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High resolution magnetohydrodynamic equilibrium code for 

unity beta plasmas 
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Abstract 

 

There is great interest in the properties of extremely high-beta magnetohydrodynamic equilibria in 

axisymmetric toroidal geometry and the stability of such equilibria. However, few equilibrium codes 

maintain solid numerical behavior as beta approaches unity. The free-boundary algorithm presented herein 

utilizes a numerically stabilized multigrid method, current density input, position control, magnetic axis 

search, and dynamically adjusted simulated annealing. This approach yields numerically robust behavior in 

the spectrum of cases ranging from low to very high beta configurations. As the convergence time depends 

linearly on the total number of grid points, the production of extremely fine, low-error equilibria becomes 

possible. Such a code facilitates a variety of intriguing applications which include the exploration of the 

stability of extreme Shafranov shift equilibria. 
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1. Introduction 
The Grad-Shafranov (GSh) equation describes magnetohydrodynamic (MHD) equilibria in toroidal 

axisymmetric confinement devices, such as tokamaks [1]. Numerical solutions thereof are very important 

for interpretation of experimental data, in the design of experiments in existing devices, and the 

development of new magnetic confinement configurations. MHD equilibrium solutions are also used for 

the initial conditions of macro- and micro-stability analysis, as well as particle and heat transport properties 

of magnetically confined plasmas. 

Sophisticated techniques have been devised to solve the Grad-Shafranov (GSh) equation. There exist two 

distinct classes of numerical techniques: Lagrangian schemes that use curvilinear flux coordinates to map 

plasma geometry and which involve adaptive grid [2], variational [3], perturbative [4] or inverse 

coordinates [5] methods. The second class of techniques is based on an Eulerian scheme, relying on a two-

dimensional (2D) mesh without any direct link to plasma shape [6, 7]. We will use a direct approach, where 

the geometric space is meshed instead of the flux space [8], so plasma with diverted configurations, i.e. X-

points or separatrices, can be handled easily. Figures of merit for magnetic confinement devices and their 

equilibria are the dimensionless ratios of plasma pressure (p) to magnetic field (B) pressure 
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where the subscripts P and T denote respectively the poloidal and toroidal directions. These local quantities 

are defined where the pressure is maximum and have global counterparts, 
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where <.> denotes the standard volume averaged quantities over the total plasma volume V0, i.e. 
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The pressure reaches a maximum at the magnetic axis. The plasma β determines the overall efficiency of 

magnetic confinement, while the poloidal beta (βP) indicates the paramagnetism (if smaller than unity) or 

diamagnetism (if greater than unity) of the plasma. This quantity is directly linked to the Shafranov shift, 

the outboard radial shift of the magnetic axis. For MHD stability reasons [9, 10], viable high β plasma 

equilibria only exist for high βP, with commensurate large Shafranov shifts. Herein, these configurations 

will generically be referred to as high-β.  

The calculation of equilibria at high-β poses a significant challenge. High-β configurations are 

characterized by atypical plasma current profiles with a large Shafranov shift, as illustrated in Figure 1. 

Technical difficulties due to resolution and convergence have limited existing equilibrium codes to medium 

β configurations [11]. Few codes have been able to converge above 50% peak β [2, 12] and at least one of 

them can handle β above 80% [8], by making use of the inherent adaptivity of the contour dynamics 
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method [13]. Unfortunately, the results from this code cannot be used with standard MHD stability codes 

[14,15] due to the mostly sparse non-uniform mesh on which it solves the GSh equation. 

To handle the flux compression due to large Shafranov shift at high-β, numerical convergence on a uniform 

mesh without adaptivity requires a high resolution mesh. Thus, a high-β solver requires a large grid. For 

practical reasons, a solver must also retain good performance for a wide range of cases. The multigrid 

method is the fastest elliptic solver for large problems [16] and meets the requirements of our equilibrium 

computations. We present in this paper a novel method which handles high-β plasma equilibria and bridges 

the gap between existing codes and future experiments. We will show that the method can compute unity β 

equilibrium solutions by combining the multigrid method [17] (also used in modern MHD codes [12, 18]) 

with a set of numerically stabilizing elements. These elements include shape control, magnetic axis search, 

and dynamically adjusted numerical relaxation. We will demonstrate that the numerical convergence of the 

overall algorithm is proportional to the total number of grid points, yielding good performance at high 

resolution. 

Following this introduction, the physics model is presented in Section 2, then a summary of the multigrid 

method is given in Section 3 for completeness. Section 4 regroups the standard techniques for solving those 

boundary value problems in electromagnetism which are an integral part of solving the GSh equation. The 

novel techniques yielding convergence at high β are detailed in Section 5. Section 6 presents the complete 

computational algorithm. Code validation and performance analysis are discussed in Section 7, while 

Section 8 is devoted to the application of the numerical algorithm to extreme β equilibria. Conclusions are 

given in Section 9. 

2. General MHD equilibrium 
The physics model of the equilibrium of a plasma in the axisymmetric magnetic geometry of a tokamak is 

examined. The equilibrium is given by the GSh equation [19], 
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in the coordinate system (R, Z, φ), as illustrated in Figure 2. We can also express Eqn. (4) as a function of 

the toroidal current density flowing along the φ direction, 
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which yields 

(6) *
0 ( , )RJ Rφψ µ ψ∆ =  

These equations describe the local equilibrium between the gradient of the fluid pressure p and the Lorentz 

force. Normally, p increases monotonically from the plasma-vacuum interface to the magnetic axis [20], 

where it reaches a maximum. The quantity ψ is the flux of the poloidal induction Bp in the (R, Z) plane, 
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The function F represents the net poloidal current flowing through a disk centered on the Z-axis and located 

on the (R,φ) plane [20], 

(8) RBF φ= . 

It can be demonstrated that p and F are functions of ψ only. Thus, the surfaces of constant pressure 

correspond to surfaces of constant flux. The fluxψ varies monotonically from the plasma edge to the 

magnetic axis. Because of the presence of ψ on both sides of the equality, the GSh equation is classified as 

a nonlinear elliptic partial differential equation. In general, this type of equation can only be solved via 

iterative methods, such as a Picard iteration scheme [6]. The flux ψn-1 at iteration step n-1 is used to find the 

flux ψn at step n, 

(9) *
0 1( , )n nRJ Rφψ µ ψ −∆ = . 

