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Adaptive learning of Gaussian categories leads to decision bounds and
response surfaces incompatible with optimal decision making
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Indiana University
Bloomington, IN 47405
mkalish@ucs.indiana.edu

Abstract

Two experiments in category learning are used to examine
two types of categorization models. In both a two and four
choice experiment, subjects are shown to fail to learn to
optimally classify two dimensional stimuli. The general
recognition theory (GRT) of Ashby & Maddox (1990)
predicts quadratic decision bounds. The first experiment
disconfirms this. The extended GRT predicts that learners
adopt a bound of complexity equivalent to the optimal one.
The second experiment disconfirms this as well. Both
experiments support the idea that general resources of
adaptive systems can provide explanations of observed
sub-optimal behavior,

Introduction

People are readily able to learn new perceptual categories,
which is not surprising given the underlying importance of
this ability. Determining the value of any of the myriad
affordances which make up our niche is a large part of our
daily existence. If not in the laboratory, than these
categorical decisions are made in the grocery store, or,
recreationally, while out birding or mushroom hunting.

The structure of perceptual categories is largely unknown,
but the process of learning them is most often conceived as
a process of optimization of attention to the relevant
perceptual dimensions (Gibson, 1966). A number of
theories of category learning which apply to this problem
have been presented as mathematical models, and analysis of
these (eg., Estes 1989) have shown many to be
asymptotically similar, if not identical. In essence, most
leading models of categorization are able to account for
optimal segregation of multi-dimensional stimuli into two
or more categories.

Optimality is, of course, a relative term. In the context of
categorization, maximizing the likelihood of a correct
response is one objective which immediately comes to
mind. Deviations from this goal are common when
categories are overlapping and have graded membership (eg.,
Ashby & Maddox 1990). Different models account for
these deviations differently, and this paper reports attempts
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to distinguish a number of models in two different
experimental contexts. In particular, standard back-
propagation trained multi-layer perceptrons, radial basis
function networks and a hybrid model combining rule and
distribution information will be contrasted on data from two
and four choice categorization tasks.

Categorization Models

A description of a concrete categorization problem will
ease exposition of the models under consideration. Imagine
two overlapping distributions lying in a two-dimensional
space (figure 1).

Optimal response selection requires sensitivity to the
conditional expectation of category A given the stimulus,
P(class=Alstimulus=s), which for any stimulus s is the
probability mass function p(Als). If the prior probability of
class membership, qA, and the class-conditional densities,
fa(s) and fg(s), are known then Bayes' Theorem tells us
how to compute posterior probabilities:

p(Als) = q,f (s)/f(s) (1)
Where s = (sx,Sy), the conjunction of features that makes up
the stimulus, and the evidence f(s) is given by ' q,f,(s),
where the summation is over both categories. Selecting the
class with the maximum likelihood (in this case, choosing
A if p(Als) is > p(Bls)) maximizes the number of correct
responses in the long run. This decision boundary
corresponding to this deterministic response strategy is
shown in figure 1.

The two distributions were chosen so as to encourage
subjects to use all the information available about category
membership. In particular, optimal categorization required
sensitivity to the covariance between the dimensions within
each distributions, along with the means and variances of the
individual dimensions.

Since this experiment is essentially a replication of Ashby
& Maddox (1990), sub-optimal empirical decision
boundaries are expected. On the other hand, the gradient of
the response surface about the boundary may or may not be
optimal. If it is not, then both these types of non-
optimality need to be explained.

Noise

One notion of what separates the observed from optimal
response surfaces is that there is likely to be perceptual,
criterial (Ashby & Maddox 1993) or response (Kalish,
1993) noise. Allow perceptual noise z to be normally
distributed with mean [1;= 0 and Y.;=IG;, then the perceived
stimulus s' is the sum of the presented stimulus s and the
noise z. Recall that s (whether i is category A or B) is
normal with mean L and covariance Xj,
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Figure 1 The two categories from experiment (1) are shown in (a) as two frequency distributions. A slice parallel to the
stimulus plane (b) reveals equiprobability contours which are shown along with the optimal decision boundary.

then s' is normal with mean | and covariance Yj+2 ;.
Therefore, the posterior probability of category A given
perceived stimulus s' is just: p'(Als) = p(Als').

