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ABSTRACT OF THE DISSERTATION

Beyond Similar Code: Leveraging Social Coding Websites

By

Di Yang

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2019

Professor Cristina V. Lopes, Chair

Programmers often write code with similarity to existing code written somewhere. Code

search tools can help developers find similar solutions and identify possible improvements.

For code search tools, good search results rely on valid data collection. Social coding websites,

such as Question & Answer forum Stack Overflow (SO) and project repository GitHub, are

popular destinations when programmers look for how to achieve certain programming tasks.

Over the years, SO and GitHub have accumulated an enormous knowledge base of, and

around, code. Since these software artifacts are publicly available, it is possible to leverage

them in code search tools. This dissertation explores the opportunities of leveraging software

artifacts from the social coding websites in searching for not just similar, but related, code.

Programmers query SO and GitHub extensively to search for suitable code for reuse, however,

not much is known about the usability or quality of the available code from each website. This

dissertation first investigates under what circumstances the software artifacts found in social

coding websites can be leveraged for purposes other than their immediate use by developers.

It points out a number of problems that need to be addressed before those artifacts can

be leveraged for code search and development tools. Specifically, triviality, fragility, and

duplication, dominate these artifacts. However, when these problems are addressed, there is

still a considerable amount of good quality artifacts that can be leveraged.
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SO and GitHub are not only two separate data resources, moreover, they together, belong

to a larger system of software development process: the same users that rely on facilities

of GitHub often seeks support on SO for their problems, and return to GitHub to apply

the knowledge acquired. This dissertation further studies the crossover of software artifacts

between SO and GitHub, and categorizes the adaptations from a SO code snippet to its

GitHub counterparts.

Existing search tools only recommend other code locations that are syntactically or seman-

tically similar to the given code but do not reason about other kinds of relevant code that

a developer should also pay attention to, e.g., auxiliary code to accomplish a complete task.

With the good quality software artifacts and crossover between the two systems available,

this dissertation presents two approaches that leverage these artifacts in searching for related

code. Aroma indexes GitHub projects, takes a partial code snippet as input, searches the

corpus for methods containing the partial code snippet, and clusters and intersects the results

of the search to recommend. Aroma is evaluated on randomly selected queries created from

the GitHub corpus, as well as queries derived from SO code snippets. It recommends related

code for error checking and handling, objects configuring, etc. Furthermore, a user study

is conducted where industrial developers are asked to complete programming tasks using

Aroma and provide feedback. The results indicate that Aroma is capable of retrieving and

recommending relevant code snippets efficiently. CodeAid reuses the crossover between SO

and GitHub and recommends related code outside of a method body. For each SO snippet as

a query, CodeAid retrieves the co-occurring code fragments for its GitHub counterparts and

clusters them to recommend common ones. 74% of the common co-occurring code fragments

represent related functionality that should be included in code search results. Three major

types of relevancy–complementary, supplementary, and alternative methods, are identified.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Background

When programmers look for how to achieve certain programming tasks, social coding web-

sites, such as Question and Answer forum Stack Overflow (SO) and project repository

GitHub, are popular destinations. The popularity and relevance of SO and GitHub are well

known within the programming community. Both websites are extensively queried when

programmers search for suitable code for reuse. Moreover, they, together, belong to a larger

system of software development process: the same users that rely on facilities of GitHub

often seeks support on SO for their problems, and return to GitHub to apply the knowledge

acquired.

Studies have been done on the immediate use by developers of the two websites: GitHub

as a project management repository and SO as a Q&A forum. For example, Kalliamvakou

et.al analyzed pull requests, commits and issues on GitHub [65, 132] Bajaj et. al mined
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related questions in SO [21], AutoComment [147] automatically generates comments, En-

TagRec [144] is an automatic tag recommender. Other studies focus on people, or social

components for the two websites. Kalliamvakou et. al studied the impact of networking

behaviors on collaborations in GitHub [65], Thung et.al graphed developer-developer and

project-project relations and identified influential developers and projects [128], Vasilescu

et.al analyzed gender and tenure diversity on GitHub [138], how SO changes knowledge

sharing [139], and the relationship between SO askers and GitHub committers [137].

Over the years, the social coding websites SO and GitHub have accumulated an enormous

knowledge base of, and around, code. Since these software artifacts are publicly available,

it is possible to leverage them in code search tools. Recent research have already paid

special attention to the code. Ray et.al studied the influence of language typing on quality

of software quality in GitHub [106]. Ponzenelli et.al intergrated SO into IDE [102]. An et.al

pointed out the violation of license when copy&pasting SO snippets [18]. Several work have

found SO snippets are incomplete and inadequate [123, 152, 156]. These studies targeted at

integrating SO snippets into client systems, however, not much is known about the usability

of the available code from each website, the impact that these two systems have on each

other, and how we can leverage them in code search and recommendation tools.

1.1.2 Research Questions

Before reusing these artifacts in code search, we need to know the quality of these artifacts. In

this dissertation, I investigate under what circumstances the software artifacts found in social

coding websites can be leveraged for purposes other than their immediate use by developers.

There is an increasing number of research and tools that rely on software artifacts from SO

and GitHub. Without understanding the artifacts themselves beforehand, those studies and

tools may end up with skewed analysis results or disappointing tool performance.
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To be specific, I have been investigating the following questions:

1. What is the quality of these software artifacts? Do they have problems that need to

be known before they can be used for code search tools?

2. Is there crossover of software artifacts between SO an GitHub? In what form?

3. How can we leverage the artifacts from SO and GitHub and the crossover between SO

and GitHub in code search and recommendation tools? Can we search more than just

similar code from these artifacts?

1.2 Thesis Statement

Software artifacts from social coding websites are publicly available to be leveraged in code

search tools, however, a number of problems need to be addressed before those artifacts

being leveraged. Specifically, triviality, fragility, and duplication, dominate these artifacts.

When these problems are addressed, there is still a considerable amount of good quality

artifacts. Moreover, there is crossover between different social coding websites which shows

the adaptation behaviors in real-life programming. The good quality artifacts from different

websites, together with the crossover, can be leveraged in searching not just similar, but

related, code.

1.3 Methodology and Key Findings

In this dissertation, I start with studying the usability of SO snippets and duplication within

SO and within GitHub. Then I find similar code pairs between SO and GitHub to analyze

their relationship in terms of crossover of code. I carefully investigate the adaptation types
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between the SO snippets and their GitHub similar counterparts. Finally I propose two code

recommendation tools as examples of leveraging the artifacts from SO and GitHub and the

crossover between SO and GitHub.

In Chapter 2, I performed the usability analysis of SO snippets. Usability is defined based

on the standard steps of parsing, compiling and running source code to show the effort that

would (potentially) be required to leverage the snippets as-is. I studied the percentages of

parsable, compilable and runnable snippets for each of the four most popular programming

languages (C#, Java, JavaScript, and Python). There is a significant difference in usability

between the statically-typed languages and the dynamically-typed languages, the latter being

far less usable.

In Chapter 3, for Java and Python, I performed file-level and project-level duplication anal-

ysis on GitHub repositories. I provided three levels of similarity: a hash on the block, a

hash on tokens, and an 80% token similarity. These capture the case where entire blocks are

copied as-is, smaller changes are made in spacing or comments, and more meaningful edits

are applied to the code.

The studies show that fragile code needs to be repaired in SO before being leveraged in code

search tools; trivial code in SO and files in GitHub should be removed; duplication dominates

GitHub files and de-duplication needs to be performed. Addressing these problems avoids

noise and bias in the datasets and provide good quality software artifacts for code search

tools.

In Chapter 4 and 5, I studied the method-level similar code between SO and GitHub for

Python and Java. Again, three levels of similarity are provided. For Java, I further con-

ducted a detailed manual inspection on the adaptations from SO to GitHub. I built an

automated adaptation analysis technique to categorize syntactic program differences into

different adaptation types. This study serves as a proof that there is meaningful crossover
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between SO and GitHub in terms of software artifacts, which can be leveraged for research

and development.

In Chapter 6, I proposed a code search and recommendation tool, Aroma, which leverages

good quality software artifacts from SO and GitHub. Aroma indexes a huge code corpus

including thousands of open-source projects from GitHub, takes a partial code snippet as

input, searches the corpus for method bodies containing the partial code snippet, and clusters

and intersects the results of the search to recommend a small set of succinct code snippets

which both contain the query snippet and appear as part of several methods in the corpus.

Aroma is evaluated on 2000 randomly selected queries created from the corpus, as well as

64 queries derived from code snippets obtained from SO.

In Chapter 7, I proposed one possibility of leveraging the crossover between SO and GitHub

in recommending related code. I first constructed a large data set of 21K groups of similar

code written in Java, using SO code snippets as queries and identifying their counterparts

in GitHub via clone detection. For more than half of these SO code snippets, their GitHub

counterparts share common code that co-occurs in the same Java file yet not similar to the

original queries. I manually inspected a random sample of 50 commonly co-occurring code

fragments and found 74% of them represent relevant functionality that should be included

in code search results. Furthermore, I identified three major types of relevant co-occurring

code—complementary, supplementary, and alternative functions. This study result calls for

a new search engine that accounts for such code relevance beyond code similarity.

Finally, Chapter 8 concludes the work and contributions for this dissertation.
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Chapter 2

Usability Analysis of Stack Overflow

Code Snippets

The material in this chapter is from the following paper, and is included here with permission

from ACM.

D. Yang, A. Hussain, C. V. Lopes. From Query to Usable Code: An Analysis of Stack

Overflow Code Snippets. In proceedings of the 13th International Conference on Mining

Software Repositories (MSR), May 2016.

2.1 Introduction

Research shows that programmers use web searches extensively to look for suitable pieces

of code for reuse, which they adapt to their needs [52, 100, 135]. Among the many good

sites for this purpose, Stack Overflow (SO, from here onwards) is one of the most popular

destinations in Google search results. Over the years, SO has accumulated an impressive

amount of programming knowledge consisting of snippets of code together with relevant
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Figure 2.1: Example of Stack Overflow question and answers. The search query was “java
parse words in string”.

natural language explanations. Besides being useful for developers, SO can potentially be

used as a knowledge base for tools that automatically combine snippets of code in order to

obtain more complex behavior. Moreover those more complex snippets could be retrieved

by matches on the natural language (i.e. non-coding information) that enriches the small

snippets in SO.

As an illustrative example, consider searching for “java parse words in string” using Google

Web search. This yields several results in SO, one of which is shown in Figure 2.1. The

snippet of code provided with the answer that was accepted is almost executable as-is by

copy-paste. The job of programmers becomes, to a large extent, to glue together these

snippets of code that do some generic functionality by themselves. The fact that a Web search

engine returned this SO page as one of the top hits for our query closes in on one of the hardest

parts of program synthesis, namely the expression of complex program specifications. Hence,

it is conceivable that tools might be developed that would do that gluing job automatically
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given a high-level specification in natural language.

In pursuing this goal, the first challenge one faces is whether, and to what extent, the existing

snippets of code that are suggested by Web search results are usable as-is. If there are not

enough usable snippets of code, the process of repairing them automatically for further

composition may be out of reach. This paper presents research in this direction, by showing

the results of our investigation of the following questions:

(1) How usable are the SO code snippets?

(2) When using Web search engines for matching on the natural language questions and an-

swers around the snippets, what percentage of the top results contain usable code snippets?

In order to compare the usability of different pieces of code, we need to define what usability is

in the first place. We classified snippets of code based on the effort that would (potentially)

be required by a program generation tool to use the snippet as-is. Usability is therefore

defined based on the standard steps of parsing, compiling and running source code. For each

of these steps, if the source code passes, the more likely it is that the tool can use it with

minimum effort.

Given this definition of usability, there are situations where a snippet that does not parse is

more useful than the one that runs, but passing these steps assures us of important charac-

teristics of the snippet, such as the code being syntactically and structurally correct, or all

the dependencies being readily available, which are of surmount importance for automation.

We first study the percentages of parsable, compilable and runnable (where these steps apply)

snippets for each of the four most popular programming languages (C#, Java, JavaScript,

and Python).1 From the results, we saw a significant difference in repair effort (usability)

1Based on the RedMonk programming language popularity rankings as of January 2015, four of the
most popular programming languages are Java, C#, JavaScript and Python. We choose these four, also as
representatives of statically-typed (the first two) and dynamically-typed languages (the last two).
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between the statically-typed the dynamically-typed languages, the latter being far less ef-

fort. Next, we focused on the best performing language (Python) and conducted a 3-step

qualitative analysis to see if the runnable snippets can actually answer questions correctly

and completely. Finally, in order to close the circle, we use Google Search in order to find out

the extent to which the SO snippets suggested by the top Google results are usable. Being

able to find a large percentage of usable snippets among the top search results for informal

queries, the idea of automating snippet repair and composition, and finding those synthetic

pieces of code via informal Web queries becomes within the realm of possibility.

The remainder of this paper is organized as follows. In Section 2.3, we present the overall

research methodology and environment of our work. The results of qualitative analysis are

explained in Section 2.4. In Section 2.5 we investigate the usability and quality of top

results from Google Web search. In Section 2.2, we present the related work in the areas of

SO analyses, enhancing coding environments, and automated code generation. Section 2.6

concludes the paper.

2.2 Related Work

Various studies have been done on SO, but focus primarily on user behavior and their inter-

actions with one another. These works made attempts at identifying correlations between

different traits of SO users. For example [86] showed a correlation between the age and

reputation of a user by exploring hypotheses such as the fact that older users having a big-

ger knowledge of more technologies and services. Shaowei et al. [143] provided an empirical

study on the interactions of developers in SO, revealing statistics on developers’ questioning

and answering habits. For instance, they found that a few developers ask and answer many

questions. This social research might be important for our prioritization of snippets of code.
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Among the works that utilize code available in the public domain for enhancing development

is that of Wong et al. [147]. They devised a tool that automatically generates comments

for software projects by searching for accompanying comments to SO code that are similar

to the project code. They did so by relying on clone detection, but never tried to actually

use the snippets of code. This work is very similar to Ponzanelli et al. [102] in terms of the

approach adopted. Both mine for SO code snippets that are clones to a snippet in the client

system, but Ponzanelli et al.’s goal was to integrate SO into an Integrated Development

Environment (IDE) and seamlessly obtain code prompts from SO when coding.

Ponzanelli was involved in another work [20], where they presented an Eclipse plugin, Sea-

hawk, that also integrates SO within the IDE. It can add support to code by linking files to

SO discussions, and can also generate comments to IDE code. Similarly, Suresh et al. [125]

present a tool called PARSEWeb that assists in reusing open source frameworks or libraries

by providing an efficient means for retrieving them from open source code.

With regards to assessing the usability of code, our central motivation, our study comes

close to Nasehi et al.’s work [89]. They also analyzed SO code with the motivation of finding

out how easy it is to reuse it. In particular, they delved into finding the characteristics of a

good example. The difference for our approach was their criteria for assessing the usability

of the code. They adopted a holistic approach and analyzed the characteristics of high voted

answers and low voted answers. They enlisted traits related to a wide range of attributes of

the answers by analyzing both the code and the contextual information. They looked into

the overall organization of the answer - the number of code blocks used in the answer, the

conciseness of the code, the presence of links to other resources, the presence of alternate

solutions, code comments, etc. The execution behavior of the code was not among their

usability criteria.

Semi-automatic or automatic programming, a development realm towards which this work

takes an initial step, has also been explored in different ways by software practitioners. For
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instance, Budinskey et al. [31] and Frederick et al. [50], analyze how design patterns could

assist in automatically generating software code. Other similar works include [95], [154], and

[96]. The similarity in these works is that structured abstractions of code provide a good

indicator about the actual implementation. They built tools that exploit this narrative and

generate implementations from design patterns. Such a strategy would be highly challenging

to use when trying to reproduce usable SO code (with respect to compilation), as those codes

are usually small snippets that do not follow familiar patterns.

2.3 Usability Rates

This section describes our usability study of SO snippets. We elaborate our goal, describe

the characteristics of the extracted snippets, and present the operations that were carried

out on the snippets of each language. We also describe the libraries that were used to process

the snippets for each of the languages, and highlight the limitations found2. In 2.3.2 and

2.3.3, we present the usability rates and error messages for each language.

Our goal is to compare the usability rates for the snippets of four programming languages

(C#, Java, JavaScript, and Python) as they exist in SO, i.e., in small snippets of code. We

also want compare the languages regarding their static or dynamic nature, and target the

most usable language. In our study, snippets in Java and C#, which are statically-typed,

are parsed and compiled in order to assess their usability level. JavaScript does not have the

process of compilation, so we investigate only the parsing and running levels for it. Python

is also a dynamic language but it can be compiled. However, this step is not as important

as it is for Java and C#, as important errors (such as name bindings) are not checked at

compile time. As such, for Python, like for JavaScript, we assess usability only by parsing

and running the snippets.

2Note to reviewers: code and data for this study are available upon request, and will be made publicly
available upon publication of this paper.
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2.3.1 Snippets Processing

All snippets were extracted from the dump available at the Stack Exchange data dump site3.

In SO both questions and answers are considered as posts, which are stored with unique

ids in a table called Posts. In this table, posts that represent questions and answers are

distinguished by the field PostTypeId. Information about posts can be obtained by accessing

the field Body.

There are two types of answers in SO, accepted answer and best answer. An accepted

answer is the answer chosen by the original poster of the question to be the most suitable.

All question posts have an AcceptedAnswerId field from which we can identify accepted

answers when these exist. The best answer is the one which has the most number of votes

from other SO users. The vote count is stored in the field ViewCount of the table Posts.

Thus, an accepted answer may not always be the best answer.

Finally, in SO, questions are tagged with their subject areas, which include relevant infor-

mation such as the language or the domain where the question is relevant (networking, text

processing, etc.). We get the language information for each accepted answer from these tags,

one example on how the social nature of SO helps categorizing and selecting pieces of code.

In this work, we only include snippets found in all accepted answers. We choose accepted

these as we value the agreement from the original poster, accepting the fact that it is very

likely this answer resolved the original problem. For all posts for a language we were in-

terested in, we used the the markdown <code> to extract the code snippets from the field

Body.

In Table 2.1 we present the operations we performed to analyze and rate each of language.

All the snippets from all languages were parsed, but depending on the static or dynamic

3https://archive.org/details/stackexchange, obtained on April 2014.
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Figure 2.2: Sequence of operations

nature of the language we either compiled it and analyzed the (possible) errors, or ran the

language (below we detail these processes).

Table 2.1: Operations performed for each language.

Operation C# Java JavaScript Python
Parse x x x x
Compile x x
Run x x

Figure 2.2 shows the order in which these operations are performed. We compile (or run)

only those snippets which passed parsing, since snippets which are unparsable have syntactic

errors and therefore are also non-compilable/non-runnable.

We used a set of tools and APIs to process the snippets in the various languages, which we

present next:

2.3.1.1 C#

For parsing we utilize a tool called Roslyn by Microsoft to obtain the parsable snippets.

Roslyn provides for the Visual Studio languages rich APIs for different phases of compilation.

In particular, Roslyn provides us with the API for getting the abstract syntax tree, which is

the landmark of parsing process. Syntax errors will be detected in this step.

Compiling C# programmatically can be easily done by using a functionality provided by

the .NET Framework and found in the Microsoft.CSharp and System.CodeDom.Compiler
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namespaces. We need to call the function that compiles the code, and results of whether a

snippet compiles or not are returned together with errors if applicable.

2.3.1.2 Java

Eclipse’s JDT (Java Development Tools) Parser (ASTParser) and the Javax.Tools were used

for the parsing and compiling processes, respectively. We use JDT1.7 in our experiments

since it’s the latest version for our data dump.

Using the JDT’s ASTParser we generated abstract syntax trees of the snippets, and any

parse errors found during the process were extracted via the IProblems interface.

Javax.Tools compilation functionality first creates a dynamic source code file object of the

Java snippet, from which it generates a list of compilation units, which are passed as parame-

ters to the CompilationTask object for compilation. Issues during compilation are stored in

a Diagnostics object. Issues could be of the following kinds: ERROR, MANDATORY WARNING,

NOTE, OTHER, WARNING. We only look for issues which are of kind ERROR, as they are the

ones more likely prevent the normal completion of compilation.

2.3.1.3 JavaScript

A reflection of the SpiderMonkey parser is included in the SpiderMonkey JavaScript Shell and

is made available as a JavaScript API. It parses a string as a JavaScript program and returns

a Program object representing the parsed abstract syntax tree. Syntax errors are thrown

if parsing fails. JavaScript Shell has also a built-in function eval() to execute JavaScript

code, which we used if parsing succeed.

A limitation of the SpiderMonkey parser is that it terminates the processing of a snippet

right when it encounters the first error. Therefore, it does not identify all the errors in a
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snippet, only the first one, but this suffices to detect problems in the code.

2.3.1.4 Python

Python’s built-in AST module and compile() method can help us parse code strings. Python

is a special language among dynamic languages: it has the process of building abstract syntax

tree into Python code objects, so it has the compile function. But when we specify one of

the function parameters to be AST only, it only parse the code by building the AST. exec

statement provides functionality to run code strings.

One problem we encountered in processing Python snippets was that Python2 and Python3

have some incompatible language features. To deal with snippets written in different versions

of Python, and to avoid being biased when rating these pieces of code, we first examined all

Python snippets under Python2 engine, and examined the unparsable ones again under the

Python3 engine and combine the results. The Python libraries share the same limitation as

JavaScript’s SpiderMonkey; they do not catch all the errors in a snippet, only the first one.

2.3.2 Findings

We present the results that were obtained after the initial parsing and compiling (or running)

of the snippets.

Table 2.2 and Figure 2.3 shows the summary of usability results of all the snippets. A total

of 3M code snippets were analyzed. Python and JavaScript proved to be the languages for

which the most code snippets are usable: 537,767 (65.88%) JavaScript snippets are parsable

and 163,247 (20.00%) of them are runnable; for Python, 402,249 (76.22%) are parsable and

135,147 (25.61%) are runnable. Conversely, Java and C# proved to be the languages with

the lowest usability rate: 129,727 (16.00%) C# snippets are parsable but only 986 (0.12%) of
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Table 2.2: Summary of results

C# Java JavaScript Python
Total Snippets 810,829 914,974 816,227 527,774
Parsable Snippets 129,727 (16.00%) 35,619 (3.89%) 537,767 (65.88%) 402,249 (76.22%)
Compilable Snippets 986 (0.12%) 9,177(1.00%) – –
Runnable Snippets – – 163,247 (20.00%) 135,147 (25.61%)

Figure 2.3: Parsable and compilable/runnable rates histogram

them are compilable; for Java, only 35,619 (3.89%) are parsable and 9,177 (1.00%) compile.

As a result of finding such low parsable and compilable rates for Java and C#, we removed

Java and C# snippets that only contained single words (i.e. tokens without non-alphabetical

characters). The rationale behind this step was to that a single word in C# or Java is too

insignificant a candidate for composability; by ignoring those snippets we might improve the

usability rates for these two languages. We then parsed and compiled the remaining snippets,

the results of which are shown in Table 2.3. We see that the rates of usability improve for

both languages, and for both parsing and compilation. For Java, the parsable rate increases

from 3.89% to 6.22%, and the compilable rate increases from 1.00% to 1.60%. For C#, the

parsable rate increases from 16.00% to 25.18%, and the compilable rate increases from 0.12%

to 0.19%.
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Table 2.3: Summary of results for C# and Java after single-word snippets removal

C# Java
Total snippets
after removal

514,992 572,742

Parsable 129,691 (25.18%) 35,619 (6.22%)
Compilable 986 (0.19%) 9,177 (1.60%)

Figure 2.4: Examples of C# Snippets.

Figure 2.5: Examples of Java Snippets.

