
UC Davis
UC Davis Previously Published Works

Title
SanPy: Software for the analysis and visualization of whole-cell current-clamp recordings.

Permalink
https://escholarship.org/uc/item/8294f1cn

Journal
Biophysical Journal, 123(7)

Authors
Guarina, Laura
Le, Johnson
Griffith, Theanne
et al.

Publication Date
2024-04-02

DOI
10.1016/j.bpj.2024.02.025
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8294f1cn
https://escholarship.org/uc/item/8294f1cn#author
https://escholarship.org
http://www.cdlib.org/


Computational Tool
SanPy: Software for the analysis and visualization of
whole-cell current-clamp recordings
Laura Guarina,1 Johnson Tran Le,1 Theanne N. Griffith,1 Luis Fernando Santana,1 and Robert H. Cudmore1,*
1Department of Physiology & Membrane Biology, University of California-Davis School of Medicine, Davis, California
ABSTRACT The analysis of action potentials and other membrane voltage fluctuations provides a powerful approach for inter-
rogating the function of excitable cells. However, a major bottleneck in the interpretation of this critical data is the lack of intuitive,
agreed-upon software tools for its analysis. Here, we present SanPy, an open-source and freely available software package for
the analysis and exploration of whole-cell current-clamp recordings written in Python. SanPy provides a robust computational
engine with an application programming interface. Using this, we have developed a cross-platform desktop application with a
graphical user interface that does not require programming. SanPy is designed to extract common parameters from action po-
tentials, including threshold time and voltage, peak, half-width, and interval statistics. In addition, several cardiac parameters are
measured, including the early diastolic duration and rate. SanPy is built to be fully extensible by providing a plugin architecture for
the addition of new file loaders, analysis, and visualizations. A key feature of SanPy is its focus on quality control and data explo-
ration. In the desktop interface, all plots of the data and analysis are linked, allowing simultaneous data visualization from
different dimensions with the goal of obtaining ground-truth analysis. We provide documentation for all aspects of SanPy,
including several use cases and examples. To test SanPy, we performed analysis on current-clamp recordings from heart
and brain cells. Taken together, SanPy is a powerful tool for whole-cell current-clamp analysis and lays the foundation for future
extension by the scientific community.
SIGNIFICANCE Whole-cell current-clamp recording is a critical technique to understand detailed biophysical
mechanisms at the cellular and network levels. However, the analysis of these data is by no means standardized. Here, we
present SanPy, an open-source software package for the exploration and analysis of current-clamp recordings written in
Python. SanPy provides a powerful computational engine with an application programming interface. SanPy can be easily
extended with a plugin architecture to create new file loaders, analysis, and visualizations. Finally, SanPy provides a cross-
platform desktop application with a point-and-click graphical user interface that does not require programming.
INTRODUCTION

Patch-clampelectrophysiological recordings are an invaluable
tool to examine detailed biophysical properties and mecha-
nisms at the cellular level with a high signal-to-noise ratio
and exquisite temporal resolution (1,2). In the whole-cell
configuration, a recording is performed by placing a small
(micrometer scale) glass pipette on a cell membrane to form
a high-resistance giga-ohm seal, and then electrical access to
the inside of the cell is achieved either by rupturing (with pres-
sure) or perforating (with antibiotics) the membrane under the
Submitted September 25, 2023, and accepted for publication February 26,

2024.

*Correspondence: rhcudmore@ucdavis.edu

Editor: Gabriela Popescu.

https://doi.org/10.1016/j.bpj.2024.02.025

� 2024 Biophysical Society.

This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
pipette. Once whole-cell access is achieved, either currents or
voltages can be recorded and delivered to the cell.

In whole-cell current-clamp mode, the membrane voltage
of a cell is recorded and a range of hyperpolarizing and depo-
larizing currents can be delivered to characterize a cell’s
response. Whole-cell current-clamp recording and analysis
are not limited to a particular cell type but of general interest
are excitable cells such as cardiacmyocytes and brain neurons.
The common feature of these cell types is they possess regen-
erative potentials termed action potentials (APs). APs are
mediated by both the kinetics and voltage dependance of cur-
rents produced by the opening and closing of ion channel
membrane proteins including but not limited to Naþ, Kþ,
Ca2þ, and Cl� channels.

The AP pattern, frequency, and kinetics collectively
define what is referred to as the intrinsic excitability of a
cell (3,4). Using current clamp to examine intrinsic
Biophysical Journal 123, 759–769, April 2, 2024 759

mailto:rhcudmore@ucdavis.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2024.02.025&domain=pdf
https://doi.org/10.1016/j.bpj.2024.02.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Guarina et al.
excitability allows a detailed understanding of cellular and
network function. For example, in cardiac myocytes, the
AP frequency and its reliability can be used to predict heart
rate and the potential for arrhythmias. In neurons, the fre-
quency of APs in response to a given current injection can
be used to predict how a neuron will integrate synaptic input
to generate AP output. This has important implications for
understanding, for example, sensory encoding and informa-
tion transmission in networks of neurons.

Usingwhole-cell current-clampelectrophysiology tounder-
stand intrinsic excitabilityhaswide-ranging implications in the
development of detailed biophysical models of cell function,
plasticity, and disease. In neurons, the plasticity of intrinsic
excitability has been examined using both ex vivo and in vivo
stimulation (5–7). It has also been shown that in vivo sensory
experience and chronic activity regimes can sculpt neuronal
excitability (8–12). Examining intrinsic excitability is alsocrit-
ical in understanding functional differences between different
classes of neurons (13,14). In the heart, the intrinsic excit-
ability of cardiac myocytes has been examined with a compli-
mentary set of hypotheses. For example, it has been used to
examine the differences in the excitability between anatomi-
cally distinct regions of the sinoatrial node (SAN) and how
heart failure can sculpt cardiac myocyte excitability (15,16).

Themajority of current-clamp analysis is performed using
either commercial software such as pClamp (Molecular De-
vices) or SutterPatch (Sutter Instruments) or implemented as
scripts in general-purpose software such as Matlab
(MathWorks) or Igor Pro (Sutter Instruments). Because of
the inherent heterogeneity in these analysis methods, it is
often difficult to compare the results between studies. A ma-
jor bottleneck to comparing different analysis is there is still
no agreed-upon standard. Such a standard would better allow
for the comparison of results between different groups, indi-
viduals within a group, and different preparations.

