto Deiters in a manuscript published in 1865. The 

characteristic star-shape of these cells, with numerous fine branches or processes radiating out 

from a cell body, earned these cells the name astrocyte, coined by Michael von Lenhossek in 

18933. While observation of unstained and stained tissue led to an initial understanding of 

astrocyte morphology, the function of these cells remained elusive5, and the idea, that glia were 

simply the “cement” or “glue” passively holding neurons in place, persisted. 

 

Astrocyte form and function 

Since astrocytes were first observed over 150 years ago, much has been learned about their 

multitude of functions, which map onto their unique morphology. Advances in microscopy and 

techniques to label cells have revealed that astrocytes have a highly complex structure6–10, 

consisting of many fine branches that are in close contact with synapses6,11. Further, it’s 

estimated that an individual astrocyte contacts > 100,000 synapses7 and individual astrocytes are 

physically connected to one another via gap junctions12, tiling the entire CNS7,13. As such, 

astrocytes are well-positioned to regulate neuronal activity across multiple spatial scales.  

https://sciwheel.com/work/citation?ids=15537244&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15537244&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15537244&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15611509&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=665901,80457,758964,382408,8726589&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=665901,751166&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=80457&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=137796&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=80457,1491&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Indeed, astrocytes respond to and modulate neuronal activity via increases in intracellular 

calcium (Ca2+). Many neurotransmitters and neuromodulators, including glutamate14,15, 

GABA16–18, norepinephrine19–22, dopamine23 and histamine24, act on G-protein coupled receptors 

(GPCRs) expressed by astrocytes1,2 to mobilize intracellular Ca2+ via release from internal stores, 

such as the endoplasmic reticulum. Astrocyte Ca2+ dynamics are highly heterogeneous25, 

spanning multiple spatiotemporal scales. Spatially, astrocyte Ca2+ activity has been observed at 

the level of subcellular compartments confined to regions ~1µm210,15,26–28, at the level of 

individual cells, ~50µm in diameter23,25, and at the level of astrocyte networks, extending 

hundreds of microns19,20,29–31. Temporally, astrocyte activity has been shown to occur over the 

timeframe of milliseconds27,28, seconds27,28,30,31, and minutes18,30. In addition to varying in area 

and duration, astrocyte Ca2+ events also vary in their degree of propagation. Some Ca2+ events 

are static, staying in a single location, while other events propagate within or between cells25, 

traveling along the reticular meshwork of fine astrocyte processes10. 

This heterogeneous Ca2+ activity has been linked to a wide range of functions that 

modulate synaptic activity. One critical function of astrocytes is removal of excess 

neurotransmitter from the synaptic cleft via transporter uptake32,33. The trafficking of 

neurotransmitter transporters into and away from the astrocyte membrane is Ca2+ dependent34 

and crucial for tight temporal control of synaptic transmission. Another Ca2+ dependent function 

of astrocytes is maintenance of extracellular ion concentrations35–37, primarily regulation of 

extracellular potassium (K+). Astrocytes rapidly uptake extracellular K+ via inward rectifying K+ 

channels38,39 and the activity of the Na+, K+-ATPase37. The resulting decrease in extracellular K+ 

leads to neuronal hyperpolarization and decreased synaptic activity37. In addition to regulating 

extracellular neurotransmitter and ion concentrations, astrocyte Ca2+ signaling is linked to release 

https://sciwheel.com/work/citation?ids=1833038,382432&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=669050,125241,1597913&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1463420,640456,7097557,14609503&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13684118&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15643975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12692556,2907397&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7585006&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=873915,4553101,237283,382432,8726589&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13684118,7585006&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=83343,1463420,640456,356761,1833026&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4553101,237283&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4553101,237283,356761,1833026&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=356761,1597913&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7585006&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8726589&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=918479,1349626&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13430462&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4100177,15627846,669885&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1056102,3951616&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=669885&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=669885&pre=&suf=&sa=0&dbf=0
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or modulation of “gliotransmitters” such as glutamate40,41, ATP/adenosine15,16 and D-serine42,43. 

Depending on the gliotransmitter released and the site of action, these outputs can either 

facilitate15,41,43 or inhibit16,40 synaptic activity.  

Because astrocytes contact many thousands of synapses and astrocyte Ca2+ activity spans 

multiple spatial scales, astrocyte Ca2+ activity not only modulates individual synapses, but also 

modulates the activity of large ensembles of neurons. Population-level astrocyte Ca2+ activity is 

important for shifting neuronal circuit activity into a synchronized state44,45. As such, astrocyte 

Ca2+ activity is involved in regulating sleep-wake dynamics46,47 and in resynchronizing neuronal 

activity after periods of high arousal22. 

While increases in astrocyte Ca2+ activity have been linked to this myriad of diverse, and 

sometimes opposing, functions, how the same second messenger triggers distinct functional 

outputs in response to different inputs remains unknown. One intriguing possibility is that there 

is an astrocyte Ca2+ code, in which specific spatiotemporal patterns of Ca2+ activity link specific 

inputs to functional outputs. Until recently, it was difficult to explore this possibility because the 

astrocyte field did not have a good way to quantify complex Ca2+ dynamics. Most analysis 

methods took a region-of-interest (ROI) based approach, measuring Ca2+ fluctuations from static, 

pre-determined regions18,19,28,30. These ROI-based analysis methods pool together all Ca2+ 

activity within a defined region regardless of the different sizes of Ca2+ events or how they move 

within and beyond an individual ROI. In Chapter 2, we introduce a new analysis software 

package, AQuA, for quantifying astrocyte Ca2+ activity and heterogeneous fluorescent signals, 

more broadly25. We apply probability theory, machine learning and computational optimization 

to develop an algorithm which detects Ca2+ activity as discrete events and records biologically 

relevant spatiotemporal features of each event, independent of ROIs. This analysis software is a 

https://sciwheel.com/work/citation?ids=15341883,2934804&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=382432,669050&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=518463,80405&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2934804,382432,80405&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15341883,669050&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=137961,1521062&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10699014,9202756&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14609503&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=237283,1463420,356761,1597913&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7585006&pre=&suf=&sa=0&dbf=0
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publicly available tool, with user-friendly interfaces in both MATLAB and Fiji, that is now 

widely used to dissect astrocyte Ca2+ dynamics both ex vivo and in vivo, moving the field one 

step closer to understanding the complex astrocyte Ca2+ code.   

 

Input-response dynamics in cortical astrocytes 

Accurate quantification of astrocyte Ca2+ activity via AQuA is central to the work presented in 

Chapter 3, where we investigate input-response dynamics in cortical astrocytes. Our goal here 

was to build an input framework governing transient and sustained cortical astrocyte Ca2+ 

activity at three spatial scales: subcellular, single cell and network. Because the majority of 

cortical neurons release either glutamate or GABA, we took a physiologically relevant and 

comparative approach, focusing on astrocyte responses to these two major neurotransmitters. We 

use ex vivo and in vivo two-photon (2P) Ca2+ imaging of astrocytes while mimicking neuronal 

neurotransmitter inputs at multiple spatiotemporal scales.  

To mimic subcellular neurotransmitter inputs, we use 2P photo-release (“uncaging”) of 

caged neurotransmitter15,48–53. We utilized a class of caged compounds (with ruthenium 

bipyridine [RuBi] backbones), bound to either GABA54,55 or glutamate55,56. In the bound form, 

the neurotransmitter cannot bind to receptors, and is thus, not biologically active. Upon exposure 

to one-photon (1P) blue light (446–486 nm) or the equivalent 2P wavelength (800nm), 

neurotransmitter is released from the RuBi backbone, free to bind to receptors. The 

spatiotemporal dynamics of neurotransmitter uncaging can be tuned by the size, intensity and 

duration of the light beam. Additionally, neurotransmitter can be released in this manner without 

mechanically disturbing the tissue, which itself can modulate cellular activity57.  

https://sciwheel.com/work/citation?ids=382432,758278,632250,374861,33739,6527481,604375&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13817489,13817766&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13817766,137924&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=664689&pre=&suf=&sa=0&dbf=0
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Using 2P uncaging of RuBi-GABA and RuBi-glutamate, we are able to stimulate the 

same subcellar location of individual astrocytes with each neurotransmitter, in sequence. With 

this strategy, the imaging/uncaging paradigm is the same for both GABA and glutamate. This 

comparative approach allows us to record activity changes that are common to both 

neurotransmitter inputs, as well as activity changes that are unique to each input, as we observe 

how activity changes both within the directly stimulated astrocyte and within the connected 

astrocyte network. Our results link specific excitatory and inhibitory neurotransmitter inputs to 

specific astrocyte Ca2+ activity and map the scales over which astrocytes could exert effects on 

neuronal circuitry.  

 

Expanding the toolkit for probing astrocyte responses to inputs 

As discussed in the previous section, the light-activatable RuBi compounds were central to 

probing input-response dynamics in cortical astrocytes in Chapter 3. Crucially, the uncaging 

properties for GABA and glutamate are comparable, as both neurotransmitters are caged by a 

common chemical backbone. The suite of RuBi-compounds bound to neurotransmitters extends 

beyond GABA and glutamate and includes serotonin58, dopamine59 and nicotine60. In Chapter 4, 

we introduce the addition of norepinephrine to the list of neurotransmitters and neuromodulators 

bound to a RuBi backbone. We describe the synthesis and chemical properties of RuBi-

norepinephrine (RuBi-NE) and validate the 1P release of norepinephrine using whole-cell patch 

clamp electrophysiology in acute mouse brain slices. Because astrocyte network Ca2+ dynamics 

are largely influenced by the neuromodulator norepinephrine19,20,22,61, this photoactivatable 

compound will likely prove useful for further dissection of astrocyte physiology. Probing 

astrocyte responses to multiple neuromodulators, as was done in response to GABA and 

https://sciwheel.com/work/citation?ids=6303888&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3313214&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5964239&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=640385,1463420,640456,14609503&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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glutamate, will further develop the framework for input-response dynamics in astrocytes, which 

could help build a consistent model for astrocytic modulation of neuronal activity. 
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Chapter 2: 

Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics 

for single-cell and population-level physiology 

 
Abstract 

Recent work examining astrocytic physiology centers on fluorescence imaging approaches, due 

to development of sensitive fluorescent indicators and observation of spatiotemporally complex 

calcium and glutamate activity. However, the field remains hindered in fully characterizing these 

dynamics, both within single cells and at the population-level, because of the insufficiency of 

current region-of-interest-based approaches to describe activity that is often spatially unfixed, 

size-varying, and propagative. Here, we present an analytical framework that releases astrocyte 

biologists from ROI-based tools. The Astrocyte Quantitative Analysis (AQuA) software takes an 

event-based perspective to model and accurately quantify the complex activity in astrocyte 

imaging datasets. We apply AQuA to a range of ex vivo and in vivo imaging data, and uncover 

novel physiological phenomena in each. Since AQuA is data-driven and based on machine 

learning principles, it can be applied across model organisms, fluorescent indicators, 

experimental modes, and imaging resolutions and speeds, enabling researchers to elucidate 

fundamental astrocyte physiology.   

 

Introduction 

With increased prevalence of multiphoton imaging and optical probes to study the physiology of 

astrocytes1-3, many groups now have the tools to study fundamental functions that previously 

remained unclear. Recent work has focused on new ways to decipher how astrocytes respond to 
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neurotransmitter and neuromodulator circuit signals4-7 and how the spatiotemporal patterns of 

their activity shape local neuronal activity8-10. Recording astrocytic dynamics with the goal of 

decoding their disparate roles in neural circuitry has largely centered on cell type-specific 

expression of genetically encoded probes to carry out intracellular calcium (Ca2+) imaging using 

variants of GCaMP3. In addition, many groups have studied astrocytic function by performing 

extracellular glutamate imaging using GluSnFR2, and several more recently developed 

genetically encoded fluorescent probes for neurotransmitters such as GABA11, norepinephrine 

(NE)12, ATP13, and dopamine14 are poised to expand our understanding of astrocytic circuit 

biology.  

 Compared to neuronal Ca2+ imaging, astrocytic Ca2+ imaging using GCaMP presents 

particular challenges for analysis due to their complex spatiotemporal dynamics. Thus, astrocyte-

specific analysis software has been developed to capture these dynamics, including techniques 

that divide the cell into distinct subcellular regions corresponding to their anatomy4 or apply a 

watershed algorithm to identify regions-of-interest (ROIs)15. Likewise, GluSnFR imaging 

analysis techniques are based on manually or semi-manually selected ROIs, or by analyzing the 

entire imaging field together as one ROI2,6,8,16. It is worth noting that these and most, although 

not all17,18, other current techniques rely on the conceptual framework of ROIs for image 

analysis. However, astrocytic Ca2+ and GluSnFR fluorescence dynamics are particularly ill-

suited for ROI-based approaches, because the concept of the ROI has several inherent 

assumptions that cannot be satisfied for astrocytic activity data. Astrocytic Ca2+ signals, for 

example, can occupy regions that change size or location across time, can propagate within or 

across cells, and can spatially overlap with other Ca2+ signals that are temporally distinct. ROI-

based approaches assume that for a given ROI, all signals have a fixed size and shape as 
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specified by the ROI, and all locations within the ROI undergo the same dynamics, without 

propagation. Accordingly, ROI-based techniques may over- or under-sample these data, thus 

obscuring true dynamics and hindering physiological discovery in these cells. An ideal imaging 

analysis framework for astrocytes would take into account, and quantify, all of these dynamic 

features and be free of these ROI-based analytical restrictions. In addition, an ideal tool should 

be applicable to astrocyte imaging data across spatial scales, encompassing subcellular, cellular, 

and population-wide fluorescence dynamics.  

 In this work, we set out to design an image analysis toolbox that would capture the 

complex, wide-ranging fluorescent signals observed in most dynamic astrocyte imaging datasets. 

We reasoned that a non-ROI-based approach would better describe the observed fluorescent 

dynamics, and applied probability theory, machine learning, and computational optimization 

techniques to generate an algorithm to do so. We name this resulting software package Astrocyte 

Quantitative Analysis (AQuA) and validate its utility by applying it to simulated datasets that 

reflect the specific features that make analyzing astrocyte data challenging. We next apply 

AQuA to three experimental two-photon (2P) imaging datasets—ex vivo Ca2+ imaging of 

GCaMP6 from acute cortical slices, in vivo Ca2+ imaging of GCaMP6 in primary visual cortex 

(V1) of awake, head-fixed mice, and ex vivo extracellular glutamate, GABA, and NE imaging. In 

these test cases, we find that AQuA accurately detects fluorescence dynamics by capturing 

fluorescence events as they change in space and time, rather than the activity from a single 

location in space, as in ROI-based approaches. AQuA outputs a comprehensive set of 

biologically relevant parameters from these datasets, including propagation speed, propagation 

direction, area, shape, and spatial frequency. Using these detected events and associated output 
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features, we uncover neurobiological phenomena that have not been previously described in 

astrocytes.  

 A wide variety of cellular and circuit functions have been ascribed to astrocytes, and a 

key question currently under examination in the field is whether certain types of Ca2+ activities 

observed in these cells correspond to particular neurobiological functions. However, current 

techniques with which to classify these observed dynamics remain inadequate since they do not 

capture many of the dynamics recorded in fluorescent imaging of astrocytic activity. The 

framework we describe here allows for a rigorous, in-depth dissection of astrocyte physiology 

across spatial and temporal imaging scales, and sets the stage for a comprehensive categorization 

of heterogeneous astrocyte activities both at baseline and after experimental manipulations.  

 

Results 

Design principles of the AQuA algorithm 

To move away from ROI-based analysis approaches and accurately capture heterogeneous 

astrocyte fluorescence dynamics, we set out to design an algorithm to decompose raw dynamic 

astrocyte imaging data into a set of quantifiable events (Fig. 2.1a, Extended Data Fig. 2.1–2.3). 

Here, we define an event as a cycle of a signal increase and decrease that coherently occurs in a 

spatially connected region, but this region is defined by the fluorescence dynamics, not a priori 

by the user or the cell morphology. Algorithmically, this definition is converted to the following 

two rules: 1) the temporal trajectory for an event contains only one peak (single-cycle rule, Fig. 

2.1b) and 2) adjacent locations in the same event have similar trajectories (smoothness rule, Fig. 

2.1b). The task of the AQuA algorithm is to detect all events, and, for each event, to identify the 

temporal trajectory, the spatial footprint, and how the signal propagates within the footprint. 
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Briefly, our strategy of event-detection is to a) explore the single-cycle rule to find peaks, which 

are used to specify the time window and temporal trajectory, b) explore the smoothness rule to 

group spatially adjacent peaks, whose locations specify the footprint, c) apply machine learning 

and optimization techniques to iteratively refine the spatial and temporal properties of the event 

to best fit the data, and d) apply statistical theory to determine whether a detected event is true or 

due to noise (Fig. 2.1).  

 Full statistical and computational details are provided in the Methods, but we want to 

highlight one technical innovation (Graphical Time Warping [GTW])19 and one new concept (the 

single-source rule) that jointly enable a nuanced analysis of astrocyte fluorescence dynamics as 

shown below in application to experimental datasets. With GTW, we are able to consider 

fluorescent signal propagation as integrated into each modeled event. To the best of our 

knowledge, signal propagation has never been rigorously accounted for and has been considered 

an obstacle to analysis. With GTW, we can estimate and quantify propagation patterns in the 

data. With the introduction of the single-source rule (Fig. 2.1b), each event only contains a single 

initiation source and we can separate events that are initiated at different locations but meet in 

the middle. The single-source rule also allows us to divide large-scale activity that can occur 

across an entire field-of-view into individual events, each with a single initiation location.    

 The output of the event-based AQuA algorithm is a list of detected events, each 

associated with three categories of parameters: 1) the spatial map indicating where the event 

occurs, 2) the dynamic curve corresponding to fluorescence change over time (dF/F), and 3) the 

propagation map indicating signal propagation. For each event, we use the spatial map to 

compute the event area, diameter and shape of the domain it occupies (Fig. 2.1c). Using the 

dynamic curve, we can calculate maximum dF/F, duration, onset-time, rise-time and decay-time. 
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Using the propagation map, we extract event initiation location, as well as propagation path, 

direction, and speed. In addition, AQuA computes features involving more than one event, such 

as the frequency of events at a position, and the overall number of events in a specified region or 

cell. A complete list of features is available in Wang & DelRosso et al., 2019 and online at 

https://github.com/yu-lab-vt/AQuA. 

 

Validation of AQuA using simulated data 

To validate AQuA, we designed three simulation datasets so that we know the ground truth for 

the dynamics of each event. These three datasets independently vary the three key phenomena 

observed in astrocyte imaging datasets that cause ROI-based approaches to misanalyze the data: 

size-variability, location-variability, and propagation. While these three phenomena usually co-

occur in real datasets, we simulated each phenomenon independently to examine their individual 

impact and test AQuA’s performance relative to other fluorescence image analysis tools, 

including CaImAn20, Suite2P21, CaSCaDe15, and GECI-quant4. CaImAn and Suite2P are widely 

used for neuronal Ca2+ imaging analysis while CaSCaDe and GECI-quant were designed 

specifically for Ca2+ activity in astrocytes. We should note that although CaSCaDe uses the term 

"events" to describe Ca2+ transients, all four methods are ROI-based. In our analysis of these 

simulated datasets, as elaborated in the Methods, we optimally tuned the ROI-detection for all 

methods for an objective comparison of the best performance of each method (Extended Data 

Table 2.1). We also systematically changed the signal-to-noise-ratio (SNR) to examine the effect 

of noise on each analysis method. 

 To evaluate the performance on all simulated datasets, we used two measures: IoU and a 

map of the event counts. IoU (intersection over union) measures the consistency between 
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detected and the ground-truth events, and takes into account both the spatial and temporal 

accuracy of detected events. IoU ranges from 0 to 1, where 1 indicates perfect detection and 0 

indicates a complete failure in detection. The map of the event counts is obtained by counting the 

number of events at each pixel in the field, and is used to visually assess the accuracy of event-

detection results by a comparison to the ground-truth map.  

 We first studied the impact of size-varying events (Fig. 2.2a), in which multiple events 

occurred at the same location and the event centers remain fixed, but sizes changed across 

different events. The degree of size change is quantified using size-change odds (see Methods) 

where a size-change odds of 1 indicates events with the same size, while an odds of 5 is the 

largest size change we simulated. For instance, when we set the odds at 5, we simulate events 

with sizes randomly distributed between 0.2 and 5 times the baseline size, with an SNR of 10dB, 

chosen to closely match the noise level in real experimental data. When there was no size change 

(odds=1), all methods, as expected, performed well with IoUs near 0.95 (Fig. 2.2a). When the 

degree of size change was increased, AQuA still performed well (IoU=0.95), while all other 

methods quickly drop to 0.4–0.5. We then changed our analysis to study the impact of different 

SNRs on performance by varying SNR, but fixing the size-change odds. AQuA performed better 

with increasing SNR and achieved nearly perfect detection accuracy (IoU=1) at 20dB. In 

comparison, all other methods had an IoU less than 0.6, even at high SNR (Fig. 2.2a). We also 

examined the results by visualizing event counts at each pixel (Extended Data Fig. 2.4–2.5). 

With size change odds of 3 or 5, the map of ground truth event-counts did not show clear ROI 

boundaries, because events from the same ROI had various sizes, and because events from 

different ROIs can overlap at some spatial locations (Extended Data Fig. 2.4). It is clear from 
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these maps that AQuA reported faithfully the events under various SNRs but all other methods 

had erroneous event counts and produced artificial patterns.  

 We next focused on the impact of shifting the event locations. In these simulated datasets, 

event size was fixed but event location changed, and degree of change was represented by a 

location change score (Fig. 2.2b). A value of zero indicates no location change and greater values 

represent larger degrees of change. Here, results are similar to changing size, as above. AQuA 

models the location change well and its performance is not affected by degree of location 

change. Likewise, AQuA reached near perfect results when SNR was high. In contrast, all other 

analysis methods performed poorly with changing locations. In particular, the other astrocyte-

specific methods (CaSCaDe and GECI-quant) missed many signals. Even though the overall 

conclusion is similar for both the size- and location-changing events, the peer methods had more 

variation of IoU performance among themselves and the event count map showed distinct 

patterns (Extended Data Fig. 2.4).  

 In our third simulated dataset, we asked how the phenomenon of fluorescence signal 

propagation impacts the performance of AQuA compared to the other methods. Two propagation 

types—growing and moving—were simulated in this dataset (Fig. 2.2c), although they were also 

separately evaluated (Extended Data Fig. 2.6). Propagation frame number denotes the difference 

between the earliest and latest onset times within a single event. When propagation frame 

number is zero, all signals within one ROI, but not necessarily across ROIs, are synchronized 

and there is no propagation. Similar results to the two scenarios discussed above were obtained 

here, with AQuA out-performing all the other methods by a large margin. These results indicate 

that AQuA can handle various types of propagation well, while the performance of other 

methods degrades rapidly when propagation is introduced.  
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 In summary, when any of the three ROI-violating factors—size-variability, location-

variability, and propagation—is introduced, other methods do not accurately capture the signal 

dynamics of the simulated data, and AQuA outperforms them by a large margin. We expect that 

the performance margin on real experimental data is larger than those quantified in the 

simulation studies here, since real data exhibits multiple ROI-violating factors and the 

performance of the ROI-based methods is over-estimated in our simulations (see Methods). 

However, these IoU analyses and the event count visualizations informed us about different 

types of errors observed in ROI-based methods. To focus on astrocyte-specific methods, 

CaSCaDe tends to over-segment, as it is based on watershed segmentation. GECI-quant, 

especially its soma-segmentation step, is particularly challenged by noise, causing many signals 

to be lost (Extended Data Fig. 2.5). This accounts for the result that GECI-quant is not able to 

detect anything when the SNR is low (Fig. 2.2b, right). We note that although all events are 

constrained in the same ROI in the propagation simulations, propagation caused ROI-based 

approaches to quickly decline in performance. Here, GECI-quant was influenced by noise level, 

while CaSCaDe’s assumption of synchronized signals did not allow accurate capture of the event 

dynamics. 

 

AQuA enables identification of single-cell physiological heterogeneities 

To test AQuA’s performance on real astrocyte fluorescence imaging data and ask whether AQuA 

could be used for classifying Ca2+ activities observed in single cells, we first ran AQuA’s event-

detection on Ca2+ activity recorded from astrocytes in acute cortical slices from mouse V1 using 

2P microscopy. We used a viral approach to express the genetically encoded Ca2+ indicator 

GCaMP6f3 in layer 2/3 (L2/3) astrocytes. Unlike ROI-based approaches, AQuA detects both 
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propagative and non-propagative activity, revealing Ca2+ events with a variety of shapes and 

sizes (Fig. 2.3a, left). Further, since AQuA not only detects Ca2+ events' spatial footprint but also 

their time-course, we can apply AQuA to measure the propagation direction each event travels 

over its lifetime. Imaging single cells, we used the soma as a landmark, and classified events as 

traveling toward the soma (pink), away from the soma (purple), or static (blue) for the majority 

of its lifetime (Fig. 2.3a, right). We used AQuA’s automatic feature-extraction and combined 

multiple measurements (size, propagation direction, duration, and minimum proximity to soma) 

into one spatiotemporal summary plot (Fig. 2.3b). Since astrocytes exhibit a wide diversity of 

Ca2+ activities across subcellular compartments6,22,23, plotting the signals this way rather than 

standard dF/F  transients highlights these heterogeneities, allows us to map the spatial location of 

the Ca2+ signals, and enables a quick, visual impression of a large amount of complex data 

(Extended Data Fig. 2.7). We note that while the expression of GCaMP6 in these experiments 

enabled us to analyze events within single cells, some probes do not allow clear delineation of 

single cells. However, a secondary fluorophore (such as TdTomato) often serves the purpose of 

defining the morphology of single cells, and the AQuA software has been designed to overlay 

morphological masks on the dynamic fluorescence channel.  

 We next asked whether some subcellular regions of astrocytes have more dynamic 

activity than others across all analyzed cells (n=11 cells). Although we detected more static 

events than dynamic overall (Extended Data Fig. 2.8a), we observed a higher proportion of 

dynamic events than static events in the soma (59%, Fig. 2.3c, Extended Data Fig. 2.8b). We 

then characterized events by propagation direction and event initiation location (Fig. 2.3d). 

Events that begin close to the soma (≤50th percentile) and propagate away (purple) were on 

average larger than the events propagating toward the soma (pink, two-tailed t-test). Similarly, 
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those events that began close to the soma (≤50th percentile) and propagated away had on average 

a longer duration than events propagating toward the soma (two-tailed t-test, Fig. 2.3e, Extended 

Data Fig. 2.8). 

 One of AQuA’s strengths is its ability to automatically extract a large number of features. 

These features can be used to form a comprehensive Ca2+  measurement matrix, where each row 

represents an event and each column an extracted feature, and which includes all events for each 

cell (Extended Data Fig. 2.9). Dimensionality reduction applied to this matrix can, in turn, be 

used to visualize each cell’s Ca2+ signature (Extended Data Fig. 2.9, white rows separate each 

individual cell). To do this, we applied t-distributed Stochastic Neighbor Embedding (t-SNE)24, 

followed by k-means clustering to assign the cells to groups (Extended Data Fig. 2.9), revealing 

clusters marked by cells with large differences in median frequency (Fig. 2.3f). Astrocytic Ca2+ 

frequency is commonly measured as the number of transients that occur over time within an 

ROI. Here, we instead define frequency from an event-based perspective in two ways: 1) for 

each event, the number of other events that overlap in time, and 2) for each event, the number of 

other events that overlap in space. We used these two measures (temporal and spatial overlap) 

and several other extracted measures (Extended Data Fig. 2.9) to construct the matrix used for t-

SNE visualization and clustering. We next tested how well our AQuA-specific features perform 

at clustering the heterogeneity among cells compared to two ROI-based methods (Fig. 2.3g), and 

found that the AQuA-based method outperformed the others. In fact, even when we only use 

AQuA-specific features for this analysis—area, temporal overlap, spatial overlap, and 

propagation speed—and remove all features that can be extracted from ROI-based methods, 

AQuA still significantly outperforms in clustering cells (Extended Data Fig. 2.9g–i). AQuA-

extracted features that correspond only to those that can be obtained by ROI-based methods—
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standard frequency, amplitude, duration—do not allow clustering significantly better than the 

ROI-based approaches themselves (Extended Data Fig. 2.9g–i), suggesting that the AQuA-

specific features are those that best capture dynamic fluorescence features that vary among single 

cells. This indicates that AQuA may be used to extract data from existing ex vivo Ca2+ imaging 

datasets to reveal previously uncovered dynamics and sort cells into functionally relevant 

clusters. 

 

In vivo astrocytic Ca2+ bursts display anatomical directionality 

Recent interest in astrocytic activity at the mesoscale has been driven by population-level, multi-

cellular astrocytic Ca2+ imaging1,5,7,8,25-27. To test the power of AQuA-based event detection, we 

next applied it to populations of in vivo astrocyte Ca2+ activity. Previous studies have described 

temporal details of astrocyte activation4,5,7,8,25, yet have left largely unaddressed the combined 

spatiotemporal properties of Ca2+ activity at the circuit-level, across multiple cells. Here, we 

explored whether AQuA can uncover spatial patterns within populations of cortical astrocytes in 

an awake animal, and carried out head-fixed, 2P imaging of GCaMP6f activity in V1, L2/3 

astrocytes. Populations of in vivo cortical astrocytes exhibit both small, focal, desynchronized 

Ca2+ activity25, and large, coordinated activities4,5 that we refer to as bursts in this context. 

Importantly, AQuA detected both of these classes of Ca2+ activity in the same in vivo imaging 

datasets, suggesting that it could be a powerful tool to investigate both kinds of activity—and the 

interactions between them—even within a single dataset (Fig. 2.4a). Similar to previous studies, 

we observed many (but not all) of the bursts co-occurring with locomotion periods (Fig. 2.4b, 

pink), and many events within these burst periods displayed propagation (Fig. 2.4c, top). These 

propagative events were larger in area and had greater propagation distances compared to the 
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events that occurred during the inter-burst periods (Fig. 2.4c, bottom). Here, to test whether 

AQuA could help us understand these large bursts and discover discrete features of this 

phenomenon, we next focused our investigation on all the events occurring during the burst 

periods (Extended Data Fig. 2.10).   

 To analyze the structure of these burst-period Ca2+ events, we investigated fluorescence 

propagation across multiple spatial scales: at the level of individual events, of subregions of the 

imaging field encompassing multiple events, and of the entire imaging field. At the level of 

individual events within a single burst, plotting the individual event direction within the entire 

field of view did not reveal a consistent propagation direction (Fig. 2.4d). However, when we 

divided our field-of-view into equivalently sized, subregional tiles (Fig. 2.4e), we observed more 

consistent propagation direction within single subregions (Fig. 2.4f). When we plot the 

cumulative count of the percentage of bursts with regions that propagate in the same direction, 

we indeed observe that this curve is right-shifted compared to a simulated random assignment of 

majority regional propagation direction (Fig. 2.4g), suggesting that there does exist regularity in 

the propagation pattern within bursts, but that this only becomes apparent at a spatial scale larger 

than individual events.  

