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ABSTRACT OF THE DISSERTATION

Dynamically Configurable System-on-Chip Platforms:

Architectures and Design Methodologies

by

Krishna Sekar

Doctor of Philosophy in Electrical and Computer Engineering (Computer Engineering)

University of California, San Diego, 2005

Professor Sujit Dey, Chair

Rapid advances in semiconductor technology have led to an era where en-

tire systems, consisting of complex, heterogeneous components, can be integrated on a

single chip, referred to as System-on-Chip (SoC). Due to the escalating cost in design-

ing customized application-specific SoCs, recent years have witnessed the emergence of

”platform-based” SoCs. These systems consist of largely pre-designed, general-purpose

components that can be re-targeted towards numerous applications, thereby amortizing

design costs. A key determinant to the success of such platforms is the extent to which

they can be customized to meet the diverse requirements imposed by different appli-

cations. Modern SoC platforms are mostly limited to providing a one-time (static) cus-

tomization of the platform hardware. However, with the convergence of multiple diverse

applications on the same platform, each imposing time-varying requirements, there is a

growing need for SoC platforms that can be dynamically configured. Provisioning for

such configurability and exploiting it at run-time is the focus of this dissertation.

This dissertation proposes SoC platforms featuring multiple, dynamic config-

urability options, and illustrates their advantages over existing design styles. It intro-

duces the concept of Dynamic Platform Management, a methodology for the run-time

customization of such platforms in a coordinated manner, to satisfy the time-varying re-

quirements imposed by the executing applications. The dissertation addresses the prob-

xv



lem of provisioning for dynamic configurability by proposing a novel, on-chip commu-

nication architecture that features a dynamically configurable topology. Dynamic man-

agement techniques are then presented for platforms featuring multiple, run-time con-

figurable components. In particular, it considers platforms consisting of configurable

processors, flexible memory architectures, and configurable communication architec-

tures. Finally, it investigates the benefits of synergistically combining techniques for

configuring platform hardware with techniques for adapting application behavior.

Experiments conducted on a large number of SoC designs, and an implemen-

tation of dynamic platform management on the Altera Excalibur development board

demonstrate that configurable platforms with dynamic platform management result in

significantly superior application performance, more efficient utilization of platform re-

sources, and improved energy efficiency compared to conventional static approaches.

Hence, the techniques described in this dissertation will facilitate more wide-spread

adoption of the platform-based approach, leading to low-cost, yet function-rich and

energy-efficient devices.

xvi
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Introduction

Over the past four decades, the semiconductor industry has witnessed incred-

ible improvements in the manufacturing process, resulting in integrated circuit feature

sizes shrinking from 5.0�m in 1975 to 65nm (predicted) in 2007 [2]. Such remark-

able technology scaling has led to the projected advent of the billion transistor chip

within the end of this decade, keeping in line with Gordon Moore’s prediction in 1965,

famously known as Moore’s Law, that the number of transistors on integrated circuits

would double roughly every two years [3]. Designers today have the ability to integrate

entire systems consisting of complex, heterogeneous components onto a single chip, re-

ferred to as a System-on-Chip (SoC). For example, the recently released GeForce 7800

GTX graphics processing unit from NVIDIA (Figure I.1) contains more than 300 mil-

lion transistors on the same die [4].

The phenomenal complexity of today’s SoCs has resulted in escalating costs

and time associated with their design, verification, manufacture and test, making it eco-

nomically infeasible to build custom, application-specific SoCs for many systems. Fig-

ure I.2(a) shows the cost of mask sets for integrated circuits over different technology

generations [5]. Mask costs at the 65nm node are estimated to run at more than $3

million, a 400% increase over the 130nm node, while the total non-recurring engineer-

ing (NRE) costs may exceed $11 million. Also, while the available silicon real estate

on chips has been rapidly increasing, our capability to meaningfully design and verify

1
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Source: NVIDIA

Figure I.1: GeForce 7800 graphics processing unit from NVIDIA with 302 million tran-

sistors

these complex chips continues to lag behind, creating the so-called “design productivity

gap”. This is illustrated by Figure I.2(b), which shows that the number of transistors

per chip is increasing at a compound annual growth rate of about 58%, but designers’

rate of productivity is increasing by only about 21% [6]. This gap adversely impacts

the time-to-market for custom SoCs (or ASICs), a key factor determining the success

or failure of a product in the fiercely competitive semiconductor market. It has been

estimated that a three-month delay in the time-to-market of a high-value, high-volume

application could cost $500 million [7]. These trends indicate that the custom SoC or

ASIC approach may not be feasible except in the highest volume markets (quarter mil-

lion plus units per year). This trend is confirmed by market surveys which indicate that

the number of new commercial ASIC designs undertaken in 2002 was less than 1500,

down from roughly 5000 in 1998-99, and that this slowdown was expected to continue

even after the semiconductor industry recovered from its recession [8].
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The above trends are driving the research and development of new silicon

architectures and design methodologies to combat the challenges faced by the custom

SoC approach. One of the important results has been the emergence of the notion of

“platform-based” SoCs, which consist of largely pre-designed and pre-verifiedstandard

(general-purpose) components integrated on the same chip. Examples of such com-

ponents include processors, DSPs, embedded memories, standardized communication

architectures, and peripherals such as UARTs, external memory controllers, timers,etc.

Figure I.3 shows the Nomadik platform from STMicroelectronics, developed for the

mobile multimedia domain [9]. Since platform-based SoCs consist of standard compo-

nents, they can be targeted towards multiple applications, thereby amortizing the high

cost of platform development over larger markets.

Source: STMicroelectronics

Figure I.3: Nomadik mobile multimedia platform from STMicroelectronics

A key aspect on which the success of an SoC platform depends is its ability

to satisfy the performance requirements imposed by different applications that can be

potentially mapped to the platform, while meeting desired system-level design goals

(energy consumption, battery-life, cost,etc). Due to the diversity of application char-

acteristics, it is imperative to be able to effectively customize such platforms in an

application-specific manner, in order to best satisfy the requirements imposed by the

executing application(s). Emerging trends in system design indicate that such config-

urable platform-based SoCs will play an increasingly important role in the future.
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This chapter introduces the importance of provisioning for and exploiting con-

figurability in SoC platforms, as a means of meeting many of the challenges faced by

designers today. In the next section, we survey the landscape of design styles in detail,

and illustrate the advantages and disadvantages of different design approaches. Next, we

describe how configurable platforms can potentially combine the best benefits of differ-

ent design styles. We motivate the need for dynamic configurability in platforms and

run-time configuration techniques, as opposed to just static (design-time) configurabil-

ity. Finally, we describe the contributions made by this thesis, and provide an overview

of the remaining chapters.

I.A Landscape of Design Styles

Figure I.4 shows the landscape of different design styles, illustrating the trade-

off between general-purpose and application-specific design approaches. The x-axis

represents increasing flexibility (i.e., the ease with which the design can be targeted to

different applications or varying application requirements), lower engineering costs and

smaller time-to-market. The y-axis represents increasing performance and decreasing

power consumption. We next describe each node in the landscape in further detail.

Custom ASICs/SoCs, ASSPs:Figure I.4 illustrates the position of custom

SoCs/ASICs and ASSPs (application-specific standard products) in the design land-

scape. These designs are tailored to the requirements of a specific application and mar-

keted to either one customer (ASICs), or a few customers (ASSPs). They are developed

using the traditional IC development flows (e.g., gate arrays, standard cells, full custom

physical design). Such approaches result in highly customized, hard-wired solutions,

which enable high application performance and low power dissipation. However, as de-

scribed earlier, it is increasingly apparent that the large NRE costs and time-to-market

associated with such designs may make them infeasible except in markets that command

extremely high volumes.
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General-Purpose Processors:At the other end of the spectrum are general-

purpose processors, which provide maximum flexibility, allowing the same hardware

architecture to be used across a variety of applications and application domains. Since

they are programmed through software, they also result in short time-to-market and low

engineering costs for their customers. Examples include processors from Intel, ARM

and MIPS. However, software-only solutions often result in failure to satisfy perfor-

mance and energy-efficiency requirements for many applications.

Structured ASICs: In recent years, several alternatives have started to ap-

pear that attempt to bridge the gap between application-specific and general-purpose

architectures. Among them are emerging architectures that are based on the notion of

a “structured ASIC”. In these architectures, more than 50% of the metal layers are pre-

fabricated, while a limited number of higher metal layers (typically 3 to 12) are avail-

able for application-specific customization. These devices are classified as “technology-

driven” platforms as defined by the VSIA (Virtual Socket Interface Alliance) [10]. Sev-
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eral semiconductor vendors are offering structured ASICs today, including NEC [11],

ChipX [12] and LSI Logic [13]. These approaches are expected to reduce development

time and mask costs, while paying a penalty in terms of reduced performance and higher

power consumption compared to traditional ASICs.

Field Programmable Hardware: Advances in field programmable hardware

(FPGAs) have started to make them a viable alternative to the custom ASIC approach in

certain application areas [14]. These architectures consist of an array of programmable

logic blocks with programmable interconnections, which allows the device to be re-

programmed multiple times after manufacture [15, 16]. In many small to mid-volume

markets, where the costs of ASIC-style designs are not justifiable, variants of pro-

grammable hardware have started gaining substantial ground. The advantages of such

pre-fabricated, “technology-driven” platforms are reduced NRE costs, smaller time-to-

market and significant flexibility. However, limitations with respect to logic density,

performance, power consumption and per unit cost impose large barriers to their intro-

duction in larger volume markets.

Domain-Specific Platforms:Domain-specific platforms refer to systems that

aim at catering to the needs of more than one customer/application, but within a par-

ticular application domain. Examples of these platforms, which can be classified as

“application-driven” platforms [10], can be found in several domains, such as wireless

handsets [17], network processing [18] and multimedia processing [9]. These platforms

are characterized by hardware and software architectures that are customized towards

the requirements of applications typically encountered in a certain domain, such that,

with minimal engineering effort, they can be modified to meet the needs of several

customers. Since these platforms are customized towards particular application do-

mains, they provide good performance, low engineering costs and short time-to-market

for users of the platform. However, domain-specific platforms suffer from three key

limitations. First, in this approach, it is critical to identify the defining characteristics

of a domain, and develop platforms that best satisfy them. This calls for large develop-
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ment efforts for the platform developer. Second, the need to develop extensive software

infrastructure for each new platform, such as compilers, platform simulators, operating

system support, API’setc., can mean significant cost and effort for the platform vendor.

Finally, such platforms have to be sold in volume in order to justify their development

costs, which is difficult since they are targeted towards a specific application domain.

All the above approaches have limitations that can be addressed by an emerg-

ing approach to system design, namely the use of general-purpose configurable plat-

forms. These platforms fall into the category of “architecture-driven” platforms, as

recently defined by the VSIA [10]. In the next section, we examine trends in these types

of systems in more detail.

I.B General-Purpose Configurable Platforms

General-purpose configurable platforms are characterized by the use of

general-purpose components (e.g., processors, caches, memory sub-systems), which

enable the use of the same platform across a variety of applications and domains. To

address the inefficiencies associated with general-purpose architectures (poor perfor-

mance, high power consumption), these platforms provide opportunities for application-

specific customization through configurability of the underlying platform hardware.

Figure I.4 shows where such platforms can be placed in the design landscape.

The success of such platform-based systems largely depends on the extent to

which, and the ease with which, the platform can be customized for an application.

These requirements translate into the need for (i) configurable architectural components

and parameters in the platform architecture, and (ii) methodologies that help optimize

the configuration of the platform to the characteristics of the executing application(s).

The configurable features available in a general-purpose configurable platform can be

distinguished based on whether they enable static or dynamic platform customization,

although the platform architecture may in general, consist of both statically and dynam-

ically configurable components and parameters.
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I.B.1 Static Configurability

Statically configurable platform components allow system designers to cus-

tomize the platform architecture once, either during platform design using soft, config-

urable IP, or through one-time programming or configuration of pre-fabricated, hard-

ware platforms. For example, Xtensa from Tensilica [19] and Nios from Altera [20] are

configurable processor cores, which allow designers to add custom instructions to the

instruction set and associated extra logic to the processor data-path. These processor

cores and the MIPS 4KE processor family [21] also feature configurable caches whose

size and associativity can be customized at design time. Various popular bus architec-

tures, such as AMBA from ARM [22] and CoreConnect from IBM [23], enable the bus

topology, widths and protocol to be statically customized.

As statically configurable platforms have started to appear commercially, nu-

merous on-going efforts aim at providing accompanying tools and methodologies to

design systems based on such platforms. These methods aim at efficiently mapping ap-

plications to the platform through static customization of the underlying architecture,

so as to improve the performance and/or energy-efficiency of the system. Examples of

such tools include PICO Express from Synfora [24] and Platune from UC Irvine [25].

I.B.2 Dynamic Configurability

The emerging trend of convergence of different applications on the same plat-

form is driving the need for even greater configurability in SoC platforms than those

offered by the approaches described in the previous sub-section. An illustration of this

trend is provided in the domain of wireless handsets, where diverse, numerous appli-

cations, with widely different characteristics are converging onto the same device. Ex-

amples of such applications include phone, personal digital assistant (PDA), camera,

web browser, email, global positioning (GPS) and MP3 player. As illustrated in this

thesis, as different applications execute on the same platform (perhaps simultaneously),

statically customizing the platform for a particular application may prove insufficient.

This is because (i) different applications have different characteristics and impose dif-
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ferent requirements on the underlying platform, and (ii) the requirements imposed by an

application can also change dynamically, depending on application phase, performance

requirements, and the properties of the application data.

These trends motivate the need to develop platform architectures that provi-

sion for dynamicconfigurability. Technologies for providing such configurability in

individual platform components have started emerging, and are surveyed in Chapter II.

Examples of such components include dynamically configurable processors, caches,

memory sub-systems, on-chip communication architectures, and on-chip configurable

fabrics. In order to best optimize platforms to meet the time-varying requirements of

the executing applications, there is a need for SoC platforms that consist ofmultiple

dynamically configurable components. Note that, we distinguish such platforms from

those based entirely on symmetric arrays of processing elements, such as QuickSil-

ver [26] and PACT XPP [27], which feature reconfigurability at the micro-architecture

level through the use of programmable interconnections. While these platforms hold

promise for providing dynamic configurability, their widespread adoption is challenged

by the lack of established programming models.

Techniques for the dynamic configuration of individual platform components

and parameters to particular applications have been studied in the past (discussed in de-

tail in Chapter II). However, the need to execute multiple time-varying applications as

well as the multiple opportunities for dynamic customization available in SoC platforms,

creates new system design challenges. There is a need for new methodologies and de-

sign tools that can understand the changing requirements imposed by applications, and

select and apply optimized configurations for the platform components at run-time. For

the best benefit, such techniques need to take a holistic approach to on-line platform cus-

tomization by taking into consideration the interactions between platform components

and their configurations.

In the next section, we describe the contributions that this thesis makes in

addressing many of the above challenges. We then present an overview of the remaining

chapters.
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I.C Thesis Overview and Contributions

This thesis proposes the use of general-purpose SoC platforms consisting of

multiple, dynamically configurable components, as a means of combining the benefits of

both application-specific and general-purpose design styles. However, naive use of such

platforms can result in a large performance and energy-efficiency gap compared to more

customized solutions. To this end, this thesis introduces the concept ofDynamic Plat-

form Management, a methodology for the run-time customization of a general-purpose

configurable platform to the time-varying requirements of the applications executing

on the platform. Dynamic platform management is implemented as a platform middle-

ware layer that monitors the run-time requirements imposed by the applications, and

when appropriate, optimizes the configuration of the underlying platform by exploiting

knowledge about the application characteristics. In this approach, targeting a platform

to a new application involves customizing the platform management algorithms, hence,

avoiding the cost and effort of re-designing, or introducing new platform hardware.

We present a detailed survey of existing and emerging technologies for provi-

sioning for dynamic configurability in platform components. From this, we identify the

on-chip communication architecture as a critical determinant of overall performance in

complex SoC designs, making it crucial to dynamically customize it to run-time applica-

tion traffic characteristics. For this, we propose FLEXBUS, a flexible, bus-based on-chip

communication architecture featuring a dynamically configurabletopology. FLEXBUS

is designed to detect run-time variations in system-wide communication traffic charac-

teristics, and efficiently adapt thelogical connectivityof the communication architecture

and the components connected to it. This is achieved using two novel techniques,bridge

by-passandcomponent re-mapping, which address configurability at the system and

component levels, respectively. We also present dynamic bus configuration policies for

choosing optimized FLEXBUS configurations under time-varying traffic characteristics.

We next propose two types of general-purpose platforms featuring multiple

configurability options: (i) platforms that feature fine-grained frequency and supply



12

voltage scalable processors, and flexible data relocation, which allows application data

structures to be dynamically partitioned among the system memories, and (ii) platforms

that feature flexible data relocation and reconfigurability of the communication archi-

tecture topology (FLEXBUS). We present methodologies for dynamic platform manage-

ment for both types of platforms, taking into consideration the interaction between the

configurable components, to optimize the usage of available CPU, hardware, memory

and on-chip communication resources.

Complementary to platform customization is the requirement that the applica-

tions themselves also be customized to the characteristics of the platform on which they

execute. Many existing and emerging applications provide run-time configurability in

terms of algorithmic parameters, or even which algorithms to use, thereby enabling a

tradeoff between application quality and the load imposed on the platform. This thesis

exploresapplication-architecture co-adaptationtechniques, in which both the applica-

tions as well as the underlying platform architecture are dynamically andsynergistically

configured to improve application performance and energy-efficiency. The proposed ap-

proach, which is described in the context of a wireless image delivery system, results in

highly customized application-architecture solutions.

Detailed experiments were conducted on a wide variety of example SoC de-

signs to evaluate each of the proposed techniques. In addition, dynamic platform man-

agement was implemented on the Altera Excalibur development board [28] as a proof-

of-concept. The experiments demonstrate that dynamically configurable platforms with

dynamic platform management result in significantly superior application performance,

more efficient utilization of platform resources and improved energy efficiency com-

pared to conventional static approaches.

The remainder of this thesis is organized as follows:

� In Chapter II, we present a survey of technologies for providing dynamic config-

urability in individual platform components, and techniques for exploiting such

configurability. We then present the concept of dynamic platform management

for the integrated, run-time, application-specific customization of such platforms.
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� In Chapter III, we present FLEXBUS, a flexible, bus-based on-chip communi-

cation architecture featuring a dynamically configurable topology, and describe

techniques for customizing it at run-time.

� In Chapter IV, we present configurable platforms featuring frequency and voltage

scalable processors, and flexible data relocation, and describe dynamic platform

management techniques for optimizing the platform configuration depending on

time-varying application requirements.

� In Chapter V, we present configurable platforms featuring flexible data relocation,

and dynamically configurable communication architectures (FLEXBUS), and de-

scribe dynamic platform management techniques for the integrated, application-

specific configuration of such platforms.

� In Chapter VI, we present application-architecture co-adaptation techniques for

the integrated, run-time customization of both the applications and the platform

architecture, and describe it in the context of a wireless image delivery system.

� Finally, in Chapter VII, we discuss future research directions that can be pursued

based on the work presented in this thesis.



II

Dynamically Configurable Platforms

with Dynamic Platform Management

II.A Introduction

As discussed in Chapter I, platform-based SoC design proffers significant ben-

efits over custom SoC approaches. Consequently, the market for SoC platforms has been

rapidly increasing, with a number of semiconductor vendors offering platforms targeted

towards different market segments. One of the areas in which such platforms are playing

an important role is the wireless handset market. In this domain, severe limitations on

device cost, size and power consumption, together with the need for high performance

(to support demanding wireless applications and protocols), software upgradability (due

to evolving standards and applications), and short product cycles make configurable

platforms an attractive approach. Commercially available SoC platforms for this do-

main include OMAP from Texas Instruments [17], Nexperia Mobile from Philips [29]

and PrimeXsys from ARM [30]. Such platforms are typically customized statically (at

design-time) to the application(s) they need to support. For example, several versions

of the OMAP platform are available, with different configurations (different processors,

hardware accelerators,etc.) for different wireless market segments [31], while Improv

14
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Systems’ Programmable System Architecture (PSA) is a soft platform that enables de-

signers to configure it for a given application [32].

The need for dynamic configurability in SoC platforms stems from the increas-

ing number of domains in which systems need to execute multiple (possibly concurrent)

applications. For example, smartphones are expected to support applications such as

phone, personal digital assistant (PDA), camera, video, web browser, email, global po-

sitioning (GPS) and MP3 player. Similarly, television, internet and telephony are all

expected to be available through the same home set-top box. Since different applica-

tions can have widely different characteristics, significant temporal variation may occur

in the manner in which underlying platform resources are used, depending on which ap-

plication is executing, or the concurrent mix of applications. Furthermore, applications,

and their operating environments, can impose a wide range of processing requirements,

due to variations in performance criteria, available battery capacity, and properties of the

data being processed. This makes it imperative to be able to adapt the underlying plat-

form architecture to these changing requirements. Along with dynamic configurability

in SoC platforms, techniques for efficiently exploiting such configurability are crucial.

These techniques should be able to understand the time-varying requirements imposed

by the executing applications, and optimize the platform configuration in an integrated

manner at run-time.

II.A.1 Chapter Overview

In this chapter, we present a detailed survey of existing and emerging tech-

nologies for providing dynamic configurability in SoC platforms. We consider, in turn,

configurable processors, caches, memory sub-systems, on-chip communication archi-

tectures, and on-chip configurable fabrics. We also describe associated techniques for

exploiting the configurability available in such platforms. However, most of these tech-

niques focus only on the configuration of individual platform components. SoC plat-

forms featuring multiple opportunities for dynamic customization, executing multiple

time-varying applications, create new system design challenges, requiring new method-
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ologies and design tools. For this, we introduce the concept of dynamic platform man-

agement, a methodology for the run-time, application-specific customization of config-

urable SoC platforms. Dynamic platform management is implemented as a platform

middle-ware layer that understands and exploits knowledge of the applications and their

characteristics, and manages and configures the platform resources in a holistic manner.

We conclude by describing the advantages of dynamically configurable platforms with

dynamic platform management.

The rest of this chapter is organized as follows. In Section II.B, we present a

survey of dynamically configurable platform components, and associated configuration

techniques. In Section II.C, we describe the concept of dynamic platform management.

We conclude this chapter in Section II.D.

II.B Dynamically Configurable Platform Components and Config-

uration Techniques

Recent years have witnessed the emergence of several dynamically config-

urable features in platform components, as well as techniques to exploit such configura-

bility, in order to improve system performance and/or power efficiency.

II.B.1 Configurable Processors

There has been a growing interest in dynamically configurable processors,

especially in the low-power domain, where researchers have proposed several tech-

niques to provide processors with the capability to dynamically tradeoff performance

for power-efficiency. Two broad dimensions of configurability available in such proces-

sors include (i) micro-architectural flexibility, and (ii) frequency and voltage scalability.

Micro-Architectural Flexibility

Configurable Features:Several configurable architectural features have been

proposed in the literature recently, mainly in the context of dynamically scheduled,
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superscalar processors. These techniques provide the capability to activate or de-

activate processor components at run-time, enabling dynamic upgrades to processor

performance when required, and energy savings at other times. Examples of micro-

architectural features that can be dynamically configured include the number of pro-

cessor functional units and the instruction issue width (which defines the number of

instructions that can execute simultaneously) [33, 34, 35], the instruction window

size [36, 37, 38], the processor pipeline [39], speculation control logic [40, 41], and

sizes of the register update unit [35], reorder buffers and load-store queue [38].

Another type of micro-architectural flexibility is provided by the integration of

an FPGA-based reconfigurable functional unit into the pipeline of a processor [42, 43].

This enables performance improvements by allowing the addition of new application-

specific instructions to the processor, which are executed by dynamically loading the

appropriate instruction-specific configuration into the reconfigurable functional unit.

Configuration Techniques: Techniques to configure processor components

are in large part, based on monitoring the instruction-level parallelism (ILP) exhibited

by a program during execution, which can vary by up to a factor of three within the

same program [44]. During periods of low ILP, under-utilized processor components

are disabled to save energy; they are activated when the ILP is high so that performance

is minimally impacted.Pipeline balancingis a technique that dynamically regulates the

issue width as well as the number of active functional units depending on the available

ILP [33, 34]. The advantages of exploiting ILP have also been applied to dynamically

configure the instruction issue queue size [36, 37], as well as the sizes of the reorder

buffer and load-store queues [38] .

Pipeline gatingis a technique that uses an adaptive speculation control algo-

rithm to determine if a branch is likely to incur a misprediction, and if so, prevents

wrong-path instructions from entering the pipeline [40]. Adaptive speculation control

has also been used for thermal management, which refers to the prevention of processor

“hot spots” [41].
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Techniques for exploiting configurable pipelines have been proposed, wherein

the processor pipeline is dynamically switched between out-of-order, in-order and

pipeline gating modes, depending on application performance goals, which may be ex-

ternally specified either by the application itself, or by the operating system [39].

Frequency and Voltage Scalability

Configurable Features: Frequency and voltage scalable processors feature

the ability to change their operating frequency and voltage level at run-time. Static

CMOS based processors have a voltage-dependent maximum operating frequency.

Hence, when the operating frequency is lowered, the supply voltage can be lowered

as well, leading to quadratic improvements in energy consumption [45]. Dynamic fre-

quency and voltage scaling (DVS) is enabled through the use of programmable clock

generators (PLLs) and programmable, variable voltage DC/DC converters [46, 47].

Numerous commercial processors are DVS enabled today, including Transmeta’s Cru-

soe [48], Intel’s XScale [49], and AMD’s Mobile K6-2+ [50] processors.

