
UC Irvine
UC Irvine Previously Published Works

Title
Time to absorption in discounted reinforcement models

Permalink
https://escholarship.org/uc/item/82845757

Journal
Stochastic Processes and their Applications, 109(1)

ISSN
0304-4149

Authors
Pemantle, Robin
Skyrms, Brian

Publication Date
2004

DOI
10.1016/j.spa.2003.08.003

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/82845757
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:m

at
h/

04
04

10
7v

1 
 [

m
at

h.
PR

] 
 5

 A
pr

 2
00

4

Time to absorption in discounted reinforcement models

Robin Pemantle 1,2

Brian Skyrms 3

ABSTRACT:

Reinforcement schemes are a class of non-Markovian stochastic processes. Their non-Markovian
nature allows them to model some kind of memory of the past. One subclass of such models are
those in which the past is exponentially discounted or forgotten. Often, models in this subclass have
the property of becoming trapped with probability 1 in some degenerate state. While previous work
has concentrated on such limit results, we concentrate here on a contrary effect, namely that the
time to become trapped may increase exponentially in 1/x as the discount rate, 1−x, approaches 1.
As a result, the time to become trapped may easily exceed the lifetime of the simulation or of the
physical data being modeled. In such a case, the quasi-stationary behavior is more germane. We
apply our results to a model of social network formation based on ternary (three-person) interactions
with uniform positive reinforcement.
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1 Introduction

Stochastic models incorporating mechanisms by which likelihoods of outcomes increase according to
their accumulated frequencies have been around since the introduction of Pólya’s Urn [EP23]. The
mathematical framework for many of these models appears in the literature on stochastic approx-
imation, beginning with [RM51], in the urn model literature [Fr65], in the literature on reinforced
random walks [Pem90, Dav90, Lim01], and in the literature on the relation between stochastic
systems and their deterministic mean-field dynamical system approximations [BH95, Ben96].

These processes, known in the mathematical community as reinforcement processes, have long
been used by psychologists as models for learning [BM55, IT69, Nor72, Lak81]. Increasingly, re-
inforcement models have been adopted by other social scientists as interactive models in which
collective learning takes place in the form of network formation or adaptation of strategies: so-
ciologists studying the “small world” network phenomenon [WS98, BW00], formation of dyads of
reciprocal approval [FM96]; economists studying evolutionary game theory [MS82], strategic learn-
ing [RE95] [FK93] or its interaction with network structure [Ell93, AI97]. These models are designed
to explore mechanisms by which agents with limited information, rationality or sophistication may
nevertheless achieve advantageous social structures via the application of simple rules for behavior
change.

Due, perhaps, to a dearth of types of simple local rules (or perhaps to a lack of imagination
on the part of modelers), most reinforcement models fall into one of two classes. The first class
contains models for which the past is weighted uniformly. This class includes the urn models,
stochastic approximations and reinforced random walks mentioned above, as well as the economic
game theory models of Erev and Roth [RE95]. Uniform weighting means that the step from time
n − 1 to n represents a fraction of only 1/n of the total learning up to time n, so one obtains a
time-inhomogenous process in which the hidden variables change by amounts on the order of 1/n
at time n. The second class consists of models in which the past is exponentially discounted or
forgotten. This class includes the learning models of the 1960’s and 70’s [IT69], as well as many
contemporary models of repeated economic games, e.g. [BL02]. In these models, the weight of the
present is asymptotically equal to the discount parameter, x, defined as the x for which an action
t units of time will be weighted by (1 − x)t. More precisely, the fraction of total learning between
time n− 1 and n of the total learning to time n will be roughly the maximum of 1/n and x.