 Since the consistency of propagation directionality increased with increasing spatial 

scales, we next explored whole imaging field dynamics during Ca2+ burst events. We noted that 

the percentage of the active field of view varied across burst periods (Fig. 2.4b), with a wide 

variability from few to hundreds of events (Fig. 2.4h). To control for number and size of events, 

we used the difference between each event’s onset time to calculate a single burst-wide 

propagation direction (Fig. 2.4h, black arrow). Doing so revealed a consistent posterior-medial 

directionality of population Ca2+ activity in L2/3 V1 astrocytes (Fig. 2.4i). Although Ca2+ bursts 
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have been previously observed using GCaMP6 imaging in awake mice4,5, consistent spatial 

directionality with respect to the underlying anatomy has never been described. This observed 

posterior-medial directionality may be revealing anatomical and physiological underpinnings of 

these bursts, and since they have been shown to be at least partly mediated by norepinephrine5,7, 

they could be reflective of the response of groups of cortical astrocytes to incoming adrenergic 

axons originating in locus coeruleus. Regardless of burst mechanism(s), these results suggest that 

in vivo, astrocytic Ca2+ propagation dynamics differ depending on the spatial scale examined, 

which may explain previously described discrepancies in dynamics.  

 

AQuA-based detection of extracellular molecular dynamics  

We next asked whether AQuA could be used to detect astrocytic fluorescent activities with 

distinct spatiotemporal dynamics than we observe when measuring intracellular Ca2+. We 

decided to perform imaging of extracellular-facing probes, including GluSnFR2, to measure 

extracellular glutamate dynamics, since it has been widely used for glutamate imaging2,6,8 and 

astrocytes regulate extracellular glutamate concentration. In addition, GluSnFR dynamics are 

much faster than GCaMP dynamics, which causes detection to be very susceptible to low SNR. 

This can be an additional challenge and thus much previous GluSnFR analyses has relied on 

averaging across multiple trials. While GluSnFR has been expressed both in astrocytes and in 

neurons previously2,8,16,28, how cell type-specific expression and morphology—particularly 

relative to synaptic and extra-synaptic glutamate release—determines its fluorescent dynamics 

has not been fully explored16,28. No previously applied analytical tools have been reported to 

automatically detect GluSnFR-based glutamate events to accommodate differential event sizes 

and shapes. Here, we explored whether application of AQuA could be used to detect cell type-
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specific differences in glutamate dynamics that may be based on heterogeneous underlying 

morphologies and cell biological mechanisms. 

 We expressed GluSnFR in either astrocytes or neurons using cell type-specific viruses2 

and carried out 2P imaging of spontaneous GluSnFR activity in acute cortical V1 slices from 

L2/3. Distinct morphological differences between astrocytic and neuronal expression of 

GluSnFR were evident, as has been observed previously8,29,30 (Fig. 2.5a). We applied AQuA to 

these datasets to detect significant increases in GluSnFR fluorescence, and were able to detect 

events that were too small and dim to detect by eye; AQuA-detected events were confirmed by 

post hoc ROI-based analysis. Indeed, 62% of astrocytic events had an area less than the size of a 

single astrocyte (100 μm2), and 8% of astrocytic and 35% of neuronal glutamate events had a 

small maximum dF/F (less than 0.5). Because GluSnFR events have previously been detected by 

spatially averaging within a single cell or across broader areas of tissue, or by manual detection, 

the events that AQuA detects are most likely missed by ROI-based methods6,8,16 (Extended Data 

Fig. 2.11). Because AQuA is designed to detect events independently from shape or size, events 

of heterogeneous size and shape were revealed during this analysis (Fig. 2.5a–b). A large 

proportion of these spontaneous GluSnFR events changed size over the course of the event, with 

42% of total astrocytic and 32% of total neuronal glutamate events exhibiting changes in area. 

On average, astrocytic GluSnFR events were significantly larger (274 ± 39.56 μm2) than 

neuronal events (172 ± 57.06 μm2), sometimes encompassing an entire astrocyte (Extended Data 

Fig. 2.11). Neuronal GluSnFR events were significantly more circular (Fig. 2.5b–d), perhaps 

reflecting morphological differences between cell type somata. We also found that between cell 

types, GluSnFR events exhibited different size dynamics (Fig. 2.5b–c). While there was no 

difference in the rate of increase in event size between astrocytes and neurons, we did observe 
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that the rate of size decrease of astrocytic events between frames was larger than that of neuronal 

events (Fig. 2.5c), which may reflect differential synaptic and extrasynaptic glutamate dynamics 

in proximity to subcellular compartments of each cell type.  

 Once we found that AQuA-based detection was effective for quantification of 

spontaneous GluSnFR events, we wanted to test its performance on more spatially and 

temporally precise glutamate events, since GluSnFR can be used to measure synaptic release of 

glutamate when imaged at fast frame rates2,31. To do this, we performed fast (~100Hz) GluSnFR 

imaging while photoactivating a caged glutamate compound (RuBi-glutamate10,32) with a second 

laser beam. In these experiments, we tested uncaging pulses at various durations (25–150ms), 

and applied AQuA to detect these small-scale, fast events (Fig. 2.5d, right). Although we did 

observe an increase in detection accuracy (identification of event at the time and location of the 

laser uncaging pulse) of uncaging-defined GluSnFR events at longer uncaging durations, AQuA 

detection still showed high accuracy levels at shorter durations, with a minimum of 96% average 

accuracy across durations (Fig. 2.5d, right; n = 5 cells, 3 replicates/cell). These results indicate 

that AQuA works well for fluorescent event detection at fast frame rates. 

 We lastly wanted to demonstrate that AQuA can be used for other extracellular-facing 

probes that are relevant for astrocyte-neuron physiology. To do this, we imaged and analyzed 

two recently developed genetically encoded probes that sense extracellular neurotransmitters: 

GABASnFR11 and GRAB-NE12, which report GABA and NE dynamics, respectively. We 

expressed GABASnFR (Fig. 2.5e, left) in cortical astrocytes and GRAB-NE in cortical neurons 

(Fig. 2.5f, left), and performed ex vivo 2P imaging before and after bath application of either NE 

or GABA. In both cases, we used AQuA to detect events as the neurotransmitter contacted the 

fluorescent sensors. For GABASnFR expression in individual astrocytes, we observed that each 
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event increased in both fluorescence amplitude and area with cell-specific dynamics (Fig. 2.5e, 

right). While the widespread neuronal expression of GRAB-NE did not allow for cell-specific 

analysis, it did allow us to observe waves of NE as it was bathed over the slice. Here, AQuA 

enabled detection of the dynamic spatial location, amplitude, and area of these waves as they 

progressed across the slice (Fig. 2.5f, right), indicating that AQuA may be useful to quantify 

propagating wavefronts in other contexts. Together, results in this section suggest that AQuA-

based detection can be used to quantify the dynamics of extracellular molecules at a range of 

speeds and spatial spreads, across multiple cell types and expression patterns.  

 

Discussion 

With the development and application of a flexible event-based analysis tool for astrocyte 

imaging datasets, we hope to enable many research groups to accurately quantify observed 

fluorescence dynamics, including those that are un-fixed, propagative, and size varying. Here, 

we demonstrate that AQuA performs better than many other image analysis methods—including 

those designed for astrocytic and neuronal applications—on simulated datasets, and describe 

fluorescent event detection in several types of datasets, using the genetically encoded GCaMP, 

GluSnFR, GABASnFR, and GRAB-NE indicators. Because AQuA is data-driven, it can be 

applied to datasets that have not been directly tested here, including those captured under 

different imaging magnifications and spatial resolutions, as well as confocal or wide-field 

imaging systems. In addition, since the AQuA algorithm functions independently from frame 

rate, datasets captured with faster or slower frame rates17,25 are also just as amenable to an event-

based analysis with AQuA as those shown here. Further, AQuA is applicable to fluorescent 

indicators other than the ones tested here, particularly those that exhibit complex dynamics.   
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 We envision the AQuA software and its underlying algorithm as enabling problem-

solving for a wide range of astrocyte physiological questions, both because AQuA accurately 

captures dynamics exhibited by commonly used fluorescent indicators and because there are 

more features extracted by AQuA that can be analyzed than those extracted by existing methods. 

Since AQuA-specific features were able to capture heterogeneities we observed among single 

cells when imaging Ca2+, we posit that these features may be more physiologically relevant than 

the standard measurements (amplitude, frequency, duration) used to describe astrocytic 

physiological differences, although these standard measures are also features extracted by 

AQuA. In the current work, we use these multiple features to describe the spontaneous astrocyte 

activity in cortex, but with varying spatial scale, fluorescent probe, and experimental preparation. 

In future work, we and others can apply AQuA-based analyses to other brain regions and layers 

to describe potential functional heterogeneities among astrocytes33. Beyond baseline differences, 

we expect that AQuA will be a powerful tool to quantify physiological effects of 

pharmacological, genetic, and optogenetic manipulations, among others. These manipulations 

and subsequent analyses would allow researchers to examine both astrocyte-intrinsic and -

extrinsic physiology, depending on whether astrocytes, neurons, or another brain cell type is 

being changed.  

 Significant disagreement in the field remains about basic physiological functions of 

astrocytes. Perhaps the most outstanding issue is whether astrocytes undergo vesicular release of 

transmitters such as glutamate. While we don’t address this controversial topic in the current 

work, we expect that the heterogeneous activities that we uncover using an AQuA-based analysis 

of GluSnFR may be key in determining different sources of glutamate in neural circuits under 

different conditions, and could help untangle some of the conflicting data in this arena. Our tool 
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enabled us to identify extracellular glutamate changes not only by cell type, but also by event 

size and shape dynamics, demonstrating an in-depth analysis of GluSnFR data. The event-based 

analytical tools presented here may be particularly useful as next-generation GluSnFR variants 

become available and make multiplexed imaging experiments increasingly accessible31.  

 When surveying astrocyte Ca2+ imaging data, experimental regimes can largely be 

grouped into two categories: single-cell, usually ex vivo imaging and population-wide, in vivo 

imaging focusing on large-scale activity of many cells. Experimental data and neurobiological 

conclusions from these two groups can differ quite widely, or even conflict. This may be due, in 

part, to the large, population-wide bursts observed with the onset of locomotion in vivo. Many 

techniques used to analyze these bursting events—all ROI-based—can under-sample events that 

occur between bursts by swamping out smaller or shorter signals. Here, we present a technique 

that can be used to sample small- and large-scale activity in the same dataset or across datasets, 

in order to bridge spatiotemporal scales these datasets. As such, this event-based analysis tool 

has the potential to aid researchers in resolving outstanding physiological problems, while also 

tackling new ones.  

 As demonstrated by its utility with Ca2+, glutamate, GABA, and NE datasets, AQuA also 

has the potential to be applied to many other fluorescence imaging datasets that exhibit non-static 

or propagative activity. Although we designed AQuA specifically to study dynamic astrocyte 

fluorescence, it is open-source and user-tunable, and we anticipate that experimentalists will find 

it advantageous in other contexts in which neuronal or non-neuronal cells exhibit non-static or 

propagative fluorescence activity. For example, recently described Ca2+ activity in 

oligodendrocytes displays some similar properties to that in astrocytes34,35 and AQuA-based 

analysis may be useful. Likewise, subcellular compartments in neurons, such as dendrites or 
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dendritic spines, have also been shown to exhibit propagative, wave-like Ca2+ signals36 and 

large-scale, whole-brain neuronal imaging can capture burst-like, population-wide events37.  

 While we predict that the potential applications are wide, it is also important to note the 

limitations of AQuA, and be clear about when it will not be the most effective approach. Since 

AQuA detects local fluorescence changes as events, it is not well suited to strictly morphological 

dynamics, such as those observed in microglia, and it does not improve on the many excellent 

tools built for analyzing somatic neuronal Ca2+ activity20,21, where ROI assumptions are well 

satisfied. In addition, AQuA was optimized for and tested on 2D datasets, as these comprise the 

majority of current imaging experiments in the field. As techniques for volumetric imaging 

rapidly advance, an extension to accommodate 3D imaging experiments will be necessary. We 

expect that AQuA is expandable to 3D datasets, based on the fact that the algorithmic design is 

not restricted to 2D assumptions. Although developing a full version of a 3D extension is beyond 

the scope of this paper, we have built a 3D prototype to test the feasibility of extending events 

from 2D to 3D (Extended Data Fig. 2.12). Using a simulated 3D dataset based on published17 

astrocytes, the prototype performed well on 3D data, including detection of various event sizes 

and signal propagation rates (Extended Data Fig. 2.12). These results suggest that a full 3D 

AQuA extension—including the optimization of computational efficiency and visualization—

will work on real 3D datasets in the future. In addition, the results demonstrate that AQuA is a 

flexible and robust platform that can accommodate new types of data without large changes to 

the underlying algorithm.  
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Methods 

Viral injections and surgical procedures 

For slice experiments, neonatal mice (Swiss Webster, P0–P4) were anesthetized by crushed ice 

anesthesia for 3 minutes and injected with 90nL total virus of AAV5-GFaABC1D.Lck-GCaMP6f, 

AAV5-GFaABC1D.cyto-GCaMP6f, AAV1-GFAP-iGluSnFR, AAV1-hsyn-iGluSnFR, AAV2-

GFAP-iGABASnFR.F102G, and AAV9-hsyn-NE2.1 at a rate of 2–3nL/sec. Six injections 0.5μm 

apart in a 2x3 grid pattern with 15nL/injection into assumed V1 were performed 0.2μm below 

pial surface using a UMP-3 microsyringe pump (World Precision Instruments). Mice were used 

for slice imaging experiments at P10–P23. 

 For in vivo experiments, adult mice (C57Bl/6, P50–P100) were given dexamethasone 

(5mg/kg) subcutaneously prior to surgery and then anesthetized under isoflurane. A titanium 

headplate was attached to the skull using C&B Metabond (Parkell) and a 3mm diameter 

craniotomy was cut over the right hemisphere ensuring access to visual cortex. Two 300nL 

injections (600nL total virus) of AAV5-GFaABC1D.cyto-GCaMP6f were made into visual cortex 

(0.5–1.0mm anterior and 1.75–2.5mm lateral of bregma) at a depth of 0.2–0.3mm and 0.5mm 

from the pial surface, respectively. Virus was injected at a rate of 2nL/s, with a 10min wait 

following each injection to allow for diffusion. Following viral injection, a glass cranial window 

was implanted to allow for chronic imaging and secured using C&B metabond38. Mice were 

given at least ten days to recover, followed by habituation for three days to head fixation on a 

circular treadmill, prior to imaging. 
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Two-photon imaging  

All 2P imaging experiments were carried out on a microscope (Bruker Ultima IV) equipped with 

a Ti:Sa laser (MaiTai, SpectraPhysics). The laser beam was intensity-modulated using a Pockels 

cell (Conoptics) and scanned with linear or resonant galvonometers. Images were acquired with a 

16x, 0.8 N.A. (Nikon, in vivo GCaMP and ex vivo GRAB-NE) or 40x, 0.8. N.A. objective 

(Nikon, ex vivo GCaMP, GluSnFR, and GABASnFR) via a photomultiplier tube (Hamamatsu) 

using PrairieView (Bruker) software. For imaging, 950nm (GCaMP), 910nm (GluSnFR and 

GABASnFR), or 920nm (GRAB-NE) excitation and a 515/30 emission filter was used.  

 

Ex vivo imaging 

Coronal, acute neocortical slices (400μm thick) from P10–P23 mice were cut with a vibratome 

(VT 1200, Leica) in ice-cold cutting solution (in mM): 27 NaHCO3, 1.5 NaH2PO4, 222 sucrose, 

2.6 KCl, 2 MgSO4, 2 CaCl2. Slices were incubated in standard continuously aerated (95% O2/5% 

CO2) artificial cerebrospinal fluid (ACSF) containing (in mM): 123 NaCl, 26 NaHCO3, 1 

NaH2PO4, 10 dextrose, 3 KCl, 2 CaCl2, 2 MgSO4, heated to 37°C and removed from water bath 

immediately before introducing slices. Slices were held in ACSF at room temperature until 

imaging. Experiments were performed in continuously aerated, standard ACSF. 2P scanning for 

all probes was carried out at 512x512 pixel resolution. Acquisition frame rates were 1.1Hz 

(GCaMP), 4–100Hz (GluSnFR), 6Hz (GABASnFR), and 1.4Hz (GRAB-NE). For GluSnFR 

imaging and RuBi-glutamate uncaging experiments, GluSnFR imaging was performed at 950nm 

excitation to ensure that no RuBi-glutamate was released during scanning. Acquisition rates were 

between 95–100Hz, using resonant galvonometers. 300μM RuBi-glutamate was added to the 

circulating ACSF and using a second MaiTai laser tuned to 800nm, five uncaging points were 
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successively uncaged at each cell at durations indicated in the figure and at power <3mW that 

were shown in control experiments to cause no direct cell activation.  

 

In vivo GCaMP imaging 

At least two weeks following surgery mice were head-fixed to a circular treadmill and astrocyte 

calcium activity was visualized at ~2Hz effective frame rate from layers 2/3 of visual cortex with 

a 512x512 pixel resolution at 0.8 microns/pixel. Locomotion speed was monitored using an 

optoswitch (Newark Element 14) connected to an Arduino.  

 

AQuA algorithm and event detection 

Overview of the AQuA algorithm 

Astrocytic events are heterogeneous and varying with respect to many aspects of their properties. 

In AQuA, we extensively applied machine learning techniques to flexibly model these events, so 

that our approach is data-driven and physiologically relevant parameters are extracted from the 

data instead of imposing a priori assumptions. Probability theory and numerical optimization 

techniques were applied to optimally extract fluorescent signals from background fluctuations. 

Here, we delineate the eight major steps in AQuA (Extended Data Fig. 2.1), discuss motivations 

behind the algorithm design, and describe key technical considerations in further detail.  

 Step 1: data normalization and preprocessing. This step removes experimental artifacts 

such as motion effects, and processes the data so that noise can be well approximated by a 

standard Gaussian distribution. Particular attention is paid to the variance stabilization, estimate 

of baseline fluorescence, and variance. Step 2: detect active voxels. Step 3: identify seeds for 

peak detection. Step 4: detect peaks and their spatiotemporal extension. These three steps work 
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together to achieve peak detection. To detect peaks we start from a seed, which is modeled as a 

spatiotemporal local maximum. However, since random fluctuations due to background noise 

can also result in local maxima, we need to detect active voxels such that only the local maxima 

on the active voxels are considered as seeds. Here, active voxels are those likely to have signals. 

Step 5: cluster peaks to identify candidates for super-events. Temporarily ignoring the single-

source requirement, the set of spatially-adjacent and temporally-close peaks is defined as a 

super-event. However, clustering results of spatially adjacent peaks are not super-events 

themselves, because a peak group may consist of noise voxels and temporally distant events. 

Step 6: estimate the signal propagation patterns. Step 7: Detect super-events. To get super-events 

from peak clusters, we compute the temporal closeness between spatially adjacent peaks by 

estimating signal propagation patterns. The propagation pattern for each event is also important 

for its own sake, by providing a new way to quantify activity patterns. Step 8: split super-event 

into individual events with different sources. A super-event is split into individual events by 

further exploiting propagation patterns. Based on propagation patterns within a super-event, the 

locations of event initiation are identified as local minima of the onset time map. Each initiation 

location serves as the event seed. Individual events are obtained by assigning each pixel to an 

event based on spatial connectivity and temporal similarity.  

 A full description of each step and pseudocode are available in the Methods section of 

Wang & DelRosso et al., 2019. 

 

Generation of simulation data sets 

Spatial footprint templates: We built a set of templates for event footprints from real ex vivo data 

which serve as the basis for the ROI maps in the subsequent step. Footprints are processed by 
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morphology closing, hole filling, and morphology opening to clean boundaries, with 1683 

templates generated total. 

 

ROI maps: 2D ROI maps generated from spatial footprint are used to generate events in 

subsequent steps. Different simulation types have a different preference for the size of the ROIs. 

Maximum number of ROIs is set at 100; ROIs are randomly chosen and placed onto a 2D map 

<5 pixels from existing ROIs.  

 

Simulation dataset 1 (size-varying events): To simulate event size changes, we generate events 

for each ROI and then alter them to have different sizes so that each ROI in the 2D map will be 

related to multiple events whose centers are inside that ROI, but whose sizes are different. The 

degree of size change is characterized by the odds ratio (maximum = 5) between the maximum 

and the minimum allowable sizes of the events associated with that ROI. For example, with an 

odds ratio of 2, the size of the event will range from 50–200% of the ROI area. The chances for 

the event size to be larger or smaller than the area of the ROI are the same. To achieve this, we 

generate a random number between 1 and 2, then randomly assign whether to enlarge size by 

multiplying or shrink by dividing by this factor. Event duration is four frames.  

To determine the frames at which the event occurs, we first put the event 10–30 frames 

(randomly) after the ROI occurs. Spatial distance of this event from others must be ≥3 pixels and 

temporal distance ≥4 frames. Part of the event may be inside the spatial footprint of other ROIs, 

as long as its spatiotemporal distance to other events is larger than the threshold set above. 

Events are generated for each ROI; on average, we simulate 250 frames with 800 events on 90 

ROIs.  
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Simulation dataset 2 (location-changing events): To simulate event location changes, we 

generate events with the same size for each ROI and shift them to nearby locations. Thus, each 

ROI (450–550 pixel size) is related to multiple events near to that ROI. Denote 𝑑𝑖𝑠𝑡 the distance 

between the event center and the ROI center. Denote 𝑑𝑖𝑎𝑚 the diameter of the ROI. The degree 

of location change is quantified by the ratio between	𝑑𝑖𝑠𝑡 and 𝑑𝑖𝑎𝑚. For example, if we set 0.5 

as the maximum degree of location change, the distance of the center of a new event to the ROI 

will be 0–0.5 times the diameter of the ROI. If the ratio is 0, we simulate a pure ROI dataset. The 

new event may be located any direction from the ROI, randomly picked from 0–2π. Shapes of 

new events are randomly picked from the templates, so may be different from the ROI while size 

is constant. Event duration is four frames, and the remaining steps are the same as above. On 

average, we simulate 250 frames with 800 events on 90 ROIs. 

 

Simulation dataset 3 (propagating events): We simulated two types of propagation: growing and 

moving, leading to three types of synthetic datasets: growing only, moving only, and mixed. 

These three types are generated similarly. The ROI map is generated as above, and ROI sizes are 

4,000–10,000 pixels, with events generated inside each ROI. In comparison, events in the size-

change and location-change simulations can be (fully or partially) outside their corresponding 

ROIs. We simulate only one seed (starting propagation point) in each ROI. For each event, we 

generate a rise-time map (for each pixel in the ROI) and construct event-propagation based on 

the map. We obtain this map by simulating a growing process starting from the seed pixel, with 

the seed pixel active at the first time-point. At the next time point, its neighboring pixels are 

active with a variable success probability. Growth continues until ≥90% of pixels in the ROI are 

included in the event. Based on the rise-time map, we identify frames at which pixels become 
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active in the event. To determine when the event ends, we treat growing and moving propagation 

differently. In growing propagation, all pixels are inactive simultaneously 2 frames after the last 

pixel becomes active. For moving propagation, the duration is 5 frames. Typically, we generate 

approximately 140 events in 14 ROIs for each synthetic dataset. 

 

Simulate various SNRs: Gaussian noise is added to the synthetic data to achieve various SNRs. 

We define the signal intensity as the average of all active pixels in all frames. SNR is defined as 

20 × log!"
average	signal	intensity
noise	standard	deviation 

When we change the degree of location change, size change, and propagation duration, we add 

noise with 10 dB SNR. To study the impact of SNR on size changes, size-change degree is 3. For 

location changes, distance-change ratio is 0.5 while varying SNRs. For propagation, propagation 

duration is 5 frames. Seven SNRs are tested: 0, 2.5, 5, 7.5, 10, 15, 20 (all in dB). 

 

Post-processing simulated data: We set the average signal intensity at 0.2, with a range from 0–

1. Synthetic data is spatially filtered to mimic blurred boundaries in real data. The smoothing is 

performed with a Gaussian filter with a standard deviation of 1. Signals with intensity <0.05 after 

smoothing are removed. Remaining signals are temporally filtered with a kernel with a decay τ 

of 0.6 frames. The rising kernel is linear. For propagation simulation, data is down-sampled by 

five. Next, we perform a cleaning step. For each pixel in each event, we find the highest intensity 

(x_peak) across frames. For that pixel, we set signals that are <0.2 times of x_peak to 0. Finally, 

a uniform background intensity of 0.2 is added (except for GECI-quant, where no background is 

added; see below).  
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Application of AQuA and peer methods on the simulation data sets 

Based on our knowledge about simulated datasets, we apply specific considerations for each 

analytical method in order to set optimal parameters for each. In this way, we aim to assess the 

methodological limit of each method, rather than suboptimal performance due to inadequate 

parameter-setting. We expect that the performance of the peer methods on simulation data is an 

overestimate of their performance on real experimental data, because here we take advantage of 

the ground-truth knowledge, which is not available for experimental astrocyte data.  

 

Event detection using peer methods: AQuA and CaSCaDe report detected events, while other 

methods report detected ROIs. For a consistent comparison, we detect events from those 

methods that use ROIs. Once ROIs are detected, we calculate the average dF/F curve for each 

ROI, as follows: The curve is temporally smoothed with a time-window of 20. The minimum 

value in the smoothed curve is considered baseline. Assume the minimum value occurs at time 

𝑡#$%&. The baseline is then subtracted to obtain the dF curve. The noise standard deviation σ is 

estimated using 40 frames around 𝑡#$%&. We then obtain a z-score curve as dF/σ. A large z-score 

indicates an event; we use a z-score threshold of 𝑧". The value 𝑧" is set according to ground-truth 

knowledge, so that the smallest-size event in the simulation data is detected by this threshold. 

Denote 𝑥" and 𝑠" the peak intensity and the size for the smallest event in the ground truth. We 

also denote the ground truth noise level as 𝜎". Then, the threshold is calculated as, 

    𝑧" = min	(".()!*%!
+!

, 10).  

 We clip the score to 10 to avoid setting large values for high SNR. For CaSCaDe, we 

supply this value as the peak intensity threshold parameter. 
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 Using the z-score curves and threshold, we detect events from ROIs for CaImAn, 

Suite2P, and GECI-quant. For each z-score curve, we find all frames with values >𝑧". Each 

frame is a seed for an event. Assume the z-score for that frame is 𝑧! and we search before and 

after that frame. If the intensity of the frame is ≥ 0.2𝑧!, the frame is associated with the event. If 

we meet frames with intensities < 0.2𝑧!, we stop searching that direction. Once finished, we 

obtain all frames associated with the event. We continue with another seed frame to find another 

event. Note that if a frame is considered part of an event, we do not consider it as a seed for 

another event, even if it is >𝑧". The spatial footprint is fixed for all frames in an event, based on 

the ROI detected. Combining spatial footprint and frames, we obtain events for each ROI and 

identify all voxels belonging to an event.  

 

Parameter setting for AQuA: The parameters of AQuA are based on the ex-vivo-GCaMP-cyto 

preset with the following modifications: For different noise levels (SNR), we apply different 

smoothness levels. The smoothing is performed only spatially and values are empirically chosen. 

The smoothness parameter is the standard deviation of the Gaussian smoothing kernel used. 

Extended Data Table 2.1. Parameter setting for AQuA 
The smoothness parameter used in AQuA for each noise level (SNR) in the simulated data. 
 

SNR (dB) 0 2.5 5 7.5 10 15 20 

Smoothness 1 0.9 0.8 0.7 0.6 0.5 0.1 

 

We do not simulate motion of the field-of-view, so we do not discard any boundary 

pixels, and we set regMaskGap = 0. We do not simulate Poisson Gaussian noise; we use 

additional Gaussian noise only, so PG = 0. Event sizes in the simulation are >200 pixels, so we 

set the minimum event size to be a value much smaller: minSize = 16. An event may not have 
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more than one peak, so we set cOver = 0. We do not simulate temporally adjacent events, so we 

set thrTWScl = 4. We do not use proofreading, so we choose a more stringent z-score of events: 

zThr = 5. 

 

Specific considerations for CaSCaDe: We use the following parameters for CaSCaDe: 

According to the duration and temporal distances of the simulated events, we can safely set peak 

distance p.min_peak_dist_ed = 3 and minimum peak length p.min_peak_length = 2. We set the 

spatial smoothing filter size in the 3D smoothing function (bpass3d_v1) according to the size of 

the event, so we set p.hb equal to 2x median of the radius of the spatial footprint of all events. 

We use this setting because the default settings could not detect larger events on the simulation 

data sets. For temporal smoothing, we set p.zhb=21. We do not need to correct background, so 

we set p.int_correct= 0. The minimum peak intensity is p.peak_int_ed = z0, as discussed above. 

Minimum event intensity is p.min_int_ed = min(2, p.peak_int_ed *0.2). We modified the low-

frequency part of the watershed segmentation step to allow larger events to be detected, by 

changing the function bpassW inside the function domain_segment. We replaced the noise 

estimator in CaSCaDe (function estibkg) with the more robust one used by AQuA. 

 CaSCaDe uses a supervised approach to classify detected events. Instead of manually 

labeling a large number of events and training many SVM models, we directly use ground truth 

to perform training. For example, for each event detected by CaSCaDe, we check the ground-

truth data to test whether it is (part of) a true event. If so, it is retained; otherwise, it is discarded.  
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Specific considerations for GECI-quant: GECI-quant requires user input at each step. Here, we 

describe how to automate these steps by taking advantage of ground-truth information. This 

allows us to test many conditions and repeat many times. 

 First, we do not add background signals to the synthetic data, so background subtraction 

is ignored. The domain- and the soma-detection steps require manual thresholding. We estimate 

the best threshold using the ground-truth data for each simulation. To do so, we scan 255 

thresholds and use the one that leads to the best correlation between binarized data and ground 

truth. We next cleaned the binarized signals with sizes <4 pixels. The data here is also smoothed 

as it is in GECI-quant (3x3 spatial averaging). Events with spatial footprints < 1,000 pixels are 

treated as domains and others are treated as somas. The soma segmentation step also uses a 

threshold. We first process the data as in GECI-quant: for every three frames, a standard-

deviation map is calculated so that each voxel in ground-truth data is associated with a standard 

deviation value. The average of all standard deviations from the ground-truth data is used as the 

threshold.  

 We next made the entire analysis pipeline automatic. Fiji is called from the command line 

in each step and parameters are passed as well. The final ROIs from Fiji are brought back into 

MATLAB. ROIs are > 15 pixels in area. All other parameters are unchanged, including those for 

the particle detector. Note that this modification cannot be used as an automated version of 

GECI-quant for real applications since it relies on ground-truth information.  

 

Specific considerations for CaImAn: We experimented with different parameters for CaImAn 

and found the following set of parameters performed best on simulation data. As event size can 

be large, we enlarge the patch size, so patch_size = [128,128] and overlap = [32,32]. 
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Components to be found is set to K = 50. The standard deviation of the Gaussian kernel (half 

size of a neuron) is enlarged to tau = 16. Maximum size is 5,000 and the minimum size is 25. 

Decay time is 0.5. Other parameters are based on default settings. No spatial or temporal down-

sampling is used. Adjusting these parameters dis not impact results on our simulated data. We 

used the 5/5/2018 version downloaded from https://github.com/flatironinstitute/CaImAn-

MATLAB. 

 

Specific consideration for Suite2P: The most critical parameter for Suite2P is neuron size. We 

set db.diameter equal to the minimum between 50 and the median of the radius of the spatial 

footprint of all events. Setting the diameter too large leads to an out-of-memory issue. We bypass 

the registration step. We used the 6/4/18 version downloaded from https://github.com/cortex-

lab/Suite2P. 

 

Performance evaluation on the simulated data 

To evaluate the accuracy of detected events, we quantify the intersection over the union (IoU). 