Figures 2.4, 2.5, 2.6, and 2.7 show examples of SO snippets that passed and failed for each

language. For those that failed, we also show the generated error messages. The examples

are representative of the most common error messages.

The unparsable Python snippet in Figure 2.7 also illustrates a common occurrence in SO

posts, where the example code is given more or less as pseudo-code that mixes the syntax of

several languages.
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Figure 2.6: Examples of JavaScript
Snippets. Figure 2.7: Examples of Python

Snippets.

2.3.3 Error Messages

During the usability analysis process, we log the common errors of the four languages. In

total, we collected 3,347,674 parse errors and 359,783 compile errors for C#, 1,417,910 parse

errors and 199,489 compile errors for Java, 278,460 parse errors and 374,520 runtime errors

for JavaScript, and 125,525 parse errors and 267,102 runtime errors for Python.

The common error messages for C# are shown in Figure 2.8a and 2.8b, for Java in Figure 2.9a

and 2.9b, for JavaScript in Figure 2.10a and 2.10b, and for Python in Figure 2.11a and 2.11b.

The error messages are listed in descending order of percentage. The token ‘[symbol]’ is just

a replacement for various specific strings appeared in error messages.

The error messages shown for Java and C# were obtained on the collection of snippets with-

out single-words. It is important to note that the libraries used for Python and JavaScript

can generate at most one error message for a snippet, so they do not show all problems that

each snippet may have.

Main syntax problems are shown in parsing errors, for all four languages. For example for

JavaScript, 50% of the parsing errors are not getting an expression. For Java, 25% of the
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(a) Most common parse errors for C# (b) Most common compile errors for C#

Figure 2.8: Most common error messages for C#

parsing errors are tokens to be inserted.

Errors more related to code context, such as missing symbols, are revealed in compiling

or running process. For C#, “type or namespace” is a main issue for usability. For Java,

“cannot find symbol” dominates compiling error messages. When running a JavaScript

snippet, we are most likely to stop at a reference error, while for Python, the most common

runtime error is a specific name not defined.

The purpose for logging the error messages is to provide a knowledge base for repairing codes

and increasing usability rates in the future. For example one of the main parsing errors for

C# is missing semicolons, then a heuristic repair to C# codes to improve parsable rate can

be locating missing semicolons and append them. In next section, we give example of two

heuristic repairs for Java and C# snippets.

2.3.4 Heuristic Repairs for Java and C# Snippets

From the preliminary results above, we can see that the parsing rates for Python and

JavaScript are significantly better than Java and C#. The parsing errors reveal the main

syntax problems, while the compiling errors given above are more related to code context,

such as missing symbols. In this case, compiling errors are hard to fix, because we need to
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(a) Most common parse errors for Java (b) Most common compile errors for Java

Figure 2.9: Most common error messages for Java

(a) Most common parse errors for JavaScript (b) Most common runtime errors for JavaScript

Figure 2.10: Most common error messages for JavaScript

(a) Most common parse errors for Python (b) Most common runtime errors for Python

Figure 2.11: Most common error messages for Python
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look into the specific snippet to complement the missing symbols.

Based on the common error messages for Java and C#, we implemented two heuristic repairs

on Java and one repair on C# snippets in order to improve their parsing and compilation

rates.

2.3.4.1 Repair 1 - Class

Many Java snippets consist just of Java code without it being properly encapsulated in a

class or a method. The class construct is essential for Java snippets. The class repair

fixes Java code snippets that were found to be missing a class construct based on a heuristic

check. This heuristic check works as follows: if the code snippet is found to contain any of

the tokens import, package, or class, we assume that the class construct already exists

in the snippet. The rationale behind this heuristic is that, based on our observations of the

snippets, tokens import and package form scaffolding information of code in SO and are

not the focus of SO answers. Hence any code that uses one of them is likely to use the class

construct also. We also assume if a token class is present in a code, it exists with enclosing

braces and as a keyword and not a part of a string or comment.

Example:

\\Repair 1 Candidate

public void main(String args []){

System.out.println("Hello World");

}

\\After Repair 1

class Program{

public void main(String args []){
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System.out.println("Hello World");

}

}

Unlike Java, C# does not require a class construct for error-free parsing and compilation,

and thus this repair was only applied to Java snippets.

2.3.4.2 Repair 2 - Semicolon

Java and C# statements require a semicolon (“;”) at the end in order to parse and compile

correctly. To decide whether a “;” should be added to a statement, we run a set of heuristic

checks on each line of the snippet; we add the semicolon if all the following conditions are

true:

1. If the line does not contain any of the tokens ;, {, (, and

2. if the line does not contain any of the tokens class, if, else, do, while, for, try,

catch, and

3. if the line does not end with the tokens = and }.

With check 1, we avoid double-adding “;” and avoid adding a “;” at the line of an opening

brace, before the opening brace has been closed. With check 2 and 3 we avoid corrupting

originally parsable code. With check 2 we avoid the following situation:

\\Repair 2

try; <-- will corrupt

{ <code>

}catch...
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Figure 2.12: Sequence of operations while applying repairs

With check 3 we avoid the following situations:

\\Repair 2 inside assignment

Double s_dev = ; <-- will corrupt

Math.pow(sum(mean_sq(al))/al.size(),0.5);

\\Repair 2 between if-else

if ()

{ <code>

} ; <-- will corrupt

else

{ <code>

}

2.3.4.3 Study Workflow for Repairs

The workflow for studying the effect of repairs is similar to the one used for the initial pars-

ing/compiling processes (as shown in Figure 2.2), except that now we have also incorporated

repairs. The process is depicted in Figure 2.12.

Like the workflow of Figure 2.2, here at each stage we only compile snippets that have passed

the prior step. Failed snippets are repaired and parsed again. The snippets that succeed at

parsing are in turn compiled. For Java, we carry out two repairs sequentially, whereas for

C# one repair is applied.
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Table 2.4: Summary of results for C# and Java snippets after repairs

C# Java
Total snippets
after removal

514,992 572,742

Parsable snippets
after repairs

135,421 (26.30%) 110,203 (19.24%)

Compilable snippets
after repairs

986 (0.19%) 17,286 (3.02%)

2.3.4.4 Results after Repairs

Table 2.4 shows the parsing and compilation results obtained for C# and Java after repairing

the snippets. Again, the numbers here reflect the collection of non-single-word snippets.

Although the repairs did not significantly increase the usability rates for C#, the improve-

ments were quite significant for parsing Java snippets. The parse rate of C# improved by

only 1.12% (from 25.18% to 26.30%), whereas for Java the improvement was 13.02% (from

6.22% to 19.24%). The compilation rate did not change for C#, whereas for Java it improved

by 1.42% (from 1.6% to 3.02%). There’s a significant improvement on the parsable rate of

Java.

Again, our approaches are heuristic, and may break some previously parsable or compilable

snippets. But we can still see an increase in usability rates.

Even though the parsing and compilation rates improved for Java, the number of usable

snippets is still one order of magnitude lower than the numbers for JavaScript and Python.

2.4 Qualitative Analysis

Based on the usability and popularity, we choose Python as the target language for further

analysis. In order to investigate whether the runnable Python snippets can answer the
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Figure 2.13: Example of an incomplete answer in Stack Overflow

questions correctly and completely, we perform a 3-step qualitative analysis on randomly

selected snippets. By correctness, we mean the snippet giving a concise solution to the

question; for specific coding questions with bugs, as in Figure 2.13, the answer is correct if it

points out the erroneous part and fixes particular lines of code. By completeness, we mean

that the snippet itself is a full answer to the question; we do not need to add any additional

code to answer the question. Figure 2.13 is an example of correct but incomplete answer,

the snippet fixes the bug in the original code but we have to mix the question and answer

snippets to get the full answer.

The 3-step qualitative analysis is as following:

Step 1

We randomly chose 50 runnable Python snippets. For each snippet, we investigate the fea-

tures listed in Table 2.5. We found out that the proportion of snippets that answer the

question is low (16%). We discovered a strong correlation between single word snippets and
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Table 2.5: Features used to assess the quality of the snippets.

1. Votes for the question
2. Votes for accepted answer
3. Total number of answers
4. Is the accepted answer also the best answer?
5. Questioner’s reputation score
6. Answerer’s reputation score
7. Does the title correctly summarize the question

described?
8. Is the question’s description clear?
9. Is it a specific coding question?

10. Does the snippet answer the question correctly
and completely?

11. Is it a single word snippet?
12. Is it a single line snippet?
13. Is there any surrounding context/explanation?
14. Number of comments
15. Is there any questioner’s compliment in

comments?
16. Question’s tags

snippets answering the question, that is, among the 50 selected snippets, none of single word

snippets answer the question, and all of the snippets that answer the question are non-single

word snippets. The proportion of single word snippets is 64%.

Step 2

Based on the results of Step 1, we removed single word snippets from all runnable Python

snippets, and then randomly chose another 50 snippets. We investigated the same aspects

as in Step 1, except for No.11 (Is it a single word snippet?).

After removing single word snippets, the proportion of snippets that answer the question

increases to 44%. From Step 2, we discovered another negative correlation between single

line snippets and snippets answering the question. Among the 21 snippets that answer the

question, 19 are multiple line snippets, and among the 20 single line snippets, only 2 answer
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the question.

Step 3

Finally, we removed the single line snippets, and chose 50 snippets randomly again. We

investigated the same aspects as in Step 1, except for No.11 (Is it a single word snippet?)

and No.12 (Is it a single line snippet). Again, the proportion of snippets that answer the

question increases, to 66%. Moreover, for the 17 snippets that do not answer the question,

12 of them are incomplete, but correct, answers.

From the result of 3-step qualitative analysis, we can see that multiple-line snippets can best

answer the questions. This subset contains 40,245 runnable snippets (29.8% of all runnable

Python snippets).

2.5 Google Search Results

In this section, we explore the overlap between Google search results and the usable Python

snippets. Specifically, we check if the top results from Google for several queries contain

parsable or runnable snippets, as well as these snippets’ overall quality.

The methodology was as follows. We selected 100 programming related questions from SO’s

highest voted questions about Python, and use them as queries using the Google search

API. We add the constraint “site:stackoverflow.com” and the keyword “Python” in the in

the queries. Moreover, because our database was downloaded in April 2014, we also add a

date range restriction.

The accepted answers’ usability rates of the Top 1 and Top 10 results from Google are shown

in Table 2.6. They are high. As described in Section 2.3.2, we had found that the usability
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Table 2.6: Usability Rates of Top Results from Google

Parsable Runnable
Top 1 78.1% 30.8%
Top 10 77.9% 29.3%

Figure 2.14: Example of Google Search Result

rates of all the Python snippets in SO are 76% parsable and 25% runnable. The top results

on 100 queries to Google on the same SO data have usability rates above those averages.

Moreover, the Top 1 results have an even higher usability rate than the Top 10 results.

Also, we find that 33.7% of Top 1 results and 32.5% of Top 10 results are multiple line

snippets. Both higher than the average of 30%. So, both from our usability perspective and

qualitative analysis perspective, the Google Top 10 search results are better than average,

and the Top 1 results are the best.

From the results above, we can also see that the Google top results have a low runnable

rate, although higher than average. The main problems encountered in the parsable but not

runnable snippets from Google results are those already described for the entire SO snippets

(see Section 2.3.3). Specifically, the majority of them suffered from undefined names or

modules. An example of a parsable but not runnable Google search result to the query

“Check if a given key already exists in a dictionary” is shown in Figure 2.14.

Expecting snippets to be runnable as-is may be too strong of a constraint. Parsable snippets

seem to be a much more fertile groud as the base for future automatic code generation.
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Given our analysis of the causes of runtime errors, it seems it should be possible to repair

a large percentage of them automatically. For example for Python, missing symbol names

often indicate a piece of information that needs to come from elsewhere – another snippet,

or some default initialization.

Note that we used the questions as-is as queries for Google; not surprisingly, Google always

returned those SO questions as the Top 10 hits in each query. Out of the 100 queries we

selected, 85 original ones were returned as the first hit by Google. Although 15 original links

were not ranked as Top 1, 12 of them were in Top 10. The reason for them not being the first

one is that Google seems to have a special heuristic to dealing with “daterange” restrictions.

If we remove the “daterange” restriction in our search query, the original ones will appear in

Top 1. However, 3 out of 100 queries were not in Top 10 list by Google. We looked at these

three cases: one is because of the date range restriction, the second one is because it is a

new query out of our date range, and the last one seems to genuinely be because of Google

ranking algorithms.

The very high hit rate and, in particular, the top 1 results, confirm Google’s efficiency in

retrieving relevant information from the Web, something that our work leverages, by design.

However, the usability rates on the top hits were encouragingly high, and that is orthogonal to

Google’s efficiency in finding the most relevant results. These higher-than-average usability

rates may be because we used the most popular queries; users of SO value complete answers

that have good code snippets, so it is not surprising that the most popular queries have

snippets that are better than average.

In general, users search using words that are not exactly the same as the words in the SO

questions, so the best snippet of code for their needs may not be in the first position; but,

as it is usually the case with Google, it is likely in the top 10 positions. The usability of

the snippets in the top 10 positions were not as high, but they were still very high (78%

parsable, 29% runnable), and above average of the entire set of Python snippets.
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The Google search results over SO snippets are very encouraging. They show that it is

possible to go from informal queries in natural language to relatively usable, and correct, code

in a large percentage of cases, opening the door to the old idea of programming environments

that “do what I mean” [127]. This is possible now due to the emergence of very large mixed-

language knowledge bases such as SO.

2.6 Conclusion

Some of our experiment choices deserve an explanation:

• In SO, the concepts of accepted answer and best answer are different. Accepted answer is

the one approved by the questioner, while best answer is voted by all viewers. We chose

accepted answer in this work because we believe that in a Question&Answer forum as

SO, the questioner the one who has the best judgement of whether the answer solves the

problem. However, it is possible that the questioner makes mistakes and that the answer

voted the best by other viewers is most usable. In the future we will evaluate the usability

of best answers and compare the results with those of presented here.

• Our definition of usability is purely technical, and does not include the concept of use-

fulness other than indirectly, by the fact that the analyzed snippets are in the accepted

answers. It is possible that a snippet that does not parse is more useful than the one that

runs; or that a snippet that does not parse or run is still useful to the answer the question.

For example, if the question asked in SO is not a specific programming query, people may

answer with pseudo code, which is not usable in our case, but may also answer the original

question. Those cases, however, will always be out of reach of automatic tools, as they will

require many more repairs or even translation from pseudo-code to actual code. As such,

this study focused conservatively on those snippets that are part of accepted answers and
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that show good potential to being used as-is or with little repairs.

In this paper, we examined the usability of code snippets in Stack Overflow. The purpose of

our usability analysis is to understand the extent to which human-written snippets of code in

sites like SO could be used as basic blocks for automatic program generation. We analyzed

code snippets from all the accepted answers for four popular programming languages. For the

two statically-typed, compiled languages, C# and Java, we performed parsing and compila-

tion, and for the two dynamic languages, Python and JavaScript, we performed parsing and

running experiments. The results show that usability rates for the two dynamic languages

is substantially higher than that of the two statically-typed, compiled languages. Heuristic

repairs improved the results for Java, but not for C#. Even after the repairs, the compilable

rates for both Java and C# are very low. The results lead us to believe that Python and

JavaScript are the best choices for program synthesis explorations.

Usability as-is, however, is not enough to ensure that the snippets have high information

quality. Our qualitative analysis on the most usable snippets showed that multiple line

snippets have the highest potential to answer the questions. We found 40K+ of these for

Python, meaning that there is a good potential for processing them automatically.

Finally, in order to close the circle on our original vision, we investigated the extent to which

the top results of queries on SO using Google Web search contain these usable snippets. The

results are very encouraging, and show a viable path from informal queries to usable code.
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Chapter 3

File-level Duplication Analysis of

GitHub

The material in this chapter is part of the following paper, and is included here with per-

mission from ACM.

C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek.

Déjàvu: A Map of Code Duplicates on Github. In proceedings of ACM Programming

Languages, Volume 1(OOPSLA), Oct. 2017.

This paper explores the extent of cloning in a popular software repository hosting online

service GitHub. The study was conducted for projects written in a set of popular program-

ming languages, namely, Java, Javascript, C/C++, and Python. The study was led by Prof.

Cristina Lopes and involves collaborations with Prof. Jan Vitek. The detection of clones

in the JavaScript projects and their analysis was led by Prof. Jan Vitek and his students.

I contributed to this work by first collecting all data in Java, C/C++, and Python, and

then conducted three levels of file-level duplication analysis for Python projects, and finally

finished qualitative analysis on most duplicated files in Python and Java. In this chapter, I
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only included the parts that I was involved in.

3.1 Introduction

The advent of web-hosted open source repository services such as GitHub, BitBucket and

SourceForge have transformed how source code is shared. Creating a project takes almost

no effort and is free of cost for small teams working in the open. Over the last two decades,

millions of projects have been shared, building up a massive trove of free software. A number

of these projects have been widely adopted and are part of our daily software infrastructure.

More recently there have been attempts to treat the open source ecosystem as a massive

dataset and to mine it in the hopes of finding patterns of interest.

When working with software, one may want to make statements about applicability of, say,

a compiler optimization or a static bug finding technique. Intuitively, one would expect

that a conclusion based on a software corpus made up of thousands of programs randomly

extracted from an Internet archive is more likely to hold than one based on a handful of hand-

picked benchmarks such as [26] or [122]. For an example, consider [108] which demonstrated

that the design of the Mozilla optimizing compiler was skewed by the lack of representative

benchmarks. Looking at small workloads gave a very different picture from what could be

gleaned by downloading thousands of websites.

Scaling to large datasets has its challenges. Whereas small datasets can be curated with care,

larger code bases are often obtained by random selection. If GitHub has over 4.5 million

projects, how does one pick a thousand projects? If statistical reasoning is to be applied, the

projects must be independent. Independence of observations is taken for granted in many

settings, but with software there are many ways one project can influence another. Influences

can originate from the developers on the team, for instance the same people will tend to

33



write similar code. Even more common are the various means of software reuse. Projects

can include other projects. Apache Commons is used in thousands of projects, Oracle’s SDK

is universally used by any Java project, JQuery by most websites. StackOverflow and other

discussion forums encourage the sharing of code snippets. Cut and paste programming

where code is lifted from one project and dropped into another is another way to inject

dependencies. Lastly, entire files can be copied from one project to the next. Any of these
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Figure 3.1: Map of code duplication. The y-axis is the number of commits per project, the
x-axis is the number of files in a project. The value of each tile is the percentage of

duplicated files for all projects in the tile. Darker means more clones.
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actions, at scale, may bias results of research.

Several published studies either neglected to account for duplicates, or addressed them be-

fore analysis. [33] studied the use of assertions in the top 100 most popular C and C++

projects in GitHub. [106] studied software quality using the top 50 most popular projects

in 17 languages. Neither addressed file duplication. Conversely, [61] studied the old “tabs

v. spaces” issue in 400K GitHub projects; file duplication was identified as an issue and

eliminated before analysis. [39] present a meta-analysis of studies on GitHub projects where

trends and problems related to dataset selection are identified.

This paper provides a tool to assist selecting projects from GitHub. DéjàVu is a publicly

available index of file-level code duplication. The novelty of our work lies partly in its scale; it

is an index of duplication for the entire GitHub repository for four popular languages, Java,

C++, Python and JavaScript. Figure 3.1 illustrates the proportion of duplicated files for

different project sizes and numbers of commits (section 3.5 explains how these heatmaps were

generated). The heatmaps show that as project size increases the proportion of duplicated

files also increases. Projects with more commits tend to have fewer project-level clones.

Finally JavaScript projects have the most project-level clones, while Java projects have the

fewest.

Table 3.1: File-hash duplication in
subsets.

10K Stars 10K Commits

Java 9% 6%

C/C++ 41% 51%

Python 28% 44%

JavaScript 44% 66%

The clone map from which the heatmaps were pro-

duced is our main contribution. It can be used to un-

derstand the similarity relations in samples of projects

or to curate samples to reduce duplicates. Consider

for instance a subset that focuses on the most active

projects, as done in [27], by filtering on the number

of stars or commits a project has. For example, the

clones for the 10K most popular projects are summa-

rized in Figure 3.1. In Java, this filter is reasonably efficient at reducing the number of clones.
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In other languages clones remain prevalent. DéjàVu can be used to curate datasets, i.e.

remove projects with too many clones. Besides applicability to research, our results can be

used by anyone who needs to host large amounts of source code to avoid storing duplicate

files. Our clone map can also be used to improve tooling, e.g. being queried when new files

are added to projects to filter duplicates.

At the outset of this work, we were planning to study different granularities of duplication. As

the results came in, the staggering rate of file-level duplication drove us to select three simple

levels of similarity. A file hash gives a measure of file that are copied across projects without

changes. A token hash captures minor changes in spaces, comments and ordering. Lastly,

SourcererCC captures files with 80% token-similarity. This gives an idea of how many files

have been edited after cloning. Our choice of languages was driven by the popularity of these

languages, and by the fact that two are statically typed and two have no type annotations.

This can conceivably lead to differences in the way code is reused. We expected to answer

the following questions: How much code cloning is there, how does cloning affect datasets of

software written in different languages, and through which processes does duplication come

about? This paper describes our methodology, details the corpus that we have selected and

gives our answers to these questions. Along with the quantitative analysis, we provide a

qualitative analysis of duplicates on a small number of examples.

Artifacts. The lists of clones, code for gathering data, computing clones, data analysis

and visualization are at: http://mondego.ics.uci.edu/projects/dejavu. Processing was

done on a Dell PowerEdge R830 with 56 cores (112 threads) and 256G of RAM. The data

took 2 months to download and 6 weeks to process.
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3.2 Related Work

Code clone detection techniques have been documented in the literature since the early 90s.

Readers interested in a survey of the early work are referred to [72, 110]. There are also

benchmarks for assessing the performance of tools [111, 126]. The pipeline we used includes

SourcererCC, a token-based code clone detection tool that is freely available and has

been compared to other similar tools using those benchmarks [116].1 SourcererCC is

the most scalable tool so far for detecting Type 3 clones. Type 3 clones are syntactically

similar code fragments that differ at the statement level. The fragments have statements

added/modified/removed with respect to each other.

One of the earliest studies of inter-project cloning, [66] analyzed clones across three different

operating systems. They found evidence of about 20% cloning between FreeBSD and NetBSD

and less than 1% between Linux and FreeBSD or NetBSD. This is explained by the fact that

Linux originated and grew independently. [83] performed an analysis of popular open source

projects, including several versions of Unix and several popular packages; 38K projects and

5M files. The concept of duplication there was simply based on file names. Approximately

half of the file names were used in more than one project. Furthermore, the study also tried

to identify components that were duplicated among projects by detecting directories that

share a large fraction of their files. Both [83] and [84] use only a fraction of our dataset and

a single similarity metric, as opposed to the 3 metrics we provide.

A few studies have focused on block-level cloning, i.e. portions of code smaller than entire

files. [112] analyzed clones in twenty open source C, Java and C# systems. They found 15%

of the C files, 46% of the Java files, and 29% of C# files are associated with exact block-level

clones. Java had a higher percentage of clones because of accessors methods in Swing. [58]

computed block-level clones consisting of at least 15 statements between 22 commonly reused

1http://github.com/Mondego/SourcererCC
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Java frameworks consisting of more than 6 MLOC and 20 open source Java projects. They

did not find any clones for 11 projects. For 5 projects, they found cloning to be below 1%

and for the remaining 4, they found up to 10% cloning. These two studies give conflicting

accounts of block-level code duplication.

