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Motivational context determines the impact of aversive outcomes on
mental effort allocation
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Abstract

It is well known that people will exert effort on a task if sufficiently motivated, but how they
distribute these efforts across different strategies (e.g., efficiency vs. caution) remains uncertain.
Past  work  has  shown  that  people  invest  effort  differently  for  potential  positive  outcomes
(rewards)  versus  potential  negative  outcomes  (penalties).  However,  this  research  failed  to
account for differences in the context in which negative outcomes motivate someone - either as
punishment or reinforcement. It is therefore unclear whether effort profiles differ as a function of
outcome valence, motivational context, or both. Using computational modeling and our novel
Multi-Incentive Control Task, we show that the influence of aversive outcomes on one’s effort
profile is entirely determined by their motivational context. Participants (N:91) favored increased
caution in response to larger penalties for incorrect responses, and favored increased efficiency in
response  to  larger  reinforcement  for  correct  responses,  whether  positively  or  negatively
incentivized.

Statement of Relevance

People have to constantly decide how to allocate their mental effort, and in doing so can be
motivated by both the positive outcomes that effort accrues and the negative outcomes that effort
avoids.  For  example,  someone  might  persist  on  a  project  for  work  in  the  hopes  of  being
promoted or to avoid being reprimanded or even fired. Understanding how people weigh these
different types of incentives is critical for understanding variability in human achievement as
well as sources of motivational impairments (e.g., in major depression). We show that people not
only consider both potential positive and negative outcomes when allocating mental effort, but
that the profile of effort they engage under negative incentives differs depending on whether that
outcome is contingent on sustaining good performance (negative reinforcement) or avoiding bad
performance (punishment). Clarifying the motivational factors that determine effort exertion is
an important step for understanding motivational impairments in psychopathology.  
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Introduction
Whether writing a paper or studying for a final exam, achieving our goals depends critically on
our ability to generate sufficient motivation to carry out the tasks before us. When considering
what leads people to fail to achieve a given goal, researchers and laypeople alike often focus on
whether the promised rewards were sufficient (or sufficiently salient) to overcome the cost of
engaging  in  the  required  effort  (Emanuel  et  al.,  2022;  Fishbach  et  al.,  2010;  Gollwitzer  &
Sheeran, 2006). However, it has long been understood that motivation can arise as much or more
from  the  potential  negative  outcomes  of  failing to  engage  effort  (e.g.  reprimands,  loss  of
earnings) as it does the positive outcomes of succeeding to engage effort (e.g. praise, increase of
earnings)  (Atkinson, 1957; Yee et al., 2022; Yee & Braver, 2018). Recent work has sought to
formalize the process by which positive and negative incentives are integrated to determine effort
allocation  (Leng et al., 2021; Ritz et al., 2022; Yee et al., 2022), and has predicted conditions
under which these outcomes should contribute not only to different amounts of effort but also
different kinds of effort. However, while this and other research have begun to disentangle how
negative incentives differ from positive incentives in determining mental effort motivation, it has
yet  to address how negative incentives  differ  from  one another depending on the context  in
which they are used to motivate effort. 

Models of decision-making provide a useful  framework for disentangling the ways in which
expected outcomes determine effort investment into a task (Shenhav et al., 2017). For instance,
to maximize our rate of expected reward, we may choose to adjust our cognitive control strategy
to achieve greater speed and/or greater accuracy (Bogacz et al., 2006). We recently showed that
people  favor  different  control  strategies  depending  on  the  type  of  incentive  being  varied,
specifically  whether  it  is  the  positive  consequences  for  good  performance  or  the  negative
consequences for poor performance (Leng et al., 2021). By manipulating the amount of monetary
reward for correct responses and the amount of monetary losses incurred for incorrect responses,
we  found  a  dissociation  whereby  larger  rewards  motivated  participants  to  respond  more
efficiently (faster with little sacrifice to accuracy, resulting in an overall increase in productivity
on the task) and larger penalties motivated them to respond more slowly but also more accurately
(resulting in an overall decrease in productivity). We showed that these dissociable patterns of
behavior matched the predictions of a reward-rate maximizing model of control allocation, under
the key assumption that participants are able to distribute their effort across multiple different
types of control (in this case, leading to differential adjustments of evidence accumulation rate
and decision threshold) (cf. Ritz et al., 2022).

This work demonstrated that rewards and penalties promote distinct control strategies,  but in
doing so it conflated two differences between those incentives. In addition to differing in valence
(positive  vs.  negative),  these  incentives  also  differed  in  their  motivational  context,  that  is,
whether  they  served  as  reinforcement (of  correct  responses)  or  punishment  (of  incorrect
responses)  (Yee et al.,  2022). It  is  therefore unclear  to what extent  these dissociable control
strategies can be attributed to differences in incentive valence, incentive type (reinforcement vs.
punishment),  or  both.  Addressing  this  question  requires  comparing  conditions  in  which  an
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equally  valenced  outcome  (e.g.,  aversive)  serves  as  either  a  punishment  (discouraging  poor
performance, as in the previous study) or as reinforcement (encouraging good performance, as
remains to be tested). This comparison might reveal that the type of control strategy favored is
primarily determined by incentive valence, for instance with negative reinforcement promoting
accuracy over speed (as previously observed when varying punishment). Alternatively, it may
reveal  that  the  favored  control  strategy is  primarily  determined by motivational  context,  for
instance with negative reinforcement largely promoting more efficient responding (as previously
observed when varying reward, i.e., positive reinforcement). In addition to disambiguating our
previous findings, the outcome of such a comparison could shed important light on past research
on motivation and cognitive control, where both the valence and type of incentive have varied
and resulting behaviors have been heterogenous (Braem et al., 2013; Cubillo et al., 2019; Levy &
Schiller, 2021; Ličen et al., 2016; Mobbs et al., 2020; Yee et al., 2015, 2021).

To formally test the extent to which control strategies reflect  incentive valence or  motivational
context, we designed a novel variant of the Multi-Incentive Control Task. In this new version of
the task, monetary loss could occur as a consequence of performing poorly (penalties incurred
for each incorrect response, as before) or as a consequence of failing to perform well (losses that
could be avoided with each correct response). We varied the magnitude of penalty (punishment)
and loss-avoidance (negative reinforcement) orthogonally to one another, and separately from
potential rewards for each correct response (positive reinforcement). We found that participants
adjusted their control strategy based on the magnitude and the motivational context of a given
incentive. Specifically, aversive outcomes led participants to either increase their caution or their
speed/efficiency depending on whether the outcomes were varied in the context of a punishment
or a (negative) reinforcement, respectively; changes in task performance in the face of increasing
negative reinforcement mirrored those observed with increasing positive reinforcement. These
dissociable strategies were well-accounted for by a model that configures control by maximizing
reward  rate  and  minimizing  effort  costs.  Collectively,  this  work  sheds  new insight  into  the
process by which people integrate diverse inputs from their environment to determine how much
and what kind of mental effort to exert.

Methods

Participants
This study was approved by XXX University’s Institutional Review Board and participants 
provided informed written consent and were compensated in cash for their participation. We 
recruited 116 participants on Prolific with a target of 100 participants, who indicated they were 
within the United States, had normal or corrected to normal vision, no dyslexia or color 
blindness, and were currently attending university. This dataset was collected as part of a broader
study goal where active attendance at university was a pertinent requirement.  We conducted a 
power analysis (Murayama et al., 2022) on a separate data set in which we had run participants 
on the Collector Game (See Multi-Incentive Control Task) to determine the number of subjects 
to include to find an interaction with reinforcement magnitude and penalty magnitude at the level
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of the correct responses per second during the interval and reaction time at the level of trial. This 
was the smallest of the behavioral effects we were seeking to replicate. These analyses revealed 
that 89 participants would be needed to detect this interaction in correct responses per second 
with 80% power and 62 participants would be needed to detect this interaction in RT with 80% 
power. We aimed to recruit 100 participants to exceed the latter value. Based on those same 
calculations, our ultimate sample size (91) afforded us 80% and 92% power to detect this 
interaction effect in correct responses per second and  RT, respectively.
7 participants did not complete the task and were not included in the analysis leaving 109 
participants with complete data. We excluded 16 subjects for not understanding the task correctly
(as determined across 12 quizzes before starting and during the task). We excluded 1 participant 
for displaying button-smashing behavior (quantified as responding faster than 250ms on more 
than 30% of responses). We additionally excluded 1 participant who did not provide enough 
behavioral responses for data analysis (responded to less than 80% of intervals).
Our final sample consisted of 91 participants (43 females and 48 males; mean age 23.35; 12.10%
Asian, 8% Black/African American, 58.24% Caucasian, 9% Hispanic/Latinx, 13.2% Mixed). 
Participants were paid $8.00 per anticipated hour on the task and earned on average $4.42 (sd: 
0.84) in bonus money. 