We consider all event voxels, not only pixels as in ROI-based methods. For each detected event 

𝑖, we find all the ground-truth events that have common voxels with event 𝑖. For each such 

ground-truth event, e.g., event 𝑗, we calculate an IoU score (also known as Jaccard index) 

between this pair of events as the following, 

𝐼𝑜𝑈,,. =
Number(Voxels	in	event	𝑖	 ∩ Voxels	in	event	𝑗)
Number(Voxels	in	event	𝑖	 ∪ Voxels	in	event	𝑗). 

When a detected event can be perfectly matched with a ground-truth event, its IoU score is 1. A 

score of 0 indicates this pair of events has nothing in common. For each detected event 𝑖, we find 

the maximum IoU score among all pairs between this event and a ground-truth event. We denote 
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this maximum score as 𝐼𝑜𝑈,.  Similarly, we can compute a score 𝐼𝑜𝑈.  for the ground truth event 

𝑗. The final IoU score is obtained by averaging over all events, including detected and ground-

truth events. Supposing we have I detected events and 𝐽 ground truth events, where 𝐼 and 𝐽 are 

not necessarily equal, we compute the final score as the following, 

𝐼𝑜𝑈 =
∑ 𝐼𝑜𝑈,/
,0! 		+ 		∑ 𝐼𝑜𝑈.

1
.0!

𝐼 + 𝐽  

All simulation is performed on a workstation with 16 cores, 128 GB RAM and 6TB hard drive. 

We use MATLAB 2018a on Windows 10 Enterprise Edition. GECI-quant is run on Fiji with 

ImageJ version 1.52h. Each simulation is repeated 10 times. The mean and 95% confidence 

interval (CI) of IoU score is calculated and plotted. The CI is calculated as [𝜇%,2 − 2𝜎%,2 ,

𝜇%,2 + 2𝜎%,2], where 𝜇%,2 is the estimated mean and 𝜎%,2 is the estimated standard deviation 

(𝜎%,2) based on 10 repetitive runs. 

 

Open-source software for analyzing and visualizing dynamic fluorescent signals in astrocytes.  

Applying software engineering principles, we developed an open-source toolbox for astrocyte 

fluorescent imaging data with detailed user guidelines. The software not only implements the 

AQuA algorithm for detecting events, but also provides an integrated environment for users to 

see the results, interact with the analysis, and combine other types of data such as cell/region 

masks and landmarks. There are two versions of the software with the same functionality, based 

on MATLAB or Fiji. The software is freely available at https://github.com/yu-lab-vt/aqua where 

detailed documents and example applications can be found. A list of extracted features is shown 

in Supp. Table 5. Here, we highlight several important functions of the software.  

 First, the software implements AQuA and provides several options to export the event-

detection results, including TIFF files with color-coded events, event features in Excel, and 
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MATLAB or Java data structures to be used by other programs. Second, the software can display 

analysis results by adding color to the raw video, where color encodes the value of a user-defined 

extracted feature such as propagation speed. Users can specify which feature to be displayed, 

either an existing feature in AQuA or a user-designed feature based on features provided by 

AQuA. We provide several pre-defined colormaps, but allow users to manually define colormaps 

as well. AQuA also provides a side-by-side view, to simultaneously display two features or a raw 

video plus one feature. Third, the software provides a convenient way to interactively view 

detected events and their associated features. By clicking on an event, the dF/F curve for the 

event is shown in a separate panel below the video, and the time-frames during which the event 

occurs are highlighted in red. The values of several other features for that event are also shown in 

another panel. The software allows multiple events to be selected simultaneously, so that their 

curves and features can be plotted together and compared. Fourth, the software provides both 

automatic and manual ways to proofread the results. For automatic proofreading, events are 

filtered by setting desired ranges for features-of-interest. Alternatively, users can choose the 

‘delete/restore’ button and manually click an event to remove it. Fifth, the software provides 

flexible ways to incorporate cell morphology or landmark information. Users can manually 

supply cell morphology or regional information such as the cell boundary, which can assign 

events to individual cells. Users can also provide landmark information such as the location of a 

pipette for pharmacological application. Users can also load cell, region, or landmark 

information from other data sources, such as another fluorescence channel that captures cell 

morphology. The software can extract landmark-related features for each event, including the 

direction of propagation relative to a landmark. 
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Figures 

 

 
 
Figure 2.1. AQuA-based event detection.  
(a) Individual representative frames from 5-min ex vivo astrocytic GCaMP imaging experiment 
(top),with AQuA-detected events shown below. Each color represents individual event and is 
chosen at random. Right column shows the average GCaMP fluorescence (top) and all AQuA-
detected events (bottom) from the entire movie. Note that contrast is different between rows to 
highlight events. (b) Flowchart of AQuA algorithm. Raw data is visualized as a stack of images 
across time with grey level indicating signal intensity. In the detect peaks panel, five peaks are 
detected and highlighted by solid diamonds, each color denoting one peak. Based on the single-
cycle rule and spatial adjacency of the apexes (solid dots) of each peak, peaks are clustered into 
spatially disconnected groups. Based on smoothness, propagation patterns are 
Figure 2.1 continued on next page 
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Figure 2.1 continued 
 
estimated for each peak group. By applying the single-source rule, two events are detected for  
peak group 1. Three total events are detected. (c) Feature extraction. Based on the event-
detection results, AQuA outputs four sets of features relevant to astrocytic activity: 1) 
propagation-related (path, direction, and speed); 2) source of events, indicating where an event is 
initiated; 3) features related to the event footprint, including area and shape. Event 2 is plotted 
here; 4) features derived from the dF/F dynamics.  
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Figure 2.2. Performance comparison among image-analysis methods.  
(a–c) Schematic (top) and results (bottom) of performance of five image analysis methods 
(AQuA, GECI-quant, CaSCaDe, CaImAn, and Suite2P) on simulated datasets, independently 
changing event size (a), location (b), and propagation duration (c). In results, change of 
independent parameter is shown in left panel, and varying SNR in right. For each result, the 
Figure 2.2 continued on next page 
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Figure 2.2 continued 
 
smallest value of the independent parameter corresponds to a simulation under pure ROI 
assumptions. The larger the values, the greater the violation of the ROI assumptions. IoU 
(intersection over union) measures the overlap between detected and ground-truth events. An 
IoU=1 is the best achievable performance, meaning that all detected events are ground-truth and 
all ground-truth events are detected. Error bars indicate the 95% confidence interval calculated 
from 10 independent replications of simulation, where each simulation contains hundreds of 
events.  
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Figure 2.3. AQuA features capture heterogeneities among single astrocytes.  
(a) Representative GCaMP6f ex vivo image (left) with AQuA events overlaid from 1 min of a 5 
min movie. Soma marked with black s. Right: Representative image sequence for each 
propagation direction class (blue = static, pink = toward soma, purple = away from soma. Soma 
direction marked with s and white arrow. (b) Spatiotemporal plot of Ca2+ activity from 1 min of 
movie. Each event is represented by a polygon that is proportional to its area as it changes over 
its lifetime. (c) Distribution of dynamic and static events as a function of minimum distance from 
soma (chi-square test, ***p<0.001, n=5 slices, 11 cells). All bin widths calculated by Freedman-
Diaconis’s rule. (d) Left: Propagative event size versus starting distance from soma, segregated 
by propagation direction. Dashed gray line denotes half the distance between the soma and the 
cell border. Right: Average event area for those that start <50% (top) and >50% (bottom) of the 
distance from the soma, (one-tailed paired t-test, *p<0.05). (e) Left: Event duration versus 
starting distance from soma. Right: Average event duration for those that start <50% (top) and 
>50% (bottom) of the distance from the soma (one-tailed paired t-test, *p<0.05). (f) Two event-
based measurements of frequency: events with activity overlapping in time (left) and in space 
(right;). Left: one example event (orange) co-occurs with six other events (white) within 10s. 
Right: event colors indicate event number/min (0.2–4) at each location. Median (red) and 
interquartile range (gray) from cells in each cluster in Extended Data Fig. 2.9 (one-tailed 
Wilcoxon rank sum, ***p<0.001). (g) Quantification of centroid distances between cells from 
two clusters determined by t-SNE plots of Ca2+ activity using features calculated from ROIs and 
5x5μm tiles (top), (bottom, one-tailed paired t-test, ***p<0.001).  
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Figure 2.4. AQuA resolves astrocytic Ca2+ propagation directionality across scales.  
(a) Representative in vivo GCaMP6f images during a burst period (top) and inter-burst period 
(bottom) with overlaid AQuA-detected events. (b) Population Ca2+ events represented as 
percentage of the imaging field active as a function of time. Burst periods (pink) are identified 
when Ca2+ activity exceeds more than 1% of the active field of view and exceeds more than 10% 
of the maximum number of event onsets. (c) In vivo Ca2+ events propagate with specific 
directionality. Top: representative propagative event that occurred during the burst period in 
panel a. The propagation direction (change of centroid relative to its original location) for each 
frame is overlaid on the event (right). Bottom: Total propagation distance versus event size for 
all events within bursts (n=6 mice, 66 bursts, 14,967 events). (d) Event propagation direction 
from all events over the entire field in the burst shown in e. Length of arrow indicates 
propagation distance. (e) To test consistency of subregional directionality during bursts, sixteen 
96x96μm tiles are overlaid on images. (f) Top: All events within highlighted tile in d (red 
square) for five burst periods, color-coded by propagation direction (top). Bottom: Event 
propagation direction distributions (P=posterior; A=anterior; M=medial; L=lateral).  
Figure 2.4 continued on next page 
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Figure 2.4 continued 
 
(g) Cumulative distribution of percentage of bursts with events (within individual tiles/regions) 
propagating in the same direction in actual (solid) and simulated (dashed) data (one-tailed 
Wilcoxon rank sum, ***p<0.001) (h) Two representative maps of population burst propagation 
direction with each event color-coded by their onset time relative to the beginning of the burst 
period, demonstrating variability of burst size. (i) Burst propagation direction calculated from 
onset maps in h (n=66 bursts). Event locations from the first 20% of the frames after burst onset 
are averaged together to determine burst origin. Event locations from 20% of the last frames after 
burst onset are averaged together and the difference between this and the origin determines burst 
propagation distance. Red arrow denotes average of all bursts. 
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Figure 2.5. AQuA-based detection of extracellular dynamics via astrocytic and neuronal 
expression of genetically encoded neurotransmitter sensors.  
(a) Representative images of ex vivo slices with expression of astrocytic (left) or neuronal (right) 
GluSnFR. Color indicates detected events. Those with dynamic shape are shown in magenta, and 
static events in cyan. (b) Examples of timecourse of astrocytic (left, top) and neuronal (right, top) 
glutamate events. Scale bar = 10μm. Raster plot of area of astrocytic (left, bottom) and neuronal 
(right, bottom) glutamate events. (c) Size dynamics (area increase [left] and decrease [middle] 
per frame) and shape (circularity index, right) of glutamate events when GluSnFR is expressed 
on astrocytes (red) or neurons (blue). (d) Left: Single astrocyte expressing GluSnFR, with 
AQuA-detected events (colors) with ~100Hz frame rate imaging and 25–150ms uncaging of 
RuBi-glutamate. Uncaging locations marked with white circles. Right: Percent correct events 
detected by AQuA, depending on duration of the laser uncaging pulse. (e) Example of three 
AQuA-detected events at single timepoint (97s) after addition of 300μM GABA to slice with 
astrocytes expressing GABASnFR (left). Right: Detected events before and after addition of 
300μM GABA (gray bar) to circulating bath. Events are plotted to display spatial position in 
imaging field (y-axis), event area (height), and gradually increasing amplitude (color) over time. 
(f) Left: two detected events in cortical slice expressing GRAB-NE in neurons after addition of 
10μM NE. Right: Events plotted to display spatial position (y-axis), event area (height), and 
amplitude (color) dynamics over the course of the experiment. In (e) and (f), average xy position 
at each timepoint is calculated using the following equation: (((xLoc-1)*frameSize) + 
yLoc)/frameSize. 
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Extended Data Figure 2.1: Eight steps in the AQuA algorithm.  
The eight steps can be grouped into four modules indicated by brackets below panels. The last 
three modules are further illustrated in Extended Data Fig. 2.2.  
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Extended Data Figure 2.2: Schematic illustration of three major modules in AQuA 
algorithm.  
Curves and regions taken from a real data set. (a) AQuA flowchart, with three gray bars below 
indicating where the three major modules are located with respect to the AQuA  
Extended Data Figure 2.2 continued on next page 
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Extended Data Figure 2.2 continued 
 
flowchart. (b) detect and cluster peaks: curves in the detect peaks by curve panel are associated 
with the location labeled by the red diamond in the seed location panel. One curve may have 
multiple peaks, which are detected one-by-one. Once a peak is detected at a seed location, the 
peak is spatially extended to include its neighboring pixels as in the grow to all pixels with 
signals panel. Clustering of peaks starts from the peak with the earliest onset time and includes 
its spatially adjacent peaks based on the two inclusion rules shown in the grow to all pixels with 
signals panel. Two peaks at one location are never clustered into one group. Once the greedy 
search strategy can't find more peaks to include, it stops and one peak group is formed. Then, to 
find another peak group, the greedy search restarts from the first onset in the remaining peaks. 
The process is repeated until no peaks remain. (c) Propagation estimation and super-event 
detection: This module is applied to each peak group. The five colored curves are the dynamics 
of the five exemplar pixels with corresponding colors. The dashed curve is the representative or 
reference curve. In the graphical time warping model panel, red arrows indicate how the 
reference curve can be warped to represent the curve at each location. The graphical time 
warping model incorporates the information that nearby locations should have more similar 
curves than distant locations. A double-headed arrow between two functions informs the model 
that these curves should be warped similarly to the reference curve. As a comparison, if there is 
no double-headed arrow between curves, dissimilar warping functions are allowed. Once the 
warping function is calculated by the graphical time warping model, onset time is computed for 
each pixel, resulting in an onset time map. Note discontinuity of onset time examples at black 
triangles. These pixels are removed to obtain the final super-event, which may contain multiple 
events and are subject to the next operation. (d) Propagation source and event detection: Local 
propagation sources are obtained by finding local minima on the onset time map. According to 
the rules described in Methods, some local sources will be combined/merged, resulting in global 
propagation sources. Briefly, if the path between two local sources does not have to go through a 
location with a late onset time, these two local sources are combined. Then, each global 
propagation source leads to an event. Each event is obtained by growing each global source to 
include its neighboring pixels. In the event detection from sources panel, solid dots are pixels 
already assigned to an event, white dots are unexplored pixels, and grey dots are explored but 
await a later decision to be assigned to an event.  
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Extended Data Figure 2.3: Limitations of thresholding-based analysis.  
(a) Top row: Six example frames of ex vivo data smoothed with a Gaussian kernel of σ=0.5 after 
square root transformation. Second row: Baseline for each pixel is estimated with a 20-frame 
time window, noise level is estimated as σ_noise, and baseline is subtracted from raw data to 
obtain ΔF. Third row: Standard threshold is set at 3σ_noise. Many individual events are 
erroneously detected as one very long and large spatiotemporal component, for reasons 
graphically explained in (b). Fouth row: A high threshold (10σ_noise) leads to loss of many true 
events, and many detected events are incomplete. Each color indicates an event. Fifth row: 
AQuA-detection avoids the pitfalls in threshold-setting and identifies each individual event. 
Extended Data Figure 2.3 continued on next page 
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Extended Data Figure 2.3 continued 
 
(b) Two events are incorrectly connected after thresholding (incorrect events in yellow in each 
sub-panel). Intensity color bar on right, with red indicating the threshold, refers to all panels. 
Top: Between multiple events in the same location, even though the intensity drops a lot, not all 
pixels will fall below the threshold. Each event is shown with a gray bounding box. The super-
voxel step in AQuA solves this problem by finding a time window for each seed, and spatially 
extending the windows. Middle: Neighboring events are initiated at distinct times, but are 
spatiotemporally connected at a later time. If two regions have very different onset times, AQuA 
will treat them as different events in the super-event detection step. Bottom: Two events can be 
separated when they appear, but meet after propagating. In the event detection step, AQuA 
distinguishes these events based on the single-source rule.   
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Extended Data Figure 2.4: AQuA detects ground truth events across three types of 
simulated data.  
Color represents event count for each pixel (note colors bars have different scales in each 
dataset). Red borders show ROIs detected by ROI-based methods. (AQuA does not detect ROIs.) 
(a) Pure ROI. (b) Size change odds of 5, indicating size changes 20–500% of ROI. (c) Location 
change ratio of 1. Average distance to the center of the ROI is 100% the ROI diameter. (d) Mixed 
propagation with 10 frames. 



63 
 

 
Extended Data Figure 2.5:  Event counts under different SNRs.  
Study the impact of SNR change when size change ratio is 3. The color shows the count of 
events on that pixel. All plots share the same scale. The red lines are the boundaries of detected 
ROIs. (a) Ground truth event count and the color bar for all plots. (b) The event count for all 
methods under four different SNRs.  
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Extended Data Figure 2.6: Peer method performance on growing and moving propagation 
types.  
Schematic (top) and results (bottom) of performance of five image-analysis methods (AQuA, 
GECI-quant, CaSCaDe, CaImAn, and Suite2P) on simulated datasets with (a) growing 
propagation and (b) moving propagation. Change of the propagation frame number is shown in 
the bottom left panel, and varying SNR in the bottom right. When the number of propagation 
frames (not the event duration) is 0, the simulation is under pure ROI assumptions. IoU 
(intersection over union) measures the overlap between detected and ground-truth events. An 
IoU of 1 is the best performance achievable by any method, meaning that all detected events are 
ground-truth and all ground-truth events are detected. The bars on each curve indicate the 95% 
confidence interval calculated from 10 independent replications of simulation, where each 
simulation contains hundreds of events.  
 



65 
 

 
Extended Data Figure 2.7: AQuA features enable detailed Ca2+ activity plots.  
(a) Spatiotemporal plot of Ca2+ activity from a five minute movie (the first minute of which is 
shown in Fig. 2.3b). Each event is represented by a polygon that is proportional to the area of the 
event as it changes over its lifetime, and color-coded by propagation direction. (b) Example time 
series illustrating how propagation direction is determined (left). A propagation direction score is 
calculated for each event by multiplying the Euclidian distance between the event pixels’ 
proximity to the soma at each frame by each pixel’s intensity. The overall score is the summation 
of this weighted pixel intensity distance over the lifetime of the event. Therefore, if more pixels 
with higher intensity move toward the soma it will be classified as such (top). While some events 
Extended Data Figure 2.7 continued on next page 
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Extended Data Figure 2.7 continued 
 
appear in the plot as moving toward the soma, they are actually calculated as moving away from 
the soma (middle) since we are only displaying the minimum event proximity to the soma in the 
spatiotemporal plot, but calculate each pixel’s proximity to the soma when generating 
propagation score. Further, pixel intensity is first thresholded at 0.3dF/F. Therefore, events that 
move toward or away from the soma yet have pixel intensities below threshold (bottom) appear 
to have a propagation direction when plotted, yet have a zero propagation direction score when 
calculated. (c) Additional events plotted for each propagation direction category to demonstrate 
range of detected/plotted events. Scale is not equivalent to events shown in b, but is equivalent 
within entire group shown here.  
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Extended Data Figure 2.8: Distribution of Ca2+ event features.  
(a) Left: total number of Ca2+ events that are dynamic (gray, propagation direction score > 0) and 
static (blue, propagation direction score = 0) within the 2D imaging plane, ***p < 0.001, n=11 
cells, chi-square test for independence. Middle: distribution of Ca2+ event area for dynamic and 
static events, ***p < 0.001, one-tailed Wilcoxon rank sum test. Right: distribution of Ca2+ event 
duration for dynamic and static events, ***p < 0.001, one-tailed Wilcoxon rank sum test (right). 
(b) Distribution, average area, and average duration of  events propagating toward soma (pink), 
away from soma (purple), and static events (blue) compared to starting distance from soma (top 
row), ending distance from soma (middle row), and minimum distance from soma (bottom row). 
Bin widths calculated by Freedman-Diaconis’s rule.  
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Extended Data Figure 2.9: Cluster analysis on features generated from three spatial 
footprint methods.  
(a) Heatmap of z-scores for eight AQuA features (x-axis) describing each event. White boxes 
demarcate events and features from individual cells. (b–c) Top: heatmaps of z-scores for three 
features describing the Ca2+ activity at each ROI (b) or tile (c) location. ROIs detected using 
average projection image with a 5μm square filter applied (for ROIs) or 5x5μm tiles, based on 
fluorescence intensity and size. Ca2+ events with signals > 0.03dF/F and two times the noise of 
each individual trace were selected. Pixels within each ROI or tile were averaged and dF/F was 
calculated by dividing each value by the mean values from the previous 25 seconds. (d–f) t-SNE 
visualizations of each cell’s Ca2+ activity using features calculated using AQuA (d), ROIs (e), 
and tiles (f). High dimensional data (a–c) are reduced are displayed in two dimensions. Points 
that are clustered closer together can be interpreted as having more similar Ca2+ activity features. 
k-means clustering boundary denoted as dashed line. (g–h) t-SNE plots using only subsets of 
AQuA-calculated features from (a) and (d). (g) t-SNE plot of only the features specific to AQuA 
and not shared with ROI or tile analysis. (h) Plot using only AQuA-extracted features that 
correspond to those in ROI- or tile-based analyses. (i) Comparison of difference between two 
clusters generated from the t-SNE analysis followed by k-means clustering. Note increased 
separation using AQuA-specific features compared to others. (One-tailed paired t-test, 
***p<0.001) 
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Extended Data Figure 2.10: Defining Ca2+ bursts. 
(a) Population Ca2+ events represented as two temporal traces: percentage of imaging field active 
(top) and number of AQuA event onsets (middle). Burst periods (pink) are defined from the top 
trace as periods when Ca2+ activity exceeds 1% of the active field of view (red dashed line, top), 
and exceeds 10% of the maximum number of event onsets (red dashed line, middle). Burst 
periods correlate with wheel velocity of the treadmill (bottom). (b) Burst onset is defined as the 
first frame in which 10% of the peak is exceeded and burst offset is defined as the last frame 
exceeding 10% of the peak. (c) The relationship between all interburst events’ total propagation 
distance and size, similar to the burst events plotted in Fig. 2.4c.  
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Extended Data Figure 2.11: Comparison of AQuA and Caltracer for event detection of 
astrocytic GluSnFR signals.  
(a) Applied to the same data sets, AQuA detects 157 events, while Caltracer2,9, using a rising 
faces algorithm, detects 76 events with manually defined single-cell ROIs. (b) ROI example 
(left) and temporal trace with detected events marked by black circle using Caltracer software. 
Scale bar = 50μm. (c) AQuA-detected events from the same cell as in (b), and corresponding 
temporal traces (black dot, specific events shown above each trace). Scale bar = 10μm.  
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Extended Data Figure 2.12: AQuA performance on simulated 3D datasets.  
(a) The 3D model used for performance testing the 3D AQuA extension was extracted from real 
imaging data17. (b) Example of simulated data in which event size varies; each column 
represents a different event radius. (c) Examples of simulated events with slow (top row, growth 
rate 2) and fast (bottom row, growth rate 10) growing propagation rates. (d–e) Results of AQuA 
performance on simulated datasets with respect to varying SNR under independently varying 
event (d) size and (e) growing propagation rates. IoU (intersection over union) measures the 
overlap between detected and ground-truth events. An IoU of 1 is the best performance 
achievable, indicating that all detected events are ground-truth and all ground-truth events are 
detected. The bars on each curve indicate the 95% confidence interval calculated from 5 
independent replications of simulation, where each simulation contains 10–20 events.  
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Chapter 3: 
Network-level encoding of local neurotransmitters in cortical astrocytes 

 
Abstract 

Astrocytes—the most abundant non-neuronal cell type in the mammalian brain—are crucial 

circuit components that respond to and modulate neuronal activity via calcium (Ca2+) signaling. 

Astrocyte Ca2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales: 

from fast, subcellular activity to slow, synchronized activity that travels across connected 

astrocyte networks. Furthermore, astrocyte network activity has been shown to influence a wide 

range of processes. While astrocyte network activity has important implications for neuronal 

circuit function, the inputs that drive astrocyte network dynamics remain unclear. Here we used 

ex vivo and in vivo two-photon Ca2+ imaging of astrocytes while mimicking neuronal 

neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of 

GABA and glutamate lead to widespread, long-lasting astrocyte Ca2+ responses beyond an 

individual stimulated cell. Further, we find that a key subset of Ca2+ activity—propagative 

events—differentiates astrocyte network responses to these two major neurotransmitters, and 

gates responses to future inputs. Together, our results demonstrate that local, transient 

neurotransmitter inputs are encoded by broad cortical astrocyte networks over the course of 

minutes, contributing to accumulating evidence across multiple model organisms that significant 

astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales. We 

anticipate that this study will be a starting point for future studies investigating the link between 

specific astrocyte Ca2+ activity and specific astrocyte functional outputs, which could build a 

consistent framework for astrocytic modulation of neuronal activity.  
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Introduction 

A set of defined rules governing neuronal input-output relationships is a cornerstone of 

neuroscience. Given a specific excitatory or inhibitory neurotransmitter (NT) input, post-synaptic 

membrane potential changes that lead to action potentials can be accurately predicted. But, 

neurons are not the only cells in the nervous system that sense NTs. Astrocytes—the most 

abundant non-neuronal cell type in the mammalian brain—are crucial circuit components that 

respond to and modulate neuronal activity via calcium (Ca2+) signaling1–8. However, the set of 

rules governing input-output relationships in astrocytes is poorly defined, in part because it’s 

unclear over which spatiotemporal scales these relationships should be evaluated. While there 

appear to be fast and local astrocytic responses to local stimuli3,4, there is also evidence to 

suggest that astrocyte responses to local stimuli have a spatiotemporally distributed component, 

as local astrocyte stimulation can lead to distributed changes in neuronal activity and 

plasticity9,10. Thus, a comprehensive framework describing input-output relationships in 

astrocytes requires simultaneous investigation of activity across multiple spatiotemporal scales.  

Here, we set out to build an input framework governing transient and sustained cortical 

astrocyte Ca2+ activity at three spatial scales: subcellular, single cell, and network. To take a 

physiologically relevant and comparative approach, we focused on astrocyte responses to the two 

major NTs: glutamate and GABA. While previous studies demonstrate general astrocyte Ca2+ 

increases in response to these NTs2,6,11,12, our goal was to link specific excitatory and inhibitory 

chemical inputs to specific astrocyte Ca2+ activity, and map the scales over which astrocytes 

could exert effects on neuronal circuitry. 
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Results 

NTs drive distinct astrocyte Ca2+ activity 

To first test whether astrocytes show generally distinct activity in response to different 

NTs, we used two-photon (2P) Ca2+ imaging (via the genetically encoded intracellular indicator, 

Cyto-GCaMP6f) of astrocytes while sequentially bath-applying GABA and glutamate receptor 

agonists onto ex vivo acute cortical slices from mice (Fig. 3.1a). We activated the GABAergic 

and glutamatergic GPCRs expressed by astrocytes13,14 (Extended Data Fig. 3.1a), using baclofen 

to activate GABAB receptors2,11,15 and a broad spectrum metabotropic glutamate receptor 

(mGluR) agonist, (1S-3R)-ACPD (t-ACPD)9,16–18, to activate mGluR3, the mGluR subtype 

expressed by astrocytes at this age19, while silencing neuronal firing with tetrodotoxin (TTX). 

We analyzed the resulting Ca2+ activity using the event-detection software AQuA20 (Fig. 3.1b). 

In the same populations of astrocytes, with similar levels of baseline activity (Extended Data Fig. 

3.1b), GABABR or mGluR3 activation both increased Ca2+ event frequency, but each led to 

distinct Ca2+ responses in time-course and magnitude. Using both event-based and region-of-

interest (ROI)-based analysis methods, we found with t-ACPD, Ca2+ activity increases were 

robust and transient, whereas baclofen caused a delayed and prolonged activation, lasting 

through the end of recording (Fig. 3.1c, Extended Data Fig. 3.1c–e, Extended Data Table 3.1, 

3.3). Analyzing individual Ca2+ events by area and duration, we found a population of events 

larger and longer compared to baseline with t-ACPD, but not with baclofen (Fig. 3.1d, Extended 

Data Fig. 3.1f,g, Extended Data Table 3.4). To ensure that these distinct responses weren’t 

dependent on a specific agonist concentration or agonist order, we quantified activity changes 

across a broad concentration range, alternating agonist order between concentrations. Across 

Ca2+ event features, we saw a consistently higher response with mGluR3 compared to GABABR 

https://sciwheel.com/work/citation?ids=12692556,2907397&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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activation (Fig. 3.1e–h, Extended Data Table 3.2), demonstrating that the same cortical astrocyte 

populations exhibit distinct activity, with distinct time courses, in response to different NTs. 

GABABR and mGluR3 are both Gi-coupled GPCRs canonically linked to decreases in 

intracellular cAMP. To explore whether these two Gi-GPCRs also engage cAMP in NT-specific 

ways, we expressed the genetically encoded cAMP sensor Pink Flamindo21 in astrocytes, and 

bath-applied agonists selective for these receptors (Extended Data Fig. 3.1h–k). We switched 

from using a broad spectrum mGluR agonist, t-ACPD (Fig. 3.1), to an mGluR3-selective agonist, 

LY 379268 (Extended Data Fig. 3.1h–k), to specifically examine the effect of this Gi-GPCR 

activation on cAMP activity. In contrast to canonical Gi-GPCR signaling, we saw slow and 

sustained cAMP increases22,23 with both agonists, with more cells responding to mGluR3 

compared to GABABR activation (Extended Data Fig. 3.1j). When comparing astrocytic Ca2+ 

and cAMP signaling in response to agonists, we found significantly more dynamic Ca2+ activity 

compared to cAMP (Extended Data Fig. 3.1k). Although Ca2+ isn’t a canonical downstream 

signaling partner of Gi-GPCRs, our results confirm previous findings that astrocytes do signal 

via mGluR3 and GABABR to mobilize intracellular Ca2+ (ref. 2,11,22,24) potentially via PLC 

signaling25,26 or by βγ subunits directly binding to IP3R27,28. The relative lack of dynamism in 

cAMP compared to Ca2+ led us to focus only on Ca2+ as the second messenger more likely to 

exhibit NT-specific responses to spatiotemporally restricted—and more physiological—NT 

release.  

 

Single astrocytes respond to subcellular release of NTs 

To release NTs with spatiotemporal precision, we used 2P photo-release (“uncaging”) of 

caged neurotransmitters (Fig. 3.2a), as is commonly used to interrogate post-synaptic physiology 

https://sciwheel.com/work/citation?ids=4180664&pre=&suf=&sa=0&dbf=0
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via restricted activation area and duration7,9,29–33. To compare the effects of GABA or glutamate 

on the same astrocytes, we chose a class of caged compounds (with ruthenium bipyridine [RuBi] 

backbones), bound to either GABA34,35 or glutamate35,36, that can be 2P-uncaged (800nm) during 

simultaneous GCaMP Ca2+ imaging with a second 2P laser (excitation 980nm) (Fig. 3.2b). With 

this strategy, the uncaging/imaging experimental paradigm is common to both GABA and 

glutamate conditions. Because of likely variability in the Ca2+ response to NT across individual 

cells7,37, we imaged the same astrocytes while sequentially uncaging GABA and glutamate at the 

same subcellular location, separated by an inter-imaging interval of > 20 min, including a 

washout period of > 10 min. To account for any changes resulting from prior NT release, we 

alternated the order of GABA- or glutamate-uncaging between slices. To first quantify the 

properties of NT release in this dual-2P uncaging/imaging strategy, we imaged an extracellular-

facing glutamate sensor (GluSnFR38) while uncaging RuBi-glutamate (Fig. 3.2c). We confirmed 

that NT release was spatiotemporally confined at the intended location over an area of ~25 µm2 

and duration of 0.5–1 s (Fig. 3.2d). To ensure that the uncaging laser itself does not stimulate 

astrocytes, we also stimulated GCaMP-expressing astrocytes with the uncaging laser alone in the 

absence of RuBis, and did not observe a change in average Ca2+ fluorescence or event frequency 

(Extended Data Fig. 3.2a,b, Extended Data Table 3.5).     