When 

(10) 1| |n n nε ψ ψ −= −  
is small enough, convergence is achieved and an approximate solution to the GSh equation has been found. 

3. The multigrid method 
First introduced by Brandt [17], the multigrid method uses uniform grids of different densities to solve 

elliptic partial differential equations. If the finest grid holds N points, the total computational time of the 

method is proportional to N. On the coarsest grid the discretized differential equation is solved exactly 

using classical methods, such as the successive over relaxation (SOR) algorithm [21]. On finer grids, only 

the correction to the coarse solution is computed. This correction requires less computation time than the 

exact solution. After successive iterations on the finest level, the solution can be approximated to a given 

error threshold. To illustrate the components of the algorithm, this section presents a two-grid example, the 

principal operators of the method, and the full multigrid (FMG) algorithm. Formal descriptions of this 

method are offered by Wesseling [22] and Trottenberg [23]. 

3.1. The two grid process 
We wish to solve the following equation 

(11) fU =Ξ  
where Ξ is a linear operator. We introduce the following notations: 

• N is the total number of points in the grid;, 

• the subscript m denotes the fine mesh size, 

•  the subscript M denotes the coarse mesh size, 

•  ℘ is a prolongation operator which transfers information from coarse to fine mesh, 

•  ℜ is a restriction operator which transfers information from fine to coarse mesh, 

•  U denotes the solution of the discretized equation, 
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•  u denotes an approximation of the solution, 

•  the error between exact and approximate solutions is v = U-u, 

•  the residue, or defect, is d = −Ξv. 

For a simple approach, one may solve the problem on the fine grid by solving for the error between the 

exact and approximate solutions on the coarser grid. Figure 3 shows the two-grid example. The "defect" dm 

between the non-converged solution um and f is restricted to the coarser grid, i.e. dM, where we solve for the 

error vM. Once vM is found, it is interpolated back onto the fine grid, i.e. vm. Then vm is used to correct um 

and get a better approximation of the solution. The process continues until the convergence criteria are met. 

In this minimal example, the solution is computed only on the coarse grid. Thus, this approach will fail to 

find corrections that cannot be resolved on the coarsest grid. Some improvements are required to obtain a 

realistic elliptic solver. 

3.2. Restriction, prolongation and smoothing operators 
We suppose that all grid elements of the coarse grid M are included in the finer grid m and that the distance 

between coarse grid vertices is twice the distance of the fine grid vertices. The prolongation and restriction 

operators apply only to the elements that are not common to both m and M grids. The common elements to 

both grids do not need such operators as the information can be transferred directly. The prolongation 

operator ℘ is usually a simple bilinear interpolation, but may be more complex. 

(12) 
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℘ must be chosen carefully to maintain accurate transfer of the information. To find the corresponding 

restriction we need to define a functional scalar product in vector space  
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This allows us to define the restriction operator as follow 

(14) 
mmMMmM vuvu ℘=ℜ . 

Thus, where ℘ has the form of Eqn. (12), ℜ has the following mathematical representation, 

(15) 
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. 

Furthermore ℘ and ℜ are adjoint with respect to <.|.>m. This minimizes information distortion between ℘ 

and ℜ due to the transition between grids. 
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The last aspect of the procedure is the smoothing operation. As seen in Figure 3, the only numerically 

significant computation takes place when solving for the defect on the coarse grid. Because the applied 

correction retains the precision of the coarser grid, when the defect is re-introduced in the approximate 

solution on the finer grid it does not give the converged solution. The precision on the correction computed 

on the coarse grid is insufficient for the finer grid. Thus, an operator solving for corrections on the fine grid 

has to be devised. This operator does not need to obtain an exact solution to the system; it should only solve 

for the part which cannot be resolved on the coarser grid. The efficiency of the multigrid method depends 

on the fact that this calculation requires significantly less computation than the exact solution. One may 

imagine the fine corrections as “ripples” over coarser corrections, and observe that this operator smooths 

the correction applied to the approximate solution. For linear system inversion, the most widely used 

smoothing operator is the Gauss-Seidel method [21]. 

Smoothing is usually applied before solving on the finer grid (“pre-smoothing”) and after solving (“post-

smoothing”). The addition of restriction, prolongation, and smoothing operators lends the two-grid 

algorithm much-needed robustness. 

3.3. Multigrid algorithm 
Generalizing from the previous example, we can easily devise an algorithm which uses more than two grids 

(Figure 4). The cycle between the grids m-n and m-(n-1) takes place exactly as in the two-grid method. 

Adding finer grids to this cycle is trivial; the solution on grid m-(n-2) goes through the restriction and 

prolongation processes, transferring information to and from grid m-(n-1). Once the defect is known on the 

m-(n-1) grid, additional restrictions and prolongations enable full resolution on the coarsest level m-n. To 

resolve corrections on finer grids, a smoothing process takes place before transferring the information from 

one grid to another. This process can be repeated several times. The general multigrid algorithm can thus 

utilize an arbitrary number of grids. For a grid m-k, the number of cycles is γk. 

As described, the multigrid algorithm traverses between the finest and the coarsest grid. At the expense of 

speed, the quality of the solution can be improved by reversing the direction of traversal at an intermediate 

level (γ0, …, γn-1 ≥2). When the algorithm traverses all grids in order of rank, it is called the “V-cycle” 

(Figure 5-a); when the traversal is reversed at intermediate grid ranks, it is called the “W-cycle” (Figure 5-

b). The reversing criterion, and thus the quantity γk, is controlled by the “schedule” of grid m-k. For a fixed 

error threshold, the schedule parameter may be adaptive; the number of cycles at a given grid rank will be 

adjusted to accommodate the error threshold. 