Multi-Incentive Control Task
To test whether the motivational context of negative outcomes guides dissociable strategies for
cognitive  control  allocation,  we  adapted  and  modified  the  Multi-Incentive  Control  Task
developed in Leng et al. (2021), and included a cover story or whether participants could earn
monetary rewards in the form of gems or lose monetary rewards in the form of bombs. The task
consists  of  intervals  of  Stroop  trials  varying  between  6-9  seconds,  which  ensured  that
participants  would  not  expect  a  fixed  number  of  stimuli  per  interval.  During  the  interval,
participants could complete as many cognitively demanding Stroop trials as they wished within a
fixed time interval. Participants were asked to respond to the ink color (red, yellow, green, blue)
of a color word (‘RED’, ‘YELLOW’, ‘GREEN’, ‘BLUE’) by pressing the corresponding key on
their keyboard. Trials consisted of congruent stimuli where the ink color and the color word were
in agreement (e.g. GREEN in green ink) and incongruent stimuli where the ink color and the
color word were not in agreement (e.g. GREEN in blue ink). An important feature of the Stroop
task  is  it  requires  cognitive  control  to  accurately  respond  to  the  ink  color  while  inhibiting
automatic reading of the color word, and therefore successful performance of the Stroop task
would reflect increased attention to the changing stimulus (MacLeod, 1991; Stroop, 1935). The
overall percent of congruent to incongruent stimuli was 45.80%, which could vary within an
interval due to the self-paced display of stimuli. 

Participants completed two “games” of the Stroop task (counterbalanced) that varied in
the  motivational  context  of  expected  outcomes  for  correct  and  incorrect  task  performance
(illustrated in Figure 1a). At the start of the experiment, participants were initially endowed with
$12.00 of bonus money which was converted into 1200 gems for the game and added to a bank.
In the Collector Game, participants were instructed that correct responses would increase this
endowment  (positive  reinforcement).  Conversely,  in  the  Protector  Game,  correct  responses
would reduce a large potential loss (negative reinforcement). In both games, incorrect responses
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would  incur  a  penalty  of  a  monetary  loss  that  would  reduce  this  endowment  (punishment).
Critically,  this  framing  of  whether  participants  are  instructed  to  pursue  the  task  goal  of
maximizing monetary bonus versus minimizing monetary loss provides an important distinction
that  can  allow  us  to  dissociate  and  quantify  how  negative  outcomes  can  drive  correct  and
incorrect  performance  on a  cognitive  control  task (and whether  they  would  bias  dissociable
strategies for mental effort allocation). 

Before the interval, participants viewed a visual cue (1.5 s) which indicated the magnitude of the
reinforcement and penalty for the upcoming interval. We varied the magnitude of reinforcement
for correct responses (1 vs. 10) and the magnitude of the penalty for incorrect responses (1 vs.
10) within each game. Each game contained 4 blocks, resulting in 8 blocks total (Figure 1). The
games were split into 4 blocks of 15 intervals (block order was randomized across participants).
Within  each block,  the magnitude of one dimension of the cue was held constant  while  the
magnitude of the other dimension was varied. For example, in a high reinforcement block, all
intervals within that block would have a large reinforcement (10), but intervals within that block
randomly varied between small (1) or large (10) penalty. During the interval, participants could
respond to as many or as few Stroop stimuli as they liked. After each response, a brief fixation
cross appeared (.25 s), and then the next stimulus would appear. During the interval, a tracker
separately  displayed  the  cumulative  reinforcement  (positive:  gems  added,  negative:  bombs
removed) and punishment (both: bombs added) incurred. At the end of the interval, participants
received feedback (1.5 s) during which the tracker remained on the screen along with the net
summation of the total reinforcement and punishments incurred during the interval. Participants
were informed that within each block one of the intervals would be selected to be part of their
final bonus (4 per game and 8 in total).  The experiment  was implemented using the Psiturk
framework. 
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Figure 1. Multi-Incentive Cognitive Control Task. A) Incentive Cues. The magnitude
of  reinforcement  for  correct  responses  was  either  small  (1)  or  large  (10).  In  the
Collector Game, participants  could add either  1 or 10 gems to their  bank with each
correct  response.  In  the  Protector  Game (negative  reinforcement),  participants  were
threatened with a potential loss of 300 gems and could remove either 1 or 10 bombs
with each correct response, which would reduce the amount of gems they would lose
from their bank. Across both games, the punishment for each incorrect response was
either small (1 bomb) or large (10 bombs). B) Task Design. Participants first saw a cue
(1.5 s) indicating the magnitude of the reinforcement for each correct response and the
penalty  for  each  incorrect  response.  This  was  followed  by  a  variable  interstimulus
interval  (.5  or  .75  s)  followed  by  the  interval  start.  During  the  interval  (6-9  s),
participants could respond as fast or slow as they wanted to the Stroop stimuli. After
each response, a brief fixation cross would appear (.25 s) followed by the next Stroop
stimulus until the interval ended. A tracker displayed either the number of gems added
or bombs removed for each correct response along with the number of bombs added for
each incorrect response. At the end of the interval,  participants saw feedback which
showed the net earnings based on their correct and incorrect responses. In the Collector
Game (positive reinforcement), this was equivalent to the number of gems earned for
correct responses subtracting the number of bombs detonated for incorrect responses. In
the  Protector  Game  (negative  reinforcement),  this  was  equivalent  to  the  remaining
bombs from the initial 300 after subtracting the number of bombs removed for correct
responses and adding the number of bombs detonated for incorrect responses. C) Study
flow. Participants began playing one of the games (either Collector or Protector) and
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completed  4 blocks  of  the game.  They then were  introduced to the  next  game and
completed  4  blocks  of  the  second  game.   After  both  games  participants  completed
subjective ratings of the cues.

Collector Game (Positive Reinforcement and Punishment): 

During the Collector  Game,  participants  could collect  additional  gems to add to their  initial
endowment.  Each correct  response added gems to the participants’  banks and each incorrect
response added bombs to their banks. At the start of each interval, the cue indicated whether the
participant would earn a small or large number of gems for each correct response, as well as
whether they would add a small or large number of bombs for each incorrect response. During
the interval, the tracker displayed the cumulative number of gems they added to their bank for
each correct response as well as the bombs they added for each incorrect response. At the end of
each interval, participants received feedback on the net gems they earned or lost (gems added -
bombs added). At the end of the game, 1 of the 15 intervals in each block was randomly selected
to determine the final bonus to be added to the endowment.

Protector Game (Negative Reinforcement and Punishment): 

This Protector Game was the same as the Collector Game, except that participants protected the
gems in their initial endowment, which were threatened by 300 bombs that were added to their
bank at the start of each interval. Each correct response removed bombs from the participant’s
bank and each incorrect response added additional bombs to their  bank. At the start  of each
interval, a cue indicated whether the participant would remove a small or large number of bombs
for each correct response, as well as whether they would add a small or large number of bombs
for each incorrect response. During the interval, the tracker displayed the cumulative number of
bombs they removed from the initial 300 bombs that were added at the start of the interval for
each correct response as well as the bombs they added for each incorrect response. Participants
received feedback at the end of the interval on the net number of bombs remaining in the bank
(Initial  300 bombs -  bombs removed + bombs added).  At the end of the game,  1 of the 15
intervals in each block was randomly selected to determine the final bonus to be added to the
endowment.