Our chief concern in this paper is to study how the discounted process approaches the non-
discounted process as x → 0. The long-run behavior in these two cases is qualitatively different.
Limit theorems for non-discounted processes have been obtained chiefly in the framework of stochas-
tic perturbations to dynamical systems. Typically, the stochastic system converges to limit points
or limit cycles of the dynamical system that corresponds to the mean motion of the stochastic sys-
tem [BH95]. The random limit is supported on weakly stable equilibria [Pem90], though the system
may remain near unstable equilibria for long periods of time (see [BP03] for a discussion of this
phenomenon in continuous time, and [PS03b] for a case study in discrete time).

In the discounted processes we study here, there are trapping states, into which the chain must
eventually fall (there is another kind of discounted process we are not concerned with here, which
converges to an ergodic Markov chain, see, e.g., [IT69]). The reciprocity model of [BL02], for
example, is of this type. From the point of view of studying the transition as discounting goes to
zero, the most interesting case is when the trapping states are disjoint from the stable equilibria in
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the non-discounted process. Trapping states for the discounted process must always be equilibria for
the non-discounted process, but when all the trapping states are unstable equilibria (equivalently,
all the stable equilibria of the non-discounted process are non-trapping in the discounted process),
then the conflict between the discounted and non-discounted behavior is maximized.

The transition is easy to describe informally. As the discount rate approaches zero, the discounted
process behaves for a longer and longer time like the non-discounted process, and then abruptly falls
into a trap. Of course when the discounting parameter is x it takes time at least on the order of
1/x for the system to notice there is discounting going on. But in fact, due to the learning that has
gone on during this phase, it will take time of order exp(cx−1) before the system discovers a trap
and falls in. It is in fact not hard to guess this via back-of-the-napkin computations. One of our
main motivations for pursuing this rigorously was to explain why simulation data contradicted the
easily proved limit theorem: it was because the time scale of the simulation (let alone of any real
phenomenon modeled by the simulation) was never anywhere near the time needed to find a trap.

Our purpose in the present paper is to prove various versions of this. In the next section, we
present the ternary interaction model which was our original motivation for this study. Section 3
then introduces a simple process that is a building block for the ternary interaction model. For that
process, results about trapping times can be proved with the correct constant. The last section then
proves a exp(cx−1) waiting time result for a general class of models, but without the correct value of
c. With a little linear algebra, this is shown to apply to the ternary interaction model of Section 2.

2 Three’s Company: a ternary interaction model

The following process is described in [PS03a], where it is called Three’s Company, and is put forth
as a model for formation of ternary collaborations in a three-player version of Rousseau’s stag
hunting game. Fix a positive integer N ≥ 4, representing the size of the population. For t ≥ 0 and
1 ≤ i, j ≤ N , define random variables W (i, j, t) and U(i, t) inductively on a common probability
space (Ω,F ,P) as follows. The W variables are positive numbers, and the U variables are subsets
of the population of cardinality 3. One may think of the U variables as random triangles in the
complete graph with a vertex representing each agent. The initialization is W (i, j, 0) = 1 for all
i 6= j, while W (i, i, 0) = 0). The inductive step, for t ≥ 0, defines probabilities (formally, conditional
probabilities given the past) for the variables U(i, t) in terms of the variables W (r, s, t), r, s ≤ N ,
and then defines W (i, j, t+ 1) in terms of W (i, j, t) and the variables U(r, t), r ≤ N . The equations
are:

P(U(i, t) = S | Ft) =
1i∈S

∏

r,s∈S,r<sW (r, s, t)
∑

S′:i∈S′

∏

r,s∈S′,r<sW (r, s, t)
; (2.1)

W (i, j, t+ 1) = (1− x)W (i, j, t) +

N
∑

r=1

1i,j∈U(r,t) . (2.2)

Here (1− x) is the factor per unit time by which the past is discounted, and the σ-field conditioned
on is the process up to time t,

Ft := σ {W (i, j, u) : u ≤ t} .
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We may think of the normalized matrix

Wt :=
1

∑

i,j W (i, j, t)
W (·, ·, t)

as the state vector, which is then an asymptotically time-homogeneous Markov chain, with an
evolution rule of the well known form

E (Wt+1 −Wt | Ft) = g(t) [µ(Wt) + ξt] (2.3)

where in this case, g(t) = 1/x + O(1/t), the drift vector field µ maps the simplex of normalized
matrices into its tangent space and may be explicitly computed, and ξt are martingale increments
of order 1.