Closer to our study, an analysis of file-level code cloning on Java projects is presented by

[98]. This work, analyzed 13K Java projects with close to 2M files. The authors created a

system that merges various clone detection techniques with various degrees of confidence,

starting on the highest: MD5 hashes; name equivalence through Java’s full-qualified names.

They report 5.2% file-hash duplication, considerably lower than what we found. Our corpus

is three orders of magnitude larger than Ossher’s. Furthermore, intra-project duplication

meant to deal with versioning was excluded. They looked at subversion, which may have

different practices than git, especially related to versioning. We speculate that the practice

of copying source code files in open source has become more pervasive since that study

was made, and that sites like GitHub simplify copying files among projects, but we haven’t

reanalyzed the dataset as it is not relevant to the DéjàVu map.

Over the past few years, open source repositories have turned out to be useful to validate

beliefs about software development and software engineering in general. The richness of

the data and the potential insights that it represents has created an entire community of

researchers. [71] used 50K GitHub repositories to investigate the correlation between the

presence of test cases and various project development characteristics, including the lines of

code and the size of development teams. They removed toy projects and included famous

projects such as JQuery and Rails in their dataset. [140] study how licensing usage and

adoption changes over a period of time on 51K repositories. They choose repositories that

(i) were not forks; and (ii) had at least one star. [27] analyze 2.5K repositories to investigate

the factors that impact their popularity, including the identification of the major patterns

that can be used to describe popularity trends.
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The software engineering research community is increasingly examining large number of

projects to test hypotheses or derive new knowledge about the software development process.

However, as [88] point out, more is not necessarily better, and selection of projects plays

an important role – more so now than ever, since anyone can create a repository for any

purpose at no cost. Thus, the quality of data gathered from these software repositories

might be questionable. For example, as we also found out, repositories often contain school

assignments, copies of other repositories, images and text files without any source code.

[65] manually analyzed a sample of 434 GitHub repositories and found that approximately

37% of them were not used for software development. As a result, researchers have spent

significant effort into collecting, curating, and analyzing data from open source projects

around the world. Flossmetrics [56] and Sourcerer [97] collect data and provide statistics.

[44] have curated a large number of Java repositories and provide a domain specific language

to help researchers mine data about software repositories. Similarly [25] have created Orion, a

prototype for enabling unified search to retrieve projects using complex search queries linking

different artifacts of software development, such as source code, version control metadata,

bug tracker tickets, developer activities and interactions extracted from hosting platform.

Black Duck Open Hub (www.openhub.net) is a public directory of free and open source

software, offering analytics and search services for discovering, evaluating, tracking, and

comparing open source code and projects. It analyzes both the code’s history and ongoing

updates to provide reports about the composition and activity of project code bases. These

platforms are useful for researchers to filter out repositories that are interesting to study a

given phenomenon by providing various filters. While these filters are useful to validate the

integrity of the data to some extent, certain subtle factors when unaccounted for can heavily

impact the validity of the study. Code duplication is one such factor. For example, if the

dataset consists of projects that have hundreds and thousands of duplicate projects that are

part of the same dataset, the overall lack of diversity in the dataset might lead to incorrect

observations, as pointed out by [88].
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Figure 3.2: Analysis pipeline.

3.3 Analysis Pipeline

Our analysis pipeline is outlined in Figure 7.2. The pipeline starts with local copies of the

projects that constitute our corpus. From here, code files are scanned for fact extraction

and tokenization. Two of the facts are the hashes of the files and the hashes of the tokens

of the files. File hashes identify exact duplicates; token hashes allow catch clones up with

minor differences. While permutations of same tokens may have the same hash, they are

unlikely. Clones are dominated by exact copies, and we did not observe any such collision

in randomly sampled pairs. Files with distinct token hashes are used as input to the near-

miss clone detection tool, SourcererCC. While our JavaScript pipeline was developed

independently, data formats, database schema and analysis scripts are identical.

3.3.1 Tokenization

Tokenization transforms a file into a “bag of words,” where occurrences of each word are

recorded. Consider, for instance, the Java program:

package foo;

public class Foo { // Example Class

private int x;

public Foo(int x) { this.x = x; }

private void print() { System.out.println("Number: " + x) }

public static void main() { new FooNumber(4).print(); } }
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Tokenization removes comments, white space, and terminals. Tokens are grouped by fre-

quency, generating:

Java Foo:[(package,1),(foo,1),(public,3),(class,1),(Foo,2),(private,2),(int,2),(x,5),

(this,1),(void,2),(print,2),(System,1),(out,1),(println,1),(Number,1),(static,1),

(main,1),(new,1),(FooNumber,1),(4,1)]

The tokens package and foo appear once, public appears three times, etc. The order is

not relevant. During tokenization we also extract additional information: (1) file hash – the

MD5 hash of the entire string that composes the input file; (2) token hash – the MD5 hash

of the string that constitutes the tokenized output; (3) size in bytes; (4) number of lines ;

(5) number of lines of code without blanks; (6) number of lines of source without comments;

(7) number of tokens ; and (8) number of unique tokens. The tokenized input is used both

to build a relational database and as input to SourcererCC. The use of MD5 (or any

hashing algorithm) runs the risk of collisions, given the size of our data they are unlikely to

skew the results.

3.3.2 Database

The data extracted by the tokenizer is imported into a MySQL database. The table Projects

contains a list of projects, with a unique identifier, a path in our local corpus and the project’s
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URL. Files contains a unique id for a file, the id of the project the file came from, the relative

paths and URLs of the file and the file hash. The statistics for each file are stored in the table

Stats, which contains the information extracted by the tokenizer. The tokens themselves

are not imported. The Stats table has the file hash as unique key. With this, we get an

immediate reduction from files to hash-distinct files. Two files with distinct file hashes may

produce the exact same tokens, and, therefore the same token hash. This could happen

when the code of one file is a permutation of another. The converse does not hold: files with

distinct token hashes must have come from files with distinct file hashes. For source code

analysis, file hashes are not necessarily the best indicators of code duplication; token hashes

are more robust to small perturbations. We use primarily token hashes in our analysis.

3.3.3 SourcererCC

The concept of inexact code similarity has been studied in the code cloning literature. Blocks

of code that are similar are called near-miss clones, or near-duplication [37]. SourcererCC

estimates the amount of near-duplication in GitHub with a “bag of words” model for source

code rather than more sophisticated structure-aware clone detection methods. It has been

shown to have good precision and recall, comparable to more sophisticated tools [116]. Its

input consists of non-empty files with distinct token hashes. SourcererCC finds clone

pairs between these files at a given level of similarity. We have selected 80% similarity as

this has given good empirical results. Ideally one could imagine varying the level of similarity

and reporting a range of results. But this would be computationally expensive and, given

the relatively low numbers of near-miss clones, would not affect our results.
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Table 3.2: GitHub Corpus.

Java C++ Python JavaScript

C
ou

n
ts

# projects (total) 3,506,219 1,130,879 2,340,845 4,479,173
# projects (non-fork) 1,859,001 554,008 1,096,246 2,011,875
# projects (downloaded) 1,481,468 369,440 909,290 1,778,679
# projects (analyzed) 1,481,468 364,155 893,197 1,755,618
# files (analyzed) 72,880,615 61,647,575 31,602,780 261,676,091

M
ed

ia
n
s Files/project 9 (σ = 600) 11 (σ = 1304) 4 (σ = 501) 6 (σ = 1335)

SLOC/file 41 (σ = 552) 55 (σ = 2019) 46 (σ = 2196) 28 ( σ = 2736)
Stars/project 0 (σ = 71) 0 (σ = 119) 0 (σ = 99) 0 (σ = 324)
Commits/project 4 (σ = 336) 6 (σ = 1493) 6 (σ = 542) 6 (σ = 275)

3.4 Corpus

The GitHub projects were downloaded using the GHTorrent database and network [57] which

contains meta-data such as number of stars, commits, committers, whether projects are

forks, main programming language, date of creation, etc., as well as download links. While

convenient, GHTorrent has errors: 1.6% of the projects were replicated entries with the same

URL; only the youngest of these was kept for the analysis.

Table 3.2 gives the size of the different language corpora. We skipped forked projects as

forks contain a large amount of code from the original projects, retaining those would skew

our findings. Downloading the projects was the most time-consuming step. The order of

downloads followed the GHTorrent projects table, which seems to be roughly chronological.

Some of the URLs failed to produce valid content. This happened in two cases: when

the projects had been deleted, or marked private, and when development for the project

happens in branches other than master. Thus, the number of downloaded projects was

smaller than the number of URLs in GHTorrent. For each language, the files analyzed were

files whose extensions represent source code in the target languages. For Java: .java; for

Python: .py; for JavaScript: .js, for C/C++: .cpp .hpp .HPP .c .h .C .cc .CPP .c++

and .cp. Some projects did not have any source code with the expected extension, they were
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Figure 3.3: Files per project.

excluded.

The medians in Table 3.2 give additional properties of the corpus, namely the number of files

per (non-empty) project, the number of Source Lines of Code (SLOC) per file, the number

of stars and the number of commits of the projects. In terms of files per project, Python

and JavaScript projects tend to be smaller than Java and C++ projects. C++ files are

considerably larger than any others, and JavaScript files are considerably smaller. None of

these numbers is surprising. They all confirm the general impression that a large number

of projects hosted in GitHub are small, not very active, and not very popular. Figures 3.3

and 3.4 illustrate the basic size-related properties of the projects we analyzed, namely the

distribution of files per project and the distribution of Source Lines of Code (SLOC) per

file. For JavaScript we give data with and without NPM (it is a cause of a large number

of clones). Without NPM means that we ignored files downloaded by the Node Package

Manager.
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Figure 3.4: SLOC per file.

3.5 Quantitative Analysis

We present analyses of the data at two levels of detail: file and project level. This section

focuses exclusively on quantitative analysis; the next section delves deeper into qualitative

observations.

3.5.1 File-Level Analysis

Table 3.3 shows a summary of the findings for files. “SCC dup files” is the number of files,

out of the distinct token-hash files, that SourcererCC has identified as clones; similarly,

“SCC unique files” is the number of files for which no clones were detected. Figure 3.5 (top

row) charts the numbers in Table 3.3. The duplicated files (dark grey) are the files that are

duplicate of at least one of the distinct token-hash files (light grey); further, the distinct
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token-hash files are split between those for which SourcererCC found at least one similar

file (cloned files, grey) and those for which SourcererCC did not find any similar file

(unique files, in white).

These numbers show a considerable amount of code duplication, both exact copies of the

files (file hashes), exact copies of the files’ tokens (token hashes), and near-duplicates of

files (SourcererCC). The amount of duplication varies with the language: the JavaScript

ecosystem contains the largest amount of duplication, with 94% of files being file-hash clones

of the other 6%; the Java ecosystem contains the smallest amount, but even for Java, 40%

of the files are duplicates; the C++ and Python ecosystems have 73% and 71% copies,

respectively. As for near-duplicates, Java contains the largest percentage: 46% of the files

are near-duplicate clones. The ratio of near-miss clones is 43% for Java, 39% for JavaScript,

and 32% for Python.

The heatmaps (Figure 3.1) shown in the beginning of the paper were produced using the

number of commits shown in Table 3.2, the number of files in each project, and the file

hashes. The heat intensity corresponds to the ratio of file hashes clones over total files for

each cell.

Duplication can come in many flavors. Specifically, it could be evenly or unevenly distributed

among all token hashes. We found these distributions to be highly skewed towards small

groups of files. In Java 1.5M groups of files with the same token-hash have either 2 or 3 files

in them; the number of token hash-equal groups with more than 100 files is minuscule. The

Table 3.3: File-Level Duplication.

Java C++ Python JavaScript

Total files 72,880,615 61,647,575 31,602,780 261,676,091

File hashes 43,713,084 (60%) 16,384,801 (27%) 9,157,622 (29%) 15,611,029 (6%)
Token hashes 40,786,858 (56%) 14,425,319 (23%) 8,620,326 (27%) 13,587,850 (5%)
SCC dup files 18,701,593 (26%) 6,200,301 (10%) 2,732,747 (9%) 5,245,470 (2%)
SCC unique files 22,085,265 (30%) 8,225,018 (13%) 5,887,579 (19%) 8,342,380 (3%)
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Figure 3.5: File-level duplication for entire dataset and excluding small files.

same observation holds for the other languages. Another interesting piece of information

about clone groups is given by the largest extreme. In Python, the largest group of file-hash

clones has over 2.5M files. In Java, the largest group of SourcererCC clones has over 65K

files. In the next section we show which files these are.

3.5.2 File-Level Analysis Excluding Small Files

One observation that emerged immediately from all the language ecosystems was that the

most duplicated file is the empty file – a file with no content, and size 0. In the Python

corpus alone, there are close to 2.2M occurrences of this trivial file, and in the JavaScript

corpus there are 986K occurrences of that same file. Another frequently occurring trivial file

in all ecosystems is a file with 1 empty line. Indeed, a common pattern that emerged was

that the most duplicated files tend to be very small. Once we detected that, we redid the

analysis excluding small files. Specifically, we excluded all files with less than 50 tokens.2

Table 3.4 and Figure 3.5 (bottom row) show the results.

2This threshold is arbitrary. It is based on our observations of small files; other values can be used.
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Although the absolute number of files and hashes change significantly, the changes in ratios

of the hashes and SCC results are small. When they are noticeable, they show that there

is slightly less duplication in this dataset than in the entire dataset. Comparing Table 3.4

with Table 3.3 shows that small files account for a slightly higher presence of duplication,

but not that much higher than the rest of the corpus.

3.6 Mixed Method Analysis

The numbers presented in the previous section portray an image of GitHub not seen before.

However, that quantitative analysis opens more questions. What files are being copied

around, and why? What explains the differences between the language ecosystems? Why is

the JavaScript ecosystem so much off the charts in terms of duplication? In order to answer

these kinds of questions, we delve deeper into the data.

With so much data, our first heuristic was size. As seen in the previous section we noticed

that the empty file was the most duplicated file in the entire corpus, among all languages.

We also noticed that the top duplicated files tended to be very small and relatively generic.

Although an intriguing finding, very small, generic files hardly provide any insightful infor-

mation about the practice of code duplication. What about the non-trivial files that are

heavily duplicated? What are they?

Table 3.4: File-level duplication excluding small files.

Java C++ Python JavaScript

# of files 57,240,552 49,507,006 23,382,050 162,136,892
% of corpus 79% 80% 74% 62%

File hashes 34,617,736 (60%) 13,401,948 (27%) 7,267,097 (31%) 11,444,667 (7%)
Token hashes 32,473,052 (58%) 11,893,435 (24%) 6,949,894 (30%) 10,074,582 (6%)
SCC dup files 14,626,434 (26%) 5,297,028 (10%) 2,105,769 (9%) 3,896,989 (2%)
SCC unique files 17,848,618 (31%) 6,596,407 (13%) 4,844,125 (21%) 6,177,593 (4%)

48



This section presents observations emerging from looking at specific files and projects using

mixed methods. We divide the section into four parts: (1) an analysis of each language

ecosystems looking for the most duplicated files in general; (2) file duplication at different

levels (file hashes, token hashes and near duplicates with SourcererCC); (3) the most reap-

propriated projects in the four ecosystems; and (4) an in-depth analysis of the JavaScript

ecosystem.

3.6.1 Most Duplicated Non-Trivial Files

As stated above, we wanted to find out if the size of the files had an effect on their duplication.

For example, are small files copy-pasted from StackOverflow or online tutorials and blogs,

and large files from well-known supporting libraries? In order to make sense of so much

data, we needed to sample it first, so that interesting hypotheses could emerge, and/or we

could find counter-examples that contradicted our initial expectations. This is territory of

qualitative and mixed methods [41].

3.6.1.1 Methodology

We used a mixed method approach consisting of qualitative and quantitative elements. Based

on our quantitative analysis, we hypothesized that size of the files, and whether the duplica-

tion was exact or token-based, might have an effect on the nature of duplication; for example,

the empty file certainly is not being copy-pasted from one project to another, it simply is

created in many projects, for a variety of reasons. Maybe we could see patterns emerge for

files of different sizes. The following describes our methodology:

• Quantitative Elements. We split files according to the percentiles of the number of

tokens per file within each language corpus, and create bins representing the ranges 20%-
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Table 3.5: Number of tokens per file within certain percentiles of the distribution of file size.

20%-30% 45%-55% 70%-80% 90%+

T
ok

en
s Java 46-71 120-167 279-419 751+

C/C++ 50-77 138-199 372-623 1284+
Python 29-65 149-236 477-795 1596+
JavaScript 19-32 68-114 238-431 1127+

F
il
es

Java 7,670,926 (11%) 7,523,679 (10%) 7,335,067 (10%) 7,298,767 (10%)
C/C++ 6,381,850 (10%) 6,228,550 (10%) 6,204,943 (10%) 6,167,647 (10%)
Python 3,282,957 (10%) 3,205,337 (10%) 3,169,316 (10%) 3,161,325 (10%)
JavaSript 28,257,319 (11%) 27,306,195 (10%) 26,326,975 (10%) 26,134,513 (10%)

30% (small), 45%-55% (medium), 70%-80% (large), and greater than 90% (very large). So,

the 45%-55% bin contains files that are between the 45% percentile and the 55% percentile

on the number of tokens per file of a certain language. The number of tokens for the bins

can be seen in Table 3.5. For example in Java, the first bin includes files containing

47 to 72 tokens, and so on. The gaps between these percentiles (for example, no file

is observed between the 30% and the 45% percentile) ensure buffer zones that are large

enough to isolate the differently-sized files, should differences in their characteristics be

observed. For each of these bins, we analyzed the top 20 most cloned files; this grouping

was performed twice, using file hashes and token hashes, and this was done for all the

languages. In total, for each language, 80 files were analyzed.

• Qualitative Elements. Looking at names of most popular files, a first observation

was that many of these files came from popular libraries and frameworks, like Apache

Cordova. This hinted at the possibility that the origin of file duplication was in well-

known, popular libraries copied in many projects; a qualitative analysis of file duplication

was better understood from this perspective. Therefore, each file was observed from the

perspective of the path relative to the project where it resides, and was then hand coded for

its origin.3 For example, project name/src/external/com/http-lib/src/file.java

was considered to be part of the external library http-lib. Each folder assumed to

3For a good tutorial on coding, see [117]
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represent an external library was matched with an existing homepage for the library,

if we could find it using Google. Continuing the running example, http-lib was only

flagged as an external dependency if there was a clear pointer online for a Java library

with that name. In some cases, the path name was harder to interpret, for example: p

roject name/external/include/internal/ftobjs.h. In those cases, we searched Google for

the last part of the path in order to find the origin (in this particular case, we searched

i nclude/internal/ftobjs.h). For JavaScript the situation was often simpler: many of the

files came from NPM modules, in which case the module name was obvious from the file’s

location. Some of the files were also minified versions of libraries, in which case the name

of the file gave the library name, often with its version (e.g. jquery-3.2.1.min). Using

these methods, we were able to trace the origins of all the 320 files.

3.6.1.2 Observations

Contrary to our original expectation, we did not find any differences in the nature of file

duplication related to either size of the files, similarity metric, or language in the 320 samples

we inspected. We also didn’t find any StackOverflow or tutorial files in these samples. More-

over, the results for these files show a pattern that crosses all of those dimensions: the most

duplicated files in all ecosystems come from a few well-known libraries and frameworks. The

Java files were dominated by the ActionBarSherlock and Cordova. C/C++ was dominated

by boost and freetype, and JavaScript was dominated by files from various NPM packages,

only 2 cases were from jQuery library. For Python, the origins of file cloning for the 80 files

sampled were more diverse, along 6 or 7 common frameworks.4

Because the JavaScript sample was so heavily (78 out of 80) dominated by Node packages,

we have performed the same analysis again, this time excluding the Node files. This uncov-

4The very small number of libraries and frameworks found in these samples is a consequence of having
sampled only 80 files per language, and the most duplicated ones. Many of the files had the same origin,
because those original libraries consist of several files.
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ered jQuery in its various versions and parts accounting for more than half of the sample

(43), followed from a distance by other popular frameworks such as Twitter Bootstrap (12),

Angular (7), reveal (4). Language tools such as modernizr, prettify, HTML5Shiv and others

were present. We attribute this greater diversity to the fact that to keep connections small,

many libraries are distributed as a single file. It is also a testament to the popularity of

jQuery which still managed to occupy half of the list.

The presence of external libraries within the projects’ source code shows a form of dependency

management that occurs across languages, namely, some dependencies are source-copied to

the projects and committed to the projects’ repositories, independent of being installed

through a package manager or not. Whether this is due to personal preference, operational

necessity, or simple practicality cannot be inferred from our data.

Another interesting observation was the proliferation of libraries for being themselves source-

included in other widely-duplicated libraries. Take Cordova, a common duplicated presence

within the Java ecosystem. Cordova includes the source of okhttp, another common origin

of duplication. Similarly, within C/C++, freetype2 was disseminated in great part with the

help of another highly dispersed supporting framework, cocos2d. This not only exacerbates

the problem, but provides a clear picture of the tangled hierarchical reliance that exists in

modern software, and that sometimes is source-included rather than being installed via a

package manager.

3.6.2 File Duplication at Different Levels

In this section, we look in greater detail at the duplication in the three levels reported: file

hashes, token hashes and SCC clones:
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3.6.2.1 File Hashes

Top cloned files of various sizes were already analyzed in 3.6.1. To complement, we have also

investigated mostly cloned non-trivial files across all sizes to make sure no interesting files

slipped between the bins, but we did not find any new information. Instead we tried to give

more precise answer to question which files get cloned most often. Our assumption was that

the smaller the file, the more likely it is to be copied. Figure 3.6 shows our findings. Each

file hash is classified by number of copies of the file (horizontal axis) and by size of the file in

bytes (vertical axis). Furthermore, we have binned the data into 100x100 bins and we have

a logarithmic scale on both axes, which forms the artefacts towards the axes of the graph.

The darker the particular bin, the more file hashes it contains. The graphs show that while

it is indeed smaller files that get copied most often, with the exception of extremely small

outliers (trivial files, such as the empty file), the largest duplication groups can be found

for files with sizes in thousands of bytes, with maximum sizes of the clone groups gradually

lowering for either larger, or smaller files.

3.6.2.2 Token Hashes

For a glimpse of the distribution of token hashes, we have investigated the relations between

number of files within a token hash group and number of file hashes (i.e. different files).

These findings are summarized in Figure 3.7. The outlier in the top-right corner of each

graph is the empty file. The number of different empty files is explained by the fact that

when using token hash, any file that does not have any language tokens in it is considered

empty. Given the multitude of sizes observed within token hash groups, the next step was

to analyze the actual difference in sizes within the groups. The results shown in Figure 3.8

summarize our findings. As expected, for all four languages the empty file again showed very

close to the top. For Java, the biggest empty file was 24.3MB and contains a huge number of
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Figure 3.6: Distribution of file-hash clones.

comments as a compiler test. For C/C++ the empty files has the second largest difference

and consists of a comment with ASCII art. Python’s empty file was a JSON dump on a

single line, which was commented, and finally for JavaScript the largest empty file consisted

of thousands of repetitions of an identical comment line, totaling 36MB.

More interesting than largest empty files is the answer to the question: What other, non-

trivial files display the greatest difference between sizes in the same group. Interestingly,

the answer is slightly different for each language: for Java, the greatest size differences exist

for binary files disguised as java files. In these files, very few tokens were identified by the

tokenizer and therefore two unrelated binary files were grouped into a single token group with
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Figure 3.7: Distribution of token-hash clones.

a small number of very different files. For C/C++ often, we have found source codes with

and without hundreds of KB of comments as members of the same groups. An outlier was

a file with excessive white-spaces at each line (2.42MB difference). In Python, formatting

was most often the cause: a single file multiplied its size 10 times by switching from tabs

to 8 spaces. For JavaScript, we observed minified and non-minified versions. Sometimes

the files were false positives because complex Javascript regular expressions were treated as

comments by the simple cross-language parser.
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Figure 3.8: ∆ of file sizes in token hash groups.