In both games to maximize their earnings participants should respond correctly to as many trials 
as they can there was never a target or ideal number of trials to respond to. In the Collector game
they can increase their potential earnings by responding correctly.  In the Protector Game 
participants can minimize the potential loss to their endowed gems by responding correctly to 
remove a portion of the 300 bombs that get added to their bank account on each turn. There is 
not a target number of trials to respond to in the Protector game because it is impossible to 
entirely remove the 300 bombs. For example, to remove all of the bombs in the small negative 
reinforcement condition where they could only remove 1 bomb with each correct response, they 
would have to respond to 300 trials and not make any mistakes. In the large reinforcement 
condition where each correct response could remove 10 bombs, they needed to respond to 30 
trials and not make any mistakes. Similarly, in both the Collector game and the Protector Game, 
participants incur an opportunity cost when responding incorrectly. In the Collector Game they 
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incur a monetary penalty of a bomb and lose points, but they also miss out on gaining gems by 
responding correctly. That is, they lose time in the interval during which they can earn gems that 
they cannot make up. This parallels the Protector game. When they respond incorrectly, they 
incur a monetary penalty of a bomb and lose points, but they also miss out on removing bombs 
by responding correctly. Again they lose time in the interval during which they can remove 
bombs from the 300 that are put into their bank at the start of each turn.   

Subjective Ratings of Cues

After the task participants were shown the eight cues (4 per Collector and 4 for Protector Game).
We asked them to tell us when they saw that cue before an interval during the game what was
their subjective experience across 6 different dimensions (pleasantness, arousal, effort, attention,
motivation, and difficulty). Participants responded to these prompts using a scale from -5 to +5
(e.g. not motivated at all (-5) to very motivated (5)). All participants provided ratings for both
feedbacks  for  motivation,  effort,  attention,  difficulty,  and arousal.  For  all  91 participants  for
whom we have complete task data we also have complete subjective ratings for each cue and
each prompt.

Procedure

After  providing  consent  and  completing  surveys  participants  began  the  task.  Participants
completed several rounds of practice to become familiar with the task. First, they learned the
keymapping between the colors (‘D’-red, ‘F’-yellow, ‘J’-green, ‘K’-blue) by completing 80 trials
in which they had to respond to a colored string of “XXXXXX” within 2 seconds. After each
trial,  they  received  feedback  as  to  whether  they  were  correct,  incorrect,  or  too  slow.  Next,
participants were quizzed on comprehension of Stroop instructions before completing 60 trials of
Stroop practice which was also timed, and received the same feedback after each response. To
ensure participants were paying attention to the stimuli and responding in the practice rounds
there  was  a  deadline  of  2  seconds  for  responding to  trials.  This  deadline  also  ensured  that
participants  knew the  extent  of  their  ability  to  respond quickly.  Participants  were  explicitly
informed that there would no longer be a deadline at the trial level when they entered the self-
paced interval section of practice and informed that they could go as fast or as slow as they
wanted when responding to each individual trial. Participants then learned about the self-paced
intervals and completed 4 practice intervals. After learning the basic task structure, participants
were then introduced to the first of the two games (game order was counterbalanced), through
which  they  learned  the  magnitude  of  gain  or  loss  avoided  for  correct  responses  and  the
magnitude of punishment for incorrect responses. Participants then completed two quizzes. The
first assessed their comprehension of the cues for each incentive condition. The second presented
hypothetical correct and incorrect responses made during an interval in each of the 4 incentive
conditions and asked them to indicate what the resulting outcome would be at the end of the
interval. Upon successfully completing the quizzes participants completed two practice intervals.
After  the practice,  participants  completed  the 4 blocks  of  the first  game.  Before each block
participants were shown the incentive cues and were quizzed for comprehension of the cue and
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what  the resulting  outcome would be at  the end of intervals  given that  incentive  cue.  After
finishing the first game, participants were introduced to the incentive conditions of the second
game, completed the two quizzes and practice intervals, followed by the 4 blocks of the second
game. Again, before each block participants were quizzed on what the cues meant and what the
outcome would be at  the end of the interval  given hypothetical  responses.  After participants
completed  both  games,  participants  completed  a  questionnaire  in  which  they  viewed  the
incentive cues for each game and reported Likert ratings on a scale from -5 to 5 across 6 different
dimensions (effort, motivation, pleasantness, attention, arousal, difficulty). 

Behavioral Analyses
An innovative feature of the self-paced design is that it allows us to analyze performance at the
level of the interval as well as at the individual trials. We analyzed participants' performance at
the level of the interval by fitting a linear mixed model (lme4 package in R; Bates et al., 2015) to
estimate  the correct  responses  per  second as  a  function  of  the contrast  coded reinforcement
magnitude  (large  reinforcement  =  1,  small  reinforcement  =  -1),  penalty  magnitude  (large
punishment = 1, small  punishment = -1) This model concatenates the data from both games
allowing us to include reinforcement valence (positive = 1, negative = -1) and the full 3-way
interaction  between reinforcement  magnitude,  penalty magnitude,  and reinforcement  valence.
The model  also controlled for average congruency of the interval  (z-scored; Congruent = 1,
Incongruent = 0), interval length (z-scored), interval number the entire session (z-scored), game
order (dummy coded; loss-then-gain = 1, gain-then-loss = 0), the interaction between game order
and reinforcement valence, sex (female = -1, male =1), and age (z-scored). Interval number in
the entire session was included to account for practice and fatigue effects across the task. Interval
length was included as the intervals varied between 6-9 seconds in length.  All of these variables
are contrast or dummy coded in the same manner in all subsequent mixed models, and asterisks
indicate interactions between variables. To determine the random effects for the current and all
subsequent  models,  we  first  fit  the  maximally  specified  random effects  structure  interacting
valence,  penalty, and reinforcement.  If the maximally specified model failed to converge, we
then reduced the random effects structure by removing the random effect that explained the least
amount of variance until we reached convergence (Barr et al., 2013). For the current model, our
final  random  effects  structure  included  reinforcement  magnitude,  penalty  magnitude,  and
reinforcement valence. 

Correct/second ~ Reinf.Magnitude * Penalty.Magnitude * Reinf.Valence + 
Interval.Congruency + Interval.Length + IntervalNum.Session  +  Reinf.Valence * Order + 

Sex + Age + (1 + Reinf.Magnitude + Penalty.Magnitude + Reinf.Valence | Subject)

Correct Responses Per Second. When we examined correct responses per second within each
game separately,  we used the  same fixed effects  structure,  except  without  the  reinforcement
valence.  The models controlled for interval congruency (z-scored), interval length (z-scored),
interval number within the specific game (z-scored), game order, sex, and age. Our final random
effects structure in the Collector Game included the main effects for reinforcement magnitude
and penalty magnitude. In the Protector Game, the model converged with the maximal random
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effects structure interacting penalty magnitude with reinforcement magnitude but we reduced it
to match the effect structure across games 

Collector Game: 

Correct/second ~ Reinf.Magnitude *  Penalty.Magnitude +
Interval.Congruency + Interval.Length + IntervalNum.Game + 

Order + Sex + Age + (1 + Reinf.Magnitude + Penalty.Magnitude | Subject)

Protector Game: 
Correct/second ~ Reinf.Magnitude *  Penalty.Magnitude +

Interval.Congruency + Interval.Length + IntervalNum.Game + 
Order + Sex + Age + (1 + Reinf.Magnitude + Penalty.Magnitude | Subject)

To examine how overall  performance at the interval level was determined by adjustments in
speed  and  accuracy,  we  fit  linear  mixed  models  to  log-transformed  reaction  time  (correct
responses only) and generalized linear mixed effects models to accuracy, both at the trial-level.

Accuracy.  In our accuracy model, we controlled for age, sex, congruency, interval length (z-
scored), interval number in the entire session (z-scored), trial number in the interval (z-scored),
as well as game order, and the interaction between game order and reinforcement valence. Our
final  random  effects  structure  included  reinforcement  magnitude,  penalty  magnitude,  and
reinforcement valence. 

Accuracy ~ Reinf.Magnitude * Penalty.Magnitude * Reinf.Valence + 
Trial.Congruence + Interval.Length + IntervalNum.Session + TrialNum.Interval+ Rein.Valence * Order + 

Sex + Age + (1+ Reinf.Magnitude + Penalty.Magnitude + Reinf.Valence | Subject)

When we  separately  examined  accuracy  within  each  game,  we used  the  same fixed effects
structure,  except  without  the  reinforcement  valence.  We controlled  for  congruency,  interval
length (z-scored), interval number within the specific game (z-scored), trial number in interval
(z-scored),  game order, age, and sex. Our final random effects structure in the Collector  and
Protector Game included reinforcement magnitude and penalty magnitude.