Since increased noise is equivalent to drawing stimuli
from categories with larger variance, perceptual noise
effectively moves the two distributions closer together
(makes them less discriminable) and therefore moves the
optimal decision boundary. This movement is always
toward less curved boundaries, moving in this case from an
ellipse to a hyperbola to a line.

Criterial noise is a process which perterbs the criterion (or
the subject's ability to discriminate the posterior from the
criterion). Allow criterial noise ¢ such that:

1if p’(Als)—p’(Bls)>c

L { 0 otherwise (2)

If ¢ is a Laplace random variable, then the step-function is
transformed into a logistic. Proofs of the equivalence
between the deterministic and probabilistic response
selection models extend back to Luce (1963). For brevity,
this paper will focus only on the probability matching
surface, i.e., where the probability of responding A when
shown stimulus s, r(Als) is equal to p'(Als).

Response noise is equivalent to randomly guessing about
which category label to assign to a stimulus some fixed
proportion of the time. So, assuming no bias in guessing:
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r’(Als)=(1- a)r(Als) + /2 (3)
where « is the guessing rate. Response noise has no effect
on the decision boundary, but does change the response
surface gradient; the slope of the logistic is decreased with
increasing ot.

One might reasonably hypothesize that subjects could
reduce the size of these two noise quantities during learning.
If the level of 6 goes down during learning, then subjects are
perceiving the stimuli more accurately at the end of the
experiment. If o decreases, then subjects are being more
cautious about making avoidable errors.

Restricted optimization

Response noise alone cannot produce changes in decision
boundaries, and additive Gaussian perceptual noise can result
only in boundaries which are less sharply curved than
optimal. [f the boundaries are more complex than is
optimal, or if they are too sharply curved, perceptual noise
cannot provide an explanation. An alternative is to consider
category learning as an adaptive process, and look to
adaptive systems for explanations of non-optimal behavior.
This is the theory behind the use of connectionist networks
to understand human category learning (Kruschke 1993).

Back propagation trained networks are, asymptotically,
optimal classifiers. However, they depend on a number of
resources in order to converge on the optimal weights, the




effects of which can largely be determined only empirically.
The resources relevant to networks as a model of human
category learning are:

1) PARAMETERIZATION: A sufficiently parameterized
network is one such that additional parameters cannot
significantly reduce error.

2) CONVERGENCE: Network training algorithms require
enough exposures to the data at appropriate learning rates to
minimize error.

3) DATA SUFFICIENCY: Data are sufficient when a fully
converged, sufficiently parameterized network trained on
sufficient data will generalize perfectly.

4) NETWORK COMPLEXITY: The basis functions (hidden
units) of a network determine what functions will be
approximated most readily.

5) DATA COMPLEXITY: A network of fixed parameters is
limited in the complexity of the function it can estimate.
For example, category boundaries must be of bounded
dimensionality.

6) COST FUNCTION: For any distribution of training
data, optimal network parameters can only be guaranteed
when the information-theoretically appropriate cost function
is used.

A modified optimality hypothesis (Kalish 1993) holds
that these restrictions are the cause of observable non-
optimalities in categorization. Parameterization and
convergence can be continuously varied, but network
complexity is more difficult to modulate. In this paper,
complexity is varied by using two types of basis functions:
linear sigmoids and radial Gaussians with tunable
covariance.

To recap: for any given categorization task, performance is
either optimal with respect to a reasonable objective
function, or it is not. Any number of models can achieve
optimal categorization, but each makes different predictions
about how performance changes as people learn. The
optimality model uses noise to explain suboptimal
performance, while the restricted adaptive system models
depend on the effects of their various resources. In order to
distinguish the models, behavior of subjects in two category
learning experiments was compared against model
predictions.