In principle, the multigrid algorithm will converge when a null solution is given as first guess. However, 

using the exact solution on the coarsest mesh is a better initial guess to accelerate the convergence. The 

addition of restriction operators, prolongation operators, smoothing operators and schedule controls to the 

simple two-grid example results in the full multigrid algorithm (FMG), illustrated in Figure 5-c with 4 

grids. 
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4. Resolution of the problem on a Cartesian grid 
In this section, we describe a set of standard techniques which can solve efficiently the GSh equation on a 

Cartesian grid. To do so, we must establish a computational domain, invert the GSh equation on this 

domain, and consistently handle the coil and plasma contributions on the computational boundary. To 

match the magnetic topology of real machines, we will only consider free-boundary solutions. We allow 

the user to configure any external coil systemsbconstrained to the symmetry of a tokamak. The minimal set 

of coils is comprised of horizontal field coils to control the vertical position of the plasma (along the Z-

axis), vertical field coils to control the horizontal position (along the R-axis), and elongation coils to control 

the plasma shape. We assume that the (R, Z, φ) space is magnetically homogeneous, and does not contain 

non-linear materials such as iron or µ-metals. 

4.1. Domain of definition 
The computational domain Ω is a simple Euclidian (rectangular) coordinate system encompassing the 

plasma-vacuum boundary (henceforth called the last closed flux surface, or LCFS). Particularly in free-

boundary mode, it is highly advisable to allow a gap of several grid points between the LCFS and the mesh 

boundary ∂Ω. Figure 6 summarizes the major properties of the domain of definition. We do not assume 

vertical symmetry, and thus the domain must circumscribe the whole plasma volume.  

The computation domain is homogeneously discretized. The indexes i and j label the grid elements 

horizontally and vertically and increase with R and Z respectively. The mesh parameters ∆R and ∆Z define 

the distance between adjacent points in R and Z. The total number of mesh points vertically and 

horizontally must be a multiple of two of the coarsest grid, so it can be efficiently handled by the 

prolongation and restriction operators. It is convenient to define and subsequently generate the “stack” of 

grids from the coarsest one, using iterative formulas, 

(16) )1(2 1 −×= −−−
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km NN  and )1(2 1 −×= −−−
Z
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km NN along the R and Z directions, 
where k is the coarseness level and k=0 labels the finest grid. 

4.2. Interior equation and boundary conditions 
Having established our definition of the computational domain, it is possible to invert Eqn. (4). This 

equation is discretized as follow 

(17) { } ),(2 1)(1)(1 1
,01,,1,2,1,

2/1
,,1

2/1
2

−
−+−

−
+

+

=+−
∆

+








−−−
∆

n
ijii

n
ji

n
ji

n
ji

n
ji

n
ji

i

n
ji

n
ji

i

i RJR
ZRRR

R
ψµψψψψψψψ φ . 

Because of the homogeneous mesh, ∆R and ∆Z are constant on the whole grid. If we define  
                                                           
b We define as “coil system” a set of electrically connected coils sharing a single function and feedback 

systems (vertical position, horizontal position or shape control). They are treated as if they were connected 

in series, and carry the same current. 
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then we have 

(21) n
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n
ji fu ,, =Ξ . 

The multigrid method can be applied directly on the operator of Eqn. (21). Now that we have the interior 

equation we can examine the boundary conditions on δΩ. The flux at the boundary of the domain comes 

from a set of external coils and the plasma itself. A tokamak requires at least three different coil systems, 

labeled CS, to operate properly. A current ICS runs through each coil system CS. The flux created by such a 

set can be easily computed using 

(22) ( ) ( )   CS CS CSP I P P Ωψ ψ= ∀ ∈  
where 

(23) ( ) ( , )   CS C
C CS

P G P P P Ωψ
∈

= ∀ ∈∑ . 

G(P,P’) is the Green’s function of the ∆* operator. It has the following analytic form [24] 

(24) ( )[ ] ΩPPkEkKk
k
RRPPG ∈∀−−−= ',     )(2)(2')',( 2  

where 

(25) ( ) ( )22 ''
'2

ZZRR
RRk

−++
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K and E are the elliptic integrals of first and second kind. Hastings’ polynomials [25] or infinite series [26] 

can be used to approximate such functions. The same method cannot be applied to the plasma itself as it is 

not computationally efficient. By using a standard technique involving the Von Hagenow theorem the 

plasma flux on the boundary, given by Eqn. (26), 

(26) ΩPdRdZZRJZRPPGP
plasma

∂∈∀= ∫    ),()),(,()( φψ . 

can be computed using a function V such as 

(27) φµ RJV 0
* =∆  on Ω/∂Ω 

and 

(28) V=0 on ∂Ω. 
In this case, we obtain 

(29) ΩP
R
dl

n
VZRPPGP ∂∈∀

∂
∂

= ∫
Ω∂

  )),(,()(ψ . 

Because V satisfies Eqn. (27), the multigrid method can solve the problem in O(N) operations. The integral 

becomes singular for P(R,Z)=P and we have to compute the self-field contribution ψSF  [27] using Eqn. 

(30), 
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where ∆l=∆R if P is on the horizontal parts (parallel to the R-axis) of ∂Ω or ∆l=∆Z if P is on the vertical 

parts (parallel to the Z-axis) of ∂Ω. Away from the singular point, Eqn. (29) can be integrated numerically.  

4.3. Plasma shape and position 
Shape/position control [28] is a well known issue in free-boundary codes and the method presented here 

summarizes its most basic implementation. The required set of coils must generate a vertical field, for 

position control along the R-axis, a horizontal field, for position control along the Z-axis, and an elongation 

field, to prevent the collapse of the plasma shape at high β. Experimental operation is achieved by using a 

physical or a magnetic limiter, which determines the position of the LCFS Experiments can have a variety 

of limiter designs, but for numerical purposes, a point limiter Plim will suffice, i.e.  