3.6.2.3 SourcererCC Duplicates

For SourcererCC, we randomly selected 20 clone pairs and we categorized them into

three categories: i) intentional copy-paste clones ; ii) unintentional accidental clones ; and iii)

auto-generated clones. It is interesting to note that the clones in categories ii) and iii) are

both unavoidable and are created because of the use of the popular frameworks.

Java We have categorized 30% (6 out of 20) of the clone pairs into the intentional copy-

paste clones category. It included instances of both inter-project and intra-project clones.

Intra-project clones were created to test/implement functionalities that are similar while
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keeping them isolated and easy to maintain. Inter-project clones seemed to come from

projects that look like class projects for a university course and from situations where one

project was almost entirely copy-pasted into the other project. We found 2 instances of

unintentional cloning, both inter-project. The files in such clone pairs implement a lot of

similar boilerplate code necessary to create an Android activity class. We categorized the

majority (12 out of 20) of the clone pairs into the auto-generated clones category. The files

in this category are automatically generated from the frameworks like Apache Axis (6 pairs),

Android (2 pairs), and Java Architecture for XML Binding (4 pairs). The unintentional and

auto-generated clones together constitute 70% of the sample.

C/C++ The sample was dominated by intentional copy-paste clones (70%, 12 pairs). The

origin for these file clone pairs seems to be the same, independent of these being inter of

intra-project clones, and relates to the reuse of certain pieces of source code after which

they suffer small modification to cope with different setups or support different frameworks.

Five pairs were classified as unintentional cloning. They represented educational situations

(one file was composed in its large part by the skeleton of a problem, and the difference

between the files clones was the small piece of code that implements the solution). Two

different versions of the same file were also found (libpng 1.0.9 vs. libpng 1.2.30). Files

from two projects sharing a common ancestor (bitcoin vs dotcoin) were also observed. The

auto-generated clones were present in three pairs, 2 of them from the Meta-Object compiler.5

The unintentional and auto-generated clones accounted for 40% of the sample.

Python The sample was dominated by uses of the Django framework (17 pairs), all vari-

ants of auto generated code to initialize a Djagno application. We classified them as auto-

generated clones. Two pairs were intentional copy-paste clones intra-project copy-paste of

unittests. The last pair belonged to the same category was a model schema for a Django

5http://doc.qt.io/qt-4.8/moc.html
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database.

3.7 Conclusions

The source control system upon which GitHub is built, Git, encourages forking projects and

independent development of those forks. GitHub provides an easy interface for forking a

project, and then for merging code changes back to the original projects. This is a popular

feature: the metadata available from GHTorrent shows an average of 1 fork per project.

However, there is a lot more duplication of code that happens in GitHub that does not go

through the fork mechanism, and, instead, goes in via copy and paste of files and even entire

libraries.

We presented an exhaustive investigation of code cloning in GitHub for four of the most

popular object-oriented languages: Java, C++, Python and JavaScript. The amount of

file-level duplication is staggering in the four language ecosystems, with the extreme case

of JavaScript, where only 6% of the files are original, and the rest are copies of those. The

Java ecosystem has the least amount of duplication. These results stand even when ignoring

very small files. When delving deeper into the data we observed the presence of files from

popular libraries that were copy-included in a large number projects. We also detected cases

of reappropriation of entire projects, where developers take over a project without changes.

There seemed to be several reasons for this, from abandoned projects , to slightly abusive uses

of GitHub in educational contexts. Finally, we studied the JavaScript ecosystem, which turns

out to be dominated by Node libraries that are committed to the applications’ repositories.

This study has some important consequences. First, it would seem that GitHub, itself, might

be able to compress its corpus to a fraction of what it is. Second, more and more research

is being done using large collections of open source projects readily available from GitHub.
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Code duplication can severely skew the conclusions of those studies. The assumption of

diversity of projects in those datasets may be compromised. DéjàVu can help researchers

and developers navigate through code cloning in GitHub, and avoid it when necessary.
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Chapter 4

Method-level Duplication Analysis

between Stack Overflow and GitHub

The material in this chapter is from the following paper, and is included here with permission

from ACM.

D. Yang, P. Martins, V. Saini, and C.V. Lopes. Stack Overflow in Github: Any Snippets

There? In proceedings of the 14th International Conference on Mining Software Repositories

(MSR), May 2017.

4.1 Introduction

The popularity and relevance of the Question and Answer site Stack Overflow (SO) is well

known within the programming community. As a measure of its populatiry, SO received more

than half a billion views on the first 30 days of 2017 alone1. Another very popular site is

1https://www.quantcast.com/stackoverflow.com [Accessed January, 2017]
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Github (GH), a project repository that ranked 14th on Forbes Cloud 100 in 20162 Although

both sites are equally relevant for the programming community, they are so in different

contexts. SO is a Q&A website with a strong community-based support, responsible for

providing answers for virtually any type of programming problems and helping any type of

user, from casual SHELL users to expert system administrators. GH also has a strong social

component, but it is more focused on the storage and maintenance of software artifacts,

providing version controlling features, bug management, control over the coder-base and

contributors of projects, and so on.

Both platforms are part of a larger system of globalized software production. The same users

that rely on the hosting and management characteristics of GH often have difficulties and

need help on the implementation of their computer programs, seek support on SO for their

specific problems, or hints of solutions from ones with a degree of similarity, and return to

GH to apply the knowledge acquired. Empirically, however, there is little evidence of the

actual impact that these two systems have on each other, or of the kind of information that

goes from one platform to the other. Analyzing this relation is the focus of this work.

In isolation, SO has been the subject of various research studies. One example is the use

of topic modeling on SO questions to categorize discussions [19, 21, 144], another is the use

SO statistics to analyze use behavior and activity [36, 139]. Recent work has paid special

attention to code snippets. Wong et al. [147] and Ponzanelli et al. [102] both mine SO for

code snippets that are clones to a snippet in the client system. Yang et al. [149] provide a

usability study of code snippets of four popular programming languages.

There are already some studies that investigate some relations between SO and GH. Vasilescu

et al. [137] investigated the interplay between asking and answering questions on SO and

committing changes to GH repositories. They answered the question of whether participation

2The Forbes Cloud 100 recognizes the top 100 private cloud companies in the world (http://www.forbes.
com/cloud100).
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in SO relates to the productivity of GH developers. From this work, we know that GH and

SO overlap in a knowledge-sharing ecosystem: GH developers can ask for help on SO to solve

their own technical challenges; they can also engage in SO to satisfy a demand for knowledge

of others, perhaps less experienced than themselves. Moreover, we see this overlapping of

knowledge also indicating another kind of overlapping: pieces of code. GH programmers

can copy-paste SO code snippets to solve their particular problems; they can also use their

existing code in GH repository to answer SO questions.

An et al. [18] conducted a case study with 399 Android apps, to investigate whether devel-

opers respect license terms when reusing code from SO posts (and the other way around).

They found 232 code snippets in 62 Android apps that were potentially reused from SO, and

1,226 SO posts containing code examples that are clones of code released in 68 Android apps,

suggesting that developers may have copied the code of these apps to answer SO questions.

In this study, our goal is to investigate and understand how much the snippets obtained

from SO are used in GH projects. We opertionalize this problem as pieces of source code

that exist in both sides, and we search for cloning and repetition as a measure of equal

information presented in both places.

How much of the knowledge base, represented as source code, is shared between SO and GH?

If SO and GH have overlapping source code, is this copy literal or does it suffer adaptations?

And are these adaptations, if they exist, specializations required by the idiosyncrasies of the

target or by the idiosyncrasies or the programmer, or both?

To answer these questions we perform intra and inter code duplication analysis on GH and

SO. We uncover and document code duplicates in 909k Python projects from GH, which

contain 292M function definitions in GH and 1.9M snippets in SO. Our choice of language is

driven by popularity and by existing work by Yang et al. [149], which shows Python snippets

in SO having one of the highest usability rates among the popular languages.
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The rest of the paper is organized as follows. Section 4.3 details the methodology we applied

to find code duplicates. Section 7.4 describes the datasets we used. Quantitative findings

are presented in Section 4.5 and qualitative analysis in Section 4.6. Related work is present

in Section 4.2. Section 6.7 concludes the paper.

4.2 Related Work

This paper involves different aspects of study, first, it focuses on the code itself of SO; second,

it discovers the relationship between SO and GH; third, it investigates the large-scale code

duplication detection in block-level, which includes uniqueness of source code. The related

work come with these angles.

Wong et al. [147] devised a tool that automatically generates comments for software projects

by searching for accompanying comments to SO code that are similar to the project code.

They did so by relying on clone detection. This work is very similar to Ponzanelli et al.

[101] [102] [103] in terms of the approach adopted. Both mine for SO code snippets that are

clones to a snippet in the client system, but Ponzanelli et al.’s goal was to integrate SO into

an Integrated Development Environment (IDE) and seamlessly obtain code prompts from

SO when coding. In another work from Ponzanelli et al., they presented an Eclipse plugin,

Seahawk, that also integrates SO within the IDE. It can add support to code by linking

programming tools with SO search results.

There are two studies about assessing the usablity of code in SO. Nasehi et al. [89] engaged

in finding the characteristics of a good example. They adopted a holistic approach and

analyzed the characteristics of high voted answers and low voted answers. They enlisted

traits by analyzing both the code and the contextual information: the number of code blocks

used, the conciseness of the code, the presence of links to other resources, the presence of
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alternate solutions, code comments, etc.

Yang [149] assessed the usability of SO snippet with a different criteria. They define usablity

based on the standard steps of parsing, compiling and running the source code, which in-

dicates that the effort that would be required to use the snippet as-is. A total of 3M code

snippets are analyzed across four languages: C#, Java, JavaScript, and Python. Python

and JavaScript proved to be the languages for which the most code snippets are usable.

Conversely, Java and C# proved to be the languages with the lowest usability rate.

Vasilescu, et al. [137] investigated the interplay between SO activities and the development

process, reflected by code changes committed to the largest social coding repository, GH.

They found that active GH committers ask fewer questions and provide more answers than

others, and active SO askers distribute their work in a less uniform way than developers that

do not ask questions.

An et al. [18] aims to raise the awareness of the software engineering community about po-

tential unethical code reuse activities taking place on Q&A websites like SO. They conducted

a case study with 399 Android apps, to investigate whether developers respect license terms

when reusing code from SO posts (and the other way around). From the 232 code snippets

in 62 Android apps that were potentially reused from SO, and the 1,226 SO posts containing

code examples that are clones of code released in 68 Android apps, they observed 1,279 cases

of potential license violations (related to code posting to SO or code reuse from SO).

Some previous work has been done on code clone detection in block-level. Roy and Cordy

[112] analyzed clones in twenty open source C, Java and C# systems, using the NiCad

block-level clone detector. They found that on average 15% of the files in the C systems,

46% of the files in the Java systems and 29% of files in the C# systems are associated with

exact (block-level) clones. Heinemann et al.[58] computed type-2 block-level clones between

selected 22 commonly reused Java frameworks (e.g. Eclipse and Apache) and 20 open source
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Figure 4.1: Pipeline for file analysis.

Java projects. They didn’t find any clones for 11 of the 20 study objects. For 5 projeccts,

they found cloning to be below 1% and for the remaining 4 projects, they found in the range

of 7% to 10% cloning.

Gabel et al. [51] presented the results of the first study of uniqueness of source code. They

gave uniqueness of a unit of source code a precise measure: synctactic redundancy. They

wanted to figure out at what levels of granularity is software unique, and at a given level

of granularity, how unique is software. We compute syntactic redundancy for 30 assorted

SourceForge projects and 6,000 other projects. The results revealed a general lack of unique-

ness in software at levels of granularity equivalent to approximately one to seven lines of

source code. This phenomenon appears to be pervasive, crossing both project and program-

ming language boundaries.

Hindle et al. [60] pointed out like natural language, software is also likely to be repetitive

and predictable. Using n-gram model, they provided empirical evidence to support that code

can be usefully modeled by statistical language models and such models can be leveraged to

support software engineers. They showed that code is also very repetitive, and in fact even

more so than natural languages.
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4.3 Methodology

In this section, we describe the pipeline followed for analyzing block-level duplication inter

and intra GH and SO.

Figure 7.2 contains the main steps in the analysis process. The pipeline starts by extracting

blocks from GH projects and SO posts. Blocks from both origins are then scanned to obtain

tokens and other relevant information (a process we call tokenization from now on).

In this analysis process, we provide three levels of similarity: a hash on the block, a hash

on tokens, and an 80% token similarity. These capture the case where entire blocks are

copied as-is, smaller changes are made in spacing or comments, and more meaningful edits

are applied to the code.

Moreover, all the similarity analyses are done for intra-GH, intra-SO, and inter GH and SO.

The following of this section will discuss each of the step in the pipeline in detail.

4.3.1 Method Extraction

For GH projects, our concept of block is that of a function definition. We extract the

following two kinds of function definitions: (1) function defined inside of a class; (2) function

defined outside of a class; For nested functions, we only consider the outtermost function.

Consider the following example:

1 class Foo:

2 def func1(a, b, c):

3 return a + b

4

5 def func2(a, b, c):

6 if a>b:

7 return c

8 return 0
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9

10 def func3(a):

11 def func4(b):

12 return b*2

13 return func4(3)

Listing 4.1: Github blocks

From the example above, we extract three functions: func1, func2, and func3. func4 was nested

inside of an already existing block, func3, and is therefore ignored.

The AST also exposes the starting and ending line numbers for its constituents, information

we use to define blocks and contextualize them. Note that this is only possible in settings

where a block resides within a file, such as GH; for SO the line numbers are useless.

In SO, both questions and answers are considered Posts, for which a unique id is associ-

ated. Posts are distinguished by a PostTypeId indicating if it is a question PostTypeId=1 or an

answer PostTypeId=2. The link between answers and their original questions is preserved. Only

Question posts have tags marking the related languages and topics of the post, therefore all

the pieces of code we process come from, or are related to, a Question whose tags contain

’python’. For all posts for Python, we used the markdown <code>...</code> to extract code

snippets from Posts.

4.3.2 Tokenization

Tokenization is the process of transforming a file into a “bag of words”. Tokenization involves

removing comments, spaces, tabs and other special characters, identifying each individual

word (token), and counting their frequency.

Consider the following Python block below:
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1 def func1(a, b, c): # example block

2 if a>b: # condition

3 return c

4 else:

5 return 0

Listing 4.2: Github block tokenization

During tokenization, tokens in the block are identified and their occurrences are counted.

The result after tokenizing the block in 4.2 is:

[(def, 1), (func1, 1), (a, 2), (b, 2), (c, 2),

(if, 1), (return, 2), (else, 1), (0, 1)]

where the token def and func1 appear once, the tokens a, b and c appear twice, and so on.

During tokenization we also capture facts about blocks, specifically: (1) block hash: the

MD5 hash of the entire string that composes the block; (2) token hash: the MD5 hash of the

string that constitutes the tokenized block; (3) number of lines (4) number of lines of code:

LOC (no blanks); (5) number of lines of source code: SLOC (no comments); (7) number of

tokens; (8) number of unique tokens. For GH blocks, also (9) starting line; (10) ending line.3

4.3.3 Three Levels of Similarity

Two types of code clones are calculated simply based on hash values originated from two

sources: the blocks themselves, and their tokenized forms.

The first type of clones, calculated by the hash values of their absolute composition of blocks

(including spaces, all the characters, comments and so on) are called block-hash clones.

When two blocks are block-hash equal, it means they are an exact copy of each other.

3There is some possibility that hash collisions will provide the same hashes for different blocks. Through
relevant in the fields of cryptography and cryptosecurity, this is so unlikely we simply chose to ignore this
possibility.
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The second type of clones are calculated using their tokenized forms. These clones, called

token-hash clones, differ from block-hash clones because they focus on the source code con-

stituents of the blocks. Note that block-hash clones provide a very precise relation between

two blocks, but has the consequence of being extremely sensible to small, irrelevant variations

between blocks since any minimal difference of spaces, tabs, indentation or comments for

example will flag two blocks as not clones. Therefore, we use tokenization to eliminate these

small idiosyncrasies between two blocks that are irrelevant from a semantic perspective.

The first two levels of similarity are obtained by hash equality, being it at the block level or

after its tokenization. These two levels do not reveal partial cloning, which in practice means

certain scenarios where two blocks are cloned are not detected. Examples include familiar

behaviors of literal copy-paste of a block, followed by a small specialization of a variable,

or addition of tracing and debugging, actions through which intruders are inserted into the

source code but their impact is so small that the blocks are still clones. This kind of problem

if called near-miss clones in the area of code cloning.

To cover these scenarios, we use the tool SourcererCC [116], which has the capability of

detecting relative similarities of two pieces of source code given a certain threshold. Sourcer-

erCC is a token-based clone detector, it can detect three types of clones. It also exploits an

index to achieve scalability to large repositories using a standard workstation.

By evaluating the scalability, execution time, recall and precision of SourcererCC, and com-

paring it to four publicly available and state-of-the-art tools, SourcererCC has been shown to

have both high recall and precision, and is able to scale to a large repository using a standard

workstation. All of the above make SourcererCC a good candidate for this study. We used

the default settings of SourcererCC, i.e., each clone pair has more than 80% of similarity.
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Table 4.1: Github Dataset

# projects (total) 2,340,845
# projects (non-fork) 1,096,246
# projects (downloaded) 1,096,246
# projects (analyzed) 909,288
# files (analyzed) 31,609,117
# parsable files (analyzed) 30,986,363
# parsable blocks (analyzed) 290,742,628

4.4 Dataset

We downloaded the Github (GH) Python projects by using the metadata provided by GHTor-

rent [57? ? ]. GHTorrent is a scalable, offline mirror of data offered through the Github

REST API, available to the research community as a service. It provides access to all the

meta-data from GitHub, such as number of stars or commiters, main languages, time points

relevant to the projects and so on.

For this work, we downloaded 909k Python non-fork repositories based on the GHTorrent’s

metadata available on November 2016. Filtering non-fork projects is an important constrain

because through this mechanism information is necessarily cloned (direct replication is in

the nature of forking a project) and therefore would skew the results.

Table 4.1 shows information regarding the entire corpus of Python projects that were used

in this study. The gap between the projects that were downloaded and analyzed represents

residual problems on accessing the downloaded information (typically corrupt zip archives,

but also data on GHTorrent that was not up-to-date). The gap between analyzed and parsed

files represents residual problems on parsing (for some reasons, Python’s AST module [? ]

could not process them); only the latter, the parsed files, contribute to this study.

Figure 4.2 provides information regarding basic properties of the corpus of Python projects

(note the first histogram is the only one demonstrating a ’per-project’ property, the others
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Figure 4.2: Python GitHub projects. LOC means Lines Of source Code, and is calculated
after removing empty lines.

provide file’s properties; and that the scale is logarithmic).

Stack Overflow (SO) has two sources of information (two type of Posts, from now on), typical

of community-based online Q&A websites: one is the Question, and the other the Answers.

All snippets were extracted from the dump available at the Stack Exchange data dump site [?

].

A final note: we removed single-line Python snippets because these contain so little informa-

tion that they are hardly representative. They typically exist in the context of larger snippets

for which the users provide small comments, making them decontextualized in isolation.

Table 4.2 shows the total number of posts (questions and answers), number of Python blocks,
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Table 4.2: Stack Overflow Dataset

# posts (total) 33,566,855
# posts (Python) 5,358,645
# blocks (Multiline) 1,954,025

Figure 4.3: Blocks per Post.

and the number of multiple-line Python blocks on SO. Figure 4.3 shows the number of blocks

per post.

Figure 4.4 represents a comparison between blocks originated from SO and GH. On top,

we can see the distribution of the number of lines of source code (total lines minus empty

lines), and in the bottom we can see the distribution of unique tokens. It is interesting to

observe a high degree of similarity between blocks from the two origins on the two distribu-

tions. Understanding whether this similarity is a coincidence, or the object of transport of

information from one source to the other will be the object of the research presented in next

Sections.

4.5 Quantitative Analysis

In this section of we provide the values we found for code similarity between GH and SO.
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Figure 4.4: Per Block distributions of LOC (top) and unique tokens (bottom), in GitHub
and Stack Overflow
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Table 4.3: Block-hash similarity

GH SO

Total blocks 290,742,628 1,954,025
Distinct block-hashes 40,098,522 1,929,411
Common distinct block-hashes 1,566 1,566
Common blocks 60,962 2,091

We provide three types of analysis using, first, hash values on the blocks (block-hash),

second, token hash on the blocks’ source code (token-hash) and third, partial clones using

SourcererCC. This provides different degrees of similarity for blocks: on the first we compare

for perfect equality, on the second we filter glueing syntactic elements (spaces, tabs, terminal

symbols, etc.), and on the third we allow some divergence.

Despite focusing this work on similarities between SO and GH, we always provide an indi-

vidual analysis of each dataset. We do so to contextualize correlations between them from

the perspective of each one individually.

4.5.1 Block-hash Similarity

The results for block-level hashing can be seen in Table 4.3. For hash analysis, we start by

reducing the total group of blocks to a distinct set of block-level hashes. This set, shown

on the second row of the table, represents the number of distinct pieces of code on the

datasets. For GH, out of the 290M blocks there are only 40M distinct hashes, meaning that

block-level code duplication is intense: 86% of blocks have the same exact code as the other

14%. This large amount of code duplication in open source project repositories has been

observed before. For SO, the numbers are considerably smaller, with an almost absence of

block duplication; only 1.3% of the blocks have the same code as the other 98.7%.

Next, we make the intersection of the distinct hashes in both datasets, obtaining the common

distinct hashes between GH and SO. That number is shown in the third row: 1,566. This is
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Table 4.4: Token-hash similarity

GH SO

Total # blocks 290,742,628 1,954,025
Distinct token-hashes 35,894,897 1,890,565
Common distinct token-hashes 9,044 9,044
Common blocks 3,839,019 13,747

a very small percentage of the distinct hashes in both datasets.

Finally, in row four we count all the blocks whose hashes belong to the common hashes. These

are the blocks of code that exist in their exact form, including formatting and whitespace,

in both GH and SO. The percentages are very small, less than 1% in both cases.

4.5.2 Token-hash Similarity

The results for block-hash analysis are presented in Table 4.4. Not surprisingly, when for-

matting and whitespace are ignored, the code duplication in each dataset increases slightly,

i.e. the number of distinct token hashes is smaller than the number of distinct block hashes

(compare second rows of Tables 4.3 and 4.4).

For the same reason, the common distinct token hashes between GH and SO is considerably

larger than the common distinct block hashes (compare third rows of Tables 4.3 and 4.4).

But the percentage of distinct hashes that are common to both datasets is still very small.

Interestingly, the number of blocks in GH whose token hashes are in the common set is

above 1% (see row four). While small, it is remarkable that so many Python functions in

GH projects, almost 4M, have the exact same tokens as snippets of Python code found in

SO.
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Table 4.5: SCC Similarity

GH SO

Distinct token hashes 35,894,897 1,890,565
SCC-dup 13,363,759 297,554
Common 405,393 35,098

4.5.3 SCC Similarity

The analysis in this subsection is slighly different than in the previous two: we narrow the

analysis only to the universe of blocks that have distinct token hashes, those counted in the

second row of Table 4.4. The rationale is that two files with the same token-hashes will be

detected as clones by SCC, and therefore it suffices to process only one representative of

each group of blocks with the same token hash.