Collector Game: 
Accuracy ~  Reinf.Magnitude * Penalty.Magnitude + 

Congruency + Interval.Length + IntervalNum.Game + TrialNum.Interval +
Order + Sex + Age + (1 + Reinf.Magnitude + Penalty.Magnitude | Subject) 

Protector Game: 
Accuracy ~ Reinf.Magnitude * Penalty.Magnitude + 

Congruency + Interval.Length + IntervalNum.Game +TrialNum.Interval + 
Order + Sex + Age + (1+ Reinf.Magnitude + Penalty.Magnitude |Subject)

Reaction Times. In our reaction time model, we analyzed the log-transformed reaction time of
accurate  trials  only.  We only included  accurate  trials  in  this  analysis  in  line  with historical
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work(Lindsay and Jacoby 1994; Ulrich et al.  2015) suggesting that inaccurate reaction times
reflect a different process.We controlled for trial congruency, interval length (z-scored), interval
number in the entire session (z-scored), trial number in the interval (z-scored), game order, the
interaction between game order and reinforcement valence, sex, and age (z-scored). Our final
random  effects  structure  included  reinforcement  magnitude,  penalty  magnitude,  and
reinforcement valence.

Log Reaction Time ~  Reinf.Magnitude * Penalty.Magnitude * Reinf.Valence+ 
Congruency + Interval.Length + IntervalNum.Session + TrialNum.Interval +

Reinf.Valence * Order + Sex + Age + (1 + Reinf.Magnitude + Penalty.Magnitude + Reinf.Valence | Subject)

When separately examining log reaction time within each game, we used the same fixed effects
structure, except without the reinforcement valence. We controlled for trial congruency, interval
length (z-scored), interval number within the specific game (z-scored), trial number within the
interval, game order, sex, and age (z-scored). Our final random effects structure in the Collector
Game and Protector Game included reinforcement magnitude and penalty magnitude.

Collector Game: 
Log Reaction Time ~  Reinf.Magnitude * Penalty.Magnitude + 

Congruency + Interval.Length + IntervalNum.Game + TrialNum.Interval + 
Order + Sex + Age + (1 + Reinf.Magnitude + Penalty.Magnitude | Subject)

Protector Game:
Log Reaction Time~  Reinf.Magnitude * Penalty.Magnitude + Congruency + 

Interval.Length +  IntervalNum.Game + TrialNum.Interval +  
Order + Sex + Age + (1 + Reinf.Magnitude + Penalty.Magnitude | Subject)

Computational Modeling Analyses
Model  Fitting. A  Drift  Diffusion  Model  (DDM)  (Ratcliff  &  McKoon,  2008) was  used  to
parameterize participants’ responses on the Stroop task as correct (e.g., responding to the ink
color) or incorrect (e.g.,  responding to the word). Participants could either  make an error by
responding to the Stroop stimulus word (an automatic error) or by responding with one of the
other  2  Stroop words  (a  random error).  Given that  we were  interested  in  characterizing  the
decision in cognitive control allocation and to reduce noise in the model fitting process, we only
included automatic errors (e.g., incorrectly responding to the word during an incongruent trial)
and  excluded  random errors  (e.g.,  incorrectly  responding to  a  color  not  associated  with  the
current  stimulus).  This  did  not  significantly  impact  the  dataset,  since  random  errors  only
consisted  of  4.26% of  total  trials.  Next,  we fit  a  regression  model  in  the  Hierarchical  Drift
Diffusion Model package (Wiecki et al., 2013) and performed Bayesian parameter estimation of
drift rate and threshold parameters. As with our model-agnostic analyses, we fit models for each
game separately as well as one that concatenated data across the two games. We estimated the
parameters of drift rate and threshold as a function of reinforcement (large reinforcement = 1,
small reinforcement = -1), and penalty (large punishment = 1, small punishment = -1). When
fitting the models with data concatenated from both games together we included a regressor for
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the valence of the reinforcement (positive = 1, negative = -1). To account for congruency effects,
the model for drift rate included trial congruency (congruent = 1, incongruent = 0). We ran 5
parallel chains for 12000 iterations each, discarded the first 8000 warm-up samples, and kept the
remaining  4000  samples  as  posterior  estimates  (20000  samples  total).  The  Gelman-Rubin
convergence diagnostic Rhat  (Gelman & Rubin, 1992) was used to assess model convergence
(Rhats close to 1 indicates convergence; we considered a model successfully converged with
Rhats <= 1.01 (Baribault & Collins, 2023).

Next, we performed model comparison to determine the best-fitting regression model. We ran 20
models and examined to what extent inclusion of intertrial variability, fixed starting point, or
biasing  for  congruence  improved  our  model  fitting  procedure  (Table  S4).  Additionally,  we
accounted  for  the  collapsing  response  deadline  (i.e.,  decision  threshold)  associated  with  the
reduced amount of time available to complete a given trial within each interval  (Fengler et al.,
2022; Palestro et al., 2018). For example, for a given 5-second interval, if the participant took
500 ms to respond to the first stimulus, when adding in the intertrial interval time of 250 ms, then
the  participant  would  have  4250  ms  to  complete  additional  trials  within  that  interval.  To
approximate this interval-level collapsing bound, we included a variable called “scaled linear
running time”,  which  provided the  amount  of  time  that  had passed  within  each  interval  (z-
scored).  Nondecision  time  was  fit  as  a  free  parameter.  We  performed  model  selection  by
examining whether  including variables  improved model  fit  based on the Bayesian predictive
information criterion (BPIC) The best-fitting models included intertrial variability, a bias on the
starting  point  determined  by the  congruency  of  the  trial,  and  included  running  time  on the
threshold (BPICs are illustrated in Figure S2). We performed additional control analyses to rule
out the possibility that the putative effect of valence (e.g., collector game/positive reinforcement
vs.  protector  game/negative  reinforcement)  was  confounded  with  game  order  (e.g.,  first  vs.
second game), and observed non-significant effects of game order when included in the model
and with worse BPICs.

Posterior prediction checks were performed to validate the model fitting procedure  (Wilson &
Collins, 2019). We generated 500 independent samples from the posterior distribution of fitted
parameters  and then simulated  the  reaction  time  distribution  for  each posterior  sample.  The
predicted reaction time distribution matches with the actual reaction time distribution and error
rate for each condition (Figures S4, S6, S8).  

Reward Rate Model

To test  our  normative  predictions  of  reinforcement  and punishment  effects  on  mental  effort
allocation, we used the reward rate model detailed in Equation 1 (Bogacz et al., 2006; Leng et
al., 2021). We tested these predictions using the winning HDDM models that were fit to the data
from each game separately.  This model  assumes the drift  diffusion model  as the underlying
process by which participants respond to either the ink color (target) or the word (distractor). A
key assumption of the model is that participants are able to maximize their overall reward rate
(RR)  within  the  interval  by  allocating  their  cognitive  control,  combining  separate  control
strategies that tradeoff between increasing efficiency of processing visual stimuli (e.g., drift rate)
and decision threshold in a multivariate  manner  (Ritz  et  al.,  2022).  The model assumes that
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participants adjust these combinations of drift rates(v) and thresholds depending on the weight
they place on the potential reinforcements (R) for correct responses as well as the weight they
place on potential punishments (P) for incorrect responses. Specifically, our reward-rate model
predicts that participants should increase their drift rate when they can earn greater reward or
avoid a larger loss for a correct response, whereas they should increase their response threshold
when they would receive a larger penalty for an incorrect response (Fig 3A). 

 RR=
R × (1−ER )−P × ER

DT + NDT −v2

R=Reinforcement P=Penalty v=Drift RateDT =DecisionTime NDT=Non Decision Time
ER=Error Rate

 

Subjective Cue Ratings 
We  ran  spearman  correlations  between  all  the  cue  ratings  and  observed  high
correlations between the motivation, effort, and attention ratings (Collector: R (362) Motivation-

Effort = 0.61, p<0.001; R(362) Motivation-Attention =0.44, p<0.001; R(362) Attention-Effort  =0.67, p<0.001; Protector:
R(362) Motivation-Effort = 0.55, p<0.001; R(362) Motivation-Attention =0.40, p<0.001; R(362) Attention-Effort  =0.64, p<0.001 Fig
S9 9). Given their high correlations, we then created a composite motivation rating
by taking the average participants’ motivation, effort, and attention ratings for each
of the cues for each game providing 4 composite motivation ratings in the Collector
game and 4 composite  motivation ratings in the Protector  game.  We analyzed
participants' ratings of subjective experience of each cue by fitting a robust linear
model (robustbase package in R, Koller & Stahel, 2011). We estimated participants'
ratings of their composite motivation (average of effort, attention, and motivation),
pleasantness,  arousal,  and  difficulty  as  a  function  of  the  contrast  coded
reinforcement  magnitude  (large  reinforcement  =1,  small  reinforcement  =  -1),
penalty  magnitude  (large  punishment  =1,  small  punishment  =-1),  and
reinforcement valence (positive = 1, negative = -1), as well as their interactions.
The models also controlled for age, sex, and order. When we examined subjective
experiences within each game separately, we used the same fixed effects structure,
except without the reinforcement valence.