(31) ψedge=ψ(Plim). 
The geometric position of this point may change at each computational step, but it must remain part of a 

self-consistent structure (i.e. -- the plasma may contact the limiter structure at different points, but the 

limiter itself must remain in a fixed position). The simplest limiter geometry is a vertical line, given by the 

equation R=Rlim. For this case, the geometric definition of the LCFS (and thus the global plasma position 

and shape), can be constrained by a set of geometric points  

(32) SLCFS={Plim, PVF, PEL, PHF}. 
The shape control algorithm must then solve for the current in each coil system such that the LCFS will 

pass through all points in the set SLCFS. Given the plasma flux in each point of SLCFS and the normalized flux 

created by each coil system, we may solve the following matrix equation, 

(33) 
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The normalized coil fluxes were introduced in Eqn. (23). If the vertical, horizontal and elongation fields 

form a decoupled system, the matrix should be invertible, provided an appropriate choice is made for the 

points Plim, PVF, PEF and PHF. Ideally, they should be spread evenly around the LCFS. Because their 

geometric positions are typically unknown, it is usually necessary to define PVF, PEF and PHF relative to 

Plim. Using this procedure, a set of carefully chosen parameters can constrain the final plasma geometry to 

the desired shape and position (Figure 7). The defined constraints do not amount to a fixed boundary 

system. Rather, they provide a required measure of geometric stasis to avoid the numerical instability that 

otherwise plagues high β convergence. As an example, Figure 8 shows medium beta cases. Elongation is 

necessary to sustain a circular shape. Without elongation coils, the plasma has a “comet” shape, due to an 

X-point created on the high field side. The stronger vertical field necessary to compensate for the higher 

internal inductance of the plasma creates this X-point, which moves radially outward as beta increases. This 
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limits the Shafranov shift attainable in non-elongated cases. Thus extremely shifted configurations require 

elongation, even for circular shaped plasmas. 

5. High beta equilibrium numerical procedure 
High-β configurations have extreme Shafranov shifts, compressing the flux surfaces on the low field side 

of the plasma (Figure 1-b). This characteristic complicates high-β computations; steep gradients and strong 

ψ-Jφ coupling render calculations extremely sensitive to computational noise. The crucial factors for high-

β equilibrium computations are: 

− current density as a free function input, 

− magnetic axis search, 

− relaxation parameter, 

− plasma position control, 

− high resolution grid. 

The following sections deal with the first four points. Position control is usually present in free boundary 

codes and only its necessity for high β convergence, even in the case of circular plasmas, will be discussed. 

The last point, high resolution, comes naturally from the multigrid method and will not be elaborated 

further. This is not really an issue for medium shift (< 70%) but it really becomes an essential parameter for 

higher magnetic axis shifts. 

5.1. Jφ as a free function input 

Solutions of the GSh equation are strongly dependent on the two input functions p(ψ) and F(ψ). If these 

two functions are known, the procedure presented in this work will find a unique flux distribution. 

However, many interesting plasma properties at high β are a direct consequence of the current density 

profile. To investigate these properties, it is desirable to specify the current profile directly, rather than the 

more traditional input functions p(ψ) and q(ψ) or F(ψ). 

The interesting point in choosing Jφ instead of p and F is that the shift of the magnetic axis can be 

controlled  directly by the current density profile. To illustrate this point we look at the slab solution of the 

GSh equation 

(34) 0
1 ( )d d J R

dR R dR φ
ψ µ  = 

 
. 

Because Jφ is given as the input function, we can integrate directly Eqn. (34) and we get 

(35) 2( ) ( )
2
AR H R R Bψ = + +  where ( )0( ) ( )H R R J u du dRφµ= ∫ ∫ . 

The H function is completely defined by Jφ and the A and B constants can be found when ψ is given at the 

boundary of the domain, i.e. the LCFS. Thus we obtain 
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The superscripts LFS (Low Field Side) and HFS (High Field Side) denote the values of R on the right and 

left side of the magnetic axis, as shown in Figure 2. Now the magnetic axis is located where dψ/dR=0. 

Moreover Raxis comes from solving the following equation 

(37) '( ) 0axis axisH R AR+ = . 
The Shafranov shift is therefore directly defined by Jφ and the 1-D geometry,  

(38) 
2HFS LFS

edge edge axis
LFS HFS
edge edge

R R R
ShS

R R
+ −

=
−

. 

Although this 1-D property extends to the 2-D domain, analytic solutions do not exist. Highly shifted 

solutions can be easily defined using Jφ as input. Current density input guarantees tight control over the 

high β convergence.  

As Eqn. (5) shows, a valid input function should span across all R values, i.e. from one edge of the plasma 

to the other while crossing the magnetic axis [20]. Without loss of generality, a convenient input function 

could be defined along a straight line going from one edge of the plasma to the other, parallel to the R-axis 

and crossing the magnetic axis. Because the exact physical positions of the plasma edges and magnetic axis 

are not known in advance, one may supply the evenly distributed current data that are denoted by the set 

(39) {J}={J1, …, Jn}. 
The algorithm redistributes the current data set (39) from edge to edge, along the R-axis passing through 

the magnetic axis, as shown in Figure 9. Then spline approximation is applied so that data interpolation is 

as accurate as possible. From the “splined” current density distribution Jφ spl, dp/dψ and dF2/dψ can be 

computed. If we use the following convention to index the flux 

(40) 
n
k

edgeaxisedgek )( ψψψψ −+=  for k∈{0, .., n}, 

we have 
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−
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ψ
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k
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k
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k
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k
LFS
k

k RR

JRJR
RR

d
dF

−

−
= φφµ

ψ
 ∀k∈{0, .., n-1}. 

Here k indexes the values of the different functions in ψk. The 2D current distribution can then be found 

using Eqn. (5). The number n is the total number of samples taken from the edge of the plasma to the 

magnetic axis. This number can be the total number of points between the edge and the axis, or it can be 

smaller. Experience shows that using one third of the mesh resolution is excellent, providing that the 

distributions dp/dψ and dF2/dψ are also approximated with splines. Figure 10 shows all the functions 

derived from the current density spline of Figure 9. 
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Equations (41) and (42) are not defined on the magnetic axis, i.e. k=n, and dp/dψ|n and dF2/dψ|n cannot be 

computed by using this method. Because the position of the magnetic axis is always available, hence RLFS|n 

and RHFS|n, it is possible to approximate geometrically the values of the derivatives there. The distributions  

(43) {dp}={dp/dψ|k, k=0,…,n-1} 
and 

(44) {dF2}={dF2/dψ|k, k=0,…,n-1} 
can be remapped onto the geometric space by using the distributions {RLFS} and {RHFS}. The spline 

approximation of these distributions gives the values of dp/dψ|n and dF2/dψ|n for Raxis=RLFS|n=RHFS|n. The 

information of the distributions RHFS (Figure 10-a) and RLFS (Figure 10-b) as functions of the flux is 

combined with the distributions of the derivatives of p (Figure 10-c) and F (Figure 10-d) to construct the 

spatial distribution of the derivatives. As an example, Figure 11 shows the interpolation of the computed 

dp/dψ|n. Then the splines of dp/dψ and dF2/dψ can be generated from the edge to the magnetic axis. Once 

(dp/dψ)spl and (dF2/dψ)spl are known the algorithm can compute the current density distribution in the 

whole plasma by using the flux distribution from the previous step. 