Configuration Techniques: The flexibility of being able to change the pro-

cessor voltage and frequency enables exploitation of the fact that workloads of proces-

sors exhibit significant run-time variation. With these processors, it is possible to reduce

the clock frequency and voltage during periods of reduced activity, and thereby save

energy. Several DVS algorithms have been proposed in the past, and it continues to be

an active area of research. Such algorithms can be classified based on their applicability

to either non real-time systems or real-time systems. Most DVS algorithms for non real-

time systems (e.g., workstation-like environments) are based oninterval-basedvoltage

scheduling, where the frequency and voltage is set for a fixed-time interval based on

the processor utilization over the previous time-interval(s); if the processor utilization

is low, the frequency and voltage is scaled down, if it is high the frequency and volt-

age is scaled up [51, 52, 53, 54]. DVS algorithms for real-time systems (both hard and

soft) exploit the slack available in real-time workloads and choose the minimum fre-

quency and voltage setting such that the tasks “just” meet their deadlines, thus saving
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energy without impacting performance [55, 56, 57, 1, 58]. Real-time DVS algorithms

are usually integrated or closely interact with the OS task scheduler.

Techniques for exploiting multiple such configurable features of processors

have also been proposed in the literature. These techniques have the notion of aconfigu-

ration period, which defines the granularity of configuration. This could be a fixed time

interval, or a period during which program “phase” remains constant. The configuration

period consists of two phases: (i) a testing/tuning phase, when all the available configu-

rations are tested back to back to identify the best configuration, and (ii) the adaptation

phase, when the best configuration is applied for the rest of the configuration period.

An integrated processor configuration framework that exploits both micro-architectural

flexibility and DVS is described in [59]. A similar framework targeted towards multi-

media applications, in which configuration decisions are made at frame granularity, is

proposed in [60]. The use of working setsignaturesfor guiding configuration decisions

has been proposed in [61]. These highly compressed representations of working sets

help detect program “phase” changes, and trigger new configuration periods. In contrast

to thesetemporal adaptationschemes, where each configuration period is tied to suc-

cessive time intervals,positional adaptationschemes have also been proposed, where

configuration periods are associated with position, namely particular code sections, in

order to better track dynamic program behavior [62].

II.B.2 Configurable Caches

Traditional cache architectures are fixed and optimized to perform well in an

average sense, often incurring large performance variations across applications and even

across different phases of the same application. Recognizing the performance and power

advantages of configurable caches, a number of configurable cache architectures and

techniques to exploit such configurability have been proposed.

Configurable Features: The Motorola M*CORE M340 processor is an ex-

ample of a commercial processor with a configurable cache architecture [63]. The 8-KB,

4-way set associative unified cache features three configurability options programmable
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via a cache configuration register: (i) write mode selection between write-through or

copyback (write-back), (ii) way management to selectively enable or disable one or

more ways of the cache, and (iii) the ability to enable or disable the store buffer and the

push buffer. Setting the write mode to copyback enables better performance and power

efficiency, while setting it to write-through enables more efficient system coherency

management when the cache is shared. Options (ii) and (iii) can be used to achieve a

tradeoff between performance and power consumption.

Several dynamically configurable features for caches have also been proposed

in the literature. Such configurable features include the ability to change the cache

size, associativity and line size, as well as the ability to perform dynamic cache parti-

tioning. Set-associative caches can be dynamically resized by selectively enabling or

disabling a subset of the ways to achieve performance-power tradeoffs as inselective

cache ways[64]. For direct-mapped caches, a subset of the cache sets can be selectively

shutdown such as in theDRI i-cache(dynamically re-sizable instruction cache) [65],

which targets low leakage power consumption in instruction caches.Way concatenation

is a technique for changing the cache associativity, while still utilizing the full capacity

of the cache, by concatenating different ways of the cache [66]. Cache line size con-

figuration through the use of a small fixed-size physical line but a variable-size “virtual

line” has also been proposed [67].

Dynamic cache partitioning refers to the ability to divide the cache memory

space into multiple partitions at run-time, which can be used for different processor

activities.Column cachingis one such technique, where different caches and memories

(e.g., spatial and temporal caches, scratch pad memory) can be mapped to different sets

of cache columns or ways [68]. Such cache partitioning at the granularity of cache

ways is also proposed by [69]. The fixed size cache memory can also be dynamically

partitioned into variable sized L1 and L2 caches [70].

Configuration Techniques: Several techniques have been proposed for per-

formance and/or power efficiency through intelligent run-time application-specific con-

figuration of caches. In theaccounting cache, the least-recently-used (LRU) state infor-
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mation is used to determine cache activity and select the optimal subset of cache ways

that should be active [71]. This enables power savings by shutting down parts of the

cache during periods of modest cache activity, while minimally impacting performance

by making the full cache operational during more cache intensive periods. Similarly, in

the DRI i-cache, selected sets of the cache are automatically shut down to save leakage

power, but here the cache miss-rate is used as an indicator of cache performance [65].

Techniques for exploiting configurable cache line sizes have also been proposed, where

the line size is adapted to application-specific requirements based on cache line usage

monitoring [67].

Dynamically partitionable caches have been used to automatically partition the

cache memory among multiple simultaneously executing processes or threads in order

to prevent cache “pollution”, and hence improve overall system performance [72]. Such

caches can also be used to improve the performance of media processing applications

by using a portion of the cache for storing an instruction reuse buffer [69].

II.B.3 Configurable Memory Sub-Systems

We survey two types of flexibility available in the memory sub-system: (i)

dynamic data relocation, and (ii) operating power mode setting.

Data Relocation/Remapping

Configurable Features:Data relocation refers to the ability to change the lo-

cation or placement of application data objects or items in memory after they have been

allocated (i.e., at run-time). This enables a wide range of data layout optimizations to

enhance cache and memory system performance, and performs better than a statically

optimized data layout approach by being able to adapt to dynamic program behavior. To

apply data relocation, the correctness of the program after re-mapping has to be guaran-

teed,i.e., all future references to the relocated object must find it at its new location. For

data objects where perfect aliasing information about all references to the object can be

computed (e.g., for regular arrays), the compiler can ensure program correctness using
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pointer update and array renaming techniques. When such pointer aliasing cannot be

done (e.g., for heap allocated objects in languages like C), the virtual memory system

can provide a limited form of safe data relocation at the granularity of a page by copying

the page and updating the virtual-to-physical address mapping [73]. Finer granularity

data relocation can be enabled using hardware base pointer registers, which store the

base address of each relocatable data object. Each address is generated by adding an

offset to the value in the base pointer register, and hence for correct address genera-

tion on data relocation, the corresponding base pointer registers’ values are changed to

the new base address of the relocated data. Word level data relocation granularity can

be provided using a hardware-assisted technique calledmemory forwarding, where on

object relocation, its new address is stored in its old location, and the old location is

marked as aforwarding address[74]. If the program accidentally accesses the old ad-

dress, the hardware automatically forwards the reference to the new location, thereby

guaranteeing the correct result.

Configuration Techniques: We next survey techniques that take advantage

of such flexible data relocation to improve cache and memory system performance. By

packing data objects, which are accessed close together in time but scattered sparsely

throughout the address space, into adjacent memory locations, the spatial locality and

prefetch effectiveness of caches can be improved, leading to lower capacity, compulsory

and conflict misses. Such an approach has been proposed for affine programs, where the

layout of the data arrays for different program segments is determined and associated

bookkeeping code to perform data relocation is inserted into the program at compile-

time [75]. The actual data relocation takes place at run-time when the bookkeeping

codes are executed.Data copyingis a technique to reduce conflict misses within tiled

(or blocked) applications, in which a tile is first copied to a contiguous set of memory

addresses before usage since these locations do not conflict with each other [76, 77].

Another technique called data coloring reduces conflict misses in pointer-based data

structures like trees, where data elements with high temporal locality are relocated to

memory addresses that map to non-conflicting regions of the cache [78].Dynamic data
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packingbased on the inspector-execute method has been proposed for improving the

spatial locality of dynamic and irregular programs where effective static analysis is not

possible [79].

Embedded systems often use on-chip scratch-pad memories instead of data

caches to provide predictable execution time, reduce power consumption, and exploit

application characteristics [80]. Compiler-directed techniques based on relocating por-

tions of the data arrays from the off-chip memory to the scratch-pad memory when re-

quired, can be used to efficiently manage the scratch-pad memory space among multiple

data arrays [81].

Operating Power Mode Setting

Configurable Features: Modern DRAMs support multiple operating power

modes, where in each mode, different components of the memory system are disabled

leading to different power consumption characteristics. For example, RDRAM technol-

ogy [82, 83] provides six different operating modes (power down, nap, standby, atten-

tion, attention read and attention write) with power consumption ranging from 1.4 mA

in the power down mode to 635 mA in the attention write mode (for Direct RDRAM

128/144-Mbit [82]). The operating mode can be set by programming control registers

in the memory controller. This can be used to place currently inactive memory banks in

lower power modes, leading to lower energy consumption. However, memory banks in

low power modes incur an additionalre-synchronization delaywhen they have to service

a request; typically lower the power mode, higher the re-synchronization delay.

Configuration Techniques: The multiple operating modes of the memory

system can be exploited using either hardware-based self-monitoring techniques, or

under software control. Current memory controllers feature a limited amount of self-

monitored power-down [84, 85], where the memory system automatically transitions to

a power-down state if there is no memory activity for a specified number of clock cycles.

More sophisticated schemes involving multiple memory power modes and hardware-

based idle time prediction have also been proposed [86, 87]. Under software-based
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schemes, page allocation strategies of the operating system to exploit the memory low

power modes have been studied [87]. A compiler-based approach is investigated in [86],

where the application program is statically analyzed to detect memory idleness and cor-

responding mode transition code is inserted into the program at compile-time.

An energy reduction scheme exploiting both dynamic data relocation and mul-

tiple power modes is proposed in [88]. In this scheme, data arrays with temporal affinity

are dynamically relocated to the same set of memory banks, thus increasing the number

of memory banks that can be transitioned to low power modes.

II.B.4 Configurable On-Chip Communication Architectures

On-chip communication architectures (e.g., shared buses, crossbar switches)

are increasingly playing an important role in determining the performance and power

consumption of SoCs. Dynamic configuration of the communication architecture

promises significant improvements in system throughput and/or power efficiency. We

next survey configurable features and configuration techniques in this domain.

Configurable Features: Several commercial communication architectures

feature dynamic configurability of the communication protocol. The Sonics Silicon-

Backplane [89] is a time-division multiple access (TDMA) based communication archi-

tecture featuring, for each bus-master, software-programmable arbitration mechanism

(TDMA or fair round-robin) and bandwidth allocation. Both variable-length burst sizes

and software programmable bus-master arbitration priority are also available in com-

mercial communication architectures such as CoreConnect from IBM [23] and AMBA

from ARM [22]. CoreConnect provides an additional degree of configurability by al-

lowing each bus master to indicate a desired priority to the arbiter for each bus request.

In the research domain, we have proposed FLEXBUS, a flexible, bus-based, on-

chip communication architecture featuring a dynamically configurable topology (details

in Chapter III). Also, a hybrid current/voltage mode signaling based bus architecture

has been proposed, that can be switch between the two modes [90].
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Configuration Techniques:We have proposed automatic configurations poli-

cies for FLEXBUS that changes the communication architecture topology depending on

application traffic characteristics (Chapter III).Communication architecture tunershave

been proposed to monitor the communication requirements of each SoC component and

configure the bus protocol parameters for improved system performance [91]. A circuit-

level technique to automatically switch a hybrid current/voltage mode signaling bus to

the current mode (higher throughput) during periods of high bandwidth requirement,

and to voltage mode (lower power) during relatively idle periods, based on bus transi-

tion counting, is proposed in [90].

II.B.5 On-Chip Configurable Fabrics

The recent appearance of single-chip platforms combining a reconfigurable

fabric with a microprocessor provides designers with another degree of configurability.

These platforms enable flexible migration of compute-intensive software functionality

to hardware, thus providing significant performance and power benefits. We next survey

such commercially available platforms and platform configuration techniques.

Configurable Features:The on-chip reconfigurable fabric can either be fine-

grained (e.g., FPGA-based) or coarse-grained (e.g., array of functional blocks). The

Altera Excalibur SOPC (system-on-a-programmable-chip) is an example of a platform

featuring fine-grained reconfigurability, combining an ARM922T core along with up

to a million programmable gates on the same chip [28]. Other examples include the

Xilinx Virtex-II Pro [92] with up to four PowerPC 405 processors and over 125 K logic

cells, and the Triscend [93] A7 and E5 featuring an ARM7 and an 8051 microprocessor,

respectively, with up to 40 K logic gates. Atmel [94] offers a similar platform combining

an 8-bit AVR microprocessor with up to 40 K gates.

Elixent offers a coarse-grained configurable fabric called D-Fabrix [95], con-

sisting of an array of ALUs, which has been integrated with the Toshiba MeP (media

embedded processor) configurable processor core [96] on the same chip [97].
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Configuration Techniques: Most techniques for configuring such platforms

are compile-time, consisting of off-line application profiling to identify the performance

critical code sections (e.g., functions, subroutines, loops), generation of FPGA config-

uration bit-streams to map them to the FPGA, and application code instrumentation to

load the appropriate bit-stream into the FPGA when required [98, 99]. The actual re-

configuration takes place at run-time when the application code is executed. Dynamic

hardware/software partitioning has also been proposed, where the above steps are per-

formed on-chip at run-time, in order to ease designer burden [100].

II.B.6 Summary

Dynamic configurability in individual platform components has been studied

extensively as surveyed in this section. However, it is important to provide more config-

urability so that SoC platforms can be adapted better to application characteristics. In

the next chapter, we focus on the on-chip communication architecture, a crucial system

component in determining the performance of complex SoCs, and describe techniques

to provision for and exploit dynamic configurability in the communication architecture

topology. Furthermore, in order to realize the full potential offered by configurable

platforms, there is a need for platforms featuring multiple configurable components. In

addition, while techniques for the configuration of individual platform components have

been proposed, there is a lack of comprehensive methodologies for the configuration of

multiple such configurable components. Platforms featuring multiple opportunities of

configuration, coupled with a holistic platform management methodology will provide

significantly higher performance and energy efficiency compared to current schemes. In

the next section, we introduce dynamic platform management, a methodology for such

integrated platform customization.
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Figure II.1: Dynamically configurable platforms with dynamic platform management

II.C Dynamic Platform Management

This thesis considers SoC platforms featuring multiple, dynamically config-

urable components and architectural parameters (Figure II.1). Such platforms would be

required to support multiple applications, possibly executing concurrently. Each appli-

cation would have different characteristics, performance objectives and properties of the

data being processed, which can change over time, thereby imposing time-varying pro-

cessing requirements on the underlying platform architecture. To satisfy these require-

ments, we proposedynamic platform managementfor run-time platform customization

(Figure II.1). Dynamic platform management monitors the requirements of the execut-

ing applications, and when appropriate, optimizes the configuration of the underlying

platform to best suit these requirements. Since, the operation of different platform com-

ponents may be interdependent, the configuration of one component may determine the

selection of the optimized configuration of the other. For example, the configuration

of the data placement in memory would determine the execution time of different ap-
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plications, thereby affecting how much the frequency and voltage of the system can

be scaled (described in Chapter IV). Therefore, dynamic platform management takes

a holistic approach to on-line platform customization by taking into consideration the

interaction between platform components and their configurations.

The dynamic platform management approach consists of two phases: (i) off-

line characterization phase, and (ii) run-time platform configuration phase. During the

off-line phase, we characterize the execution of the different applications on the platform

by determining how platform resource usage (e.g., CPU cycles, memory accesses) varies

with application characteristics. This is performed using a combination of analysis and

simulation. During the run-time phase, the platform management algorithms execute on

the platform, and select and apply optimized platform configurations based on the off-

line information. These steps are described in detail for two dynamically configurable

platforms in Chapters IV and V.

APIs

Operating System Kernel

Platform Hardware

Communication
Architecture Adapter

Cache
Adapter

Memory
Adapter

PLD
Adapter

Application Layer

Dynamic Platform Management
System Calls

Frequency
Adapter

Figure II.2: Software architecture for dynamic platform management

Run-time platform management is implemented as a platform middle-ware

layer that communicates with the applications, in order to identify run-time variations in

their requirements, and with the underlying operating system kernel or platform hard-

ware, in order to apply the selected configuration. Figure II.2 illustrates the software

architecture for implementing dynamic platform management. The platform manage-
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ment layer provides a set of APIs (application programming interface) through which

the executing applications can provide information about their run-time characteristics

(performance requirements, data properties,etc.). It then determines the optimized con-

figuration for different platform components. The selected configuration is applied by

invoking “adapters” for each configurable component using system calls. The adapters

are device-drivers that interact with the hardware to perform the requested adaptation.

The adapter implementation is specific to the platform and is tied closely to the oper-

ating system. For some configurable features, the adapters are available as part of the

operating system kernel, such as support for frequency scaling in Linux [101]. For other

configurable components, such as the on-chip communication architecture, the adapters

need to be provided. Chapter IV describes how this framework is implemented for the

Altera Excalibur SOPC (system-on-a-programmable-chip) [28].

Compared to traditional design approaches, designing systems based on con-

figurable SoC platforms with dynamic platform management brings about several ad-

vantages:

� Modifying platform functionality only requires introducing new application soft-

ware and upgrading the platform management middle-ware, instead of incurring

an expensive redesign. Hence, such platforms, once deployed, can enjoy a long

market life via software upgrades.

� The same platform can be targeted to a wide variety of applications, facilitating

the amortization of non-recurring costs over larger markets.

� The platforms are designed using general-purpose, commercial, off-the-shelf

components, which leads to reduced platform development costs, since large re-

sources need not be deployed to identify and develop domain-/application-specific

components.

� Since the process of application-specific customization is performed in software

rather than hardware, design using dynamic platform management techniques re-

sult in shorter time to market, productivity gains, and reduced development costs.
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II.D Conclusions

In this chapter, we surveyed several technologies that have been developed to

enable the dynamic configuration of individual platform components. Many of these

technologies have reached relative maturity, a few of them having made their appear-

ance in commercial products. However, there is a need for providing more configura-

bility in platform components, as well as developing platforms consisting of multiple

configurability options, in order to better adapt platforms to application characteristics.

We also surveyed techniques for the configuration of individual platform components,

and pointed out the need for integrated techniques for the management of platforms

featuring multiple configurability options. Finally, we described our dynamic platform

management approach for such holistic configuration of SoC platforms, and described

its potential benefits. In the remaining chapters of this thesis, we elaborate on the plat-

form management concept, and describe how it is applied to specific configurable SoC

platforms.

The text of this chapter, in part, is based on material that has been published in

the International Conference on VLSI Design, 2004, and material submitted to the IEEE

Transactions on Computer-Aided Design of Circuits and Systems. The dissertation au-

thor was the primary researcher and author, and the coauthors listed in these publications

collaborated on, or supervised the research that forms the basis for this chapter.
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Dynamically Configurable Bus

Topologies for High-Performance

On-Chip Communication

III.A Introduction

In the previous chapter, we presented several emerging technologies for pro-

viding dynamic configurability in platform components. We also discussed the need for

more configurability options, so that the platform can be better adapted to applications’

requirements. This chapter addresses the problem of providing such configurability in

the on-chip communication architecture, which has emerged as a critical determinant

of overall performance in complex SoCs. This is because, the integration of complex

systems comprising numerous and diverse components onto a single chip is leading to

a significant increase in the volume and diversity of system-level on-chip communica-

tion traffic. Unfortunately, in nanometer technologies, the global interconnect, which

in large part constitutes the on-chip communication infrastructure, appears increasingly

performance-limited compared to the components that are connected to it [102].

For high-performance designs, it is therefore crucial to ensure that the com-

munication architecture is customized to best suit the characteristics of the traffic gen-

31
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erated by the application. However, as shown in this chapter, communication traffic

characteristics can exhibit significantdynamic variationdepending on the specific ap-

plication task being processed at a given time, the subset of SoC components that are

involved in executing the task, and the run-time inputs. Furthermore, different appli-

cations may be mapped to the same SoC platform, leading to the execution of entirely

different applications at different times, which in turn could lead to a wide variation in

traffic characteristics. Therefore, configurable communication architectures that can be

effectively customized to the application(s) requirements at run-time are desirable.

Most state-of-the-art communication architectures provide limited customiza-

tion opportunities through astatic (design time) configuration of architectural param-

eters, and as such, lack the flexibility to provide high performance in cases where the

traffic characteristics exhibit dynamic variation. Provisioning for such dynamic flexibil-

ity and exploiting it is the focus of this chapter.

III.A.1 Chapter Overview

In this chapter, we describe FLEXBUS, a flexible, bus-based on-chip communi-

cation architecture featuring adynamically configurable topology. FLEXBUS is designed

to be able to detect run-time variations in system-wide communication traffic charac-

teristics, and efficiently adapt thelogical connectivityof the communication architec-

ture and the components connected to it. This is achieved using two novel techniques,

bridge by-passandcomponent re-mapping, which address configurability at the system

and component levels, respectively. Bridge by-pass provides flexibility in dynamically

choosing the number of bus segments that constitute the communication architecture,

while component re-mapping provides flexibility in determining the manner in which

components are connected to the communication architecture. These techniques pro-

vide opportunities for dynamically optimizing the communication architecture topology,

a capability, which if properly exploited, can yield substantial performance gains. The

FLEXBUS architecture is compatible with different existing bus standards. We describe

the implementation of FLEXBUS based on AMBA AHB [22], a popular commercial on-
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chip bus standard. We also present dynamic platform management policies for choosing

optimized FLEXBUS configurations under time-varying traffic characteristics. We de-

scribe how the proposed techniques scale with increasing system complexity in terms of

configurability of the topology, and the run-time configuration policies. We have con-

ducted detailed experiments on FLEXBUS using a commercial design flow to analyze

its area, timing, and performance under a wide variety of system-level traffic charac-

teristics, and have compared it to conventional communication architectures. We have

also analyzed its impact on the performance of two example SoC designs, (i) an IEEE

802.11 MAC processor and (ii) a UMTS Turbo decoder, and have compared the results

with those obtained using conventional communication architectures. In our studies, we

found that FLEXBUS provides up to 31.5% performance gains for the MAC processor,

and up to 34.33% performance gains for the Turbo decoder compared to conventional

architectures, with negligible hardware overhead.

The rest of this chapter is organized as follows. In Section III.A.2, we de-

scribe related work. In Section III.B, we define relevant terminology used in the con-

text of bus-based architectures. In Section III.C, we illustrate using examples, the de-

ficiencies of conventional architectures, and the advantages of the FLEXBUS approach.

Section III.D presents details of the FLEXBUS architecture, and Section III.E discusses

run-time techniques for exploiting the dynamic configurability provided by FLEXBUS.

In Section III.F, we discuss how the concepts behind FLEXBUS can be scaled to arbi-

trarily complex system architectures. Finally, Section III.G reports on the experimental

studies conducted to analyze the FLEXBUS architecture, and Section III.H concludes

this chapter.

III.A.2 Related Work

The increasing importance of on-chip communication has resulted in numer-

ous advances in communication architecture topology and protocol design, in both in-

dustry and academia. Numerous competing commercial communication architectures

are in use today (e.g.,[23, 22, 103]). Recently, architectures based on more complex
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topologies have been proposed (e.g., [104, 105, 106, 107]). However, these architectures

are based on fixed topologies, and therefore, not optimized for traffic with time-varying

characteristics.

Dynamic configurability of the communication protocol is available in sev-

eral commercial on-chip communication architectures, as described in Section II.B.4.

Sophisticated protocols have also been proposed for improved sharing of on-chip com-

munication bandwidth [108, 109, 110]. Techniques for customizing communication

protocols, both statically and dynamically, to adapt to traffic characteristics, have also

been studied [91, 111]. Protocol customization and topology customization are comple-

mentary, and hence, may be combined to yield large performance gains.

A number of automatic approaches have been proposed to statically optimize

the communication architecture topology [112, 113, 114]. While many of these tech-

niques aim at exploiting application characteristics, they do not adequately address dy-

namic variations in the communication traffic characteristics. In order to exploit such

dynamic variations, adaptive routing protocols has been proposed in the context of

network-on-chip based designs [115]. Our techniques are aimed at bus-based commu-

nication architectures, and focus on topology adaptation.

Transaction-level modeling and automated model refinement help raise the

level of abstraction at which communication architectures are designed [116, 117]. La-

tency insensitive design techniques help guarantee correct system execution under vari-

able communication delay, and hence, reduce verification effort for systems based on

complex communication architectures [118]. Recent initiatives to standardize the inter-

faces of system components [119, 120] facilitate the customization of the communica-

tion architecture without requiring changes to the system components themselves.

III.B Background

Communication architecturetopologiescan range from a single shared bus,

to which all the system components are connected, to a network of bus segments in-
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Figure III.1: Example bus-based communication architecture with two bus segments

terconnected bybridges. Component mappingrefers to the association between system

components and bus segments. Components mapped to the communication architecture

can be eithermasters(e.g., CPUs, DSPs), which can initiate communication transac-

tions (reads/writes), orslaves(e.g.,memories, peripherals), which can only respond to

transactions initiated by a master. Figure III.1 illustrates an example bus architecture

consisting of two bus segments, each with one master and one slave, connected via a

bridge. The internal logic of a bus segment typically comprises (i) one or moremulti-

plexersfor the proper routing of read and write data, and control signals between masters

and slaves, (ii) anaddress decoderfor selecting the slave that corresponds to a read/write

transaction, and (iii) abus arbiterfor determining which master should be granted ac-

cess to the bus and for how many cycles.Communication protocolsspecify conventions

for the data transfer, such as arbitration policies, burst transfer modes,etc. Bridgesare

specialized components that facilitate transactions between masters and slaves located

on different bus segments. “Cross-bridge” transactions execute as follows: the transac-

tion request from the master, once granted by the first bus, is registered by the bridge’s

slave interface (Figure III.1). The bridge then forwards the transaction to it’s master

interface, which then requests access to the second bus. On being granted, the bridge

executes the transaction with the destination slave and then returns the response to it’s

slave interface, which finally returns the response to the original master.
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III.C Motivation

In this section, we analyze the shortcomings of conventional communication

architectures in which the topology is configured statically, using an IEEE 802.11 MAC

processor design as an example. We next describe the advantages of the FLEXBUS

architecture, illustrating the importance of considering the configurability of the com-

munication architecture topology at both the system and component levels.