After validating the spatiotemporal precision of this approach, we next released NT 

during GCaMP imaging. We first analyzed the Ca2+ activity within the astrocyte that was 

directly stimulated (Fig. 3.2e). We observed examples of Ca2+ increases within seconds, in close 

proximity to the uncaging site (Fig. 3.2f, g). By plotting ∆F/F and sorting by latency-to-

fluorescence increases, we saw most astrocytes increase Ca2+ activity following NT release (Fig. 

3.2h, above white line [70% and 88% of cells for GABA and glutamate, respectively], 3.2i), but 
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the area and duration of Ca2+ events were unchanged (Extended Data Fig. 3.2e). The activity 

increases often lasted for 2.5 minutes after NT release, the post-uncaging duration of the 

recording (Fig. 3.2h, Extended Data Fig. 3.2b), validating previous findings that NT-induced 

astrocyte Ca2+ activity can be long-lasting2,6. Comparing the same astrocyte’s response to both 

NTs, we found no significant relationship between the magnitude of its response to GABA vs. 

glutamate (Fig. 3.2j), a controlled comparison given similar levels of activity within each cell 

prior to uncaging (Extended Data Fig. 3.2c,d). To confirm that the Ca2+ elevations were due to 

activation of astrocytic GPCRs, we next performed NT uncaging in slices where GABABR or 

mGluR were inhibited pharmacologically, and found that Ca2+ increases were indeed blocked in 

these conditions (Extended Data Fig. 3.2a,b).  

Astrocyte Ca2+ activity can be highly compartmentalized3,4,7,37, so we next tested whether 

observed changes in Ca2+ activity within the stimulated astrocyte were confined to subcellular 

regions directly exposed to initial NT release (<10µm from uncaging, Fig. 3.2c,d). We found an 

increased frequency of Ca2+ events both near (<10µm) and far (³10µm) from the uncaging site 

(Fig. 3.2k–o and Extended Data Fig. 3.2f), with increases in both spatial domains peaking ≥ 1 

min after uncaging for both NTs. These data demonstrate that spatiotemporally restricted NT 

release can drive Ca2+ activity in subcellular compartments extending beyond the stimulated 

region.  

 

Astrocyte networks respond to subcellular NTs 

To ask whether activity changes extended beyond single cells, we next investigated 

population-wide Ca2+ activity in neighboring astrocytes within the gap junctionally coupled local 

network (Fig. 3.3a). Within the 300x300µm imaging field-of-view (FOV), the astrocyte over 

https://sciwheel.com/work/citation?ids=1597913,125317&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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which NT was uncaged was approximately centered. Neighboring astrocytes (n=10.3±3.85, 

mean±SD) with GCaMP6f activity were imaged and distinguished from the uncaged cell by 

delineating cell maps. The active neighboring astrocytes within a given FOV define a “local 

network” (Fig. 3.3a,b). We observed general Ca2+ increases within the local network of 

astrocytes after uncaging (Fig. 3.3b, Extended Data Fig. 3.3d–f). While we saw heterogeneity in 

the timing and magnitude of local network responses to subcellular NT release in the uncaged 

cell, the majority of imaged networks responded with population-wide fluorescence increases 

(Fig. 3.3c, left).  

 To investigate whether gap junctional coupling mediates these non-cell autonomous Ca2+ 

activity changes after a single point of network stimulation, we either genetically or 

pharmacologically inhibited gap junctions and measured population-wide network Ca2+ 

responses (Fig. 3.3c–f). Genetically, we focused on the predominant connexin protein (Cx43) 

expressed in cortical astrocytes13,14,39 (Extended Data Fig. 3.3a), and decreased Cx43 expression 

by injecting the astrocyte-specific Cre virus AAV5-GFAP(0.7)-RFP-T2A-iCre40 (and AAV5-

GfaABC1D-GCaMP6f-SV40 to express GCaMP) into Cx43fl/+ and Cx43fl/fl mice. Cx43 protein 

decreases in Cre+ cells were confirmed via immunohistochemistry (Extended Data Fig. 3.3b,c). 

After targeting Cre+ astrocytes for RuBi-GABA and -glutamate uncaging, population-wide 

network activity changes were attenuated compared to those observed in wild-type (WT) slices 

(Fig. 3.3c, right). While population-wide fluorescence did rise above threshold in some post-stim 

frames in Cx43floxed and CBX networks with similar onset latencies to WT networks (Fig. 3.3d, 

e), the proportion of time population-wide activity remained in an elevated state was 

significantly reduced in networks with gap junctional inhibition (Fig. 3.3c, f). Additionally, 

Cx43floxed networks showed no significant increase in average event frequency, similar to the 
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laser-uncaging controls and receptor-activation controls in slices where GABABR or mGluR 

were inhibited pharmacologically during uncaging (Extended Data Fig. 3.3g,h, Extended Data 

Table 3.7). These results suggest that astrocytic Cx43-based signaling is necessary for the 

sustained increase in network-level Ca2+ activity following NT release elsewhere in the local 

network. Further, these observations hint that reduced Ca2+ signaling in uncoupled astrocyte 

networks may underlie altered neuronal network activity and deficits in sensory-related 

behaviors observed in Connexin-deficient mice41,42. 

We next asked how far NT-induced local network activity extended from the uncaged 

cell. First, using a Sholl-like analysis (Fig. 3.3g), we observed event frequency increases as far 

away as 125–175µm from uncaging of both GABA and glutamate (Fig. 3.3h, Extended Data 

Table 3.6), which extends to the edge of the FOV (Extended Data Fig. 3.3i). To compare the 

spatial distribution of these network-level responses between GABA and glutamate, we then 

analyzed event activity within 20x20µm ROIs in a grid over the FOV (Fig. 3.3i–k). As in the 

Sholl-like analysis (Fig. 3.3h), ROIs with uncaging-driven activity were distributed both near 

and far from the uncaging site (GABA: 119.9±46.1µm; glutamate: 109.3±49.4µm [mean±SD]) 

(Fig. 3.3j). Further, while baseline activity encompasses contiguous, overlapping portions of the 

astrocyte network (Fig. 3.3k, left), ROIs exhibiting an event increase after NT uncaging were 

sparse (Extended Data Fig. 3.3j) and, critically, exhibit no significant overlap between responses 

to GABA and glutamate (Fig. 3.3k, right and l), suggesting that GABA and glutamate do not 

primarily activate the same regions of the astrocyte network. Together these data show that focal 

release of NT at a single cortical astrocyte leads to spatially distributed changes in Ca2+ activity 

across an astrocyte network. 
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Propagation distinguishes network responses  

Because astrocyte events are highly heterogeneous20, we next performed an unbiased 

analysis screen for changes in 16 AQuA-extracted event characteristics from neighboring cells 

(Extended Data Fig. 3.4a,b, Extended Data Table 3.12–3.13). The most robust and consistent 

NT-specific changes in neighboring cells were in events exhibiting propagation, with specific 

directionality toward the pia (Fig. 3.4a,b, Extended Data Fig. 3.4b, Extended Data Table 3.8, 

3.13), which echoed a change we observed above in populations of astrocytes following more 

widespread NT exposure (Fig. 3.1h). These propagative events were discrete events contained 

within individual cells (Fig. 3.4a) and we did not observe coordinated activity propagating across 

populations of astrocytes with a visible wavefront (Extended Data Fig. 3.5a). Since propagative 

events constituted a small subset of spontaneous ex vivo astrocyte Ca2+ activity (Extended Data 

Fig. 3.5b), we wanted to ensure that they reflected activity that could be observed in vivo. To test 

this, we recorded spontaneous astrocyte Ca2+ activity from the same cortical region (V1) in head-

fixed mice5,20 (Fig. 3.4c). We focused on spontaneous astrocyte Ca2+ activity that occurred when 

the mouse was stationary, to eliminate stimulus-triggered Ca2+ bursts driven by locomotion20,43–

45. We found a similar fraction of propagative events ex vivo and in vivo (Fig. 3.4d), suggesting 

that this small subset of Ca2+ activity may indeed comprise a physiologically relevant population.  

Ex vivo, propagative event frequency specifically increases after glutamate uncaging, in 

all 30-s time-bins 0–120s post-uncaging across neighboring cells (Fig. 3.4e, f, Extended Data 

Fig. 3.5c, Extended Data Table 3.9–3.10), while no changes were observed across neighboring 

cells after GABA uncaging in these same slices. Indeed, local network responses to glutamate 

and GABA uncaging can also be distinguished via the fraction of cells exhibiting changes in 

propagative event frequency (Fig. 3.4g), in which a higher fraction of astrocytes in each local 
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network respond with increases in propagative activity to glutamate (~40%) compared to GABA 

(~25%) (Fig. 3.4h, Extended Data Fig. 3.5d, Extended Data Table 3.9). Further, the NT input 

received can be accurately decoded via the relative change in propagative event rate/FOV (Fig. 

3.4i). In contrast, a similar fraction of local network astrocytes responds to GABA and glutamate 

with increased static event frequency (Extended Data Fig. 3.6, Extended Data Table 3.9–3.10). 

Astrocytes in the local network exhibited significantly higher baseline propagative activity and 

similar levels of static activity prior to uncaging GABA compared to glutamate (Extended Data 

Fig. 3.5g). While this could influence results, these baseline differences likely do not account for 

the differential network responses to the two NTs because baseline propagative rate is not 

correlated with the relative post-uncaging propagative event rate (Extended Data Fig. 3.5h).  

These results indicate that glutamate and GABA are differentially encoded at the network level 

by engaging local network astrocytes to differing degrees via  Ca2+ events that propagate within 

individual cells (Fig. 3.4n). Because there are few propagative events at baseline, even a small 

increase in propagative events following uncaging is a large relative increase in activity, and may 

thus constitute a salient signal with a high signal-to-noise ratio. This increase in glutamate-driven 

propagative responses is not observed when uncaging NTs in astrocyte networks with decreased 

Cx43 expression (Fig. 3.4j,k, Extended Data Table 3.9–3.10), which show significantly lower 

baseline activity compared to WT networks (Extended Data Fig. 3.5f). These data suggest that 

gap junction coupling is a cellular mechanism underlying this NT-specific signal.  

Similar to our prior finding that all network-level responses to glutamate and GABA 

were spatially non-overlapping (Fig. 3.3k,l), out of astrocytes that responded to either NT, we 

see few astrocytes responsive via propagative activity increases to both NTs (Fig. 3.4l). In fact, 

the number of astrocytes responsive to both NTs is not significantly different from chance, 
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indicating that how an astrocyte in the network responds to one NT provides no information 

about how that same astrocyte will respond to the other NT. Further, when uncaging less 

glutamate in a different set of local networks (Extended Data Fig. 3.7a, b), the response profile of 

an individual astrocyte to three sequential rounds of NT release at the same location was variable 

(Extended Data Fig. 3.7c). This was a controlled comparison since average increases in event 

frequency occurred over a similar time course (Extended Data Fig. 3.7d, Extended Data Table 

3.14) and baseline activity was comparable in astrocytes of the local network across rounds 

(Extended Data Fig. 3.7e). Since propagative response to a particular NT does not predict the 

response to the other NT nor to sequential stimulation by the same NT, we next looked for 

metrics that instead might predict astrocyte-network responses. Astrocyte Ca2+ activity can 

depend on prior and current Ca2+ levels44,46,47, which led us to ask whether network-level 

propagative responses could be predicted based on ongoing network activity. To do so, we asked 

whether the composition of baseline (1 min) activity in the network could predict the network-

level response to uncaging (Extended Data Fig. 3.5e). Here, we saw that those cells with a higher 

fraction of propagative events at baseline (relative to all baseline events) were correlated with a 

lower fraction of astrocytes in each network responding to either GABA or glutamate (Fig. 3.4m, 

left, Extended Data Fig. 3.5i, j, Extended Data Table 3.11). In contrast, overall baseline event 

rate was not predictive of responses to either NT (Fig. 3.4m, right). Thus, in addition to 

differentiating the local astrocyte network response to GABA or glutamate, these data suggest 

that propagative events can selectively bias the astrocyte network’s subsequent responses to NTs. 
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Discussion 

Single astrocyte simulation can cause long-lasting changes in neuronal activity and plasticity 

extending tens to hundreds of microns from the stimulation site9,10,41. However, the 

mechanism(s) that drive distributed effects have been unclear. Here, a brief, spatially restricted 

NT input leads to long-lasting, network-wide changes in astrocyte Ca2+, an effect facilitated by 

gap junctions. These findings could bridge the spatiotemporal gap between transient, local 

astrocyte stimulation and sustained, distributed effects on neurons. Still, the full spatial extent of 

astrocyte network activation remains an open question because astrocyte Ca2+ changes extend 

beyond our FOV. 

What might be an effect of restricted NT inputs causing prolonged and distributed 

responses? For coordinated behavior and learning, neuronal signals are integrated over seconds 

and minutes48. Models of neural integration that solely rely on neuronal activity require fine-

tuned positive feedback loops to allow for integration over periods longer than tens of 

milliseconds49. While recurrent neuronal connections enable temporal integration, astrocyte 

networks provide another possible mechanism to integrate inputs over long time periods50–52, 

linking the milliseconds timescale of neurons and the seconds-to-minutes timescales of behavior.   

Both GABA and glutamate uncaging led to sustained, far-reaching changes in astrocyte 

network Ca2+ activity, but propagative activity differentiated responses to each NT (Fig. 3.4n). 

These propagative events may facilitate integration of information across cellular compartments 

which could allow for coordinated modulation of groups of nearby synapses53 or spatiotemporal 

integration of inputs across individual cells47. Stimulation by glutamate consistently led to 

greater increases in propagative activity (Fig. 3.1h and Fig. 3.4b, f and h), suggesting that 

cortical astrocytes are more responsive to glutamatergic than GABAergic signaling, as has been 
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described for other brain regions11. Heightened astrocyte sensitivity to glutamate may mirror 

structural organization in the cortex, where astrocyte processes are closer to glutamatergic than 

GABAergic synapses54, potentially reflecting astrocytes’ key role in extracellular glutamate 

uptake. Since the surface mobility of astrocytic glutamate transporters is dependent on 

intracellular Ca2+ (ref. 55), a more robust Ca2+ response to glutamate may allow astrocytes to 

efficiently take up extracellular glutamate by increasing surface mobility of glutamate 

transporters. 

Astrocyte network responses to glutamate and GABA were also context-dependent: 

responses to both NTs were inhibited specifically by high fractions of propagative events at 

baseline (Fig. 3.4m). Thus, as glutamatergic input preferentially recruits propagative events in 

the surrounding astrocyte network (Fig. 3.4b,f,h), it could also suppress subsequent responses to 

NT inputs. This suggests that astrocyte networks implement combinatorial logic, integrating NT 

inputs across the local network by disseminating information via specific subtypes of Ca2+ 

activity.  

While most astrocytes and local networks increase Ca2+ in response to NT uncaging, a 

subset don’t respond to direct or remote uncaging. This heterogeneity may be shaped by the 

activity state of the astrocyte and connected network during stimulation or by the subcellular 

location of uncaging. Alternately, only a subset of astrocytes may be equipped to respond to 

NTs, given the molecular heterogeneity of astrocytes56,57. Future experiments imaging astrocyte 

responses to NTs, followed by spatial transcriptomics, could elucidate how cellular machinery 

may underlie heterogeneous responses.   

Here, astrocytic gap junctions mediate network activity changes, and may also regulate 

Ca2+ activity in individual cells. Molecules, including Ca2+ and IP3, can diffuse through gap 
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junctions58,59. IP3 is required for Ca2+ release from internal stores60 and Ca2+ itself regulates Ca2+ 

release from internal stores via calcium-induced calcium release. Here, reduced gap junctional 

coupling between astrocytes may have altered cytosolic Ca2+ and IP3 concentrations, which 

could impact Ca2+ release from internal stores and shape Ca2+ dynamics within individual cells. 

 

Methods 

Animals 

Experiments were carried out using young adult mice, in accordance with protocols approved by 

the University of California, San Francisco Institutional Animal Care and Use Committee 

(IACUC). Animals were housed in a 12:12 light-dark cycle with food and water provided ad 

libitum. Male and female mice were used whenever available. Transgenic mice used in this study 

were Cx43fl/fl mice61 from the Bhattacharya Lab (UCSF, USA) and EAAT2-tdT mice62 from the 

Yang Lab (Tufts University, USA). For in vivo imaging, all experiments were performed at the 

same time each day.  

 

Surgical procedures 

For viral expression for ex vivo experiments, neonatal Swiss Webster or C57Bl/6 (P0–3) mice 

were anesthetized on ice for 3 min before injecting viral vectors (AAV5.GfaABC1D.GCaMP6f. 

SV40 [Addgene, 52925-AAV5], AAV9.hGfap.pinkFlamindo, pENN.AAV9.Gfap.iGluSnFr. 

WPRE.SV40 [Addgene, 98930-AAV9], or AAV5.GFAP(0.7).RFP.T2A.iCre [Vector Biolabs, 

1133]). Pups were placed on a digital stereotax and coordinates were zeroed at lambda. Four 

injection sites in a 2 × 2 grid pattern over V1 were chosen. Injection sites were 0.8–0.9 mm and 

1.6–1.8 mm lateral, and 0 and 0.8–0.9 mm rostral. At each injection site, 30–120 nl of virus were 

https://sciwheel.com/work/citation?ids=1061799,669802&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=347454&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1057028&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=918304&pre=&suf=&sa=0&dbf=0
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injected at a rate of 3 nl/s at two depths (0.1 mm and 0.2 mm ventral/below pia) using a 

microsyringe pump (UMP-3, World Precision Instruments). 

For viral expression for the in vivo experiments, adult C57BL/6 mice were administered 

dexamethasone (5mg/kg, s.c.) >1 hour before surgery, and anesthetized using 1.5% isoflurane 

(Patterson Veterinary Supply, 78908115). After hair removal and three alternating swabs of 70% 

ethanol (Thermo Fisher Scientific, 04-355-720) and Betadine (Thermo Fisher Scientific, 

NC9850318), a custom-made titanium headplate was attached to the skull using cyanoacrylate 

glue and C&B Metabond (Parkell, S380). A 3mm craniotomy was made over the right visual 

cortex. Virus was injected at two sites in right visual cortex at coordinates centered on +2.4mm 

and +2.7mm medial/lateral, +0.35mm and +0.65mm anterior/posterior and -0.3mm 

dorsal/ventral from lambda. 300nL of AAV5.GfaABC1D.GCaMP6f.SV40 (Addgene, 52925-

AAV5) was injected at each site through a glass pipette and microsyringe pump (UMP-3, World 

Precision Instruments). After allowing at least ten minutes for viral diffusion, the pipette was 

slowly withdrawn and a glass cranial window implanted using a standard protocol. 

 

Ex vivo two-photon (2P) imaging and uncaging 

Coronal, acute V1 slices (400-µm thick) from P28–32 (bath-application) and P27–42 (uncaging) 

mice were cut with a vibratome (VT 1200, Leica) in ice-cold slicing solution containing (in mM) 

27 NaHCO3, 1.5 NaH2PO4, 222 sucrose, 2.6 KCl, 2 MgSO4, 2 CaCl2. Slices were transferred to 

pre-heated, continuously aerated (95% O2/5% CO2) standard artificial cerebrospinal fluid 

(ACSF) containing (in mM) 123 NaCl, 26 NaHCO3, 1 NaH2PO4, 10 dextrose, 3 KCl, 2 MgSO4, 

2 CaCl2. Younger mice were sliced in the same solutions for GCaMP bath application of 

LY379268 and Baclofen (P20–25), Pink Flamindo (P20–22), and GluSnFR (P14–17). Slices 
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were kept at room temperature until imaging. Bath-application experiments were performed at 

room temperature and 2P uncaging experiments were performed at 29°C using an in-line heater 

(TC-324B and SH-27B, Warner Instruments). To block neuronal action potentials during all slice 

imaging experiments, TTX (1 µM) was added to the ACSF > 10 min before imaging and 

remained in the circulating bath for the duration of the experiments.  

Images were acquired on an upright microscope (Bruker Ultima IV) equipped with two 

Ti:Sa lasers (MaiTai, SpectraPhysics). Laser beam intensities were modulated using two 

independent Pockels cells (Conoptics) and images were acquired by scanning with linear 

galvanometers. Images were acquired with a 16×, 0.8 N.A. (Nikon) or a 40×, 0.8 N.A. (Nikon) 

water-immersion objective via photomultiplier tubes (Hamamatsu) using PrairieView (Bruker) 

software. For GCaMP imaging, 980 nm excitation and a 515/30 emission filter were used. For 

RFP imaging, 980 nm excitation and a 605/15 emission filter were used. For Pink Flamindo and 

Alexa Fluor 594 imaging, 1040 nm excitation and a 605/15 emission filter were used. Images 

were acquired at 1.42 Hz frame rate, 512 × 512 pixels and 0.64–1.61 µm/px resolution. For 

GluSnFR imaging only, images were acquired at 6.21 Hz frame rate, 200 × 200 pixels and 0.64 

µm/px resolution, with 980 nm excitation and a 515/30 emission filter.  

For bath-application experiments, a 5-min baseline was recorded to monitor spontaneous 

activity, after which receptor agonists were added along with a fluorescent dye (Alexa Fluor 594 

Hydrazide) to assess the time at which drugs reached the imaging field/recording chamber 

(except for Pink Flamindo due to spectral overlap). An ACSF washout period (> 10 min), 

followed by a TTX incubation period (>10min), occurred between trials when imaging the same 

slice sequentially for bath-application of different receptor agonists or uncaging of different 
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RuBi-subtypes. To account for any changes resulting from prior agonist exposure or uncaging, 

we alternated the order of agonists between concentrations or RuBi-subtypes between slices. 

For simultaneous 2P imaging and uncaging, a second Ti-Sa laser beam was tuned to 800 

nm and controlled using an independent set of linear galvanometers from those used for 

scanning. Laser beam intensity was modulated using an independent Pockels cell (Conoptics) to 

achieve a power measurement of ~2–8 mW at the slice. The beam paths for imaging and 

uncaging were combined after the linear galvanometers using an 855-longpass dichroic mirror 

(T855lpxr, Chroma). The uncaging laser was calibrated each experimental day by burning spots 

into a fluorescent slide. RuBi- compounds (300 µM) and TTX (1 µM) were added to the ACSF 

>10 minutes before imaging each slice. Fields of view (FOV) were chosen based on the location 

of GCaMP expression, which was often biased to/brighter in deeper cortical layers (distance of 

FOV from pia: 615 ± 196µm [mean ± SD, n = 121 FOV]). Prior to imaging at each FOV, a 60-s 

period was recorded to identify potential uncaging sites. Areas of GCaMP expression that 

exhibited moderate levels of spontaneous Ca2+ activity were chosen as uncaging sites. For FOVs 

with sequential GABA/glutamate uncaging, a continuous 5-min recording was used to monitor 

activity in each FOV. For FOVs with three sequential rounds of glutamate uncaging, a 

continuous 12.5-min recording was used to monitor activity in each FOV. Each recording began 

with a 2.5-min baseline period and at the 2.5-min mark, neurotransmitter was uncaged with 10 x 

100 ms pulses, 100 ms apart. Sequential recordings of GABA/glutamate uncaging within the 

same FOV were separated by > 20min. Rounds of sequential glutamate uncaging were separated 

by ≥ 25min. Voltage from the uncaging laser Pockels cell was recorded to mark the time of 

uncaging pulses. Because RuBi-GABA and RuBi-glutamate are light-sensitive, care was taken to 

ensure experiments were carried out in minimal light. The computer screen and red-shifted 



93 
 

headlamp were covered with two layers of red filter paper (Roscolux #27 filter, Rosco) and all 

indicator lights on equipment were covered.   

 

In vivo 2P imaging 

In vivo 2P imaging was performed on the same microscope as ex vivo imaging, via a Nikon 16x, 

0.8 N.A. water-dipping objective with a 2x-optical zoom (frame rate: 1.7Hz, FOV: 412µm2, 

resolution: 512x512 pixels). Animals were given > 1 week after surgery for recovery and viral 

expression. They were then habituated on a custom-made circular running wheel over at least 

two days, and for a cumulative time of at least 2.5 hours, before recording. After habituation, 

mice were head-fixed on the wheel and movements were recorded by monitoring deflections of 

colored tabs on the edge of the wheel using an optoswitch (Newark, HOA1877-003). To 

compute wheel speed, a detected break in the optoswitch circuit was determined when the 

absolute value of the derivative of the raw voltage trace was at least 2 standard deviations above 

the mean. For recordings with little movement (std < 0.1), this threshold generated false 

positives, so a set threshold of 0.1 was used. The number of breaks in the optoswitch circuit per 

second was then calculated, and using the circumference and number of evenly spaced colored 

tabs at the edge of the wheel, the wheel speed was determined and used for all subsequent 

analyses using speed. Movement periods were defined by wheel speed ≥ 10 cm/s and movement 

bouts that were separated by ≤ 2 s were considered one event. To ensure that movement related 

dynamics were not included in stationary analysis, data was excluded from < 10 s around 

identified movement periods. GCaMP was imaged with 950nm excitation light and a 515/30 

emission filter. Recordings lasted 30 minutes.  
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Ex vivo pharmacology 

The following concentrations of each pharmacological reagent were used for experiments as 

indicated in the text: Tetrodotoxin Citrate (TTX, 1 µM, Hello Bio); Carbenoxelone disodium 

(CBX, 50 µM, Tocris Bioscience); R(+)-Baclofen hydrochloride (5–100 µM, Sigma-Aldrich); 

(1S,3R)-ACPD (t-ACPD, 5–100 µM, Tocris); LY 379268 disodium salt (100 µM, Tocris); Alexa 

Fluor 594 Hydrazide (0.1–2 µM, ThermoFisher Scientific); RuBi GABA trimethylphosphine 

(RuBi-GABA-Pme3, 300 µM, Tocris); RuBi-Glutamate (300 µM, Tocris); CGP 55845 

hydrocholoride (10 µM, Tocris); and LY 341495 (10 µM, Tocris).   

 

Immunohistochemistry and image quantification 

After recording, slices from 2P imaging experiments were immersed in 4% PFA for 30 min and 

switched to 30% sucrose for one day at 4°C before being embedded in OCT and stored at -80°C. 

Slices were re-sectioned coronally at 40 µm on a cryostat and then stored in cryoprotectant at -

20°C until staining. For immunohistochemistry, sections were washed three times in 1X PBS for 

5 min and permeabilized for 30 min with 0.01% Triton-X in 1X PBS. Sections were next 

blocked with 10% NGS (Abcam) for 1 h and incubated overnight with primary antibodies at 4°C 

in 2% NGS. The next day, they were washed three times in 1X PBS before incubating with 

secondary antibodies for 2 h at room temperature. Sections were washed three times in 1X PBS 

for 5 min before being mounted on slides with Fluoromount-G (SouthernBiotech). 

To validate reduction of Connexin 43 (Cx43) protein in astrocytes transduced with AAVs 

to express GCaMP-GFP and Cre-RFP, primary antibodies for α-connexin-43 (1:1500, rabbit, 

Sigma-Aldrich), α-GFP (1:3000, chicken, Abcam), and α-mCherry (1:2000, rat, Thermo Fisher 

Scientific) in 2% NGS were used. Secondary antibodies include α-rabbit Alexa Fluor 405, α-
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chicken Alexa Fluor 488, and α-rat Alexa Fluor 555 (all Thermo Fisher Scientific), which were 

all used at 1:1000 dilution. 60x multi-channel z-stack images were acquired on a CSU-W1 

Spinning Disk Confocal (Nikon) from V1 in which AAVs were injected. To quantify loss of 

Cx43 in RFP+ and RFP- astrocytes, Fiji (ImageJ) was used. Through batch processing, cell maps 

were created through a semi-automated pipeline to segment astrocytes, with post hoc ROI 

adjustments for vasculature artifacts. Multi-channel z-stacks were split into 405, 488, and 555 

channels, and unstacked into sequential 8-bit z-plane images. For each z-plane, RFP+ and RFP- 

astrocytes were detected using a Gaussian blur (sigma = 3), thresholding using the Phansalkar 

method (radius = 1000), and applying ImageJ’s “Analyze Particles” (size > 175 µm2, circularity 

= 0–0.60) to outline ROIs using the wand tool. Corresponding Cx43 images were binarized and 

the Fiji plugin SynQuant63 was used to detect Cx43 puncta number within each RFP+ and RFP- 

astrocyte in a z-plane’s cell map. Puncta counts were normalized to astrocyte area, and the 

normalized count from each z-stack was averaged for each slice. 

 

2P image and data analysis 

Individual-astrocyte cell maps for time series images were created in Fiji using the following 

process: For each FOV, an 8-bit z-projection of the time series was created. The z-projection was 

binarized using the ‘Auto Local Threshold’ feature, using the Niblack method and a radius of 30 

or 75, for 16× and 40× images, respectively. Cell maps were drawn on binarized images using a 

combination of the Lasso and Blow Tool and freehand drawing tool in Fiji, and verified on the z-

projected image. Cell maps were also verified against a static indicator of astrocyte morphology 

when available (EAAT2-tdT+ mice for bath-application of LY379268 and Baclofen; GFAP(0.7)-

RFP-T2A-iCre in Cx43floxed mice). To load cell masks into AQuA, regions were saved to the 

https://sciwheel.com/work/citation?ids=7631862&pre=&suf=&sa=0&dbf=0
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ROI manager and filled in with a color. The regions were projected onto a black image the same 

size as the original (512 × 512 pixels). The overlay of regions was flattened, converted to an 8-

bit image, and saved as a tiff. For the 12.5-min recordings with sequential rounds uncaging 

glutamate, drift of the slice in X and Y was corrected post-hoc using moco64. 

 

AQuA: GCaMP and GluSnFR 2P image sequences were analyzed using AQuA20 and custom 

MATLAB code (MATLAB R2018b). Signal detection thresholds were adjusted for each video 

to account for differences in noise levels after manually checking for accurate AQuA detection. 

Cell maps were loaded into AQuA to define cells consistently over multiple time-series featuring 

the same FOV. For all bath-application experiments, the direction of pia was marked as anterior. 

For 2P uncaging experiments, the uncaging site was marked as a 3 × 3-pixel landmark.  