5.2. Plasma position control 
Plasma shape and position are manipulated using a set of coil systems as discussed earlier. To prevent 

plasma drift, the code must anchor the plasma inside the computational grid, not supposing any up-down 

symmetry. Position drifts can cause numerical oscillations in high β cases, and thus must be minimized. We 

have found that convergence at high β cannot occur without minimal shape feedback. This is a necessary 

stabilizing element in high β convergence, the actual shape control of the plasma just being a “side effect” 

of the numerical procedure. If the boundary is not controlled properly, the flux oscillations inside the 

plasma propagate to the LCFS. The mode structure of these oscillations is an up-down motion of the 

plasma core. On the other hand, if the LCFS is properly constrained, the internal oscillations do not deform 

the LCFS. This is a necessary condition for high beta convergence. Even for circular plasmas, where up-

down numerical stability is not an issue at low beta, plasma position control is always mandatory for 

convergence at high β. The technique presented in the preceding section works well for any Shafranov 

shift. 

5.3. Magnetic axis search 
To match dp/dψ and dF/dψ with the input distributions, it is necessary to calculate the position of the 

magnetic axis. Finding the maximum value of the flux distribution cannot yield axis position during high β 

convergence. Numerical noise will cause the maximum to wander from one iteration to the next, as Figure 

12-a shows. This generates a mismatch between actual and input function profiles. We have observed that 

this problem is occasional during the convergence, but creates a bottleneck that can prevent convergence. A 

method less vulnerable to numerical noise must be applied. Instead of finding the global extremum of ψ, 

we would rather calculate a set of local extrema and average over them. To find the extrema, the usual 
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approach is to find the zeros of the gradient of the function under scrutiny (i.e. |∇ψ |). Of course, |BP| can be 

used instead. To decrease the computational cost, we restrict the search to an area Ax 

(45) 












>
−
−

∈= x
P

ZRPA
edgeaxis

edge
x ψψ

ψψ )(
/),(  with x∈]0,1[ . 

If x ~ 0, the search is across the whole plasma, which would not be efficient. If x ~ 1, the search is restricted 

to a region very close to the maximum flux, and the averaging strategy holds no benefit. Experience 

suggests that x = 0.9 gives very good results. 

While standard minimizing methods calculate a single minimum, we wish to find several local minima, so 

a more stable average axis position can be computed. For this purpose, we have devised an original 

method, called the “evaporating lake” model (Figure 12-b). To explain the method by way of metaphor, 

one may imagine the two-dimensional |BP| distribution as the bottom of a lake at a certain level h0. The 

evaporation of the water will uncover the highest regions of the lake bed, leaving the deepest parts 

submerged. As the level falls to hk, the location of the local minima will be revealed by pools that form in 

the deepest structures of the bed. If the procedure is halted at step n, while a small amount of water still 

remains, small pools can be observed around each minimum. By taking the center of mass of the total water 

area An, we obtain a weighted average of the minima. Practically, a minimum area Afinal is defined. At each 

iteration step k, the level is decreased to  

(46) 1
2

1
−

−

−= k
k

k
k h

A
Ah . 

and the area of the 2D distribution is computed 

(47) { }kPxkkk hPBAAAPA <⊂⊂⊂∈= −− |)(|/.....21 . 
The algorithm will stop when Ak<Afinal. In general, Afinal is defined relative to Ax, such as 

(48) xfinal AA .ε= , ε∈]0,1[. 

The size of Afinal depends on the high β flux distribution. In general a value around 5% of Ax gives good 

results. The effectiveness of this method results from two major points. First, the search is restricted to the 

neighborhood of the actual magnetic axis. Second, the global minimum of the function is known (i.e. 0). 

The evaporating lake method may seem unnecessarily complex for the calculation of a value that is not 

used directly in the calculation of the solution. However, poor results in the magnetic axis search lead to 

poor matching of the input function. If the input function is not strictly respected, the resulting non-physical 

Jφ  distribution will prevent the convergence of high-β cases. 

5.4. Improved simulated annealing 
Usually algorithms of the Picard or Marder-Weitzner types [28] converge extremely slowly due to the lack 

of an adaptive relaxation scheme. The relaxation parameter proposed in this paper is an essential control for 

high β convergence. The principle derives from the simulated annealing technique [29, 30], where the 

convergence is rapid during the initial computational steps and slows down as we approach the final 



 

 14

solution. The first step is to define the relaxation parameter ηk at each iteration k. All quantities follow from 

the flux, so it seems reasonable to use 

(49) kkkkkk ψηψηψ +−= −1)1( , ηk∈]0,1], 
where ψkk is the flux computed at  iteration step  k and ψk is the flux used to compute Jk+1

φ. We also define 

the computational error 

(50) |)()(|max 1 PP kkk
P

k −
Ω∈

−= ψψε , 

similar to Eqn. (10), independent of the relaxation parameter. The convergence is obtained when 

εk<εconvergence and an approximate solution to the GSh equation has been found. To obtain a robust and rapid 

algorithm that converges at high β, we define the following simple rules for the relaxation parameter ηk: 

(51) [1,0],
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1

1

∈
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(52) [,1[,0)mod( 1 +∞∈=⇒= − rkrkrelaxnk αηαη , 
(53) 10 maxmin ≤<<< ηηη k . 

where: 

− αt is the error threshold ratio when the convergence slows down; 

− αd is the damping factor of the relaxation parameter; 

− nrelax is the number of iterations completed before adjusting the relaxation parameter; 

− αr is the relaxation parameter gain. 

When the ratio εk/εk-1 is above a certain level αt>1, the error increases. At this point, the algorithm diverges. 

To remedy this problem, we have to slow down the convergence, following Eqn. (51). Furthermore the 

newly computed flux ψkk is replaced by the flux computed two iterations before, ψk-2. By using this 

technique, we prevent corruption of the convergence by introducing “divergent solutions”. This is a major 

difference with the simulated annealing technique which does not differentiate between satisfactory and 

unacceptable solutions.  