III.C.1 Case Study: IEEE 802.11 MAC Processor

The functional specification of the IEEE 802.11 MAC processor system con-

sists of a set of communicating tasks, shown in Figure III.2(a) (details are available

in [121]). For outgoing frames, the LLC task receives frames from the Logical Link

Control Layer, and stores them in the system memory. The Wired Equivalent Privacy

(WEP) task encrypts frame data. The Integrity Checksum Vector (ICV) task works in

conjunction with the WEP task in order to compute a checksum over the payload. The

HDR task generates the MAC header. The Frame Check Sequence (FCS) task computes

a CRC-32 checksum over the encrypted frame and header. MACCTRL implements

the CSMA/CA algorithm, determines transmit times for frames, and signals the Phys-

ical Layer Interface (PLI) task to transmit the encrypted frames. The Temporal Key

Integrity Protocol (TKIP), if enabled, generates a sequence of encryption keys dynami-

cally. If TKIP is disabled, the key is statically configured by the network administrator.

Figure III.2(b) shows the set of components to which the above tasks are

mapped in our design. An embedded processor (the ARM946E-S [122]) implements

the MAC CTRL, HDR, and TKIP tasks, while dedicated hardware units implement the

LLC, WEP, FCS, and PLI tasks. Other components include frame buffers for storing

MAC frames, a key buffer for secure key storage, and the communication architecture.

In the following sub-sections, we consider in turn, the use of two conventional com-

munication architectures, and the proposed FLEXBUS architecture, for this design. In

order to simplify the discussion, we focus on only the tasks that result in the majority of
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Figure III.2: IEEE 802.11 MAC processor: (a) functional specification, (b) mapping to

a single shared bus, (c) mapping to a multiple bus architecture

the communication traffic: WEP, FCS, and TKIP. The system was implemented using

an instruction set model for the processor and RTL Verilog for the remaining hardware,

and simulated using ModelSim [123] (details of this framework are described in Sec-

tion III.G.1).

III.C.2 Statically Configured Topologies

Example 1: The first architecture we consider is illustrated in Figure III.2(b),

where a single AMBA AHB bus segment [22] integrates all the system components.

The MAC frames are stored in a shared memory (Frame Buf ), and are processed in



38

a pipelined manner: the WEP component encrypts a MAC frame, and then signals the

FCS component to start computing a checksum on the encrypted frame, while it starts

encrypting the next frame. We first consider that the keys are statically configured (i.e.,

the TKIP task is disabled). In such a scenario, the on-chip communication traffic is

largely due to the WEP and FCS components. Figure III.3(a) presents a symbolic repre-

sentation of an illustrative portion of the system execution traces. The figure reveals that

under this architecture, at various times during system execution, simultaneous attempts

by the WEP and FCS hardware to access the system bus lead to a large number of bus

conflicts, resulting in significant performance loss. Experiments indicate that the max-

imum data rate that this architecture can support is 188 Mbps. When the TKIP task is

enabled (for dynamic keys), additional traffic between the processor and the key buffer

further degrades the data rate to 158 Mbps.

Clearly, the single shared bus topology fails to provide high performance when

there are simultaneous access attempts from different masters. In particular, it fails to

exploit parallelism in the communication transactions, a drawback that can be addressed

by using an architecture that uses multiple bus segments.

Example 2: Figure III.2(c) presents a version of the MAC processor im-

plemented using a topology consisting of two AHB bus segments connected by a

bridge. The WEP component reads frame data from memoryFrame Buf1 , encrypts

it, and then transfers the encrypted frame intoFrame Buf2 . The FCS component

processes the frame fromFrame Buf2 , while WEP starts processing the next frame

from Frame Buf1 . Figure III.3(b) illustrates the execution trace under this architec-

ture for statically configured keys. We observe that the parallelism offered by the mul-

tiple bus architecture enables the FCS and WEP tasks to process frame data stored in

their local frame buffers concurrently. However, we also observe additional latencies

in certain intervals (indicated by shading) where a majority of transactions need to go

across the bridge, due to the complex nature of cross-bridge transactions (described in

Section III.B). Experiments indicate that the data rate achieved by this architecture is
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Figure III.3: Execution of the IEEE 802.11 MAC processor under (a) single shared bus,

(b) multiple-bus, (c) FLEXBUS

201 Mbps, only a 7% improvement over the single bus. When the TKIP task is enabled,

the achieved data rate is 176 Mbps, a 11% improvement over the single bus.

This example illustrates that the advantage of a particular communication ar-

chitecture topology depends on the characteristics of the communication traffic: when

the proportion of cross-bridge traffic is low, the multiple bus architecture performs well,

whereas at other times, the single shared bus architecture is superior. These examples

also illustrate how during the course of execution of an application, the characteristics of

the communication traffic can change significantly over time, based on the set of concur-

rently executing tasks, and their inter-component communication requirements. Further,

communication architectures based on fixed topologies are not capable of detecting and

adapting to such changes, and hence, often yield sub-optimal performance.

III.C.3 Dynamic Topology Configuration

We next consider the execution of the IEEE 802.11 MAC processor under two

variants of the FLEXBUS architecture.
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Example 3: We first consider the case where the encryption keys are stati-

cally configured (the TKIP task is disabled). The execution trace under FLEXBUS is

illustrated in Figure III.3(c). The trace illustrates that the bus architecture operates in

a multiple bus mode during intervals that exhibit localized communications, and hence

enables concurrent processing of the WEP and FCS tasks. In intervals that require low

latency communication between components located on different bus segments, ady-

namic bridge by-passmechanism is used. Under this technique, the two bus segments

of the multiple bus topology are temporarily fused together into a single shared bus. The

measured data rate under this architecture was found to be 248 Mbps, a 23% improve-

ment over the best conventional architecture.

The above example illustrates that by adapting the bus topology to traffic

characteristics, the benefits of shared and multiple bus architectures can be combined.

Note that, the bridge by-pass mechanism provides a technique to makecoarse-grained

(system-level) changes to the communication architecture topology. However, at times,

the ability to make morefine-grained(component-level) changes to the topology is also

important, as illustrated next.

Example 4: We consider the case in which the TKIP task is enabled. For

the FLEXBUS architecture of Example 3, the resulting increase in bus traffic on AHB2

(Figure III.2(c)) causes the achieved data rate to decrease to 208 Mbps, although it still

out-performs the best conventional architecture by 18%. We next consider the execu-

tion of another version of the FLEXBUS architecture featuring adynamic component

re-mappingcapability. Using this technique, while the overall architecture remains in

the multiple bus configuration, the mapping of the slaveFrame Buf2 is dynamically

switched between the two buses at specific times. In particular, it is mapped to AHB2

as long as the FCS and WEP components are processing frame data, and to AHB1 at

times when the most recently encrypted frame needs to be efficiently transferred from

Frame Buf1 by the WEP task. By preserving the multiple bus topology, and thereby

enabling concurrent operation of the frame transfer and the TKIP tasks, this architec-
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ture achieves a data rate of 224 Mbps, a 27% improvement over the best conventional

architecture.

This example shows that at times, exploiting local variations in traffic charac-

teristics through component-level changes can provide additional performance benefits.

In summary, these illustrations establish that by recognizing dynamic vari-

ations in the spatial distribution of communication transactions, and correspondingly

adapting the communication architecture topology (both at the system and component

levels), large performance gains can be achieved. In the next three sections, we describe

how these opportunities are exploited by the FLEXBUS architecture.

III.D FLEXBUS Architecture

In this section, we first provide a brief overview of the FLEXBUS architecture

and its design goals. Next, we present a detailed description of the key techniques

that underlie the FLEXBUS architecture in the context of a two-segment AMBA AHB

based bus architecture. The extension of FLEXBUS to more complex communication

architectures is discussed in Section III.F.

III.D.1 Overview

The FLEXBUS architecture features a dynamically configurable communica-

tion architecture topology. The techniques underlying FLEXBUS are independent of

specific communication protocols, and hence can be applied to a variety of on-chip

communication architectures. In our work, we demonstrate its application to the AMBA

AHB [22], a popular commercial on-chip bus. FLEXBUS provides applications with op-

portunities for dynamic topology customization at the system level, using techniques

that enable run-time fusing and splitting of bus segments. This is achieved using dy-

namic bridge by-pass, details of which are described in Section III.D.2. FLEXBUS also

provides customization opportunities at the component level in order to exploit local

variations in traffic characteristics, by using techniques that allow components to be dy-
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namically switched from one bus segment to another. This is achieved using component

re-mapping, details of which are described in Section III.D.3.

Numerous technical challenges need to be met in order to provide such con-

figurability. The particular goals that were kept in mind during the design of FLEXBUS

include the following:

� maintaining compatibility with existing on-chip bus standards for efficient deploy-

ment

� minimizing timing impact to enable high speed operation

� minimizing logic and wiring complexity (hardware overhead)

� providing low reconfiguration penalty to maximize the gains achieved through

flexibility

The rest of this section provides details on how FLEXBUS provisions for dy-

namic configurability keeping the above goals in mind.

III.D.2 Coarse-Grained Topology Control: Bridge By-Pass Mechanism

Figure III.4 illustrates the hardware required to support dynamic bridge by-

pass for an example system consisting of two AMBA AHB bus segments, connected

by a bridge. AHB1, the primary bus, has two masters (M1 and M2) and one slave (S1),

while AHB2, the secondary bus, has one master (M3) and one slave (S2). Each bus seg-

ment contains an Arbiter, an Address Decoder, and multiplexers for routing the granted

master’s address values, control signals and write data to the slaves, and for routing the

selected slave’s ready signal, response signals and read data back to the masters. The

bridge enables transactions between masters on AHB1 and slaves on AHB2.

Hardware Enhancements

The system can be operated in (i) a multiple bus mode or (ii) a single shared

bus mode, by disabling or enabling bridge by-pass, respectively, via theconfigselect
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Figure III.4: Dynamic bridge by-pass capability in FLEXBUS

signal, which is an output of the “Reconfiguration Unit” module. In the multiple bus

mode (configselect = 0), the signals shown by the dotted arrows are inactive. The

two bus segments operate concurrently, with each arbiter resolving conflicts among the

masters in its own bus segment. Transactions between masters on AHB1 and slaves on

AHB2 go through the bridge using the conventions described in Section III.B. In the

single shared bus mode (configselect = 1), the signals shown by the dotted arrow are

active, and the bridge is “by-passed”, thereby fusing the two bus segments together. We

next describe the enhancements required to the basic hardware architecture of the two

segment AMBA AHB bus to support these two operating modes.

Bridge: To by-pass the bridge in the single shared bus mode, the inputs to

the bridge master and slave interfaces are directly routed to the outputs, by-passing the

internal bridge logic (using multiplexers). This allows transaction requests from masters

on AHB1 to slaves on AHB2 (and the corresponding slave responses) to reach within

one clock cycle. Note that, while we illustrate bridge by-pass for a one-way bridge, the

technique can be applied to two-way bridges as well.
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Arbiters: In the single bus mode, only one master can be granted access to

the FLEXBUS fabric at any given time, whereas in the multiple bus mode, more than

one master may have transactions executing in parallel. Clearly, the arbitration policies

of the multiple bus mode need to be adapted for the single bus mode. A naive solu-

tion would be to designate one of the arbiters as a centralized arbiter for the single bus

mode. However, this would require the centralized arbiter to be connected to thebus-

req, lockandgrantsignals of all the system masters, resulting in large wiring overhead,

and potentially large arbitration latencies. Instead, we opt for adistributed arbitration

mechanism, in which one of the arbiters (Arbiter2 in Figure III.4) behaves as avirtual

masterthat is regulated by the other arbiter (Arbiter1). On receiving one or more bus

requests from masters on AHB2, Arbiter2 immediately sends a bus request to Arbiter1

using thebusreqAHB2andlock AHB2signals, which are generated by a bitwiseORof

the bus request and lock signals of all the masters on AHB2. Arbiter1 arbitrates among

the received bus requests from AHB1 masters as well as the virtual master, which, in

effect, represents all the masters on AHB2. In parallel, in order to reduce arbitration

latency, Arbiter2 arbitrates among its received bus requests. However, Arbiter2 grants

the bus to the selected master only when it receives a grant (via thegrant AHB2signal)

from Arbiter1. The grants for masters on AHB2 are generated by a pairwiseAND of

thegrant AHB2signal with the grant signals of Arbiter2. This guarantees that only one

master is granted access to FLEXBUS when in the single bus mode.

Note that, in the above distributed arbitration scheme, since Arbiter1 receives a

single bus request (busreqAHB2) on behalf of all the masters on AHB2, the granularity

at which arbitration is performed could suffer. However, in practice, this is acceptable,

since bus hierarchies impose similar restrictions (i.e.,bridges behave as “agents” for any

of the masters on AHB1 requesting access to a remote slave on AHB2). Also, in the case

of the AMBA AHB bus protocol, thereadybus signal indicates the state of the bus to

all the components. In order to ensure correct operation of the system in the single bus

mode, all the components should observe the samereadysignal. This is achieved by

routing thereadysignal of AHB1 to AHB2. Note that, the combinational loop between
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the multiplexers shown in Figure III.4 is a false loop,i.e., it is never enabled during

operation.

Address Decoders:The address decoders on the two bus segments require no

change, since the address maps of the slaves and their mapping to the bus segments does

not change under dynamic bridge by-pass.

Reconfiguration Unit: The Reconfiguration Unit (Figure III.4) is a new hard-

ware component that is introduced to enable dynamic topology configuration. It is re-

sponsible for selecting the bus configuration at run-time, and for ensuring correctness

of system operation while switching between the two configurations. It can either make

configuration decisions automatically (using policies such as described in Section III.E),

or be directed by a higher level policy, such as Dynamic Platform Management (de-

scribed in Chapter V), to change the configuration. To apply a new configuration, it first

asserts thereconfiguresignal to the arbiters. On receiving this signal, the arbiters termi-

nate the current transaction (unless the master has acquired a lock on the bus), deassert

all grant signals, and assert theOK signal. On receiving theOK signal from both the

arbiters, the Reconfiguration Unit toggles theconfigselectsignal. The exact overhead

of reconfiguration depends on the precise set of pending bus transactions. In our design,

the worst case overhead of bus reconfiguration for the two AHB segment AMBA based

system was observed to be 17 cycles (assuming the bus is not locked and all slaves have

single cycle response). This overhead should be taken into account while making bus

configuration decisions (described in Section III.E).

Delay Impact

The addition of logic and wiring for dynamic bridge by-pass results in a slight

increase in the critical path delay of the bus. The true critical path in the multiple bus

mode is shorter than that in the single bus mode, since many long paths of the single

bus mode are false paths in the multiple bus mode (shown by the dotted arrows in Fig-

ure III.4). However, as borne out by experiments presented in Section III.G, the delay
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penalty of each mode compared to the corresponding static architectures is small, and

is more than compensated for by the performance improvements achieved by exploiting

the flexibility of the architecture.

When the worst case delays of the single bus mode and the multiple bus mode

are comparable, it is feasible to always operate FLEXBUS at a single frequency deter-

mined by the larger of the two delays. However, in some cases, the delay in the single

bus mode maybe much larger than that in the multiple bus mode. Also, some multiple

bus systems operate different bus segments at different frequencies in order to support

high performance components such as CPUs on one bus, and low performance peripher-

als on a secondary bus. In such scenarios, the FLEXBUS frequency needs to be adapted,

based on its current configuration. Using a programmable PLL to achieve this would

lead to a high reconfiguration penalty (hundreds of�secs). However, we observe that

since we only need to switch between two clock frequencies, two PLLs in conjunction

with a dynamic clock source switching circuit [124] could be used in such a scenario for

efficient frequency adaptation.

III.D.3 Fine-Grained Topology Control: Component Re-Mapping Mechanism

Figure III.5 shows a two segment AMBA AHB bus architecture, which im-

plements a dynamic re-mapping capability for master M2 and slave S2. Dynamic re-

mapping allows the mapping of each of these components to be dynamically switched

between AHB1 and AHB2.

Hardware Enhancements

The mapping of M2 and S2 is selected by the signals,configselectM2 and

configselectS2, respectively, which are generated by the Reconfiguration Unit. The

hardware enhancements that are required to the AMBA AHB bus architecture to enable

this are described next.
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Switches:The signals of a re-mappable master or slave are physically routed

to both AHB1 and AHB2. However, the switch boxes, SWITCHM and SWITCHS,

activate the signals to and from only one of the bus segments using multiplexers, de-

pending on the configuration. Note that, only a subset of the master and slave signals

require to be switched in the AMBA AHB protocol.

Bridge: The bridge does not require any changes to enable component re-

mapping, since the multiple bus structure of the communication architecture is pre-

served. However, note that, component re-mapping can lead to error responses in the

case of one-way bridges. For example, assuming that BRG in Figure III.5 is one-

way (with AHB1 being the primary bus and AHB2 the secondary bus), and that M2

is mapped to AHB2, then if M2 generates a request for S1, it would receive an error

response. Therefore, in the presence of masters that cannot handle error responses, it

can be safely applied only in the case of two-way bridges.
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Arbiters: The arbiters on the two bus segments need to be designed to ar-

bitrate amongst all the masters that can potentially be mapped to their respective bus

segment. No other changes are required, since master bus requests are only sent to the

arbiter on the bus to which they are currently mapped.

Address Decoders:To enable dynamic slave re-mapping, reprogrammable

address decoders are required. Depending on the mapping of the slaves, the address

decoders on the two bus segments are reconfigured to generate the correct slave select

signal. For example, when S2 is mapped to AHB1, on observing an address belonging

to S2 on the address bus, Decoder1 asserts theselectS2signal, while Decoder2 asserts

theselectBRGsignal. The situation is reversed when S2 is mapped to AHB2. This is

done by switching the mapping of the address space of S2 between BRG and S2 in the

decoder, depending on theconfigselectS2signal.

Reconfiguration Unit: The Reconfiguration Unit is responsible for selecting

the mapping of the re-mappable masters and slaves (using policies such as described in

Section III.E), and for generating the appropriate configuration select signals. It can also

be directed by a higher level platform configuration policy (such as Dynamic Platform

Management) to apply a specific mapping. In order to ensure correct operation of the

system during re-mapping, the Reconfiguration Unit monitors the master’sbusreqM2

and slave’sselectS2signals to determine if they are currently active on the bus, and

if not, the correspondingconfigselectsignal is toggled. The rest of the bus continues

operating without interruption.

Delay Impact

The extra logic and wiring required to enable component re-mapping may

lead to a slight increase in the critical path delay of the bus. However, this should be

compensated for by the performance improvements achieved through adaptation. If

the two bus segments operate at different clock frequencies, then dynamic component

re-mapping can only be applied to masters and slaves which are capable of operating at
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both clock frequencies. In this case, re-mapping also involves changing the clock source

of the re-mapped component using techniques such as described in [124].

III.E Dynamic Configuration Policies for FLEXBUS

In this section, we describe run-time policies for adapting the FLEXBUS con-

figuration based on changes in the characteristics of the on-chip communication traf-

fic. We discuss these policies in the context of two segment buses, considering in turn,

bridge by-pass and component re-mapping. Extension of these policies to more general

communication architecture topologies is discussed in the next section.

The problem of dynamically choosing the optimum configuration of the

FLEXBUS architecture based on an observation of the characteristics of the communi-

cation traffic can be addressed using several approaches. In the past, stochastic control

policies have been proposed to address a similar problem in the domain of dynamic

power management, where the optimum power state of components (active, idle) needs

to be selected for dynamically varying system workloads [125]. Numerous heuristic

approaches that attempt to predict future behavior based on an observed history of the

workload have also been proposed to address the same problem [126]. In our work, we

examine history-based techniques in further detail.

Let us consider a FLEXBUS system featuring dynamic bridge by-pass between

two bus segments,BUS1andBUS2. LetNBUS1, NBUS2 andNBRG represent the num-

ber of local transactions onBUS1, number of local transactions onBUS2and number of

transactions between the two bus segments, respectively, during an observation interval.

A transaction refers to a single bus access (e.g., a burst of 5 beats constitutes 5 transac-

tions). The time taken to process this traffic under the single bus mode,TSingle, is given

by:

TSingle = (NBUS1 +NBUS2 +NBRG)� CL � tSB (III.1)

whereCL is the average number of cycles for a local bus transaction, andtSB is the clock
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period in the single bus mode, since all transactions are on the same bus. Similarly, the

time taken under the multiple bus mode,TMultiple, is approximated by:

TMultiple = max(NBUS1; NBUS2)� CL � tMB +NBRG � CB � tMB (III.2)

whereCB is the average number of cycles for a cross-bridge transaction, andtMB is the

clock time period in the multiple bus mode. IfTSingle < TMultiple, then the single bus

mode is preferred, else the multiple bus mode is better. Each bus segment is enhanced

with extra logic to observe and record the number of bus transactions of each type at

run-time over a time periodTP . At the end of the time period, the reconfiguration unit

reads these values and selects the new configuration based on the above criterion.

The choice of an appropriate configuration time period,TP , is crucial.

Smaller time periods enable the policy to be more responsive to variations in the traffic

characteristics. However, if the traffic characteristics change rapidly, this might lead to

excessive oscillations between the configurations, thus potentially degrading the perfor-

mance due to the reconfiguration overhead. Therefore, in our policy we use an adaptive

time period,TP , which is selected as follows. LetC denote the number of times the

bus was reconfigured over the last� clock cycles. IfC=� > �1, then the time period,

TP , is doubled, ifC=� < �2, thenTP is halved, else it is unchanged.�1 and�2 rep-

resent two thresholds, and depend on the reconfiguration overhead. In our experiments

with an example eight master and eight slave system (described in Section III.G.1), we

observed an average reconfiguration overhead of10 cycles, for which� = 250 cycles,

�1 = 0:0025, and�2 = 0:001 proved effective. We conclude that, in general, these

parameters should be carefully set, based on an analysis of the traffic characteristics of

the application.

Let us next consider a FLEXBUS architecture consisting of two bus segments,

BUS1andBUS2, connected by a bridge, and with some re-mappable master and slave

components. The problem of dynamic component re-mapping is to select at run-time

the mapping of the re-mappable components to eitherBUS1or BUS2. For this, we

propose a history-based policy, in which for each re-mappable master (or slave), the



51

number of transactions to (or from) components on either bus segment is monitored

over an observation time period, based on which the configuration for the next time pe-

riod is selected. The optimal mapping of components to buses is one that minimizes

the number of transactions across the bridge (to reduce bridge overhead), while balanc-

ing the number of transactions on the two bus segments (to have concurrent operation).

This problem maps to the graph bisection problem, which is NP-complete [127]. There-

fore, we make use of the following simple strategy. For each re-mappable component,

the difference between its number of cross-bridge and local transactions is monitored.

The component for which this difference is positive and maximum is selected to be re-

mapped. The time period over which transactions are monitored is adapted as in the

bridge by-pass approach.

III.F Scalability of the FLEXBUS Approach

In this section, we discuss how the architectural mechanisms underlying

FLEXBUS, for both bridge by-pass and component re-mapping, can be extended to com-

plex communication architectures consisting of arbitrary organizations of bus segments

and bridges. We then formulate the problem of how to optimize the deployment of

FLEXBUS and select optimized FLEXBUS configurations at run-time.

III.F.1 Dynamic Multi-Bridge By-Pass

Complex communication architectures may consist of numerous bus segments

connected by multiple bridges. It may be necessary, at certain times, to fuse multiple

(more than two) bus segments into a single shared bus, depending on the traffic char-

acteristics. In order to achieve this, all the bridges that integrate these bus segments

must be made by-passable as described in Section III.D.2. In doing so, the architecture

needs to ensure that only one master gets access to the fused shared bus at any point of

time. The distributed arbitration mechanism described for one bridge (Section III.D.2)

can be extended to multiple bridges as follows. When the architecture is in the single
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Figure III.6: Example system with four bus segments, and possible assignment of ar-

biters as virtual masters

bus mode, the arbiters co-ordinate by acting as virtual masters and forwarding their bus

requests to adjacent arbiters. The decision of which arbiters to designate as virtual mas-

ters and where to forward their bus requests is performed statically, and is crucial to

ensure correct operation of the system. Consider the example system in Figure III.6 that

consists of four bus segments and three bridges, where as many as all three bridges can

be by-passed simultaneously at run-time. The figure also shows different assignments

of arbiters as virtual masters (circles marked asVM) and their dependency due to bus

request signals on their adjacent arbiters (directed arrows). An arbiter behaves as a vir-

tual master and forwards bus requests to an adjacent arbiter only when its bus is fused

with a neighboring bus. The figure illustrates the feasibility of different mappings of

virtual masters to arbiters. For aN segment bus,N � 1 arbiters must be designated as

virtual masters, each with a dependency on another arbiter, in order to prevent indepen-

dent arbitration decisions, which can cause erroneous bus operation. Numerous feasible

solutions are possible (e.g.,1,5,8) differing in terms of the arbiters selected as virtual
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masters and their dependency edges. The best choice among the feasible solutions is

one that results in the minimum wiring overhead and delay penalty. An additional cri-

terion is that there should be no cycles in the dependencies of the arbiters to prevent

deadlock. The same conclusions hold for any arbitrary connection of the bus segments

(e.g., hierarchical bus).

III.F.2 Scalability of Component Re-Mapping

In complex communication architectures it may be necessary to provide sup-

port for dynamically re-mapping a component, either a master or a slave, to multiple

(greater than two) bus segments. In order to provide this support, the basic approach

described in Section III.D.3 is extended as follows. The signals of the re-mappable

component are physically connected to all the bus segments to which it can be poten-

tially mapped. An appropriate switch is used to ensure that only one set of signals is

active at any point of time. For slave re-mapping, the address decoders on each bus

segment are configured to generate the correct slave select signals by reprogramming

the address maps. This needs to be done not only for the address decoders on the bus

segments to which the slave can be mapped, but also for intermediate address decoders.

For example, in Figure III.6, suppose a slave is re-mappable to eitherBus1or Bus4.

Now, when it is mapped toBus1, on observing an address belonging to the slave, the

address decoders onBus1, Bus2, Bus3andBus4should select the slave,BRG1, BRG2

andBRG3, respectively, while when it is mapped toBus4, the address decoders should

selectBRG1, BRG2, BRG3and the slave, respectively.

The two FLEXBUS mechanisms, bridge by-pass and component re-mapping,

can be applied together to provide maximum performance benefits through adaptation.

