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Abstract It is shown that effective pair interactions (EPn in disordered binary alloys can be 

calculated accurately and reliably by direct averaging over a small number of randomly 

selected configurations within the framework of the recursion method. This approach is illus­

trated on a canonical tight-binding Hamiltonian and relies on the 'orbital peeling' technique to 

calculate energy differences directly, without large subtractive cancellations. The results are 

checked for convergence, both as a function of the number of configurations and the number 

of levels of the continued fraction, and are also compared with more elaborate calculations. 

The main advantages of such a "real-space method are the computational simplicity and the 

possibility to treat deviations from lattice periodicity. The EPI are basic quantities to under­

stand the phase formation and stability of substitutionally disordered solid solutions. 
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The ~ulation of temperature-composition alloy phase diagrams from first princi­

ples is a problem that has imponant applications for materials design and, at the same time, 

poses fundamental questions about the nature of disordered quantum systems [1]. This task 

involves two steps : a quantum mechanical determination of the interactions in the solid, and 

a minimisation of the free energy expression obtained by the techniques of statistical mechan­

ics. Both have to be performed at a high level of precision, since otherwise unrealistic results 

may be found, and it is only very recently that such schemes have been implemented [2]. 

The most successful treatments of the statistical mechanical problem, like the Monte Carlo [3] 

and Ouster Variation Method [4], express the alloy free energy in terms of effective cluster 

interactions (ECI). Several methods have been developed for calculating these parameters ab 

initio. Connolly and Williuns [5] used an inversion scheme starting from total energy local 

density calculations for the ordered compounds to determine pair and cluster interactions for 

the disordered system. Alternatively, one can perturb the completely disordered alloy, 

modeled through an appropriate effective medium, following the Generalised Perturbation 

Method (GPM) of Ducastelle and Gautier [6] or the Embedded Ouster Method of Gonis and 
, 

co-workers [7]. Thus, all of these methods restore the lattice periodicity before the ECI are 

calculated and cannot be easily extended to handle systems with broken translational sym.;. 

metry. Here it is proposed to calculate 'alloy' parameters by averaging ECI obtained for a 

number of randomly generated configurations (at fixed concentration). This real-space 

approach has the advantage, apart from its conceptual simplicity, that no symmetry require­

ments need to be imposed. In particular, short- or long-range order can be included in a com­

pletely sttaigluforward way. In addition, the coherent potential approximation (CPA), 

although providinl a very satisfactory description of random metallic alloys in general, still an 

approximation, is circumvented. 

The idea of configurational averaging of local operators is a very natural one and 

has been used in the past to determine a variety of physicil Plupenies (see [8], and references 

therein). The feasibility of such an approach depends essentially on the rate of convergence 
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as a function of the number of configurations. For the local density of states on a central 

ato~ it is necessary to perform an exact average over the first shell of neighbours [9]. This 

involves 144 inequivalent configurations for the fcc lattice and is too time consuming for 

many applications. On the other han~ the Eel behave like cohesive energy differences, i. e. 

,"', integrated quantities, and may therefore be expected to converge more quickly. The recursion 

.) method [10], applied to a tight-binding Hamiltonian, provides a very convenient algorithm to 

implement this approach. Moreover, the 'orbital peeling' trick, developed by Burke [11] 

within this formalism, allows for a direct calculation of cohesive energy differences, so that 

no numerical instabilities due to subtractive cancellation occur, a prerequisite for the feasibil­

ity of the present approach. 

The purpose of the present paper is to show that configurational averaging for 

EO calculations converges quickly and leads to good agreement with CPA results. To this 

end a number of simplifying assumptions has been made, without affecting the Validity of the 

conclusions. The present work is only concerned with binary alloys AcB l-c' A basis of five 

d orbitals per atom is consi~ together with canonical values for the tight-binding parame­

ters. This is a reasonable approximation for transition metal alloys and quite capable of pro­

ducing realistic phase diagrams [12]. Moreover, s- and p-orbitals can be readily included in 

this formalism, the main complication being the requirement of charge self-consistency, as 

will be discussed in a forthcoming publication [13]. The recursion method considers essen­

tially a finite cluster of atoms, corresponding to a number of shells around a central atom, 

equivalent to the number of levels in the .continued fraction expansion for the Green's func-

<.:. tion. To eliminate bouDdary effects, or equivalently, to ensure that the Green's function 

possesses the c:orrect singularities, one needs to construct a terminator for the continued frac­

tion. This subject has been discussed extensively ([14,1.5] and references therein) and its use 

for EO calculations is investigated here in some detail. 