With the advent of open-source programming languages
such as Python, we now have the tools in hand to ensure
the development of community-based analysis software
(17,18). The National Institutes of Health (NIH) has been
progressively implementing requirements that NIH-funded
projects make all raw data and analysis publicly available.
This was most recently codified with the 2023 NIH Data
Management and Sharing Policy. The development of anal-
ysis software in an open-source language such as Python has
several benefits, including the ease of implementation and
extensibility with scientific computing packages such as
NumPy, Pandas, and SciPy (19–21). A few current-clamp
analysis packages have been developed in Python, including
paramAP (22) and StimFit (23), but, to the best of our
knowledge, these are scripting packages with no graphical
user interface (GUI), thus limiting their adoption by the
broader biological research community.

Here,we present SanPy, an extensible and fully documented
open-source software package for electrophysiology analysis
of whole-cell current-clamp recordings written in Python.
760 Biophysical Journal 123, 759–769, April 2, 2024
SanPy includes an easy-to-use desktop GUI that requires no
programming. Furthermore, SanPy includes an application
programming interface (API) for scripting. SanPy will calcu-
late common AP metrics such as the time and voltage
threshold, peak, half-width, and interval statistics. In addition,
SanPy can analyze these AP parameters in response to varying
levels of injected current.BecauseSanPyprovides aGUI, it can
be used to interactively interrogate and adjust the detection pa-
rameters and resultinganalysis to arrive at theground truth.The
SanPy API can easily be extended with plugins to include
loading from any raw data file format, new analysis, and novel
visualizations tailored to a particular experiment’s needs. To
test SanPy on real-world data, we provide example analysis
in both cardiac myocytes and central and peripheral nervous
system neurons. To facilitate the adoption of SanPy, we have
included several examples that show how to add to its core
features.
MATERIALS AND METHODS

All code is written Python, is open source, and is available on GitHub

(https://github.com/cudmore/sanpy) (24). One-file downloads are provided

for the desktop GUI application that runs on macOS, Windows, and Linux.

These click-and-run desktop GUI applications do not require any program-

ming experience or additional system installation. For command line instal-

lation, a Python package, sanpy-ephys, is available on PyPi (https://pypi.

org/project/sanpy-ephys/). All documentation can be found in the online

SanPy documentation (https://cudmore.github.io/SanPy/).
Release engineering

To ensure reproducibility, each time a new version of SanPy is released it

includes a unique version number. This version number is saved in all

output files. Because SanPy is archived on GitHub, any previously released

version can be run to compare any differences in the results. SanPy has been

developed using several best engineering practices (25), including contin-

uous integration using GitHub Workflows to run tests (pytest) on the

code to ensure it generates pre-defined and expected results and to verify

the code functions on a matrix of end-user machines including macOS,

Windows, and Linux as well as for a number of Python versions starting

with Python 3.8 and currently extending to Python 3.11.
Code design

All code has been designed to be modular by separating the computational

API from the desktop GUI code. The API is a Python class library that pro-

vides functionality to load raw data, perform analysis, and save the results.

This API allows programmatic control of all SanPy functionality without

requiring interface libraries. This allows SanPy to interoperate with other

software packages and to run headless either on a local machine or in the

cloud. The API uses a number of standard Python packages including

(but not limited to) NumPy, Pandas, SciPy, pyAbf, and h5py (19–21,26,27).
Desktop GUI

The desktop GUI is cross-platform and will run on macOS, Microsoft Win-

dows, and Linux operating systems. The GUI is implemented in Python us-

ing packages such as PyQt, PQtGraph, Matplotlib, and seaborn (28,29). The

desktop GUI is built and distributed as a macOS app and a Microsoft Win-

dows exe using the Python package PyInstaller.

https://github.com/cudmore/sanpy
https://pypi.org/project/sanpy-ephys/
https://pypi.org/project/sanpy-ephys/
https://cudmore.github.io/SanPy/


SanPy current-clamp-analysis software
The GUI is split into independent widgets such as file list, raw data plot,

and plugins such as a scatter plot and tabular results. Each widget commu-

nicates the state as a user interacts and passes messages to other widgets.

This system is referred to as a publisher-subscriber architecture. With

this, selections in one widget will be propagated to all other widgets, mak-

ing the user interface highly interactive and exploratory. Because of this ar-

chitecture, individual widgets need not be aware of other widgets but

instead emit signals on state changes so other widgets can connect to

receive state changes to respond themselves.
Loading raw data and saving analysis

Raw data can be loaded from a number of raw data formats. To ensure

SanPy can be used with raw data from a wide range of acquisition system

and file formats, we have implemented a file-loader plugin architecture al-

lowing users to implement custom functions to load any file format (Recipe

S1). Using this architecture, SanPy includes file-loader plugins for Axon bi-

nary (abf) and text (atf) files (using the pyAbf Python package), comma-

separated-value (CSV) text files, and Matlab (MathWorks) files. Internally,

all analysis is saved in an HDF5 file format using the Python package h5py.

Example code is provided to load and perform additional analysis on the

natively saved HDF5 files. Finally, all analysis can be saved to a CSV for

additional analysis in any programming language or desktop application.
Extending the analysis of SanPy

A plugin architecture is provided such that users can write their own anal-

ysis code to extend the core analysis provided by SanPy. This custom anal-

ysis is automatically incorporated into the GUI and is saved and loaded with

no additional customization. Several examples are provided to show how

the analysis can be extended (Recipe S2).
Extending the SanPy GUI

A plugin architecture is provided that allows users to extend the GUI to

meet their particular analysis needs. This plugin architecture uses class in-
TABLE 1 Provided plugins

Plugin name Type

Plot Recording plot

Spike Clips plot

Plot Scatter plot

Plot FI plot

Plot Pool plot

Export Trace plot

FFT plot

Detection Parameters table

Summary Analysis table

2

SanPy Log table

Two main categories of plugins are provided, including 1) plot and 2) table.
heritance from a base plugin class. With this inheritance, the user is given

access to all the raw data and analysis displayed in the core GUI as well as

signals that allow plugins to dynamically interact with the state of the

SanPy GUI (Recipe S2). We provide a number of plugins that are built in

to the core of SanPy (Table 1).
Signal detection algorithm and analysis results

To capture the wide range of cell types with potentially different AP pheno-

types and membrane time constants, SanPy has a flexible set of detection

parameters (Table S1). A number of pre-set detection parameter sets are

included for common cell types such as ventricular and SAN cardiac myo-

cytes as well as fast- and slow-spiking neurons.