III.F.3 Applying FLEXBUS in Complex Communication Architectures

In order to provide maximum flexibility during run-time configuration, all the

bridges in the system can be made by-passable, and all the master and slave compo-

nents can be made re-mappable to all bus segments using the techniques described
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in Sections III.F.1 and III.F.2. However, in practice, this would lead to unacceptably

high overheads, potentially negating any performance improvements through adapta-

tion. This is because as more and more bus segments are fused together, the associated

delay penalty due to extra logic and wiring overhead increases. Similarly, as a compo-

nent is made re-mappable to more and more bus segments, its performance may decrease

due to the overhead of the switch and additional wiring. Also, a bus segment with many

re-mappable components may incur large delay penalty due to the extra wiring and logic

overhead in the bus required to provision for the additional masters and slaves. We ex-

pect that provisioning for and properly managing such flexibility injudiciously selected

parts of the communication architecture will provide sufficient performance improve-

ments through adaptation with acceptable overheads. Hence, we envision a two step

methodology for using FLEXBUS in complex communication architectures. In the first

step, the designer must select (either manually or through automatic tools) the set of de-

sired configurability options, namely, which bridges should be augmented with by-pass

support, and which components should be augmented with re-mapping support. In the

second step, run-time policies must be designed to exploit the provided configurability.

Selection of Configurable Components

The goal of this step is to select the bridges and the components that should

be made by-passable and re-mappable, respectively, such that the performance improve-

ments achievable through adaptation are maximized, while not exceeding specified area

and wiring constraints. We assume the availability of a statically customized communi-

cation architecture topology optimized for a partitioned and mapped system, and con-

sider the different possible configurability options for improving the flexibility of the

given architecture.

We note that both the bridge by-pass and component re-mapping techniques

address the latency of transactions between components on different bus segments in-

curred due to the bridge overhead. For such cross-bridge transactions between any two

components, the performance improvement through component re-mapping is superior
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to by-passing the intermediate bridges, since (i) in component re-mapping, the multiple

bus segments are preserved enabling concurrent operation, and (ii) the clock frequency

of an individual bus segment would be higher than that of a long single shared bus made

by fusing multiple bus segments together. However, bridge by-pass provides perfor-

mance improvements forall transactions across the bridge, and not just for transactions

between a particular pair of components. To provide such improvements using com-

ponent re-mapping, more and more components would need to be made re-mappable,

leading to significant hardware overhead, and large delay penalty. This trade-off should

be kept in mind while selecting the by-passable bridges and re-mappable components.

For example, components that have a large volume of cross-bridge transactions can be

made re-mappable, while bridge by-pass can be used for providing performance im-

provements for other cross-bridge transactions. Also, note that, component re-mapping

may not be applicable in the case of one-way bridges as it can lead to error responses.

With growing communication architecture complexity, it is clear that the num-

ber of solutions and the underlying trade-offs will render manual approaches impracti-

cal. Using fast analysis approaches such as [128, 114], automatic techniques can be de-

veloped that methodically search the space of different configurability options to choose

an optimized subset that maximizes performance gains under specified area and wiring

constraints.

Dynamic System-Level Configuration Policies for Complex Communication Archi-

tectures

Given an architecture with support for by-passing selected bridges and re-

mapping selected components, the dynamic policy needs to optimally select the config-

uration of the communication architecture depending on run-time traffic characteristics.

We next briefly discuss how the history-based policies described in Section III.E can be

extended to more complex communication architecture topologies. In this approach, on

each bus segment, the number of transactions of different types are monitored by the

bus logic over a time period and stored in addressable registers. This is then read by
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the reconfiguration unit (implemented as a bus master), based on which it selects the

configuration for the next time period. The goal of the policy is to map the re-mappable

components to the bus segment on which they have the most number of transactions, and

to by-pass each bridge when the number of transactions across the bridge significantly

exceeds the local traffic on each bus segment (excluding the number of transactions due

to the re-mappable components). For small systems consisting of a few bus segments,

the bus configuration decisions can be taken globally in a centralized manner based on

the transaction histories of all the bus segments. The policy can be implemented on

a centralized reconfiguration unit which communicates with all the bus segments and

configurable components. However, for larger systems, this might be infeasible due to

overheads in collecting transaction statistics from all the bus segments, and sending con-

figuration signals to all the configurable components. However, assuming that the initial

communication architecture topology and component mapping is one that is conscious

of spatial locality, we can safely expect that there will be few transactions between com-

ponents that are separated from each other by numerous bus segments. Therefore, the

system can be partitioned into smaller clusters of bus segments, where each cluster has

its own reconfiguration unit making localized bus configuration decisions for the clus-

ter. More global configuration decisions can be made through co-operation between

such reconfiguration units.

III.G Experimental Results

In this section, we present experimental studies that evaluate the FLEXBUS

architecture. We present hardware implementation results, followed by an analysis of

the FLEXBUS architecture using synthetic traffic profiles to systematically evaluate its

performance under different types of traffic. We also apply FLEXBUS to the design

of two system-on-chips: (a) an IEEE 802.11 MAC processor, and (b) a UMTS Turbo

decoder, to evaluate its performance in the context of real applications.
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III.G.1 Experimental Methodology

For the experiments with synthetic workloads, we used a system consisting of

two bus segments connected by a bridge with four masters and four slaves on each bus

segment, equipped with programmable VERA bus-functional models [129] for traffic

generation. The IEEE 802.11 MAC processor (described in Section III.C.1) was im-

plemented using an instruction set model for the ARM processor, and Verilog for the

remaining hardware. The UMTS Turbo decoder (described in Section III.G.5) was im-

plemented using Verilog. Reference AMBA AHB RT-level implementations of the con-

ventional communication architectures for each system were generated using the Core-

Consultant tool of the Synopsys Designware AMBA tool suite [129]. FLEXBUS was

implemented by enhancing the reference AMBA AHB implementations as described in

Section III.D. The Reconfiguration Unit incorporating the run-time policies described in

Section III.E was implemented in Verilog. Performance analysis results were obtained

through simulations using ModelSim [123]. For accurate chip-level area and delay com-

parison, we generated floorplans of all the systems [130]. For this, area estimates for

the different components were obtained from datasheets [131] in some cases, and from

synthesis using Synopsys Design Compiler [132] in cases where RTL descriptions were

available, for the NEC 0.13�m technology [133]. The floorplanner was modified to

report wirelengths of the global wires that constitute the different communication archi-

tectures. Global wire delay was calculated assuming delay optimal buffer insertion [134]

and Metal 6 wiring. The designs were annotated with these wire delays and Synopsys

Design Compiler [132] was used for delay estimation.

III.G.2 Hardware Implementation Results

The area and timing analysis methodology described above was applied to the

example eight master and eight slave system under (i) FLEXBUS with dynamic bridge

by-pass, (ii) single shared bus, and (iii) multiple bus architectures. Figure III.7(a) shows

the floorplan of the system under the FLEXBUS architecture. The results of these studies

are shown in Figure III.7(b). From the figure, we observe that the total chip area of
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Figure III.7: Hardware implementation results for example eight master and eight slave

system

the system with the multiple bus architecture is 2% larger than that for FLEXBUS, since

the floorplanner achieves more optimized wirelengths for the multiple bus architecture

by incurring a small area penalty. The figure also presents delay results under different

bus architectures. For the FLEXBUS, the critical path delay in the multiple bus mode

is smaller than that in the single bus mode since many long paths of the single bus

mode are false paths in the multiple bus mode. This corresponds with the observation

that the static multiple bus architecture can operate at a higher frequency than the static

single shared bus due to shorter wirelengths and lesser bus loading. FLEXBUS incurs a

3.2% delay penalty on average compared to the statically configured architectures, due

to extra wiring and logic delay. However, this timing penalty is more than compensated

for by the performance benefits of adapting the bus to changing traffic characteristics,

as borne out by the following subsections.
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III.G.3 Performance Under Synthetic Traffic Profiles

We performed experiments to analyze the performance of the FLEXBUS ar-

chitecture compared to the statically configured architectures under a wide range of

communication traffic.

Deterministic Traffic Profiles

For this experiment, we consider simple traffic profiles that consist of two

phases. In the first phase, all the traffic is locali.e., between masters and slaves on

the same bus segment (no traffic across the bridge), while in the second phase, all the

traffic is between masters on AHB1 and slaves on AHB2 (all traffic across the bridge).

Different such profiles were generated by varying the relative volume of traffic in each

phase. The conventional architectures were operated at the clock frequencies shown in

Figure III.7(b). For FLEXBUS, we considered two cases: (i) it is always operated at

212 MHz, and (ii) the clock frequency is switched between 212 MHz and 254 MHz

depending on the configuration. Figure III.8 shows the total latency (Y-axis) for the

different traffic profiles (X-axis) under the different bus architectures. For the single

bus, the latency remains constant since all the components are connected to the same

bus. The multiple bus performs much better than the single bus when there is less traffic
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across the bridge, but its performance rapidly deteriorates with increasing cross-bridge

traffic due to the large delay penalty of the bridge. Both variants of FLEXBUS achieve

substantial performance gains over the conventional architectures across most of the

traffic space. As expected, for purely local traffic, FLEXBUS performance is almost

identical to a multiple bus architecture, while for heavy cross-bridge traffic, it is similar

to the single shared bus.

Random Traffic Profiles

In the next experiment, the effectiveness of FLEXBUS under run-time varia-

tions in traffic characteristics is evaluated. The traffic profiles were generated using a

two-state Markov model, where each state corresponds to either local traffic or cross-

bridge traffic, as illustrated in Figure III.9. Varying the transition probabilities of the

edges (P1 and P2) allowed us to vary the granularity with which the two traffic types

are interleaved in the profile. Figure III.10(a) shows a representative traffic profile con-

sisting of a mix of local and cross-bridge traffic. Figure III.10(b) shows the run-time

configuration decisions taken by the policy described in Section III.E. Figure III.10(c)

plots the cumulative latency of the different architectures for this traffic profile. We

observe that the policy successfully adapts FLEXBUS to changes in the traffic charac-

teristics, achieving significant performance benefits over the static single shared bus

(21.3%) and multiple bus (17.5%) architectures. Also, the policy achieves performance

benefits even under frequent variations in the traffic profile (between 1050 seconds and

1870 seconds), by increasing the configuration time period,TP , thus configuring the

bus at larger time granularities.
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III.G.4 Application to an IEEE 802.11 MAC Processor

Table III.1: Performance of the IEEE 802.11 MAC processor under different communi-

cation architectures

Single Shared Bus
Multiple Bus

FLEXBUS (Dynamic 
Bridge By-pass)

42480
26905

27025

Bus Architecture Computation Time (ns)

-
12800

5290

Data Transfer Time (ns)

42480
39705

32315

Total Time (ns)

FLEXBUS (Dynamic 
Component Re-mapping)

27010 5270 32280

Ideally Reconfigurable Bus 26905 5120 32025

Single Shared Bus
Multiple Bus

FLEXBUS (Dynamic 
Bridge By-pass)

42480
26905

27025

Bus Architecture Computation Time (ns)

-
12800

5290

Data Transfer Time (ns)

42480
39705

32315

Total Time (ns)

FLEXBUS (Dynamic 
Component Re-mapping)

27010 5270 32280

Ideally Reconfigurable Bus 26905 5120 32025

Next, we examine the performance of FLEXBUS and conventional communi-

cation architectures for the IEEE 802.11 MAC processor described in Section III.C.1.

We considered two variants of the FLEXBUS architecture, (i) featuring dynamic bridge

by-pass, and (ii) featuring dynamic component re-mapping (Frame Buf2 being a re-

mappable slave). For the first variant, the bus configuration policy described in Sec-

tion III.E selects when to disable or enable the bridge at run-time. For the second

variant, sinceFrame Buf2 is the only re-mappable component, the re-mapping pol-

icy dynamically maps it to the bus segment from which it receives the most number of

transactions. All the buses were operated at 200 MHz. Table III.1 shows the average

time taken to process a single frame (of size 1 KB) under the different bus architectures.

From the table, we see that the times required by both variants of the FLEXBUS architec-

ture are significantly smaller compared to the conventional architectures. The data rate

increase due to FLEXBUS over the single shared bus is 31.5% and over the multiple bus

is 23%. The table also shows the upper bound on performance, obtained using an ideal

reconfigurable bus (zero reconfiguration overhead) with an ideal reconfiguration policy

(complete knowledge of future bus traffic). We observe that for this system, FLEXBUS

and its associated policies perform close (data rate within 1%) to the ideal case.
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III.G.5 Application to a UMTS Turbo Decoder Design

Finally, we apply FLEXBUS with dynamic bridge by-pass to the design of a

Turbo decoder for the Universal Mobile Telecommunications System (UMTS) specifi-

cation, and evaluate its performance compared to conventional static bus architectures.

Turbo coding has received considerable attention in recent years due to its

near Shannon capacity performance [135], and has been included in the specifications

for both the WCDMA (UMTS) [136] and cdma2000 [137] third-generation cellular

standards. Figure III.11(a) and (b) show the functional blocks in a turbo encoder and

decoder, respectively (details are available in [138, 139]). The turbo encoder consists

of two recursive systematic convolutional (RSC) encoders connected in parallel with an

interleaver between them. For an input frameX, the outputs of the turbo encoder are

the systematic bits (X), and the parity bits from the two RSC encoders (Z1 andZ2).

The turbo decoder consists of two RSC component decoders linked together by an inter-

leaver and a de-interleaver. The inputs to the turbo decoder are the noise-contaminated

received frame systematic bits (X 0) and parity bits (Z 0
1

andZ 0
2
). As indicated by the

feedback path, the turbo decoder operates in an iterative manner. In each iteration, the

first component decoder generates soft outputs (Le1) about the likely values of the bits

to be decoded in terms of the log-likelihood ratios (LLR - logarithm of the ratio of the

probability of the bit being 1 to the bit being 0), which are then interleaved and input

to the second decoder. The second decoder then generates another set of LLR values

(Le2), which are fed back to the first decoder after de-interleaving them. After a number

of such iterations (typically 8 for low bit error rate), a hard (0 or 1) decision is taken

about the value of each bit.

Figure III.11(c) shows the mapping of the Turbo decoder functional blocks

to hardware components in our design. The two RSC decoders are based on thelog-

MAP algorithm [140] and are implemented by custom hardware components, DCDR1

and DCDR2, respectively, using the sliding window approach [141]. The interleaver

and de-interleaver functionality is implemented by the INT/DE-INT hardware compo-

nent. The system processes two input frames simultaneously. While DCDR1 processes
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Figure III.11: UMTS Turbo encoder and decoder: (a) encoder functional blocks, (b)

decoder functional blocks, (c) mapping to a single shared bus architecture, (d) mapping

to a multiple bus architecture

the first frame, DCDR2 processes the second frame. On completion, they signal the

INT/DE-INT, which then interleaves the output of DCDR1 and de-interleaves the out-

put of DCDR2. The processing of the frames is now swapped with DCDR1 processing

the second frame and DCDR2 processing the first frame. After eight such iterations, the

decoded bits are read out and the system starts processing a new pair of frames.

Figure III.11(c) shows the design under a single shared bus architecture with

Frame Memstoring all the input and intermediate frame data. Figure III.11(d) shows

the design implemented using a multiple bus architecture, with DCDR1, INT/DE-INT

andFrame Mem1mapped to AHB1, and DCDR2 andFrame Mem2mapped to AHB2.

The input and output frame data of DCDR1 and DCDR2 are stored inFrame Mem1and

Frame Mem2, respectively. The INT/DE-INT block processes the output of DCDR1
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from Frame Mem1and stores the interleaved data inFrame Mem2, and de-interleaves

the output of DCDR2 fromFrame Mem2and stores it inFrame Mem1. The system is

also operated under FLEXBUS with dynamic bridge by-pass, using the bus configuration

policy described in Section III.E. All the buses were operated at 200 MHz.

Table III.2 shows the performance of the system while processing two frames

each of size 1 KByte, in terms of the time taken for the decoding phase, and interleav-

ing and de-interleaving phase for each half-iteration, the total time to process both the

frames, and the corresponding data rate, under the different bus architectures. From the

table, we see that the multiple bus performs better compared to the single shared bus

during the decoding phase by avoiding bus conflicts between DCDR1 and DCDR2, but

suffers during the interleaving/de-interleaving phase due to the bridge overhead. By en-

abling dynamic by-pass of the bridge, FLEXBUS performs much better than either static

architecture, achieving a data rate improvement of 34.33% over the single shared bus

and 30.27% over the multiple bus architecture.

Table III.2: Performance of the UMTS Turbo decoder under different communication

architectures

Single Shared Bus
Multiple Bus

FLEXBUS (Dynamic 
Bridge Bypass)

20620
10910

11095

Bus Architecture
Decoding
Phase (ns)

16080
24680

16225

Interleaving/
De-interleaving Phase (ns)

587200
569440

437120

Total Time
(ns)

3.4877
3.5965

4.6852

Data Rate
(Mbps)

III.H Conclusions

In this chapter, we illustrated that significant performance benefits can be

achieved by configuring the on-chip communication architecture topology in response to

variations in traffic characteristics. We presented FLEXBUS, a novel dynamically con-

figurable communication architecture, featuring two different configurability options:

(i) dynamic bridge by-pass, and (ii) dynamic component re-mapping, and described
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techniques for efficiently adapting FLEXBUS at run-time. Extensive experiments on

FLEXBUS using a commercial design flow to analyze its area and performance under a

wide variety of traffic profiles, and its application to the design of an IEEE 802.11 MAC

processor and a UMTS Turbo decoder, demonstrate its superiority over conventional

communication architectures.

The text of this chapter, in part, is based on material that has been published in

the Design Automation Conference, 2005, and material submitted to the IEEE Transac-

tions on VLSI Systems. The dissertation author was the primary researcher and author,

and the coauthors listed in these publications collaborated on, or supervised the research

that forms the basis for this chapter.
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Dynamic Management of SoC

Platforms with Configurable

Processors and Dynamic Data

Relocation

IV.A Introduction

In Chapter II, we described several dynamic configurability features emerging

in SoC platform components, and motivated the need for platforms with multiple such

options, so that they can be better adapted to the applications’ requirements. We also

presented the concept of dynamic platform management for the holistic, run-time con-

figuration of such platforms. In this chapter, we propose SoC platforms featuring two

different configurability options, (i) configurable processors that support frequency and

voltage scaling, and (ii) flexible data relocation in memory, and explain how dynamic

platform management can be applied for such platforms.

Frequency and voltage scalable processors allow the operating clock fre-

quency and supply voltage to be dynamically changed resulting in a significant impact

on the processor energy consumption (Section II.B.1). This is because the dominant

67
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source of power dissipation in digital CMOS circuits is the switching component of

power, which is given byP = ptCLV
2

ddfclk [142], wherept is the switching activity in

the circuit,CL is the load capacitance,Vdd is the supply voltage, andfclk is the clock

frequency. The energy per transition is therefore given by [142]

energy per transition =
P

fclk
= ptCLV

2

dd (IV.1)

which implies that a reduction in the supply voltage leads to a quadratic reduction in

the energy consumed. Reducing the supply voltage, however, increases the gate delay,

which can be approximated by

delay =
CL � Vdd

�Cox(W=L)(Vdd � Vt)2
(IV.2)

where� is the carrier mobility,Cox is the oxide capacitance,W andL are the width

and length of the gate, respectively, andVt is the threshold voltage [142]. Therefore, the

maximum speed at which a circuit can be clocked monotonically decreases as the volt-

age is reduced. These two relationships expose the trade-off between energy and speed

which can be exploited by varying the voltage, graphically depicted in Figure IV.1 [1].

Several frequency and voltage scalable processors are commercially available today,

such as XScale [49] and Crusoe [48].
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Flexible data relocation allows the data objects accessed by the executing ap-

plications to be relocated among the system memories at run-time. Correct data reloca-

tion requires that accesses to the relocated objects should find them at their new location.

Several techniques to enable this are discussed in Section II.B.3. These techniques pro-

vide the capability of dynamically partitioning the application data among the different

memories. Since different data objects are accessed by different applications, and the

data objects accessed by an individual application may also change over time, there

might be a significant variation in the system memory access profile at run-time. Hence,

such data relocation, if applied intelligently, can provide significant benefits to the cache

and memory system performance, by adapting to run-time application behavior.

The reason for incorporating these two configurable features on the same plat-

form is that there is a dependence between the operating frequency and voltage, and

the placement of data in memory, as illustrated in this chapter. Therefore, integrated

dynamic platform management techniques, which take into account such dependencies

are necessary for the optimized configuration of such platforms.

IV.A.1 Chapter Overview

In this chapter, we propose dynamically configurable SoC platforms featuring

fine-grained frequency and voltage scaling, and flexible relocation of application data

between on-chip and external memory. We demonstrate the dependence between these

two configurability options, and motivate the need for their integrated configuration.

We illustrate the application of dynamic platform management to such platforms, and

describe the methodology in detail. The methodology enables optimized usage of avail-

able CPU and on-chip memory resources. As described in Section II.C, the methodology

consists of two parts. In the first part, we develop detailed (off-line) characterizations

of how platform resource usage (e.g., CPU cycles, memory accesses) varies with the

characteristics of the set of executing applications. The second part consists of run-time

platform management algorithms that customize the platform for time-varying applica-

tion requirements. We demonstrate how our techniques can achieve significant gains in
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performance and energy efficiency by applying it to the design of a dual-access UMTS

and WLAN wireless security processing system. The system was implemented on two

different configurable platforms: (i) a StrongARM based platform, and (ii) the Altera

Excalibur development board. Experiments demonstrate that, compared to a convention-

ally optimized design (on the same general-purpose platform), the proposed techniques

enable up to 160% improvements in security processing throughput, and achieve 59%

energy savings (on average).

The rest of this chapter is organized as follows. In Section IV.A.2, we describe

related work. In Section IV.B, we describe the configurable platform architecture that we

consider in this chapter. In Section IV.C, we illustrate, using the UMTS/WLAN security

processing system as an example, the execution of the system based on dynamic plat-

form management, and the advantages it provides. In Section IV.D, we present details of

the methodology, considering the key steps, and algorithms employed. We present ex-

perimental results in Section IV.E that evaluate the performance and energy-efficiency of

the developed security processing system, and compare it to a conventionally optimized

design. Finally, we conclude in Section IV.F.

IV.A.2 Related Work

A significant body of work has emerged relating to dynamic scaling of pro-

cessor frequency and voltage (DVS) to take advantage of available slack in processing

workloads. These techniques are described in Section II.B.1. Techniques for relocating

application data at run-time have also been proposed as described in Section II.B.3.

Most data relocation techniques are applicable only for single applications, and are

compile-time, relying on the compiler to analyze the behavior of the application and

insert appropriate code to perform data relocation. Therefore, such techniques would

perform poorly in the presence of multiple time-varying applications. In contrast, our

dynamic platform management methodology analyzes the requirements of multiple ap-

plications and globally optimizes the placement of data in memory. Also, previous

works consider the configuration of the frequency and voltage, and data placement in
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isolation. In this work, we analyze the interaction between these two configurability

options and present integrated platform optimization techniques.

IV.B Configurable Platform Architecture

Platform 
Frequency

Embedded
Processor

Core

Instruction
Cache

Data 
Memory

External 
Memory

Configurable Platform Architecture

Platform 
Voltage

On-Chip Memory 
Configuration

External Memory
Controller

Programmable
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Peripherals

Programmable
DC/DC

converter
(Vmin – Vmax)

Figure IV.2: A general-purpose configurable platform architecture, featuring frequency

and voltage scaling, and flexible data relocation

The configurable platform architecture proposed in this work is shown in Fig-

ure IV.2. It consists of an embedded processor core, a small and fast on-chip data mem-

ory (SRAM), and an instruction cache. Such dedicated on-chip memories are often

used in embedded systems in place of data caches, to reduce power consumption, ex-

ploit application characteristics, and obtain more predictable execution [143, 144]. The

platform is also connected to a larger and slower external memory through an exter-

nal memory controller. The platform may contain other hardware peripherals such as

UARTs, timers, interrupt controllers,etc.

The platform features two dynamic configurability options. First, the platform

can be operated at a set of discrete frequency and voltage levels, which can be changed

dynamically. This is enabled through the use of programmable clock generators (PLLs)

and programmable, variable voltage DC/DC converters (Figure IV.2). Second, it fea-

tures flexible data relocation that supports the dynamic partitioning of the data objects
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used by the various software tasks between the on-chip data memory and the external

memory. This provides the flexibility of selecting at run-time, an optimized set of data

objects for storage in the on-chip memory depending on the applications’ requirements.

Data relocation can be enabled using various techniques such as through the virtual-

to-physical address mapping, base pointer registers,etc (Section II.B.3). In this work,

data relocation is provided using the “cache locking” feature available in many data

caches [145, 146]. Cache locking allows specified cache lines to be locked so that the

data in them is not replaced by a linefill. Locking all the lines of the cache, therefore,

enables it to be used as dedicated on-chip data memory. The cache locking mechanism

is controlled through programmable cache control registers [146]. To relocate a data

object to the on-chip memory, first cache locking is disabled, the data object is accessed

so that it is loaded into the cache, and then the cache is again locked down. To relocate

a data object back to the external memory, cache locking is disabled, the relevant cache

lines are cleaned and marked as invalid, after which the cache is locked again. On data

relocation, future references to the relocated data objects find them at their correct loca-

tion using the normal cache addressing mechanism: if the data object is in the on-chip

memory, it results in a cache hit, whereas if it is in external memory, it is accessed (but

not loaded into the on-chip memory if it is locked) after a cache miss.

The space of platform configurations is defined by two dimensions. The first

dimension consists of different(f; v) pairs, which define clock frequencies and their as-

sociated supply voltage values. The second dimension consists of the different ways in

which the set of data items (accessed by the tasks) can be partitioned between on-chip

and external memory. For a set of data itemsD = fD1; D2; :::; Dng, a configuration of

the on-chip memory is defined by a setDon � D, such that the total size of items in

Don does not exceed the capacity of the on-chip memory. A candidate platform config-

uration is defined byhf; v;Doni. A configuration is successful in meeting performance

requirements, if the associated CPU utilization is no more than 100%.
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IV.C Demonstrating Platform Management for Security Processing

In this section, we illustrate the operation and advantages of dynamic plat-

form management for the platform described in the previous section, using a dual-access

(UMTS and WLAN) security processing system as an example. We first describe the

security processing tasks, and their mapping to the platform architecture. Next, we

highlight the space of available platform configurations. We then illustrate the prob-

lems associated with configuring the platform statically, and finally, illustrate how dy-

namic platform management chooses optimized platform configurations at run-time, and

thereby achieves desired security processing throughput, and improvements in energy-

efficiency. The experiments were performed using cycle-accurate, instruction-set sim-

ulation of a StrongARM based platform architecture, details of which are presented in

Section IV.E.1.