These equations model a social interaction in which each agent i at each time t invites two
others to frolic4. For each agent i, the trio chosen by i is chosen from all possible trios containing
i, according to the products of the weights W (i, ·, t). Thus the probability of agent i forming the
trio {i, j, k} is proportional to W (i, j, t)W (i, k, t). After the frolicking, fond memories ensue: each
of the three pair weights W (i, j, t),W (i, k, t) and W (j, k, t) is increased by 1, and a portion x of the
past weights is forgotten. For ease of bookkeeping, the weights of unordered pairs are defined as
symmetric weights of ordered pairs, so the weights W (j, i, t),W (k, i, t) and W (k, j, t) are increased
as well. We write W (e, t) for W (i, j, t) when e is the edge (unordered set) {i, j}.

It is shown in [PS03a] that the network always breaks into small cliques, with interactions
occurring only among the cliques:

Theorem 2.1 In Three’s Company, with population size n ≥ 4 and any discount rate x ∈ (0, 1),
with probability 1 the population may be partitioned into subsets of sizes 3, 4 and 5, such that each

member of each subset chooses each other with positive limiting frequency, and chooses members

outside the subset only finitely often. Every partition into sets of sizes 3, 4 and 5 has positive

probability of occurring. �

Simulation data is also given there. For N = 6, if x = .4 (a rather steep discount rate), the
network always breaks into two cliques of size 3, as predicted by the theorem. When N = 6 and
x = .2, which is still a greater discount rate than one finds in most economic models, one finds, with
runs of several thousand, that no such structure emerges. Instead, all six members of the population
remain well connected. This is because of the exponential time scale of the transition from stable
equilibria (well-connectedness is a stable equilibrium of the non-discounted model) to trapping states
(two cliques of size three is the unique trapping state of the N = 6 discounted model). Specifically,
in the last section of this paper we will prove:

Theorem 2.2 In the game Three’s Company, for each N ≥ 6 there is a δ > 0 and numbers cN > 0
such that in Three’s Company with N players and discount rate 1 − x, the probability is at least δ
that each player will play with each other player beyond time exp(cNx−1).

4Engage in some rewarding interaction such as anti-competitive price fixing
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3 Trapping in one-dimensional discounted reinforcement

In this section we analyze a one-dimensional process in which sharp quantitative results may be
obtained on the exponential rate at which the time until trapping increases with 1/x, where 1−x is
the discount factor. This is in keeping with our philosophy of providing sharp results on a collection
of simplified models that constitute building blocks for more complicated models. In the last section
we will apply the principles gleaned from this to get bounds on the exponential rate of increase of
trapping time in the Three’s Company model.

Let us consider a system whose state vector varies in the interval [0, 1] with evolution dynamics
that are symmetric around an attractor at 1/2, and whose transitions from state w have a profile that
depends on w and is scaled by x. In analogy with models such as Three’s Company, we assume that
the unscaled transitions have variance bounded from below as w varies over compact sub-intervals
of (0, 1). Thus the rules of evolution of the state vector W may be given in terms of probability
distributions Qw, parametrized by w ∈ [0, 1], with bounded support, satisfying Qw(s) = Q1−w(−s),
and obeying:

P(W (n+ 1)−W (n) ∈ x · S | Fn) = QW (n)(S) (3.1)

on the event that W (n) is in a compact subinterval Ix, with Ix ↑ (0, 1) as x → 0. We assume that
the mean of Qw is positive on (0, 1/2) and negative on (1/2, 1), but that Qw has both positive and
negative elements in its support and varies smoothly with w.