Results 
To understand whether the context of aversive outcomes influences the selection of cognitive
control  strategies  and  to  tease  apart  the  distinct  roles  of  incentive  valence (positive  versus
negative)  and  motivational  context (reinforcement  versus  punishment)  in  driving  control
allocation,  participants  play  two  games.  For  one  of  these  games  (the  Collector  Game),
participants could collect a reward for each correct response (symbolized by gems) and incur a
penalty  (monetary  loss)  for  each  incorrect  response  (symbolized  by  bombs).  Across  the
experiment,  we  varied  the  size  of  the  reward  and  penalty  (1  vs.  10  gems/bombs  for
correct/incorrect responses). Participants were cued with the relevant performance contingencies

https://paperpile.com/c/gOhWbZ/X07a
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prior to each task interval (Fig 1). The Collector Game was designed to match the tasks used in
Leng  et  al.  (2021),  capturing  the  impact  of  prospective  positive  outcomes  in  the  form  of
reinforcement and the impact of negative outcomes in the form of punishment. 

To  test  the  hypothesis  that  aversive  outcomes  should  engender  distinct  control  strategies
depending on whether they are being used to reinforce or punish behavior, we had participants
perform another game (the Protector Game) that focused entirely on aversive outcomes, which
varied across both motivational contexts. Participants started the game with an endowment (1200
gems) that came under threat on each interval. Specifically, each interval would start with the
potential for losing up to 300 gems (symbolized with the equivalent number of bombs) and each
correct response would serve to reduce that potential  loss by destroying a certain number of
bombs (Fig 1).  Mirroring variability  in positive reinforcement in the Collector  Game, in the
Protector Game each correct response could avoid either a small or a large loss (destroying either
1 or  10 bombs),  entailing  either  a  small  or  large  level  of  negative  reinforcement.  As in  the
Collector Game, each incorrect response incurred a small or large penalty (1 vs. 10 bombs), and
information about task incentives  was cued at the start  of a interval.  We could then directly
compare the performance promoted by the aversive penalties in both games and the positive
reinforcement in  the Collector  game to the novel  condition of negative  reinforcement  in the
Protector game. 

Figure 2.  Effects of incentive magnitude, valence, and motivational context on performance. Effects
of  negative  and  positive  reinforcement  and  punishment  on  overall  task  performance  revealed  that
participants  account for motivational context of aversive outcomes when determining cognitive control
allocation. A) Participants were slightly less accurate for smaller positive reinforcements (single purple
gem) compared to larger positive reinforcements (multiple purple gems).  In both the Collector (gems) and
Protector  (grey  bombs)  games  participants  significantly  increased  their  accuracy  for  higher  penalties
(multiple  orange  bombs)  compared  to  smaller  penalties  (single  orange  bomb).  B)  Participants  were
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significantly faster on accurate trials for larger positive reinforcements (multiple purple gems) compared to
smaller  positive reinforcements  (single  purple  gem).  In  both the  Collector  (gems)  and  Protector  (grey
bombs)  games  participants  were  significantly  slower  for  higher  penalties  (multiple  orange  bombs)
compared  to  smaller  penalties  (single  orange  bomb).  Crucially,  when  expecting  higher  negative
reinforcement (multiple grey bombs), participants performed in a similar manner to positive reinforcement,
and they responded faster and trended towards reducing their accuracy.  Error bars reflect standard errors. 

Control adjustments dissociate based on motivational context 
rather than incentive valence
When varying the magnitude of both positive reinforcement and punishment (Collector Game),
we replicated the behavioral dissociation previously observed  (Leng et al.,  2021): with larger
rewards  for  correct  responses,  participants  responded  substantially  faster  (F(1,86) =  84.55,
p<0.001) and slightly less accurately (2

(1)= 4.25, p= 0.04) (Fig. 2A,B, Table S1), collectively
resulting in them completing more correct trials per second (F(1,88) = 62.78, p<0.001) (Fig S1,
Table S1). With larger penalties for incorrect responses, participants responded more accurately
(2

(1)= 40.96, p<0.001) but substantially slower (F(1,83) = 49.12 , p<0.001) (Fig. 2A,B, Table S1),
collectively resulting in fewer correct responses per interval on average (F(1,91) = 7.24,  p=0.009)
(Fig S1 /Table  S1).  Given that  the conditions  for  punishment were identical  across  our  two
games, we expected that responses to penalties in one task would mirror the other. This was
indeed the case: just as in the Collector Game reported above, when performing the Protector
Game  participants  were  slower  (F(1,83) =  35.91  ,  p<0.001)  and  more  accurate  (2

(1)= 13.05,
p<0.001) for larger penalties (Fig. 2A,B, Table S2). This again resulted in slightly lower rates of
correct responding (F(1,91)= 5.39, p= 0.022) (Fig S1 /Table S2). To account for how performance
might change across the Collector game, we included the interval number in game in the model
as  a  covariate,  and  found  that  participants  were  less  accurate  (2

(1)=  4.90,  p  =  0.027)  and
completed fewer correct  trials  per second (F(1,  21634)= 7.88,  p= 0.005) towards the end of the
Collector game. We also included interval length as a covariate in the model to control for the
duration of the self-paced Stroop interval on task performance. Participants were slower (F(1,33743)=

82.30, p<0.001) but were no less accurate on longer intervals (2
(1)= 0.001, p=0.983). They also

completed more trials on longer intervals (F(1,10478)= 24.21, p<0.001). We also controlled for the
Stroop trial number within the interval, and we observed that participants were faster (F (1, 33815)=
2271.81, p= 0.005) and less accurate  (2

(1)=  230.25, p< 0.001) as trial number in the interval
increased. The models also controlled for congruency, and we observed that participants were
faster (F(1,  33726)= 1068.34, p= 0.005) and more accurate  (2

(1)=  7.25, p= 0.007) on congruent
trials. The models also controlled for sex and age. We did not observe any significant effects of
sex, but found that older participants were slightly more accurate  (2

(1)= 3.11, p=0.078).

A  crucial  feature  of  the  Protector  Game  is  the  inclusion  of  aversive  outcomes  across  two
motivational contexts (reinforcement vs. punishment). This provided us the unique opportunity
to explicitly  test whether behavioral responses to greater magnitudes of loss avoidance (with
correct  responding) would more closely mirror the effect of potential  punishment (consistent
with a general response to outcome valence) or the effect of potential rewards in the Collector
Game (consistent with a motivational context-specific response). Our results are consistent with
the  second  hypothesis.  Participants  were  not  slower  and  more  accurate  for  greater  loss
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avoidance,  as  would  be  expected  if  they  responded  to  these  aversive  outcomes  as  they  did
punishment;  instead,  with  greater  magnitude  of  loss  avoidance  they  responded  much  faster
(F(1,77)= 34.05, p<0.001) and trended towards being less accurately (2

(1)= 3.34,  p= 0.068, Fig. 2
A,B, Table S2), collectively resulting in a higher rate of correct responding (F(1,91)= 27.88, p<
0.001) (Fig S1 /Table S2). In other words, participants responded to greater loss avoidance in the
Protector  Game the  same way  they  did  to  greater  reward  in  the  Collector  Game,  with  the
common factor being that both types of incentives reinforced correct responding. To account for
how performance might change across the Protector game, we included the interval number in
game in the model as a covariate, and found that participants were more accurate (2

(1)= 3.92,  p=
0.048) and faster (F(1,91)= 27.88, p< 0.001) and completed more correct trials per second (F(1, 3209)=
4.21, p= 0.040) towards the end of the Protector Game. We also included interval length as a
covariate  in  the  model  to  control  for  the  duration  of  the  self-paced  Stroop interval  on  task
performance. Participants were slower (F(1,33601)= 106.49, p< 0.001) but were no less accurate on
longer  intervals  (2

(1)=0.01,  p=0.935).  They  also  completed  more  trials  on  longer  intervals
(F(1,5160.6)=6.25, p= 0.0125). We also controlled for the Stroop trial number within the interval,
and we observed that participants were faster (F(1,33678)= 2118.74, p< 0.001) and less accurate
(2

(1)= 89.15,  p<0.001) as trial number in the interval increased. The models also controlled for
congruency,  and we observed that  participants  were faster  (F(1,33599)= 1102.16, p< 0.001) and
more accurate  (2

(1)= 35.19,  p<0.001) on congruent trials. The models also controlled for sex
and age, but we did not observe any significant effects of sex or age in task performance.