IV.C.1 Case Study: UMTS and WLAN Security Processing

The system implements Layer 2 security protocols of two wireless standards:

the Universal Mobile Telecommunications System (UMTS) for third generation cellular

networks [147], and the IEEE 802.11b standard for wireless LANs [121]. Our design

is motivated by the emergence of converged handsets, capable of simultaneous com-

munication over multiple wireless interfaces [148, 149]. The need to support upgrades

(due to the evolving nature of security protocols), while achieving high security pro-

cessing throughput and energy-efficiency, makes a general-purpose, programmable and

configurable platform a suitable implementation choice (Figure IV.2).

The dual-access security processing system executes two tasks. The UMTS

task is responsible for ciphering and integrity of UMTS frames [147]. Each UMTS

frame may be ciphered and integrity checked, or only ciphered, depending on the frame

type. All frames are ciphered using thef8 algorithm. In addition, signalling frames

are also integrity checked using a 32-bit Message Authentication Code, computed using

the f9 algorithm. Bothf8 and f9 are are based on theKASUMI block cipher [147].
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The WLAN task (defined in [121]) is responsible for encrypting Layer 2 frames (if

encryption is enabled) using the Wired Equivalent Privacy (WEP) protocol, which is

based on a 64 bit symmetric key stream cipher, and computing a Frame Check Sequence

(a 32 bit CRC) for data integrity. While processing a UMTS (or WLAN) frame, the

UMTS (or WLAN) task accesses a set of data objects (e.g., CRC tables, substitution

tables, the program stack, frame dataetc).

The security processing tasks (UMTS and WLAN) are mapped to the config-

urable platform described in the previous section. The specific instance of the config-

urable platform architecture that we consider in this example is based on a StrongARM

processor core [150], described in detail in Section IV.E.1. The size of both the instruc-

tion cache and the on-chip data memory is 1.5 KBytes. The UMTS and WLAN tasks

execute on the StrongARM core, and the various task data objects are partitioned be-

tween the on-chip and external memory (since all the items cannot be accommodated

in the on-chip memory). The tasks individually exhibit significant dynamic variation in

their CPU requirements and memory access patterns, due to variable data rates, frame

types and frame size distributions.

IV.C.2 Platform Configuration Space

Figure IV.3 depicts three workload scenarios,Case 1, Case 2andCase 3. For

all cases, both the UMTS and WLAN tasks are active, and are processing respective

frames. In this example, the frame characteristics are held constant (as shown in Fig-

ure IV.3), while the data rate of each task varies as shown. Below each case, we show

a pair of tables, one for each of the two tasks. The UMTS table forCase 1depicts a

space of possible platform configurationshf; V;DUMTSi, with the CPU% consumed by

the UMTS task under the given workload. For example, row 1 of Table UMTS-Case1

indicates that if the platform is operated at 206 Mhz, 1.5 V, and if theStack , Key

Schedule (KS) , andS7 data items are stored in the on-chip memory, then while

processing 5114 bit signalling frames at 1.8 Mbps, the UMTS task consumes 57.8% of

the CPU. A similar table is presented for WLAN-Case1, and for the other cases.
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Figure IV.3: Dynamic selection of optimized platform configurations for UMTS and WLAN security processing
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At any given time, a candidate platform configuration is defined by a pair of

rows, one from each table, such that the following two conditions are met: (i) the fre-

quency and voltage in the two selected rows are identical, (ii) the total size of the data

items stored in the on-chip memory is less than its capacity. A platform configuration

that satisfies these conditions, and achieves no more than 100% CPU, will satisfy per-

formance (data rate) requirements.

IV.C.3 Security Processing: Static Configuration

We first consider the execution of the platform for each of the three cases de-

picted in Figure IV.3, when it is statically configured. The particular static configuration

that we choose is one that is optimized for a large space of requirements (details in

Section IV.E.1). Figure IV.3 illustrates the sequence of platform configurations, show-

ing how, in this case, the pair of “selected rows” remain fixed over time (indicated by

4). The static configuration is defined byhf; V;Doni, wheref = 206Mhz; V =

1:5V; Don = fStackUMTS; KSUMTS; S7UMTS; S� TableWLAN; StackWLANg. Inspection of the

CPU% figures for this architecture indicates the following problem. While forCase 1,

the total CPU% is57:76 + 42:11 = 99:87%, in Case 2, the rows corresponding to the

static architecture (4) have CPU% values that add up to 110.58%, indicating that the

static architecture is not capable of satisfying the processing requirements imposed by

Case 2.

IV.C.4 Security Processing: Dynamic Platform Management

We next illustrate the execution of the security processing tasks with the pro-

posed dynamic platform management technique, for the three cases considered in the

previous example. The platform management technique considers (i) time-varying re-

quirements imposed by the individual tasks (by examining workload parameters, such as

frame sizes, types, and data rate requirements), and (ii) pre-determined characteristics

of each task, to choose an optimized configuration of the platform. For example, un-

derCase 1, the platform management technique chooses a platform configuration that
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is identical to the static configuration used in the previous example. However, as the

requirements imposed by the applications change, the selected platform configuration

may change, as illustrated next.

When the requirements change fromCase 1to Case 2, the platform man-

agement techniques consider the space of possible platform configurations available to

further optimize the system forCase 2(defined in Tables UMTS-Case2 and WLAN-

Case2). Recall that a pair of rows from these uniquely defines a platform configuration.

Clearly the pair of rows labeled with4 define a platform configuration that cannot meet

the requirements imposed byCase 2(total CPU exceeds 100%). A possible configura-

tion is the one defined by the pair of rows labeled with a?. This configuration differs

from the previous one in terms of the set of data items stored in the on-chip memory:

the itemsS7UMTS andStackWLAN are replaced byCRC� TableWLAN. Under the new con-

figuration, the CPU% consumed by the two tasks are 15.17% and 82.12%, resulting in

a total of 97.29%, which is less than 100%. Hence, this is determined to be a platform

configuration that satisfiesCase 2.

However, the platform management technique does more than just select an

alternate set of data objects to be stored in memory. It does this in a manner so as

to minimize wasted CPU cycles, and hence increase CPU availability. To illustrate

this, considerCase 3, where in the static case, (denoted by4), the total CPU% is

6:42 + 77:20 = 83:62%. Even though this configuration meets performance require-

ments comfortably, the platform management technique considers the space of possible

configurations that might result in more efficient use of the CPU. For example, to pro-

cess the workload ofCase 3, the configuration defined by the pair of rows labeled with

y results in 77.82% CPU utilization, whereas the configuration defined by the pair of

rows labeled withz result in 72.42% CPU utilization. The platform management tech-

nique selectsz over y, sincez achieves 13% savings in CPU cycles, whiley achieves

only 7% savings. Reducing CPU utilization can enable (i) accommodation of other pro-

cessing tasks (if they exist), or (ii) in our case, reductions in power consumption via

frequency and voltage scaling. In the example, the platform management technique se-
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lects a configuration defined by the pair of rows labeled with?. Exploiting the resultant

CPU slack enables operating the platform at a lower frequency (118 Mhz) and voltage

(1.05 V), leading to energy savings. Note that, if the memory configuration defined iny

had been used, then the platform would have had to be operated at 133 Mhz and 1.1 V,

which would have led to higher power consumption. On the other hand, if the platform

was operated at 118 Mhz (the optimum speed forz), it would have led to a total CPU

utilization of 104.1%, resulting in failure to meet performance requirements.

From this example, we draw a few important conclusions:

� Tasks can exhibit significant dynamic variation in their workload characteristics,

resulting in a wide range of processing requirements imposed on a platform.

While we considered data rate as a variable parameter, the platform resource us-

age profiles could vary significantly due to several other factors (e.g., the exact set

of tasks currently active, and frame properties, such as frame types, sizes,etc).

� Dynamically configuring the platform while exploiting (i) an accurate characteri-

zation of application tasks, and (ii) a detailed knowledge of the platform architec-

ture can help improve platform resource utilization (CPU, memory), resulting in

performance improvements, and large energy savings.

� Platform management techniques should be based on tightly coupled algorithms

for dynamically optimizing different components and parameters for maximizing

performance and energy-efficiency. The example illustrated how usage profiles of

different platform components are interdependent, and demonstrated how intelli-

gent use of an on-chip memory helps free up CPU cycles (by reducing the number

of slow external memory accesses), enabling larger CPU headroom, or potential

power savings.
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IV.D Dynamic Platform Management Methodology

In this section, we describe the details of the dynamic platform management

methodology for the proposed configurable SoC platform (Section IV.B). We first define

terminology, and then go on to describe (i) the off-line task characterization step, and

(ii) the dynamic platform management algorithms that optimize the platform configu-

ration at run-time, so as to meet performance requirements, while minimizing energy

consumption.

IV.D.1 Terminology

We consider tasks with periodic arrivals, having soft real-time require-

ments. At a given time, let the set of currently executing tasks be denoted by

T = fT1; T2; :::; TMg, whereM � MAX, the total number of tasks in the sys-

tem. Associated with each taskTi, where1 � i � MAX, is a set of data objects,

Di = fdi;1; : : : ; di;mi
g. A data object refers to a logical data structure, or data block,

that can be addressed contiguously by the task. For example, the CRC table used for

computing the 32 bit checksum in the WLAN task is a data object. Each data object,

di;j, has an associated maximum sizesi;j. Each instance of a taskTi, has a time-interval

Pi, within which it has to finish executing. LetNi = fni;1; ni;2; :::; ni;mi
g denote a set

consisting of the number of accessesTi makes to each data object inDi in time-interval

Pi (i.e., there is a one-one mapping betweenDi andNi). LetCi denote the number of

processing cycles (excluding data memory access cycles) required by each instance of

the taskTi in the time-intervalPi. GivenDon, the set of data objects in on-chip memory,

the execution timeETi for each instance of a taskTi is estimated using the following:

ETi = (Ci + nCon�chip + (N � n)(d
Text
1=f

e)) �
1

f
(IV.3)

whereCi is the number of processing cycles,Con�chip is the number of cycles to access

on-chip data memory,Text is the time to access external memory,N =
P
Ni is the total

number of data accesses,n =
P

di;j2Don
ni;j is the number of data accesses to on-chip

data memory, andf is the operating frequency. The non-linear effects due to external
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At each task instance arrival, given {T1, …, TM} ⊆ Task_Set are active

• On-Chip Memory Configuration
Select a subset of the data items, Don ⊆      Di , to be placed  in 
on-chip memory that

 maximizes                        while                                  , where 

Pi is the time interval of task Ti and size  is on-chip memory size

• Frequency and Voltage selection
 - Select the lowest frequency, f ∈{ f1 < f2 < ….. < fmax} such that
                           
                             where                is the execution time of task Ti

at frequency f and Don placed in on-chip memory
 - Select the corresponding voltage level
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Figure IV.4: Dynamic platform management methodology

memory are accounted for by thedText
1=f

e term. The values ofCon�chip andText depend

on the platform.

In order to dynamically determine the optimized platform configuration, the

platform management algorithms are provided with certain characteristics of the tasks

which execute on the platform. This task specific information is obtained by character-

izing each task off-line, using a procedure we describe next.
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IV.D.2 Off-line Task Characterization

The steps performed in this off-line phase are illustrated by the first box in

Figure IV.4 and the resulting characterization tables are illustrated by Table IV.1. For

each task,Ti; 1 � i � MAX, which potentially executes on the platform, all the data

addressed by the task is first divided into a set of logical data objects,Di. Each data

objectdi;j 2 Di should be contiguously addressable by the task. Next, the maximum

sizes of these data objects (si;j values) are determined through a combination of analysis

and simulation. Each data objectdi;j is then characterized by the number of times,ni;j,

it is accessed by an instance of its associated taskTi. In general, the value ofni;j varies,

depending on dynamically variable parameters of the task (pi;k), and properties of the

data being processed. For example, in a security processing system, the parameters

may include the encryption key lengths, frame lengths and frame types. Hence, the

result of this step is a set of formulae/models for estimating the number of accesses

to each data object at run-time (fni;j). In addition, similar models for estimating the

number of processing cycles,Ci, for each task instance are developed. Note that, we

base our estimation models on parameters whose values can be obtained at task arrival.

If such parameters are not available, accurate off-line estimation may prove difficult.

While considering such tasks is beyond the scope of this work, we believe that our

methodology can be extended to incorporate predictive strategies for estimating task

characteristics at run-time ( [151]).

Table IV.1: Task characterization tables

Task Data Items
(di,j)

Max Size
(si,j)

Estimated Number
of Accesses (ni,j)

Proc. Cycles
(Ci)

T1

d1,1

d1,2

s1,1

s1,2

n1,1= fn1,1 (p1,1, p1,2, ...)

C1 = 
fn1 (p1,1, p1,2, ...)...

d1,m1
s1, m1

…

n1,2= fn1,2 (p1,1, p1,2, ...)

…

n1, m1
= fn1, m1

(p1,1, p1,2, ...)

…
…

…

...

...

...
...

...
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Once these characterization tables are generated, they are incorporated into the

dynamic platform management algorithms (Figure IV.4), which use them to optimize

the platform configuration at run-time. Note that, in order to incorporate a new task into

the platform, or to target the platform to a new set of application tasks, the platform

management implementation remains the same. Only this off-line characterization step

needs to be performed to generate the required tables, and provided to the platform

management algorithms. In the next subsection, we describe how these characterization

tables are used to select optimized platform configurations at run-time.

IV.D.3 Dynamic Platform Management Algorithms

At the arrival of each task instance, the dynamic platform management tech-

niques choose an optimized configuration by (i) deciding on the on-chip memory con-

figuration, and (ii) calculating a “memory-aware” frequency and voltage setting (Fig-

ure IV.4). We next describe how the memory, and frequency and voltage decisions are

taken. Finally, we discuss the implications of the overhead imposed by the platform

management algorithms.

On-Chip Memory Configuration

The task of configuring the on-chip memory consists of dynamically selecting

the optimal set of data objects,Don, to be placed in on-chip memory given a set of

executing tasks. Given two different on-chip memory configurations,Don1 andDon2,

the one which reduces the CPU stall cycles as it waits for external memory is better,

since it results in more efficient (lower) CPU utilization. Since the total CPU utilization

is given by
PM

i=1
ETi
Pi

, therefore,Don1 is preferable toDon2, if :

MX

i=1

ETi;Don1

Pi
<

MX

i=1

ETi;Don2

Pi
(IV.4)
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whereM is the number of currently executing tasks,ETi is the execution time of task

Ti andPi is its time-interval. Using Equation IV.3 and solving the above inequality, we

get:

X

di;j2Don1

ni;j
Pi

<
X

di;j2Don2

ni;j
Pi

(IV.5)

Equation IV.5 holds, provided on-chip memory access time is less than external mem-

ory access time (which is true). Hence, that on-chip memory configuration, which max-

imizes the rate of on-chip memory accesses, is optimal. This is subject to the con-

straint that the set of selected data objects fit within the limited on-chip memory,i.e.,
P

di;j2Don
si;j should not exceed the size of the on-chip memory (Figure IV.4). The

problem of optimizing the on-chip memory can be formulated in terms of theKnapsack

problem (which isNP-complete [127]). Hence, we use a greedy strategy to dynami-

cally choose the setDon by usingni;j=Pi
si;j

, the ratio of the rate of memory accesses to the

size of the data object, as the cost function. Since this involves sorting the data objects

according to the cost function, the complexity of the memory configuration decision is

O(nlog(n)), wheren is the total number of data objects belonging to the active tasks.

As optimizing the on-chip memory configuration frees up CPU cycles, this

enables the possibility of operating the CPU at a lower frequency and voltage setting.

Frequency and Voltage Setting

After optimizing the on-chip memory configuration, the dynamic platform

management layer selects the frequency and voltage at which to operate the platform

(Figure IV.4). Accurate off-line characterizations of the tasks, and knowledge of the

currently selected memory configuration, enables the platform management layer to ag-

gressively scale the operating frequency and voltage. A pre-emptive EDF scheduler is

used for scheduling the arriving tasks, and the schedulability test for EDF [152] is used

to determine the lowest frequencyf (among a set of discrete frequencies of the platform,
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f1 < f2 < ::: < fmax) at which the set of active tasks can still meet their performance

requirements. The frequency is determined from the following:

MX

i=1

(ETi)f;Don

Pi
= 1; (IV.6)

where(ETi)f;Don
is the execution time of the currently active instance of taskTi, un-

der frequencyf and with the set of data objectsDon in on-chip memory (from Equa-

tion IV.3), andPi is the execution time-interval ofTi. The voltage level is selected cor-

responding to the selected frequency setting. The complexity of frequency and voltage

selection isO(n), wheren is the number of active tasks in the system.

Platform Management Overhead

The overhead associated with a platform configuration decision involves (i)

the time taken to select the new platform configuration, (ii) the time taken to re-program

the platform frequency and voltage, and (iii) the time taken to reconfigure the on-chip

memory. The time for selecting the new configuration depends on the number of active

tasks in the system and the corresponding total number of data objects. For example, for

the security processing system described in Section IV.C, the time taken to select the new

memory, frequency and voltage configuration, when both the UMTS and WLAN tasks

are active, is approximately 10�s. Many commercial platforms feature fine-grained

frequency and voltage scaling, where the frequency and voltage can be changed with

very little overhead. For example, the time taken to change the frequency of the Stron-

gARM processor is approximately 150�s [153]. The worst-case time for reconfiguring

the on-chip memory is approximately 200�s, which occurs when the entire contents of

the on-chip memory are re-organized (assuming a clock frequency of 206 Mhz, single

cycle on-chip memory access and50 ns external memory access time).

Platform management decisions are potentially taken at the arrival of each

task instance. If the times between successive task arrivals are large, (> 10 ms), then

platform configuration decisions can be made at each task arrival with insignificant over-

head. However, if the task time-periods are small (say hundreds of�s) then the overhead
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of platform configuration may out-weigh its benefits. In such cases, platform configu-

ration decisions need to be taken at coarser time-scales. For example, the platform

management decisions may be taken at the arrival of the first task following the expi-

ration of a fixed time interval. Since workload characteristics of future task instances

are unknown, history-based prediction strategies can be used to estimate future task

characteristics. In our work, we found that using a10 ms interval between platform

management decisions proved to be effective.

IV.E Experimental Results

In this section, we present experimental results that evaluate the effectiveness

of applying the proposed platform management techniques to the dual-access UMTS

and WLAN security processing system described in Section IV.C.1. Two sets of exper-

iments were performed, in which the system was mapped to two different instances of

the proposed configurable SoC platform (Section IV.B): (i) a StrongARM [150] based

platform, and (ii) the Altera Excalibur system-on-a-programmable-chip (SOPC) [28].

We next describe each of these sets of experiments in detail.

IV.E.1 Application to StrongARM based platform

Platform Description

The configurable platform features the StrongARM embedded processor

core [150], which can be operated at a range of discrete frequencies from 59 Mhz to

206 Mhz, with corresponding voltage levels from 0.83 V to 1.5 V [154]. The overhead

of frequency and voltage scaling is assumed to be constant at 150�s [153]. The proces-

sor can access an instruction cache and a data cache, both of size 1.5 KBytes. The data

cache is used as a dedicated on-chip data memory, and application data objects can be

relocated between this on-chip memory and an external memory, using the cache lock-

ing mechanism (described in Section IV.B). Accesses to the on-chip memory and cache
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are single cycle, and external memory access time is50 ns. The overhead of relocating

data objects depends on the size of the data and the memory access times.

Experimental Methodology

Optimized C implementations of the UMTS and WLAN security algorithms

were compiled using the ARM C compilerarmcc[155] (with maximum optimization)

and were targeted to the platform described above. The experiments consider two vari-

ants of the example system. The first variant consists of a statically optimized config-

uration of the platform, where the platform is always operated at 206 Mhz and 1.5 V,

with the on-chip memory configured as shown in row 1 of the tables in Figure IV.3. The

second variant incorporates the dynamic platform management techniques described in

Section IV.D, where the on-chip memory contents, and operating frequency and volt-

age are determined at run-time. The overhead of platform configuration was taken into

account. The performance of the system under a given workload was measured using

cycle-accurate instruction-level simulation of the platform architecture usingARMu-

lator [155]. The power consumption was estimated using a cycle-accurate, software

energy profiling tool,JouleTrack[154].

Off-line Task Characterization of UMTS and WLAN

Table IV.2 shows the results of performing the off-line task characterization

step (Section IV.D.2) for the security processing tasks: UMTS ciphering and integrity,

and WLAN encryption and checksum, for the platform described above. The data ob-

jects accessed by the UMTS task are its Stack (Stack ), the Key Schedule (KS), theS7

andS9 lookup tables, and the UMTS frame (Frame ). The WLAN data objects include

its Stack (Stack ), the State Table (S-Table ), the CRC Table (CRC-Table ), and the

WLAN frame (Frame ). The number of accesses per data item and the processing cy-

cles requirement for UMTS depend on both the frame size (l) and the type of frame (for

user frames, only the first parenthesized term is used, while for signalling frames, both

the terms are used). The corresponding estimation formulae for WLAN depend only
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Table IV.2: Characterization of the security processing tasks for the StrongARM based

platform

Task

UMTS

WLAN

Data
Items
(di,j)

Stack
KS
S7
S9

Frame

Stack
S-Table

CRC-Table
Frame

Max
Size
 (si,j) 

120
128
256
1024
1340

96
256
1024
4654

Estimated 
Number

of Accesses (ni,j)

(19.5l/8+520.5)+(18.5l/8+726.5)
(64l-1/64+256)+(64l+1/64+320)
(48l-1/64+96)+(48l+1/64+144)
(48l-1/64+96)+(48l+1/64+144)

(2l/8+35)+(l/8+40)

272
10l+1322

2l+40
4l+54

Proc.
Cycles
(Ci) 

(146.15 l/8
+3176.71)+
(131.95 l/8
+4796.72)

36l+5807

on the frame size. These characterization tables are used by the platform management

algorithms to select optimized platform configurations at run-time.

Impact of Dynamic Platform Management on Performance

This experiment evaluates improvements in security processing throughput

made possible by the proposed techniques. For this experiment, we considered the

“space” of possible data rate requirements of the UMTS and WLAN security processing

tasks. We keep other characteristics, such as frame sizes and types constant. For each

architecture, we measured the maximum pairwise achievable data rates (those achieved

when the platform is maximally utilized). Figure IV.5 presents these results for the

considered data rate space. The region on the left of each 100% CPU contour indicates

data rate pairs that the corresponding architecture can satisfy.

From the figure, we observe that dynamic platform management enables the

security processing system to satisfy a larger space of data rate combinations, compared

to the statically configured system, facilitating large improvements in performance. For

example, (in the absence of WLAN traffic) while the static configuration can achieve

3.1 Mbps UMTS throughput, the dynamic case can sustain a maximum data rate of
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Figure IV.5: Dynamic platform management for the StrongARM based platform: space

of achievable data rates and CPU efficiency

4.1 Mbps, a 33% improvement. Similarly, upto 21% improvements can be achieved for

WLAN data rates. We exhaustively examined all possible static configurations of the

platform, and found this configuration to be the one that meets the largest space of data

rate requirements. By outperforming this static configuration, the dynamic platform

management technique demonstrates that it can achieve significant performance gains

over any static configuration.

Impact of Dynamic Platform Management on CPU Load

In practice, situations may often arise where data rate requirements are far

lower than the maximum achievable values. We next demonstrate that even in cases

where performance requirements can be met by the static configuration, it is still ad-

vantageous to use the dynamic platform management techniques. Figure IV.5 indicates

portions of the data rate space, where both architectures can meet performance require-
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ments (area to the left of the 100% contour for the static configuration). However, for

a large fraction of this space (shaded grey), dynamic platform management results in

fewer cycles being expended, hence improving CPU availability.
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Figure IV.6: CPU fraction left-over from security processing under static configuration

and dynamic platform management

To quantify this advantage, we performed an experiment where a set of dis-

crete data rate pairs were considered. For each pair, we measured the fraction of CPU

cycles left over from security processing, under the static configuration and with dy-

namic platform management. The results of these experiments, along with the data rate

pairs used (in increasing order of imposed load), are presented in Figure IV.6. The figure

shows that for all cases, the dynamic architecture makes more CPU cycles available than

the static architecture. The effect is more significant at higher CPU loads. For example,

in the caseh337Kbps; 12:7Mbpsi, while the static case “just” meets the requirements

(CPU availability is 0%), in the dynamic case, the same requirements are met, with

12.14% of the CPU left over. The increased availability of the CPU (free cycles) can be
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exploited to process other tasks, or reduce the frequency and supply voltage, and hence

reduce power consumption.

The caseh384Kbps; 14:5Mbpsi is of special interest. The results of Fig-

ure IV.6 show that the static architecture needs 14% more of the CPU than is available,

hence cannot meet the requirements imposed by the data rates. However, for this case,

dynamic platform management chooses an optimized platform configuration, which en-

ables satisfying the imposed requirements.

In summary, Figures IV.5 and IV.6 demonstrate that the proposed dynamic

platform management techniques (i) increase the space of maximum achievable perfor-

mance of a configurable platform, and (ii) result in more efficient use of the CPU.

Impact of Dynamic Platform Management on Energy

In this experiment, we evaluated the power savings made possible with the

proposed dynamic platform management techniques for the StrongARM based plat-

form. For this experiment, we considered a dynamically varying workload consist-

ing of varying tasks, data rate requirements, randomly varying frame size and types

(Figure IV.7(a)). We compared the total energy consumed by the static configuration

with that consumed with dynamic platform management while processing this work-

load. Figure IV.7(b) illustrates how the two platform parameters (frequency and on-chip

memory) vary with time in the dynamic case, and Figure IV.7(c) plots a time profile of

the total energy consumption. From Figure IV.7(c), we observe that the dynamically

configured architecture achieves 59% energy savings compared to the static case. In

both cases, all performance requirements were met.