As an example, one may consider a class of two-color urn models generalizing Friedman’s
Urn [Fr49, Fr65] in the discounted setting. An urn begins with R(0) red balls and B(0) black
balls. At the nth time step, a random number U(n) of red balls and V (n) black balls are added to
the urn. Conditional on the past, P(U(n) = k) = uW (n−1)(k) and P(V (n) = k) = u1−W (n−1)(k),
where W (n) := R(n)/(R(n) + B(n)) is the state parameter, in this case the proportion of red
balls, and uw are probability distributions on the nonnegative integers, continuously varying in the
parameter w ∈ [0, 1], satisfying

∑

k kuw(k)
∑

k k(uw(k) + u1−w(k))
> w for 0 < w <

1

2
.

At the end of each step, all balls are reduced in weight by a factor of 1− x. For greater specificity,
one may keep in mind an example where two balls are sampled: if they are of the same color then
one ball of that color is added; if they are of different colors then one ball of each color is added.

In the non-discounted system, where the step size scales as 1/n at time n instead of holding
constant at x, the system is well approximated by a diffusion with incremental variance of order
n−2 and drift n−1µw, with µw being the mean, Qw, of Qw. Thus (2.3) holds with g(t) = t−1 and
µ(w) = Qw. The system must converge to the unique attracting equilibrium at 1/2 [Pem90]. In the
discounted case, although the state must converge to 0 or 1, the logarithm of the expected time to
come near 0 or 1 may be computed in terms of the following data.

Pick any w ∈ (0, 1/2). The quantity

Zw(λ) :=

∫

exp(−λy) dQw(y)

is equal to 1 at λ = 0. The derivative (d/dλ)Zw(λ)|λ=0 is given by
∫

(−y) dQw(y), which is negative
by the assumption that Qw has positive mean. On the other hand, sinceQw gives positive probability
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to negative values, we see that as λ → ∞, Zw → ∞, and by convexity of Zw(·) it follows that there
is a unique λw > 0 for which Zw(λw) = 1. Define

Λ(w) :=

∫ 1/2

w

λu du

and let C := Λ(0).

Theorem 3.1 Let Ix ↑ (0, 1) as 1 − x ↑ 1, slowly enough so that transitions outside of [0, 1] are
never possible. Let Tx be the expectation of the first time n that W (n) /∈ Ix. Then as 1− x ↑ 1,

x logETx → C .

Remark: This is essentially a large deviation problem, so the rate C is not determined by the mean
and variance of Qw but rather by the exponential moments of Qw. In particular, there are many
processes which satisfy (2.3) with the same g and µ, but their large deviation rates depend on the
fine structure of the increment distribution through the exponential moments, as captured by Zw

and λw. The solution of this rate problem is standard; a similar analysis may be found, for example
in [DZ93, Section 5.8.2].

Proof: For one inequality, we fix any δ > 0. Define the quantity

M(δ)(t) := exp((1− δ)x−1Λ(W (t)) .

Since Qw varies smoothly with w and has bounded support, we see that as x → 0,

Λ(W (t+ 1))− Λ(W (t)) = (W (t+ 1)−W (t))(−λW (t) + O(x)) .

Therefore, since the conditional distribution of x−1(W (t + 1) −W (t)) given Ft is given by QW (t),
we see that

E(M(δ)(t+ 1) | Ft) = M(δ)(t)E
[

exp((1 − δ)x−1(W (t+ 1)−W (t))(−λW (t) +O(x)))
]

→ M(δ)(t)ZW (t)((1 − δ)λW (t)) (3.2)

uniformly in W (t) as x → 0. We know that Zw(·) < 1 on (0, λw), hence we may pick x = x(δ) small
enough so that

M(δ)(t)
−1

E(M(δ)(t+ 1) | Ft) < 1

or in other words, so that M(δ) is a supermartingale.