Furthermore it is also preferable to dynamically adjust the relaxation parameter so an optimum value can be 

found. This compromise between speed and stability makes the algorithm more efficient. Eqn. (52) 

modifies the relaxation parameter every nrelax iterations, increasing it by a factor αr. Finally Eqn. (53) 

brackets the relaxation parameter, preventing extreme numerical shifts. A practical application regarding 

these parameters is presented in Section 7.3. 

After defining an adequate input function, adjusting the plasma shape, searching for the magnetic axis and 

relaxing the convergence rate, the overall computational algorithm can now be described. 

6. Computational algorithm 
The numerical algorithm which computes the flux regroups many of the items discussed earlier. Figure 13 

illustrates the several steps followed by the procedure to solve for the flux distribution using the FMG 

method. After computing the plasma boundary flux from Eqn. (29), the multigrid method gives the whole 
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plasma flux distribution, solving Eqn. (17). The shape feedback is then applied by inverting Eqn. (33), 

preventing spatial drifts of the plasma in high β cases.  

The complete algorithm presented in Figure 14 combines the flux computation procedure including the 

high β convergence core: i.e. the magnetic axis search, the relaxation parameter computation and the 

relaxation parameter adjustment. The search for the magnetic axis uses Eqn. (47) and allows input function 

matching. The relaxation parameter keeps the algorithm stable by reducing flux changes in Eqn. (49). It 

relies on dynamical corrections governed by Eqn. (51), (52) and (53) to optimize convergence speed. 

Finally, the input function introduced in Section 5.1 defines the current density distribution, by matching 

dp/dψ and dF2/dψ. 

An obvious improvement can accelerate further the convergence. It is directly inspired by the FMG 

algorithm. At the beginning of the computation, the solution does not require a high degree of precision. 

Hence a coarser grid can be used. As the solution improves, the resolution of the grid has to increase and a 

finer grid should replace the coarser one. Figure 14 demonstrates the grid switch where m becomes m+1 

when 

(54) switchgridk  εε < , with εgrid switch>εconvergence. 

The grid change should adhere to Eqn. (18) and (19). Usually εgrid switch=10.εconvergence is quite successful. 

Despite the integration of all these elements around the multigrid method, the time to compute one step 

stays proportional to the total number of points N. Figure 15 shows the time dependence of grid density d, 

proportional to the total number of grid points N for a fixed domain Ω. Figure 15-a illustrates the results for 

a 6-grid mesh on a 1 GHz Pentium IV with a density ranging from 2 to 110 points/cm2. The linear behavior 

is striking, with a computational time step k → k+1 around 2d seconds. Consequently the resolution of the 

finest grid corresponds to one computational point per millimeter of geometrical space. Figure 15-b shows 

more modest densities, from 2 to 30 points/cm2, with 5, 6, 7 or 8 grids on a 2004 2 GHz PC. The 

dependence is still linear with the number of points. In this particular case, a computational iteration 

fortuitously lasts d seconds. 

After presenting the problem, the different equations and the general algorithm based on the full multigrid 

method, the rest of the paper now focuses on validating the code, especially for high β configurations. 

7. Code validation 
To validate the numerical procedure, a code has been written. CUBE (Code for Unity Beta Equilibria) is a 

simple computer program that takes into account many factors directly linked to experimental results. The 

code can only accept geometries without magnetic materials. In this section, we will use the particular 

geometry of the high aspect ratio Electric Tokamak (ET) [31] at UCLA (R = 5 m, a = 1 m, κ < 1.5, Bφ = 

0.25 T). The computational domain spans from R = 4 m to R = 6 m and Z = -1 m to Z = 1 m. To evaluate 

code results, several errors have to be defined and a systematic scan of the parameter space has to be 

performed.  



 

 16

7.1. Error definitions 
To properly evaluate code results we look at three relative errors. The first one is the convergence error 

motivated by Eqn. (50) which monitors directly the convergence of the flux distribution; 

(55) 
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2 max ( ) min ( )

kk kP plasma
k

kk kkP plasmaP plasma

P P

P P

ψ ψ
ε

ψ ψ

−∈

∈∈

−
=

+
. 

This is a numerical error. The magnetic error ξk, 

(56) 
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evaluates the geometrical deviation between the curl of the magnetic field and the current density, directly 

from the steady-state Maxwell’s equations. Finally, the force balance or J×B error ζk monitors the accuracy 

of the solution of the GSh equation by evaluating the difference between Lorentz and pressure gradient 

forces, 

(57) 
max || ( ) ( ) ||

2 max || ( ) || min || ( ) ||

P plasma
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P plasmaP plasma

p P J B P

p P p P
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∈∈

∇ − ×
=

∇ + ∇
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7.2. Error evolution 
The computational error is the dominant factor influencing the quality of the final solution. To assess code 

results we have to consider the numerical, geometrical and equilibrium errors discussed previously, 

performing such an evaluation in the worst computational conditions. In a spirit of fairness we look only at 

the maximum value of each error. Stability codes are globally sensitive to local inaccuracies; thus only 

local errors should be considered. No averages or integrations are performed to artificially reduce these 

values. In the majority of cases, the maxima of the errors are found only at a few grid points. 

 This is true at low β where the resolution is not an issue. As the Shafranov shift increases other factors 

have to be taken into account. If we examine a 75% shift configuration with a grid density of 5 points/cm2, 

Figure 16-a demonstrates the slowdown of the convergence as we approach the solution. While the 

magnetic and force balance errors decrease quickly when εk>1%, a saturation effect clearly appears below 

this threshold. Even if the magnetic error improves quite rapidly as εk diminishes, the force balance error 

stays constant. Hence the quality of the solution is resolution-limited. High resolution is needed to compute 

high β equilibria.  