It should be noted that the savings in energy consumption are due, in large part,

to careful exploitation of the interdependence between on-chip memory configuration,

CPU slack, and voltage scaling. To evaluate the benefit of our integrated approach, we

measured the energy savings via traditional dynamic voltage scaling (DVS) [156], while

keeping the on-chip memory configuration constant. From the cumulative energy plot

corresponding to DVS in Figure IV.7(c) we observe that dynamic platform management
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Figure IV.7: Energy savings using dynamic platform management: (a) varying UMTS

and WLAN workload; (b) platform configuration sequence; and (c) cumulative energy

profile
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achieves 39% energy savings over DVS. These results demonstrate that the described

platform management approach can be used to enhance system energy-efficiency over

and above conventional techniques.

IV.E.2 Application to Altera Excalibur SOPC

Platform Description

The Excalibur chips from Altera [28] combine a processor, memory, logic and

FPGA, enabling designers to integrate entire systems on a single device. Figure IV.8

shows a block diagram of the Excalibur platform [157]. It consists of two regions, (i)

the stripe region, which contains hard-coded logic and memory, and (ii) the PLD region,

which contains an FPGA. The stripe region features an ARM922T [146] embedded pro-

cessor, with separate 8 KByte instruction and data caches, and memory management

unit (MMU) support. The caches support locking, thereby enabling the data cache to

be used as a dedicated data memory. It also contains a single port SRAM and a dual

port SRAM. External interface ports are provided in the stripe to interface the platform

with external memory (SDRAM, Flash,etc). Data relocation can be performed between

external memory and the on-chip data memory using the cache locking mechanism, as

described in Section IV.B. The platform can be operated at a maximum clock frequency

of 200 Mhz, which can be changed at run-time via the phase lock loop block (PLL) us-

ing programmable registers. The bus architecture of the platform consists of two buses,

AHB1 and AHB2, which conform to the AMBA high performance bus (AHB) spec-

ifications. The stripe also contains other peripherals, such as UART, timers, interrupt

controller, bridges,etc. The PLD region contains programmable logic which can be

used to implement upto a million gates.

Experimental Methodology

The UMTS and WLAN security processing system was implemented on the

Excalibur EPXA1 development board from Altera [158]. Figure IV.9 shows a photo-
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Source: Altera Corp.

Figure IV.8: Block diagram of the Altera Excalibur SOPC
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graph of the experimental setup. The Excalibur chip on the board is connected to a

Flash memory, which is used during system bootup, and an SDRAM, which is used

during program execution. The board is interfaced with a host computer to control sys-

tem execution and display execution statistics, using a serial connection via the on-chip

UART. The platform’s supply voltage is fixed, and therefore does not allow voltage scal-

ing. 1 The instruction and data caches of the ARM922T processor are large enough to

contain all the code and data of the security processing programs. Therefore, in order

to illustrate dynamic data relocation for this system, only 1.5 KBytes of each cache

was used, the rest remaining unused. The data cache was used as a 1.5 KByte on-chip

data memory using cache locking. The PLD region of the platform was not utilized for

this experiment. We next describe how the dynamic platform management framework,

described in Section II.C, was implemented for this system.

Figure IV.9: Experimental setup for demonstrating dynamic platform management using

the Altera Excalibur development board

System boot code and an operating system (OS) were implemented for provid-

ing an execution environment for the applications. The OS is responsible for scheduling

the executing tasks (in this case, UMTS and WLAN security tasks) on the processor,
1Due to this reason, we could not demonstrate energy savings under dynamic platform management for this

platform.
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using the earliest deadline first (EDF) algorithm. It is also responsible for handling

interrupts and for communicating with the host computer. The OS code and system

data structures (process tables, page tables,etc.) are mapped to the on-chip single and

dual port SRAMs. “Adapters” are provided by the OS for configuring the platform fre-

quency, and for performing data relocation between the external SDRAM (where the

applications’ data objects are mapped) and the on-chip data memory. The adapters can

be invoked via system calls. The frequency adapter changes the platform frequency by

writing to a set of registers in the PLL block. The data relocation adapter relocates ap-

plication data using the data cache locking mechanism via cache control registers, as de-

scribed in Section IV.B. The UMTS and WLAN security algorithms were implemented

in C. The applications’ code and data was mapped to the external SDRAM. The UMTS

and WLAN tasks process frames from respective frame buffers, and change their data

rate requirements periodically. The programs were instrumented to provide information

about run-time frame characteristics and data rate requirements to the dynamic platform

management layer using APIs implemented as system calls. The platform management

layer is tightly integrated with the OS. On being invoked, it uses the information pro-

vided by the UMTS and WLAN applications to (i) select the placement of the UMTS

and WLAN data objects between the external SDRAM and the on-chip data memory,

and (ii) select the operating frequency for the platform, using the algorithms described

in Section IV.D. It then applies the selected configuration by invoking the adapters via

system calls. The system execution statistics (data rate achieved for each application,

number of missed deadlines,etc.) are collected by the OS, and periodically displayed

on the host computer.

Impact of Dynamic Platform Management on Performance and CPU Load

We evaluated the space of achievable data rates for the UMTS and WLAN

security processing tasks, executing on the Altera Excalibur platform described above,

under two variants of the system: (i) a statically optimized platform configuration, where

the clock frequency is set at 200 MHz, and the on-chip memory is configured as shown
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Figure IV.10: Dynamic platform management for Altera Excalibur: space of achievable

data rates and CPU efficiency

in row 1 of the tables in Figure IV.3 (this was evaluated to be the best static config-

uration since it satisfies the largest space of data rate requirements among all static

configurations), and (ii) the platform operating under dynamic platform management.

Figure IV.10 shows the results of this study. From the figure, we observe that the plat-

form operating under dynamic platform management can satisfy a much larger set of

data rate requirements compared to the static case. For example, when WLAN exe-

cutes alone, the dynamically configured platform can achieve a data rate of 12.9 Mbps

compared to 4.95 Mbps for the static case, a 160% improvement, while when UMTS

executes alone, platform management enables data rate improvements of up to 51%.

Figure IV.3 also shows regions of the data rate space (shaded gray) where al-

though the static configuration can satisfy the data rate requirements, it is still beneficial

to operate the platform under dynamic platform management. This is because in these

regions, dynamic platform management achieves better CPU efficiency (fewer CPU cy-
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cles) compared to the static case. This CPU slack can be used to either support more

applications, or aggressively reduce the platform frequency and voltage for large energy

savings.

IV.F Conclusions

In this chapter, we proposed SoC platforms featuring multiple dynamic con-

figurability options, namely, fine-grained frequency and voltage scaling, and flexible

relocation of application data. We illustrated the importance of considering the interac-

tion between these configurability options, and presented integrated dynamic platform

management techniques for the run-time, application-specific configuration of such plat-

forms. Using a dual-access security processing system as an example, we evaluated the

benefits of the proposed approach by implementing it for two different configurable

platforms, a StrongARM based platform, and the Altera Excalibur development board.

Experiments demonstrate that the proposed platforms coupled with dynamic platform

management enable significant improvements in application performance, CPU utiliza-

tion, and energy efficiency.

The text of this chapter, in part, is based on material that has been published in

the International Conference on Computer-Aided Design, 2003, and material submitted

to the IEEE Transactions on Computer-Aided Design of Circuits and Systems. The

dissertation author was the primary researcher and author, and the coauthors listed in

these publications collaborated on, or supervised the research that forms the basis for

this chapter.
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Dynamic Management of SoC

Platforms with Dynamic Data

Relocation and Reconfigurable Bus

Architectures

V.A Introduction

The design of increasingly complex SoC platforms is being driven by the con-

vergence of multiple, diverse applications onto a single device (e.g., wireless handsets).

The characteristics of the processing workload imposed on such platforms may exhibit

large dynamic variation, depending on which functions are being exercised at any given

time, and the variations in their individual performance requirements. Consequently,

as demonstrated in this thesis, platform architectures that are statically customized for

average or worst case requirements often fail to meet desired system-level design goals

in terms of performance and/or energy efficiency, motivating the need for dynamically

configurable platforms. In the previous chapter, we illustrated the benefits of integrated

run-time management for platforms featuring frequency and voltage scalable processors

and dynamic data relocation in memory. This chapter focuses on integrated dynamic

98
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management for platforms featuring dynamic data relocation in memory and configura-

bility in the on-chip communication architecture.

V.A.1 Chapter Overview

In this chapter, we propose dynamically configurable SoC platforms featur-

ing configurability in the on-chip communication and memory architecture, two key

subsystems that significantly influence overall system performance and energy effi-

ciency [102, 159]. We motivate the importance of integrated management for such

platforms by analyzing a hybrid Viterbi-Turbo decoding system that integrates decoders

corresponding to the UMTS (3G cellular) and IEEE 802.11a (wireless LAN) standards

for converged handsets [160]. We show that approaches in which the mapping of ap-

plication data objects to regions of the memory address space, and configuration of the

on-chip communication architecture, are performed statically, can lead to substantial

performance loss. In addition, we show that the mapping of data to memory directly

influences the on-chip communication traffic profile, which in turn affects the choice

of communication architecture configuration. We illustrate how this interdependence

affects design approaches in which the data placement is customized independently

of the communication architecture (or vice versa). We propose a dynamic platform

management methodology that addresses the configuration of these subsystems in an

integrated fashion. The methodology consists of two phases, off-line (static) charac-

terization phase, and run-time platform management phase. In the off-line phase, the

application data rate space is partitioned into different regions, each of which is mapped

to an appropriate bus and memory configuration. In the run-time phase, this off-line

information is used to select optimized platform configurations depending on current

application requirements. The proposed approach was evaluated on a mixed HW/SW

implementation of the Viterbi-Turbo system. We observed performance gains of up to

32% compared to the best statically optimized design, with negligible hardware over-

head.
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The rest of this chapter is organized as follows. In Section V.A.2, we describe

related work. In Section V.B, we describe the hardware support required to provision

for dynamic data relocation and bus reconfiguration in SoC platforms. In Section V.C,

we present illustrative examples that motivate our work. In Section V.D, we describe

the proposed dynamic platform management methodology. In Section V.E, we present

experimental results that evaluate the application of the proposed approach to the design

of an integrated Viterbi-Turbo Decoder, and we conclude in Section V.F.

V.A.2 Related Work

The increasing importance of on-chip communication has in recent years led

to the development of system-level techniques for customizing the communication ar-

chitecture to application traffic characteristics as discussed in Chapter III [91, 113, 114,

161]. However, these techniques largely assume that the on-chip traffic characteristics

are given,i.e., they do not explore how the on-chip traffic is influenced by the place-

ment of data across the various on-chip memories. Correspondingly, most techniques

that optimize data placement and/or the memory organization, do so without assuming

any configurability inherent in the communication architecture [159, 80, 81]. The inter-

dependence between communication architectures and memory architectures has been

recently studied in [162, 163, 164]. All of these techniques perform simultaneous ex-

ploration of the joint design space. However, they focus on statically optimizing the

system architecture to specific application characteristics, and do not address the need

for dynamic configuration.

The interdependence between bus protocols and other system-level design

problems, such as hardware/software co-design was studied in [165], although they

too focus on static optimization. To the best of our knowledge this is the first work

that attempts to perform integrated, dynamic management of data placement and com-

munication architecture configuration. While in this work, we consider reconfigurable

bus-based architectures, our ideas could be extended to network-on-chips that provide

support for dynamic configurability in the network topology and/or protocols [115]. Fi-
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nally, we note that many of the static optimization techniques mentioned above can be

used within our proposed flow to derive optimized system configurations for different

application requirements. Thus, our platform management methodology is complemen-

tary to these techniques.

V.B Configurable Platform Architecture

In this section, we describe the two dynamic configurability options that we

study in this chapter, namely data relocation and bus reconfiguration, and describe the

hardware support required to provision for them.

Dynamic data relocation (described in Section II.B.3) refers to the ability to

change the location or placement of application data structures or objects among the

platform memories after they have been allocated (i.e., at run-time). Fast data relocation

can be performed using direct memory access (DMA). After relocating a data object, all

future references to it must find it at its new location. For references from processors,

this is ensured by changing the virtual to physical address mapping of the relocated

data in the processor’s page table, thereby enabling data relocation at the granularity

of a page. For references from platform hardware components, “base-plus-offset” ad-

dressing modes must be used for each relocatable data object. On data relocation, the

corresponding base pointer values are updated to point to the new base address. Since

data relocation is handled differently for processors and other hardware components, an

integral number of pages should be allocated to relocatable data objects that are accessed

by both. The overhead of data relocation depends on the relocated data size, memory

access times, bus characteristics (e.g., burst modes), and bus speeds.

Dynamic bus reconfiguration (described in Section II.B.4) refers to the abil-

ity to configure the underlying bus architecture of the platform to system-level changes

in communication traffic characteristics. In general, different aspects of the bus archi-

tecture can be reconfigured, such as the bus protocol (e.g., arbitration priorities) or the

topology (e.g., mapping of components to bus segments). In this work, we focus on
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bus topology reconfiguration throughdynamic bridge by-pass, which was described in

Chapter III. Briefly, bridge by-pass enables the internal logic of bridges that connect

different bus segments to be “by-passed” at run-time, thereby fusing two or more bus

segments into a single shared bus. A Bus Reconfiguration Unit is responsible for en-

abling or disabling by-pass for different bridges when so instructed by system software,

by sending appropriate control signals to the respective bus arbiters and bridges. The

exact penalty of bus reconfiguration depends on the number of pending bus transac-

tions, but is typically on the order of tens of bus cycles. Details of the bridge by-pass

mechanism are described in Chapter III.

V.C Motivational Example

In this section, we illustrate, using an integrated IEEE 802.11a Viterbi and

UMTS Turbo decoder design, that the problems of placing data in memory and config-

uring the on-chip bus are interdependent, and motivate the need for joint dynamic data

relocation and bus reconfiguration.

V.C.1 Case Study: Integrated Viterbi-Turbo Decoder Design

Forward-error correction (FEC), also known as channel coding, is used to im-

prove the capacity of a channel by adding redundant information to the data being trans-

mitted. Viterbi coding [166] is a popular FEC technique used in a wide variety of wire-

less standards (e.g., IEEE 802.11a [167], IEEE 802.16 [168], WCDMA (UMTS) [136]).

Figure V.1(a) illustrates the tasks that constitute Viterbi decoding [169]. The decoder re-

ceives quantized soft bits (multiple bits to represent the confidence in a bit being 0 or 1),

INV , corresponding to the noise-contaminated received signal. The “de-puncture” task

inserts dummy zero values in place of the bits that were “punctured” at the transmitter

(puncturing is a process of omitting some encoded bits in the transmitter to increase

the coding rate). The Viterbi decode task then processes these bits using the Viterbi

algorithm to generate the output decoded bits,OUTV .
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Turbo coding is another FEC technique that has received considerable atten-

tion in recent years due to its near Shannon capacity performance [135], and has been

included in the specifications for third-generation cellular standards (e.g., WCDMA

(UMTS) [136], cdma2000 [137]). Figure V.1(b) shows the tasks involved in Turbo

decoding [169]. The decoder receives quantized soft bits,XT , Z1;T andZ2;T , corre-

sponding to the noise-contaminated received signal. Turbo decoding consists of two

identical recursive systematic convolutional (RSC) decoding tasks linked together by an

interleaving and a de-interleaving task. As indicated by the feedback path, Turbo decod-

ing operates in an iterative manner. In each iteration, the first convolutional decoding

task generates soft outputs (Le1;T ) about the likely values of the bits to be decoded in

terms of the log-likelihood ratios (LLR - logarithm of the ratio of the probability of the

bit being 1 to the bit being 0). These values are then interleaved and input to the second

decoding task (L0
e1;T ), which then generates another set of LLR values (Le2;T ), which

are fed back to the first decoding task after de-interleaving them (L0
e2;T ). After a number

of such iterations (typically 8 for low bit error rate), a hard (0 or 1) decision about the

value of each bit is output (OUTT ).

The integrated Viterbi and Turbo decoder design is motivated by the emer-

gence of converged handsets capable of operating over multiple air interfaces simul-

taneously [148, 160]. The Viterbi decoder implements the specifications for IEEE

802.11a [167], while the Turbo decoder implements the specifications for UMTS

(WCDMA) [136]. The data rate requirements for Viterbi and Turbo decoding may

vary over time depending on application data rate, signal strength, number of users,

etc. Figure V.1(c) shows the mapping of the Viterbi and Turbo tasks to components

in the design. The Viterbi de-puncture task and the Turbo interleave and de-interleave

tasks are implemented in software on the embedded processor (ARM946E-S [122]).

The Viterbi decode task and the Turbo convolutional decode task are implemented as

dedicated hardware (Viterbi Unit and Turbo Unit, respectively). The Viterbi coding rate

is set to 2/3, the number of Turbo iterations is set to 8, and the block size for both Viterbi

and Turbo decoding is set to 1024 bits. The bus architecture is based on the AMBA AHB
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Viterbi decoder, (b) Turbo decoder, and (c) mapping of functional blocks to integrated

decoder design

bus standard [22] and consists of two bus segments, AHB1 and AHB2, connected by a

two-way bridge, BRG. The platform also has two SRAM memory components; MEM1,

of size 64 KBytes, is connected to AHB1, and MEM2, of size 8 KBytes, is connected to

AHB2. Table V.1 shows the different data objects used by the Viterbi and Turbo appli-

cations and their sizes. For example,STableV is an internal data structure used by the

Viterbi decode task, and requires 5120 Bytes.

The design was enhanced with the two dynamic configurability options de-

scribed in Section V.B: (i) dynamic data relocation, which enables Viterbi and Turbo

data objects to be relocated between MEM1 and MEM2, and (ii) dynamic bus recon-

figuration, which allows BRG to be by-passed at times, thereby enabling switching be-

tween a multiple bus architecture and a single shared bus architecture. The Viterbi-

Turbo decoder was optimized using dynamic platform management, details of which

are provided in Section V.D.
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Table V.1: Viterbi and Turbo decoding data objects

XT 1024 bytesSoft Input Systematic bits

X’T 1024 bytesInterleaved Systematic bits

Z1,T 1024 bytesSoft Input Parity bits 1

Z2,T 1024 bytesSoft Input Parity bits 2

Le1,T 1024 bytesLLR1 bits

L’e1,T 1024 bytesInterleaved LLR1 bits

Le2,T 1024 bytesLLR2 bits

L’e2,T 1024 bytesDe-interleaved LLR2 bits

Data
Objects SizePurpose

INV 1536 bytesSoft Input bits

Y0,V 1024 bytesDe-punctured bits 1

Y1,V 1024 bytesDe-punctured bits 2

OUTV 512 bytesDecoded Output bits

STableV 5120 bytesState History bits

App.

Viterbi

Turbo

OUTT 512 bytesDecoded Output bits

V.C.2 Illustrative Examples

In the following examples, we analyze the Viterbi-Turbo decoder design to

demonstrate the benefit of the proposed dynamic platform management techniques in

terms of system performance. System performance was evaluated using cycle-accurate

co-simulation (details of the experimental methodology are described in Section V.E.1).

Example 1

We first consider the application scenario where only the Viterbi decoder is

executing on the architecture shown in Figure V.1(c). Table V.2 shows the maximum

data rates achieved under different combinations of data placement and bus configura-

tion. From the table, we observe that, under a single shared bus (i.e., when BRG is by-

passed), all data placements give the same performance (since both MEM1 and MEM2

are on the same bus, it doesn’t matter which data objects each contains). However, under

a multiple bus architecture, data placement 1 shown in Table V.2 achieves the highest

data rate. This clearly shows that the optimal placement of data in memory depends on
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the underlying bus topology. Also, if data placement 1 is used, the multiple bus archi-

tecture performs the best, while if data placement 4 is used, the single shared bus gives

a higher data rate. This shows that for best performance, the topology of the underlying

bus architecture should take into account the placement of data in memory.

Table V.2: Viterbi decoding data rates under different data placement and bus configu-

rations
Data Placement

INV

Single Shared Bus Multiple Bus
Bus Topology

30.1591 Mbps

30.1591 Mbps

30.1591 Mbps

30.1591 Mbps

52.4926 Mbps

46.3901 Mbps

40.7515 Mbps

9.9071 Mbps

INV , OUTV , Y0,V

INV , OUTV ,  
Y0,V ,  Y1,V

INV , OUTV ,Y0,V , 
Y1,V, STableV

MEM1 MEM2

Y0,V , Y1,V , 
STableV , OUTV

Y1,V , STableV

STableV

-

#

1.

2.

3.

4.

The above example, therefore, illustrates that the placement of data in memory

and the bus configuration are interdependent, and should be jointly optimized. We next

make the case for this joint optimization to be performed dynamically.

Example 2

We consider the simultaneous execution of both Viterbi and Turbo decoding

on the architecture of Figure V.1(c). Figure V.2 illustrates the Viterbi and Turbo decod-

ing “data rate space”, which consists of different combinations of data rate requirements

for each of the two applications. Each point in this data rate space consists of a spe-

cific data rate for Turbo decoding that must be supported, along with the data rate to be

supported for concurrent Viterbi decoding. We examined six candidate configurations

of the bus architecture and data placement in memory (see Table V.3 in Section V.E.2)

and identified the regions in the data rate space that are achievable for each of them.

For some sample points in the data rate space, Figure V.2 shows the platform configura-

tions under which they are achievable. For example, when the decoding requirement for

Viterbi is 10 Mbps and for Turbo is 1 Mbps, multiple platform configurations (C1, C3,
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Figure V.2: Viterbi and Turbo decoding data rate requirements and platform configura-
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C4 andC6) can satisfy it. However,onlyconfigurationC1 can achieve a Viterbi data rate

of 46 Mbps and a Turbo data rate of 384 Kbps, while only configurationC4 can achieve

a Viterbi data rate of 20 Mbps and a Turbo data rate of 1.7 Mbps. ConfigurationsC1 and

C4 differ in the way data is placed in memory (Table V.3), indicating that dynamic data

relocation can help satisfy a larger space of performance requirements for the design.

We also observe that when the decoding requirement for Viterbi is 9 Mbps and for Turbo

is 2.5 Mbps, only configurationC6, which employs a single shared bus, can satisfy it.

Finally, if the application requirements change at run-time from (384 Kbps, 46 Mbps)

to (1.7 Mbps, 20 Mbps), the only way to satisfy both requirements is to dynamically

change the configuration fromC1 toC4.

The above example illustrates that dynamic data relocation and bus reconfigu-

ration enable the design to satisfy a larger set of performance objectives. This is because

data relocation enables the placement of data in memory to be optimized to best suit the

current requirements of the executing applications, while adapting the bus configuration

enables it to be better matched to the resulting on-chip communication traffic profile.
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In summary, the above examples motivate the need for integrated, dynamic

configuration of the on-chip communication and memory architectures. We next de-

scribe our dynamic platform management methodology based on such an approach.

V.D Dynamic Platform Management Methodology

In this section, we first describe the problem of run-time selection of optimized

data placement and bus configuration for SoC platforms, and present an overview of our

dynamic platform management methodology to address it. We then describe the steps

in the methodology in detail.

V.D.1 Problem Description and Methodology Overview

We consider a partitioned and mapped SoC platform architecture whose com-

ponents are mapped to a set of bus segments interconnected by bridges. The platform

executes a set of applications,A1; A2; :::; AN , with corresponding time-varying data rate

requirements,DR1; DR2; :::; DRN . Each applicationAi has a set of relocatable data ob-

jects. The platform is enhanced to support the relocation of data objects in memory, and

reconfiguration of the bus architecture through dynamic by-pass of some or all of the

bridges it contains. The problem of dynamic platform management is to select the op-

timized placement of the application data objects in memory, and the bus configuration

(i.e., which bridges are to be by-passed) at run-time, such that the data rate requirements

of all the applications can be satisfied.

The proposed methodology for addressing this problem consists of two

phases: (i) off-line characterization phase, during which the applications’ data rate space

is partitioned and an optimized platform configuration for each partition is determined,

and (ii) run-time platform configuration phase, during which optimized platform config-

urations are selected and applied depending on the current data rate requirements of the

executing applications, based on the off-line generated information. We next describe

each of these phases in further detail.
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V.D.2 Off-line Characterization Phase

Figure V.3 shows the steps in the methodology in the off-line phase. Each ap-

plicationAi is associated with a set of relocatable data objectsDi = fdi;1; di;2; :::; di;Mg.

We first determine their sizesSi = fsi;1; si;2; :::; si;Mg. We also estimate, for eachdi;j,

the average number of accesses to itni;j;k, from each platform componentPk, through

simulation using typical input stimuli (step1). We then generate an exhaustive list of all

possible platform configurationsCl = hMm; Bni, whereMm represents the data place-

ment configuration, andBn the bus configuration, with the only constraint that, for each

memory, the set of data objects allocated to it should not exceed its size (step2). This

configuration space is then pruned to a subset of candidate platform configurations, such

that each can potentially cover a unique region of the data rate space of the applications

(step3). Next, each candidate configuration is analyzed to estimate the set of points in
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the data rate space that it can achieve (step4). Finally, the application data rate space is

partitioned among the candidate configurations (step5). The result of the off-line phase

is a Platform Configuration Table, which lists, for each data rate partition, the associ-

ated optimized platform configuration. This table is used to perform run-time platform

configuration as described in Section V.D.3. We next describe the highlighted steps in

the off-line phase in further detail.

Selection of Candidate Configurations

In this step (step3 in Figure V.3), we prune the exhaustive platform configu-

ration space to a subset of candidate configurations that can potentially cover a unique

region of the application data rate space. This is performed as follows. For each appli-

cationAi, under each platform configurationhMm; Bni, we compute the total number

of “cross-bridge” accessesTi;m;n, to the application’s relocatable data objectsDi. A

cross-bridge access refers to an access by a platform component to a data object across

a bridge. This is given by

Ti;m;n =
MX

j=1

X

Pk

ni;j;k � BRGi;j;k (V.1)

whereBRGi;j;k is the number of intermediate bridges between componentPk, and

data objectdi;j, and depends on the platform configuration. Next, for each configura-

tion hMm; Bni, the total number of cross-bridge accessesTi;m;n, for each application

Ai, are compared to the corresponding number of cross-bridge accessesTi;r;n, under

all other data placement configurationsMr, but for thesamebus configurationBn. If

there exists a configuration for whichTi;r;n � Ti;m;n for all applications, then the con-

figurationhMm; Bni is discarded; otherwise, it is chosen as a candidate configuration.