Let Ix = [ax, 1 − ax]. Starting with W (t0) ∈ (1/2 − δ, 1/2), and stopping at the time τ when
W (·) exits [ax, 1/2], we have for some constant c(δ) going to zero with δ,

exp(x−1c(δ)) ≥ M(δ)(t0)

≥ E(M(δ)(τ) | Ft0)

≥ P(M(δ)(τ) < ax) exp(x
−1Λ(ax))

which implies that
logP(M(δ)(τ) < ax) < −(1− δ)x−1(Λ(0) + o(1))

5



as x → 0. A completely analogous argument shows that the process started in (1/2, 1/2 + δ) exits
[1/2, 1− ax] with at most this probability as well. The trajectory of W (·) may be decomposed into
segments that begin in [1/2 − δ, 1/2 + δ] and end when W (t) − 1/2 changes sign or W (t) /∈ Ix.
We have shown that the expected number of trajectories is at least exp(x−1(1 − δ)(Λ(0) + o(1)))
as x → 0, which implies that the number of time steps until exiting Ix is at least this great, once
W (t) ∈ [1/2− δ, 1/2 + δ]. Letting c′(δ) denote the probability of entering this interval, we see that

ETx ≥ c′(δ) exp(x−1(1− δ)(Λ(0) + o(1))

as x → 0, and finally, sending δ to zero proves that

lim inf x logETx ≥ C .

For the other direction, define a tilted measure on the space of trajectories {W (t) : t = 0, 1, 2, . . .}
as follows. The equation (3.1) is replaced by

P̃(W (n+ 1)−W (n) ∈ x · S | Fn) = Q̃W (n)(S)

where δ > 0 is fixed and the Radon-Nikodym derivative is given by

dQ̃w

dQw
(y) =

exp [(1 + δ)(Λ(w + y)− Λ(w))]
∫

exp [(1 + δ)(Λ(w + y)− Λ(w))] dQw(y)
.

The measure P̃ is designed to have two properties. First, the process {W (t)} is a supermartingale
on [ax, 1/2] with respect to P̃ for sufficiently small x. To see this, note that this is equivalent to Q̃w

having negative mean, which is equivalent to
∫

ye(1+δ)(Λ(w+y)−Λ(w)) dQw(y) ≤ 0

for all w ∈ [ax, 1/2]. The quantity Λ(w+ y)−Λ(w) is equal to y(−λw + o(1)) as x → 0, so it suffices
to show that

∫

ye−(1+δ)yλw dQw(y) < 0 .

But this follows from the fact that Zw is convex and increases through 1 at λw: the derivative at
(1 + δ)λw must therefore be positive, and the derivative may be identified as

−

∫

ye−(1+δ)λwy dQw(y) ,

proving the supermartingale property.

The second property is that if τ is the exit time of [ax, 1/2], then on the σ-field Fτ , dP̃/dP is at
most exp((1 + δ)x−1Λ(0)). Indeed, by its definition,

dP̃

dP
(W (t0), . . . ,W (τ)) =

τ−1
∏

t=t0

exp
[

x−1(1 + δ)(Λ(W (t+ 1)− Λ(W (t)))
]

∫

exp [(1 + δ)(Λ(W (t) + y)− Λ(W (t)))] dQW (t)(y)
.

The denominator of each factor is at least 1 by the fact that

M(−δ)(t) := exp((1 + δ)x−1Λ(W (t)))
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is a submartingale when x(δ) is small enough, which is proved by a computation exactly analogous
to (3.2). The product of the numerators is simply exp((1 + δ)x−1Λ(W (τ))−Λ(W (t0))), which is at
most exp((1 + δ)x−1Λ(0)), proving the second property.