 

Bath-application event-based analysis: For Baclofen and t-ACPD Ca2+ imaging experiments, 

Event count per frame was quantified by counting all AQuA-detected events, new or ongoing, in 

each frame (Fig. 3.1c). Percent of field active values were calculated by recording the number of 

active pixels in each frame, as determined by the frame-by-frame footprints of AQuA-detected 

events. These values were normalized by total number of active pixels in the recording and 

multiplied by 100. For the Percent of field active dose-response curve (Fig. 3.1e), the percent of 

field active values from all frames within the chosen timepoints were averaged by slice. Event 

propagation was calculated by summing the growing propagation from all cardinal directions, 

using the AQuA feature propGrowOverall. For dose-response curves for discrete event features 

(area, duration and propagation [Fig. 3.1f–h]), all detected Ca2+ events within the chosen 

timepoints were averaged by slice. 

https://sciwheel.com/work/citation?ids=3060910&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7585006&pre=&suf=&sa=0&dbf=0
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The frame the agonist entered the recording chamber was estimated using fluorescence 

from Alexa Fluor 594 (0.1–2 µM) added to the ACSF reservoir along with agonist. The frame 

agonist entered the recording chamber was estimated using the maximal curvature method on 

frames 1–600 of the raw Alexa Fluor 594 fluorescence trace. The maximum curvature method65 

defines the onset fluorescence changes as the point of maximum curvature during the rising 

phase of the signal. To identify this point, traces were fit using a modified Boltzmann’s 

sigmoidal equation: 

𝑓(𝑥) =  
𝑎

1 + 𝑒(#4))/7
	+ 	𝑐 

where a is the difference between the minimum and the maximum fluorescence, b is the 

inflection point, c is the baseline fluorescence and d is the slope, using a nonlinear least squares 

algorithm (Levenberg-Marquardt) in MATLAB (Mathworks). Next, the frames of maximum 

curvature were calculated by setting the fourth derivative of the fitted curve equal to zero and 

solving for its three solutions. The earliest frame identified out of these three solutions was 

recorded as the onset frame.  

 

Bath-application ROI-based analysis: Pink Flamindo and GCaMP imaging experiments were 

analyzed using ROI-based approaches in Fiji. To identify responding cells in Pink Flamindo 

experiments (Extended Data Fig. 3.1j), sigmoidal curves were fit to ΔF/F traces using the 

modified Boltzmann’s sigmoidal equation detailed above. Cells were defined as “responding” if 

the difference between the minimum and maximum values of the fit curve (a in the Boltzmann’s 

sigmoidal equation) > baseline noise (3 SD of baseline fluorescence). Responding cells were 

defined as “increasing” if 𝑓(𝑥%8$98) < 𝑓(𝑥&:7) and decreasing if 𝑓(𝑥%8$98) > 	𝑓(𝑥&:7).	 

https://sciwheel.com/work/citation?ids=16226&pre=&suf=&sa=0&dbf=0
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To identify fluctuations in Pink Flamindo and GCaMP fluorescence (Extended Data Fig. 

3.1k), peaks were detected from ΔF/F traces from individual cells. Peaks were counted if they 

were 3 SD above the mean baseline fluorescence, had a minimum peak width of 5 frames and a 

minimum distance of 10 frames between detected peaks. The baseline period was defined as all 

frames before the frame of agonist entry. For GCaMP, all astrocytes exhibiting ≥ 1 AQuA-

detected event during the 10-min recording were run through peak finding. For Pink Flamindo, 

all detected astrocytes were run through peak finding. 

For GCaMP experiments, the frame agonist entered the recording chamber was estimated 

using the fluorescence from Alexa Fluor 594 (0.1–2 µM) added to the ACSF reservoir along 

with agonist. Time of agonist entry in the recording chamber was estimated by identifying the 

first frame Alexa Fluor 594 fluorescence reached ³ 3 SD above baseline mean (frames 1–300); 

only frames > 375 were considered for evaluation of exceeding the threshold. For Pink Flamindo 

experiments, dye was not added with agonist to avoid spectral overlap. Time of agonist entry in 

the recording chamber was estimated by adding 90 frames (the average number of frames for 

ACSF to travel from the reservoir to the recording chamber) to the frame agonist was added to 

the reservoir of ACSF. 

 

2P uncaging event-based analysis: Individual astrocytes were excluded from analyses (Fig. 3.2–

3.4, Extended Data Fig. 3.2–3.7) if the baseline event rate changed significantly. Changes in 

baseline event rate for each cell were determined by performing Poisson regression of events in 

1-s bins during the period from 90–10s pre-uncaging. Cells with a regression coefficient with p < 

0.1 at baseline and with > 5 AQuA-detected events throughout the recording were excluded from 

all analyses, except for Extended Data Fig. 3.7d RuBi-glutamate uncaging control. ∆F/F values 
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in raster plots (Fig. 3.2h and 3.3c) were calculated using the AQuA output dffMatFilter(:,:,2), the 

∆F/F traces from events after removing the contributions from other events in the same location. 

For the Sholl-like analysis (Fig. 3.3h), events were sorted into 50µm bands radiating out from the 

uncaging site based on the minimum distance between an event and the uncaging site at event 

onset (using the AQuA output ftsFilter.region.landmarkDist.distPerFrame). In order to 

categorize events as propagative or static (Fig. 3.4d–m and Extended Data Fig. 3.5b–j, 3.6 and 

3.7c), the total propagation distance of each event was computed by summing the growing 

propagation from all cardinal directions, using the AQuA feature propGrowOverall. Events were 

categorized as propagative if the total propagation distance > 1µm. 

 

Statistics for Fig. 3.1–3.3 and associated Extended Data Figures 

All statistical tests used and exact n values can be found for each figure in the corresponding 

figure legend. Adjustments for multiple comparisons using Bonferroni-Holm correction were 

implemented using fwer_holmbonf66. Significance levels defined as the following: ns: p ≥ 0.05, 

*: p < 0.05, **: p < 0.01, ***: p < 0.001. 

 

Permutation testing: Statistical significance for time-series (t-series) data was computed using 

permutation testing with custom-written code in MATLAB. 10,000 permutations were run and 

one- or two- sided p-values for each time point were calculated. p-values were corrected for 

multiple comparisons using the Benjamini-Yekutieli procedure (implemented using ref. 67) with 

a False Discovery Rate (FDR) ≤ 0.05.  

Data were shuffled/permuted in the following way: To test change in event number/cell 

(Fig. 3.1c, Extended Data Fig. 3.2b and 3.3g,h), events were shuffled independently for each 

https://sciwheel.com/work/citation?ids=14473863&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14473875&pre=&suf=&sa=0&dbf=0
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active cell (≥ 1 AQuA-detected event) in each t-series. For each active cell, events were 

randomly placed in time bins spanning the duration of the recording (time bins = 60s [Fig. 3.1c] 

and 30s [Extended Data Fig. 3.2b and 3.3g,h]) and the change in number of events/time bin was 

calculated as for the experimental data. Permuted changes in event number/cell were averaged 

across active cells in each t-series and across all t-series to obtain the permuted mean for one 

round of permutation testing. 

To test change in event number/ band (Fig. 3.3h), permutation tests were run separately 

for each band and events were shuffled independently for each t-series. For each t-series, events 

from the tested band were randomly placed in 30 s time bins spanning the duration of the 

recording, and the change in event number/30 s was calculated as for the experimental data. 

Permuted changes in event number/30 s were averaged across all t-series to obtain the permuted 

mean for one round of permutation testing. To test magnitude of change in experimental data 

versus permuted data, two-sided p-values were calculated as:  

(# of times |permuted change| ≥ |experimental change|) +1 
# of permutations + 1 

For testing increases in ∆F/F (Extended Data Fig. 3.1d), frames were shuffled independently for 

each t-series. For each t-series, the average ∆F/F/frame from active regions (≥ 1 AQuA-detected 

event in either condition [baclofen or t-ACPD]) was calculated, the frame order was shuffled, 

and the mean ∆F/F/30s was calculated. Permuted mean ∆F/F was averaged across all t-series to 

obtain the permuted mean for one round of permutation testing. To test magnitude of increases in 

experimental data versus permuted data, one-sided p-values were calculated as: 

(# of times the permuted mean ≥ the experimental mean) +1 
# of permutations + 1 
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Statistics for Fig. 3.3i– l, Fig. 3.4, and associated Extended Data Figures 

2P uncaging grid-based ROI analysis: Grid-based regions of interest (ROIs) were determined 

by dividing the 300 x 300 µm imaging field into a uniform 20 x 20 µm grid (Fig. 3.3i–l). Each 

identified Ca2+ event was assigned to the ROI in which the centroid of its spatial footprint was 

located. ROIs with any baseline events were identified as ROIs with ≥1 events in the baseline 

window 60–0s before uncaging. “Active” ROIs for each NT were identified as ROIs with a ≥ 

50% increase in event rate in the window 0–120s after uncaging for that NT, as compared with 

the rate during the baseline window. Active ROIs were a subset of ROIs with baseline events, as 

the relative increase in event rate is not defined when there are no baseline events, which results 

in division by 0. The distance from the uncaging site to each active ROI was determined using 

the Euclidean distance between the uncaging site, at (0, 0), and the center of each grid ROI (Fig. 

3.3j). 

The fraction of overlap (i.e., Jaccard index) Oi between active ROIs for GABA and 

glutamate were determined for the ith field of view by: 

𝑂, =
\𝐴GABA,, ∩ 𝐴glutamate,,\
\𝐴GABA,, ∪ 𝐴glutamate,,\

 

where AGABA,i and Aglutamate,i are the sets of active ROIs for GABA and glutamate, respectively. 

The overall fraction of overlap O between active ROIs for GABA and glutamate was computed 

as the mean of the individual Oi  (Fig. 3.3l). 

To determine if the observed fraction of overlap was expected due to chance, a 

distribution of N = 10,000 surrogate fractions of overlap was computed. The kth surrogate value, 

𝑂̂(;) was computed as above, but replacing, for each NT, the set of active ROIs ANT,i with a new 
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set,  𝐴_NT,,
(;) , which was chosen as a random subset of size |ANT,i| of the set of ROIs with any 

baseline events for that NT. The p-value for this comparison was estimated68 as 

𝑝 =
(# of 𝑂̂(;) ≥ 𝑂) + 1

𝑁 + 1     (1) 

 

Propagation probability (Fig. 3.4b): Each Ca2+ event was identified as “growing in the depth 

axis” if the frontier of that event’s spatial footprint extended over time either toward the pia or 

away from the pia, as determined by the posterior and anterior component of the 

propGrowOverall metric computed via segmentation by AQuA20. 

The probability of events growing in the depth axis was computed separately for 

recordings of GABA and glutamate uncaging within each examined time window. Probabilities 

were estimated for the baseline window of 60–0s before uncaging, as well as in nonoverlapping 

30s bins ranging from 0–150s post-uncaging, by computing the fraction of events that were 

identified as growing in the depth axis among all events from all recordings within the relevant 

time window. The change in the probability of events growing in the depth axis was then 

estimated for each bin as the difference between the fraction of events growing in the depth axis 

for that bin versus for the baseline period. 

To empirically determine the distribution of each of these estimators, we performed this 

same procedure for estimating the probability of events growing in the depth axis for each NT 

and time bin on surrogate data generated by hierarchically bootstrapping Ca2+ event data, where 

the hierarchy was sampled cells within sampled recordings (i.e., all events for an individual cell-

recording always remained together); this procedure was repeated 10,000 times for each bin. 

Standard errors were computed as the standard deviation of these empirical distributions. 

https://sciwheel.com/work/citation?ids=791483&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7585006&pre=&suf=&sa=0&dbf=0
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To determine the probability of observing effects this large under a null hypothesis of no 

effect of time on the probability of events growing in the depth axis, we computed the 

distribution of the estimator under an imposed condition in which the overall temporal structure 

of astrocyte Ca2+ events was disrupted. To do this, we performed the same procedure as above 

for estimating the probability of events growing in the depth axis for each bin, but on surrogate 

data generated by circularly shifting the timing of each individual cell’s Ca2+ events from 90s 

before to 150s after uncaging by its own independent, uniform random shift between 0s and 

240s; this procedure was repeated N = 10,000 times for each bin. As it was unknown whether 

event propagation would increase or decrease post-uncaging, two-sided p-values were 

estimated68 as 

𝑝 =
(# of \𝑋̂(;)\ ≥ |𝑋|) + 1

𝑁 + 1     (2) 

where X denotes the actual observed value of the estimator, and each 𝑋̂(;) is the value of the 

estimator computed from the kth shifted dataset. These p-values were adjusted across tested time 

bins and NTs using the Benjamini-Hochberg procedure to obtain q-values, as implemented in 

statsmodels 0.12.2 (ref 69). 

 

Event feature changes (Extended Data Fig. 3.4a,b): Each Ca2+ event is assigned several metrics 

by AQuA-segmentation20, including size (area, perimeter, circMetric [circularity, based on area 

and perimeter]), amplitude (dffMax), and dynamics (rise19 [rise time], fall91 [fall time], 

decayTau [decay time constant], width11 [duration]). For each non-propagation metric, the mean 

metric value among events was computed separately for recordings of GABA and glutamate 

uncaging for the baseline window 60–0s before uncaging, as well as in nonoverlapping 30s bins 

https://sciwheel.com/work/citation?ids=791483&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8795341&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7585006&pre=&suf=&sa=0&dbf=0
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from 0–150s post-uncaging. For each bin, the ratio of that bin’s mean metric value to the 

baseline mean metric value was computed. 

AQuA metrics also capture information about events’ directional propagation. Each Ca2+ 

event was identified as “growing” or “shrinking” in each cardinal direction if the frontier of that 

event’s spatial footprint extended or receded, respectively, over time in that direction, as 

determined by the components of the propGrowOverall and propShrinkOverall metrics. For each 

propagation metric, the change in the probability of events growing or shrinking in each axis was 

computed separately for recordings of GABA and glutamate uncaging within each examined 

time window, as above in Propagation probability, but using the “growing” or “shrinking” 

identifiers for each cardinal direction. 

To empirically determine the distribution of each of these estimators (i.e., binned 

post/baseline ratio for non-propagation metrics, binned change in growing/shrinking probability 

for propagation metrics), we performed the same procedures for computing each metric’s 

relevant estimators for each NT and time bin outlined above on 10,000 surrogate datasets 

generated by hierarchically bootstrapping Ca2+ event data, as described in Propagation 

probability. Standard errors were computed as the standard deviation of these empirical 

distributions. 

To determine the probability of observing effects this large under a null hypothesis of no 

effect of time on the probability of events growing in the depth axis, we computed the 

distribution of each estimator under 10,000 realizations of an imposed condition in which the 

overall temporal structure of astrocyte Ca2+ events was disrupted by randomly circularly shifting 

each cell’s Ca2+ events, as described in Propagation probability. As it was unknown whether 

event propagation would increase or decrease post-uncaging, two-sided p-values were estimated 
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using equation (2) above68. These p-values were adjusted across tested time bins and NTs using 

the Benjamini-Hochberg procedure to obtain q-values, as implemented in statsmodels 0.12.2 

(ref. 69). 

 

Comparison of in vivo and ex vivo event propagation (Fig. 3.4d): Events were categorized as 

propagative or static, as outlined above in the 2P uncaging event-based analysis section. The 

fraction of propagative events observed in vivo and ex vivo was calculated using baseline events. 

Ca2+ events in in vivo recordings were labeled as “baseline events” if they occurred during 

periods when the mouse was stationary, as outlined above in the in vivo 2P imaging section. Ca2+ 

events in ex vivo recording were labeled as “baseline events” if they occurred in neighboring 

astrocytes (i.e. cells not directly stimulated by NT) during the 60–0s before NT uncaging.  

To determine the distribution of the two median propagative event fractions empirically, 

we computed the medians of 10,000 bootstrapped samples of the per-recording fractions for each 

setting. Standard errors for each statistic were determined from the standard deviations of these 

empirical distributions. 

 

Computing rate changes for propagative and static events (Fig. 3.4f, j and Extended Data Fig. 

3.6b–c): The overall rates of propagative and static events for neighboring astrocytes were 

computed separately for recordings of GABA and glutamate uncaging. 

For each event class (i.e., propagative and static events), for each recording, the event 

rate was computed in each time window as the total number of events from all neighboring cells 

in that recording in the given time window divided by the duration of that time window. These 

recording-level rates were computed for the baseline window of 60–0s before uncaging and in 

https://sciwheel.com/work/citation?ids=791483&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8795341&pre=&suf=&sa=0&dbf=0
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nonoverlapping 30s bins ranging from 0–150s post-uncaging. For each recording, the relative 

rate of propagative and static events was computed for each time bin as the ratio of the event rate 

for the given event class in that time bin divided by the corresponding event rate in the baseline 

window. For each time bin, the overall relative rate was estimated as the median of the per-

recording relative rates in that time bin. 

To determine the distribution of each of these relative rate estimators empirically, we 

performed this same procedure for estimating relative event rates on surrogate data generated by 

hierarchically bootstrapping Ca2+ event data 10,000 times for each bin (as above in Propagation 

probability). Standard errors were computed as the standard deviation of these empirical 

distributions. 

To determine the probability of observing effects this large under a null hypothesis of no 

effect of time post-uncaging on the rate of astrocyte Ca2+ events, we computed the distribution of 

the relative rate estimators under an imposed condition in which the overall temporal structure of 

astrocyte Ca2+ events was disrupted via a random circular shift of the events in each cell, as 

above in Fig. 3.4b; this procedure was repeated N = 10,000 times for each bin. Motivated by 

results in bath application experiments above demonstrating robust aggregate astrocyte Ca2+ 

activity increases in response to agonism of glutamate receptors (Fig. 3.1h), one-sided p-values 

were estimated from these permuted datasets, as in equation (1) above. These p-values were 

adjusted across tested time bins and NTs using the Benjamini-Hochberg procedure to obtain q-

values, as implemented in statsmodels 0.12.2 (ref. 69).  

 

 

 

https://sciwheel.com/work/citation?ids=8795341&pre=&suf=&sa=0&dbf=0
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Determining responding cells based on static and propagative events (Fig. 3.4h,k and 

Extended Data Fig. 3.6e–f): The overall rates of propagative and static events were computed 

for each neighboring astrocyte, with paired measurements made for recordings of GABA and 

glutamate uncaging. For each neighboring astrocyte, for each event class (i.e. propagative and 

static events), the event rate was computed in each time window as the total number of events 

from that cell in the given time window divided by window’s duration (baseline window: 60–0s 

before uncaging, response window: 0–120s after NT-uncaging; Extended Data Fig. 3.5c). 

Relative event rates were calculated as for Fig. 3.4f, j and Extended Data Fig. 3.6b–c above. 

Cell-recording combinations with zero events of a given type in the baseline window were 

excluded for computation of relative rates of propagative (GABA: 36 cell-recordings [26.7% of 

total]; glutamate: 37 [32.2%]) and static (GABA: 0; glutamate: 0) events, as the relative rate 

would require a division by zero and be undefined in those cases. Astrocytes were identified as 

“responders” with a particular event type (i.e., static or propagative) to GABA or glutamate if 

their relative rate of that type of event was ≥ 1.5 for the corresponding NT uncaging recording 

(Extended Data Fig. 3.5d). The fraction of astrocytes that were responders was computed for 

each individual recording, as well as the overall fraction of responders across all recordings for 

each NT. 

To determine the distribution of these overall responder fractions, we performed this 

same procedure for estimating relative event rates on surrogate data generated by hierarchically 

bootstrapping Ca2+ event data 10,000 times (as above in Propagation probability). Standard 

errors were computed as the standard deviation of these empirical distributions. 

To determine whether there were significant differences between the overall responder 

fractions for GABA and glutamate, we computed the distribution of the difference between these 
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two fractions under an imposed condition in which there was no systematic difference between 

GABA and glutamate. To do this, we performed the same procedure as above for estimating the 

difference between the overall responder fractions for “GABA” and “glutamate”, but on 

surrogate data generated by, for each cell, swapping the labels for “GABA” and “glutamate” 

responses from that in the experimental data with probability 1/2; this procedure was repeated 

10,000 times. As it was unknown a priori whether GABA or glutamate would have a higher 

fraction of responder cells, a two-sided p-value was estimated as in equation (2) above. 

 

Decoding NT identity from propagative event responses (Fig. 3.4i): To quantify the extent to 

which the observed difference in propagative event responses to uncaged glutamate and GABA 

enabled reliable identification of NT identity on a trial-by-trial basis, we built a simple classifier 

that took as input a single value, the relative change in propagative event rate across a FOV in 

the window 0–120s post-uncaging relative to the window 60–0s pre-uncaging, and classified that 

FOV as responding to glutamate if the value was ≥ a set threshold, and GABA if the value was < 

the threshold. To evaluate this classifier’s performance, we built a receiver operating 

characteristic (ROC) curve by varying the classification threshold across the entire domain of the 

feature, and at each value of the threshold, computing the empirical true positive rate and false 

negative rate of the classifier. With the threshold fixed in the ROC analysis, the classifier did not 

have any remaining free parameters, so did not need to be trained on data and was therefore not a 

function of any of the data, obviating the need for cross-validation. We computed the area under 

the ROC curve (AUC) using the trapezoidal rule. To determine the distribution of the observed 

AUC statistic, we performed this same analysis on 10,000 surrogate datasets generated by 

bootstrapping (i.e., resampling FOVs with replacement). To determine whether the observed 
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AUC statistic was above 0.5 (indicating completely non-informative decoding) to a degree 

greater than expected by chance alone, we performed this same analysis on 10,000 surrogate 

datasets generated by permuting the NT labels. 

 

Determining correlations between GABA and glutamate responses (Fig. 3.4l): To determine 

whether individual cells’ responses to GABA and glutamate—as determined in 4h above—were 

correlated, we computed the Spearman 𝜌 between the binary paired responses to GABA and 

glutamate across cells which could be assessed in both conditions (i.e., had > 0 propagating 

baseline Ca2+ events in both recordings) using SciPy 1.6.2 70. To determine the probability of 

observing a correlation at least this large under a null hypothesis of independence between cells’ 

responses for GABA and glutamate, we computed Spearman 𝜌 on surrogate data in which the 

identities of the cells’ responses to GABA and glutamate were independently permuted; this 

procedure was repeated 10,000 times. To maintain the ability to identify correlation or 

anticorrelation, we estimated a two-sided p-value from these surrogate values, as in equation (2). 

To complement this analysis, we computed the fraction of overlap (i.e., Jaccard index) 

between the sets 𝐶GABA and 𝐶glu of cells that were responders to GABA and glutamate, 

respectively: 

𝑂 =
\𝐶GABA ∩ 𝐶glu\
\𝐶GABA ∪ 𝐶glu\

 

This statistic is larger when the fraction of overlap between responders for the two 

neurotransmitters is larger. To determine the probability of observing an overlap at least this 

large under a null hypothesis of independent responses for GABA and glutamate, we computed 

https://sciwheel.com/work/citation?ids=8189935&pre=&suf=&sa=0&dbf=0
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this same statistic, but on 10,000 permuted surrogate datasets, as above. To determine significant 

overlap, we estimated a one-sided p-value from these surrogate values, as in equation (1). 

 

Segregating responding cells based on baseline propagation (Fig. 3.4m): For each neighboring 

astrocyte with propagative events during the baseline period of 60–0s pre-uncaging, we 

computed the fraction of baseline events that were propagative (# propagative baseline events / # 

all baseline events). Separately for GABA and glutamate, we used the propagative fraction 

across all given astrocytes to define the threshold fraction of baseline propagative activity, f50, as 

the 50th percentile of all observed values; cells with fractions < f50 were said to have “low 

baseline propagation”, while cells with fractions ≥ f50 were said to have “high baseline 

propagation” (Extended Data Fig. 3.5e, top). The fraction of astrocytes that were responders with 

propagative events to GABA or glutamate were separately estimated from amongst those 

astrocytes that had low baseline propagation and those that had high baseline propagation, as 

described above in Determining responding cells based on static and propagative events. 

Similarly for each neighboring astrocyte with baseline propagative events, we computed 

the rate of all events within the baseline period. Separately for GABA and glutamate, we used 

the baseline event rate across all neighboring astrocytes to define the threshold baseline event 

rate, r50, as the 50th percentile of all observed values; cells with baseline rates < r50 were said to 

have “low overall baseline event rates”, while cells with fractions ≥ r50 were said to have “high 

overall baseline event rates” (Extended Data Fig. 3.5e, bottom). The fraction of astrocytes that 

were responders with propagative events to GABA or glutamate were separately estimated from 

amongst those astrocytes that had low overall baseline event rates and those that had high overall 

baseline event rates, as above. 
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To determine the distribution of these responder fractions (amongst astrocytes with low 

and high baseline propagation, or amongst astrocytes with low and high overall baseline event 

rates), we performed the same procedure for estimating these fractions on surrogate data 

generated by hierarchically bootstrapping Ca2+ event data 10,000 times (as above in Propagation 

probability). Standard errors were computed as the standard deviation of these empirical 

distributions. 

For each NT, we next sought to determine whether there were significant differences 

between the fraction of astrocytes that were responders with propagative events amongst cells 

within the two groupings (i.e., low vs. high baseline propagation; low vs. high overall baseline 

event rate). Separately for GABA and glutamate, for each group comparison, we computed the 

difference between the two responder fractions, as well as the distribution of this difference 

under an imposed condition in which there was no systematic difference in uncaging response 

between astrocytes in the two groups. To do this, we performed the same procedure as above for 

estimating responder fractions in the specified groups (e.g., “low baseline propagation” and 

“high baseline propagation”) as well as the difference between the two, but on surrogate data 

generated by permuting the group labels; this procedure was repeated 10,000 times. As it was 

unknown a priori which group in either comparison—low or high baseline propagation, or low 

or high overall baseline event rate—would have a higher fraction of responder cells, a two-sided 

p-value was estimated from these surrogate values, as in equation (2). 
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Figures 

 
Figure 3.1. Direct GABAergic and glutamatergic receptor activation drive distinct 
astrocyte Ca2+ activity.  
(a) Experimental strategy for expression of cyto-GCaMP6f and 2P imaging astrocytic Ca2+ in 
acute V1 cortical slices during pharmacological activation via bath-application. Receptor 
agonists were sequentially bath-applied to the same slice, with an inter-imaging interval of 
>20min, including >10min wash-out period. (b) Representative astrocytic GCaMP6f 
fluorescence (left column) during bath-application of GABAB-specific agonist baclofen (50µM, 
top row) and mGluR agonist t-ACPD (50µM, bottom row). Dotted line denotes pia. All AQuA-
detected events 300s before (middle column) and after (right column) bath-application of 
agonists, from the same slice shown on left. (c) Top: Representative time-series traces (AQuA 
events per frame) of FOVs in B. Bottom: Average change in the events/minute compared to 
average baseline. 300–0s before and 0–240s after bath-application of agonists used to calculate 
change in events/60s for each active astrocyte (≥ 1 AQuA-detected event) and averaged for each 
slice. Data shown by slice (n = 4 slices stimulated with 50µM agonist, light dots) and mean ± 
standard error of the mean (sem) (solid dots and error bars). Permutation test used to determine 
significance. p-values for all timepoints are in Extended Data Table 3.1. All traces are aligned to 
0s, the frame of agonist entry in the imaging chamber. (d) Scatter plots of the area and duration 
of individual Ca2+ events at baseline (top row, black) and after bath-application of baclofen 
(bottom left) or t-ACPD (bottom right). Bottom row: events following bath-application of 
agonists color-coded by onset time. Dots represent individual Ca2+ events from n = 4 slices 
stimulated with 50µM agonist. (e–h) Dose-response curves showing average change in Ca2+ 

features with bath-application of baclofen (pink) or t-ACPD (green) at four concentrations. 
Agonist order alternated between conditions: Baclofen was added first at 5 and 50µM and 
second at 25 and 100µM. Change calculated by comparing 120s before and after agonist entry. 
Data shown by slice (n = 4 slices, 4 mice for each concentration, light dots) and mean ± sem 
(solid dots and error bars). Paired t-tests at each concentration compare activity changes induced 
by each agonist. p-values corrected for multiple comparisons using Bonferroni-Holm correction 
with FWER ≤ 0.05. p-values for all concentrations and features are in Extended Data Table 3.2.  
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Figure 3.2. Subcellular, spatiotemporally restricted release of NTs increases Ca2+ activity 
within directly stimulated astrocytes.  
(a) Experimental strategy for simultaneous 2P imaging of astrocyte Ca2+ (Cyto-GCaMP6f) or 
extracellular glutamate (GluSnFR), and 2P uncaging of NTs in acute V1 cortical slices. (b) 
Imaging/uncaging schematic. Gray lines = scanning laser. Yellow star = NT uncaging site. (c) To 
validate spatial precision of 2P uncaging, RuBi-glutamate was uncaged at a GluSnFR-expressing 
astrocyte. Yellow star = uncaging laser location; green = GluSnFR event footprint post-
uncaging. (d) GluSnFR event features after RuBi-glutamate uncaging. Data shown by individual 
glutamate events, median, 25th and 75th percentile (n = 72 trials, 12 recordings, 4 slices, 2 mice). 
(e) Schematic illustrating analysis throughout figure is of Ca2+ activity from astrocyte directly 
stimulated by uncaging. (f) Representative GCaMP6f fluorescence time-course in an individual 
astrocyte seconds before and after RuBi-GABA uncaging. Top row: raw fluorescence; bottom 
Figure 3.2 continued on next page 
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Figure 3.2 continued 
 
row: overlaid AQuA events. Yellow star = uncaging location and frame. (g) Average GCaMP 
fluorescence 150–0s pre-uncaging (left column) and 0–150s post-uncaging (right column) from 
astrocyte in f. Top row: raw fluorescence; bottom row: all AQuA-detected Ca2+ events. (h) Ca2+ 
activity in astrocytes directly stimulated by GABA (left) or glutamate (right) uncaging. Each row 
shows average DF/F traces from AQuA-detected events/cell, normalized individually between 0–
1 for each cell. Cells sorted by onset time (first post-stim peak ≥ threshold [mean baseline DF/F + 
3SD], with threshold calculated by cell). Red line = NT uncaging time. White line separates 
responding (above) and non-responding cells (below). Responders are defined as any astrocyte 
with ≥ 1 post-stim frame with ∆F/F ≥ threshold. Greyed-out rows represent cells excluded due to 
significant event frequency increases or decreases during the baseline period (see 2P uncaging 
event-based analysis methods). (i) Mean fluorescence pre- and post-stim from astrocytes 
responding to direct GABA (left) or glutamate (right) uncaging. 90–0s before and 0–150s after 
uncaging used to calculate mean ∆F/F pre- and post-stim/astrocyte. Data shown by cell (light 
dots and grey lines) and mean ± sem (dark dots and error bars). (For i, l–o, n = 19/27 directly 
stimulated cells responded to GABA and 21/24 to glutamate from n = 7 slices, 4 mice). 
Wilcoxon signed-rank test compare pre-and post-stim values. (j) Fluorescence change in directly 
stimulated astrocytes following GABA and glutamate uncaging. 90–0s before and 0–150s after 
uncaging used to calculate mean change per cell. Pearson’s correlation shows no significant 
relationship between fluorescence change following GABA and glutamate uncaging (p = 0.62). 
(k) Schematic illustrating that Ca2+ events within directly stimulated astrocyte are divided into 
events near and far from uncaging site. Note: events far from uncaging site are outside the radius 
of NT spread (d, “maximum distance from uncaging”), but still within the directly stimulated 
cell. (l, n) Event frequency change near and far from GABA (l) and glutamate (n) uncaging 
within responding, directly stimulated cells. 90–0s before and 0–150s after uncaging used to 
calculate event number/30s. Data shown as mean ± sem. (m, o) Event frequency change during a 
period of generally high activity (90–120s after uncaging, “120s” bin) from l & n. Data shown 
by cell, median, 25th and 75th percentile. Wilcoxon signed-rank test compare change from 
baseline for each cell compartment. 
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Figure 3.3. Subcellular release of GABA and glutamate increases Ca2+ activity in the local 
astrocyte network via Cx43.  
(a) Schematic illustrating analysis throughout figure is of population-wide Ca2+ activity of all 
astrocytes in the FOV that are not directly stimulated by uncaging (local network). (b) Left: 
Representative astrocytic GCaMP6f fluorescence in a V1 slice during 2P uncaging of RuBi-
GABA (top) and RuBi-glutamate (bottom). Right: Representative spatial heatmaps of Ca2+ 
activity changes in the local astrocyte network from left following RuBi-GABA (top) and RuBi-
glutamate (bottom) uncaging. Yellow star = uncaging site, same for each NT. Colors denote 
change in active frame number/pixel (all AQuA-detected events 150s before and after uncaging; 
red = activity increase, blue = decrease; activity in the uncaged cell [dark grey] is excluded). (c) 
Top: Ca2+ activity from all recorded local astrocyte networks. Each row shows activity of one 
Figure 3.3 continued on next page 
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Figure 3.3 continued 
 