After the influence of the computational error, we now scrutinize the impact of the grid density on the 

quality of the solution. Figure 16-b shows the improvement of the errors when finer grids are used. Except 

at low density where, due to extra iterations, the 75% shift cannot be properly resolved, the density does not 

influence the computational error. Therefore the solution requires the same number of iterations to 

converge. The total computational time stays proportional to N for a fixed computational error. 
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Figure 16-c shows the influence of the Shafranov shift on the errors and the number of iterations. Above a 

shift of 65%, the test grid density of 5 points/cm2 is not sufficient to properly resolve the squeeze of the 

flux surfaces and the magnetic and force balance errors climb. Despite this increase, the dependence 

between the computational error εconvergence and the number of iterations is very strong. Above a shift of 

77%, the resolution is quite poor and the number of iterations increases due to the feedback on the 

relaxation parameter. To prevent numerical oscillations due to the low-resolution grid, the relaxation 

parameter has to be drastically reduced and the number of iterations soars. It is now the computational error 

which limits the quality of the convergence. 

Finally Figure 16-d illustrates the typical convergence for a highly Shafranov-shifted equilibrium. The error 

diminishes regularly and there is no numerical oscillation. As a concluding remark, the grid density scan in 

Figure 16-b goes up to 110 points/cm2. This translates into a resolution of 1 point per mm. This is an 

exceptional result that is especially useful for inputs to gyro-kinetic codes [32, 33] which require a 

precision comparable to the Larmor radius of the ions, i.e. 2-3mm. This level of accuracy is practical due to 

the O(N) time dependence of the code. 

7.3. Relaxation parameter dependence 

The relaxation parameter plays a great part in regulating the convergence rate of the algorithm at high β. 

The adjustment of the different parameters presented in Eqn. (51) to (53) is of paramount importance. The 

algorithm can slow down tremendously if they are not carefully picked. Unfortunately they depend upon 

geometry and Shafranov shift and no general rule can apply to find the best choice. While only trial and 

error can educate the savvy user in finding the best values for the problems at hand, we present here 

guiding rules that should be observed to maintain rapid convergence while keeping numerical oscillations 

in check. 

The initial value ηinit introduced previously is critical because the feedback on the relaxation parameter 

should be slow. Thus if ηinit is too high the algorithm will spend time reducing its value until stable 

operation is achieved. The computational time will be used to find an optimum to the relaxation parameter 

ηk instead of calculating the solution. A good starting point should be 

(58) 1 ,  [0,1[
1 3init

ShS ShS
ShS

η −
= ∈

+
, 

The quantity αt is the threshold factor where the computational error deviation triggers a reduction of the 

relaxation parameter and a set back in the flux distribution. An optimum error increase of 1 to 5% from one 

computational step to the next should be observed. If set too low, the relaxation parameter will rapidly 

reach its minimum value, due to numerical noise in the error. If set too high, numerical oscillations may go 

undetected, preventing the convergence. 

The quantity αd is the damping factor of the relaxation parameter and slows down the speed of the 

algorithm as it gets closer to the solution, preventing numerical oscillations. Once again its value depends 

upon the equilibrium geometry but a fast reduction of the relaxation parameter can freeze the algorithm. An 



 

 18

acceptable value should stay around 0.9. To this damping factor, we associate a relaxation gain αr. Its role 

is to increase the relaxation parameter when computational oscillations disappear. This way the algorithm 

adjusts its own convergence rate in an optimal manner. To moderate this behavior, the relaxation parameter 

increase takes place only every nrelax computational steps. Figure 17 demonstrates the actual behavior of the 

relaxation parameter for a Shafranov shift of 83%, a threshold factor αt=1.01 and a grid density of 22 

points/cm2. 

Figure 17-a shows the proper behavior of the feedback control on the relaxation parameter. The solution is 

found after 202 iterations. The convergence rate stays constant overall despite the swings of the relaxation 

parameter. The search for the optimum spans the first 100 iterations. After this initial phase, the control 

procedure keeps the oscillations of the relaxation parameter around the optimum found. Perhaps 

incidentally, the optimum seems to approximately coincide with the initial value of the relaxation 

parameter.  

Figure 17-b demonstrates the behavior of the code when the oscillations in the relaxation parameter damp 

too fast from a value that is slightly higher than its optimum. The convergence speed slows down in the 

second phase of iterations, finding the solution after 220 steps. 

In the case of a slow relaxation process, the optimum search lasts too long and the algorithm converges 

before the optimum is found. The case presented in Figure 17-c may lead to an erroneous conclusion. 

Despite the low number of iterations before the solution is found, the feedback system control is completely 

disabled. This flaw is compelling if the initial value of the relaxation parameter is too low, violating Eqn. 

(58). Figure 17-d illustrates this behavior where the convergence is reached after 375 steps. 

Therefore it is essential to keep the feedback system flexible, i.e. with a good dynamical range. Despite the 

influence of the geometry on the relaxation parameter feedback loop, the values presented here should 

always be used as a starting point to the optimization of the problem at hand. 

After studying error evaluation under the most unfavorable conditions, satisfactory answers have been 

obtained regarding code robustness and precision. With Shafranov shifts above 80% and a precision 

ranging from 1 point per cm to 1 point per mm, the average error level can stay below 0.01% and the 

maximum error value below 0.1%. This validation enables us to now examine a physical case, namely 

unity β configurations. 

8. Applications to highly shifted and unity beta equilibria 
If we focus on the circular equilibria suggested by Cowley [34], we find highly shifted configurations with 

a strong diamagnetic behavior. Figure 18 shows the principal results for a total plasma current of 168 kA 

and a β peak of 100%, with a global β near 40%. The most important result is the magnetic well dug in the 

toroidal field by the diamagnetic poloidal currents circulating in the plasma. Figure 19-a illustrates the high 

β “squeeze” with a 3D view of the current density completely pushed outward. This perspective view 

emphasizes the difficulty of obtaining such currents in real devices, compared to the usual “bell shape” 

current of Figure 1-a. Figure 19-b shows the force balance error for the same computation. The maximum 
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force balance error is close to 0.2 %. This suggests a higher grid density should be used. Nevertheless this 

level of error is quite acceptable for stability codes. Figure 20 shows an extreme magnetic axis shift of 

more than 90% of the minor plasma radius, with a β peak of 70% and a global β close to 30%. A finer grid 

was used and the maximum force balance error is below 0.05% for this case. The Shafranov shift clearly 

compresses the surfaces on the low field side, in a region called the boundary layer. It is interesting to note 

that the flux depends only upon R in the “core” region of the plasma, as theory predicts [34]. To the 

authors’ knowledge such results at extreme plasma β have not been published before except in their 

previous work [8]. Unfortunately, the contour dynamics method used in the prior publication was not 

appropriate for interfacing with stability codes due to the sparse mesh. CUBE fully accomplishes this goal, 

associating a high resolution interface with fast computational steps. 