Experiment One
The GRT of Ashby & Maddox (1990) proposed that subjects
learn to use quadratic decision boundaries. This experiment

tested that hypothesis by providing a quadratic optimal
bound. The extent to which subjects approached that bound,

and how they did so serve as the evidence for distinguishing
the optimal and RAS models.

Method

Subjects Seven undergraduate students from UCSD were
paid to participate in single one hour sessions. They
received a bonus payment which increased with the
proportion of correct responses.
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Figure 2 A sample stimulus from the experiments. The
width of the mushroom's cap and height of its stem were the
two dimensions along which categories were defined.

Apparatus The stimuli were schematic mushroom shapes,
pictured in figure 2. Stimuli were drawn from the two
categories in figure 1, with the minimum possible change in
either stimulus dimension set at 1/12th of an inch. Stimuli
were displayed by a Macintosh Ilci computer on a color
monitor. Subjects made responses on a numeric keypad was
covered by a shield through which the two response keys
alone extended

Procedure Each subject was read a set of instructions by
the experimenter while viewing a sample stimulus.
Subjects were told to do their best to classify the stimuli
into two types, as indicated by a tone received when the
response did not match the class from which the stimulus
had been drawn. Subjects were told that perfect performance
was attainable only by chance, and that the decision of class
membership would be more equivocal for some stimuli than
others.

Table 1: The optimal and best fitting polynomial bounds for each block

Block Bound

1 —3.18=0.527y - 8.1%10- x* —0.012y; +9.3*10 "xy” = 8.62#10 'xy’ + 6.48%10
2 —9.58 =0.1607x — 0.2857y — 2.0+107 x’y + 2.475¢107 xy"3

3 -5.74=0.2116x-0.2601y - 1.0+10~ x’ + 6.58+10™" )*

4 ~3.26 = 0.2546x - 0.2204y — 2.0%10 x’

Optimal ~300.0 = —6.19x - 5. 0y+0 03x? +0.056xy +0.02y*
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Figure 3. Schwartz criterion fits of models to data from Experiment One. The RAS models (BP=linear sigmoid, RBF=radial
gaussian), which embody a learning theory, fit the data as well as the noise-affected optimal model, which was fit at each
block independently. The superiority of the logistic shows that the response surfaces are not quadratic.

Each trial was generated by first randomly selecting one of
the two equally likely categories. The particular stimulus
displayed was selected according to the covariance matrix for
the chosen category. If the subject chose the wrong
response key, and error tone sounded for 100ms. Then, or
50ms after a correct response, the stimulus disappeared and
the next was displayed following a 150ms intertrial interval.

All subjects saw the same 2000 experimental trials in 4
blocks of 500 trials each. At the end of each block subjects
were given a self-timed rest period and informed of their
proportion of correct responses, and of the value of their
bonus payment.

Results

Of the seven subjects in the experiment, only one failed to
do better than chance at distinguishing the categories. The
data from that subject was discarded from later analysis; data
from the other six subjects was collapsed after confirming
that there was no significant difference in the means of the
Jjudged categories. Subjects were also analyzed individually;
the findings there do nothing to contradict the analysis of the
group data.

The shape of the response surface for each block was
estimated using a stepwise logistic regression procedure.
The four bounds are shown in table 1. Each is significantly
non-linear, and also contains significant coefficients of
higher-than-second order terms. The success of the
polynomially bounded logistic in characterizing the data are
shown in figure 3.
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The ability of the optimal model to fit these data was
assayed by optimizing the levels of o and « at each block.
The model fits are shown in figure 3. The RAS models
were fit on a trial-by-trial basis, optimizing learning rates,
biases and a scale factor which represents the relative
discriminability of the two stimulus dimensions. These
results are also shown in figure 3, where all fits are
measured by the AIC, which equalizes for different numbers
of parameters.

Discussion

These data provide a partial replication of Ashby & Maddox
(1990), in that subjects are shown to have non-optimal
category boundaries. However, inspection of the boundaries
through polynomial regression shows them to be different
from the optimal (quadratic) in form and order. RAS
models fit (nearly) as well as by-block noisy optimality
model, and provide more plausible interpretation of learning.
The noise parameters of the optimality model changed non-
monotonically across blocks, which is in contrast to the
theory of learning-as-error-reduction.