Optional preprocessing of raw data is performed with either Median or

Savitzky-Golay filters. These were chosen as they preserve the timing of

transients such as the temporal onset and shape of an AP.

Initial AP detection is done with a threshold in one of two ways: either a

threshold in the first derivative of the membrane potential (dV/dt) or a

voltage threshold in the primary recording (mV). The dV/dt threshold is

the desired detection strategy as it results in a more precise measure of

the time of the AP threshold potential (mV).

False positives are removed by examining both the AP waveform and

timing with respect to the previous AP. APs are only accepted if they occur

on a positive membrane potential trajectory. Rapidly occurring APs are

removed with a user-specified refractory period (ms). This is useful to re-

move erroneous APs that occur when, for example, an AP has a very

long duration and is potentially noisy. Once the time of each AP is calcu-

lated, several parameters are extracted by analyzing the precise waveform

within an AP (Table S2). This includes, for example, AP peak (mV) and

amplitude, pre-AP rise and post-AP decay times (ms), and half-widths

(ms). Interval statistics are also extracted such as AP frequency (Hz) and

its inverse, the AP inter-spike-interval (ms). Several measurements taken

from the cardiac myocyte literature are included, such as early diastolic

duration (ms) and rate (dV/dt) as well as the maximum depolarizing poten-

tial between APs (16).

During AP parameter extraction, the algorithms will occasionally fail.

This can occur if the recording is relatively noisy or if the detection
Description

plot the raw recording with all analysis results overlaid

overlay APs aligned to their threshold. Includes phase

plots and waterfall plots

plot scatter plots to examine the relationship

between analysis results

plot summary analysis for a typical experiment delivering a

range of current injection amplitudes

a plugin that allows plotting and tabulation of analysis across

any number of files. Examine multiple plots at the same time to

explore the relationships between parameters

visually edit the zoom and labeling of a raw trace to export

to a file for publication

performs both FFT and PSD analysis on raw data. This includes

filtering signals with Bessel filtering

set all detection parameters, load presets, and create user-defined subsets

1) show a tabular summary of all detected spikes and all analysis results

) show a tabular summary of analysis results with the mean, SD, mean 5

SE, and n for each measurement

3) show a tabular summary of all detection errors

a tabular summary of the SanPy log. This is a ‘‘lab notebook’’

of actions taken on the SanPy interface.

This can be sent to developers to troubleshoot and debug issues

Biophysical Journal 123, 759–769, April 2, 2024 761



Guarina et al.
parameters are mismatched with the actual time constants of the cell being

analyzed. Care has been taken to capture these detection errors and ensure

the resulting analysis values do not return erroneous results. All errors are

logged and saved with the analysis, allowing users to browse potentially

problematic APs and to remove them from the analysis accordingly.
Model neuron

To test the SanPy analysis algorithms, we implemented a stochastic

Hodgkin-Huxley model neuron using the ModelDB accession number

144499 (30). Briefly, the model contains Naþ (gNa ¼ 120 mS/cm2, ENa ¼
120 mV), Kþ (gK ¼ 36 mS/cm2, Ek ¼ �12 mV), and Kþ leak currents

(gK,Leak ¼ 0.3 mS/cm2, E K,Leak ¼ 10.6 mV) with a cell capacitance (1

mF/cm2). Stochasticity was implemented by adding normally distributed

random noise to the subunit variables (m, h, n) of the Naþ current (31).
Animals

Male wild-type C57BL/6J mice (The Jackson Laboratory) between 6 and

14 postnatal weeks were used in this study. All mice were maintained,

and experiments conducted, in accordance with the University of Califor-

nia, Davis Institutional Animal Care and Use Committee guidelines.

Mice were euthanized with an intraperitoneally administered lethal dose

of sodium pentobarbital (250 mg/kg).
Myocyte dissociation

As described in Grainger et al. (15), after euthanasia, SAN tissue was

dissected and placed in Tyrode III solution, containing (in mM) 140 NaCl,

5.4 KCl, 1 MgCl2, 5 HEPES, 1.8 CaCl2, and 5.5 glucose (pH 7.4 with

NaOH). The SAN was pinned flat and tissue pieces from the superior and

inferior SAN regions (approximately 2–3 mm2 each) were harvested and

bathed for 5 min at 36�C in Tyrode low-Ca2þ solution containing (in mM)

140 NaCl, 5.4 KCl, 0.5 MgCl2, 0.2 CaCl2, 5.0 HEPES, 5.5 D-glucose, 1.2

KH2PO4, and 50 Taurine (pH ¼ 6.9 with NaOH). The tissue sections were

then enzymatically digested for 30 min in Tyrode low-Ca2þ solution (pH

6.9) containing 9.43 U elastase, 0.89 U protease, 0.27 U collagenase B,

and bovine serum albumin (1mg/mL). All solutions used in the cell isolation

were maintained at 36�C. After digestion, tissue segments were rinsed twice

with Tyrode low-Ca2þ solution (pH 6.9) and twice with a Kraft-Br€uhe solu-

tion (4�C; 80 mml-glutamic acid, 25 mM KCl, 3 mM MgCl2, 10 mM

KH2PO4, 20 mM Taurine, 10 mM HEPES, 0.5 mM ethylene glycol-bis(2-

aminoethylether)-N,N,N0,N0-tetraacetic acid, 10 mM glucose, pH 7.4 with

KOH). After 2–3 h at 4�C, the tissue was warmed to 37�C and mechanically

dissociated using a fire-polished glass pipette.
Perforated-patch-clamp recordings

A drop of myocyte cell suspension was placed on a temperature-controlled

recording chamber (35�C–36�C) and cells were allowed to settle and adhere
to the chamber for approximately 10 min. Next, the external Ca2þ concen-

tration was slowly increased by adding increasing amounts of Tyrode solu-

tion to allow a graded transition to physiological Ca2þ levels (i.e., 1.8 mm).