local network as the z-score of the mean DF/F from AQuA-detected events in the network. Mean 
∆F/F and SD calculated using a baseline period 90–0s before uncaging. Networks sorted by 
onset time (first post-stim peak ≥ threshold [mean baseline DF/F + 3 SD]), with threshold 
calculated by trial). Red line = NT uncaging time. Greyed-out rows represent networks in which 
no events were detected outside of the uncaged cell. Bottom: binarized raster plots show each 
frame DF/F ³ threshold. Stacked bar graphs show proportion of local networks exhibiting an 
initial fluorescence increase following uncaging (responder). Responders defined as any network 
with ≥1 post-stim frame ∆F/F ≥ threshold. WT (left) and Cx43floxed slices (right). Fisher’s exact 
test compares proportion of responders across conditions: p = 0.62 (GABA WT vs Cx43floxed), p 
= 0.78 (glutamate WT vs Cx43floxed), p = 0.75 (GABA WT vs glutamate WT). (d) Top: example 
binarized raster plot from C. Green line = response onset for each network (first post-stim frame 
≥ threshold). Bottom: Example local network, showing onset latency (green) as time between 
NT-uncaging and response onset, and post-onset frames ≥ threshold (black tick marks). (e) One-
way ANOVA compares the onset latency across conditions (WT, Cx43floxed, and CBX). p = 0.82 
(GABA), p = 0.89 (glutamate). (For e, f, Data shown by responding network, median, and 25th 
and 75th percentile. WT: n = 21 networks responding to GABA and 23 networks to glutamate; n 
= 7 slices, 4 mice; Cx43floxed: n = 42 networks responding to GABA and 47 networks to 
glutamate; n = 16 slices, 8 mice; CBX: n = 24 networks responding to GABA and 24 networks to 
glutamate; n = 8 slices, 4 mice). (f) Persistence of network-level responses calculated as the 
proportion of post-onset frames ≥ threshold. One-way ANOVA followed by Tukey-Kramer Test 
determine significant pairwise comparisons between conditions for each NT. GABA: p = 0.0010 
(WT v Cx43floxed), 0.025 (WT v CBX) and 0.72 (Cx43floxed v CBX). Glutamate: p = 0.00034 
(WT v Cx43floxed), 0.0032 (WT v CBX) and 0.98 (Cx43floxed v CBX). (g) Sholl-like analysis 
schematic. Grey concentric circles = 50µm bands. Yellow star = NT uncaging site. Inner radius 
of innermost band begins 25µm from uncaging, as events <25µm from the uncaging site are 
likely to occur within stimulated astrocyte. Outer radius of outermost band is 175µm from 
uncaging, as >175µm from the uncaging site can be outside the FOV; see Extended Data Fig. 
3.3i. (h) Ca2+ event frequency change in the local network after GABA (top) and glutamate 
(bottom) uncaging. 90–0s before and 0–150s after uncaging used to calculate event number/30s. 
Permutation test used to determine significance. p-values for all timepoints and bands are in 
Extended Data Table 3.6. (i) Grid-based ROI (20 x 20 µm) schematic. (j) Distribution of 
distances from uncaging site to center of ROIs active post-uncaging. Active ROIs are defined as 
any region with ≥ 50% event frequency increase post-uncaging; see Extended Data Fig. 3.3j 
(GABA: n = 195 active ROIs; glutamate: n = 171 active ROIs from 27 paired FOVs). (k) 
Example FOV of ROIs with any baseline events (left) and active ROIs following uncaging 
(right). Yellow dot = NT uncaging site. (l) Fraction of ROIs active (responding) following both 
GABA and glutamate uncaging, among all active ROIs for uncaging of either NT (black vertical 
line; 8.27±1.34%, mean±sem; n = 27 paired FOVs). This overlap fraction is compared with a 
distribution of 10,000 surrogate overlap fractions obtained by choosing an equal number of 
active ROIs as observed in each FOV, but at random from among all ROIs with any baseline 
events for GABA and glutamate (grey distribution).  
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Figure 3.4. Propagative activity distinguishes astrocyte network responses to GABA and 
glutamate.  
(a) GCaMP6f fluorescence in an individual astrocyte highlighting the initial territory of a 
propagating event (left). Trajectory of the propagative event over time (3 right panels). The total 
territory of the event (‘event footprint’) is outlined in grey. The territory of the event at each time 
point is shown in yellow. (b) Change in probability of a Ca2+ event growing in the depth-axis 
(toward or away from the pia) among all events from neighboring cells after GABA or glutamate 
uncaging, relative to 60–0s pre-uncaging. Data shown as overall probability ± standard error 
determined from hierarchical bootstrapping (Methods; GABA: n = 142 cells in 28 FOV; 
glutamate: n = 120 cells in 27 FOV). Two-sided p- and q-values for changes versus baseline 
were obtained by circularly shifting each cell’s events in time (Methods; Extended Data Table 
3.8). (c) In vivo 2P image showing expression of astrocyte GCaMP6f in V1. Colored overlay: all 
AQuA-detected Ca2+ events from a 90s stationary period from a 400 x 400µm FOV (left) and 
100 x 100µm inset (right). (d) Fraction of astrocyte Ca2+ events that exhibit growth >1µm in any 
direction (“propagative” events) observed in V1 during stationary wakefulness in vivo  
Figure 3.4 continued on next page 
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Figure 3.4 continued 
 
(left, markers are individual recordings) and at baseline in acute V1 slices (right, markers are 
individual FOV). Data shown as median across recordings ± standard error via bootstrapping (in 
vivo: n = 15 recordings, 5 mice; ex vivo: n = 55 recordings, 4 mice). In vivo and ex vivo setting 
were compared with a two-sided rank-sum test (p = 0.57). (e) Analysis schematic illustrating 
average propagative activity change across all neighboring cells in the local network, as in f & j. 
Note heterogeneity of responses of individual neighboring cells averaged over in f & j. As in Fig. 
3.3, activity from the directly stimulated astrocyte is excluded from all analyses in this figure. (f, 
j) Fold-change in rate of propagative Ca2+ events among neighboring cells after GABA or 
glutamate uncaging in acute slices from WT mice (f) or Cx43floxed mice (j), relative to 60–0s pre-
uncaging. Data shown as median across FOVs ± standard error via hierarchical bootstrapping 
(Methods; n for all conditions are in Extended Data Table 3.9). One-sided p- and q-values were 
obtained via circular permutation testing (Methods; Extended Data Table 3.10).  
(g) Analysis schematic illustrating the fraction of neighboring cells per FOV that respond to NT 
with increases in propagative activity, as in h & k. Note that a subset of neighboring cells in the 
local network exhibit activity changes following NT uncaging. (h, k) Fraction of neighboring 
cells per FOV with ≥ 50% increase propagative Ca2+ events (“responding”) after GABA or 
glutamate uncaging in WT (h) or Cx43floxed slices (k). Data shown as mean ± sem via 
hierarchical bootstrapping; dots denote individual FOVs (see Methods; n for all conditions are in 
Extended Data Table 3.9). Permutation testing was used to compare fraction of cells responding 
to GABA and glutamate in WT slices (p = 0.046) and Cx43floxed slices (p = 1.0). (i) Top: 
Receiver operating characteristic (ROC) curve of decoding NT identity by thresholding the 
relative change in propagative event rate from 60–0s pre-uncaging to 0–120s post-uncaging 
across all neighboring cells in a FOV indicates that propagative events reliably distinguish NT 
input in WT slices. Bottom: Observed area under the ROC curve = 0.72 ± 0.077 (value ± 
bootstrapped standard error), compared to a permuted distribution via permuting NT labels (p = 
0.0025, n = 55 FOVs). Feature values ≥ threshold were classified as glutamate, and values < 
threshold as GABA. (l) Number of neighboring cells responding to one or both NTs with 
propagative activity increases, among cells with baseline propagative activity (n = 56 cells, 24 
paired recordings, 7 slices, 4 mice). Permutation testing measures of correlation (Spearman rho, 
p = 0.24) or overlap (Jaccard index, p = 0.96) between GABA and glutamate responses does not 
reject the null hypothesis of independent responses. (m) Fraction of neighboring cells per FOV 
with ≥ 50% increase in propagative Ca2+ events (“responding”) after GABA or glutamate 
uncaging in WT slices, split between cells with fraction of propagative events at baseline (left) or 
overall baseline event rates (right) in the bottom 50% (“Low”, light bars) or top 50% (“High”, 
dark bars) across all cells (see Extended Data Fig. 3.5e). Data shown as mean ± sem via 
hierarchical bootstrapping (n in Extended Data Table 3.11). Response fractions for cells with 
“Low” and “High” baseline fractions were compared by permuting cells’ baseline propagation 
fractions for GABA (p = 0.0022) and glutamate (p = 0.0059); responses for cells with “Low” and 
“High” overall baseline event rates were compared similarly (GABA: p = 1.0; glutamate: p = 
1.0). (n) Integrated model of astrocyte network response to GABA and glutamate from data in 
Fig. 3.3–4. Astrocyte networks increase general Ca2+ activity in response to both NTs, and 
propagative activity increases specifically in response to glutamate. Network responses to 
glutamate occur soon after stimulation, while responses to GABA are delayed. For b & f: *: q < 
0.05, **: q < 0.01, ***: q < 0.001. For h & m: *: p < 0.05, **: p < 0.01. 
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Extended Data Figure 3.1: Different responses to activation of astrocytic glutamatergic and 
GABAergic receptors via pharmacological bath-application.  
(a) Ribosomal-mRNA expression in visual cortex astrocytes of P14 (n = 4 biological replicates) 
and P28 (n = 5 biological replicates) mice from the Farhy-Tselnicker et. al. publicly available 
dataset (NCBI Gene Expression Omnibus, GSE161398). Visual cortex astrocytes show 
expression of GABAB receptors and mGluR3, but low expression of all other mGluRs, including 
mGluR5 (ref. 19). Similar expression levels are found in the Srinivasan et. al. dataset available at 
http://astrocyternaseq.org/. Ratio of FPKM for the gene of interest / FPKM for GFAP were 
calculated to normalize for potential differences in the sequencing depth of replicates.  
Extended Data Figure 3.1 continued on next page 
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Extended Data Figure 3.1 continued 
 
(b) Baseline event frequency for each active astrocyte prior to bath application of baclofen 
(50µM, x-axis) and t-ACPD (50µM, y-axis). Data shown by astrocyte (grey dots, from n = 4 
slices) and mean (red dot). Dashed line = unity line. Baseline event frequencies prior to baclofen 
and t-ACPD application were compared for each astrocyte using a paired two-sided t-test (p = 
0.14). (c) Event frequency for each active astrocyte 300–0s before and 60–120s after addition of 
agonist (50µM). Data shown by astrocyte (light dots, from n = 4 slices) and mean (solid dots) for 
baclofen (pink) and t-ACPD (green). Dashed line = unity line; all astrocytes above the unity line 
display increased activity in presence of agonist. For b & c, 300–0s before addition of agonist 
was used to calculate mean baseline event frequency (events/60s) per astrocyte; an active 
astrocyte is any cell with ≥ 1AQuA-detected event. Note the difference in axes between graphs 
in b & c, reflecting the low baseline event frequency for all astrocytes. (d) Time-series traces of 
average ΔF/F in 30 s windows from active cells in each slice. 300–0s before and 0–240s after 
bath-application of agonist used to calculate event average ΔF/F /30s. Data shown as mean ± 
sem (n = 4 slices, 4 mice stimulated with 50 µM agonist). Permutation test used to determine 
significance. p-values for all timepoints are in Extended Data Table 3.3. All traces are aligned to 
0s, the frame of agonist entry into the imaging chamber. ΔF/F values were calculated using a 
moving 10s baseline window, averaging the lower 50% of values in the window. Active cells 
were cells with ³ 1 AQuA event detected in either the baclofen or t-ACPD recording. (e) Left 
and center: Average ΔF/F before and after bath-application of baclofen (50 µM, left) and t-
ACPD (50 µM, center). ΔF/F after bath-application of agonist is from the 30 s time window with 
the highest average ΔF/F for each slice (“peak post”). Right: Change in average ΔF/F after bath-
application of agonist. Data shown as slices (light dots and grey lines, n = 4 slices, 4 mice) and 
mean ± sem (dark dots and error bars). Paired t-test compares conditions. Baclofen: p = 0.046, t-
ACPD: p = 0.031 and D in ΔF/F: p = 0.033. (f) Scatter plots of the area and duration of 
individual Ca2+ events 0–60 s (left) and 150–300 s (right) after bath-application of baclofen (top) 
or t-ACPD (bottom). Separating events into these two time-windows highlights events occurring 
early that are covered in Fig. 3.1d by those with longer onset latencies. Events following bath-
application of agonists color-coded by onset time. Dots represent individual Ca2+ events from n = 
4 slices stimulated with 50µM agonist. Note: these are the same data, with the same onset 
latency color scale, as shown in Fig. 3.1d, bottom. (g) Distributions of event area, duration and 
propagation 120–0s before (“Pre”) or 0–120s after addition of baclofen (50 µM) or t-ACPD (50 
µM). One-way ANOVA followed by Tukey-Kramer Test determine significant pairwise 
comparisons between conditions. p-values for all conditions and features are in Extended Data 
Table 3.4. Note that, for all features, pre-baclofen, pre-tACPD, and baclofen events are not 
significantly different from one another. Only events following addition of t-ACPD show a 
rightward shift for all features. (h) Experimental strategy for Pink Flamindo expression and 2P 
imaging of astrocytic cAMP in acute cortical slices. (i) Representative Pink Flamindo 
fluorescence in V1 FOV; dotted line denotes pia. (j) Left: Percent of total astrocytes that increase 
fluorescence or show no change with bath-application of baclofen (top, pink) or mGluR3-specific 
agonist LY379268 (bottom, green) (n = 147 astrocytes) in the presence of TTX and CBX. Right: 
Average ∆F/F trace only from responsive cells in each slice (mean ± sem across slices from n = 
54 responsive astrocytes (baclofen) and 123 responsive astrocytes (LY379268) from n = 8 slices, 
3 mice).  
Extended Data Figure 3.1 continued on next page 
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Extended Data Figure 3.1 continued 
 
To capture steady-state changes, ∆F/F values were calculated using raw – background 
fluorescence and a fixed baseline window (frames 1–100), then lowpass filtered at 0.01Hz. (k) 
Top: Average Ca2+ or cAMP peaks/minute/astrocyte before and after bath-application of 
baclofen (pink) or LY379268 (green). Data shown as slices (grey lines) and corresponding mean 
± sem. Paired t-test compares pre- and post-agonist values for each condition. p-values corrected 
for multiple comparisons using Bonferroni-Holm correction FWER ≤ 0.05. Baclofen: p = 0.019 
(Ca2+) and 0.057 (cAMP). LY379268: p = 0.0017 (Ca2+) and 0.66 (cAMP). Bottom: Average 
change in Ca2+ or cAMP peaks/minute following bath-application of baclofen (pink) or 
LY379268 (green). Data shown by slice (light dots) and corresponding mean ± sem (dark dots 
and error bars). Rank sum tests compare Ca2+ and cAMP frequency changes for each agonist. p = 
0.000082 (baclofen) and 0.000082 (LY379268). Cyto-GCaMP: n = 809 active astrocytes 
(baclofen) and 1033 active astrocytes (LY379268) from n = 9 slices, 3 mice. Pink Flamindo: n = 
147 astrocytes, 8 slices, 3 mice. To detect transient fluctuations, ∆F/F was calculated using a 
moving 10s baseline window, with peaks determined for each astrocyte if ∆F/F ≥ 3SD above 
mean baseline ∆F/F. 
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Extended Data Figure 3.2: Characterization of, and controls for, increased Ca2+ activity in 
astrocytes directly stimulated by NT uncaging.  
Extended Data Figure 3.2 continued on next page 
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Extended Data Figure 3.2 continued  
 
(a) Average change in DF/F with laser uncaging control (laser stimulation without RuBis, grey, n 
= 46 astrocytes, 9 slices, 3 mice) and with uncaging in the presence of antagonist (RuBi-GABA 
+ GABABR antagonist [magenta, n = 28 astrocytes, 8 slices, 5 mice] or RuBi-glutamate + 
mGluR2/3 antagonist [green, n = 28 astrocytes, 7 slices, 4 mice]). GABABR antagonized using 
CGP55845, a potent and selective GABABR antagonist, and mGluR3 antagonized using 
LY341495, a potent mGluR2/3 antagonist also known to antagonize other mGluR subtypes at 
higher concentrations71. Data shown by astrocyte, median, 25th and 75th percentile. Wilcoxon 
signed-rank test compares change from baseline. p-values corrected for multiple comparisons 
using Bonferroni-Holm correction with FWER ≤ 0.05. Laser uncaging control: p = 0.50, RuBi-
GABA + CGP55845: p = 0.11 and RuBi-glutamate + LY341495: p = 0.41. (b) Event frequency 
change after NT uncaging (GABA: solid magenta lines, n = 27 astrocytes, 7 slices, 4 mice; 
glutamate: solid green lines, n = 24 astrocytes, 7 slices, 4 mice), NT uncaging in the presence of 
antagonist (dotted magenta and green lines), and laser uncaging control (dotted black line). 90–
0s before and 0–150s after uncaging used to calculate event number/30s. Data shown by mean ± 
sem. Permutation test used to determine significance. p-values for all conditions and timepoints 
are in Extended Data Table 3.5. (c) Baseline fluorescence prior to GABA and glutamate 
uncaging. 90–0s before uncaging used to calculate mean ∆F/F per cell. Data shown by cell (grey 
dots, n = 24 astrocytes), median, and 25th and 75th percentile (black dots and crosshairs). Dashed 
line = unity line. Wilcoxon signed-rank test shows no significant difference between baseline 
fluorescence of directly stimulated astrocytes prior to GABA and glutamate uncaging (p = 
0.089). (d) Baseline event frequency prior to GABA and glutamate uncaging. 90–0s before 
uncaging used to calculate mean number of events/30s for each cell. Data shown by cell (grey 
dots, n = 24 astrocytes), median and 25th and 75th percentile (black dots and crosshairs). Dashed 
line = unity line. Wilcoxon signed-rank test shows no significant difference between baseline 
event frequency of directly stimulated astrocytes prior to GABA and glutamate uncaging (p = 
0.068). (e) Distribution of event area and duration pre- and post-uncaging of RuBi-GABA (left) 
and RuBi-glutamate (right) from “responder” uncaging cells. Detected events 120 s pre- and 
post-uncaging are included from n = 19 astrocytes, 7 slice, 4 mice (GABA) and n = 21 
astrocytes, 7 slices, 4 mice (glutamate). Rank-sum test compares pre- and post-uncaging event 
features. Area: p = 0.58 (GABA) and 0.95 (glutamate). Duration: p = 0.083 (GABA) and 0.13 
(glutamate). (f) Event frequency in responding astrocytes directly stimulated with NT. Events 
from directly stimulated astrocytes were separated into events near and far from GABA and 
glutamate uncaging. 90–0s before used to calculate average event number/30s (“pre-stim”). Data 
shown by cell (light dots and grey lines) and mean ± sem (dark dots and error bars).  
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Extended Data Figure 3.3: Confirmation of Cx43 knockdown and network-level controls 
after NT uncaging.  
Extended Data Figure 3.3 continued on next page 
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Extended Data Figure 3.3 continued  
 
(a) Ribosomal-mRNA expression in visual cortex astrocytes of P28 mice (n = 5 biological 
replicates) from the Farhy-Tselnicker et. al. publicly available dataset (NCBI Gene Expression 
Omnibus, GSE161398). Visual cortex astrocytes preferentially express Cx43 (Gja1) over other 
connexins, including Cx30 (Gjb6). Similar expression levels are found in the Srinivasan et. al. 
dataset available at http://astrocyternaseq.org. Ratio of FPKM for the gene of interest / FPKM for 
GFAP were calculated to normalize for potential differences in the sequencing depth of 
replicates. (b) Representative micrographs of immunohistochemistry in a Cx43fl/+ slice 
demonstrating reduced numbers of Cx43 puncta in Cre+ astrocytes. White arrow points to 
individual cell expressing GCaMP (green) and RFP-Cre (red), with reduced Cx43 (blue). (c) 
Average Cx43 puncta/astrocyte in RFP-Cre- and RFP-Cre+ astrocytes; puncta counts are 
normalized by area of each astrocyte. Data are shown by mouse averages (light dots, error bars 
and connecting lines, grey = Cx43fl/+ and red = Cx43fl/fl mice) and mean ± sem (dark dots and 
error bars). Cx43 puncta counts were similar for Cx43fl/+ and Cx43fl/fl mice; data from both 
genotypes were pooled together for all analyses and referred to as Cx43floxed. Paired two-sided t-
test compares average Cx43 puncta counts in RFP-Cre- and RFP-Cre+ astrocytes. p = 0.00013. 
(d) Average change in ∆F/F in WT astrocyte networks after RuBi-GABA (magenta) and RuBi-
glutamate (green) uncaging. Data shown by trial/FOV, median and 25th and 75th percentile. (For 
d–i, WT: n = 28 networks, 7 slices, 4 mice). Wilcoxon signed-rank test compares change from 
baseline. p = 0.016 (GABA) and 0.00032 (glutamate). (e,f) Distribution of event area and 
duration pre- and post-uncaging of RuBi-GABA (top) and RuBi-glutamate (bottom). Detected 
events 120 s pre- and post-uncaging are included. Rank-sum test compares pre- and post-
uncaging event features. Area: p = 0.025 (GABA) and 0.0050 (glutamate). Duration: p = 0.063 
(GABA) and 0.0000045 (glutamate). (g,h) Event frequency change in neighboring astrocytes 
after GABA (g, top) and glutamate (g, bottom) uncaging in WT and Cx43floxed slices (n = 61 
networks, 16 slices, 8 mice). WT data from g replotted in h (circular markers) with laser 
uncaging control (laser stimulation without RuBis, dotted black line and triangular markers, n = 
48 networks, 9 slices, 3 mice) and with uncaging in the presence of antagonist (RuBi-GABA + 
GABABR antagonist [magenta line and square markers, n = 32 networks, 8 slices, 5 mice] or 
RuBi-glutamate + mGluR2/3 antagonist [green line and square markers, n = 28 networks, 7 slices, 
4 mice]). 90–0s before and 0–150s after uncaging used to calculate event number/30s in 
neighboring astrocytes with ≥ 1 AQuA-detected event. Data shown by mean ± sem. Permutation 
test used to determine significance. p-values for all conditions and timepoints are in Extended 
Data Table 3.7. (i) Total number of AQuA-detected events in 50µm bands radiating out from the 
uncaging site. All events 90s before and 150s after NT uncaging are included. Data shown by 
trial/FOV, median and 25th and 75th percentile. (j) Distribution of relative event rates from 
20x20µm ROIs following uncaging of RuBi-GABA (left) and RuBi-glutamate (right). Validation 
for threshold used to define ROIs with increased activity post-uncaging; chosen threshold: ≥ 
50% event frequency increase post-uncaging. 
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Extended Data Figure 3.4: Change in individual astrocyte Ca2+ event features post NT-
uncaging.  
(a) Fold change in indicated Ca2+ event features among all events from all neighboring cells after 
GABA or glutamate uncaging, relative to 60–0s pre-uncaging. Data shown as overall fold 
change ± standard error determined from hierarchical bootstrapping (Methods; GABA: n = 142 
cells in 28 FOV; glutamate: n = 120 cells in 27 FOV). Two-sided p- and q-values for changes 
versus baseline were obtained by circularly shifting each cell’s events in time (see Methods; 
Extended Data Table 3.12). (b) Change in the probability of a Ca2+ event growing or shrinking in 
the indicated direction among all events from neighboring cells after GABA or glutamate 
uncaging, relative to 60–0s pre-uncaging. Data shown as overall probability ± standard error 
determined from hierarchical bootstrapping (Methods; GABA: n = 142 cells in 28 FOV; 
glutamate: n = 120 cells in 27 FOV). Two-sided p- and q-values for changes versus baseline 
were obtained by circularly shifting each cell’s events in time (see Methods; Extended Data 
Table 3.13).  
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Extended Data Figure 3.5: Validating changes in propagative event activity following NT-
uncaging.  
Extended Data Figure 3.5 continued on next page 
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Extended Data Figure 3.5 continued 
 
(a) Representative spatial maps of Ca2+ events in the same astrocyte network 0–120 s after either 
GABA (left) or glutamate (right) uncaging. Events are color-coded by onset time. Black dot = 
NT uncaging site. Events from all time-points are distributed throughout the imaging field. There 
is no visible wavefront of activity traveling across the imaging field or emanating from the 
uncaging site. Note that all panels except for (f) are data from WT slices. (b) Raster plots of Ca2+ 
event onsets for static (left) or propagative (right) events before and after GABA (magenta) or 
glutamate (green) uncaging. Raster plots show all neighboring cells (astrocytes not directly 
stimulated by NT-uncaging) from all FOVs, with each row showing events from an individual 
astrocyte. Within each NT and event type, cells were sorted by the overall rate of static events 
from 0–120s post-uncaging (i.e., the same sorting was used for the left and right raster plots). 
Grey line = NT uncaging start. (c) Scatter plots of event rates (event number/30s) within 
neighboring cells during the period 60–0s pre-uncaging (x-axis) versus 0–120s post-uncaging (y-
axis). Rates of propagative (left) and static (right) events are shown for recordings of GABA 
(top) and glutamate (bottom) uncaging. Dots are individual neighboring cells; darker dots 
indicate multiple overlapping cells. (d) Distribution of post-/pre-uncaging ratio of static (grey) or 
propagative (color) event rates among neighboring cells with any baseline events of the 
corresponding type, after GABA (magenta, top) or glutamate (green, bottom) uncaging. Ratios 
computed per-cell as the rate from 0–120s post-uncaging divided by the rate from 60–0s pre-
uncaging. Vertical black lines indicate the threshold used to determine “responding” cells in Fig. 
3.4h, l, m and Extended Data Fig. 3.6e (i.e., ≥ 1.5-fold). (e) Top: Distribution of the fraction of 
events during the baseline window (60–0s pre-uncaging) that were propagative in each 
neighboring cell before GABA (magenta) or glutamate (green) uncaging, among those cells that 
had any baseline propagative activity. Vertical magenta and green lines indicate the thresholds 
(50th percentile) for recordings of GABA and glutamate uncaging, respectively, used in Fig. 
3.4m left to delineate “Low” and “High” fraction of propagative events at baseline among 
neighboring cells. Bottom: Distribution of the overall event rate during the baseline window of 
60–0s pre– GABA (magenta) or glutamate (green) uncaging, in each neighboring cell that had 
baseline propagative activity. Vertical magenta and green lines indicate the thresholds (50th 
percentile) for recordings of GABA and glutamate uncaging, respectively, used in Fig. 3.4m 
right to delineate cells with “Low” and “High” overall event rates at baseline. (f) Baseline 
propagative (left) and static (right) event frequencies of astrocytes in WT or Cx43floxed slices. 
Baseline period: 90–0s prior to uncaging. Individual data points show average event rate from 
active neighboring astrocytes (≥ 1 AQuA-detected event during recording) for each FOV. Data 
shown by FOV (WT: n = 28 FOV for GABA and glutamate, 7 slices, 4 mice; Cx43floxed: n = 63 
FOV for GABA and 61 FOV for glutamate, 16 slices, 8 mice), median, 25th and 75th percentile. 
Wilcoxon rank sum test compares WT and Cx43floxed baseline event frequencies (GABA: p = 
1.6e-10 [propagative], 7.7e-14 [static]; glutamate: p = 9.0e-7 [propagative], 1.1e-12 [static]). (g) 
Baseline propagative (left) and static (right) event frequencies in WT networks prior to GABA 
and glutamate uncaging. 90–0s before uncaging used to calculate mean number of events/30s. 
Event rate per FOV calculated by averaging the event rates of active astrocytes in the FOV (≥ 1 
AQuA-detected event during the recording), excluding the uncaging astrocyte. Data shown by 
FOV (grey dots, n = 28), median, 25th and 75th percentile (black dot and crosshairs).  
Extended Data Figure 3.5 continued on next page 
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Extended Data Figure 3.5 continued 
 
Wilcoxon signed-rank test compares baseline event frequencies prior to GABA and glutamate 
uncaging (p = 0.00022 [propagative] and 0.052 [static]). (h) Spearman correlation between 
baseline propagative event rate and relative post-stim propagative event rate for neighboring 
cells in GABA (magenta) and glutamate (turquoise) recordings. Data shown by individual 
neighboring astrocyte (for h–i, n = 121 cells [GABA], 91 cells [glutamate] with ≥ 1 baseline 
propagative event). For h–i, 60–0s before uncaging used for baseline window and relative post-
stim propagative rate calculated as in d. (i) Spearman correlation between fraction of propagative 
events at baseline and relative post-stim propagative event rate for neighboring cells in GABA 
(left) and glutamate (right) recordings. Data shown by individual neighboring astrocyte color-
coded by baseline activity composition category (“low” in magenta or turquoise, “high” in grey). 
Light grey horizontal line = response threshold (responders ≥ 1.5-fold increase in propagative 
activity from baseline). Note a majority of astrocytes responding to either NT (at or above the 
response threshold line) display a low fraction of propagative events at baseline. (j) Propagative 
event frequency pre- and post-uncaging for neighboring cells with “low” and “high” fractions of 
propagative events at baseline (as for Fig. 3.4m, left). 60–0s before (“Pre”) and 0–120s after 
(“Post”) used to calculate average event number/30s. Data shown by cell (light dots and grey 
lines; n = 61 cells [GABA “low”], 60 cells [GABA “high”], 46 cells [glutamate “low”], 45 cells 
[glutamate “high”]) and mean ± sem (dark dots and error bars). Wilcoxon signed-rank test 
compare pre-and post-stim frequencies for each category. 
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Extended Data Figure 3.6: Static activity changes in the local astrocyte network are similar 
in response to GABA and glutamate.  
(a) Analysis schematic illustrating average static activity change across all neighboring cells in 
the local network, as reported in b and c. Heterogeneous responses of individual neighboring 
cells are averaged in b and c. (b–c) Fold-change in rate of static Ca2+ events among neighboring 
cells after GABA or glutamate uncaging in acute slices from WT mice (b) or Cx43floxed mice (c), 
relative to 60–0s pre-uncaging. Data shown as median across FOVs ± standard error via 
hierarchical bootstrapping (Methods; n for all conditions are in Extended Data Table 3.9). One-
sided p- and q-values were obtained via circular permutation testing (Methods; Extended Data 
Table 3.10); *: q < 0.05, **: q < 0.01. (d) Analysis schematic illustrating the fraction of 
neighboring cells per FOV that respond to NT with increases in static activity, as reported in e 
and f. Note that a subset of neighboring cells in the local network exhibit activity changes 
following NT uncaging. (e–f) Fraction of neighboring cells per FOV with ≥ 50% increase in 
static Ca2+ events (responding) after GABA or glutamate uncaging in WT (e) or Cx43floxed slices 
(f). Data shown as mean ± sem via hierarchical bootstrapping; dots denote individual FOVs (see 
Methods; n for all conditions are in Extended Data Table 3.9). Permutation testing was used to 
compare fraction of cells responding to GABA and glutamate in WT slices (p = 1.0) and 
Cx43floxed slices (static: p = 1.0).  
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Extended Data Figure 3.7: Individual neighboring astrocytes exhibit variable Ca2+ 
responses across multiple rounds of glutamate uncaging.  
(a) GluSnFR event features after RuBi-glutamate uncaging for three types of uncaging datasets. 
For number of events/uncaging site (left), data shown by uncaging trial, median, 25th and 75th 
percentile. For GluSnFR event area (right), data shown by GluSnFR event, median, 25th and 75th 
percentile (single round glutamate uncaging: n = 72 trials, 12 recordings, 4 slices, 2 mice; multi-
round glutamate uncaging: n = 66 trials, 11 recordings, 2 slices, 1 mouse; RuBi-glutamate 
uncaging control: n = 66 trials, 11 recordings, 2 slices, 1 mouse). For number of events, one-way 
ANOVA followed by Tukey-Kramer Test determine significant pairwise comparisons between 
laser stimulation conditions. p = 9.7e-10 (single round glutamate uncaging v multi-round 
glutamate uncaging), 9.6e-10 (single round glutamate uncaging v RuBi-glutamate uncaging 
control) and 9.6e-10 (multi-round glutamate uncaging vs RuBi-glutamate uncaging control). For 
event area, rank sum test compares single round glutamate uncaging vs. multi-round glutamate 
uncaging, p = 3.6e-10. All datasets were collected in the presence of RuBi-glutamate. For single 
round and multi-round glutamate uncaging, the uncaging laser power was set to 70 A.U. (~8mW 
at the sample). Laser re-alignment between these datasets leads to a small difference in amount 
of glutamate uncaged with laser stimulation (see event area on right).  
Extended Data Figure 3.7 continued on next page 
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Extended Data Figure 3.7 continued 
 