To test whether participants responded differently to the two types of reinforcement given the
broader game context (Collector: positive reinforcement with penalties versus Protector: negative
reinforcement  with  penalties),  we  analyzed  task  performance  in  the  model  that  included
concatenated data across both games in  experiment.  We found that  participants  were slower
(F(1,87)= 63.88, p<0.001) and more accurate (2

(1)= 39.45, p<0.001) for larger penalties, whereas
they were faster (F(1,86)= 84.45, p<0.001) and slightly less accurate (2

(1)= 4.57,  p<0.033) for
larger reinforcements (larger reward in the Collector game, larger loss avoidance in the Protector
Game) (Table S3). Collectively,  this resulted in higher rates of correct responding for larger
reinforcements (F(1,90)= 79.74, p<0.001) and lower rates for larger punishments (F(1,90)= 10.17,
p=0.002). When comparing the reinforcement valence of the games (Collector: Positive versus
Protector:  Negative),  we found that participants performing the Collector game were slightly
slower (F(1,87) = 2.92, p=0.091), but accuracy was similar (2

(1)= 0.241, p=0.623) (see also Table
S3). We also found that valence interacted with reinforcement magnitude in reaction time (F(1,87)

= 6.70, p=0.010) but not accuracy (2
(1)= 0.002, p=0.969), such that larger reinforcers led to

greater  speeding  but  no  adjustment  in  accuracy  when  expressed  as  positive  reinforcement
relative  to  when they were expressed as  negative  reinforcement.  Although participants  were
overall slower in the Collector game, possibly suggesting that there was greater urgency in the
Protector game, this is qualified by this interaction which suggests that individuals were more
sensitive  to  the  incentive  manipulation  in  the  Collector  game.  This  model  also  included  an
interaction between order (1st:Protector 2nd:Collector = 1; 1st:Collector 2nd:Protector = 0) and
the reinforcement valence (positive reinforcement versus negative reinforcement). This allowed
us to examine whether the valence of the reinforcement was conditional on the order in which
participants played the two games. We found that participants who did the Collector game and
then the Protector  game were faster in the Protector  game compared to the Collector  game,
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relative  to  those  who  did  the  Protector  game  and  then  the  Collector  game(F(1,  185) =  8.11,
p=0.005).  To account for how performance might change across both games we included the
interval  number  across  the  session  in  the  model  as  a  covariate.  We  did  not  observe  any
significant changes in performance. We also included interval length as a covariate in the model
to control for the duration of the self-paced Stroop interval on task performance.  Participants
were  slower  (F(1,  67503) =  188.69,  p<0.001),  but  were  no  less  accurate  on  longer  intervals
(2

(1)=0.03,  p=0.866).  They also completed  more  trials  on  longer  intervals  (F (1,10478) =  24.21,
p<0.001). We also controlled for the Stroop trial number within the interval, and we observed
that  participants  were  faster  (F(1,  67613) =  4414.19,  p<0.001)  and less  accurate  (2

(1)= 230.25,
p<0.001) as trial number in the interval increased. The models also controlled for congruency,
and we observed that participants were faster (F(1,67497) = 2166.99, p<0.001) and more accurate
(2

(1)= 37.32, p<0.001) on congruent trials. The models also controlled for sex and age, but we
did  not  observe  any significant  effects  of  sex  or  age  in  task  performance.  Collectively  this
suggests that the negative context in the Protector game did not evoke a sense of loss aversion
since the incentive effects should have been stronger in the Protector game than in the Collector
game. 

Motivational context-specific effort adjustments are consistent 
with predictions of a normative model of control allocation 

Figure 3. Normative and empirically observed estimates of incentive effects on drift diffusion model
(DDM) parameters (A-C). The normative model predicts that individuals select the combinations of drift
rate and threshold that optimize (cost-discounted) reward rate, under different values of reinforcement and
penalty. A key hypothesis of the model is that there is a clear dissociation between the extent to which
higher levels of reinforcement are primarily associated with higher drift  rate values versus how higher
levels of penalty are primarily associated with higher threshold values. B) We fit our behavioral data to
different parameterizations of the DDM, with drift rate and threshold varying with reinforcement, penalty,
and/or  congruence  levels.  Consistent  with  predictions  of  our  reward  rate  optimization  model,  larger
expected  reinforcement  (both reward  and loss  avoidance)  was associated  with increased  drift  rate  and
decreased threshold, whereas larger expected penalties led to increased threshold. Error bars reflect 95%
Credible  Intervals.  C)  Marginalized  effects  of  drift  rates  and  thresholds  across  all four  experimental
conditions (e.g., high minus low reinforcement marginalized across penalty magnitude. Error bars reflect
s.d. D) Inverse inferred weights are calculated by taking participants’ estimated drift rate and thresholds for
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each condition then using the reward rate model to infer the reinforcement and penalty weights that best
account for the individual’s behavior in that condition. Consistent with our previous finding from Leng et
al.,  (2021),  we  demonstrate  how inferred  weights  for  high-low  reinforcement  is  associated  with  task
performance differences between high-low reinforcement, and higher sensitivity to penalty for the high vs.
low penalty condition. Summary of individual-level contrasts between sensitivity to high vs. low reward
and penalty. Error bars reflect s.e.m.

We previously showed that engaging in distinct  control  strategies  in response to reward and
punishment  is  normative  under  the  assumption  that  participants  are  choosing  control
configurations  that  maximize  reward  rate  while  minimizing  effort  costs  (where  costs  are
operationalized as larger increases to one’s rate of evidence accumulation) (Leng et al., 2021).
Specifically, we showed that such a reward-rate (RR) optimizing model predicts, and findings
confirm, that larger rewards for correct responses should engender increases in  drift rate (cf.
attentional control) and decreases in threshold (cf. caution), whereas larger penalties for incorrect
response should primarily yield increases in threshold. When fitting behavioral data (accuracies
and reaction times) from the Collector Game to a Hierarchical Drift Diffusion model (HDDM)
(Wiecki et al., 2013), we replicate both of these patterns (Fig 3 B & C,  ps<0.001, Table S6).

We  previously  applied  this  RR  model  only  to  a  context  in  which  correct  responses  were
incentivized by rewards (as in the Collector Game). However, it can be shown that the model’s
predictions  generalize  to  contexts  in  which  correct  responses  are  incentivized  by  aversive
outcomes (Fig 3A ; see also Yee et al., 2022). That is, the RR model predicts that regardless of
whether  correct  responses  are  incentivized  by positive  incentives  (e.g.,  rewards)  or  negative
incentives (e.g., loss avoidance), this should serve to reinforce behavior in the same manner (e.g.,
increased drift rate and decreased threshold) (Fig 3A). Importantly,  this reinforcement-related
enhancement of attentional control should be distinct from punishment-related enhancement of
response  caution,  which  should  yield  increased  decision  thresholds  irrespective  of  the
motivational  context.  Confirming these  predictions,  we found that  negative  incentives  in  the
Protector Game produced distinct influences on DDM parameters depending on whether they
were attached to correct responses (with greater loss avoidance resulting in higher drift rates
p=0.01, and lower thresholds p<0.001) or incorrect responses (with higher penalties resulting in
higher thresholds, p<0.001, and no significant change in drift rate, p=0.37) (Fig 3B and Table
S7).  In  other  words,  the  effects  of  reinforcement  versus  penalty  on DDM parameters  in  the
Protector Game exactly mirrored those in the Collector Game.  