After completion of Ca2þ reintroduction, cells were constantly perfused

with Tyrode solution. The internal solution used for current-clamp record-

ings contained (in mM): 125 K-aspartate, 10 NaCl, 15 KCl, 1 CaCl2, 10

HEPES (pH to 7.2 with KOH). Amphotericin B (100 mm) was added to

the internal pipette solution. Fire-polished glass pipettes were dipped in

an amphotericin B-free internal solution and then back filled with the am-

photericin B-containing internal solution.

Recordings were performed using a patch-clamp amplifier (MultiClamp

700B, Molecular Devices, San Jose, CA) and pCLAMP 10 software (Mo-

lecular Devices). Cells were initially patched in voltage-clamp mode and,
762 Biophysical Journal 123, 759–769, April 2, 2024
after the formation of a giga-ohm seal, required 1–5 min until amphotericin

B permeabilized the membrane, allowing electrical access to the cell. The

amplifier was then switched to current-clampmode to record membrane po-

tential (mV). All recordings were acquired at 10 kHz.

Spontaneous APs were recorded during a control period (1–2 min). The

b-adrenergic receptor agonist isoproterenol (ISO; 100 nM) was then bath

applied. Recordings continued and spontaneous APs were recorded in the

presence of ISO.
Statistics

All data are presented as mean5 SD unless otherwise noted. All statistical

tests were performedwith the nonparametricMann-WhitneyU test using the

Python package SciPy (20). A p value of less than 0.05 was considered sig-

nificant and all p values are reported as their actual values unless p< 0.0005.
RESULTS

SanPy desktop application

To use the SanPy desktop application (macOS orWindows), a
single file is downloaded and run with a double click. The
desktop application is simple to use and by design parallels
the suggestedworkflow (Fig. 1). First, a folder of raw data files
is loaded and displayed in a table, one file per row (Fig. 1 A).
Selecting a file propagates this selection to all open windows
and plots. After visual inspection of the raw data, detection pa-
rameters are set, and APs are detected (Fig. 1 B). Once de-
tected, analysis results are overlaid on the raw data (Fig. 1
C). Users can zoom into raw data, select subsets of APs, and
this selection is propagated to all other views. Once analyzed,
plugins can beused to further explore the rawdata and analysis
results. This interface is intended to provide a feedback loop
between raw data, detection parameters, and the analysis re-
sults. Multiple iterations may be required to obtain a set of
detection parameters that successfully captures the desired an-
alyses results. The end goal of this iterative interface is to
arrive at the ground-truth analysis easily and quickly.

SanPy includes per-file meta-data to encode a range of
features about a recording. This includes information about
the recording such as acquisition date and time. There are
meta-data for the preparation including species, cell type,
postnatal age, sex, and genotype. Additional meta-data are
provided to encode experimental conditions. All meta-data
are saved with the analysis and are available to all plotting
and tabular displays.

All detection parameters and analysis results for each raw
data file in a folder or nested folders are saved to a single file
(HDF5 format) and are automatically loaded the next time
the folder (and its nested folders) is loaded. We chose to
save all analysis to a single HDF5 file because these files
behave as a random-access database allowing individual
pieces, such as the analysis for one raw file among hundreds,
to be individually saved and loaded regardless of the total
number of recordings. Finally, all meta-data, detection pa-
rameters, and analysis results can be exported to several for-
mats, including CSV, for easy analysis in other software.



FIGURE 1 Desktop GUI and workflow. (A) A folder is loaded and all raw data files are shown in a table, one file per row. Meta-data from each file are

shown, including the recording duration, the number of sweeps, the sampling interval, and the recording mode. In addition, there are columns indicating

loaded and analyzed data files, including raw data loaded (column L), analyzed (column A), saved (column S), the number of APs detected (column N).

(B) Controls to detect and then explore individual APs and analysis results. This includes setting parameters for selected spikes such as their user type

and condition. (C) Viewing raw data with multiple views. Top plot is the entire raw recording with a selected time range (gray box). Bottom plot is the zoomed

in raw recording. All plots have analysis results overlaid including AP threshold (red circles) and AP peak (green circles). A selected spike is shown in the

bottom plot (yellow circle).

SanPy current-clamp-analysis software
SanPy plugins

To ensure SanPy can be easily extended, we have created
a system where the core functionality can be expanded us-
ing a plugin architecture (see Recipe S3). A key feature of
this system is that it provides a concise API to connect to
the raw data and analysis results. The plugin architecture
is designed to be downstream of the core SanPy function-
ality. With this, any errors in a plugin will not disrupt the
functioning of the core SanPy functions. The range of plu-
gins is expanding and there are currently two broad cate-
gories, namely graphical and tabular display of data and
their analysis (Table 1). Several graphical plugins are
shown in Fig. 2. SanPy is built with a plugin to browse
the raw data with all detection parameters overlaid (plot
recording; Fig. 2 A). There is a scatter-plot plugin to visu-
alize correlations between AP analysis results (plot scat-
ter; Fig. 2 B). Finally, a plugin is provided to plot
aligned AP clips and to calculate the mean shape of either
membrane potential (Vm) or its first derivative in a phase
plot (dV/dt) (plot clips; Fig. 2 C). Because all plugins are
linked back to the main interface (Fig. 1), SanPy provides
a rich GUI to simultaneously explore the raw data and
analysis results.
A canonical current-clamp experiment is to inject a fam-
ily of current steps with increasing amplitudes and record
the AP response to each step. This is commonly used to
probe the input-output relationship or transfer function of
a cell. SanPy has several built-in plugins to facilitate the
analysis of this class of experiment. Using a recording
from a dorsal root ganglion peripheral sensory neuron, we
analyzed and visualized the AP response to a family of de-
polarizing current steps (plot spikes plugin, Fig. 3 A). To
further explore this type of dataset, SanPy provides a plugin
to plot all the analysis results as a function of injected cur-
rent (plot FI plugin; Fig. 3 B). This plugin will plot any anal-
ysis result on the y axis versus the current injection
amplitude and provides a table of summary statistics for a
range of derived measurements including the mean, mini-
mum, maximum, and coefficient of variation for each cur-
rent step. As with all SanPy plugins, these results are
easily saved as an image file of the plot or as tabular data.

Once several recordings are analyzed, SanPy provides a
powerful pool plot plugin to plot and tabulate analysis across
any number of files (Fig. 4). This plugin effectively allows
entire datasets to be visualized and interrogated for trends to
test hypotheses. In all plots and tables, data can be grouped
by any categorical analysis result (in general, any per-file
Biophysical Journal 123, 759–769, April 2, 2024 763



FIGURE 2 Plotting plugins. (A) Plugin to

display APs with the analysis results overlaid.