For RuBi-glutamate uncaging controls, the uncaging laser power was set to 25 A.U. (~2mW at 
the sample), a stimulation that did not lead to detectable glutamate uncaging (see event number 
on left). (b) Distance of Cyto-GCaMP-expressing neighboring astrocytes from the glutamate 
uncaging site. Distance measured from the centroid of each neighboring astrocyte to the centroid 
of the uncaging site. Data shown by active astrocyte (≥ 1 AQuA-detected event 0–300s from 
recording onset), median, 25th and 75th percentile (single round glutamate uncaging: n = 28 FOV, 
7 slices, 4 mice; multi-round glutamate uncaging: n = 23 FOV, 9 slices, 5 mice). Rank sum test 
compares datasets; p = 3.4e-15. (c) Correlation between the propagative Ca2+ responses of 
individual neighboring cells to multiple rounds of glutamate uncaging. Individual cells’ binary 
responses to glutamate uncaging are not significantly correlated across rounds (Spearman rho = 
0.040, p = 1.0, n = 32 cells, 15 recordings, 8 slices, 5 mice [round 1 vs 2]; Spearman rho = 0.14, 
p = 0.70, n = 30 cells, 16 recordings, 7 slices, 5 mice [round 1 vs 3]; Spearman rho = 0.059, p = 
0.74, n = 38 cells, 17 recordings, 8 slices, 5 mice [round 2 vs 3]), showing that the response of an 
individual cell is variable from round to round. In each round, activity was recorded 150–0s 
before and 0–600s following uncaging, with glutamate uncaged over an area of ~12µm2 (as in a, 
right “Multi-round glutamate uncaging”). Rounds of imaging/uncaging for each FOV were 
separated by ≥ 25 minutes. Cells included in analysis for each round had ≥ 1 propagative event 
during 60–0s before uncaging. Responding cells exhibited ≥ 50% increase in propagative event 
frequency 300–420s following uncaging, a time window in which activity began to increase 
across rounds, compared to 60–0s before uncaging. (d) Event frequency change in neighboring 
astrocytes across three rounds of glutamate uncaging (top) and RuBi-glutamate uncaging 
controls (bottom). 90–0s before and 0–570s after uncaging used to calculate mean event 
number/30s in active astrocytes (astrocytes in the local network with ≥1 AQuA-detected event 
during recording, excluding the stimulated cell). Data shown by mean ± sem (multi-round 
glutamate uncaging: n = 23 FOV for Round 1 and 3, 21 FOV for Round 2, 9 slices, 5 mice; 
RuBi-glutamate uncaging control: n = 20 FOV, 8 slices, 5 mice). Permutation test used to 
determine significance. p-values for all conditions, rounds, and time points are in Extended Data 
Table 3.14. The responses in multi-round glutamate uncaging are delayed compared to the single 
round glutamate uncaging dataset (Extended Data Fig. 3.3g). Two factors may account for this 
delay. First, less NT is released in the multi-round glutamate uncaging dataset (a). Second, the 
distance of astrocytes in the local network from the uncaging site is greater in the multi-round 
uncaging dataset compared to the single round uncaging dataset (b). (e) Baseline event 
frequencies for neighboring astrocytes across three rounds of glutamate uncaging. 90–0s before 
uncaging used to calculate mean event number/30s/active astrocytes in each FOV. Data shown 
FOV (light grey lines, n = 21 FOV, 9 slices, 5 mice) and mean ± sem (black dots and error bars). 
Repeated measures ANOVA compares baseline frequencies across rounds (F(2,40) = 1.51, p = 
0.23).  
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Tables 

Extended Data Table 3.1. Statistics for Fig. 3.1c 
Change in event frequency in astrocytes during bath-application of agonist. Permutation testing 
used to identify time-points with changes in event frequency greater than chance for each 
agonist. p-values corrected for multiple comparisons using Benjamini-Yekutieli procedure with 
FDR ≤ 0.05. Adjusted p-values < 0.05 are bold. 
 

Condition Time relative to 
agonist entry (s) 

p-values (raw) p-values (adjusted) 

Baclofen -240 – -180 0.598040195980402 1.90331632015370 
-180 – -120 0.429157084291571 1.82110765113965 
-120 – -60 0.374462553744626 1.82110765113965 
-60 – 0 0.570242975702430 1.90331632015370 
0–60 0.339466053394661 1.82110765113965 
60–120 9.99900009999000e-05 0.000848605615628913 
120–180 9.99900009999000e-05 0.000848605615628913 
180–240 9.99900009999000e-05 0.000848605615628913 

t-ACPD -240 – -180 0.950704929507049 2.80096426865250 
-180 – -120 0.939206079392061 2.80096426865250 
-120 – -60 0.851514848515149 2.80096426865250 
-60 – 0 0.990100989901010 2.80096426865250 
0–60 9.99900009999000e-05 0.000848605615628913 
60–120 9.99900009999000e-05 0.000848605615628913 
120–180 9.99900009999000e-05 0.000848605615628913 
180–240 0.0241975802419758 0.154021919236648 
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Extended Data Table 3.2. Statistics for Fig. 3.1e–h  
Dose-response curves. Paired t-tests at each concentration compare response to each agonist for 
each feature. p-values corrected for multiple comparisons using Bonferroni-Holm correction 
with FWER ≤ 0.05. Adjusted p-values < 0.05 are bold. 
 

Feature Agonist 
concentration (µM) 

p-values (raw) p-values (adjusted) 

Percent field 
active 

5 0.106884262919877 0.106884262919877 
25 0.00453636186896923 0.00907272373793845 
50 0.000175165474580620 0.000700661898322481 
100 0.000644835771994738 0.00193450731598421 

Event area 5 0.134291909278406 0.134291909278406 
25 0.00336246922231183 0.0100874076669355 
50 0.00274661524985296 0.0109864609994119 
100 0.0355015432722231 0.0710030865444463 

Event 
duration 

5 0.794523834669017 0.794523834669017 
25 0.00693357100768626 0.0208007130230588 
50 0.000707221042301198 0.00282888416920479 
100 0.0222444305319271 0.0444888610638542 

Event 
propagation 

5 0.503037904758348 0.503037904758348 
25 0.00201639415469164 0.00806557661876658 
50 0.00332572662050501 0.00997717986151502 
100 0.0102174453241840 0.0204348906483680 
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Extended Data Table 3.3. Statistics for Extended Data Fig. 3.1d  
Mean ∆F/F in astrocytes during bath-application of agonist. Permutation testing used to identify 
time-points with increases in ∆F/F greater than chance for each agonist. p-values corrected for 
multiple comparisons using Benjamini-Yekutieli procedure with FDR ≤ 0.05. Adjusted p-values 
< 0.05 are bold. 
 
Condition Time relative 

to agonist 
entry (s) 

p-values (raw) p-values (adjusted) 

Baclofen -300 – -270 0.950904909509049 3.48427432652907 
-270 – -240 0.617338266173383 3.48427432652907 
-240 – -210 0.853814618538146 3.48427432652907 
-210 – -180 0.391760823917608 3.08080444588937 
-180 – -150 0.996900309969003 3.48427432652907 
-150 – -120 0.528947105289471 3.48427432652907 
-120 – -90 0.957004299570043 3.48427432652907 
-90 – -60 0.982301769823018 3.48427432652907 
-60 – -30 0.995700429957004 3.48427432652907 
-30–0 0.654434556544346 3.48427432652907 
0–30 0.994300569943006 3.48427432652907 
30–60 0.00129987001299870 0.0157264137105124 
60–90 9.99900009999000e-05 0.00314528274210247 
90–120 0.00149985001499850 0.0157264137105124 
120–150 9.99900009999000e-05 0.00314528274210247 
150–180 0.0198980101989801 0.178831790193826 
180–210 0.000499950004999500 0.00786320685525618 
210–240 0.000199980001999800 0.00419371032280330 

t-ACPD -300 – -270 0.925507449255074 3.49510807819631 
-270 – -240 0.923607639236076 3.49510807819631 
-240 – -210 0.895510448955105 3.49510807819631 
-210 – -180 0.886511348865114 3.49510807819631 
-180 – -150 0.888211178882112 3.49510807819631 
-150 – -120 0.865413458654135 3.49510807819631 
-120 – -90 0.952504749525048 3.49510807819631 
-90 – -60 0.707029297070293 3.49510807819631 
-60 – -30 0.919608039196080 3.49510807819631 
-30–0 0.905409459054095 3.49510807819631 
0–30 9.99900009999000e-05 0.00314528274210247 
30–60 9.99900009999000e-05 0.00314528274210247 
60–90 1 3.49510807819631 
90–120 1 3.49510807819631 
120–150 1 3.49510807819631 
150–180 1 3.49510807819631 
180–210 1 3.49510807819631 
210–240 1 3.49510807819631 
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Extended Data Table 3.4. Statistics for Extended Data Fig. 3.1g  
Event features pre- and post-agonist addition. Comparison of distributions of event area, 
duration, and propagation 120–0s before (“Pre”) or 0–120s after (“Post”) addition of baclofen 
(50 µM) or t-ACPD (50 µM). One-way ANOVA followed by Tukey-Kramer Test determine 
significant pairwise comparisons between conditions. p-values < 0.05 are bold, greyed-out cells 
are pairwise comparisons that are not relevant. 
 

Feature Test Comparison p-values 
Area 1-way ANOVA  2.64502036644004e-13 

Tukey-Kramer 
Test 

Bac_pre v Bac_post 0.898277274752255 
Bac_pre v tACPD_pre 0.995109946477354 
Bac_pre v tACPD_post 7.59031018511269e-05 
Bac_post v tACPD_pre 0.975557200328527 
Bac_post v tACPD_post 8.83569961640518e-09 
tACPD_pre v tACPD_post 0.000158328341554381 

Duration 1-way ANOVA  2.90200679997044e-19 
Tukey-Kramer 
Test 

Bac_pre v Bac_post 0.705179159520994 
Bac_pre v tACPD_pre 0.997414358965489 
Bac_pre v tACPD_post 0.000778858034344410 
Bac_post v tACPD_pre 0.822905967024531 
Bac_post v tACPD_post 3.76825814996096e-09 
tACPD_pre v tACPD_post 0.000133775981740025 

Propagation 
distance 
 

1-way ANOVA  5.06378633615887e-15 
Tukey-Kramer 
Test 

Bac_pre v Bac_post 0.913414390535003 
Bac_pre v tACPD_pre 0.998952459006666 
Bac_pre v tACPD_post 3.10437553621146e-05 
Bac_post v tACPD_pre 0.959725706670736 
Bac_post v tACPD_post 4.12490908097141e-09 
tACPD_pre v tACPD_post 3.44219605847851e-05 

ΔF/F 1-way ANOVA  1.35022940218368e-148 
Tukey-Kramer 
Test 

Bac_pre v Bac_post 0.787076385709762 
Bac_pre v tACPD_pre 0.988259466617291 
Bac_pre v tACPD_post 3.76825814996096e-09 
Bac_post v tACPD_pre 0.518577476864315 
Bac_post v tACPD_post 3.76825814996096e-09 
tACPD_pre v tACPD_post 3.76825814996096e-09 
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Extended Data Table 3.5. Statistics for Extended Data Fig. 3.2b  
Change in event frequency in astrocytes directly stimulated with NT. Permutation testing used to 
identify time-points with changes in event frequency greater than chance for each condition. p-
values corrected for multiple comparisons using Benjamini-Yekutieli procedure with FDR ≤ 
0.05. Adjusted p-values < 0.05 are bold. 
 

 
  

Condition Time relative to 
uncaging (s) 

p-values (raw) p-values (adjusted) 

GABA 0–30 0.196880311968803 0.449543378995434 
30–60 0.149385061493851 0.426369863013699 
60–90 0.0115988401159884 0.0441400304414003 
90–120 9.99900009999000e-05 0.00114155251141553 
120–150 0.00229977002299770 0.0131278538812785 

Glutamate 0–30 0.118788121187881 0.339041095890411 
30–60 0.153984601539846 0.351598173515982 
60–90 0.000399960003999600 0.00228310502283105 
90–120 9.99900009999000e-05 0.00114155251141553 
120–150 0.0591940805919408 0.225266362252664 

GABA + 
CGP55845 

0–30 0.237476252374763 0.906392694063927 
30–60 0.363263673632637 1.03681506849315 
60–90 0.238176182381762 0.906392694063927 
90–120 0.00279972002799720 0.0319634703196347 
120–150 0.927407259274073 2.11757990867580 

Glutamate + 
LY341495 

0–30 0.0266973302669733 0.304794520547945 
30–60 0.883111688831117 2.23515981735160 
60–90 0.978902109789021 2.23515981735160 
90–120 0.919108089191081 2.23515981735160 
120–150 0.650334966503350 2.23515981735160 

Laser uncaging 
control 

0–30 0.0105989401059894 0.121004566210046 
30–60 0.0492950704929507 0.187595129375951 
60–90 0.407059294070593 1.16181506849315 
90–120 0.0379962003799620 0.187595129375951 
120–150 0.622337766223378 1.42100456621005 
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Extended Data Table 3.6. Statistics for Fig. 3.3h  
Change in event frequency in the astrocyte network via Sholl-like analysis. Permutation testing 
used to identify time-points with changes in event frequency greater than chance for each 
distance band and NT. p-values corrected for multiple comparisons using Benjamini-Yekutieli 
procedure with FDR ≤ 0.05. Adjusted p-values < 0.05 are bold. 
 

NT Distance 
from 

uncaging 
(µm) 

Time 
relative to 

uncaging (s) 

p-values (raw) p-values (adjusted) 

GABA 25–75  
  

0–30 0.0569943005699430 0.216894977168950 
30–60 0.798720127987201 1.82374429223744 
60–90 0.0429957004299570 0.216894977168950 
90–120 0.00599940005999400 0.0684931506849315 
120–150 0.535546445355465 1.52853881278539 

75–125 0–30 0.0666933306669333 0.276636225266362 
30–60 0.187281271872813 0.534531963470320 
60–90 0.0726927307269273 0.276636225266362 
90–120 0.00299970002999700 0.0342465753424658 
120–150 0.307269273072693 0.701598173515982 

125–175  0–30 0.0418958104189581 0.0956621004566210 
30–60 0.0140985901409859 0.0536529680365297 
60–90 0.0192980701929807 0.0550799086757991 
90–120 9.99900009999000e-05 0.00114155251141553 
120–150 0.00379962003799620 0.0216894977168950 

glutamate 25–75  
  

0–30 0.00169983001699830 0.00646879756468798 
30–60 0.00119988001199880 0.00646879756468798 
60–90 0.00799920007999200 0.0228310502283105 
90–120 9.99900009999000e-05 0.00114155251141553 
120–150 0.0128987101289871 0.0294520547945206 

75–125 0–30 0.255074492550745 0.728025114155251 
30–60 0.00459954004599540 0.0262557077625571 
60–90 0.00779922007799220 0.0296803652968037 
90–120 9.99900009999000e-05 0.00114155251141553 
120–150 0.576442355764424 1.31621004566210 

125–175  0–30 0.113988601139886 0.260273972602740 
30–60 0.0355964403559644 0.135464231354642 
60–90 0.00949905009499050 0.0542237442922375 
90–120 9.99900009999000e-05 0.00114155251141553 
120–150 0.0554944505549445 0.158390410958904 
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Extended Data Table 3.7. Statistics for Extended Data Fig. 3.3g, h  
Change in event frequency in individual astrocytes in the network. Permutation testing used to 
identify time-points with changes in event frequency greater than chance for each condition. p-
values corrected for multiple comparisons using Benjamini-Yekutieli procedure with FDR ≤ 
0.05. Adjusted p-values < 0.05 are bold. 
 

Condition Time relative 
to uncaging (s) 

p-values (raw) p-values (adjusted) 

GABA WT 0–30 0.00409959004099590 0.0156012176560122 
30–60 0.0294970502949705 0.0841894977168950 
60–90 0.000299970002999700 0.00171232876712329 
90–120 9.99900009999000e-05 0.00114155251141553 
120–150 0.519848015198480 1.18698630136986 

Glutamate WT 0–30 0.00479952004799520 0.0136986301369863 
30–60 9.99900009999000e-05 0.000570776255707763 
60–90 0.000299970002999700 0.00114155251141553 
90–120 9.99900009999000e-05 0.000570776255707763 
120–150 0.0480951904809519 0.109817351598174 

GABA 
Cx43floxed 

0–30 0.0586941305869413 0.335045662100457 
30–60 0.943105689431057 2.15342465753425 
60–90 0.373262673732627 1.42047184170472 
90–120 0.000499950004999500 0.00570776255707763 
120–150 0.814718528147185 2.15342465753425 

Glutamate 
Cx43floxed 

0–30 0.668933106689331 1.90924657534247 
30–60 0.878712128787121 2.00639269406393 
60–90 0.0154984501549845 0.176940639269406 
90–120 0.0617938206179382 0.352739726027397 
120–150 0.666933306669333 1.90924657534247 

GABA + 
CGP55845 

0–30 0.229877012298770 1.32363013698630 
30–60 0.460253974602540 1.32363013698630 
60–90 0.234976502349765 1.32363013698630 
90–120 0.463753624637536 1.32363013698630 
120–150 0.971902809719028 2.21917808219178 

Glutamate + 
LY341495 

0–30 0.181181881811819 0.997716894977169 
30–60 0.427057294270573 1.21889269406393 
60–90 0.160683931606839 0.997716894977169 
90–120 0.660733926607339 1.50867579908676 
120–150 0.262173782621738 0.997716894977169 

Laser 
uncaging 
control 

0–30 0.00899910008999100 0.102739726027397 
30–60 0.498050194980502 1.42151826484018 
60–90 0.668633136686331 1.52671232876712 
90–120 0.130786921307869 0.746575342465753 
120–150 0.239876012398760 0.912861491628615 
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Extended Data Table 3.8. Statistics for Fig. 3.4b 
Change in probability of Ca2+ events propagating toward or away from pia compared to baseline. 
Two-sided permutation testing was used to identify time bins with changes in propagative event 
probability compared to baseline. p-values were adjusted across tested time bins using the 
Benjamini-Hochberg procedure to obtain q-values. q-values < 0.05 are bold. 
 

NT Time relative to uncaging p-value q-value 
GABA -60–0 1.0 — 

0–30 0.10908909109089 0.218178182181781 
30–60 0.132586741325867 0.219406630765494 
60–90 0.350264973502649 0.389183303891833 

90–120 0.276672332766723 0.345840415958404 
120–150 0.153584641535846 0.219406630765494 

glutamate -60–0 1.0 — 
0–30 0.0011998800119988 0.005999400059994 

30–60 0.0161983801619838 0.0404959504049595 
60–90 0.002999700029997 0.00999900009999 

90–120 0.0008999100089991 0.005999400059994 
120–150 0.651534846515348 0.651534846515348 
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Extended Data Table 3.9. N for Fig. 3.4f, h, j, k and Extended Data Fig. 3.6 
Fold-change in rate of static or propagative Ca2+ events in neighboring cells post NT-uncaging in 
WT and Cx43floxed mice. Event rate changes were used to calculate the fraction of neighboring 
cells/FOV responding to NT-uncaging for each condition (Fig. 3.4 h and k and Extended Data 
Fig. 3.6 e–f).  
 
   N 
Genotype Event Category NT event cell FOV slice mice 

WT static GABA 8417 142 28 7 4 
glutamate 6998 120 27 7 4 

propagative GABA 1358 135 28 7 4 
glutamate 1112 115 27 7 4 

Cx43floxed static GABA 1566 60 28 14 8 
glutamate 1215 47 23 14 8 

propagative GABA 487 57 28 14 8 
glutamate 348 47 23 14 8 
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Extended Data Table 3.10. Statistics for Fig. 3.4f, j and Extended Data Fig. 3.6b–c 
Fold-change in rate of static or propagative Ca2+ events among neighboring cells post NT-
uncaging in WT and Cx43floxed mice. One-sided permutation test used to identify time bins with 
static or propagative event rate increases compared to baseline. p-values were adjusted across 
tested time bins using the Benjamini-Hochberg procedure to obtain q-values. q-values < 0.05 are 
bold. 
 

Genotype Event 
Category 

NT Time 
relative to 
uncaging 

p-value q-value 

WT 
 

static GABA -60–0 1.0 — 
0–30 0.5649435056494350 0.5888411158884110 

30–60 0.5888411158884110 0.5888411158884110 
60–90 0.0560943905609439 0.1121887811218870 

90–120 0.0012998700129987 0.0064993500649935 
120–150 0.0150984901509849 0.0377462253774622 

glutamate -60–0 1.0 — 
0–30 0.2686731326867310 0.3735876412358760 

30–60 0.0066993300669933 0.0223311002233110 
60–90 0.1374862513748620 0.2291437522914370 

90–120 0.0009999000099990 0.0064993500649935 
120–150 0.2988701129887010 0.3735876412358760 

propagative GABA -60–0 1.0 — 
0–30 0.0341965803419658 0.0683931606839316 

30–60 0.6876312368763120 0.7640347076403470 
60–90 0.2723727627237270 0.3404659534046590 

90–120 0.0726927307269273 0.1211545512115450 
120–150 0.9524047595240470 0.9524047595240470 

glutamate -60–0 1.0 — 
0–30 0.0071992800719928 0.0179982001799820 

30–60 0.0071992800719928 0.0179982001799820 
60–90 0.0000999900009999 0.0004999500049995 

90–120 0.0000999900009999 0.0004999500049995 
120–150 0.2249775022497750 0.3213964317853920 

Cx43floxed 
 

static GABA -60–0 1.0 — 
0–30 0.961603839616038 0.995600439956004 

30–60 0.698030196980302 0.995600439956004 
60–90 0.859614038596140 0.995600439956004 

90–120 0.198480151984801 0.995600439956004 
120–150 0.874012598740125 0.995600439956004 

glutamate -60–0 1.0 — 
0–30 0.559344065593440 0.995600439956004 

30–60 0.995600439956004 0.995600439956004 
60–90 0.915308469153084 0.995600439956004 

90–120 0.700929907009299 0.995600439956004 
120–150 0.798820117988201 0.995600439956004 

propagative GABA -60–0 1.0 — 
0–30 0.812918708129187 0.933684409336844 
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Genotype Event 
Category 

NT Time 
relative to 
uncaging 

p-value q-value 

30–60 0.939206079392060 0.939206079392060 
60–90 0.444755524447555 0.933684409336844 

90–120 0.830316968303169 0.933684409336844 
120–150 0.813818618138186 0.933684409336844 

glutamate -60–0 1.0 — 
0–30 0.793020697930207 0.933684409336844 

30–60 0.834616538346165 0.933684409336844 
60–90 0.397960203979602 0.933684409336844 

90–120 0.379562043795620 0.933684409336844 
120–150 0.840315968403159 0.933684409336844 
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Extended Data Table 3.11. N for Fig. 3.4m 
Fraction of neighboring cells responding to NT-uncaging with propagative event frequency 
increases separated by baseline activity levels. “All” (static and propagative) events were used to 
calculate overall baseline event rate and fraction of propagative events in the baseline period to 
separate cells into “low” and “high” overall baseline activity or “low” and “high” baseline 
propagation, respectively. Propagative events were used to categorize cells as “responders” or 
“non-responders” to NT-uncaging. 
 
  N 

Event 
Category 

NT event cell FOV slice mice 

all GABA 9775 142 28 7 4 
glutamate 8110 120 27 7 4 

propagative GABA 1358 135 28 7 4 
glutamate 1112 115 27 7 4 
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Extended Data Table 3.12. Statistics for Extended Data Fig. 3.4a 
Fold change in individual Ca2+ events features compared to baseline. Two-sided permutation 
testing was used to identify time bins with changes in event features compared to baseline. p-
values were adjusted across tested time bins using the Benjamini-Hochberg procedure to obtain 
q-values. q-values < 0.05 are bold. 
 

Event Feature NT Time relative 
to uncaging 

p-value q-value 

Area GABA -60–0 1.0 — 
0–30 0.2707292707292700 0.3867561010418150 
30–60 0.7262737262737260 0.8069708069708070 
60–90 0.5004995004995000 0.6256243756243750 
90–120 0.1428571428571420 0.2380952380952380 
120–150 0.0159840159840159 0.0474525474525474 

glutamate -60–0 1.0 — 
0–30 0.0099900099900100 0.0474525474525474 
30–60 0.0709290709290709 0.1418581418581410 
60–90 0.0189810189810189 0.0474525474525474 
90–120 0.0019980019980020 0.0199800199800199 
120–150 0.9890109890109890 0.9890109890109890 

Perimeter GABA -60–0 1.0 — 
0–30 0.2907092907092900 0.4152989867275580 
30–60 0.8021978021978020 0.8021978021978020 
60–90 0.3806193806193800 0.4273504273504270 
90–120 0.1398601398601390 0.2331002331002330 
120–150 0.0619380619380619 0.1238761238761230 

glutamate -60–0 1.0 — 
0–30 0.0189810189810189 0.0632700632700632 
30–60 0.0359640359640359 0.0899100899100899 
60–90 0.0059940059940060 0.0299700299700299 
90–120 0.0009990009990010 0.0099900099900100 
120–150 0.3846153846153840 0.4273504273504270 

Circularity GABA -60–0 1.0 — 
0–30 0.3686313686313680 0.4095904095904090 
30–60 0.3276723276723270 0.4095904095904090 
60–90 0.3266733266733260 0.4095904095904090 
90–120 0.1928071928071920 0.3213453213453210 
120–150 0.5244755244755240 0.5244755244755240 

glutamate -60–0 1.0 — 
0–30 0.0369630369630369 0.0739260739260739 
30–60 0.0089910089910090 0.0299700299700299 
60–90 0.0089910089910090 0.0299700299700299 
90–120 0.0009990009990010 0.0099900099900100 
120–150 0.0249750249750249 0.0624375624375624 

Peak ∆F/F GABA -60–0 1.0 — 
0–30 0.7932067932067930 0.8813408813408810 
30–60 0.6193806193806190 0.8728771228771220 
60–90 0.9460539460539460 0.9460539460539460 
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Event Feature NT Time relative 
to uncaging 

p-value q-value 

90–120 0.3456543456543450 0.8641358641358640 
120–150 0.0079920079920080 0.0399600399600399 

glutamate -60–0 1.0 — 
0–30 0.6983016983016980 0.8728771228771220 
30–60 0.2247752247752240 0.7492507492507490 
60–90 0.6513486513486510 0.8728771228771220 
90–120 0.5284715284715280 0.8728771228771220 
120–150 0.0009990009990010 0.0099900099900100 

Fall time GABA -60–0 1.0 — 
0–30 0.9150849150849150 0.9150849150849150 
30–60 0.0789210789210789 0.1578421578421570 
60–90 0.0549450549450549 0.1373626373626370 
90–120 0.0079920079920080 0.0266400266400266 
120–150 0.0009990009990010 0.0049950049950050 

glutamate -60–0 1.0 — 
0–30 0.2287712287712280 0.3812853812853810 
30–60 0.5644355644355640 0.6271506271506270 
60–90 0.3876123876123870 0.4845154845154840 
90–120 0.3426573426573420 0.4845154845154840 
120–150 — — 

Rise time GABA -60–0 1.0 — 
0–30 0.1798201798201790 0.1998001998001990 
30–60 0.1088911088911080 0.1361138861138860 
60–90 0.0109890109890109 0.0156985871271585 
90–120 0.0019980019980020 0.0049950049950050 
120–150 0.6643356643356640 0.6643356643356640 

glutamate -60–0 1.0 — 
0–30 0.0109890109890109 0.0156985871271585 
30–60 0.0049950049950050 0.0099900099900100 
60–90 0.0009990009990010 0.0033300033300033 
90–120 0.0009990009990010 0.0033300033300033 
120–150 0.0009990009990010 0.0033300033300033 

Decay time 
constant 

GABA -60–0 1.0 — 
0–30 0.8951048951048950 0.8951048951048950 
30–60 0.1318681318681310 0.3216783216783210 
60–90 0.1608391608391600 0.3216783216783210 
90–120 0.0199800199800199 0.0666000666000666 
120–150 — — 

glutamate -60–0 1.0 — 
0–30 0.3766233766233760 0.5380333951762520 
30–60 0.7402597402597400 0.8225108225108220 
60–90 0.3686313686313680 0.5380333951762520 
90–120 0.4775224775224770 0.5969030969030960 
120–150 — — 

Duration (10% 
peak) 

GABA -60–0 1.0 — 
0–30 0.5714285714285710 0.7842157842157840 
30–60 0.6273726273726270 0.7842157842157840 
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Event Feature NT Time relative 
to uncaging 

p-value q-value 

60–90 0.9650349650349650 0.9650349650349650 
90–120 0.8731268731268730 0.9650349650349650 
120–150 — — 

glutamate -60–0 1.0 — 
0–30 0.0409590409590409 0.0999000999000999 
30–60 0.0499500499500499 0.0999000999000999 
60–90 0.0239760239760239 0.0799200799200799 
90–120 0.0639360639360639 0.1065601065601060 
120–150 — — 
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Extended Data Table 3.13. Statistics for Extended Data Fig. 3.4b 
Change in probability of Ca2+ events growing or shrinking in the indicated direction compared to 
baseline. Two-sided permutation testing was used to identify time bins with changes in 
propagation probability compared to baseline. p-values were adjusted across tested time bins 
using the Benjamini-Hochberg procedure to obtain q-values. q-values < 0.05 are bold. 
 