We previously showed that this same model can be applied, in reverse, to infer a given person’s
weighting  of  rewards  and  punishments  based  only  on  their  patterns  of  behavior  in  a  given
incentive condition (i.e., blind to the actual levels of reward and punishment in that condition).
These reward and punishment estimates of weights were referred to as R̂ and  P̂ , respectively.
By extending the model to conditions of loss avoidance for a correct response (in our Protector
Game), we should expect  R̂  to generalize to estimates of any kind of reinforcement (positive or
negative) and to therefore find similar variability in R̂ across levels of negative reinforcement as
previously observed for positive reinforcement, and for these estimates to vary distinctly from P̂
estimates. 
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Applying  this  inverse  optimization  approach  to  our  current  study,  we  replicate  the  model’s
ability to infer higher values for higher incentive magnitude (F(1,723) = 9.05, p=0.003) with higher
R̂  values for higher levels of reward (t(90)=10.83, p< 0.001), and higher  P̂ values for higher
levels of punishment (t(90)=11.70, p< 0.001), in our Collector Game (Fig 3D). Critically, when
applying this same approach to our novel Protector Game, we replicate this incentive magnitude
effect (F(1,723) = 6.92, p=0.009)  whereby  R̂ values are inferred to be higher with higher loss
avoidance   (t(90)=6.21,  p<0.001),  despite  these  being  in  the  aversive  rather  than  appetitive
domain. P̂ values were again higher for higher levels of punishment (t(90)=9.77, p<0.001).  We
also find that  P̂ estimates were higher than  R̂ estimates in both the Collector game (F(1,723)=
1974.62, p<0.001) replicating previous findings, but we also found this same differentiation in
the  Protector  Game,(F(1,723)= 1299.89,  p<0.001)   despite  both  being  in  the  aversive  domain.
Concatenating estimates from both games we find that the main effect of incentive magnitude
remained (F(1,1447) = 15.83, p <0.001),  R̂  values were estimated to be higher for higher levels of
reinforcement (t(181) =11.06, p <0.001) and  P̂ values were estimated to be higher for higher
levels of punishment (t(181) =15.12, p <0.001)). Overall,  these findings confirm that distinct
strategies  are  deployed  given  the  motivational  context  of  an  outcome,  such  that  expected
negative  reinforcement  and  negative  penalty  differential  influence  the  adjustment  of  the
combination of drift rate parameters in order to maximize the potential reward rate during the
interval. 

Incentive types and ensuing effort adjustments give rise to 
distinct patterns of subjective experience

We show that behavior varies reliably depending on the type and magnitude of incentive, and
account for this variability with a model that assumes that these incentives induce changes in
motivational  state  and  corresponding  adjustments  in  control.  However,  neither  in  these
experiments nor in our previous work (Leng et al., 2021) have we so far examined experienced
motivational states themselves. It is therefore unclear to what extent participants experience this
task as motivationally demanding and, to the extent they do, to what extent these experiences
reflect variability in incentive type (reinforcement vs. punishment), incentive magnitude (small
vs. large), and/or the magnitude and type of control adjustment (drift rate, threshold).To better
understand how motivational state varied across our experimental conditions, at the end of the
experiment we showed participants the cues for each condition across the games and asked them
to rate their experience of effort, attention, and motivation during the associated intervals. We
found that motivation, effort, and attention ratings were positively correlated with one another
(Collector:  rs>.4,  p<0.001;  Protector,  rs>.4,  p<0.001;  Fig.  S10) and therefore averaged them
together to form a composite index of motivation (for analyses of each rating separately, see
Table S8, S9, S10).
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Figure  4.   Subjective experience of composite motivation, valence, arousal, and difficulty by each
incentive condition and game (Collector and Protector). A) Participants reported being more motivated
by  larger  reinforcement  and  larger  penalties.  We  observed  a  significant  interaction  indicating  that
participants were least motivated by the low reinforcement-low penalty condition compared to the other
three conditions. B) Valence: Participants rated how positive or negative they found each of the conditions.
We found that  participants  found larger  reinforcements  to  be  significantly  more  positive than  smaller
reinforcements  and  larger  penalties  to  be  significantly  more  negative  than  smaller  penalties.  Overall
participants found the Collector Game to be more positive than the Protector Game. Arousal: Participants
rated how excited to calm they found each of the conditions. We found that participants were more excited
for  both  larger  reinforcements  and  penalties  compared  to  smaller  reinforcements  and  penalties.  C)
Subjective  experience  of  difficulty  in  each  incentive  condition  in  the  Collector  and  Protector  Game.
Overall, we found that participants found conditions with larger penalties but not larger reinforcement more
difficult. There were no interactions and this pattern was the same across the two games. Error bars reflect
standard errors. 

When examining the influence of explicit  incentives  on composite  ratings  of motivation,  we
found that in both the Collector and Protector games participants were most motivated by larger
reinforcements (Collector: t(358)= 6.96, p<0.001; Protector: t(358)= 6.07, p<0.001) and larger
penalties  (Collector:  t(358)= 4.24,  p<0.001;  Protector:  t(358)= 3.83,  p<0.001)(Fig  4A, Table
S11, S12). We also observed an interaction such that participants were the least motivated when
reinforcements and penalties were small (Collector: t(358)= -4.56, p<0.001; Protector: t(358)= -
4.02, p<0.001) (Fig 4A, Table S11,S12). In the model concatenating data across the two games,
the  broader  game context  (Collector:  positive  reinforcement  with  penalties  versus  Protector:
negative  reinforcement  with  penalties) did  not  interact  with  the  motivation  reported  for
reinforcement (t(718)= 0.29, p=0.77) or penalty magnitude (t(718)= 0.03, p=0.98) (Table S13).
Again this suggests that the Protector game did not elicit a sense of loss aversion. Notably, this
pattern did not directly mirror adjustments in either drift rate or threshold, suggesting that they
did not reflect a direct readout of incentive magnitude (cf. Fig 1), behavior (cf. Fig 2AB and S9),
or control adjustments (cf. Fig 4B) on their  own. This suggests that these motivation ratings
might reflect the alignment between a given incentive and the changes in control adjustment it
induces, consistent with our model-based predictions and findings (cf. Fig. 3). 

When examining subjective reports of valence, arousal, and difficulty, we found two patterns of
findings  that  were  distinct  from what  we observed  for  ratings  of  motivation.  First,  perhaps
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unsurprisingly, we find that across games participants rate higher levels of reinforcement (larger
rewards in the Collector  Game, larger loss avoided in the Protector Game) as more pleasant
(Collector: t(358)= 17.46, p<0.001; Protector t(358)= 15.83, p<0.001) and larger penalties as less
pleasant  (Collector:  t(358)=  -13.52,  p<0.001;  Protector:  t(358)=  -13.032,  p<0.001)  (Fig  4B,
Table  S8  & S9).  Participants  also  found  the  Collector  Game  to  be  more  pleasant  than  the
Protector  Game  (t(718)=  3.34,  p=0.001)  (Table  S10).  No  interactions  emerged  for  valence
ratings.  Interestingly,  while  reinforcement  and  punishment  induced  opposite  valences  of
emotional experience, we found that higher levels of either anticipated reinforcement (Collector:
t(358)= 3.32, p=0.001; Protector t(358)=2.98, p=0.003) or punishment (Collector: t(358)=  4.71,
p<0.001; Protector t(358)= 5.05, p<0.001) were rated as more arousing than lower levels (Fig
4B, Table S8 & S9). The amount of arousal induced by these respective conditions did not differ
between the two games (t(718)= 0.15, p=0.88) (Table S10). 

A second pattern of results emerged unexpectedly. Despite task difficulty (i.e., average levels of
response  congruency)  being  held  constant  across  our  incentive  conditions,  we  found  that
participants experienced intervals with higher penalties as being more difficult (Fig 4C, Table
S8,S9,S10 Collector: t(358)=  6.04, p<0.001; Protector: t(358)= 4.69, p<0.001). This effect was
selective to punishment levels – with no significant effects of reinforcement level (Collector:
t(358)= -0.424, p= 0.6721; Protector: t(358)=-0.36, p=0.717). We did not find that there was a
difference  in  perceptions  of  difficulty  based  on  the  valence  of  the  game  (collector  versus
protector) (t(718)= -0.24, p=0.814, (Table S8)). We found a marginally significant interaction
between reinforcement and punishment level (t(718)= -2.12, p=0.034), whereby penalty-related
increases in difficulty ratings were numerically smaller with larger reinforcements.