This is because for a given bus configuration, the number of cross-bridge accesses has

a significant impact on the performance. Therefore, the data rate space achieved under

data placements that result in a larger number of cross-bridge accesses for all applica-

tions, would be contained within the data rate space achieved by those that result in
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fewer cross-bridge accesses. Note that, we do not prune configurations across different

bus configurations at this stage. This is because comparing different bus configurations

would require a detailed control flow analysis of the applications, since the bus config-

uration affects the system concurrency. Note that, redundant candidate configurations

will ultimately be discarded by the methodology as described later.

Characterization of Data Rate Space Achievable under each Candidate Configu-

ration

Next, we determine the data rate space achievable under each candidate con-

figuration (step4 in Figure V.3). To illustrate this, let us consider an example system

executing two applications,A1 andA2. Under a particular platform configurationC1,

let the data rate achieved byA1 when it alone executes beDRA1;C1
, and byA2 when

it alone executes beDRA2;C1
(Figure V.4(a)). If we assume that only one application

can execute on the system at any point of time (i.e., A1 andA2 cannot execute concur-

rently), then the maximum data rate combinations that can be achieved forA1 andA2

under configurationC1 is given by the dark dotted line in Figure V.4(a), and the data

rate space achieved is given by the triangle formed by this line and the axes. Now, if

we assume that bothA1 andA2 can execute fully concurrently on the system without

any resource contention (bus conflicts, hardware resource conflicts,etc.), then the data

rate space underC1 is given by the rectangle formed by the dark dashed lines and the

axes, since both applications can execute without any interference from the other appli-

cation. In reality, however, the above two cases give the worst possible and best possible

performance of the system, respectively, and the actual data rate space achieved will lie

somewhere between these two extremes, shown by the region between the dark solid

curve and the axes (Figure V.4(a)). This line lies closer to the dark dotted line if there is

not much concurrency available in the system, and closer to the dark broken lines if the

system has more concurrency.

In order to exactly characterize this data rate space would require exhaustive

performance analysis of the system under each candidate configuration and for all pos-
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sible combinations of application data rate requirements. This is because whether a

particular data rate combination can be achieved for a set of applications under a given

configuration of the system, depends on the fine-grained control flow and data access

profile of the individual applications. Clearly, such exhaustive simulation would be

infeasible for most systems. However, the objective of this step is to enable a good

partitioning of the overall application data rate space (step5 in Figure V.3), for which

even coarse-grained approximation of the data rate space under each candidate config-

uration is sufficient. Therefore, we propose a technique to approximate the data rate

space achievable by each candidate configuration based on a limited number of detailed

simulations.

To illustrate approximate data rate space computation, let us again consider

the above two application example system. Figure V.4(a) shows the exact data rate

space achieved under candidate configurationC1 (the region between the dark solid

curve and the axes). To approximate this curve, we obtain only a limited number of

points on the exact curve through detailed simulation, and fit a spline curve that passes

through the obtained points. For this, the platform is simulated under configurationC1

using typical input stimuli, for (i) each application executing alone, resulting in points

(DRA1;C1
,0) and (0,DRA2;C1

) in Figure V.4(a), and (ii) with both applications executing

concurrently processing as fast as possible, resulting in point (DR0
A1;C1

; DR0
A2;C1

) in

Figure V.4(a). Next, we use a quadratic parametric spline curve fitted to these three

points, resulting in the light solid curve forC1. This parametric curve is represented by

equations of the formx(t) = a2t
2 + a1t + a0 andy(t) = b2t

2 + b1t + b0, wherex(t)

andy(t) are points on the curve, the co-efficients define the shape of the curve, andt is

the parameter. For the points on the Y-axis and X-axis, the parameter value is set to 0

and 1, respectively, while for the third point it is set tody=(dx + dy), wheredx anddy

are the Euclidean distance of the third point from the point on the X-axis and Y-axis,

respectively. In our experiments, we found that such curves can approximate the actual

data rate space well. Note that, more accurate characterization can be performed using

more simulations of the platform, resulting in a larger number of points to fit the curve.
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In that sense, the proposed approximation technique is scalable. Other performance

analysis techniques [163, 164] can also be used in this step to speedup simulation.

The above procedure is repeated for all candidate configurations, to character-

ize their respective achievable data rate spaces.

Partitioning of the Data Rate Space

Finally, the overall application data rate space is partitioned among the can-

didate configurations, such that in each partition, the associated platform configuration

is best able to satisfy the applications’ data rate requirements. To illustrate this, we

consider Figure V.4(b), which shows the exact data rate space (dark dotted curve) and

our approximated data rate space (dark solid curve) achieved under platform configura-

tion C1 for the above example system (from Figure V.4(a)). Figure V.4(b) also shows

the exact (light dotted curve) and our approximated (light solid curve) data rate space

achieved under another candidate configurationC2. The line joining the intersection of

the approximated curves forC1 andC2, and the origin (dark solid line) partitions the

data rate space, such that for points that lie above this line, it is preferable to chooseC1,

while for points below this line, it is preferable to chooseC2. Figure V.4(b) also shows

the ideal partitioning of the data rate space derived based on the exact data rate curves

(light solid line). The shaded area in the figure indicates the data rate region that cannot

be achieved due to the inaccuracy introduced by our approximation. The size of this

region is system dependent. In our experiments, this size was found to be quite small,

as shown in the results.

Figure V.4(b) also shows the estimated data rate space under two other can-

didate configurationsC3 andC4 (dashed curves). Redundant configurations such asC3

should be pruned, since their data rate space is completely subsumed by other configu-

rations, while configurations such asC4 should not, as they can achieve a unique region

of the data rate space. Therefore, the methodology partitions the data rate space only

among configurations whose individual data rate spaces form a part of theconvex hull

of the total achieved data rate space (in this case,C1, C2 andC4). This is performed as
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follows. We start with the candidate configurationCi, whose data rate curve intersects

the Y-axis at the highest point. The intersection points of this curve with the curves un-

der all other candidate configurations,Ii = f(XCi;C1
; YCi;C1

); (XCi;C2
; YCi;C2

); :::g, are

then computed. The first chosen intersection point is one with the highest Y value, say

(XCi;Cj
; YCi;Cj

), and this forms the first partition of the data rate space with the asso-

ciated platform configuration beingCi. Next, the intersection points of the curve for

Cj with those for the other configurations is computed. The intersection point selected

among them is the one with the highest Y value less thanYCi;Cj
, and this forms the

second partition withCj as the associated configuration. This process is continued until

no more intersection points can be selected. These partitions and the associated con-

figurations form the Platform Configuration Table, which is used for run-time platform

optimization as described in the Section V.D.3.

Extension to an Arbitrary Number of Applications

To apply the off-line characterization phase to more than 2 applications, for

each candidate configuration, the system is simulated for all possible combinations of

the applications executing together, to determine different points in the data rate space

under this configuration. Therefore, forN applications andC candidate configurations,

this requiresC � (2jN j � 1) simulations of the system. In practice, we expectN to

be fairly small. The data rate space under each configuration is then approximated by

fitting these data rate points on an N-dimensional surface. Next, the application data

rate space is partitioned among the configurations whose individual data rate spaces lie

on the convex hull, by determining the intersection of their data rate spaces, as in the

two application case.

V.D.3 Run-time Platform Configuration Phase

The run-time platform configuration phase is responsible for selecting and

applying optimized data placement and bus configurations depending on the current data

rate requirements of the executing applications. The steps in this phase are illustrated
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Figure V.5: Run-time Platform Configuration Phase

in Figure V.5. This functionality is implemented as a software middle-ware layer on the

embedded processor(s) in the platform (Section II.C). When an application’s data rate

requirement changes, it indicates this to the platform configuration software through

an API (application programming interface).The run-time flow searches the Platform

Configuration Table using the new and existing data rate requirements to identify the

current point in the data rate space and the pre-computed optimized data placement and

bus configuration. The selected data placement is then applied by first by-passing all

the bridges using the Bus Reconfiguration Unit (to reduce data transfer time), and then

relocating the selected data objects using DMA mode of transfer. Next, the base pointer

registers in the hardware components and processor page-tables are updated. Finally,

the selected bus configuration is applied by instructing the Bus Reconfiguration Unit to

enable or disable the by-pass of the selected bridges according to the identified platform

configuration.
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V.E Experimental Results

In this section, we present experimental results that evaluate the performance

benefits of applying the proposed dynamic platform management methodology to the

integrated Viterbi-Turbo decoder design.

V.E.1 Experimental Methodology

The integrated Viterbi-Turbo decoder design was implemented using an in-

struction set model for the ARM processor, and programmable VERA master bus-

functional models [129] for traffic generation for the Viterbi Unit and Turbo Unit hard-

ware. The memories were implemented using programmable VERA slave models [129]

with zero wait-state. The page size of the processor is 1 KByte, and hence,OUTV

andOUTT are mapped to the same page, together constituting one relocatable data

structure. The configurable bus architecture with bridge by-pass was implemented by

enhancing reference RT-level implementation of the AMBA AHB bus, generated using

the CoreConsultant tool of the Synopsys DesignWare AMBA toolsuite [129], using the

techniques described in Chapter III. The design was operated at a clock frequency of

400 MHz. Performance analysis results were obtained through cycle-accurate simula-

tions using ModelSim [123]. The data placement and bus configuration of the platform

was determined at run-time using the proposed dynamic platform management method-

ology. The overhead of reconfiguration was taken into account in evaluating the system

performance.

V.E.2 Application to the Viterbi-Turbo Decoder Design

The proposed methodology was applied to the integrated 802.11a Viterbi and

UMTS Turbo decoder design. The relocatable data objects of the applications and their

sizes are shown in Table V.1. The average number of accesses to each data object from

each platform component was also estimated. The total number of possible platform

configurations are7422, out of which the off-line pruning step only selects6 candi-
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Table V.3: Candidate data placement and bus configurations

Y0,V , Y1,V , STableV , 
OUTV , OUTT

INV , OUTV , Y0,V , Z1,T , Z2,T ,
Le1,T , L’e1,T , Le2,T , L’e2,T , OUTT

INV , OUTV , Y0,V , Y1,V , Z2,T ,
Le1,T , L’e1,T  , Le2,T , L’e2,T , OUTT

INV , OUTV , Y0,V , Y1,V , 
STableV , OUTT

Data Placement Bus
Config.

Multiple
Bus

Multiple
Bus

Multiple
Bus

Multiple
Bus

any
Single
Shared

Bus

Config.

C1

C3

C4

C5

C6

MEM1 MEM2

INV , XT , X’T , Z1,T , Z2,T , 
Le1,T , L’e1,T , Le2,T , L’e2,T

Y1,V , STableV , XT ,  X’T

STableV , XT , X’T , Z1,T

XT , X’T , Z1,T , Z2,T , Le1,T , 
L’e1,T , Le2,T , L’e2,T

any

Y0,V , Y1,V , 
STableV , XT

Multiple
BusC2

INV , OUTV , X’T , Z1,T , Z2,T , 
Le1,T , L’e1,T , Le2,T , L’e2,T , OUTT

date configurations, shown in Table V.3. The data rate space of the applications was

then partitioned by approximating the individual data rate space under each candidate

configuration, as described in Section V.D.2. We also accurately characterized the data

rate space under each candidate configuration by performing detailed simulation of all

the configurations. The size of the data rate space that cannot be achieved due to the

inaccuracy introduced by our approximation was found to be less than2% of the total

data rate space that can be achieved. Table V.4 shows the resulting Platform Configu-

ration Table for the design. The first column shows the different partitions of the data

rate space for the applications, whereDRV represents Viterbi data rate requirement and

DRT represents Turbo data rate requirement, and the second column shows the corre-

sponding optimized platform configuration. The candidate configurationsC2 andC5

were redundant, and hence, do not appear in the table.

V.E.3 Platform Configuration Overhead

The overhead of run-time platform configuration includes the time required to

relocate data objects between memories (copy and update page tables and base pointers),

as well as the time required to enable or disable bridge by-pass in the bus. The worst case
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Table V.4: Platform Configuration Table

DRV ≥ 40.8 DRT

DRV < 21.46 DRT and DRV ≥ 8.03 DRT

DRV < 8.03 DRT

Data Rate Requirement

DRV < 40.8 DRT and DRV ≥ 21.46 DRT

Config.

C1

C3

C4

C6

overhead for data relocation is while switching between platform configurationsC1 and

C4, and was measured to be approximately 10�s (using a DMA unit, with single cycle

memory access and with BRG by-passed). The average bus reconfiguration overhead

was measured to be approximately 10 cycles. This shows that the platform adaptation

overhead is negligible compared to the granularity at which the data rate requirements

are expected to change (tens of milliseconds [170]).

V.E.4 Impact of Dynamic Platform Management on Performance

We next evaluate the performance improvements achieved through joint data

relocation and bus reconfiguration for the design, and compare it to the performance

under three other cases: (i) best static data placement and bus configuration, (ii) only

dynamic data relocation (bus configuration fixed), and (iii) only dynamic bus reconfig-

uration (data placement fixed).

Performance under Best Statically Configured Design: Figure V.6(a)

shows the data rate space achieved for the Viterbi and Turbo decoding applications when

the platform configuration is statically fixed to configurationC4 from Table V.3 (light

shaded area). This is the best static configuration, since it can satisfy the largest space

of data rates among all candidate configurations.

Performance under Dynamic Data Relocation:In this experiment, the per-

formance of the design under only dynamic data relocation was evaluated, while keeping

the bus configuration fixed as a multiple bus. This corresponds to selecting the platform

configuration at run-time from amongC1 toC5 from Table V.3. Figure V.6(b) shows the
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Figure V.6: Data rate space achieved under different platform adaptation schemes

data rate space achieved under this technique (complete shaded area), and the platform

configurations selected for each data rate combination simulated. It also shows the data

rate space under the best static configuration (light shaded area). Comparison of the two

indicates that dynamic data relocation can help satisfy a larger space of performance

objectives for the design.

Performance under Dynamic Bus Reconfiguration: Figure V.6(c) shows

the data rate space achieved under only dynamic bus reconfiguration, while keeping the

data placement fixed as in the best static configuration (complete shaded area). This

corresponds to selecting the platform configuration betweenC4 andC6 from Table V.3.

It also shows the configuration selected for each data rate combination simulated. Com-

parison of this data rate space with that under the best static configuration (light shaded
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area) indicates that dynamic bus reconfiguration can also provide significant perfor-

mance improvements.

Performance under Joint Data Relocation and Bus Reconfiguration:Fi-

nally, the performance of the design under the proposed dynamic platform management

methodology was evaluated. Figure V.6(d) shows the data rate space achieved under this

scheme (complete shaded area), and the configuration selected for each data rate combi-

nation simulated. It also shows the performance under the best static configuration (light

shaded area) for comparison. From the figure, we observe that joint data relocation and

bus reconfiguration can satisfy a much larger space of data rate requirements compared

to a statically configured design (up to 32% data rate improvements when only Turbo

decoding executes). Also, comparison of Figure V.6(d) with Figures V.6(b) and (c) indi-

cates that by exploiting both data relocation and bus reconfiguration together, the space

of data rates achieved is much larger than when they are individually configured.

V.F Conclusions

In this chapter, we presented dynamically configurable SoC platforms with

two different configurability features, namely, data relocation, and bus reconfiguration.

We illustrated the interdependence between these features, and presented a platform

management methodology for the run-time optimization of such platforms. Experi-

ments on an integrated 802.11a Viterbi and UMTS Turbo decoder design indicate that

the proposed technique results in significant performance improvements compared to

conventional statically optimized architectures.

The text of this chapter, in part, is based on material that has been accepted

for publication in the Design Automation and Test in Europe Conference, 2006. The

dissertation author was the primary researcher and author, and the coauthors listed in

these publications collaborated on, or supervised the research that forms the basis for

this chapter.



VI

Application-Architecture

Co-Adaptation

VI.A Introduction

In this previous chapters of this thesis, we presented general-purpose, dynam-

ically configurable platforms, an important design alternative to customized hardware

solutions (e.g., ASICs, custom SOCs). We described several dynamic configurability

options for SoC platforms, and presented dynamic platform management, a method-

ology for the run-time, application-specific customization of such platforms. We il-

lustrated that such an approach, by adapting the platform to time-varying application

requirements, can provide significant benefits in terms of overall system performance,

application concurrency, and energy-efficiency.

Complementary to platform customization is the requirement that the appli-

cations themselves also be customized to the characteristics of the platform on which

they execute. Recognizing this, implementations of popular applications tailored for

specific platforms (e.g., wireless platforms) have started to emerge [171, 172]. How-

ever, as devices become increasingly multi-functional, the availability of computing re-

sources within the underlying platform (e.g., processor cycles, memory, bus bandwidth)

may also exhibit significant dynamic variation (e.g., due to variable application concur-

122
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rency). As a result, applications that are only tailored to the peak, or average processing

capabilities of a platform may often result in sub-optimal execution. Many existing

and emerging applications (such as image compression, security protocols, audio/video

streaming) provide the flexibility of selecting algorithm parameters, or even selecting

which algorithms to use, at run-time [173, 174, 175, 176]. For example, MPEG4 allows

for varying the intra-frame refresh rate, while the SSL protocol provides clients with the

flexibility of selecting appropriate ciphering and authentication algorithms. The flexi-

bility offered by such applications can be exploited in order to enable dynamic tradeoffs

between application quality and the load imposed on the underlying platform.

For highly customized application-architecture solutions, it is important to

customize both the applications and the architecture towards each other. Therefore,

in this chapter, we focus onapplication-architecture co-adaptationtechniques for the

integrated configuration of both the executing applications (to regulate application re-

source usage), and the underlying platform architecture (to tailor it to the requirements

imposed by the applications).

VI.A.1 Application-Architecture Co-Adaptation: Overview

Figure VI.1 illustrates the overall concept of application-architecture co-

adaptation. We consider dynamically configurable SoC platforms, on which would

execute multiple applications that are flexible, enabling a tradeoff between application

quality and platform resource usage via application parameters. As described earlier, the

dynamic platform management layer is responsible for understanding the time-varying

requirements imposed by the applications, and appropriately customizing the configu-

ration of the platform at run-time. However, in cases, the platform may be unable to

support these requirements, even after intelligent platform management, due to inher-

ent constraints on the available hardware resources (CPU capacity, battery-life,etc). In

such cases, along with platform management, the executing applications themselves can

also be customized using adynamic application managementlayer, so that their load

imposed on the platform is sustainable (Figure VI.1). Such application management,



124

Configurable
Processor

General-Purpose Configurable
Platform

Prog. Voltage 
Regulator

Configurable
Memory

Prog. PLL

Configurable
Cache

Parameterized
Co-processor

PLD

Processing 
Requirements

Processing 
Requirements

Processing 
Requirements

Optimized Platform Configuration

Configurable Communication Architecture

Dynamic Platform Management     

Dynamic Application Management     

Application 1 Application 2 Application 3

Application
Parameters

Application
Parameters

Application
Parameters

Application-
Architecture

Co-Adaptation

Network 
Bandwidth

Figure VI.1: Application-architecture co-adaptation for the integrated configuration of

both applications and the platform architecture

however, should minimize the resulting loss in application quality. Dynamic applica-

tion management and platform management are tightly coupled together, and operate

synergistically for optimized application-architecture co-adaptation.

One of the areas in which such an approach would be important is wireless

application processing. Rapid growth in functional integration, as well as complexity

of individual functions, coupled with stringent limitations on cost, size, and battery ca-

pacity, make the design of such systems a challenging task. These objectives can be

successfully achieved only through a careful process of customizing both the processing

platform, and the applications that are targeted towards it [177]. For wireless systems,

it is crucial to take into account not only the platform resources, but also the available

network bandwidth, which can change over time depending on dynamic channel condi-

tions, number of users,etc(Figure VI.1). This work focuses on co-adaptation techniques

for such wireless application processing systems.
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VI.A.2 Chapter Overview

In this chapter, we present application-architecture co-adaptation techniques

for the dynamic and synergistic customization of flexible wireless applications and the

underlying platform on which they execute. The proposed approach, which is described

in the context of a wireless image delivery system, aims at improving application metrics

(e.g., latency, quality, energy consumption), while faced with potential variations in (i)

resource availability in the platform architecture, and (ii) available network bandwidth.

While application adaptation in response to network variability has been ex-

tensively studied, the benefits of adapting applications to variations in platform re-

sources has not been throughly investigated. We quantitatively illustrate the shortcom-

ings of conventional approaches, in which applications are statically customized, or that

are straightforward extensions of network-centric adaptation techniques. We also illus-

trate the advantages of joint adaptation of applications and the platform. We present a

methodology for such co-adaptation, and describe it in detail for a wavelet-based wire-

less image application executing on a frequency and voltage scalable platform. The

methodology involves characterizing the parameter space of the application in terms of

its impact on platform resource usage, network bandwidth, and application quality met-

rics. The results of these characterizations are then used to guide the co-adaptation al-

gorithms, that respond to variations in platform resource availability and network band-

width, by suitable adjustment of application and architecture parameters.

Detailed experiments were conducted for the wireless image delivery system

by implementing it on a Linux-based iPAQ-3765 device connected to the internet via a

high-data-rate cellular access technology (CDMA 1x) [178]. The experiments demon-

strate that the proposed co-adaptation policies are successful in satisfying application

requirements, while minimally impacting user experience, and also provide energy sav-

ings of up to 70%.

The rest of this chapter is organized as follows. In the next section, we illus-

trate the advantages of application-architecture co-adaptation, using a wireless image

delivery system as an example. In Section VI.C, we describe a general methodology for
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co-adaptation, highlighting the various steps. In Section VI.D, we describe in detail, the

application of the methodology to the image delivery system, providing in turn, a de-

tailed analysis of the impact of application parameters, and algorithms for co-adaptation.

In Section VI.E, we present experimental results that evaluate the advantages of our ap-

proach. Finally, in Section VI.F, we summarize the work presented in this chapter.

VI.A.3 Related Work

Technologies for providing dynamic configurability in SoC platforms, and

techniques for exploiting them in response to time-varying application requirements

have been studied. These were surveyed extensively in Chapter II, and include the work

presented in the previous chapters of this thesis. However, they focus on hardware

configuration, and do not usually co-ordinate with application-level parameter control

policies.

Many applications are flexible, providing opportunities for dynamic cus-

tomization through selection of algorithms and algorithm parameters [173, 174, 175,

176]. Detailed analysis of the impact of application parameters can be found in the cor-

responding literature [179, 180]. The flexibility offered by such applications has been

successfully exploited to dynamically trade-off application quality for consumed net-

work bandwidth [181, 182, 183, 184]. These techniques, however, lack system-level

co-ordination, either ignoring dynamic variability of processing resources, or ignoring

customization opportunities provided by the platform hardware.

These observations have led to recent research on integrated adaptation frame-

works that aim at holistically addressing both application-level as well as architecture-

level parameters [185, 186, 187]. Advances include the development of software in-

frastructure that provides interfaces for co-ordinated adaptation between applications,

system software (OS, middle-ware), and the underlying hardware [185, 186]. The avail-

ability of such infrastructure and potentially standardized interfaces would significantly

ease the deployment of techniques such as those described in this chapter. Integrated

adaptation approaches have also been proposed as a way to greatly increase the dynamic
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power range of systems, in order to better suit the widely variable efficiency characteris-

tics of renewable power sources such as solar cells [187]. While co-ordinated adaptation

between applications and architectures is an area that has started to receive interest, there

remains a lack of case studies that document in detail, and quantitatively illustrate the

steps in designing co-adaptation policies for specific application-architecture combina-

tions.

VI.B Motivation

With the proliferation of mobile handheld devices, there is growing demand

for wireless image data services, such as camera phones, remote medical monitoring,

home security monitoring,etc. An important requirement of such services is to be able

to efficiently retrieve and display images on the mobile handhelds in real time. In this

section, we first describe such a wireless image delivery system based on a Linux-based

hardware platform. Using this case study, we quantitatively illustrate the shortcomings

of conventional approaches, and motivate the need for adapting applications to dynamic

variations in the availability of processing resources. We also illustrate the impact of

co-ordinated adaptation of both application and architectural parameters.

VI.B.1 Case Study: Wireless Image Delivery System

Figure VI.2 illustrates the overall framework for the image delivery system.

The image application executes on a wireless platform, and downloads and displays

images in real-time from an image web server. There might be other applications also

executing on the platform, leading to a variability in the processing resources (CPU)

available for the image application. The bandwidth available on the wireless link may

also vary over time due to variations in channel conditions, number of users,etc. We

next describe the image delivery application, followed by a description of the hardware

platform.
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Figure VI.2: Wireless image delivery system

Wavelet-Based Image Compression

The image delivery application is based on the Adaptive Wavelet Image Com-

pression (AWIC) [173] algorithm, which consists of three steps as shown in Fig-

ure VI.3(a). First, the discrete wavelet transform (DWT) applies a set of filters to

decorrelate the raw image data into different frequency sub-bands (Figure VI.3(b)). The

label XY denotes whether the sub-band contains low-pass (L) or high-pass (H) values

after the row transform (X) and the column transform (Y). The DWT step can be it-

eratively applied to the LL sub-band for a variable number ofTransform Levels(TL).

Figure VI.3(b) shows DWT applied to an image withTL = 3. HigherTL further decor-

relates the image, at the cost of increased computation effort. Next, each sub-band is

quantized according to a variableQuantization Level(QL). HigherQL facilitates com-

pression, but results in increased loss of data (adversely affecting the image quality).

Next, the quantized values are encoded (using Huffman coding) to compress the image.

Decompression is symmetric to the compression process, involving decoding, inverse

quantization, and inverse DWT (Figure VI.3(a)). By default, the image transform level

is fixed at 4, so that the image size is small (TL values higher than 4 lead to negligible

size reductions), and the quantization level is fixed at 0, for highest image quality.