Shown here is AP threshold and peak (red circles),

maximum depolarizing potential (green circle),

early diastolic duration (blue circles), early dia-

stolic duration rate (blue dotted line), and several

AP half-widths representing percentage rise of

10%, 20%, 50%, 80%, and 90% (yellow lines).

(B) Example scatter-plot plugin showing AP fre-

quency (Hz) versus threshold (mV). The value for

each AP is plotted as a symbol (cyan circles). Mar-

ginal histograms are showing the distribution of the

plotted analysis parameters for both the x and y

axes. (C) Example of the spike clip plugin showing

aligned APs (left) and AP phase plots (right). Indi-

vidual APs are plotted in white and the mean AP

waveform across all plotted APs is shown in red.

Guarina et al.
meta-data). Some examples are grouping by sex, genotype,
experimental condition, or acquisitiondate. In addition to scat-
ter (Fig. 4A) and violin plots (Fig. 4B andC), other plot styles
are provided, including line, box, histogram, and cumulative
histogram. Finally, each plot has a companion table (Fig. 4
C) that can be copy and pasted into other analysis software.
Detection parameters

All detection parameters are rigorously defined by document-
ing their internal variable name, a human readable name, their
units, default values, and a longer description (Table S1). To
capture a range of time constants in different cell types, we
found it necessary to add a number of detection parameters,
potentially causing complexity in finding the proper set for
high-quality detection within a given recording. To simplify
the process for the end user, we have provided presets for
several cell types, including ventricular and SAN cardiac my-
ocytes, slow and fast neuronal cells, and subthreshold peak
detection. With the provided detection parameters plugin,
users can adjust the pre-defined detection parameters and,
once they are satisfactory for a given recording, these can be
saved and then loaded for future analysis.
Analysis results

The most critical function of SanPy is to produce reliable
and reproducible analysis results given a raw data
recording and a set of detection parameters. To make this
as transparent as possible and to allow comparison with
other analysis software, we have defined all the SanPy
analysis results such that the end user can understand their
meaning and how they were calculated (Table S2). SanPy
764 Biophysical Journal 123, 759–769, April 2, 2024
generates a range of analysis results taken from both the
neuronal and cardiac literature. These include AP time
and voltage threshold, peak, and half-width. For cardiac
myocyte analysis, this includes the early diastolic duration
(ms) and rate (mV/s). To ensure SanPy can be used in a
wide range of experiments, it can be extended with new
analysis results (Recipe S2).

A key feature of SanPy is that it logs errors during AP
detection. For example, when searching for an AP half-
width, there may be no corresponding falling phase in an
AP. In this case, the user must modify the half-width detec-
tion parameter. The goal of logging detection errors is to
allow the users to fine-tune their detection parameters to
match their recordings. Errors are saved as part of the anal-
ysis and each error type is associated with a detection
parameter so it can easily be adjusted.

Once APs are detected, SanPy has a set of user-configu-
rable notations (e.g., tags) that can be set for each detected
AP or for any selection of multiple APs. For example,
AP(s) can be tagged as ‘‘include’’ or ‘‘exclude,’’ allowing
problematic APs to not be included in the final analysis.
This also includes marking an AP or multiple APs with a
‘‘user type.’’ SanPy provides 10 different user-type mark-
ings and these can, for example, be used to denote different
conditions within a recording such as control and different
pharmacological treatments.
Programming with the API

Users can utilize the SanPy API to work in a familiar envi-
ronment such as a stand-alone Python script, a Jupyter note-
book, or even integrate SanPy functions to interoperate with
pre-existing Python packages and applications. A simple



FIGURE 3 Plugins to analyze the response to a range of current injection amplitudes. (A) Plugin to display the response to a family of current injection

amplitudes with analysis results overlaid on the raw data. In this example, the response to a family of eleven current injection amplitudes is show. A subset of

the analysis results is overlaid on the raw data (AP threshold, red circles). (B) Plugin to visualize a summary of the analysis results for an experiment stim-

ulating with a range of current injection amplitudes. Here, as an example, the instantaneous frequency (Hz) for each AP is plotted on the y axis versus the

current injection amplitude (pA). The mean AP frequency for each current step is plotted (cyan markers) with the SE of the mean (vertical cyan lines).

SanPy current-clamp-analysis software
example of programming with the API is to write a Python
script to load a raw data file, set detection parameters, detect
APs, plot the results, and then save all the results (Fig. 5).
This example is using a simulated Hodgkin-Huxley neuron
endowed with stochastic Naþ channels (see section ‘‘mate-
rials and methods’’). To test the sensitivity of the analysis re-
sults, we ran the model with two sets of parameters by
modifying the maximal conductance of the Kþ current
(gK). This effectively tests a within-cell bath application
of a drug such as a Kþ channel blocker. For a 2-s run of
the model, for the first half (0–1 s) gK was set to 36 mS/
cm2 and in the second half (1–2 s) gK was reduced to 30
mS/cm2 (a 17% reduction). With this reduction in Kþ

conductance, we hypothesized that AP frequency and half-
width would increase, whereas the voltage threshold for
an AP would remain unchanged. As predicted, reducing
the maximal conductance of the Kþ current causes an in-
crease in AP frequency (control 39.17 5 17.03 Hz; drug
55.27 5 13.48 Hz, p < 0.0005) and half-width (control
1.14 5 0.03 ms; drug 1.22 5 0.04 ms, p < 0.0005) with
no change in the threshold potential (control �44.36 5
0.73 mV; drug �44.32 5 0.82 mV, p ¼ 0.91).
Extending SanPy

A critical component of all analysis software is to provide
mechanisms bywhich it can be extended by a user community.
To achieve this, SanPy includes severalways to extend its func-
tionality, including API interfaces to 1) create custom file
loaders, 2) add new analysis results to the core detection algo-
rithms, and 3) create new and novel visualization and tabular
plugins.

To ensure SanPy can load raw data from any number of
file formats, it includes a plugin architecture to implement
user-defined custom file loaders. As an example, SanPy in-
cludes custom file loaders for CSV and Matlab files
(Recipe S1).