Running P̃ on [ax, 1/2] and its reflection on [1/2, 1 − ax], the process 1/2 − |1/2 − W (t)| is a
supermartingale with incremental variance of order x−2. The median time for it to reach a value
less than ax is therefore at most O(x−2). Comparing P̃ and P, we find that there is a c such
that from any starting data, the probability of exiting Ix by time cx−2 is at least (1/2)(dP/dP̃) ≥
(1/2) exp(−(1+ δ)x−1Λ(0)). Breaking into time intervals of size cx−2, it then follows that the mean
time to exit Ix is at most 2cx−2 exp(C(1 + δ)x−1). As this holds for any δ > 0 (and constants
depending on δ), this proves that

lim supx logETx ≤ C

and finishes the proof of the theorem. �

4 Proof of Theorem 2.2

In analogy with the one-dimensional toy model, we expect to find an exponential wait to trapping in
Three’s Company if the non-discounted system has an attractor outside of the limit set of absorbing
states of the discounted system. Unfortunately, at this point we cannot see any way to compute
the large deviation rate in multi-dimensional problems. The standard multi-dimensional analogue
to Theorem 3.1 is expressed as a variational result involving minimizing a functional over all paths.
We settle for proving the existence of a nonzero exponential rate in x−1. The following result will
imply Theorem 2.2.

Proposition 4.1 Let the vector-valued Markov chain ~W (t) satisfy

P( ~W (t+ 1)− ~W (t) ∈ xS | ~W (t)) = Q ~W (t)(S) (4.1)

with Qw having bounded support and varying smoothly as w varies over some closed neighborhood N
of a point ~c. Suppose there is a strong Lypunov function V , meaning that V is smooth and bounded

with V < 0 on N c, V (~c) > 0 and

∫

V (w + y) dQw(y) > V (w)

for all w ∈ N . Then there is a constant γ such that for all ~h in some smaller neighborhood of ~c,

E~hTx > γ exp(γx−1)

for sufficiently small x, with Tx being the time to exit N .

Proof: Given a non-negative parameter, λ, define M(t) = Mλ(t) = exp(−λV ( ~W (t))). Arguing as
in the first half of the proof of Theorem 3.1, we see from the bounded support hypothesis that for
fixed w ∈ N ,

Mλ(t)
−1

E(Mλ(t+ 1)−Mλ(t) | Ft) (4.2)
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vanishes at λ = 0 and has negative derivative. By compactness of N and smoothness of Qw, we may
choose a λ > 0 so that (4.2) is negative for all w ∈ N , implying that M(t) is a supermartingale up

to the exit time of N . Let N ′ be the neighborhood {~h ∈ N : V (h) > V (~c)/2}. Using TG to denote

the first time τ ≥ 0 that W (τ) ∈ G, we then have, for V (~h) > V (~c)/4,

e−λV (~c)/4 ≥ E~h(
~W (0))

≥ E~hTN c∪N ′

≥ P~h(TN c < TN ′) .

Breaking the time TN c into sojourns away from N ′ then proves the theorem with γ = λV (~c)/4. �

In Three’s Company, if we start with the sum of the weights equal to 3Nx−1 (that is, in sta-
tionarity), then the dynamics are described exactly by (4.1). We need only check the existence of a
strong Lyapunov function. This will follow if we can identify a hyperbolic attractor for the vector
field F (·), where F (w) is the mean of Qw. Indeed, if F vanishes at a point ~c and dF (~c) has eigenval-
ues with negative real parts, then there is a quadratic function V near ~c satisfying ▽V ·F > 0 which
we may take as the Lyapunov function. All that remains is to identify the hyperbolic attractor for
the mean motion field.

The mean motion is given by a vector field F on the state space. The state space is the set of
non-negative real functions X on the edges summing to 3Nx−1, which we think of as embedded in
the cone of non-negative functions, since F extends naturally via F (λX) = F (X). The computations
are a little more convenient when we normalize the sum of weights to be

(

N
2

)

. It is also convenient
to let n = N − 1 be one less than the number of agents. The attractor on which we focus is the
symmetric point ~c defined by c(e) = 1 for all e. It is immediate to verify that F (~c) = 0. In order
to verify that ~c is an attractor for F , we need to compute the differential of F at ~c. Accordingly,
let 1e denote the function that is 1 on e and 0 elsewhere. The derivative of F in the 1e direction is
computed as follows.