Hardware Platform

The wireless client platform is an iPAQ-3765 PDA with an Intel StrongARM

SA-1110 processor with 64 MB RAM running the Familiar Linux distribution [188].

The platform connects to the network over a high data-rate, CDMA-1x based Sierra
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Wireless Aircard [178]. Several platforms of this class can be operated at different

discrete frequency and voltage levels [154, 189]. The StrongARM has support for 11

discrete frequency levels from 59 Mhz to 206 Mhz, with corresponding supply voltages

from 0.83 V to 1.5 V [154]. The time taken by the PLL and DC-DC converter outputs

to stabilize each time the voltage and frequency values are changed is 150�sec [150].

VI.B.2 Co-Adaptation: Illustrative Examples

For this study, we performed experiments downloading and displaying im-

ages from the image web server, while concurrently executing an MPEG video applica-

tion [190] on the client platform. The processor usage of the MPEG application (aver-

aged over a 1 second window) varies over time, depending on its frame-rate and frame

characteristics (Figure VI.4(a)). The image application is associated with a soft latency

constraint, as might be imposed by data services such as slide shows or remote medical

monitoring, such that the total time taken to retrieve and display an image be less than

1 second. Over the time-line shown in Figure VI.4(a), the image viewing application is

required to display 150 different images, one every second. Image quality is measured

using peak signal-to-noise ratio (PSNR).1

We consider three versions of the image viewing application.
1To highlight the importance of variability of processing resources, in this study, we assume that sufficient network

bandwidth is available. However, as borne out by experimental results, the co-adaptation techniques adequately
account for network variabilities as well.
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(i) ST-IM: In this, the image application parameters are statically fixed at their

default values (TL = 4 andQL = 0), irrespective of the client platform resources.

(ii) DV-IM: Techniques for customizing applications to available network

bandwidth typically rely on trading the application quality for the volume of data com-

municated (e.g., using parameters such as the application quantization level). The DV-

IM (data volume) version uses a similar concept, in which the imageQL parameter is

adapted based on the availability of processing resources. This is because increasing

QL during periods of lower processor availability helps reduce the amount of data to

be decompressed, resulting in lower processing requirements.TL is fixed at its default

value of 4, since it results in smaller image sizes.

(iii) COAD-IM: In this version, the full space of application and architec-

ture parameters are considered, and configured in a co-ordinated manner, considering

dynamic variability in the platform resources.

Example 1: We measured the total CPU requirements imposed on the iPAQ-

3765 to meet the latency constraints of the MPEG and the image applications (under

each of the above three versions) when both execute concurrently (Figure VI.4(a)). The

solid horizontal line (CPU Fraction = 1) indicates 100% CPU utilization. Figure VI.4(b)

illustrates the corresponding image quality (PSNR) for each application version. PSNR

= 1 (highest image quality) is plotted at 100 dB for reference. We observe that for

ST-IM, the image quality is always the highest (PSNR =1).However, Figure VI.4(a) il-

lustrates that the CPU requirement often significantly exceeds 100%, indicating that the

image applicationoften fails to meet performance requirementsin the presence of the

MPEG application. Both DV-IM and COAD-IM can meet the image latency constraint

(total CPU fraction required is less than 1) under varying loads imposed by the MPEG

application. However, Figure VI.4(b) illustrates that the PSNR achieved by DV-IM is

often poor, compared to COAD-IM. This is because COAD-IM is able tocustomize

the application to varying platform constraints through a more optimized selection of

application parameterscompared to DV-IM. This indicates that using network-centric
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adaptation schemes, which merely regulate the volume of data processed, may unneces-

sarily compromise image quality when the processing platform is the bottleneck.

Example 2: From Figure VI.4(a), we observe that, in general, optimizing ap-

plication parameter selection reduces the CPU utilization. In particular, the reduction

under COAD-IM is significantly more than DV-IM. To examine the potential for exploit-

ing this through appropriate configuration of the platform, we compare the scenarios

wherein (i) the platform is always operated at a fixed frequency and voltage (206 MHz,

1.5 V), and (ii) a customized dynamic voltage and frequency scaling (DVFS) policy

that works in close co-ordination with the application parameter setting policy is used

(described in Section VI.D). Figure VI.4(c) shows the cumulative energy consumed

by the platform over time for each version of the image application, both with, and

without the integrated DVFS strategy. For ST-IM, both with and without the integrated

DVFS, the platform always operates at the highest frequency and voltage, due to the

high processing load (Figure VI.4(a)), and hence consumes the maximum energy. Un-

der COAD-IM, the total load imposed on the platform is much lower than the other

cases, especially during periods of low MPEG utilization (e.g., frame-rate=4), due to

better dynamic adjustment of image application parameters (Figure VI.4(a)). This leads

to lower energy consumption, even without integrated DVFS (due to longer CPU idle

times). However, with the integration of a DVFS strategy, we observe that the savings

in energy consumption are as much as 37% during reduced MPEG utilization. For the

entire timeline, we observe an overall energy savings of 18%.

Summary: From these studies, we note the following points:

� The execution of the MPEG application resulted in significant dynamic variability

in the available processing resources. Under this scenario, keeping the image ap-

plication parameters constant leads to failure in meeting performance constraints.

� Simple techniques that merely trade off image quality for the volume of data

processed often do not suffice, since they are significantly sub-optimal from the

standpoint of regulating the requirements imposed on the hardware platform. This
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suggests that dynamic application management needs to be based on a systematic

analysis of the entire space of application parameters, while considering the char-

acteristics of the underlying hardware.

� The example demonstrated how optimizing the image delivery parametersenables

more aggressive frequency and voltage scaling, which if properly exploited, leads

to large savings in energy consumption. This motivatesco-adaptationtechniques

that integrateplatform-aware,applicationcustomization, withapplication-aware,

platformcustomization.

Finally, it bears mentioning that we drew similar conclusions from studies

that evaluated the importance of considering variability in the network bandwidth for

the case study system. Since such benefits have been well-documented in the past, we

omit those studies here.

VI.C Co-Adaptation Methodology

In this section, we first formulate the problem of application-architecture co-

adaptation, and then present an overview of our methodology.

VI.C.1 Problem Definition

We consider parameterized applications executing on a wireless client plat-

form, transferring data to/from an application server. The application is associated with

a set of performance requirements, and a set of parameters that influence usage of net-

work bandwidth, usage of platform resources, and application quality metrics. The

bandwidth on the wireless link may vary over time. Additionally, the available process-

ing resources of the platform may also vary with time, depending on the load imposed

by other concurrent applications. The aim of co-adaptation is to select appropriate ap-

plication parameters and the platform configuration at run-time, taking into account the

available network and platform processing resources, such that the performance require-

ments are satisfied, while optimizing application quality metrics.
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VI.C.2 Methodology Overview

The overall methodology for co-adaptation is illustrated by Figure VI.5. The

inputs to the methodology include (i) the application (mapped to the client platform),

(ii) the set of application parameters, which include algorithm parameters (e.g., quan-

tization levels), or higher-level parameters that select between alternative algorithms

(e.g., rendering techniques), (iii) typical input stimuli, and (iv) a simulation model or

implementation of the platform. In the off-line phase, a detailed analysis of the impact

of the parameters is performed. This includes profiling the application to capture the

dependence of the amount of data transferred by the application, and application quality

metrics (e.g., PSNR) as a function of the parameters. Architectural simulation of (or

actual execution on) the target platform is used to quantify the impact of the parameters

on the usage of different platform resources (e.g., CPU). The result of this phase is a set

of models, or look-up-tables (LUTs) that enable fast evaluation of the bandwidth usage,

platform resource usage, and application quality metrics, under given parameter values.

The run-time phase (Figure VI.5) includes the design of the co-adaptation pol-

icy itself. The inputs to the policy include (i) the available network bandwidth, which

we assume is obtained via on-line bandwidth monitoring utilities (e.g., Iperf [191]), (ii)

the available platform processing resources, which are obtained through system services

that monitor resources such as CPU, memory,etc., and (iii) performance requirements

of the application, which are either specified by the user, or may be hard-coded in the

application. Note that, the interval over which resource availability is measured should

be chosen carefully. Small intervals could result in oscillations in application behav-

ior, whereas large intervals may result in poor response times to dynamically changing

conditions. The co-adaptation policy uses these inputs and the models developed in the

previous step for the optimized selection of both application parameters and the platform

configuration in an integrated manner. For selecting the application parameters, a naive

policy might exhaustively search its parameter space. However, for most applications,

the impact of the parameters on application quality, network bandwidth, and platform

resource usage is predictable, and hence, can be used to efficiently select optimized
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Figure VI.5: Application-architecture co-adaptation methodology

parameters (as illustrated in the next section). The granularity at which application pa-

rameters are selected is, in general, application dependent. Certain parameters may be

changed at relatively small timescales with little overhead (e.g., quantization levels of

an image), while other parameters affect larger timescales (e.g., the choice of security

algorithm used for a secure file transfer).

The co-adaptation policy is implemented on either (i) only the client platform,

when the application parameters do not affect the communicated data (e.g., parame-

ters that select the rendering algorithm used by the application), or (ii) both the client

platform and the web server, when application parameter selection requires cooperation

between the two (e.g., ciphering algorithm used for a secure transaction).

In the next section, we describe how this co-adaptation methodology is applied

to the wireless image delivery system (Section VI.B.1).
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VI.D Application of Co-Adaptation to Wireless Image Delivery

In this section, we describe the different steps of the co-adaptation methodol-

ogy for the wireless image delivery system, presenting in turn, a systematic analysis of

the impact of different parameters, and the design of the run-time co-adaptation policy.

VI.D.1 Parameter Impact Analysis

Off-line parameter impact analysis (Figure VI.5) of the image application was

performed for the hardware platform to quantify the impact of the image transform level

(TL) and quantization level (QL) on compressed image size, image decompression time

on the client platform, and image quality (PSNR). Figure VI.6(a) shows the impact of

TL andQL on thePSNR and compressed image size (normalized to the number of

bits per pixel (BPP )), averaged over a set of benchmark images [192]. From the figure,

we observe that for a constantTL, asQL increases, the image quality and size (BPP )

both decrease, due to greater truncation of pixel values. Also, we note that thePSNR

versus compression (BPP ) trade-off is superior forlarger values ofTL. This is because

with increasingTL, the image is further decorrelated, allowing better compression (i.e.,

smallerBPP ). IncreasingTL beyond 4 provides insignificant benefits, and increasing

QL beyond 100 leads to very poor image quality.

Figure VI.6(b) shows the impact ofTL andQL on thePSNR and decom-

pression time at the client platform (normalized to the Decompression Time per Pixel

(DTPP )) for the same benchmarks. The figure shows that for a constantTL, asQL

increases, the image quality as well as the decoding complexity decreases, since in-

creasingQL leads to smaller images. However, unlike the trade-off in Figure VI.6(a),

thePSNR versusDTPP tradeoff is superior atsmallerTL values, since this results

in fewer iterations of IDWT, which reduces the decompression time.

In summary, higherQL values lead to lower image quality, size and decom-

pression time. However, for the same image quality,higher TL values result in smaller

image sizes, while lower TL values result in smaller decompression times. Hence, for
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the image application to meet a total latency constraint (sum of image transmission and

decompression time), while maximizing the image quality, the parameters have to be

chosen carefully, depending on whether the network bandwidth and/or the platform is

the bottleneck.

The result of this off-line step is a table called the QL-TL Table, shown in

Figure VI.7. The table containsPSNR, BPP andDTPP values averaged over many

images for allTL values (0 to 4), and allQL values (0 to 100). This table corresponds

to the three LUTs illustrated in Figure VI.5 and is used by the run-time co-adaptation

policy, as described next.
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Figure VI.7: QL-TL Table used by run-time co-adaptation policy

VI.D.2 Run-Time Co-Adaptation Policy

The next phase of the methodology (Figure VI.5) is the design of the co-

adaptation policy. We first define the notations used, and then describe the co-adaptation

algorithms.

Notation and Formulation

We consider that the client platform architecture is capable of operating over

a range of frequenciesF = ff1 < f2 < ::: < fmaxg, with corresponding voltage levels.
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The image application has a soft total latency constraint (Ttotal) which should not be

exceeded by the sum of the transmission latency (Ttrans) and decompression latency

(Tdec). For simplicity, we assume that the time consumed by the server and the wired

links is negligible. The number of pixels in an image is denoted byP. For a given

TL andQL, BPP (TL;QL), DTPP (TL;QL) andPSNR(TL;QL) denote the bits

per pixel, decompression time per pixel, andPSNR of the image, respectively, and are

obtained from the QL-TL table (Figure VI.7).Qmax is the maximum achievablePSNR

from the table (in this case1). Let the available network bandwidth beBW . The CPU

fraction (on average) collectively consumed by other (higher priority) applications at

the highest frequency (fmax) is CPUother, and the total CPU fraction used (including

the image application) isCPUtotal. 2 The purpose of the co-adaptation policy is to

selectTL, QL, and the minimum platform frequencyf , such that thePSNR of the

image is maximized, while satisfying the latency constraintTtotal, without exceeding a

CPU requirement of 100%. This can be expressed as:

maximize : PSNR(TL;QL) (VI.1)

subject to : Ttrans + Tdec � Ttotal

CPUtotal � fmax=f � 1

Combining the inequalities and substituting terms for theTtrans andTdec we

get:

maximize : PSNR(TL;QL) (VI.2)

subject to :
P � BPP (TL;QL)

BW
+
P �DTPP (TL;QL)

f=fmax � CPUother
� Ttotal

and f = minffi : fi 2 Fg

We next describe the co-adaptation algorithm for the selection ofTL,QL and

f so as to satisfy the above equations.
2Note that, using average values is permissible since the latency constraint is a soft one.
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Co-Adaptation Algorithm

From Equation VI.2 we make the following two key observations:

� For any solutionTL, QL andf of Equation VI.2, ifPSNR(TL;QL) < Qmax,

thenf = fmax. This is because iff < fmax, then the client platform could have

been operated at a higher frequency in order to further improve the image quality.

� For any solutionTL, QL andf of Equation VI.2, ifPSNR(TL;QL) = Qmax,

then the platform can operate at a frequencyf � fmax, since increasing the fre-

quency cannot further increase the image quality.

Based on the above observations, it can be seen that the selection of the image

compression parameters,TL andQL, can be made independent of the platform operat-

ing frequency,f . The problem can thus be solved using a distributed approach where

TL andQL are selected at the server assuming that the client platform executes at the

highest frequency,fmax. The platform parameters (frequency and voltage) are chosen

at the client platform taking into account the selected imageTL andQL values, which

are embedded in each image.

Selection of Application Parameters at the Server:The server chooses

TL andQL for each image request based on network bandwidth (BW ), CPU load

(CPUother), and the image latency constraint (Ttotal), which are provided to it by the

client application. As explained earlier, the server can safely assume that the client

platform executes atfmax. Hence, the constraint in Equation VI.2 can be simplified by

substitutingf by fmax. The server uses the QL-TL Table (Figure VI.7) as follows. From

the table, it can be seen that, for a givenTL, asQL increases, thePSNR, BPP and

DTPP all decrease. Hence, the optimalTL andQL values can be selected by a binary

search of the QL-TL Table along the rows of the table (i.e., along theQL values). At

each search step, all the entries in the row (i.e., for all theTL values) are checked to

see if they satisfy the constraint. If none of them do, then the rows corresponding to

higherQL values are searched. If one or more of the table entries satisfy the constraint,

then the entry with the highestPSNR value is examined. If thisPSNR is higher than
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the previously best encounteredPSNR, then this value is stored along with the cor-

respondingTL andQL, and the search is continued along the rows with lowerQL.

Otherwise, the rows with higherQL values are searched. At the end of the search, the

storedQL andTL values are used as the image parameters. This algorithm is optimal

and its complexity isO(jTLjlog2(jQLj)).

Selection of platform parameters at the client: At the client, the decom-

pression time under the selectedTL andQL values is calculated from the QL-TL Table.

We assume that the execution time of the other tasks can be estimated on arrival using

accurate off-line characterization techniques (such as described in this thesis) or using

predictive estimation techniques [151]. At the arrival of each task instance (including

the image viewing application), the schedulability test for EDF [152] is used to select

the lowest frequency,f , at which the set of tasks can still meet their performance re-

quirements. This is given by
PN

i=1
ETi
Pi

= f
fmax

, whereN is the number of tasks, and

ETi andPi are the estimated execution time and the time-interval of taski, respectively.

The voltage level corresponds to the selected frequency setting.

VI.E Experimental Results

In this section, we present experimental results that study the effectiveness of

the proposed co-adaptation techniques for the wireless image delivery system.

VI.E.1 Experimental Methodology

The image application was implemented in C and compiled for the hardware

platform described in Section VI.B.1. The image decompression times were measured

using thegettimeofday()system call.PSNR and image size analysis was performed

by profiling the application over a large set of images. The energy consumption esti-

mates include both the CPU and the network interface card energy, and were obtained

using cycle-accurate, software energy profiling [154] for the platform, and datasheet

specifications for the network interface card [178].
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In the following experiments, we compare the co-adaptation based image ap-

plication (COAD-IM) with two other versions: (i) ST-IM, where the image parameters

are fixed (described in Section VI.B.2), and (ii) NW-IM, where the imageTL andQL

parameters are adapted taking only the network bandwidth availability into account.

VI.E.2 Impact on Total Latency and PSNR

We study the total latency andPSNR of the image application under different

network bandwidths and CPU availabilities for two cases: (i) where the other applica-

tions executing on the platform impose constant processing load over time, and (ii)

where the load imposed on the platform varies at random. The total latency constraint

for the image application was set at 5 seconds.

Constant Load

Figure VI.8 illustrates the total latency and the correspondingPSNR of the

image application under three different network bandwidths and for different platform

CPU availabilities, for the three versions of the image application. The solid lines plot

the total latency (primary Y-axis), and the dotted lines plot thePSNR (secondary Y-

axis).PSNR =1 (highest image quality) is plotted at 100 dB for reference. From the

graphs, we observe that ST-IM results inPSNR = 1 for all cases, but fails to meet

the latency constraint at all CPU availabilities at 50 Kbps (Figure VI.8(a)) and 300 Kbps

(Figure VI.8(b)). At 800 Kbps (Figure VI.8(c)), it meets the constraint only when more

than 25% of the CPU is available. In the NW-IM version, the quality of the image is

regulated, depending only on the network bandwidth (from 38.42 dB at 50 Kbps, to1

at 800 Kbps). However, in cases where the CPU availability is low, the total latency

often fails to meet the constraint (e.g., 11 sec at 300 Kbps and 10% CPU). COAD-IM is

able to meet the latency constraint at almost all the points considered. For a given net-

work bandwidth, thePSNR under COAD-IM increases with the CPU availability, until

it converges with the plot for the NW-IM version (when the transmission latency starts

outweighing the decompression latency). These results show that through better param-
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Figure VI.9: Distribution of total latency for image application under uniform random

variation of CPU availability

eter selection, COAD-IM is able to meet the latency constraint under a wide variety of

bandwidths and CPU availability, while minimizing the loss in image quality.

Random Load

In reality, the processing load imposed by the applications on the platform

may vary dynamically, and hence using average CPU availability to guide the param-

eter selection decisions (instead of worst-case) could lead to violations of the latency

constraint. To evaluate the impact of this, we executed the three versions of the image

application along with another application having a period of 100 ms and whose actual

CPU requirements were uniformly randomly distributed about its average CPU require-

ment. Figure VI.9 shows the distribution of the total latency of the image application

at 300 Kbps under different average CPU availabilities for all the three versions. The

shaded regions correspond to the latency values within which 99% of the total number
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(a) Image application under varying bandwidths and CPU availability

(b) Energy consumption under different cases
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Figure VI.10: Energy savings under co-adaptation

of measured latency values lie. Note that, the shape of this graph resembles the plot in

Figure VI.8(b) (in which the other applications imposed constant load). This shows that

the actual latency values are very closely distributed about the expected latency values.

In addition, the spread of the total latency values decreases with increasing CPU avail-

ability. These results indicate that the co-adaptation techniques perform well even under

variations in the actual CPU availability.

VI.E.3 Impact on Energy Consumption

We next evaluate the energy savings made possible by the proposed co-

adaptation based approach. Figure VI.10(a) illustrates a timeline for the execution of

the three versions of the image application under varying network bandwidth and CPU
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availability. The dotted arrows correspond to image transmission and the solid arrows

correspond to image decompression. Figure VI.10(b) shows the cumulative energy con-

sumption over the same timeline for the three versions of the image application. From

the graph, we observe that NW-IM achieves 47% energy savings over ST-IM. This is

mainly due to energy savings in the network card owing to decreased transmission times.

However, COAD-IM results in large savings in both the network interface card (due to

decreased transmission times) and the processor (due to setting of platform frequency

and voltage in a manner that is aware of the application parameters), leading to large

energy savings overall: 42%, compared to NW-IM, and 70%, compared to ST-IM.

VI.F Conclusions

In this chapter, we presented application-architecture co-adaptation, a method-

ology for the dynamic and synergistic customization of both applications as well as the

underlying platform architecture. We illustrated the overall concept of co-adaptation,

and described it in detail in the context of a wireless image delivery system. Experi-

mental results indicate that the proposed techniques successfully achieve large benefits

in application performance, quality, and energy efficiency under dynamic variation of

platform processing resources and network bandwidth.
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Future Research Directions

As described in this thesis, it is becoming economically infeasible to develop

custom SoCs/ASICs due to the high cost associated with their design, verification, man-

ufacture and test. Platform-based SoCs, which consist of largely pre-designed and pre-

verified standard components, are emerging as an attractive alternative, since they can

be targeted towards multiple applications, thereby amortizing the cost of platform de-

velopment over larger markets. However, the widespread adoption of such platforms

is limited by concerns about their performance and energy-efficiency. This thesis ad-

dressed the problem of enabling the use of platforms in domains where custom ap-

proaches have traditionally been used, by provisioning for dynamic configurability in

platform components. It introduced the concept of Dynamic Platform Management for

the run-time customization of configurable platforms, depending on the time-varying

requirements imposed by the executing applications. The techniques proposed in this

thesis enabled superior application performance, more efficient utilization of platform

resources, and improved energy efficiency compared to conventional statically config-

ured platforms. We also investigated application-architecture co-adaptation techniques

for the co-ordinated adaptation of both the executing applications as well as the under-

lying platform architecture. In this final chapter, we discuss future research directions

emerging out of the work presented in this thesis, and point out the challenges and op-

portunities offered by them.

147
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In this thesis, we studied adaptivity in platform architectures and applications.

However, adaptivity can be exploited at different levels of system design, and across dif-

ferent levels, each providing different benefits and research challenges. Hence, moving

forward, we envision three main directions along which this work can be extended, as

illustrated in Figure VII.1: (i) architectural-level adaptation, (ii) cross-layer adaptation,

and (iii) network-wide adaptation. We next discuss each of these in further detail.

Configurable
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Memory

Prog. PLL

Configurable
Cache

Parameterized
Co-processor

PLD

Configurable Communication Architecture

Adaptive PHY

Adaptive MAC

Adaptive Network

Adaptive Transport

Adaptive Applications

(a)

(b)
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Figure VII.1: Future research directions: (a) architectural-level adaptation, (b) cross-

layer adaptation, and (c) network-wide adaptation

VII..1 Architectural-Level Adaptation

In this thesis, we surveyed numerous technologies that have been developed

in recent years to enable the dynamic configuration of platform components and archi-

tectural parameters. Many of these technologies have reached relative maturity, a few

of them having made their appearance in commercial products. We also proposed novel

techniques to provision for configurability in the on-chip bus architecture and in the

memory subsystem. However, incorporating more configurability in platforms would

enable them to be better adapted to the characteristics of the executing applications.
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Hence, there is a need to (i) develop technologies for providing more configurability

features in platform components, and (ii) design platforms featuring multiple configura-

bility options together (Figure VII.1).

This thesis also described dynamic platform management techniques for the

integrated run-time optimization of a few platform components together. We illustrated

the importance of holistic platform management that takes into account the interde-

pendence between the configurations of the individual platform components. Similar

platform management techniques are required for platforms featuring other avenues of

run-time configuration. Therefore, an important research challenge that needs to be ad-

dressed lies in the development of comprehensive platform management techniques for

the co-ordinated adaptation of multiple platform components together.

VII..2 Cross-Layer Adaptation

This thesis explored application-architecture co-adaptation, for the synergistic

adaptation of both the executing applications as well as the underlying platform ar-

chitecture, and described it in the context of a wireless image delivery system. Such

co-adaptation techniques need to be generalized to encompass other configurable ap-

plications and architectural features. Also, previous work has studied the adaptation of

different layers of the network protocol stack, such as the transport layer [193], network

layer [194], medium access control (MAC) layer [195] and the physical layer [196].

However, for optimized system operation, there is a need for co-ordinated adaptation

across all these protocol layers, the executing applications and the platform architecture

(Figure VII.1). This calls for newcross-layeradaptation methodologies that can under-

stand the interactions between the different layers of system operation, by passing ap-

propriate information between the different layers, and adapt the system as a whole. We

believe that such system-wide integrated adaptation will provide significant improve-

ments in application performance, optimized usage of network and platform resources,

and large energy savings.
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VII..3 Network-Wide Adaptation

Finally, the work presented in this thesis was limited to providing and exploit-

ing adaptivity within an embedded system node. However, these nodes may be con-

nected as a network of nodes (Figure VII.1). An example of such a network is a wireless

sensor network. Such networks are characterized by the following requirements:

� They may need to measure (sense) and process different types of data at different

times.

� Upgrading or adding new software and functionality to the nodes may be required,

after the network is deployed.

� Different nodes may need to be shut-down or put in low-power modes over time

to save energy, without adversely affecting the data collection process.

� When some nodes fail or are disabled, the functionality of the nodes and the rout-

ing of data within the network may need to be changed.

Addressing these requirements calls for the development of newnetwork-wide

adaptation techniques for the co-ordinated adaptation of the different nodes in the net-

work. These techniques may either be centralized, with one node making all adaptation

decisions, or distributed, where each node makes adaptation decisions in cooperation

with the other nodes. Such network-wide adaptation techniques will enable the deploy-

ment of networks that can support a diverse set of functionality at low-cost and with a

long network lifetime.
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