9. Conclusion 
High β configurations have remained quite elusive when it comes to actual experiments. For many years it 

was also the case for numerical codes. The algorithm presented here is a significant step toward fast and 

reliable codes which can handle indifferently low or high β free boundary equilibria. After introducing the 

physical problem, we quickly presented the multigrid method as a rather efficient tool for solving elliptic 

equations on fine grids. We offer a detailed description of the algorithm actually used to solve the GSh 

equation, taking into account plasma and external conductors contributions and input functions. The 

numerical procedure was specifically tailored to handle extreme flux and current gradients, which tend to 

create numerical oscillations in standard MHD equilibrium codes. By using tight shape control, an accurate 

search of the magnetic axis, and a dynamically adjusted relaxation parameter, the computational algorithm 

successfully obtained high β configurations with a large outward radial shift of the magnetic axis. The 

numerical validation demonstrated the accuracy of the code and the influence of the different parameters on 

the convergence rate and precision. Then a direct application to a unity β case was presented as an example 

of code capabilities. To the authors’ knowledge, other codes have yet to reach such extreme Shafranov 

shifts as obtained here, even when the multigrid method is used [35]. Furthermore, due to highly resolved 

pressure, current and flux distributions, CUBE makes possible precise studies of these equilibria with 

magnetohydrodynamic stability codes, which evaluate the macroscopic viability of these configurations, or 

gyrokinetic codes, which follow particle orbits and help to understand microscopic plasma behavior. The 

new opportunities that this algorithm delivers should be quite valuable for the development of viable 

approaches to high β plasmas. 
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Figure 1 : a) Typical plasma configuration (radially outward Shafranov shift of 7% 

of the minor radius) and b) high β (shift of 70%) configuration. The flux surfaces 

are on the left and the toroidal plasma current density on the right. The extreme 

shift of the magnetic axis (⊗) compresses the flux surfaces and renders high β 

computations difficult and numerically unstable. 
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Figure 2 : Cylindrical coordinate system (R, Z, φ), toroidal field and plasma flux 

surfaces with magnetic axis (⊗). 
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Figure 3 : The two-grid principle 
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Figure 4 : Full multigrid algorithm  
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Figure 5 : Three-grid method with a) V-cycle (γ=1) or b) W-cycle (γ=2) and c) the 

full multigrid method with 4 grids and a schedule of 2 (W-cycles) 
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Figure 6 : Typical mesh showing the meshed domain Ω and its boundary ∂Ω, the 

plasma, and the set of equilibrium and shaping coils (inside or outside ∂Ω). 
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Figure 7 : Geometrical parameters that define Plim, PVF, PEF and PHF to compute IVF, 

IEL and IHF 
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a)   b)  

Figure 8 : Medium beta plasma a) with and b) without elongation using the 

geometry of Figure 1. The existence of an X-point on the high field side due to the 

stronger vertical field limits the plasma beta for non elongated shapes. Elongation is 

mandatory to obtain circular shapes. 
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Figure 9 : Current density spline with its evenly distributed input values (ο); the 

total span on the R-axis and the axis position are computed automatically by the 

algorithm.  
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Figure 10 : RHFS, RLFS, dp/dψ and dF2/dψ splines as functions of ψ. The derivatives 

cannot be computed on the axis 
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Figure 11 : Pressure derivative spline approximation for dp/dψ|n computation 
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Figure 12 : a) axis swing due to the numerical noise of the flux at high β based on a 

simple minimum |BP| search and b) “evaporating lake” model for local minima 

search.  
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Figure 13 : Flux computation algorithm on grid m 
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Figure 14 : Computational algorithm 
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a)  b)  

Figure 15 : Computational time versus grid density for k → k+1 step with a) 6 grids 

on a 1GHz PC with 2GB of memory; b) 5 to 8 grids on a 2GHz PC with 500MB of 

memory. The solid line corresponds to time equal to the grid density and helps to 

emphasize the O(N) time dependence of the computational algorithm. 
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a) b)  

c) d)  

Figure 16 : a) Influence of the convergence error on the number of iterations, the 

magnetic error and the force balance error for a grid density of 5 points/cm2 with a 

Shafranov shift of 75%; b) influence of the grid density on the number of iterations, 

the magnetic error and the force balance error for a Shafranov shift of 80% with a 

convergence error εconvergence of 0.05%; c) Influence of the Shafranov shift on the 

number of iterations, the magnetic error and the force balance error for a grid 

density of 5 points/cm2 with a convergence error εconvergence of 0.5%; d) Typical 

convergence for a Shafranov shift of 83%, a grid density of 19 points/cm2 and a 

convergence error εconvergence of 1%. 
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a)  b)  

c)  d)  

Figure 17 : Automatic adjustment of the relaxation parameter and the 

corresponding result on the convergence error for a Shafranov shift of 83%, 

αt=1.01, εconvergence=0.5% and a grid density of 22 points/cm2. The following 

parameters were used: a) ηinit=0.05, αd=0.8, nrelax=10 and αr=1.1; b) ηinit=0.05, 

αd=0.9, nrelax=10 and αr=1.05; c) ηinit=0.05, αd=0.9, nrelax=20 and αr=1.05; d) 

ηinit=0.02, αd=0.9, nrelax=10 and αr=1.05. 
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Figure 18 : Code results for a Shafranov shift of 83%, a grid density of 39 

points/cm2 and a βpeak of 100%. 
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Figure 19 : a) 3D view of the current density and b) the force balance error for a 

Shafranov shift of 83%, a grid density of 39 points/cm2 and a βpeak of 100% for a 

total current of 168kA. 
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a)   b)  

Figure 20 : a) Flux surface distribution and b) |B| for a Shafranov shift of 91%, a 

grid density of 80 points/cm2 and a βpeak of 70%. The magnetic well due to strong 

plasma diamagnetism is clearly visible on the |B| picture. 

 

 