The results are presented in Table 4.5. The second row, SCC-dup, shows the number of

blocks in each dataset that have at least one similar block in the same dataset – only within

the universe of distinct token hashes. The amount of near-duplication is considerably high

in GH (roughly, 37%), but less in SO (roughly 16%).

The third row shows the number of blocks that are similar between datasets – again, only

within the universe of distinct token hashes. More than 405k (1.1%) of the blocks in GH are

similar to blocks in SO, and 2% of blocks in SO are similar to blocks in GH. This means that

35,098 distinct blocks found in SO can be found in very similar form in GH. The number is

considerably larger than the common distinct token-hashes in Table 4.4.

4.6 Qualitative Analysis

To understand the nature of blocks that can be found in both SO and GH, we made a

qualitative analysis on the duplicated blocks. This analysis was made in two steps. We first
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looked at subsets of all of them, looking for patterns. One strong pattern emerged: the

majority of blocks that are duplicated – both within datasets as well as between them – are

very small, typically a couple of lines of code. These also tend to be non-descriptive, with

very generic code (e.g. trivial __init__ methods). Having observed this, we then moved to

a second stage of analysis, where we looked only at larger functions. The number of these

blocks is much smaller, but they are more interesting. This section describes our qualitative

analysis.

4.6.1 Step 1: Duplicated Blocks

We looked the top 10 most duplicated code blocks based on their block-hash, token-hash,

and SourcererCC reported clones. We did this analyses for intra-GH and intra-SO block

clones. Further, to understand the kind of code blocks which are common across GitHub

and SO, we looked at the 10 code blocks which are present in both GitHub and SO, and are

duplicated the most in GitHub and similarly the top 10 code blocks which are duplicated

the most in SO. The duplicated code blocks were selected based on block-hash, token-hash,

and SourcererCC reported clones.

4.6.1.1 Block-Hash Duplicates

Intra-GH: All of the top 10 duplicated code-blocks had 2 lines of code. Four of these meth-

ods can be traced back to cp037.py file, located at https://github.com/python-git/python/

blob/master/Lib/encodings/cp037.py. The file gets generated from ’MAPPINGS/VENDORS/MICSFT/EBCDIC/CP037.TXT’

with gencodec.py as mentioned in the file level comment inside the file. There are many such

files, each for a different encoding cp1253, cp1026, cp1140, and so on. Further, we found many
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instances where these files are present in other GitHub projects. Each of these files contains

the generic methods to encode and decode the input string, as shown in the Listing 4.3

below.

1 class Codec(codecs.Codec):

2

3 def encode(self,input,errors=’strict’):

4 return codecs.charmap_encode(input,errors,encoding_table)

5

6 def decode(self,input,errors=’strict’):

7 return codecs.charmap_decode(input,errors,decoding_table)

Listing 4.3: Most duplicated code block based on Block-Hash

Other most duplicated code blocks are private methods __iter__, __enter__, __ne__, and __init__,

with just one statement, as shown in Listing 4.4.

1 def __iter__(self):

2 return self

Listing 4.4: Example of one highly duplicated private method

Intra-SO: Like GH, the top 10 most duplicated code blocks on SO have two lines of code.

Listing 4.5 shows the most duplicated ones. The first code block (top), shows Python idiom

for the main entry point in a module. The second code block from the top, prints out all

directories which are on the python’s path. This is usually done to fix issues related to the

import of third party libraries. The bottom two blocks, also very common on SO, do not

have any Python specific code, and are used to present an example output of some Python

code.

1 if __name__ == ’__main__’:

2 main()

Listing 4.5: Most duplicated code blocks on SO based on Block-Hash
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1 import sys

2 print sys.path

1 True

2 False

1 1

2 2

Most duplicated blocks in GH that are also present in SO: Listing 4.6 shows two

of the most duplicated blocks in GH that are also present in SO. We found the code block

for session() on SO, where it is mentioned that this code blocks was copied from the sessions

module under the requests library. We found that a lot of projects on GH use this library,

where they copy the entire source code. __iter__ is a very common private function used to

make a class iterable, and hence this code block is also duplicated a lot. On SO we found

a post where this code block was used as an example to demonstrate how to make a class

iterable.

1 def session():

2 """Returns a :class:‘Session‘ for context-management."""

3

4 return Session()

Listing 4.6: Most duplicated code blocks on GH, which are also present in SO based on

Block-Hash

1 def __iter__(self):

2 return self

We also found some code blocks which are related to Django, a python web framework.

These code blocks are not intentionally copied, and become a part of the projects that are

using Django. Listing 4.7 shows an example code block. On inspection we found that this

code block was copied to SO from GH, to show the code in Django which is responsible for

creating an anonymous user.
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1 def get_user(request):

2 from django.contrib.auth.models import AnonymousUser

3 try:

4 user_id = request.session[SESSION_KEY]

5 backend_path = request.session[BACKEND_SESSION_KEY]

6 backend = load_backend(backend_path)

7 user = backend.get_user(user_id) or AnonymousUser()

8 except KeyError:

9 user = AnonymousUser()

10 return user

Listing 4.7: Most duplicated code blocks on GH, which are also present in SO based on

Block-Hash

An observation common to most of these code blocks is that these blocks get duplicated in

GH not because developers are interested in a particular code block, but because they are

interested in the entire module like modules from requests library, or because they are using

a framework which adds the source files into the projects. On SO, users are more interested

in explaining a particular behavior or seeking some explanation about code blocks. We

observed such scenarios where users have used a code block from GH and have also pasted

the link of the source file in GH.

Most duplicated blocks in SO that are also in GH: Interestingly, 8 out of the top 10

code blocks come from itertools https://docs.python.org/2/library/itertools.html#

itertool-functions. To understand the origin of these code blocks on SO, we looked

at the two most duplicated ones, shown in Listing 4.8. On SO, we found 28 instances of

the block on top, any() and 24 instance of the one in bottom, grouper(). On SO, we looked

at 5 random instances of any() and found that this code block was copied from https:

//docs.python.org/2/library/functions.html#any and not from GH. We could link the

origin based on the comments written on the SO posts. On GH we found some projects which

have any.py module implementing the exact code block. We also found modules on GH which
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implement code blocks similar to any like all, enumerate. Some of these modules come from

projects where it was quite evident that the user has copied code into their project. For

example, a project where a duplicate of any() function found, mentions in its README.md: I

want to collect something that I think it’s interesting. Maybe some code snippet I think it’s

excellent cool.

We made a similar observation when we looked at the origin of grouper(). In many instances

on SO, the code block was copied from the python docs. On GH, we found one instance

of this code block at https://github.com/hbradlow/dynamic_path/blob/master/path/

utils.py. We also observed a comment in the same file with a url to a SO post. On further

inspection we found that the most of the code in the module was copied from the SO post.

1 def any(iterable):

2 for element in iterable:

3 if element:

4 return True

5 return False

Listing 4.8: Most duplicated code blocks on SO, which are also present in GH based on

Block-Hash

1 def grouper(n, iterable, fillvalue=None):

2 "grouper(3, ’ABCDEFG’, ’x’) --> ABC DEF Gxx"

3 args = [iter(iterable)] * n

4 return izip_longest(fillvalue=fillvalue, *args)

4.6.1.2 Token-Hash Duplicates

Intra-GH: To analyze Token-Hash duplicates, we followed a process similar to what we

used for analyzing Block-Hash duplicates. The observations are very similar to those made
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in the Block-Hash duplicates section. Most duplicated code blocks are encode, decode, __iter__,

__enter__, __ne__, and __init__, as shown in the Listings 4.3 and 4.4.

Intra-SO: We found that the code blocks that resulted into 0 tokens were reported as the

most duplicated code blocks. These are the blocks where all statements are commented,

for example consider a code block shown in Listing 4.9. This blocks will generate 0 tokens

as comments are ignored during tokenization. The token hash of all such blocks will be

computed on an empty string, resulting into same token-hash.

1 #define private public

2 #include <module>

Listing 4.9: Example of 0 token code block

Listing 4.10 shows examples of duplicated code blocks on SO. The first code block (top),

shows an example of how to instantiate three different list objects. The SO post for this

code block is full of similar examples.

1 a = []

2 b = []

3 c = []

Listing 4.10: Most duplicated code blocks on SO, based on Token-Hash

1 1 2 3

2 4 5 6

3 7 8 9

The second code block from the top, shows a representation of a two dimensional list. SO,

has many such blocks, where users have used this representation to explain the desired output

of their code. 5 out of top 10 duplicated blocks on SO are about lists of numbers. We also

observed many code blocks similar to shown in Listing 4.5.

Most duplicated blocks in GH that are also present in SO: The results found are
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mostly shared code represents simple two liners and are very trivial, such as __ne__ or __str__.

Most duplicated blocks in SO that are also in GH: Similarly to the results on the

opposite direction, the blocks we found were of a small dimension and were characterized by

trivial information.

Token hash vs Block hash We ignored the output explanation blocks, and dig into the

reason for the code block pairs being caught as duplicates for token-hash level instead of

block-hash level. We found that most of the pairs were only different in spaces. Some are

token-hash duplicates because of the difference in the syntax of Python 2 and Python 3,

for example in the print function. A few are token-hash duplicates because some parameter

or variable is set to be am empty list, which results in differences in special characters, for

example in the pair in List 4.11.

1 def __init__(self, connection):

2 self.connection = connection

Listing 4.11: Example for difference in token-hash duplicates

1 def __init__(self, connection=[]):

2 self.connection = connection

4.6.1.3 SourcererCC Duplicates

The qualitative analysis of block-hash duplicates and token-hash duplicates hints at exact

copy-paste inside and between GH and SO. However, from the SCC results in the quantitative

analysis, we learned that there are many cases where programmers make adaptations to the

codes during copy-pasting. Therefore, here we want to see how people change their code

when inside and between GH and SO.
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Intra-GH: All of the top 10 most duplicated blocks we found inside GH are from the same

file, located at https://github.com/lufo816/WeiXinCookbook/blob/master/urlHandler.

py. This file has 80,452 clones similar to the block on Listing 4.12.

1 def GET(self):

2 return render.caipu1()

Listing 4.12: Most duplicated code block intra GH from SCC

The only difference on these blocks is the number in the function, ranging from 1 to 80,452.

SCC will take every block as a clone for all other blocks in this same file, so they become

the most duplicated blocks.

Intra-SO: Here, we found that 5 of the 10 examples are python error message of ImportError,

similar to the one on Listing 4.13, with the difference in module name or line number. There

were 4 blocks that are standard settings for Django and the remaining one is a list of numbers

representing an output, similar to what we have seen above.

1 Traceback (most recent call last):

2 File "<stdin>", line 1, in <module>

3 ImportError: No module named MySQLdb

Listing 4.13: A common error message

Most duplicated blocks in GH that are also present in SO: Overall, 7 out of 10 of

the blocks we analyzed can be traced to modules from libraries like requests and pip, such as

the examples of Listing 4.14.

1 def __ne__(self, other):

2 return not self.__eq__(other)

Listing 4.14: Most duplicated code blocks on SO, which are also present in GH based on

the results from SCC
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1 def __init__(self, username, password):

2 self.username = username

3 self.password = password

Most duplicated blocks in SO that are also present in GH: For the top 10 most dupli-

cated blocks in SO that are also present in GH, there are actually only three kinds of blocks

as shown in 4.15. The first is a standard initial function for a class; the second is a standard

function definition with parameters, the third is a function that raise NotImplementedError. The

first group contains 5 pairs, the second contains 4 pairs, and the third only has 1 pair.

1 def __init__(self):

2 self.locList = []

Listing 4.15: Most duplicated code blocks on SO, which are also present in GH based on

SCC

1 def some_function(*args, **kwargs):

2 pass

1 def number_of_edges(self):

2 raise(NotImplementedError)

When observing the SCC clone for each block, we found that for in group 1, all pairs contain

the tokens def, raise, and self, and the only difference is the adaptation to specific variables.

For group 2, all clone pairs contain tokens def, *args, **kwargs, pass, the only difference is the

function name. For the block in group 3, its clone pair have the same tokens def, self, raise

and NotImplementedError and the only difference is the function name.

SCC vs Token hash From the observations above, we can see that the reason for these

pairs being duplicates in SCC level instead of token-hash level is changes of function names,

parameters, or variables.
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4.6.2 Step 2: Large Blocks Present in GitHub and SO

To further understanding the correlation and copy-paste behavior between GH and SO, we

set a threshold to the number of unique tokens in a block to get larger blocks for observation.

4.6.2.1 Block-Hash Duplicates

We set the threshold of unique tokens of each block to be equal or larger than 30 tokens in

order to filter out meaningless small blocks. This filtering left us with 104 common block

hashes between GH and SO, from the original 1,566 common block hashes. We sampled 10

block hashes out of these 104 and traced one sample pair of GH and SO blocks for each

common block hash.

From the 10 pairs we got, 4 of the GH blocks explicitly stated in the comments that the

code was borrowed from SO, and also gives the SO post link corresponding to the block.

The SO post links were exactly the same as we paired for the GH block. This is a very clear

evidence source code has been flowing from SO to GH.

In two pairs, GH and SO blocks are coming from the same third-party source. In another

three pairs, the SO post stated that the code was copied from a third-party source, but

there’s no explicit clue of where the GH block comes from, although there was only one

commit on the file and no changes before and after, which may indicate the code was copied

from other sources too.

4.6.2.2 Token-Hash Duplicates
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The number of unique tokens is set to be equal or larger than 35 for token hash duplicates.

We have 915 common token hashes between GH and SO after the filtering. For large token-

hash duplicates, we observed a clear case of copy-paste from GH to SO, where the author

of the code on GH used his own code as an example to demonstrate aspects of Python’s

func_code attribute.

Another relevant example is where a closer inspection of the comments on SO pointed directly

the original website from where these blocks were copied, which happens to be the now

defunct Google code. There are two clear indications of the transfer of knowledge from one

source to the other.

Then we furthered observed the reason for the pairs being caught as duplicates only by token

hash instead of block hash. Although token hash will leaving out all the comments, spaces,

special characters, nine out of the ten sampled pairs only different in spaces, and all contents

are kept as-is, including comments; only one pair is different in missing one line of comments.

It means that during the process of copy-pasting large blocks of code, either between GH

and SO or from other sources, programmers tend to preserve everything instead of dropping

or changing any of them. This may because on one hand, the large blocks are a complete

implementation of some functionality, and plugging them as-is is sufficient for programmers’

needs and no changes needed; on the other hand, copy-paste is also a process of learning,

and the comments help the learner understand what the code is about, so there’s no point

of deleting them intentionally.

4.6.2.3 SourcererCC Duplicates

The number of unique tokens is set to be equal or larger than 35 for SCC duplicates. We

have 4699 distinct token hashes in SO that can be found very similar form in GH.
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Using SCC we found many cases where code blocks on SO were similar to that on GH.

On observing the blocks manually, it was hard to find clues that point at the directional of

information exchange. In some cases it was obvious that deliberate copy-paste has resulted

into code duplication, but we cannot say for sure whether the code was copied from GH to

SO, SO to GH or from a third party website to GH or SO.

SCC marked these pairs as 80% similarity in tokens. We observed that the differences

between them came from variables, function identifiers, if conditions, or class definition. In

other words, when copy-pasting codes, programmers will adjust the variables, switch function

names or parameters, change, add, or delete if conditions, or add or delete class definition

to match their particular needs.

4.7 Conclusion

Stack Overflow, a popular Q&A site, has become one of the major Internet hubs where

programmers can find all sorts of information related to simple, but concrete programming

problems. We wanted to find out the extent to which the code snippets in SO find their

way to open source projects. For this study, we focused on programs written in Python. As

datasets, we took the collection of 909k non-forked Python projects hosted in Github, as well

as the SO dump provided by Stack Exchange. We extracted all the multi-line Python code

snippets from SO, and we parsed all the Python projects, breaking them into functions.

We then cross referenced the SO snippets with these functions, using three measures of

similarity: exact match, match on the tokens and near-duplication as detected by a code

clone detector tool.

Our quantitative analysis shows that exact duplication between SO and GH exists, but is

rare, much less than 1%. Token-level duplication is more common, with almost 4M blocks in

88



GH being similar to SO snippets. In terms of percentage, this is still small. Near-duplication

shows 405k distinct blocks (1.1%) in GH being similar to SO and 35k (2%) SO distinct blocks

having near duplicates in GH. Although the percentages are not very large, the numbers are

in thousands.

Upon careful qualitative analysis, we observed that the vast majority of these duplicates

are very small, typically 2 lines of code and just a few tokens. Moreover, they tend to be

non-descriptive, meaning that they are too generic to trace. Because they are generic and

small, likely they didn’t flow from SO to GH or vice versa. We then focused out attention

to the fewer blocks that are not so small. For these, we found evidence that there is, indeed,

flow from SO to GH, in some cases that flow being explicitly stated in comments. While

there is a lot less of these, their number is still in the thousands.

The importance of this work is twofold. First, it gives empirical evidence of the phenomenon

of copy-and-paste from SO, something that is widely accepted to be true, but hasn’t been

studied. Second, the non-trivial SO snippets that can be found in real code in GH could be

used as the basis for novel search engines for program synthesis and repair that integrate

with the rich natural language descriptions found in SO. We found that there are 5,718 large

blocks with distinct hashes in SO that can be found very similar form in GH. These large

distinct blocks can be made good use of in the future work.

Enriched by natural language contexts surrounding the code snippets, SO can help to retrieve

code snippets by matches on the non-coding information. Moreover, it can potentialy be

used as a knowledge base for tools that automatically combine snippets of code in order to

obtain more complex behavior. The viability of using SO in program synthesis lies, first of

all, on the existence of good snippets and evidence that they exist in real code, which is

shown in this paper.
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Chapter 5

Analysis of Adaptations from Stack

Overflow to GitHub

The material in this chapter is part of the following paper, and is included here with per-

mission from ACM.

T. Zhang, D. Yang, C. V. Lopes, M. Kim. Analyzing and Supporting Adaptation of Online

Code Examples. In proceedings of the 41st International Conference on Software Engineering

(ICSE), May 2019.

This paper investigate the common adaptation types and their frequencies between Stack

Overflow snippets and their GitHub counterparts. The study involved close collaborations

between the UCLA group and us. I contributed to the paper by first collecting all the

data needed from Stack Overflow and GitHub, detecting all similar method pairs between

Stack Overflow and GitHub, then manually labeling adaptation types for some sampled

Stack Overflow snippets and their GitHub counterparts, and finally implementing part of

the automated techniques for categorizing adaptation types. In this chapter, I only included

the parts that I was involved in.
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5.1 Introduction

Nowadays, a common way of quickly accomplishing programming tasks is to search and

reuse code examples in online Q&A forums such as Stack Overflow (SO) [29, 52, 135]. A

case study at Google shows that developers issue an average of twelve code search queries

per weekday [114]. As of July 2018, Stack Overflow has accumulated 26M answers to 16M

programming questions. Copying code examples from Stack Overflow is common [23] and

adapting them to fit a target program is recognized as a top barrier when reusing code

from Stack Overflow [148]. SO examples are created for illustration purposes, which can

serve as a good starting point. However, these examples may be insufficient to be ported

to a production environment, as previous studies find that SO examples may suffer from

API usage violations [152], insecure coding practices [46], unchecked obsolete usage [156],

and incomplete code fragments [131]. Hence, developers may have to manually adapt code

examples when importing them into their own projects.

Our goal is to investigate the common adaptation types and their frequencies in online code

examples, such as those found in Stack Overflow, which are used by a large number of

software developers around the world. To study how they are adopted and adapted in real

projects, we contrast them against similar code fragments in GitHub projects. The insights

gained from this study could inform the design of tools for helping developers adapt code

snippets they find in Q&A sites.

In broad strokes, the design and main results of our study are as follows. We link SO

examples to GitHub counterparts using multiple complementary filters. First, we quality-

control GitHub data by removing forked projects and selecting projects with at least five

stars. Second, we perform clone detection [116] between 312K SO posts and 51K non-forked

GitHub projects to ensure that SO examples are similar to GitHub counterparts. Third, we

perform timestamp analysis to ensure that GitHub counterparts are created later than the
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SO examples. Fourth, we look for explicit URL references from GitHub counterparts to SO

examples by matching the post ID. As the result, we construct a comprehensive dataset of

variations and adaptations.

When we use all four filters above, we find only 629 SO examples with GitHub counterparts.

Recent studies find that very few developers explicitly attribute to the original SO post when

reusing code from Stack Overflow [18, 23, 148].

Therefore, we use this resulting set of 629 SO examples as an under-approximation of SO

code reuse and call it an adaptations dataset. If we apply only the first three filters above, we

find 14,124 SO examples with GitHub counterparts that represent potential code reuse from

SO to GitHub. While this set does not necessarily imply any causality or intentional code

reuse, it still demonstrates the kinds of common variations between SO examples and their

GitHub counterparts, which developers might want to consider during code reuse. Therefore,

we consider this second dataset as an over-approximation of SO code reuse, and call it simply

a variations dataset.

We randomly select 200 clone pairs from each dataset and manually examine the program

differences between SO examples and their GitHub counterparts. Based on the manual

inspection insights, we construct an adaptation taxonomy with 6 high-level categories and 24

specialized types. We then develop an automated adaptation analysis technique built on top

of GumTree [45] to categorize syntactic program differences into different adaptation types.

The precision and recall of this technique are 98% and 96% respectively. This technique

allows us to quantify the extent of common adaptations and variations in each dataset. The

analysis shows that both the adaptations and variations between SO examples and their

GitHub counterparts are prevalent and non-trivial. It also highlights several adaptation

types such as type conversion, handling potential exceptions, and adding if checks, which

are frequently performed yet not automated by existing code integration techniques [40, 146].
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In summary, this work makes the following contributions:

• It makes publicly available a comprehensive dataset of adaptations and variations between

SO and GitHub.1 The adaptation dataset includes 629 groups of GitHub counterparts

with explicit references to SO posts, and the variation dataset includes 14,124 groups.

These datasets are created with care using multiple complementary methods for quality

control—clone detection, time stamp analysis, and explicit references.

• It puts forward an adaptation taxonomy of online code examples and an automated tech-

nique for classifying adaptations. This taxonomy is sufficiently different from other change

type taxonomies from refactoring [49] and software evolution [48, 70], and it captures the

particular kinds of adaptations done over online code examples.

The rest of the paper is organized as follows. Section 7.4 describes the data collection pipeline

and compares the characteristics of the two datasets. Section 5.4 describes the adaptation

taxonomy development and an automated adaptation analysis technique. Section 5.5 de-

scribes the quantitative analysis of adaptations and variations. Section 3.7 discusses threats

to validity. Section 5.2 discusses related work, and Section 6.7 concludes the paper.

5.2 Related Work

Quality assessment of SO examples. Our work is inspired by previous studies that find

SO examples are incomplete and inadequate [18, 42, 46, 123, 149, 152, 156]. Subramanian

and Holmes find that the majority of SO snippets are free standing statements with no class

or method headers [123]. Zhou et al. find that 86 of 200 accepted SO posts use deprecated

APIs but only 3 of them are reported by other programmers [156]. Fischer et al. find that

1Our dataset and tool are available at https://github.com/tianyi-zhang/

ExampleStack-ICSE-Artifact
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29% of security-related code in SO is insecure and could potentially be copied to one million

Android apps [46]. Zhang et al. contrast SO examples with API usage patterns mined from

GitHub and detect potential API misuse in 31% of SO posts [152]. These findings motivate

our investigation of adaptations and variations of SO examples.

Stack Overflow usage and attribution. Our work is motivated by the finding that

developers often resort to online Q&A forums such as Stack Overflow [23, 29, 114, 148].