Often the most important ECI is an effective pair interaction (EPn, defined as [1]: 
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(1) 

where the averaging is over all possible configurations a at a given concentration, and V/Y is 

the total energy for the particular configuration a with atomic species I . and J at sites p and 

q respectively. In the random alloy, V/1 is reduced to solely the band structure contribution, 

because of a cancellation of terms [16]. The electronic properties are obtained from a general 

tight-binding Hamiltonian : 

H/1 = 1: 1 n ,be:<n)..1 + 1: 1 n ,bl3~<m ,Il 1 , (2) 
II;' 11 ... .4 

where 1 n ,b is the atomic orbital of symmetry A. centered at the site n, e: is the on-site 

energy, assumed to depend only on the nature of the atom at site n (thus only taking values 

eA and fB) and 13~ is the hopping parameter, similarly restricted to one of three values ~ , 

I3BB or ~. The first two are related to the two-center integrals for the pure metals : tid a, 

tid 1t and tid S in the Slater-Koster [17] parametrisation scheme, while the hopping parameter 

J3"'B is taken to be the geometric mean of pM and t¥'B (Shiba [18]). Introducing the Green's 

function at complex energy z : 

GD = (z - H/J)-l. (3) 

the EPI can be written as : 

EI 
EPtf = < -i f 1m Zt7(E) dE >, (4) 

where EFt7 is the Penni level and Zt7(E) the generalised phase shift : 

(5) 

The operation involved in the definition of the EPI is an exchange of atoms on sites p and q. 

Since this is a localised perturbation the size of the determinant in (5) is finite. Furthermore, 
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assuming that the ~ubblock of the Hamiltonian relative to all atoms except those at sites p and 

q is unaltered under this exchange, the orbital peeling method [11] provides an efficient means 

to obtain the phase shifts. This entails calculating the diagonal elements of the upper U block 

of the four Green's functions in (5). Although the matrices G[J have the size 2n, n being the 

number of orbitals per site, one needs to compute only determinants of size n, because of can­

cellations. This formalism will be presented in more detail in a longer paper [13]. 

In the present work canonical parameters are used: dda = -005, dd1t = 0.25, 

dd S = O. and the on-site energies are related to the diagonal disorder parameter : 

£8 - £A 
S= , w (6) 

where W is the bandwidth for the alloy, that is the concentration weighted mean of the pure 

element bandwidths. Thus all energies can be expressed in bandwidth units (b.u.). 

First it is necessary to investigate the rate of convergence as a function of the 

number of configurations and the number of recursion levels. Typical results are plotted in 

Fig. I, which shows the nearest neighbour EPI in the fcc structure as a function of N, the 

number of configurations over which the averaging was perf~ and for various numbers 

of levels (L). The diagonal disorder parameter used was S = 0.8 and the concentration 

c = 0.70. It should be pointed out that, as the number of levels was chang~ the same set of 

configurations was used. to allow for a direct comparison of the results. From this figure, and 

many IDOre· tIw were calcul.a!ed [13], one concludes that the EPI's converge quicldy ~ all 

cases and that me UDCeltainty after 20 configurations is less than 1 %. Fig. 2 shows a com~ 

parison of me same cWa. obtained after 10 configurations (full line) and after 20 

configurations (dashed line), as a function of the number of levels. Clearly, improved accu­

racy is obtained by increasing the number of levels - rather than the number of configurations. 

Phase diagram calculations [2,12] typically use L = 4 or 5, since for larger L-values the com­

putation becomes very time consuming. From the results in Fig. 2 it can be estimated that 
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this gives an uncertainty of about 4 %. Similar conchlsions were also found to hold for Eel 

involving more distant neighbours or larger clusters. 

Having established that the proposed scheme converges satisfactorily, it is impor­

tant to compare the results with those obtained by the CPA-GPM. This comparison is shown 

in Fig. 3, again for an fcc lattice with c = 0.70 and diagonal disorder a = 0.80. Plotted is the 

nearest neighbour EPI as a function of bandfilling Ne • The full line shows the results 

obtained by averaging over 20 configurations and the dashed line is the CPA-result. In both 

cases 15 levels were used in the continued fraction expansion for the Green's function. As 

seen, the asymmetry, nodes and central peak height agree closely, but the width of the cluster­

ing region is slightly smaller when calculated by configurational averaging. The main 

discrepancy arises at the band edges, where the perturbation series in the GPM may be con- _ 

verging more slowly. The same trends were confirmed for other concentrations and &.values. 