Propagation 
direction 

NT Time relative 
to uncaging 

p-value q-value 

Growth 
toward pia 

GABA -60–0 1.0 — 
0–30 0.4575424575424570 0.6978735550164120 
30–60 0.3976023976023970 0.6978735550164120 
60–90 0.5764235764235760 0.7159507159507160 
90–120 0.7182817182817180 0.7182817182817180 
120–150 0.4885114885114880 0.6978735550164120 

glutamate -60–0 1.0 — 
0–30 0.0009990009990010 0.0099900099900100 
30–60 0.0149850149850149 0.0374625374625374 
60–90 0.0049950049950050 0.0166500166500166 
90–120 0.0019980019980020 0.0099900099900100 
120–150 0.6443556443556440 0.7159507159507160 

Growth away 
from pia 

GABA -60–0 1.0 — 
0–30 0.6063936063936060 0.6063936063936060 
30–60 0.1988011988011980 0.2840017125731410 
60–90 0.5224775224775220 0.5805305805305800 
90–120 0.2367632367632360 0.2959540459540450 
120–150 0.0529470529470529 0.1323676323676320 

glutamate -60–0 1.0 — 
0–30 0.0179820179820179 0.0899100899100899 
30–60 0.0929070929070929 0.1858141858141850 
60–90 0.0139860139860139 0.0899100899100899 
90–120 0.0319680319680319 0.1065601065601060 
120–150 0.1368631368631360 0.2281052281052280 

Growth right GABA -60–0 1.0000000000000000 — 
0–30 0.6513486513486510 0.7237207237207230 
30–60 0.4195804195804190 0.5994005994005990 
60–90 0.8341658341658340 0.8341658341658340 
90–120 0.3056943056943050 0.5094905094905090 
120–150 0.0119880119880119 0.0599400599400599 

glutamate -60–0 1.0 — 
0–30 0.0009990009990010 0.0099900099900100 
30–60 0.0609390609390609 0.1523476523476520 
60–90 0.0229770229770229 0.0765900765900765 
90–120 0.0829170829170829 0.1658341658341650 
120–150 0.6493506493506490 0.7237207237207230 

Growth left GABA -60–0 1.0 — 
0–30 0.1148851148851140 0.1914751914751910 
30–60 0.3736263736263730 0.4895104895104890 
60–90 0.3916083916083910 0.4895104895104890 
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Propagation 
direction 

NT Time relative 
to uncaging 

p-value q-value 

90–120 0.4835164835164830 0.5372405372405370 
120–150 0.0609390609390609 0.1298701298701290 

glutamate -60–0 1.0 — 
0–30 0.0569430569430569 0.1298701298701290 
30–60 0.0479520479520479 0.1298701298701290 
60–90 0.0389610389610389 0.1298701298701290 
90–120 0.0649350649350649 0.1298701298701290 
120–150 0.9230769230769230 0.9230769230769230 

Shrinking 
away from pia 

GABA -60–0 1.0 — 
0–30 0.6213786213786210 0.7170607170607170 
30–60 0.4595404595404590 0.6564863707720850 
60–90 0.9120879120879120 0.9120879120879120 
90–120 0.1958041958041950 0.3916083916083910 
120–150 0.1328671328671320 0.3321678321678320 

glutamate -60–0 1.0 — 
0–30 0.0809190809190809 0.3321678321678320 
30–60 0.0309690309690309 0.3096903096903090 
60–90 0.2447552447552440 0.4079254079254070 
90–120 0.1268731268731260 0.3321678321678320 
120–150 0.6453546453546450 0.7170607170607170 

Shrinking 
away from 
deeper layers 

GABA -60–0 1.0 — 
0–30 0.6793206793206790 0.7472527472527470 
30–60 0.2237762237762230 0.4475524475524470 
60–90 0.6083916083916080 0.7472527472527470 
90–120 0.7472527472527470 0.7472527472527470 
120–150 0.0339660339660339 0.1898101898101890 

glutamate -60–0 1.0 — 
0–30 0.0569430569430569 0.1898101898101890 
30–60 0.3356643356643350 0.5594405594405590 
60–90 0.0419580419580419 0.1898101898101890 
90–120 0.2097902097902090 0.4475524475524470 
120–150 0.4985014985014980 0.7121449978592830 

Shrinking 
away from 
right 

GABA -60–0 1.0000000000000000 1.0000000000000000 
0–30 0.6383616383616380 0.6383616383616380 
30–60 0.3776223776223770 0.5394605394605390 
60–90 0.4615384615384610 0.5769230769230760 
90–120 0.1898101898101890 0.3796203796203790 
120–150 0.2517482517482510 0.4195804195804190 

glutamate -60–0 1.0 — 
0–30 0.0799200799200799 0.3796203796203790 
30–60 0.1718281718281710 0.3796203796203790 
60–90 0.1528471528471520 0.3796203796203790 
90–120 0.1018981018981010 0.3796203796203790 
120–150 0.5754245754245750 0.6383616383616380 

GABA -60–0 1.0 — 
0–30 0.6963036963036960 0.8191808191808190 
30–60 0.1238761238761230 0.2397602397602390 
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Propagation 
direction 

NT Time relative 
to uncaging 

p-value q-value 

Shrinking 
away from 
left 

60–90 0.7372627372627370 0.8191808191808190 
90–120 0.2047952047952040 0.2925645782788640 
120–150 0.1438561438561430 0.2397602397602390 

glutamate -60–0 1.0 — 
0–30 0.0849150849150849 0.2397602397602390 
30–60 0.0499500499500499 0.2397602397602390 
60–90 0.0179820179820179 0.1798201798201790 
90–120 0.1348651348651340 0.2397602397602390 
120–150 0.8341658341658340 0.8341658341658340 
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Extended Data Table 3.14. Statistics for Extended Data Fig. 3.7d 
Change in event frequency in neighboring cells during multiple rounds of glutamate uncaging or 
in RuBi-glutamate uncaging controls. Permutation testing used to identify time-points with 
changes in event frequency greater than chance for each condition. p-values corrected for 
multiple comparisons using Benjamini-Yekutieli procedure with FDR ≤ 0.05. Adjusted p-values 
< 0.05 are bold. 
 

Dataset Round Time 
relative to 
uncaging 

p-values (raw) p-values (adjusted) 

Multi-round 
glutamate 
uncaging 

Round 1 0–30 0.107389261073893 0.482586244333393 
30–60 0.497850214978502 1.86436755938545 
60–90 0.373962603739626 1.48280689599646 
90–120 0.101789821017898 0.482586244333393 
120–150 0.613638636136386 2.17703012457662 
150–180 0.00779922007799220 0.0438102037453499 
180–210 0.0619938006199380 0.321447648782449 
210–240 0.00389961003899610 0.0238964747701909 
240–270 0.135986401359864 0.572902664362268 
270–300 0.00119988001199880 0.00898670846058460 
300–330 0.000199980001999800 0.00192572324155384 
330–360 0.000799920007999200 0.00674003134543845 
360–390 0.00289971002899710 0.0195460909017715 
390–420 9.99900009999000e-05 0.00112333855757308 
420–450 9.99900009999000e-05 0.00112333855757308 
450–480 9.99900009999000e-05 0.00112333855757308 
480–510 9.99900009999000e-05 0.00112333855757308 
510–540 9.99900009999000e-05 0.00112333855757308 
540–570 9.99900009999000e-05 0.00112333855757308 

Round 2 0–30 0.104989501049895 0.505502350907884 
30–60 0.379962003799620 1.58866503536305 
60–90 0.679432056794321 2.41044805222391 
90–120 0.561243875612439 2.10176644121922 
120–150 0.363463653634637 1.58866503536305 
150–180 0.0125987401259874 0.0943604388361383 
180–210 0.0209979002099790 0.141540658254208 
210–240 0.400659934006599 1.58866503536305 
240–270 0.0349965003499650 0.214455542809405 
270–300 0.103689631036896 0.505502350907884 
300–330 0.0536946305369463 0.301616402708371 
330–360 0.000199980001999800 0.00168500783635961 
360–390 9.99900009999000e-05 0.000962861620776922 
390–420 9.99900009999000e-05 0.000962861620776922 
420–450 9.99900009999000e-05 0.000962861620776922 
450–480 9.99900009999000e-05 0.000962861620776922 
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Dataset Round Time 
relative to 
uncaging 

p-values (raw) p-values (adjusted) 

480–510 9.99900009999000e-05 0.000962861620776922 
510–540 9.99900009999000e-05 0.000962861620776922 
540–570 9.99900009999000e-05 0.000962861620776922 

Round 3 0–30 0.684231576842316 2.71306085275502 
30–60 0.654234576542346 2.71306085275502 
60–90 0.806319368063194 3.01953404275643 
90–120 0.357364263573643 1.85299015604593 
120–150 0.244075592440756 1.49567422856502 
150–180 0.354064593540646 1.85299015604593 
180–210 0.622237776222378 2.71306085275502 
210–240 0.904009599040096 3.20719070495311 
240–270 0.0222977702229777 0.187878373754097 
270–300 0.479252074792521 2.30749787419189 
300–330 0.135886411358864 1.01774473316121 
330–360 0.210678932106789 1.42012460448388 
360–390 0.00909909009099090 0.0876204074906999 
390–420 0.000599940005999400 0.00674003134543845 
420–450 9.99900009999000e-05 0.00168500783635961 
450–480 9.99900009999000e-05 0.00168500783635961 
480–510 0.000499950004999500 0.00674003134543845 
510–540 9.99900009999000e-05 0.00168500783635961 
540–570 9.99900009999000e-05 0.00168500783635961 

RuBi-
glutamate 
uncaging 
control 

Round 1 0–30 0.982401759824018 3.53816171786332 
30–60 0.778222177782222 3.08574493891456 
60–90 0.0261973802619738 0.346630183479692 
90–120 0.00819918008199180 0.276341285162977 
120–150 0.392460753924608 1.83778188018955 
150–180 0.997300269973003 3.53816171786332 
180–210 0.408959104089591 1.83778188018955 
210–240 0.601639836016398 2.53467303784395 
240–270 0.0212978702129787 0.346630183479692 
270–300 0.211778822117788 1.18961553246989 
300–330 0.103589641035896 0.634788406715840 
330–360 0.0359964003599640 0.346630183479692 
360–390 0.0818918108189181 0.552008567191409 
390–420 0.0743925607439256 0.552008567191409 
420–450 0.00609939006099390 0.276341285162977 
450–480 0.0521947805219478 0.439787045289859 
480–510 0.0229977002299770 0.346630183479692 
510–540 0.0346965303469653 0.346630183479692 
540–570 0.267973202679732 1.38948338505962 

Round 2 0–30 0.0592940705929407 1.75240814981400 
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Dataset Round Time 
relative to 
uncaging 

p-values (raw) p-values (adjusted) 

30–60 0.604039596040396 2.85187576303865 
60–90 0.0238976102389761 1.61086749155979 
90–120 0.121987801219878 1.75240814981400 
120–150 0.916208379162084 3.25046880096066 
150–180 0.847915208479152 3.17530365607323 
180–210 0.755224477552245 2.99455627953510 
210–240 0.137786221377862 1.75240814981400 
240–270 0.155984401559844 1.75240814981400 
270–300 0.676932306769323 2.85187576303865 
300–330 0.207279272072793 1.99601213987056 
330–360 0.479252074792521 2.69208085322388 
360–390 0.116288371162884 1.75240814981400 
390–420 0.341065893410659 2.55447187992117 
420–450 0.324367563243676 2.55447187992117 
450–480 0.666833316668333 2.85187576303865 
480–510 0.419858014198580 2.57285378359055 
510–540 0.604739526047395 2.85187576303865 
540–570 0.381361863813619 2.57064795515023 

Round 3 0–30 0.593640635936406 2.66770440652454 
30–60 0.869013098690131 3.36402453374550 
60–90 0.287671232876712 2.66770440652454 
90–120 0.0991900809919008 1.67152777366874 
120–150 0.327267273272673 2.66770440652454 
150–180 0.999100089991001 3.54454701071690 
180–210 0.505849415058494 2.66770440652454 
210–240 0.406459354064594 2.66770440652454 
240–270 0.0353964603539646 1.19298554814261 
270–300 0.515848415158484 2.66770440652454 
300–330 0.357564243575642 2.66770440652454 
330–360 0.0989901009899010 1.67152777366874 
360–390 0.572942705729427 2.66770440652454 
390–420 0.465453454654535 2.66770440652454 
420–450 0.859514048595141 3.36402453374550 
450–480 0.206879312068793 2.66770440652454 
480–510 0.00809919008099190 0.545942538980515 
510–540 0.431456854314569 2.66770440652454 
540–570 0.898310168983102 3.36402453374550 
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Chapter 4: 
A Photoactivatable Norepinephrine for Probing Adrenergic Neural Circuits 

 
Abstract 

Norepinephrine (NE) is a critical neuromodulator that mediates a wide range of behavior and 

neurophysiology, including attention, arousal, plasticity, and memory consolidation. A major 

source of NE is the brainstem nucleus the locus coeruleus (LC), which sends widespread 

projections throughout the central nervous system (CNS). Efforts to dissect this complex 

noradrenergic circuitry have driven the development of many tools that detect endogenous NE or 

modulate widespread NE release via LC activation and inhibition. While these tools have 

enabled research that elucidates physiological roles of NE, additional tools to probe these circuits 

with a higher degree of spatial precision could enable a finer delineation of function. Here, we 

describe the synthesis and chemical properties of a photo-activatable NE, 

[Ru(bpy)2(PMe3)(NE)]PF6 (RuBi-NE). We validate the one-photon (1P) release of NE using 

whole-cell patch clamp electrophysiology in acute mouse brain slices containing the LC. We 

show that a 10 ms pulse of blue light, in the presence of RuBi-NE, briefly modulates the firing 

rate of LC neurons via a-2 adrenergic receptors. The development of a photo-activatable NE that 

can be released with light in the visible spectrum provides a new tool for fine-grained mapping 

of complex noradrenergic circuits, as well as the ability to probe how NE acts on non-neuronal 

cells in the CNS.  

 



163 
 

Introduction 

The neuromodulator norepinephrine (NE) plays fundamental roles in the nervous system by 

mediating attention1–3, plasticity4,5, and memory consolidation6. Further, an imbalance in NE 

levels has been implicated in both attention-deficit/hyperactivity disorder7,8 and depression9–11. 

NE performs this wide range of neuromodulatory functions by acting on a number of receptors 

across diverse cell types in the central nervous system, including neurons, astrocytes, and 

microglia12–20. Given both the fundamental roles of NE in the central nervous system (CNS) and 

the diversity of its cellular targets, tools to dissect this complex neuromodulatory system are 

critical to understand its many functions. A recent push to dissect noradrenergic circuit logic has 

led to the development of NE-based tools both to detect endogenous NE activity and to 

experimentally stimulate or inhibit NE release. Development of fluorescent sensors for NE, such 

as GRABNE21 and a carbon nanotube-based NE nanosensor22, allow for in vivo detection of 

endogenous NE release. In an effort to manipulate noradrenergic circuits, a number of groups 

have optogenetically activated or inhibited the locus coeruleus (LC) to either stimulate23–25 or 

inhibit23,26 NE release throughout the CNS. While optogenetic activation of the LC provides a 

physiologically relevant spatial pattern of release, this spatial pattern is inherently widespread, 

targeting many regions of the CNS27–29. Due to their highly collateralized nature, even targeted 

stimulation of a single axon or neuron may result in NE release across a relatively broad 

field29,30. Additionally, it has been shown that LC neurons have the capacity to co-release 

dopamine along with NE31. Thus, to provide a tool to probe noradrenergic circuits with a higher 

degree of spatial precision and to isolate the specific action of NE on cells and circuits, we have 

developed a photoactivatable NE.   
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 Photoactivatable compounds have proven to be powerful tools for mapping functional 

connectivity of GABAergic and glutamatergic circuits32–34, receptor localization35, and locations 

of synaptic inputs onto subcellular compartments of neurons36. A photoactivatable compound is a 

molecule “caged within” a protecting group that is released upon absorption of light. This 

reaction occurs quickly, and the amount of molecule released can be scaled by altering light 

intensity and beam size. Thus, photoactivatable compounds make it possible to release molecules 

in a temporally and spatially precise manner, without mechanically disturbing the preparation. A 

photoactivatable NE has previously been developed37. However, it is activated by light in the UV 

spectrum, which can be damaging to, and have difficulty penetrating into, biological tissue. 

Thus, a new photoactivatable NE, activated by light in the visible spectrum, would greatly 

improve our ability to probe noradrenergic circuits in the same way that photoactivatable 

glutamate and GABA have enabled a detailed mapping of their respective circuits and receptors.  

 Ruthenium-bipyridine caged compounds were first presented two decades ago38 as a new 

way to extend the activation spectrum to longer wavelengths. These cages are comprised of a 

ruthenium core coordinated to one or two bipyridines or analogue molecules, and one or two 

monodentate ligands. These complexes show a strong absorption in the visible region (usually 

blue-to-green), corresponding to a 1MLCT charge transfer band39. Upon irradiation of such band, 

in a fast sequence that occurs in tens of nanoseconds, a dissociative d-d state is populated, which 

leads to the release of one of the monodentate ligands, usually the molecule of interest. The 

remaining monodentate ligand can be used to tune the chemical and photochemical properties of 

the complex.  

 Here, we describe the synthesis and chemical properties of RuBi-NE, which releases NE 

upon absorption of visible light. Additionally, we demonstrate its use in a biological system by 
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modulating the firing rate of locus coeruleus (LC) neurons, neurons known to be autoregulated 

by NE40,41. In the future, RuBi-NE allows for the stimulation of cells and circuits with NE in a 

spatially and temporally precise manner. Targeted release of NE will allow for a fine-grained 

mapping of the functional connectivity of noradrenergic circuits, as well as an ability to probe 

how NE acts on non-neuronal cells in the CNS. The ability to dissect noradrenergic circuits with 

this level of precision will help to move the field toward a deeper understanding of how NE 

performs its wide range of neuromodulatory functions.  

 

Results 

Although the synthesis of RuBi caged compounds is straightforward42, special care must be 

taken to obtain RuBi-NE, due to the tendency of free NE phenol groups to undergo oxidation in 

the basic media needed for coordination. Thus, the synthesis must be performed in deep 

anaerobic conditions using Schlenk procedures (see Methods). Once obtained, RuBi-NE is a 

stable solid that can be stored at room temperature, although a -15°C freezer is preferable for 

long-term storage. RuBi-NE is a +2 charged cation at low pH, although in physiological 

conditions its phenol groups can be partially deprotonated. 

 To confirm the biocompatibility of the RuBi-NE complex and evaluate its performance as 

a NE phototrigger, a series of electrophysiology experiments in acute brain slices containing LC 

were performed. First, we identified LC neurons for recording by crossing a mouse line that 

expresses Cre in LC neurons (TH-Cre) with a Cre-inducible fluorescent reporter line (Ai14) to 

drive expression of the red-shifted fluorescent molecule TdTomato specifically in LC neurons 

(Fig. 4.1a). These fluorescently labeled neurons exhibited the stereotypical large morphology of 

LC neuronal somata. Next, we targeted these cells for whole-cell patch-clamp recordings, 
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including Alexa dye in the pipette solution to confirm that the correct cell was patch-clamped 

(Fig. 4.1a). Patched cells were held in the current clamp configuration, and we observed that 

these neurons spontaneously fired action potentials (APs), as has been described previously43–46. 

We took advantage of the fact that LC neurons themselves express a2 adrenergic receptors 

(ARs), and NE activation of these receptors acts to inhibits AP firing of these cells41. We 

confirmed this cellular behavior by bathing the slice with 30μM NE, and observed a marked 

decrease in AP firing, as expected (Fig. 4.1b). We thus reasoned that any increase in NE at the 

patched cell would decrease AP firing. 

 To test whether photoactivation of RuBi-NE causes increased local NE, we added RuBi-

NE to the bath in standard artificial cerebraspinal fluid (ACSF), without any additional NE. We 

first confirmed that RuBi-NE in the bath solution did not change cellular activity of the patched 

neuron, with AP firing rate unchanged between the two conditions (ACSF: 1.94 ± 0.31 spikes/s 

and RuBi-NE: 2.09 ± 0.10 spikes/s, p = 0.60, unpaired t-test). However, upon one-photon (1P) 

activation (10 ms) using 446–486 nm blue light, we observed a consistent decrease in AP firing 

rate (Fig. 4.1c, d [top], e [middle]), indicating that NE was indeed photoreleased. The blue light 

itself did not have any effect on AP firing, since the same effect was not observed when RuBi-

NE was not added to the bath (Fig. 4.1e, left). Next, to confirm that the change in AP firing was 

due to release of NE and activation of ARs, we carried out the same 1P-photoactivation but 

added the a2 AR antagonist (idazoxan, 2 µM) to the bath along with RuBi-NE. Upon blue-light 

activation in these experiments, we no longer observed a change in AP firing (Fig. 4.1d [bottom], 

e [right]), although idazoxan itself increased firing rate, as previously43,47. These data indicate 

that RuBi-NE photoactivation specifically increases local NE concentration.  

https://sciwheel.com/work/citation?ids=6540567,6494379,4528442,6511566&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=368954&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6540567,4348036&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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 To demonstrate the temporal dynamics of the NE photoactivation on LC neurons, we also 

calculated the interspike interval (ISI) between the APs occurring before and after the 10 ms 

blue-light pulse. When quantifying the ISI, we detected no significant difference among 

conditions before the blue light photoactivation (RuBi-NE: 0.5151 ± 0.0082s, 0.4984 ± 0.007s, 

ACSF: 0.5992 ± 0.0578s, 0.6453 ± 0.0545s and RuBi-NE + idazoxan: 0.3794 ± 0.1227s, 0.3071 

± 0.0473s, for each of the two ISIs, respectively, immediately preceding the light pulse), but a 

significant delay between spikes after the pulse with RuBi-NE in the bath compared to the ACSF 

condition (RuBi-NE: 5.1641 ± 0.7551s, 9.2122 ± 0.8788s, 2.45165 ± 0.1469s, ACSF: 0.6735 ± 

0.0454s, 0.6549 ± 0.0424s, 0.6708 ± 0.0516s and RuBi-NE + idazoxan: 0.2201 ± 0.0109s, 

0.1901 ± 0.051s, 0.2252 ± 0.0226s, for each of the three ISIs respectively, including and 

immediately following the light pulse. Two-way ANOVA followed by Bonferroni test determine 

significant pairwise comparisons between conditions and ISIs; p = 0.0492 between RuBi-NE and 

ACSF between spikes 1:2 following the light pulse) (Fig. 4.1f, green). These ISI delays were not 

observed when the experiment was carried out in ACSF only (Fig. 4.1f, black), or when idazoxan 

was applied to the bath with RuBi-NE (Fig. 4.1f, pink). Similarly, when we quantify the absolute 

time of each AP from the light pulse, we find that a 10 ms photo-release of RuBi-NE 

significantly delays the firing of subsequent APs, such that the second and third AP after the light 

pulse occurs 14.0546 ± 0.9813s and 16.47 ± 1.0317s after the light stimulation (Fig. 4.1g, green), 

while the control APs after the pulse occurred at 1.05 ± 0.0603s and 1.73 ± 0.1042s, and 0.3068 

± 0.1407s and 0.53 ± 0.1633s (Fig. 4.1g, black and pink, respectively, two-way ANOVA 

followed by Bonferroni test determine significant pairwise comparisons between conditions and 

APs; p = 0.0044 and p = 0.00040 between RuBi-NE and ACSF at spike +2 and +3, respectively). 

In all, these data indicate that RuBi-NE acts as a robust, specific phototrigger for NE.  
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Discussion 

Here, we introduce the development of [Ru(bpy)2(PMe3)(Norepinephrine)]n+ (RuBi-NE), a 

photoactivatable NE releasable with light in the visible spectrum. We validate the release of NE 

with one-photon uncaging in acute mouse brain slices containing the LC. We find that uncaging 

RuBi-NE, with a brief pulse of blue light, temporarily slows the rate of LC action potentials via 

a-2 adrenergic receptors. This new tool will allow for the temporally and spatially precise release 

of NE without mechanical disturbance of tissue, which itself can modulate cellular activity48.  

 Our validation of 1P NE uncaging releases NE over a large field-of-view, the size of the 

uncaging light beam. This widespread release of NE is physiologically relevant given the 

extensive projections of LC neurons throughout the brain, which release NE via volume 

transmission49,50. While this spatially diffuse uncaging allows for investigation of the specific 

action of NE isolated from any potential co-release from synaptic terminals, validation of the 

two-photon compatibility of RuBi-NE, as demonstrated for other RuBi subtypes51,52, will be 

needed to map noradrenergic circuitry with subcellular spatial precision. Synthesis and validation 

of this photoactivatable compound adds NE to the suite of neurotransmitters and 

neuromodulators that can now be caged within a ruthenium-bipyridine backbone, expanding the 

toolkit available to map functional circuitry and receptor localization of neuronal and non-

neuronal cells in the central nervous system.  

 

  

https://sciwheel.com/work/citation?ids=664689&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9058121,5232645&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Methods 

RuBi-NE synthesis 

All chemicals were purchased from Sigma-Aldrich and used as received without further 

purification. Ru(bpy)2Cl2 was synthesized according to literature53. From this, 

[Ru(bpy)2(PMe3)(Cl)]PF6 was obtained as previously described54. For synthesis of 

[Ru(bpy)2(PMe3)(Norepinephrine)]2+, 300 mg of [Ru(bpy)2(PMe3)(Cl)]PF6 was dissolved in 3 ml 

acetone and 15 ml water was added. The mixture was stirred overnight with mesylate-loaded 

Dowex-22  ion exchange resin. After evaporation of acetone, the resultant solution of 

[Ru(bpy)2(PMe3)(H2O)]Mes2 was separated from the resin. From this point all procedures were 

performed under N2, with the solution previously degassed with Ar or N2. 450 mg of 

norepinephrine hydrochloride was introduced into a Schlenk flask, and the pH was raised to 9–

10 by adding 2 mL of 1 M NaOH. When the formation of the NE complex was confirmed by 

UV-visible spectroscopy, the mixture was cooled in an ice bath, and 1 M acetic acid was added to 

lower the pH and prevent possible oxidation of NE by air during the subsequent procedures. The 

solution was filtered, and after the addition of 2 mL of 0.5 M KPF6, the complex 

[Ru(bpy)2(PMe3)(NE)](PF6)2 precipitated as an orange powder.  For a more soluble preparation, 

a further ion-exchange with mesylate-loaded Dowex 22 resin can be made. 

 

Slicing and electrophysiology 

Horizontal brain slices (350 µm) at the level of the pons in the brainstem containing the LC were 

prepared from P28–P34 TH-Cre+; Ai14+ and TH-Cre+; Ai9+/- female mice using a vibratome 

(VT1200; Leica). Slicing solution was chilled at -20°C and contained (in mM): 222 sucrose, 27 

NaHCO3, 2.6 KCl, 2 MgSO4, 2 CaCl2, 1.5 NaH2PO4, bubbled with 95% O2/ 5% CO2. Slices were 

https://sciwheel.com/work/citation?ids=15589651&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5964240&pre=&suf=&sa=0&dbf=0
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incubated in artificial cerebrospinal fluid (ACSF) at 35°C for 30 min and then held at room 

temperature until the time of recording. Recording ACSF contained (in mM): 123 NaCl, 26 

NaHCO3, 10 dextrose, 3 KCl, 2 MgSO4, 2 CaCl2, 1 NaH2PO4, bubbled with 95% O2/5% CO2.. 

 Neurons were visualized using DODT contrast microscopy on an upright microscope 

(Bruker) and fluorescently labeled tdTomato-positive LC neurons were identified using an 

EXFO X-Cite 120 epifluorescent lamp (Excelitas) coupled to a red filter cube (TRITC-B-000, 

Semrock). Neurons were visualized using a NIR Apo 40X/0.80W objective (Nikon) and an 

infrared CCD real-time camera (IR-2000, DAGE-MTI). Recordings were made using a 

Multiclamp 700B (Molecular Devices) amplifier and acquired at a rate of 10 kHz with Prairie 

View 5.4 software. Patch pipettes (6–7 MW tip resistance, borosilicate glass, outer diameter 1.5 

mm, inner diameter 0.86 mm, Sutter Instruments) were filled with the following internal solution 

(in mM): 135 K-methylsulfate, 10 KCl, 10 HEPES, 5 NaCl, 0.025 Alexa 594, pH 7.3 (adjusted 

with KOH). Series resistance ranged between 15–30 MW, and pipette capacitance was 

compensated. Neurons were recorded in current clamp configuration. With no injected current, 

neurons had a resting membrane potential (Vm) ~ -50mV.  

 

RuBi-NE uncaging 

Once the neuron was in whole-cell patch clamp configuration, all lights were turned off and a 

stock solution of 10mg/mL RuBi-NE in ACSF was added to the bath solution for a final RuBi-

NE concentration of 300 µM. While recording, RuBi-NE was photolyzed by 1P excitation with a 

single 10 ms pulse of blue light (446–486 nm) using an EXFO X-Cite 120 epifluorescent lamp 

(Excelitas) coupled with a 466/40 nm single-band bandpass filter (BrightLine, Semrock) at an 

approximate power of 14.3mW. Idazoxan hydrochloride (Sigma Aldrich, 2 µM) was added to the 
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ACSF bath solution to confirm that RuBi-NE was acting on the neurons via a2 adrenergic 

receptors. 

 

Statistics 

Averages are reported as mean ± SEM. Average firing rates before the light pulse were 

calculated by taking the mean firing rate across pulses. An unpaired t-test was used to calculate 

the p-value to compare the average firing rate before the light pulse between the ACSF and 

RuBi-NE conditions. The remaining p-values were calculated using two-way ANOVAs followed 

by Bonferroni tests determine significant pairwise comparisons between conditions and time 

points.   
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Figures 

 
Figure 4.1: Photorelease of RuBi-NE specifically increases local [NE].  
(a) Representative image of a LC neuron identified for recording. Left: DODT contrast image of 
an LC neuron before recording; dotted line marks soma. Center: 1P image of tdTomato+ LC 
neuron before whole-cell patch-clamp configuration. Right: 2P image of the same LC neuron in 
whole-cell patch-clamp configuration, dialyzed with Alexa 594. Patch pipette shown on the 
upper left border of the cell. (b) Representative trace of spontaneous AP firing pattern of LC 
neuron in current clamp configuration. Bath application of NE (30 µM) occurs 30 s into the trace 
(black bar). (c) Representative activity of an LC neuron before and after uncaging RuBi-NE. 
Blue line marks 10 ms blue-light uncaging pulse. (d) Zoomed out representative activity before 
and after RuBi-NE uncaging before (top) and during (bottom) blockade of a2 ARs with idazoxan 
Figure 4.1 continued on next page 
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Figure 4.1 continued 
 
(2 µM). Blue rectangles mark 10 ms blue-light pulse. (e) Average APs/s for an LC neuron in 
ACSF (n = 8 pulses in 2 cells, left), in 300 µM RuBi-NE (n = 14 pulses in 4 cells, center), and in 
300 µM RuBi-NE + 2 µM idazoxan (n = 2 pulses in 1 cell, right). Time 0 denotes the second in 
which the light pulse occurred. (f) Left: Example trace showing spike IDs relative to the light 
pulse. Right: Average ISI calculated for LC neurons in ACSF (n = 8 pulses in 2 cells), RuBi-NE 
(n = 14 pulses in 4 cells) and RuBi-NE + idazoxan (n = 2 pulses in 1 cell). -1:+1 is the ISI during 
which uncaging occurs. Two-way ANOVA grouped by condition and ISI number followed by 
Bonferroni test to determine significant pairwise comparisons, * p < 0.05. (g) Average absolute 
time of the first three spikes following blue-light pulse in ACSF, RuBi-NE, and RuBi-NE + 
idazoxan. Two-way ANOVA grouped by condition and spike number followed by Bonferroni test 
to determine significant pairwise comparisons, ** p < 0.01 and *** p < 0.001.  
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