Let the edge weights at time t be given by 1+ǫ1e. The expected number of i for which f ∈ U(i, t)
is 6

n + O(ǫ) for all f . By symmetry, the O(ǫ) term depends only on whether f shares two, one or
zero endpoints with e. For example, in the case f = e, we compute the expected number of times e
is reinforced as follows. Let e = {v, w}. Then

P(e ∈ U(v, t)) = (n− 1)
1 + ǫ

(

n
2

)

+ (n− 1)ǫ
.

The probability of e ∈ U(w, t) is the same. For z 6= v, w, the probability of e ∈ U(z, t) is exactly
(

n
2

)−1
. Summing yields an expected increment in W (e, t) of

2(n− 1)
1 + ǫ

(

n
2

)

+ (n− 1)ǫ
+

n− 1
(

n
2

) =
6

n
+

4(n− 2)

n2
ǫ+O(ǫ)2 .

We write this as
6

n

(

1 +
2(n− 2)

3n
ǫ+O(ǫ2)

)

.

Computing, the other two expectations in this manner, we find that the expectation for f at distance
j from e is 6

n (1 +Bjǫ+O(ǫ2)), where

B0 =
2(n− 2)

3n

8



B1 = 0

B2 = −
4

3n(n− 1)
.

From this it follows that for any ~h,

n

6
E(W (t+ 1) |W (t) = ~c+ ǫ~h) = ~c+M~h+O(|~h|2)

where M is a generalized circulant matrix (symmetric under the action of edge permutation on pairs
of edges) with entries B0 on the diagonal, B2 for disjoint edges, and zero otherwise. Since F is the
vector field pointing toward E(W (t + 1)−W (t) |W (t)), the differential of F is, up to the constant
multiple 6

n , equal to M − I.

The eigenvalues of a matrix such as M are particularly easy to evaluate, using the rubric of
association schemes (see [Ter96, Section 2.2], which is taken from [BI84, BCN89]). All such matrices
are elements of the Bose-Mesener algebra M which, in the case of the incidence graph for edges of
the complete graph, is commutative semi-simple of dimension 3. This implies that M has at most
three distinct eigenvalues. These may be found by computing the action of M on the three shared
eigenspaces common to all elements of M.

The null eigenspace has dimension 1: M~h = 0 if and only if ~h = λ~c. The other two eigenvalues
may be gotten by choosing an edge e and setting the eigenvectors equal to a2H2 + a1H1 + a0H0,
where H2 = 1e, H1 is the sum of 1f over edges f sharing one vertex with e, and H0 is the sum of
1f over edges f disjoint from e. The action of M on such a sum produces another such sum, and is
linear, having matrix

4

3n(n− 1)





(

n−1
2

)

0 −1

0
(

n−2
2

)

−2(n− 3)

−
(

n−1
2

)

−
(

n−2
2

)

2n− 5





with respect to a, b and c. The left eigenvectors of this are

(1, 1, 1) ,

(

n− 1

2
,
n− 3

4
, −1

)

and

((

n− 1

2

)

, −
n− 2

2
, 1

)

.

The corresponding eigenvalues are

0 ,
2

3

(n+ 1)(n− 2)

n(n− 1)
and

2

3

n− 3

n− 1
.

The equations of mean motion are

E(W (t+ 1)−W (t) |W (t) − ~c+ ǫ~h) =
6

n
x−1(M − I)~h+O(|~h|2) ,

whence the point ~c is attracting for sufficiently small x if and only if the real parts of all eigenvalues of
M are less than 1. We have identified that this is so, and therefore ~c is attracting. The hypotheses of
Proposition 4.1 are therefore satisfied with a quadratic Lyapunov function, and Theorem 2.2 follows
from Theorem 3.1. �
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