We are aware that different analysis metrics, measure-
ments, and nomenclatures are used across sub-disciplines
such as the cardiac and the neuroscience communities.
Thus, additional analysis results can be added by using
the provided plugin architecture to encapsulate new anal-
ysis and detection measurements. With this system,
new measurements from the raw data are seamlessly inte-
grated into the existing SanPy GUI and are automatically
saved and exported. As an example, SanPy includes a
custom analysis code to detect the maximal diastolic depo-
larization between AP (for cardiac cells) and the 20%–
80% AP rise time (for both neurons and cardiac cells)
(Recipe S2).
Benchmarking the SanPy detection algorithm

An important consideration for all analysis software is to
determine if the algorithms will scale for high throughput.
To examine the time it takes to perform AP detection, we
ran AP detection for progressively longer times within a
500-srecording (10 kHz) from an acutely isolated cardiac
myocyte (Fig. S1). The full detection of a 500-s recording
with 900 APs took approximately 1 s. By performing a
linear fit of this runtime as a function of recordings dura-
tion, we found the SanPy algorithm takes approximately
0.01 s for each second of a 10-kHz recording. Timing
was tested on a MacBook Pro (2021) with an Apple M1
Max central processing unit and 64 GB of memory. These
timing results indicate that real-time use of SanPy for re-
cordings well beyond 500 s should not be a hinderance.
This also allows using the SanPy API on large datasets
with hundreds of recordings to be rapidly batch analyzed
with the API.
Biophysical Journal 123, 759–769, April 2, 2024 765



A

D

CB

FIGURE 4 Plugin to pool analysis across files. (A) A pooled plot of take-off potential (mV) versus spike frequency (Hz). Each symbol is the value for one

AP and markers denote different recordings. Colors denote two different conditions (control and drug). (B) Violin plot of take off potential (mV) comparing

control to drug conditions. (C) Violin plot of spike frequency (Hz) comparing control to drug conditions. (D) Tabular summary of the plots in (B) and (C). All

plots in these examples are from the same synthetic dataset with 32 recordings and 339 APs.

Guarina et al.
Analysis of recordings from neurons and cardiac
myocytes

We have tested SanPy on several cell types, including car-
diac myocytes, dorsal root ganglion neurons, cortical layer
V pyramidal neurons (provided by Niraj S. Desai,
National Institute of Neurological Disorders and Stroke;
personal communication), and in silico stochastic cortical
neurons. These tests were a critical step to ensure the pro-
vided detection parameter presets could be quickly fine-
tuned for each of these cell types with potentially large het-
erogeneity in their membrane kinetics and the shape of APs.
This was also important to ensure our detection algorithms
yielded the correct analysis results.

In our previous work, an early version of SanPy was used
to perform the analysis of current-clamp recordings of
acutely isolated myocytes from the SAN of the heart (15).
By examining anatomically distinct subpopulations of myo-
cytes, we showed significant differences between superior
and inferior SAN myocyte AP phenotypes, including AP
frequency and coefficient of variation, early diastolic dura-
tion (ms), and early diastolic depolarization rate (mV/s).

To further test SanPy on real-world data, here, we per-
formed perforated-patch current-clamp recordings in
acutely isolated cardiac myocytes and used SanPy to
analyze spontaneous APs. We compared within-cell AP
phenotypes in control versus in the present of the b-adren-
ergic receptor agonist ISO (Fig. 6 A). We found that ISO
significantly increased AP frequency (control, 0.76 5
0.72 Hz; ISO, 1.17 5 0.56 Hz, p ¼ 0.0005) and half-width
(control, 7.0 5 0.5 ms; ISO, 10.155 0.83 ms, p < 0.0005)
766 Biophysical Journal 123, 759–769, April 2, 2024
but had no significant effect on the early diastolic depolari-
zation rate (control, 42.25 5 45.4 mV/s; ISO, 52.79 5
38.26 mV/s, p ¼ 0.12) (Fig. 6 B). These results indicate
that the SanPy algorithms are robust and can detect the hy-
pothesized changes in current-clamp analysis parameters.
DISCUSSION

We present SanPy, software for the analysis of whole-cell cur-
rent-clamp recordings. SanPy can be used at multiple levels.
First, and importantly, SanPy can be used as a desktop GUI
application (Windows, macOS, and Linux) providing an intu-
itive and easy-to-use point-and-click interface that enables the
analysis, exploration, and curation of electrophysiology data
and analysis without requiring any complicated installation
or programming. Second, the SanPy API allows all function-
ality to be programmatically scripted and extended, allowing
programmers to fully extend SanPy. SanPy can be extended
in several ways using the provided plugin architectures,
including customfile loaders, additions to the core analysis al-
gorithms, and general-purpose interface plugins. Taken
together, SanPy provides a solid foundation on which to
perform a range of current-clamp electrophysiology analysis
and with its extensibility will foster other research groups to
build and share additional functionality.

Throughout its development, SanPy has been designed to
fully satisfy the findability, accessibility, interoperability,
and reusability (FAIR) methodology (32). SanPy is findable
on GitHub and PyPi and is accessible with its easy-to-use
desktop GUI. The modular design and API allow SanPy to



A B

FIGURE 5 Programming with the API. (A) Example Python script to load raw data, detect APs, plot raw data with an overlay of the analysis results, and to

save the results to a CSV file. (B) Output of the script in (A). Top plot is the raw recording overlaid with AP threshold (mV). Middle plot is AP frequency (Hz)

versus time (s). Bottom plot is AP 50% half-width (ms) versus time (s). Each AP is a symbol (circle). The color of the symbols indicates different conditions

within the recording. Here, this represents a change in the maximal conductance of the Kþ leak channel (gK) indicated by blue and orange symbol colors.

Please note, all data in this figure are from a stochastic Hodgkin-Huxley neuron model.

SanPy current-clamp-analysis software
interoperate with existing code bases and other analysis pack-
ages. Finally, SanPy ensures the reuse of data by clearly
defining the meaning of both the detection parameters and
analysis results.

SanPy has been tested on cardiac myocytes and several
brain neuron types. There is nothing limiting the use of
SanPy to any excitable cell type, including, for example,
skeletal and smooth muscle cells as well as endocrine cells
such as insulin-releasing pancreatic b cells. To ensure SanPy
can be used on any number of cell types, we have exposed
all detection parameters to the end user. To reduce potential
complexity, we provide pre-defined detection parameters for
common cardiac and neuronal cell types that can be easily
extended to other cell types. Finally, all detection parame-
ters are documented and easily specified, saved, and loaded
directly in the GUI.