Discussion
Whether  we  are  studying  to  ace  an  exam or  preparing  a  paper  for  publication,  succeeding
requires summoning the motivation to exert the effort necessary. The motivation we bring to bear
on the task is not only multiply determined (e.g., influenced by the consequences of achievement
and failure), but it can also determine multiple changes in our actions and control strategies (e.g.,
whether  we are more vigorous or cautious  when exerting mental  effort).  We are not  merely
driven  to  put  more  effort  into  studying,  but  to  study in  particular  ways  (e.g.,  cramming  or
interleaving). Similarly, we may direct our paper-writing efforts toward efficiency or accuracy.
The  links  between  the  multiple  determinants  and  manifestations  of  effort  remain  poorly
understood, including in particular the extent to which outcome valence forms a common link
between these (e.g., with positive outcomes engendering different types of effort than aversive
outcomes). Our findings show that the influence of a given outcome valence on the distribution
of effort depends heavily on the motivational context for those outcomes (i.e., whether they serve
as reinforcement or punishment). 

Our findings build on past work demonstrating that people exert  different  types of effort for
allocating cognitive control based on the expected positive outcomes for good performance and
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negative outcomes for poor performance  (Leng et al., 2021). Using our novel Multi-Incentive
Control Task which orthogonalizes incentive valence (positive vs. negative) and motivational
context (reinforcement vs. punishment), we found that motivational context dominates valence in
determining the influence of a given incentive (in addition to incentive magnitude). Specifically,
patterns  of  behavior  when losses  were  (inversely)  contingent  on correct  responses  (negative
reinforcement) were entirely distinct from patterns observed when losses were instead contingent
on  incorrect  responses  (punishment).  The  former  pattern  closely  mirrored  patterns  observed
when correct responses were instead tied to reward gains (positive reinforcement). We showed
that these findings were collectively well accounted for by a model that assumes participants
configure cognitive control in a way that maximizes expected reward rate (cf.  Bogacz et al.,
2010; Leng et al., 2021; Shenhav et al., 2013). Together, these findings provide a potential novel
lens  to  understand  the  past  heterogeneity  of  findings  for  how  aversive  outcomes  influence
cognitive control adjustments (Braem et al., 2013; Cubillo et al., 2019; Levy & Schiller, 2021;
Mobbs et al., 2020; Yee et al., 2015, 2021).

We  found  that  these  incentives  also  promoted  distinct  subjective  experiences.  Larger
reinforcement led to greater positive arousal whereas larger punishment led to greater negative
arousal.  The effects  of incentive  type  and magnitude on valence  and arousal  were the same
regardless  of  motivational  context,  though  participants  did  rate  the  positive  reinforcement
context (Collector game) as being more pleasant overall than the negative reinforcement context
(Protector game). By contrast, the level of motivation participants felt (indexed by a composite
of motivation, effort, and attention ratings) increased with higher levels of either reinforcement
or punishment.  Interestingly,  these overall  motivation ratings were not a direct read-out of a
single type of control signal that was being adjusted (either  drift  rate or threshold; Fig.  S9),
consistent  with  the  idea  that  motivation  reflects  a  multivariate  configuration  across  relevant
control signals. Future work should seek to map these subjective ratings to the resulting control
adjustments, as has been done previously in the case of univariate adjustments (Saunders et al.,
2015; Yee et al., 2021; Corlazzoli et al., 2023). 

In both games, an unexpected and intriguing finding emerged whereby participants perceived
conditions  with  larger  punishment  (but  not  reinforcement)  as  more  difficult,  despite  task
difficulty (i.e., average response congruency) being held constant across incentive conditions. It
is possible that this reflects an inherent link (or heuristic) people use when judging the difficulty
of a task, incorporating into this judgment the risks associated with making an error. That is,
participants may have evaluated task demands based both on when errors were more likely to
occur (e.g., as a function of task congruency, which was equated across conditions) and based on
the  consequences  of  those  errors.  This  is  consistent  with  past  work  suggesting  that  error
likelihood informs emotional responses to cognitive tasks (e.g., Inzlicht et al., 2015; Yang et al.,
2023)  as  well  as  more  recent  findings  that  show that  errors  (and  perhaps  the  potential  for
negative feedback that comes with them) induce feelings of fatigue  (Matthews et  al.,  2023),
suggesting a tighter link between these sources of negative affect than previously noted. 

When  comparing  effort  allocation  between  games,  we  found  that  participants  performed
similarly when working to earn monetary rewards as when they were working to avoid monetary
losses. Initially, this seems at odds with predictions from Prospect Theory, which argues that
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individuals should exert more effort for loss avoidance relative to gains (Kahneman & Tversky,
1979). However, there are at least two potential explanations for the apparent absence of such a
loss aversion effect in our data. First, because the games were independent (and thus cumulative
gains or losses avoided did not carry over), there was no explicit comparison in earnings between
gain and loss avoidance conditions (e.g., participants would either work towards maximizing a
positive amount of gems or work towards minimizing an initial loss of -300 gems per interval).
Second, our mixed block design which varied outcome types between intervals likely attenuated
the participants’  ability  to set  a  concrete  reference point.  Future research could test  whether
cognitive control strategies are impacted by loss aversion by allowing for cumulative earnings
across both games. Here, we would predict that while the motivational context would determine
the  control  strategy  used  (e.g.,  reinforcement  promoting  increased  drift  rate,  punishment
promoting increased decision threshold), we might also observe that motivation to avoid losses
would promote increased overall control allocation relative to gains. However, we do observe
possible loss avoidance when comparing penalties to the reinforcement. As previously observed
in Leng et al. (2021) the inferred sensitivity to penalties was larger than that to reinforcement in
both the Collector  and Protector games. In addition,  another interpretation of the unexpected
finding  that  participants  viewed  larger  penalties  as  more  difficult  is  that  the  impact  of  the
potential penalties loomed larger in their minds than larger potential reinforcements, manifesting
as being perceived as more difficult.

Overall, these data contribute to a growing literature demonstrating that the effects of aversive
motivation  on cognitive  control  is  context-dependent  (Lindström et  al.,  2013;  Millner  et  al.,
2018; Yang et al., 2023). Our work highlights how computational approaches provide a more
precise understanding of how people select  diverse strategies  for allocating cognitive control
based on the type and context of a given motivational incentive. A promising future direction
would  be  to  test  to  what  extent  these  control  strategies  apply  to  diverse  types  of  aversive
outcomes (e.g., shocks), which would provide a richer understanding of the generalizability of
our  model’s  normative  predictions  of  mental  effort  allocation  across  diverse  incentives
(Crawford et al., 2020; Kray et al., 2018). These findings further provide novel insight into how
the congruency between expected outcomes and behavioral  goals determine our actions  (and
computational strategies) in value-based decision-making tasks  (De Martino & Cortese, 2023;
Frömer et  al.,  2019;  Guitart-Masip et  al.,  2014; Molinaro & Collins,  2023).  Consistent  with
recent work on this topic, our data show that whether our actions are aligned with our goals
matters as much (if not more) than the valence of the outcomes. 

Our study was collected in an online population and may differ from the general population or
typical samples collected at academic institutions, and the relative size of these effects may differ
across  populations.  Exploring  how  the  relative  influence  of  these  incentives  varies  across
populations represents a valuable direction for future research. This work also has applications
for  the  field  of  computational  psychiatry,  which  aims  to  leverage  neurocomputational
mechanisms  to  elucidate  the  basis  of  disorder  or  symptom-specific  impairments  in  clinical
disorders  (Huys et al., 2016; Montague et al., 2012; Yip et al., 2023). Delineating how these
motivational factors drive different types of cognitive control provides a crucial intermediary
step for informing how these processes are disrupted in mood and psychotic  disorders (e.g.,
major depressive disorder and schizophrenia; (Barch et al., 2018; Culbreth et al., 2016; Grahek et
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al., 2019; Joormann & Vanderlind, 2014; Paulus, 2015), as well as how they might vary with
experience  (Hanson  et  al.,  2017;  Machlin  et  al.,  2019;  Sheridan  & McLaughlin,  2014) and
development  ( C. Geier & Luna, 2009; Insel et al., 2017; Paulsen et al., 2015; Somerville &
Casey, 2010) within the broader population.  
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