Despite the wide usage of SO, most developers are not aware of the SO licensing terms

nor attribute to the code reused from SO [18, 23, 148]. Only 1.8% of GitHub repositories

containing code from SO follow the licensing policy properly [23]. Almost one half developers

admit copying code from SO without attribution and two thirds are not aware of the SO

licensing implications. Based on these findings, we carefully construct a comprehensive

dataset of reused code, including both explicitly attributed SO examples and potentially

reused ones using clone detection, timestamp analysis, and URL references.

Origin analysis can also be applied to match SO snippets with GitHub files [54, 55, 133,

157]. SO snippet retrieval and code integration. Previous support for reusing code

from SO mostly focuses on helping developers locate relevant posts or snippets from the

IDE [20, 101, 102, 146]. For example, Prompter retrieves related SO discussions based on the

program context in Eclipse. SnipMatch supports light-weight code integration by renaming

variables in a SO snippet based on corresponding variables in a target program [146]. Code

correspondence techniques [40, 63] match code elements (e.g., variables, methods) to decide

which code to copy, rename, or delete during copying and pasting. Our work differs by

focusing on analysis of common adaptations and variations of SO examples.

Change types and taxonomy. There is a large body of literature for source code changes

during software evolution [43, 47, 69]. Fluri et al. present a fine-grained taxonomy of code

changes such as changing the return type and renaming a field, based on differences in

abstract syntax trees [48]. Kim et al. analyze changes on “micro patterns” [53] in Java using
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software evolution data [70]. These studies investigate general change types in software

evolution, while we quantify common adaptation and variation types using SO and GitHub

code.

5.3 Dataset

This section describes the data collection pipeline. Due to the large portion of unattributed

SO examples in GitHub [18, 23, 148], it is challenging to construct a complete set of reused

code from SO to GitHub. To overcome this limitation, we apply four quality-control filters to

underapproximate and overapproximate code examples reused from SO to GitHub, resulting

in two complementary datasets.
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Figure 5.1: Comparison between SO examples in the adaptation dataset and the variation
dataset

GitHub project selection and deduplication. Since GitHub has many toy projects

that do not adequately reflect software engineering practices [65], we only consider GitHub

projects that have at least five stars. To account for internal duplication in GitHub [75], we

choose non-fork projects only and further remove duplicated GitHub files using the same file

hashing method as in [75], since such file duplication may skew our analysis. As a result, we

download 50,826 non-forked Java repositories with at least five stars from GitTorrent [57].

After deduplication, 5,825,727 distinct Java files remain.
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Detecting GitHub candidates for SO snippets. From the SO dump taken in October

2016 [17], we extract 312,219 answer posts that have java or android tags and also contain

code snippets in the <code> markdown. We consider code snippets in answer posts only,

since snippets in question posts are rarely used as examples. Then we use a token-based

clone detector, SourcererCC (SCC) [116] to find similar code between 5.8M distinct Java files

and 312K SO posts. We choose SCC because it has high precision and recall and also scales

to a large code corpus. Since SO snippets are often free-standing statements [123, 149],

we parse and tokenize them using a customized Java parser [124]. Prior work finds that

larger SO snippets have more meaningful clones in GitHub [150]. Hence, we choose to study

SO examples with no less than 50 tokens, not including code comments, Java keywords,

and delimiters. We set the similarity threshold to 70% since it yields the best precision and

recall on multiple clone benchmarks [116]. We cannot set it to 100% since SCC will then only

retain exact copies and exclude those adapted code. We run SCC on a server machine with

116 cores and 256G RAM. It takes 24 hours to complete, resulting in 21,207 SO methods

that have one or more similar code fragments (i.e., clones) in GitHub.

Timestamp analysis. If the GitHub clone of a SO example is created before the SO post,

we consider it unlikely to be reused from SO and remove it from our dataset. To identify

the creation date of a GitHub clone, we write a script to retrieve the Git commit history

of the file and match the clone snippet against each file revision. We use the timestamp of

the earliest matched file revision as the creation time of a GitHub clone. As a result, 7,083

SO examples (33%) are excluded since all their GitHub clones are committed before the SO

posts.

Scanning explicitly attributed SO examples. Despite the large portion of unattributed

SO examples, it is certainly possible to scan GitHub clones for explicit references such as

SO links in code comments to confirm whether a clone is copied from SO. If the SO link in

a GitHub clone points to a question post instead of an answer post, we check whether the
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corresponding SO example is from any of its answer posts by matching the post ID. We find

629 explicitly referenced SO examples.

Overapproximating and underapproximating reused code. We use the set of 629

explicitly attributed SO examples as an underapproximation of reused code from SO to

GitHub, which we call an adaptation dataset. We consider the 14,124 SO examples after

timestamp analysis as an overapproximation of potentially reused code, which we call a vari-

ation dataset. Figure 5.1 compares the characteristics of these two datasets of SO examples

in terms of the number of GitHub clones, code size, and vote score (i.e., upvotes minus down-

votes). Since developers do not often attribute SO code examples, explicitly referenced SO

examples have a median of one GitHub clone only, while SO examples have a median of two

clones in the variation dataset. Both sets of SO examples have similar length, 26 vs. 25 lines

of code in median. However, SO examples from the adaptation dataset have significantly

more upvotes than the variation dataset: 16 vs. 1 in median. In the following sections, we

inspect, analyze, and quantify the adaptations and variations evidenced by both datasets.

5.4 Adaptation Type Analysis

5.4.1 Manual Inspection

To get insights into adaptations and variations of SO examples, we randomly sample SO

examples and their GitHub counterparts from each dataset and inspect their program dif-

ferences using GumTree [45]. Below, we use “adaptations” to refer both adaptations and

variations for simplicity.

The first and the last authors jointly labeled these SO examples with adaptation descriptions

and grouped the edits with similar descriptions to identify common adaptation types. We
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Table 5.1: Common adaptation types, categorization, and implementation

Category Adaptation Type Rule

Code Hardening

Add a conditional Insert(t1, t2, i) ∧ NodeType(t1, IfStatement)

Insert a final modifier Insert(t1, t2, i) ∧ NodeType(t1, Modifier) ∧ NodeValue(t1, final)

Handle a new exception type Exception(e, GH) ∧ ¬Exception(e, SO)

Clean up unmanaged resources (e.g. close a stream) (LocalCall(m, GH) ∨ InstanceCall(m, GH)) ∧ ¬LocalCall(m, SO) ∧ ¬InstanceCall(m, SO) ∧ isCleanMethod(m)

Resolve Compilation

Errors

Declare an undeclared variable Insert(t1, t2, i) ∧ NodeType(t1, VariableDeclaration) ∧ NodeValue(t1, v) ∧ Use(v, SO) ∧ ¬Def(v, SO)

Specify a target of method invocation InstanceCall(m, GH) ∧ LocalCall(m, SO)

Remove undeclared variables or local method calls (Use(v, SO) ∧ ¬Def(v, SO) ∧ ¬Use(v, GH)) ∨ (LocalCall(m, SO) ∧ ¬LocalCall(m, GH) ∧ ¬InstanceCall(m, GH))

Exception Handling

Insert/delete a try-catch block (Insert(t1, t2, i) ∨ Delete(t1)) ∧ NodeType(t1, TryStatement)

Insert/delete a thrown exception in a method header
Changed(t1) ∧ NodeType(t1, Type) ∧ Parent(t2, t1) ∧ NodeType(t2, MethodDeclaration) ∧ NodeValue(t1, t) ∧
isExceptionType(t)

Update the exception type
Update(t1, t2) ∧ NodeType(t1, SimpleType) ∧ NodeType(t2, SimpleType) ∧ NodeValue(t1, v1) ∧
isExceptionType(v1) ∧ NodeValue(t2, v2) ∧ isExceptionType(v2)

Change statements in a catch block Changed(t1) ∧ Ancestor(t2, t1) ∧ NodeType(t2, CatchClause)

Change statements in a finally block Changed(t1) ∧ Ancestor(t2, t1) ∧ NodeType(t2, FinallyBlock)

Logic Customization

Change a method call Changed(t1) ∧ Ancestor(t2, t1) ∧ NodeType(t2, MethodInvocation)

Update a constant value Update(t1, t2) ∧ NodeType(t1, Literal) ∧ NodeType(t2, Literal)

Change a conditional expression
Changed(t1) ∧ Ancestor(t2, t1) ∧
(NodeType(t2, IfCondition) ∨ NodeType(t2, LoopCondition) ∨ NodeType(t2, SwitchCase))

Change the type of a variable Update(t1, t2) ∧ NodeType(t1, Type) ∧ NodeType(t2, Type)

Refactoring

Rename a variable/field/method Update(t1, t2) ∧ NodeType(t1, Name)

Replace hardcoded constant values with variables Delete(t1) ∧ NodeType(t1, Literal) ∧Insert(t1, t2, i) ∧ NodeType(t1, Name) ∧ Match(t1, t2)

Inline a field Delete(t1) ∧ NodeType(t1, Name) ∧Insert(t1, t2, i) ∧ NodeType(t1, Literal) ∧ Match(t1, t2)

Miscellaneous

Change access modifiers Changed(t1) ∧ NodeType(t1, Modifier) ∧ NodeValue(t1, v) ∧ v ∈ {private, public, protected, static}
Change a log/print statement Changed(t1) ∧ NodeType(t1, MethodInvocation) ∧ NodeValue(t1, m) ∧ isLogMethod(m)

Style reformatting (i.e., inserting/deleting curly braces) Changed(t1) ∧ NodeType(t1, Block) ∧ Parent(t2, t1) ∧ ¬Changed(t2) ∧ Child(t3, t1) ∧ ¬Changed(t3)

Change Java annotations Changed(t1) ∧ NodeType(t1, Annotation)

Change code comments Changed(t1) ∧ NodeType(t1, Comment)

GumTree Edit Operation Syntactic Predicate Semantic Predicate

Insert(t1, t2, i) inserts a new tree node t1 as the i-th

child of t2 in the AST of a GitHub snippet.

NodeType(t1, X) checks if the node type of t1 is X.
Exception(e, P ) checks if e is an exception caught in a catch

clause or thrown in a method header in program P .

NodeValue(t1, v) checks if the corresponding source code

of node t1 is v.
LocalCall(m, P ) checks if m is a local method call in program P .

Delete(t) removes the tree node t from the AST of a

SO example.

Match(t1, t2) checks if t1 and t2 are matched based on

surrounding nodes regardless of node types.
InstanceCall(m, P ) checks if m is an instance call in program P .

Parent(t1, t2) checks if t1 is the parent of t2 in the AST. Def(v, P ) checks if variable v is defined in program P .

Update(t1, t2) updates the tree node t1 in a SO

example with t2 in the GitHub counterpart.

Ancestor(t1, t2) checks if t1 is the ancestor of t2 in the AST. Use(v, P ) checks if variable v is used in program P .

Child(t1, t2) checks if t1 is the child of t2. IsExceptionType(X) checks if X contains “Exception”.

Move(t1, t2, i) moves an existing node t1 in the

AST of a SO example as the i-th child of t2 in

the GitHub counterpart.

Changed(t1) is a shorthand for Insert(t1, t2, i) ∨ Delete(t1)

∨ Update(t1, t2) ∨ Move(t1, t2), which checks any

edit operation on t1.

IsLogMethod(X) checks if X is one of the predefined log methods,

e.g., log, println, error, etc.

IsCleanMethod(X) checks if X is one of the predefined resource

clean-up methods, e.g., close, recycle, dispose, etc.
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initially inspected 90 samples from each dataset and had already observed convergent adap-

tation types. We continued to inspect more and stopped after inspecting 200 samples from

each dataset, since the list of adaptation types was converging. This is a typical procedure

in qualitative analysis [24]. The two authors then discussed with the other authors to refine

the adaptation types. Finally, we built a taxonomy of 24 adaptation types in 6 high-level

categories, as shown in Table 5.1.

Code Hardening. This category includes four adaptation types that strengthen SO exam-

ples in a target project. Insert a conditional adds an if statement that checks for corner

cases or protects code from invalid input data such as null or an out-of-bound index. In-

sert a final modifier enforces that a variable is only initialized once and the assigned value

or reference is never changed, which is generally recommended for clear design and better

performance due to static inlining. Handle a new exception improves the reliability of a code

example by handling any missing exceptions, since exception handling is often omitted in

examples in SO [152]. Clean up unmanaged resources helps release unneeded resources such

as file streams and web sockets to avoid resource leaks [129].

Resolve Compilation Errors. SO examples are often incomplete with undefined variables

and method calls [42, 149]. Declare an undeclared variable inserts a statement to declare an

unknown variable. Specify a target of method invocation resolves an undefined method call

by specifying the receiver object of that call. In an example about getting CPU usage [6],

one comment complains the example does not compile due to an unknown method call,

getOperatingSystemMXBean. Another suggests to preface the method call with an instance,

ManagementFactory, which is also evidenced by its GitHub counterpart [16]. Sometimes,

statements that use undefined variables and method calls are simply deleted.

Exception Handling. This category represents changes of the exception handling logic

in catch/finally blocks and throws clauses. One common change is to customize the ac-

tions in a catch block, e.g., printing a short error message instead of the entire stack trace.
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Figure 5.2: Code size (LOC) and vote scores on the number of AST edits in a SO example

Some developers handle exceptions locally rather than throwing them in method headers.

For example, while the SO example [10] throws a generic Exception in the addLibraryPath

method, its GitHub clone [14] enumerates all possible exceptions such as SecurityException

and IllegalArgumentException in a try-catch block. By contrast, propagating the ex-

ceptions to upstream by adding throws in the method header is another way to handle the

exceptions.

Logic Customization. Customizing the functionality of a code example to fit a target

project is a common and broad category. We categorize logic changes to four basic types.

Change a method call includes any edits in a method call, e.g., adding or removing a method

call, changing its arguments or receiver, etc. Update a constant value changes a constant value

such as the thread sleep time to another value. Change a conditional expression includes

any edits on the condition expression of an if statement, a loop, or a switch case.

Update a type name replaces a variable type or a method return type with another type.

For example, String and StringBuffer appear in multiple SO examples, and a faster type,

StringBuilder, is used in their GitHub clones instead. Such type replacement often involves

extra changes such as updating method calls to fit the replaced type or adding method calls

to convert one type to another. For example, instead of returning InetAddress in a SO

example [9], its GitHub clone [12] returns String and thus converts the IP address object

to its string format using a new Formatter API.
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Refactoring. 31% of inspected GitHub counterparts use a method or variable name dif-

ferent from the SO example. Instead of slider in a SO example [7], timeSlider is used

in one GitHub counterpart [13] and volumnSlider is used in another counterpart [11]. Be-

cause SO examples often use hardcoded constant values for illustration purposes, GitHub

counterparts may use variables instead of hardcoded constants. However, sometimes, a

GitHub counterpart such as [15] does the opposite by inlining the values of two constant

fields, BUFFERSIZE and KB, since these fields do not appear along with the copied method,

downloadWithHttpClient [8].

Miscellaneous. Adaptation types in this category do not have a significant impact on the

reliability and functionality of a SO example. However, several interesting cases are still

worth noting. In 91 inspected examples, GitHub counterparts include comments to explain

the reused code. Sometimes, annotations such as @NotNull or @DroidSafe appear in GitHub

counterparts to document the constraints of code.

5.4.2 Automated Adaptation Categorization

Based on the manual inspection, we build a rule-based classification technique that automat-

ically categorizes AST edit operations generated by GumTree to different adaptation types.

GumTree supports four edit operations—insert, delete, update, and move, described in

Column GumTree Edit Operation in Table 5.1. Given a set of AST edits, our technique

leverages both syntactic and semantic rules to categorize the edits to 24 adaptation types.

Column Rule in Table 5.1 describes the implementation logic of categorizing each adaptation

type.

Syntactic-based Rules. 16 adaptation types are detected based on syntactic information,

e.g., edit operation types, AST node types and values, etc. Column Syntactic Predicate

defines such syntactic information, which is obtained using the built-in functions provided
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by GumTree. For example, the rule insert a final modifier checks for an edit operation that

inserts a Modifier node whose value is final in a GitHub clone.

Semantic-based Rules. 8 adaptation types require leveraging semantic information to be

detected (Column Semantic Predicate). For example, the rule declare an undeclared variable

checks for an edit operation that inserts a VariableDeclaration node in the GitHub coun-

terpart and the variable name is used but not defined in the SO example. Our technique

traverses ASTs to gather such semantic information. For example, our AST visitor keeps

track of all declared variables when visiting a VariableDeclaration AST node, and all used

variables when visiting a Name node.

5.4.3 Accuracy of Adaptation Categorization

We randomly sampled another 100 SO examples and their GitHub clones to evaluate our

automated categorization technique. To reduce bias, the second author who was not involved

in the previous manual inspection labeled the adaptation types in this validation set. The

ground truth contains 449 manually labeled adaptation types in 100 examples. Overall,

our technique infers 440 adaptation types with 98% precision and 96% recall. In 80% of

SO examples, our technique infers all adaptation types correctly. In another 20% of SO

examples, it infers some but not all expected adaptation types.

Our technique infers incorrect or missing adaptation types for two main reasons. First, our

technique only considers 24 common adaptation types in Table 5.1 but does not handle

infrequent ones such as refactoring using lambda expressions and rewriting ++i to i++.

Second, GumTree may generate sub-optimal edit scripts with unnecessary edit operations in

about 5% of file pairs, according to [45]. In such cases, our technique may mistakenly report

incorrect adaptation types.
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Figure 5.3: Frequencies of categorized adaptation types in two datasets

5.5 Empirical Study

5.5.1 How many edits are potentially required to adapt a SO ex-

ample?

We apply the adaptation categorization technique to quantify the extent of adaptions and

variations in the two datasets. We measure AST edits between a SO example and its GitHub

counterpart. If a SO code example has multiple GitHub counterparts, we use the average

number. Overall, 13,595 SO examples (96%) in the variation dataset include a median of 39

AST edits (mean 47). 556 SO examples (88%) in the adaptation dataset include a median

of 23 AST edits (mean 33). Figure 5.2a compares the distribution of AST edits in these

two datasets. In both datasets, most SO examples have variations from their counterparts,

indicating that integrating them to production code may require some type of adaptations.

Figure 5.2b shows the median number of AST edits in SO examples with different lines

of code. We perform a non-parametric local regression [119] on the example size and the

number of AST edits. As shown by the two lines in Figure 5.2b, there is a strong positive

correlation between the number of AST edits and the SO example size in both datasets—long

103



SO examples have more adaptations than short examples.

Stack Overflow users can vote a post to indicate the applicability and usefulness of the

post. Therefore, votes are often considered as the main quality metric of SO examples [89].

Figure 5.2c shows the median number of AST edits in SO examples with different vote scores.

Although the adaptation dataset has significantly higher votes than the variation dataset

(Figure 5.2c), there is no strong positive or negative correlation between the AST edit and

the vote score in both sets. This implies that highly voted SO examples do not necessarily

require fewer adaptations than those with low vote scores.

5.5.2 What are common adaptation and variation types?

Figure 5.3 compares the frequencies of the 24 categorized adaptation types (Column Adap-

tation Type in Table 5.1) for the adaptation and variation datasets. If a SO code example

has multiple GitHub counterparts, we only consider the distinct types among all GitHub

counterparts to avoid the inflation caused by repetitive variations among different counter-

parts. The frequency distribution is consistent in most adaptation types between the two

datasets, indicating that variation patterns resemble adaptation patterns. Participants in

the user study also appreciate being able to see variations in similar GitHub code, since “it

highlights the best practices followed by the community and prioritizes the changes that I

should make first,” as P5 explained.

In both datasets, the most frequent adaptation type is change a method call in the logic cus-

tomization category. Other logic customization types also occur frequently. This is because

SO examples are often designed for illustration purposes with contrived usage scenarios and

input data, and thus require further logic customization. Rename is the second most com-

mon adaptation type. It is frequently performed to make variable and method names more

readable for the specific context of a GitHub counterpart. 35% and 14% of SO examples
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Figure 5.4: In the lifted template, common unchanged code is retained, while adapted
regions are abstracted with hot spots.

in the variation dataset and the adaptation dataset respectively include undefined variables

or local method calls, leading to compilation errors. The majority of these compilation er-

rors (60% and 61% respectively) could be resolved by simply removing the statements using

these undefined variables or method calls. 34% and 22% of SO examples in the two datasets

respectively include new conditionals (e.g., an if check) to handle corner cases or reject

invalid input data.

To understand whether the same type of adaptations appears repetitively on the same SO

example, we count the number of adaptation types shared by different GitHub counterparts.

Multiple clones of the same SO example share at least one same adaptation type in the 70%

of the adaptation dataset and 74% of the variation dataset. In other words, the same type

of adaptations is recurring among different GitHub counterparts.
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5.6 Conclusion

This paper provides a comprehensive analysis of common adaptation and variation patterns

of online code examples by both overapproximating and underapproximating reused code

from Stack Overflow to GitHub. Our quantitative analysis shows that the same type of

adaptations and variations appears repetitively among different GitHub clones of the same

SO example, and variation patterns resemble adaptation patterns. This implies that different

GitHub developers may apply similar adaptations to the same example over and over again

independently.
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Chapter 6

Statement-level Recommendation for

Related Code

The material in this chapter is part of the following paper, and is included here with per-

mission from ACM.

S. Luan, D. Yang, C. Barnaby, K. Sen and S. Chandra. Aroma: Code Recommendation via

Structural Code Search. In Proceedings of the ACM on Programming Languages, Volume

3(OOPSLA), Oct 2019.

This work is done during my internship with Facebook in summer 2018. The paper pro-

posed a statement-level code recommendation tool called Aroma. I contributed to the work

by collecting all the data needed code search base and evaluation, implementing the clus-

tering and intersection algorithm and part of the searching algorithm, and evaluating the

recommendation results. In this chapter, I only included the parts that I was involved in.
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6.1 Introduction

Suppose an Android programmer wants to write code to decode a bitmap. The programmer

is familiar with the libraries necessary to write the code, but they are not quite sure how

to write the code completely with proper error handling and suitable configurations. They

write the code snippet shown in Listing 6.1 as a first attempt. The programmer now wants to

know how others have implemented this functionality fully and correctly in related projects.

Specifically, they want to know what is the customary way to extend the code so that proper

setup is done, common errors are handled, and appropriate library methods are called. It

would be nice if a tool could return a few code snippets shown in Listings 6.2, 6.3, which

demonstrate how to configure the decoder to use less memory, and how to handle potential

runtime exceptions, respectively. We call this the code recommendation problem.

1 InputStream input = manager.open(fileName);

2 Bitmap image = BitmapFactory.decodeStream(input);

Listing 6.1: Suppose an Android programmer writes this code to decode a bitmap.

1 final BitmapFactory.Options options = new BitmapFactory.Options();

2 options.inSampleSize = 2;

3 Bitmap bmp = BitmapFactory.decodeStream(is, null, options);

Listing 6.2: A recommended code snippet that shows how to configure the decoder to

use less memory. Recommended lines are highlighted.1

1 try {

2 InputStream is = am.open(fileName);

3 image = BitmapFactory.decodeStream(is);

4 is.close();

5 } catch (IOException e) {

6 // ...

7 }

1Adapted from https://github.com/zom/Zom-Android/blob/master/app/src/main/java/org/

awesomeapp/messenger/ui/stickers/StickerGridAdapter.java#L67. Accessed in August 2018.

108

https://github.com/zom/Zom-Android/blob/master/app/src/main/java/org/awesomeapp/messenger/ui/stickers/StickerGridAdapter.java#L67
https://github.com/zom/Zom-Android/blob/master/app/src/main/java/org/awesomeapp/messenger/ui/stickers/StickerGridAdapter.java#L67


Listing 6.3: Another recommended code snippet that shows how to properly close the

input stream and handle any potential IOException. Recommended lines are

highlighted.2

There are a few existing techniques which could potentially be used to get code recommen-

dations. For example, code-to-code search tools [68, 73] could retrieve relevant code snippets

from a corpus using a partial code snippet as query. However, such code-to-code search tools

return lots of relevant code snippets without removing or aggregating similar-looking ones.