To facilitate the curation of analysis results, SanPy flags
APs when the detection parameters failed to find a signal.
We believe this is a unique feature of SanPy, not found in other
analysis software, such as whether the specified maximum
half-width was shorter than the actual half-width in the re-
coded cell.Afirst key step in analysis curation is to check these
detection errors to determine if the detection parameters need
to be further adjusted. This can be done with the summary
analysis plugin (Table 1). With this system of flagging errors,
weare confident the enduserwill be able to identify the elusive
and often lost false negatives in each analysis.

A key feature of the SanPy desktop GUI is the visualiza-
tion of the analysis results in the context of the raw data. All
plots are linked, and selecting an analysis result such as AP
time or peak amplitude will snap all other views to the raw
data. This is critically important for several reasons,
including the curation of the analysis results by interro-
gating outliers. These outliers can be flagged to not be
included in the results or the detection parameters can be
fine-tuned to obtain more reliable results.

As a software ecosystem, SanPy provides a rich set of
mechanisms by which it can be extended. This includes
extensible file loaders, the addition of core analysis results,
and a plugin architecture to create new and unique analysis
and visualizations. With this, a group of researchers with
differing skills can, for example, have programmers imple-
ment new analysis that can then be used by nonprogrammers
in the point-and-click GUI.

Finally, we envision SanPy will be used in near-real time
during data acquisition to interrogate the quality of a
recording and to perform customized analysis. By
leveraging the plugin architecture, we envision that the anal-
ysis for experiments with unique requirements can be visu-
alized and quantified during an actual experiment.
Limitations and future directions

SanPy is optimized for the analysis of whole-cell current-
clamp recording and the analysis of AP-like events in excit-
able cells such as brain neurons and cardiac myocytes. It
does not implement other common use cases such as the
analysis of voltage-clamp recordings. This would include
neuronal miniature excitatory and inhibitory post-synaptic
currents or the probing of ion-channel current activation
and inactivation kinetics. There is nothing in the core func-
tionality that limits the future implementation of this anal-
ysis, and we envision that the plugin architecture will
facilitate the development of a range of these tools.

Although SanPy is currently limited in the number of
raw data file types it can load, the provided file-loader
Biophysical Journal 123, 759–769, April 2, 2024 767



A

B

FIGURE 6 Example analysis of current-clamp

recording from a cardiac myocyte. (A) Time-series

plot of a perforated-patch current-clamp recording

in control and after bath application of ISO. De-

tected AP peaks are show as a circle with color en-

coding the condition (gray for control and red for

ISO). (B) Summary statistics comparing analysis re-

sults in control versus ISO conditions. Statistical p

values are for a Mann-Whitney U test.

Guarina et al.
functionality will allow this to be extended to any number
of file formats. A key future direction is to incorporate
both import and export of community-based file formats
such as Neurodata Without Borders (NWB) and the Dist-
ributed Archives for Neurophysiology Data Integration
(DANDI) (33).
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2024.02.025.
AUTHOR CONTRIBUTIONS

R.H.C. and J.T.L. designed and implemented all computer code and soft-

ware. All authors provided feedback to improve and debug the software.

L.G. and L.F.S. designed and performed cardiac myocyte experiments.

T.N.G. provided neuronal recordings. R.H.C. wrote the manuscript with

input from all authors.
ACKNOWLEDGMENTS

We are thankful for feedback from members of the Santana lab and the UC

Davis community. We thank Niraj S. Desai (National Institute of

Neurological Disorders and Stroke) for providing sample Matlab file-

format electrophysiology recordings of cortical layer-V pyramidal neurons.

We are indebted to open-source developers from around the world,

including the thousands that have contributed to Python packages. We are

particularly thankful for the work done by Scott W. Harden on pyAbf.

This work was supported by grants from the US National Institutes of

Health to R.H.C. (1RF1MH123206) and to L.F.S. (1R01HL144071 and

1OT2OD026580).
DECLARATION OF INTERESTS

The authors declare no competing interests.
768 Biophysical Journal 123, 759–769, April 2, 2024
REFERENCES

1. Neher, E., and B. Sakmann. 1976. Single-channel currents recorded
from membrane of denervated frog muscle fibres. Nature.
260:799–802.

2. Hamill, O. P., A. Marty, ., F. J. Sigworth. 1981. Improved patch-
clamp techniques for high-resolution current recording from cells
and cell-free membrane patches. Pfl€ugers Archiv. 391:85–100.

3. Debanne, D., G. Daoudal,., M. Russier. 2003. Brain plasticity and ion
channels. J. Physiol. Paris. 97:403–414.

4. Zhang, W., and D. J. Linden. 2003. The other side of the engram: expe-
rience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neu-
rosci. 4:885–900.

5. Aizenman, C. D., and D. J. Linden. 2000. Rapid, synaptically driven
increases in the intrinsic excitability of cerebellar deep nuclear neu-
rons. Nat. Neurosci. 3:109–111.

6. Cudmore, R. H., and G. G. Turrigiano. 2004. Long-Term Potentiation
of Intrinsic Excitability in LV Visual Cortical Neurons.
J. Neurophysiol. 92:341–348.

7. Paz, J. T., S. Mahon, ., S. Charpier. 2009. Multiple forms of activity-
dependent intrinsic plasticity in layer V cortical neurones in vivo.
J. Physiol. 587:3189–3205.

8. Desai, N. S., L. C. Rutherford, and G. G. Turrigiano. 1999. Plasticity in
the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci.
2:515–520.

9. Nataraj, K., N. Le Roux, ., G. Turrigiano. 2010. Visual Deprivation
Suppresses L5 Pyramidal Neuron Excitability by Preventing the Induc-
tion of Intrinsic Plasticity. Neuron. 68:750–762.

10. Cudmore, R. H., L. Fronzaroli-Molinieres, ., D. Debanne. 2010.
Spike-time precision and network synchrony are controlled by the ho-
meostatic regulation of the D-type potassium current. J. Neurosci.
30:12885–12895.

11. Wen, W., and G. G. Turrigiano. 2021. Developmental Regulation of
Homeostatic Plasticity in Mouse Primary Visual Cortex. J. Neurosci.
41:9891–9905.