Experiment Two

This experiment introduces non-quadratic boundaries in order
to further test the GRT model. Four Gaussian distributions
with separate covariance matrices make up the four
categories. The boundary between one category and the rest
is thus a difference between mixtures, and has a complex
shape. The chosen distributions are shown in figure 4,
along with the optimal decision boundaries.
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Figure 4: (a) Category equiprobability contours, and (b) Optimal decision boundaries, for Experiment Two.

As figure 4(a) shows, two of the categories have equal
means and zero covariance, differing only in their variance
terms. Only one of the distributions has a non-zero
covariance, and one boundary is nearly linear. This
configuration of categories poses difficult challenges for the
learners, and so an extended training regime was used

Method

Subjects Four UCSD students participated for payment
in three one hour sessions over a single week.

Apparatus The same equipment as in Experiment One was
used, with the exception that four keys were constructed
from the numeric keypad

Procedure Similar instructions as in Experiment One
were given, but subjects were told there would be four
'different types of mushrooms' presented. The three training
sessions each included the same 2000 stimuli, divided into
four blocks. As before, only negative feedback was provided
to the subjects.

Results

The decision regions of the four categories are not simply
quadratically bounded. However, pairwise comparisons
between bivariate normal categories will reveal quadratic
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bounds. Optimality can thus be measured by considering
the order of subjects pairwise bounds.

The subjects’ decision bounds were determined from their
responses for each of the twelve blocks of training. The
observed decision bounds contained many significant
coefficients of the qubic and quartic terms, indicating that
subjects were not using a quadratic boundary. The empirical
optimal bounds were estimated from the training data at each
block, and were well described by at most qubic
polynomials. The subjects bounds, where of the same order,
were of different form (eg., different qubic components) from
the optimal. As shown if figure 5, the RBF and linear
sigmoid networks both achieved similar levels of fit,
indicating that the added complexity of the RBF nodes was
not necessary to approximate the change in subjects'

responses during learning.

Discussion

As in Experiment 1, subjects adopted non-optimal category
boundaries. Their responses varied in proportion to the
likelihood of the chosen category, as shown by the fit of the
RAS models. However, the similarity between different
RAS fits suggest that more general properties of the
systems (eg., gradient descent technique) are shared by the
subjects in the experiment. In addition, the non-monotonic
changes in o and 0 needed to fit the optimal model argue
against noise-reduction as a vehicle of learning.



1.6

Q
—-o-BP
15 -B-RBF
o " < Noise
o %
m L
] 4 4
S L o o
< o 2l '°'- ‘. , .!
1.4 L
L o.
0 o, s e
& e
1.3 1 1 Lo} 1
0 4 Block 8 12

Figure 5 - Schwartz criterion fits of the three theoretical models to Experiment Two. The linear sigmoid and radial gaussian
models are nearly identical, indicating that common properties of error reduction are at work. As with Experiment One, the
response surfaces here are non quadratic, although the fit of the polynomial logistic is not shown.

Conclusion

Bivariate normal categories are optimally searated by
quadratic bounds. The posterior probability of one category
versus another is also always quadratic. Leading models of
human categorization predict quadratic response surfaces
whenever the training data are bivariate normal. In contrast,
the Modified Optimality Hypothesis predicts that response
surfaces only become quadratic assymptotically. The RAS
systems provide a pricipled account of changing non-optimal
behavior.

In these experiments, the complexity of the RAS basis
function (composition of the network hidden layer) had less
to do with this success than did the common factors of
gradient descent method and objective function. Two factors
might explain this emphasis. First, the network models
were all constrained to match the data on a trial-by-trial
basis. As has been noted (Chapman 1991), this restriction
is likely too harsh. Subjects likely rehearse the stimuli, at
least covertly, and so effectively resample the training data
Second, the chosen basis functions may both be inadequate
for describing people's adaptive learning (Kruschke 1993).
Using more psychologically plausible models of
categorization, it is possible to formulate and test RAS
systems which have a closer correspondance to human
function.
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