Moreover, such tools do not make any effort to carve out common and concise code snippets

from similar-looking retrieved code snippets. Pattern-based code completion tools [87, 91, 93]

mine common API usage patterns from a large corpus and use those patterns to recommend

code completion for partially written programs as long as the partial program matches a pre-

fix of a mined pattern. Such tools work well for the mined patterns; however, they cannot

recommend any code outside the mined patterns—the number of mined patterns are usually

limited to a few hundreds. We emphasize that the meaning of the phrase “code recommenda-

tion” in Aroma is different from the term “API code recommendation” [90, 94]. The latter

is a recommendation engine for the next API method to invoke given a code change, whereas

Aroma aims to recommend code snippets, as shown in Listings 6.2, 6.3, for programmers to

learn common usages and integrate those usages with their own code. Aroma’s recommen-

dations contain more syntactic variety than just API usages; for instance, the recommended

code snippet in Listing 6.3 includes a try-catch block, and Example B in Table 6.1 recom-

mends adding an if statement that modifies a variable. Code clone detectors [38, 64, 66, 116]

are another set of techniques that could potentially be used to retrieve recommended code

snippets. However, code clone detection tools usually retrieve code snippets that are almost

identical to a query snippet. Such retrieved code snippets may not always contain extra code

2Adapted from https://github.com/yuyuyu123/ZCommon/blob/master/zcommon/src/main/java/

com/cc/android/zcommon/utils/android/AssetUtils.java#L37. Accessed in August 2018.
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which could be used to extend the query snippet.

We propose Aroma, a code recommendation engine. Given a code snippet as input query

and a large corpus of code containing millions of methods, Aroma returns a set of recom-

mended code snippets such that each recommended code snippet:

• contains the query snippet approximately, and

• is contained approximately in a non-empty set of method bodies in the corpus.

Furthermore, Aroma ensures that any two recommended code snippets are not quite similar

to each other.

Aroma works by first indexing the given corpus of code. Then Aroma searches for a small

set (e.g. 1000) of method bodies which contain the query code snippet approximately.

A challenge in designing this search step is that a query snippet, unlike a natural language

query, has structure, which should be taken into account while searching for code. Once

Aroma has retrieved a small set of code snippets which approximately contain the query

snippet, Aroma prunes the retrieved snippets so that the resulting pruned snippets become

similar to the query snippet. It then ranks the retrieved code snippets based on the similarity

of the pruned snippets to the query snippet. This step helps to rank the retrieved snippets

based on how well they contain the query snippet. The step is precise, but is relatively

expensive; however, the step is only performed on a small set of code snippets, making it

efficient in practice. After ranking the retrieved code snippets, Aroma clusters the snippets

so that similar snippets fall under the same cluster. Aroma then intersects the snippets in

each cluster to carve out a maximal code snippet which is common to all the snippets in the

cluster and which contains the query snippet. The set of intersected code snippets are then

returned as recommended code snippets. Figure 6.3 shows an outline of the algorithm. For

the query shown in Listing 6.1, Aroma recommends the code snippets shown in Listings 6.2,
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6.3. The right column of Table 6.1 shows more examples of code snippets recommended by

Aroma for the code queries shown on the left column of the table.

To our best knowledge, Aroma is the first tool which could recommend relevant code snip-

pets given a query code snippet. The advantages of Aroma are the following:

• A code snippet recommended by Aroma does not simply come from a single method

body, but is generated from several similar-looking code snippets via intersection. This

increases the likelihood that Aroma’s recommendation is idiomatic rather than one-off.

• Aroma does not require mining common coding patterns or idioms ahead of time. There-

fore, Aroma is not limited to a set of mined patterns—it can retrieve new and interesting

code snippets on-the-fly.

• Aroma is fast enough to use in real time. A key innovation in Aroma is that it first

retrieves a small set of snippets based on approximate search, and then performs the

heavy-duty pruning and clustering operations on this set. This enables Aroma to create

recommended code snippets on a given query from a large corpus containing millions of

methods within a couple of seconds on a multi-core server machine.

• Aroma is easy to deploy for different programming languages because its core algorithm

works on generic parse trees. We have implemented Aroma for Hack, Java, JavaScript

and Python.

• Although we developed Aroma for the purpose of code recommendation, it could be used

to also perform efficient and precise code-to-code structural search.

We have implemented Aroma in C++ for four programming languages: Hack [141], Java,

JavaScript and Python. We have also implemented IDE plugins for all of these four lan-

guages. We report our experimental evaluation of Aroma for the Java programming lan-

guage. We have used Aroma to index 5,417 GitHub Java Android projects. We performed
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Table 6.1: Aroma code recommendation examples

Query Code Snippet Aroma Code Recommendation with Extra Lines Highlighted

1 TextView textView = (TextView) view.findViewById(R.id.textview);
2 SpannableString content = new SpannableString("Content");
3 content.setSpan(new UnderlineSpan(), 0, content.length(), 0);
4 textView.setText(content);

Example A: Configuring Objects.

• This code snippet adds underline to a piece of text.1

• The recommended code suggests adding a callback handler to
pop up a dialog once the underlined text is touched upon.

• Intersected from a cluster of 2 methods.2

1 TextView licenseView = (TextView)
findViewById(R.id.library_license_link);

2 SpannableString underlinedLicenseLink = new SpannableString(
3 getString(R.string.library_license_link));
4 underlinedLicenseLink.setSpan(new UnderlineSpan(), 0,

underlinedLicenseLink.length(), 0);
5 licenseView.setText(underlinedLicenseLink);
6 licenseView.setOnClickListener(v -> {
7 FragmentManager fm = getSupportFragmentManager();

8 LibraryLicenseDialog libraryLicenseDlg = new

LibraryLicenseDialog();

9 libraryLicenseDlg.show(fm, "fragment license"); });

1 Bitmap bitmap = BitmapFactory.decodeResource(getResources(),
R.drawable.image);

Example B: Post-Processing.

• This code snippet decodes a bitmap.3

• The recommended code suggests applying Gaussian blur on the
decoded image, a customary effect to be applied.

• Intersected from a cluster of 4 methods.4

1 int radius = seekBar.getProgress();

2 if (radius < 1) {
3 radius = 1;

4 }
5 Bitmap bitmap = BitmapFactory.decodeResource(getResources(),

R.drawable.image);
6 imageView.setImageBitmap(blur.gaussianBlur(radius, bitmap));

1 EditText et = (EditText)findViewById(R.id.inbox);
2 et.setSelection(et.getText().length());

Example C: Correlated Statements.

• This code snippet moves the cursor to the end in a text area.5

• The recommended code suggests also configuring the action bar
to create a more focused view.

• Intersected from a cluster of 2 methods.6

1 super.onCreate(savedInstanceState);

2 setContentView(R.layout.material edittext activity main);

3 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

4 getSupportActionBar().setDisplayShowTitleEnabled(false);

5 EditText singleLineEllipsisEt = (EditText)
findViewById(R.id.singleLineEllipsisEt);

6 singleLineEllipsisEt.setSelection(
singleLineEllipsisEt.getText().length());

1 PackageInfo pInfo =
getPackageManager().getPackageInfo(getPackageName(), 0);

2 String version = pInfo.versionName;

Example D: Exact Recommendations.

• This partial code snippet gets the current version of the appli-
cation. The rest of the code snippet (not shown) catches and

handles possible NameNotFound errors.7

• The recommended code suggests the exact same error handling
as in the original code snippet.

• Intersected from a cluster of 2 methods.8

1 try {
2 PackageInfo pInfo =

getPackageManager().getPackageInfo(getPackageName(), 0);
3 String version = pInfo.versionName;
4 TextView versionView = (TextView)

findViewById(R.id.about project version);

5 versionView.setText("v" + version);

6 } catch (PackageManager.NameNotFoundException ex) {
7 Log.e(...);

8 }

1 i.putExtra("parcelable_extra", (Parcelable) myParcelableObject);

Example E: Alternative Recommendations.

• This partial code snippet demonstrates one way to attach an
object to an Intent. The rest of the code snippet (not shown)

shows a different way to serialize and attach an object.9

• Intersected from a cluster of 10 methods.10

1 Intent intent = new Intent(this, BoardTopicActivity.class);

2 intent.putExtra(SMTHApplication.BOARD_OBJECT, (Parcelable) board);
3 startActivity(intent);

• The recommended code does not suggest the other way of serializing
the object, but rather suggests a common way to complete the op-
eration by starting an activity with an Intent containing a serialized
object.

1 Adapted from the Stack Overflow post “Can I underline text in an android layout?” [https://stackoverflow.com/questions/2394939], by Anthony
Forloney [https://stackoverflow.com/users/166712].

2 Adapted from https://github.com/tonyvu2014/android-shoppingcart/blob/master/demo/src/main/java/com/android/tonyvu/sc/demo/ProductActivity.

java.
3 Adapted from the Stack Overflow post “How to set a bitmap from resource” [https://stackoverflow.com/questions/4955305], by xandy [https:
//stackoverflow.com/users/109112].

4 Adapted from https://github.com/TonnyL/GaussianBlur/blob/master/app/src/main/java/io/github/marktony/gaussianblur/MainActivity.java.
5 Adapted from the Stack Overflow post “Place cursor at the end of text in EditText” [https://stackoverflow.com/questions/6624186], by Marqs

[https://stackoverflow.com/users/400493].
6 Adapted from https://github.com/cymcsg/UltimateAndroid/blob/master/deprecated/UltimateAndroidGradle/demoofui/src/main/java/com/marshalchen/

common/demoofui/sampleModules/MaterialEditTextActivity.java.
7 Adapted from the Stack Overflow post “How to get the build/version number of your Android application?” [https://stackoverflow.com/
questions/6593822], by plus- [https://stackoverflow.com/users/709635].

8 Adapted from https://github.com/front-line-tech/background-service-lib/blob/master/SampleService/servicelib/src/main/java/com/flt/servicelib/

AbstractPermissionExtensionAppCompatActivity.java.
9 Adapted from the Stack Overflow post “How to send an object from one Android Activity to another using Intents?” [https://stackoverflow.
com/questions/2141166], by Jeremy Logan [https://stackoverflow.com/users/76835].

10 Adapted from https://github.com/zfdang/zSMTH-Android/blob/master/app/src/main/java/com/zfdang/zsmth_android/MainActivity.java.
All Stack Overflow content is licensed under CC-BY-SA 3.0. All URLs are accessed in August 2018.
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our experiments for Android Java because we initially developed Aroma for Android based

on internal developers’ need. We evaluated Aroma using code snippets obtained from

Stack Overflow. We manually analyzed and categorized the recommendations into several

representative categories. We also evaluated Aroma recommendations on 50 partial code

snippets, where we found that Aroma can recommend the exact code snippets for 37 queries,

and in the remaining 13 cases Aroma recommends alternative recommendations that are

still useful. On average, Aroma takes 1.6 seconds to create recommendations for a query

code snippet on a 24-core CPU. In our large-scale automated evaluation, we used a micro-

benchmarking suite containing artificially created query snippets to evaluate the effectiveness

of various design choices in Aroma.

The rest of the paper is organized as follows: Section 6.2 presents a case study that reveals

the opportunity for a code recommendation tool like Aroma. In Section 6.4, we describe

the algorithm Aroma uses to create code recommendations. In Section 6.5 we manually

assess how useful Aroma code recommendations are. Since code search is a key component

of creating recommendations, in Section 6.6 we measure the search recall of Aroma and

compare it with other techniques. Section 7.2 presents related work. Finally, Section 6.7

concludes the paper.

6.2 The Opportunity for Aroma

Aroma is based on the idea that new code often resembles code that has already been

written— therefore, programmers can benefit from recommendations from existing code. To

substantiate this claim, we conducted an experiment to measure the similarity of new code

to existing code. This experiment was conducted on a large codebase in the Hack language.

We first collected all code commits submitted in a two-day period. From these commits,
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we extracted a set of changesets. A changeset is defined as a set of contiguous added or

modified lines in a code commit. We filtered out changesets that were shorter than two

lines or longer than seven lines. We decided to use this filter because longer changesets are

more likely to span multiple methods, and we wanted to limit our dataset to code added or

modified within a single method. Alternatively, we could have taken portions of changesets

found within a single method; however, since changesets are raw text, finding the method

boundaries involves additional parsing. We stuck to the simple solution of taking short

changesets.

For each of the first 1000 changesets in this set, we used Aroma to perform a code-to-code

search, taking the snippet as input and returning a list of methods in the repository that

contain structurally similar code. Aroma was used because it was already implemented

for Hack—but for the purpose of this experiment, any code-to-code search tool or clone

detector can work. The results are ranked by similarity score: the percentage of features in

the search query that are also found in the search result. For each changeset, we took the

top-ranked method and its similarity score. 71 changesets did not yield any search result,

because they contained only comments or variable lists, which Aroma disregards in search

(see Section 6.4.2).
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To interpret the results, we first needed to assess the correlation between the similarity

score (i.e. a measure of the syntactic similarity) and the semantic similarity between the

changeset and the result. Two authors manually looked over a random sample of 50 pairs

of changesets and result methods, and decided whether this method contained code similar

enough to the changeset that a programmer could adopt the existing code (by copy-pasting

or refactoring) with minimal changes. Using this criteria, each pair was deemed “similar” or

“not similar”. Conflicting judgments were cross-checked and re-assessed. As shown in the

box plot in Figure 6.1, there is a clear distinction in similarity scores between the manually-

labeled “similar” and “not similar” pairs. Note that in this figure, the top and bottom of

the box represents the third and first quartile of the data. The lines extending above and

below the box represent the maximum and minimum, and the line running through the box

represents the median value.

We chose the first quartile of the similarity scores in the manually-labeled similar pairs—

0.71—as the threshold similarity score to decide whether a retrieved code snippet contains

meaningful semantic similarities to new code in the commit. We found that for 35.3% of

changesets, the most similar result had a score of at least 0.71, meaning that in these cases

it would be easy for a programmer to adapt the existing code with minimal efforts, should

the code be provided to them.

These results indicate that a considerable amount of new code contains similarities to code

that already exists in a large code repository. With Aroma, we aim to utilize this similar

code to offer concise, helpful code recommendations to programmers. The amount of similar

code in new commits suggests that Aroma has the potential to save a lot of programmers’

time and effort.
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6.3 Related Work

Code Search Engines

Code-to-code search tools like FaCoY [68] and Krugle [73] take a code snippet as query and

retrieve relevant code snippets from the corpus. FaCoY aims to find semantically similar

results for input queries. Given a code query, it first searches in a Stack Overflow dataset

to find natural language descriptions of the code, and then finds related posts and similar

code. While these code-to-code search tools retrieve similar code at different syntactic and

semantic levels, they do not attempt to create concise recommendations from their search

results. Further, most of these search engines cannot be instantiated on our code corpus, so

we could not experimentally compare Aroma with these search engines. For instance, the

code search engine FaCoY only provides a VM-based demo that is instantiated on a fixed

corpus which is not available publicly. We were also unable to instantiate FaCoY on our

corpus for a direct comparison. Most other open-source code search tools, including Krugle

and searchcode.com, suffer from the same problem. Instead, we compared Aroma with two

conventional code search techniques based on featurization and TF-IDF in Section 6.6.1,

and found that Aroma’s pruning-based search technique in Phase II outperforms both

techniques.

Many efforts have been made to improve keyword-based code search [22, 34, 78, 79, 113].

CodeGenie [74] uses test cases to search and reuse source code; SNIFF [35] works by inlining

API documentation in its code corpus. SNIFF also intersects the search results to provide

recommendations, but only targets at resolving natural language queries. The clustering

algorithm in SNIFF is limited and does not take structure into account. Two statements are

considered similar if they are syntactically similar after replacing variable names with types.

The intersection of two code snippets is the set of statements that appear in both snippets.

Due to the strict definition of similarity, SNIFF cannot find large clusters that contain
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approximately similar code snippets. Also, SNIFF uses the longest common subsequence

algorithm, whose limitations we discuss in Section 6.4.3.2. MAPO [155] recommends code

examples by mining and indexing associated API usage patterns. Portfolio [80] retrieves

functions and visualizes their usage chains. CodeHow [77] augments the query with API

calls which are retrieved from documentation to improve search results. CoCaBu [120]

augments the query with structural code entities. A developer survey [114] reports the top

reason for code search is to find code examples or related APIs, and tools have been created

for this need. While these code search techniques focus on creating code examples based on

keyword queries, they do not support code-to-code search and recommendation.

Clone Detectors

Clone detectors are designed to detect syntactically identical or highly similar code. Sourcer-

erCC [116] is a token-based clone detector targeting Type 1, 2, and 3 clones. Compared with

other clone detectors that also support Type 3 clones, including NiCad [38], Deckard [64],

and CCFinder [66], SourcererCC has high precision and recall and also scales to large-size

projects. One may repurpose a clone detector to find similar code, but since it is designed

for finding highly similar code rather than code that contains the query code snippet—as

demonstrated in Section 6.6.1—its results are not suitable for code recommendation.

Recent clone detection techniques explored other research directions, from finding semanti-

cally similar clones [67, 68, 115, 145], to finding gapped clones [134] and gapped clones with

a large number of edits (large-gapped clones) [142]. These techniques may excel in finding

a particular type of clone, but they sacrifice the precision and recall for Type 1 to 3 clones.
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Pattern Mining and Code Completion

Code completion can be achieved by different approaches—from extracting the structural

context of the code to mining recent histories of editing [30, 59, 62, 109]. GraPacc [91]

achieves pattern-oriented code completion by first mining graph-represented coding patterns

using GrouMiner [93], then searching for input code to produce code completion suggestions.

More recent work [90, 92, 94] improves code completion by predicting the next API call given

a code change. Pattern-oriented code completion requires mining usage patterns ahead of

time, and cannot recommend any code outside of the mined patterns, while Aroma does

not require pattern mining and recommends snippets on the fly.

API Documentation Tools

More techniques exist for improving API documentations and examples. The work by [32]

synthesizes API usage examples through data flow analysis, clustering and pattern abstrac-

tion. The work by [124] augments API documentations with up-to-date source code ex-

amples. MUSE [85] generates code examples for a specific method using static slicing.

SWIM [105] synthesizes structured call sequences based on a natural language query. The

work by [130] augments API documentation with insights from Stack Overflow. These tools

are limited to API usages and do not generalize to structured code queries.

6.4 Algorithm

Figure 6.3 illustrates the overall architecture of Aroma. In order to generate code recom-

mendations, Aroma must first featurize the code corpus. To do so, Aroma parses the

body of each method in the corpus and creates its parse tree. It extracts a set of structural

features from each parse tree. Then, given a query code snippet, Aroma runs the following
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Figure 6.3: Aroma code recommendation pipeline

phases to create recommendations:

• Light-weight Search. In this phase, Aroma takes a query code snippet, and outputs

a list of the top few (e.g. 1000) methods that have the most overlap with the query. To

do so, Aroma extracts custom features from the query and each method in the corpus.

Aroma intersects the set of features of the query and each method body, and uses the

cardinality of the intersection to compute the degree of overlap between the query and the

method body. To make this computation efficient, Aroma represents the set of features

of a code snippet as a sparse vector and performs matrix multiplication to compute the

degree of overlap of all methods with the query code.

• Prune and Rerank. In this phase, Aroma reranks the list of method bodies retrieved

from the previous phase using a more precise, but expensive algorithm for computing

similarity.

• Cluster and Intersect. In the final phase, Aroma clusters the reranked list of code

snippets from the previous phase. Clustering is based on the similarity of the method
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bodies. Clustering also needs to satisfy constraints which ensure that recommendations

are of high quality. Therefore, we have devised a custom clustering algorithm which takes

the constraints into account. Aroma then intersects the snippets in each cluster to come

up with recommended code snippets. This approach of clustering and intersection helps

to create a succinct, yet diverse set of recommendations.

We next describe the details of each step using the code snippet shown in Listing 6.4 as the

running example.

1 if (view instanceof ViewGroup) {

2 for (int i = 0; i < ((ViewGroup) view).getChildCount(); i++) {

3 View innerView = ((ViewGroup) view).getChildAt(i);

4 }

5 }

Listing 6.4: A code snippet adapted from a Stack Overflow post.3 This snippet is used
as the running example through Section 6.4.

6.4.1 Definitions

In this section, we introduce several notations and definitions used to compute the features of

a code snippet. The terminologies and notations are also used to describe Aroma formally.

Definition 1 (Keyword tokens) This is the set of all tokens in a language whose values

are fixed as part of the language. Keyword tokens include keywords such as while, if, else,

and symbols such as {, }, ., +, *. The set of all keyword tokens is finite for a language.

Definition 2 (Non-keyword tokens) This is the set of all tokens that are not keyword

tokens. Non-keyword tokens include variable names, method names, field names, and literals.

3Adapted from the Stack Overflow post “How to hide soft keyboard on android after clicking outside Edit-
Text?” [https://stackoverflow.com/questions/11656129], by Navneeth G [https://stackoverflow.
com/users/1135909]. CC-BY-SA 3.0 License. Accessed in August 2018.
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Examples of non-keyword tokens are i, length, 0, 1, etc. The set of non-keyword tokens is

non-finite for most languages.

Definition 3 (Simplified Parse Tree) A simplified parse tree is a data structure we use

to represent a program. It is recursively defined as a non-empty list whose elements could be

any of the following:

• a non-keyword token,

• a keyword token, or

• a simplified parse tree.

Moreover, a simplified parse tree cannot be a list containing a single simplified parse tree.

We picked this particular representation of programs instead of a conventional abstract

syntax tree representation because the representation only consists of program tokens, and

does not use any special language-specific rule names such as IfStatement, block etc.

As such, the representation can be used uniformly across various programming languages.

Moreover, one could perform an in-order traversal of a simplified parse tree and print the

token names to obtain the original program, albeit unformatted. We use this feature of a

simplified parse tree to show the recommended code snippets.

Definition 4 (Label of a Simplified Parse Tree) The label of a simplified parse tree is

obtained by concatenating all the elements of the list representing the tree as follows:

• If an element is a keyword token, the value of the token is used for concatenation.

• If an element is a non-keyword token or a simplified parse tree, the special symbol # is

used for concatenation.
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For example, the label of the simplified parse tree ["x", ">", ["y", ".", "f"]] is "#>#".

if##1

(#)2 {#}3

#instanceof#4 for(#)#5

view6 ViewGroup7 #;#;#8 {#}9

int#10 #<#11 #++12 #;13

#=#14 i15 #.#16 i17 ##18

i19 020 (#)21 #()22 View23 #=#24

(#)#25 getChildCount26 innerView27 #.#28

ViewGroup29 view30 (#)31 #(#)32

(#)#33 getChildAt34 i35

ViewGroup36 view37

Figure 6.4: The simplified parse tree representation of the code in Listing 6.4. Keyword
tokens at the leaves are omitted to avoid clutter. Variable nodes are highlighted in double

circles.

Figure 6.4 visualizes the simplified parse tree of the code snippet in Listing 6.4. In the figure,

each internal node represents a simplified parse tree, and is labeled using the tree’s label as

defined above. Since keyword tokens in a simplified parse tree become part of the label of

the tree, we do not create leaf nodes for keyword tokens in the tree diagram—we only add

leaf nodes for non-keyword tokens. We show the label of each node in the tree, and add a

unique index to each label as subscript to distinguish between any two similar labels.