12. Swanson, O. K., R. Semaan, and A. Maffei. 2021. Reduced Dopamine
Signaling Impacts Pyramidal Neuron Excitability in Mouse Motor Cor-
tex. eNeuro. 8:ENEURO.0548-19.2021.

13. Maffei, A., S. B. Nelson, and G. G. Turrigiano. 2004. Selective recon-
figuration of layer 4 visual cortical circuitry by visual deprivation. Nat.
Neurosci. 7:1353–1359.

https://doi.org/10.1016/j.bpj.2024.02.025
https://doi.org/10.1016/j.bpj.2024.02.025
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref1
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref1
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref1
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref2
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref2
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref2
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref2
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref3
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref3
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref4
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref4
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref4
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref5
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref5
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref5
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref6
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref6
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref6
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref7
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref7
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref7
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref8
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref8
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref8
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref9
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref9
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref9
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref10
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref10
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref10
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref10
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref11
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref11
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref11
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref12
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref12
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref12
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref13
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref13
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref13


SanPy current-clamp-analysis software
14. Griffith, T. N., T. A. Docter, and E. A. Lumpkin. 2019. Tetrodotoxin-
Sensitive Sodium Channels Mediate Action Potential Firing and Excit-
ability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons.
J. Neurosci. 39:7086–7101.

15. Grainger, N., L. Guarina, ., L. F. Santana. 2021. The Organization of
the Sinoatrial Node Microvasculature Varies Regionally to Match
Local Myocyte Excitability. Funct. Oxf. Engl. 2, zqab031.

16. Larson, E. D., J. R. St Clair, ., C. Proenza. 2013. Depressed pace-
maker activity of sinoatrial node myocytes contributes to the age-
dependent decline in maximum heart rate. Proc. Natl. Acad. Sci.
USA. 110:18011–18016.

17. Eglen, S. J., B. Marwick,., J.-B. Poline. 2017. Toward standard prac-
tices for sharing computer code and programs in neuroscience. Nat.
Neurosci. 20:770–773.

18. Munafò, M. R., B. A. Nosek, ., J. P. A. Ioannidis. 2017. A manifesto
for reproducible science. Nat. Human Behav. 1:0021.

19. Harris, C. R., K. J. Millman, ., T. E. Oliphant. 2020. Array program-
ming with NumPy. Nature. 585:357–362.

20. Virtanen, P., R. Gommers,., P. van Mulbregt. 2020. SciPy 1.0: funda-
mental algorithms for scientific computing in Python. Nat. Methods.
17:261–272.

21. 2023. pandas-dev/pandas: Pandas. zenodo.org/record/7658911.

22. Rickert, C., and C. Proenza. 2017. ParamAP: Standardized Parameter-
ization of Sinoatrial Node Myocyte Action Potentials. Biophys. J.
113:765–769.
23. Guzman, S. J., A. Schlögl, and C. Schmidt-Hieber. 2014. Stimfit: quan-
tifying electrophysiological data with Python. Front. Neuroinf. 8:16.

24. Cudmore, R. H. 2023. cudmore/SanPy: v0.1.25. zenodo.org/record/
7931648.

25. Wilson, G., D. A. Aruliah, ., P. Wilson. 2014. Best Practices for Sci-
entific Computing. PLoS Biol. 12, e1001745.

26. Harden, S. W. 2023. pyABF 2.3.5. https://pypi.org/project/pyabf.

27. Collette, A., T. Kluyver, ., M. Kittisopikul. 2022. h5py/h5py: 3.7.0.
zenodo.org/record/6575970.

28. Hunter, J. D. 2007. Matplotlib: A 2D Graphics Environment. Comput.
Sci. Eng. 9:90–95.

29. Waskom, M. 2021. seaborn: statistical data visualization. J. Open
Source Softw. 6:3021.

30. McDougal, R. A., T. M. Morse,., M. L. Hines. 2017. Twenty years of
ModelDB and beyond: building essential modeling tools for the future
of neuroscience. J. Comput. Neurosci. 42:1–10.

31. Goldwyn, J. H., and E. Shea-Brown. 2011. The what and where of add-
ing channel noise to the Hodgkin-Huxley equations. PLoS Comput.
Biol. 7, e1002247.

32. Wilkinson, M. D., M. Dumontier, ., B. Mons. 2016. The FAIR Guid-
ing Principles for scientific data management and stewardship. Sci.
Data. 3, 160018.

33. R€ubel, O., A. Tritt, ., K. E. Bouchard. 2022. The Neurodata Without
Borders ecosystem for neurophysiological data science. Elife. 11,
e78362.
Biophysical Journal 123, 759–769, April 2, 2024 769

http://refhub.elsevier.com/S0006-3495(24)00159-0/sref14
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref14
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref14
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref14
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref15
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref15
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref15
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref16
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref16
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref16
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref16
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref17
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref17
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref17
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref18
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref18
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref19
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref19
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref20
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref20
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref20
http://zenodo.org/record/7658911
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref22
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref22
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref22
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref23
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref23
http://zenodo.org/record/7931648
http://zenodo.org/record/7931648
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref25
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref25
https://pypi.org/project/pyabf
http://zenodo.org/record/6575970
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref28
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref28
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref29
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref29
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref30
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref30
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref30
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref31
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref31
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref31
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref32
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref32
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref32
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref33
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref33
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref33
http://refhub.elsevier.com/S0006-3495(24)00159-0/sref33

	SanPy: Software for the analysis and visualization of whole-cell current-clamp recordings
	Introduction
	Materials and methods
	Release engineering
	Code design
	Desktop GUI
	Loading raw data and saving analysis
	Extending the analysis of SanPy
	Extending the SanPy GUI
	Signal detection algorithm and analysis results
	Model neuron
	Animals
	Myocyte dissociation
	Perforated-patch-clamp recordings
	Statistics

	Results
	SanPy desktop application
	SanPy plugins
	Detection parameters
	Analysis results
	Programming with the API
	Extending SanPy
	Benchmarking the SanPy detection algorithm
	Analysis of recordings from neurons and cardiac myocytes

	Discussion
	Limitations and future directions

	Supporting material
	Author contributions
	Acknowledgments
	Declaration of interests
	References