Finally, the termination of the continued fraction will be discussed. The size of 

the cluster needed for a calculation of L exact levels of the continued fraction grows as L d • d 

being the spatial dimension [19]. Consequently only a limited number of levels can be deter­

mined exactly and different prescriptions ([14,15] and references therein) have been proposed 

to terminate the continued fraction. When there are no band gaps, the simplest approach is 

the quadratic terminator, which amounts to putting all recursion coefficients OJ, bj (i > L) 

equal to 0L' respectively bL • . Without a terminator, one obtains for real energies a set of delta 

functions and integrating such quantities leads to discontinuous cmves. Fig. 4 shows the 

values obtained for the nearest neighbour EPI (for a = 0.75· and c = 0.70) as a function of 

bandfilling with the quadratic terminator (long-dashed line), and those without a terminator 

(full line). The I.aue:r quantities can be determined by a sum over poles and zeros of the 

Green's function in the complex energy plane. With the exception of the central extrema, the 

agreement between these two cmves is good. To avoid the discontinu~us .nature of .such 

quantities integrated up to the Fermi level, Burke [11] has proposed to add to the computed 

f-
" 
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set of levels {ai' bi; i = 1 •... L}, one level such that aL+l = EF• thus guaranteeing that the 

curves as a function of bandfilling are continuous. In Fig. 4 the shon-dashed line represents 

the EPI obtained by this method of fixed nodes. Although the general shape is the same as in 

the other curves. there are significant discrepancies. in particular in the magnitude of the EPI. 

The same trend. a systematic underestimation. was observed for all cases that were calculated. 

This result can be understood by the following argumenL Nex [20] has determined exact 

upper and lower limits for any integrated quantity obtained from the Green' s function. 

Without terminator. the calculated value will be a staircase function and alternate between 

these limits. The fixed node method amounts to taking the arithmetic mean of the two limits. 

In the determination of the EPI one adds and subtracts such curves and therefore discrepancies 

will be amplified. Moreover. the poles and zeros of the four continued fractions are different 

and thus the 'exact' EPI are not expected to oscillate around the medium line. Burke [11] 

estimated the enor induced by fixing a node at the Fermi level to be of the order of IS %. In 

the present case. the results show that these errors may be larger and depend strongly on 

bandfilling. 

In conclusion. it has been shown that configurational averaging of EPI converges 

rapidly and compares very well with CP A-GPM results. The method has been illustrated here 

on a canonical tight-binding Hamiltonian. but is easily extended to the case of realistic tight­

binding parameters including s- and p-orbitals [13]. This approach is physically transparent 

and computationally efficienL An additional advantage is the possibility to treat the off­

diagonal disorder exactly. radler than by Shiba's prescription [18], if a value for the hopping 

parameter ~ is known. Moreover. since the theory is formulated in real space it is ideally 

suited to treat deviations from the lattice periodicity. such as partially ordered or low­

symmetric systems, in particular surfaces and interfaces with or without defects (work: in pro­

gress). The question of the termination of the continued fraction has been addressed and it is 

concluded that the simple quadratic terminator is actually the best choice in the present 

scheme. The rapid convergence of configurational averaging for the determination of ECI 
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came as a surprise, even to the authors. In retrospect, its success must be attributed to two 

factors : the fact that Eel are integrated quantities, less sensitive to local penurbations and the 

use of orbital peeling to calculate energy differences directly. 
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Figure Captions. 

Fig. 1 Nearest neighbour effective pair interaction in the fcc stru~ as a function of 

the number of configurations that is averaged, for various numbers of levels L in the 

continued fraction expansion of the Green's function. The same set of random 

configurations was used for different L -values. The EPI are expressed in bandwidth 

units (b.u.). 

Fig. 2 Nearest neighbour EPI averaged over 10 configurations (full line) and over 20 

configurations (dashed line) as a function of the number of levels. 

Fig. 3 Nearest neighbour EPI as a function of bandfilling as obtained by configurational 

averaging (full line) and by the CPA-GPM method (dashed line). 

Fig. 4 A comparison of different terminators for the continued fraction. Full line 

method of poles and zeros; long dashed line : quadratic terminator; shan dashed line : 

method of fixed nodes. Plotted is the nearest neighbour EPI as a function of bandfilling . 
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