To obtain the simplified parse tree of a code snippet, Aroma relies on a language-specific

parser. For example, Aroma utilizes the ANTLR4 [99] Java parser to produce the parse tree

for a Java program. Aroma traverses the parse tree produced by the parser to collect at

each internal node the tokens and subtrees that are immediate descendants of each internal

node of the parse tree. The collected elements at each node form a list, which is a simplified

parse tree. Aroma uses the list at each internal node to create the label for the node. The

distinction between keyword and non-keyword tokens is done using the language’s lexical
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specification. Aroma performs a second traversal of the tree and uses the static scoping

rules of the language to identify the global variables. Aroma uses the knowledge of the

global variables in the featurization phase which we describe later. Note that this process

of creating a simplified parse tree from a code snippet is language-dependent and requires

knowledge about the grammar and static scoping rules of the language. Once the simplified

parse tree of a code snippet has been created, the rest of Aroma’s algorithm is language-

agnostic.

Given a simplified parse tree t, we use the following notations. All examples refer to Fig-

ure 6.4.

• L(t) denotes the label of the tree t. E.g. L(if##1) = if##.

• N(t) denotes the list of all non-keyword tokens present in t or in any of its sub-trees, in

the same order as appearing in the source code.

E.g. N(#.#28) = [ViewGroup36, view37, getChildAt34, i35].

• If n is a non-keyword direct child of t, then we use P (n) to denote the parent of n which

is t. E.g. P (view6) = #instanceof#4.

• If t′ is a simplified parse tree and is a direct child of t, then we again use P (t′) to denote

the parent of t′ which is t. E.g. P (#instanceof#4) = (#)2.

• If n1 and n2 are two non-keyword tokens in a program and if n2 appears after n1 in the

program without any intervening non-keyword token, then we use Prev(n2) to denote

n1 and Next(n1) to denote n2. E.g. Prev(view30) = ViewGroup29, Next(ViewGroup29) =

view30.

• If n1 and n2 are two non-keyword tokens denoting the same local variable in a program

and if n1 and n2 are the two consecutive usages of the variable in the source code, then
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we use PrevUse(n2) to denote n1 and NextUse(n1) to denote n2. E.g. PrevUse(view30) =

view6, NextUse(view30) = view37.

• If n is a non-keyword token denoting a local variable and it is the ith child of its parent t,

then the context of n, denoted by C(n), is defined to be:

– (i, L(t)), if L(t) 6= #.#. E.g. C(view30) = (2, (#)#).

– The first non-keyword token that is not a local variable in N(t), otherwise. This is to

accommodate for cases like x.foo(), where we want the context feature for x to be foo

rather than (1, #.#), because the former better reflects its usage context.

6.4.2 Featurization

The high-level goal of this step is to take a simplified parse tree for a code snippet, and

extract a set of structural features from that parse tree. A key requirement of the features

is that if two code snippets are similar, they should have the same collection of features.

A simple way to featurize a code snippet is to treat the labels of all nodes in the simplified

parse tree as features. This simple approach creates problem if we have two code snippets

1) which only differ in local variable names, and 2) where one code snippet can be obtained

from the other by alpha renaming the local variables. The two code snippets should be

considered as similar, but the collection of features will differ in the name of some of the

variables. Therefore, we replace each token that denotes a local variable by a special token

#VAR. We do not perform similar replacements for global variables and method names. This

is because such identifiers are often part of some library API and cannot be alpha-renamed

to obtain similar programs.

Treating the labels of parse tree nodes as the only features does not help to capture the

relation between the nodes. Such relations are necessary to identify the structural features

124



of a code snippet. For example, without such a relation Aroma will treat the snippets

if (x > 0) z = 3; and if (z > 3) x = 0; as similar since they have the exact same

collection of node labels (i.e. {if##, (#), #>#, #;, #=#, 0, 3, #VAR, #VAR}). If we

can somehow create a feature encapsulating the fact that 3 belongs to the body of the first

if statement, Aroma will distinguish between the two snippets. Therefore, Aroma also

creates features which represent some relations between certain pairs of nodes in the parse

tree. Examples of some such features involving the token 3 are (if##,2,3), (#=#,2,3),

and (#VAR,3). The first feature, which is denoted as a triplet, states that the 2nd child of

a node labeled if## has a descendant leaf node with label 3. Similarly, the second feature

asserts that the 2nd child of a node labeled #=# has a descendant leaf node with label 3. We

call these two features parent features, as they help capture the relation of a leaf node with

its parent, grand-parent, and great-grand parent. The third feature relays the fact that a

variable leaf node appears before 3. We call such features sibling features. In summary, the

parent features and sibling features capture some local relations between the nodes in a parse

tree. However, these features are not exhaustive enough to recreate the parse tree from the

features. These non-exhaustiveness of features helps Aroma tolerate some non-similarities

in otherwise similar code snippets, and helps Aroma to retrieve some closely related, but

nonidentical code snippets during search.

Since we replace all local variable names with #VAR, we also need to relate two variable

usages in a code snippet which refer to the same local variable. For example, in the code

snippet if (y < 0) x = -x;, we will have three features of the form #VAR corresponding

to the two occurrences of x and one occurrence of y. However, the collection of features

described so far does not express the fact that two #VAR features refer to the same variable.

There is no direct way to state two variables are related since we have gotten rid of variable

names. Rather, we capture features about the fact that the consecutive usage context of the

same local variables are related. We call such features variable usage features. For example,

the context of the two usages of x are (1,#=#) and (1,-#), respectively. The first context
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corresponds to the first usage of x and denotes that there is a variable which is the first child

of the node labeled #=#. The index and the parent node label together forms the context of

this particular variable usage. Similarly, the second context denotes the second usage of x.

We create a feature of the form ((1,#=#),(1,-#)) which captures the relation between the

context of two consecutive usage of the same variable.

We now describe formally how a code snippet is featurized by Aroma. Given a simplified

parse tree, we extract four kinds of features for each non-keyword token n in the program

represented by the tree:

1. A Token Feature of the form n. If n is a local variable, we replace n with #VAR.

2. Parent Features of the form (n, i1, L(t1)), (n, i2, L(t2)), and (n, i3, L(t3)). Here n is the

ith1 child of t1, t1 is the ith2 child of t2, and t2 is the ith3 child of t3. As before, if n

is a local variable, then we replace n with #VAR. Note that in each of these features,

we do not specify if the third element in a feature is the parent, grand-parent, or the

great-grand parent. This helps Aroma to tolerate some non-similarities in otherwise

similar code snippets.

3. Sibling Features of the form (n, Next(n)) and (Prev(n), n). As before, if any of n, Next(n), Prev(n)

is a local variable, it is replaced with #VAR.

4. Variable Usage Features of the form (C(PrevUse(n)), C(n)) and (C(n), C(NextUse(n))).

We only add these features if n is a local variable.

For a non-keyword token n ∈ N(t), we use F (n) to denote the multi-set of features extracted

for n. We extend the definition of F to a set of non-keyword tokens Q as follows: F (Q) =

]n∈QF (n) where ] denotes multi-set union. For a simplified parse tree t, we use F (t) to

denote the multi-set of features of all non-keyword tokens in t, i.e. F (t) = F (N(t)). Let F

be the set of all features that can extracted from a given corpus of code.
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Table 6.2 illustrates the features extracted for two non-keyword tokens from the simplified

parse tree in Figure 6.4. In the interest of space, we do not show the features extracted by

Aroma for all non-keyword tokens.

Table 6.2: Features for selected tokens in Figure 6.4

Token Feature Parent Features Sibling Features Variable Usage Features

view30 #VAR

(#VAR, 2, (#)#)
(#VAR, 1, (#))
(#VAR, 1, #.#)

(ViewGroup, #VAR)
(#VAR,
getChildCount)

((1, #instanceof#),
(2, (#)#))

((2, (#)#), (2, (#)#))

020 0
(0, 2, #=#)
(0, 1, int#)
(0, 1, #;#;#;)

(#VAR, 0)
(0, #VAR)

-

6.4.3 Recommendation Algorithm

6.4.3.1 Phase I: Light-weight Search

In this phase, Aroma takes a query code snippet, and outputs a list of the top few (e.g.

1000) methods that contain the most overlap with the query. To compute the top methods,

we need to compute the degree of overlap between the query and each method body in the

corpus. Because our corpus has millions of methods, we need to make sure that the degree

of overlap can be computed fast at query time. We use the feature sets of code snippets

to compute the degree of overlap, which we call the overlap score. Specifically, Aroma

intersects the set of features of the query and the method body, and uses the cardinality of

the intersection as the overlap score. Computing intersection and its cardinality could be

computationally expensive. For efficient computation, we represent the set of features of a

code snippet as a sparse vector and perform matrix multiplication to compute the overlap

score of all methods with the query code. We next describe the formal details of the phase.

Given a large code corpus containing millions of methods. Aroma parses and creates a

simplified parse tree for each method body. It then featurizes each simplified parse tree. Let

M be the set of simplified parse trees of all method bodies in the corpus. Aroma also parses
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the query code snippet to create its simplified parse tree, say q, and extracts its features.

For the simplified parse tree m of each method body in the corpus, we use the cardinality

of the set S(F (m)) ∩ S(F (q)) as an approximate score, called overlap score, of how much

of the query code snippet overlaps with the method body. Here S(X) denotes the set of

elements of the multi-set X, where we ignore the count of each element in the multi-set.

Aroma computes a list of η1 method bodies whose overlap scores are highest with respect

to the query code snippet. In our implementation η1 is usually 1000.

The computation of this list can be reduced to a simple multiplication between a matrix and

a sparse vector as follows. The features of a code snippet can be represented as a sparse

vector of length |F|—the vector has an entry for each feature in F . If a feature fi is present in

F (m), the multi-set of features of the simplified parse tree m, then the ith entry of the vector

is 1 and 0 otherwise. Note that the elements of each vector can be either 0 or 1—we ignore

the count of each feature in the vector. To understand this decision, consider a method m

that contains a feature f numerous times (say n). Then, say we give Aroma a query q that

contains f once. The overlap score between m and q will be increased by n, even though the

multiple instances of this feature do not actually indicate greater overlap between m and q.

The sparse feature vectors of all method bodies can then be organized as a matrix, say D,

of shape |M | × |F|. Let vq be the sparse feature vector of the query code snippet q. Then

D ·vq is a vector of size |M | that gives the overlap score of each method body with respect to

the query snippet. Aroma picks the top η1 method bodies with the highest overlap scores.

Let N1 be the set of simplified parse trees of the method bodies picked by Aroma.

The corpus we used for evaluation has over 37 million unique features. But each method

has an average of 63 methods, so the feature vectors are very sparse. Thus, the matrix mul-

tiplication described above can be done efficiently using a fast sparse matrix multiplication

library—for our corpus, this phase finishes in less than a second.
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6.4.3.2 Phase II: Prune and Rerank

In the following phases, we need a sub-algorithm to compute a maximal code snippet that

is common to two given code snippets. For example, given the code snippets x = 1; y =

2; and y = 2; z = 3;, we need an algorithm that computes y = 2; as the intersection

of the two code snippets. This algorithm could be implemented using a longest-common

subsequence (LCS) [104] computation algorithm on strings by treating the two code snippets

as strings. Such an algorithm was used in SNIFF [35] (which performs natural language

small code snippet search). However, LCS does not work well for Aroma because often

the common parts between two code snippets may not be exactly similar. To illustrate this

point, suppose we are given the two code snippets x = 1; if (y > 1) if (z < 0) w =

4; and if (z < 0) if (y > 1) w = 4; v = 10;, where we have swapped the nesting of

the two if statements. LCS will retrieve either if (y > 1) w = 4; or if (z < 0) w =

4; as the intersection, i.e. LCS drops one of the if statements along with the non-common

assignment statements. Ideally, we should have both if statements in the intersection, i.e.

the intersection algorithm should compute either if (y > 1) if (z < 0) w = 4; or if

(z < 0) if (y > 1) w = 4; as the intersection.

The example also shows that we can have at most two intersected code snippets when fuzzy

similarity exists between the given code snippets—a snippet will either be most similar to

the first snippet, or the second snippet. We resolve this ambiguity by picking the intersected

snippet that is close to the second snippet. Thus, we can think of the intersection as a code

snippet obtained by taking the second snippet, and dropping its fragments which have no

resemblance to the first snippet. That is, the algorithm is pruning the second snippet while

retaining the parts common with the first one.

A simple way to prune the second snippet is to look at its parse tree and find a subtree

which is most similar to the first snippet. However, such an algorithm will be expensive
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because there are exponentially many subtrees in a given tree. Instead, Aroma uses a

greedy algorithm which gives us a maximal subtree of the second snippet’s parse tree. We

have also observed that if we can identify all the leaf nodes in the second snippet’s parse

tree that need to be present in the intersection, we can get a maximal subtree by simply

retaining all the nodes and edges in the tree that lie in a path from the root to the identified

leaf nodes. We next formally describe the pruning algorithm.

Let us assume we are given two code snippets, say m1 and m2, in the form of their parse

trees. The computation of the optimal pruned simplified parse tree, say mp, requires us to

find a subset, say R, of the leaf nodes of m2. Recall that the set of leaf nodes of m is denoted

by N(m) and contains exactly the non-keyword tokens in the parse tree. The set R should

be such that the similarity between mp and m1 is maximal. We will use the cardinality

of the multi-set intersection of the features of two code snippets as their similarity score.

That is, the similarity score between two snippets given as parse trees, say m1 and m2, is

|F (m1)∩F (m2)|. Let us denote it by SimScore(m1,m2). Once we have computed the set of

leaf nodes (i.e. R) that need to be present in the intersection, mp is the subtree consisting

of the nodes in R, and any internal nodes and edges in m2 which are along a path from

any n ∈ R to the root node in m2. The greedy algorithm for computing R is described in

Algorithm Prune.

Algorithm Prune(F (m1),m2):

1. R← ∅.

2. F ← ∅.

3. Find n such that

n = argmaxn′∈N(m2)−RSimScore(F (m1), (F ] F (n′)))
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and

SimScore(F (m1), F ] F (n)) > SimScore(F (m1), F ).

4. If such an n exists, then R← R ∪ {n} and F ← F ] F (n). Go back to Step 3.

5. Else return mp where mp is obtained from m by retaining all the non-keyword tokens

in R and any internal node or edge which appears in a path from a n ∈ R to the root

of m2. Then Prune(F (m1),m2) is mp.

In the algorithm, Aroma maintains the collection of the features of the intersected snippet

in the variable F . The variable R maintains the set of leaf nodes in the intersected code.

Initially, the algorithm starts with an empty set of leaf nodes. It then iteratively adds more

leaf nodes to the set from the parse tree of the second method (i.e. m2). A node n is added

if it increases the similarity between the first method and the tree that can be obtained from

R. Since F maintains the features of the tree that can be constructed from R, we can get

the features of R ∪ {n} by simply adding the features associated with n (i.e. F (n)) to F .

If such a node cannot be found, the algorithm constructs the intersected tree from R and

returns it.

We are next going to show how Aroma uses the pruning algorithm to rerank the snippets

retrieved in Phase 1. Given a query, say q, and a method body, say m, pruning of the method

with respect to the query (i.e. Prune(F (q),m)) gives a code snippet that is common to both

the query and method. If we consider the similarity score between the query and the pruned

code snippet, the score should be an alternative way to quantify the overlap between the

query and the method. We found empirically that if we use this alternative score to rerank

the methods retrieved in Phase 1 (i.e. N1), then our ranking of search results improves

slightly. Aroma uses the reranked list, which we call N2, in the next phase for clustering

and intersection. Note that the pruning algorithm is greedy, so we may not find the best
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intersection between two code snippets. In Section 6.6, we show that in very rare cases the

greedy pruning algorithm may not give us the best recommended code snippets.

Listing 6.5 shows a code snippet from the reranked search results for the query code snippet

in Listing 6.4. In the code snippet, the highlighted tokens are selected by the pruning

algorithm to maximize the similarity score to the query snippet.

6.4.3.3 Phase III: Cluster and Intersect

In the final phase, Aroma prepares recommendations by clustering and intersecting the

reranked search results from the previous phase. Clustering and intersection are compu-

tationally expensive. Therefore, we pick from the list of search results the top η2 = 100

methods whose overlap score with the query is above a threshold τ1 = 0.65, and run the last

phase on them. In the discussion below, we assume that N2 has been modified to contain

the top η2 search results.

Clustering. Aroma clusters together method bodies that are similar to each other. The

clustering step is necessary to avoid creating redundant recommendations—for each cluster,

only one recommendation is generated. Furthermore, the methods in a cluster may contain

unnecessary, extraneous code fragments. An intersection of the code snippets in a cluster

helps to create a concise recommendation by getting rid of these unnecessary code fragments.

A cluster contains method bodies that are similar to each other. Specifically, a cluster must

satisfy the following two constraints:

1. If we intersect the snippets in a cluster, we should get a code snippet that has more

code fragments than the query. This ensures that Aroma’s recommendation (which

is obtained by intersecting the snippets in the cluster) is an extension to the query
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snippet.

2. The pruned code snippets in a cluster are similar to each other. This is because Aroma

has been designed to perform search that can tolerate some degree of differences be-

tween the query and the results. As such, two code snippets may overlap with different

parts of the query. If two such code snippets are part of a cluster, then their inter-

section will not contain the query snippet. Therefore, the recommendation, which is

obtained by intersecting all the snippets in a cluster, will not contain any part of the

query. This is undesirable because we want a recommendation that contains the query

and some extra new code.

Moreover, Aroma does not require the clusters to be disjoint.

Because of these constraints on a cluster, we cannot simply use a textbook clustering algo-

rithm such as k-means, DBSCAN, or Affinity Propagation. We tried using those clustering

algorithms initially (ignoring the constraints) and got poor results. Therefore, we developed

a custom clustering algorithm that takes the constraints into account. At a high level, the

clustering algorithm starts by treating each method body as a separate cluster. Then, it it-

eratively merges a cluster with another cluster with single snippet provided that the merged

cluster satisfies the cluster constraints and the size of the recommended code snippet from

the merged cluster is minimally reduced. We next formally describe the clustering algorithm.

We use N2(i) to denote the tree at index i in the list N2. A cluster is a tuple of indices

of the form (i1, . . . , ik), where ij < ij+1 for all 1 ≤ j < k. A tuple (i1, . . . , ik) denotes a

cluster containing the code snippets N2(i1), . . . , N2(ik). We define the commonality score of

the tuple τ = (i1, . . . , ik) as

cs(τ) = | ∩1≤j≤k F (N2(ij))|
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Similarly, we define the commonality score of the tuple τ = (i1, . . . , ik) with respect to the

query q as

csq(τ) = | ∩1≤j≤k F (Prune(F (q), N2(ij)))|

We say that a tuple τ = (i1, . . . , ik) is a valid tuple or a valid cluster if

1. l(τ) = cs(τ)/csq(τ) is greater than some user-defined threshold τ2 (which is 1.5 in

our experiments). This ensures that after intersecting all the snippets in the cluster,

we get a snippet that is at least τ2 times bigger than the query code snippet.

2. s(τ) = csq(τ)/|F (N2(i1))| is greater than some user-defined threshold τ3 (which is 0.9

in our experiments). This requirement ensures that the trees in the cluster are not too

similar to each other. Specifically, it says that the intersection of the pruned snippets

in a cluster should be very similar to the first pruned snippet.

The set of valid tuples C is computed iteratively as follows:

1. C1 is the set {(i) | 1 ≤ i ≤ |N2| and (i) is a valid tuple}.

2. C`+1 = C` ∪ {(i1, . . . , ik, i) | (i1, . . . , ik) ∈ C` and ik < i ≤ |N2| and (i1, . . . , ik, i) is a

valid tuple and ∀j if ik < j ≤ |N2| then l((i1, . . . , ik, i)) ≥ l((i1, . . . , ik, j))}

Aroma computes C1, C2, . . . iteratively until it finds an ` such that C` = C`+1. C = C` is

then the set of all clusters. We developed this custom clustering algorithm because existing

popular clustering algorithms such as k-means, DBSCAN and Affinity Propagation all gave

poor recommendations. Our clustering algorithm makes use of several similarity metrics

(the containment score, the Jaccard similarity of various feature sets), whereas standard

clustering algorithms usually depend on a single notion of distance. We found the current

best similarity metric and clustering algorithm through trial and error.
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After computing all valid tuples, Aroma sorts the tuples in ascending order on the first

index in each tuple and then in descending order on the length of each tuple. It also drops

any tuple τ from the list if it is similar (i.e. has a Jaccard similarity more than 0.5) to any

tuple appearing before τ in the sorted list. This ensures that the recommended code snippets

are not too similar to each other. Let N3 be the sorted list of the remaining clusters.

Intersection. Aroma creates a recommendation by intersecting all the snippets in each

cluster. The intersection algorithm uses the Prune function and ensures that the inter-

section does not discard any code fragment that is part of the query. Formally, given a

tuple τ = (i1, . . . , ik), Intersect(τ, q) returns a code snippet that is the intersection of the

code snippets N2(i1), . . . , N2(ik) while ensuring that we retain any code that is similar to q.

Intersect((i1, . . . , ik), q) is defined recursively as follows:

• Intersect((i1), q) = Prune(F (q), N2(i1)).

• Intersect((i1, i2), q) = Prune(F (N2(i2)) ] F (q), N2(i1)).

• Intersect((i1, . . . , ij, ij+1), q) = Prune(F (N2(ij+1)) ∪ F (q), Intersect((i1, . . . , ij), q)).

In the running example, Listing 6.5 and Listing 6.6 form a cluster. Aroma prunes Listing 6.5

with respect to the union set of features of the query code and Listing 6.6 as the intersection

between Listing 6.5 and Listing 6.6. The result of the intersection is shown in Listing 6.7,

which is returned as the recommended code snippet from this cluster.

Finally, Aroma picks the top K (where K = 5 in our implementation) tuples from N3 and

returns the intersection of each tuple with the query code snippet as recommendations.

1 if (!(view instanceof EditText)) {

2 view.setOnTouchListener(new View.OnTouchListener() {

3 public boolean onTouch(View v, MotionEvent event) {

4 hideKeyBoard();

5 return false;

6 }

7 });
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8 }

9 if (view instanceof ViewGroup) {

10 for (int i = 0; i < ((ViewGroup) view).getChildCount(); i++) {

11 View innerView = ((ViewGroup) view).getChildAt(i);

12 setupUIToHideKeyBoardOnTouch(innerView);

13 }

14 }

Listing 6.5: A method body containing the query code snippet in Listing 6.4. The
highlighted text represents tokens selected in the pruning step.4

1 if (!(view instanceof EditText)) {

2 view.setOnTouchListener(new View.OnTouchListener() {

3 public boolean onTouch(View v, MotionEvent event) {

4 Utils.toggleSoftKeyBoard(LoginActivity.this, true);

5 return false;

6 }

7 });

8 }

9 if (view instanceof ViewGroup) {

10 for (int i = 0; i < ((ViewGroup) view).getChildCount(); i++) {

11 View innerView = ((ViewGroup) view).getChildAt(i);

12 setupUI(innerView);

13 }

14 }

Listing 6.6: Another method containing the query code snippet in Listing 6.4. The
highlighted text represents tokens selected in the pruning step.5

1 if (!(view instanceof EditText)) {
2 view.setOnTouchListener(new View.OnTouchListener() {
3 public boolean onTouch(View v, MotionEvent event) {
4 // your code...

5 return false;

6 }
7 });
8 }
9 if (view instanceof ViewGroup) {

10 for (int i = 0; i < ((ViewGroup) view).getChildCount(); i++) {

11 View innerView = ((ViewGroup) view).getChildAt(i);

12 setupUIToHideKeyBoardOnTouch(innerView);

13 }

14 }

Listing 6.7: A recommended code snippet created by intersecting code in Listing 6.5 and
Listing 6.6. Extra lines are highlighted.

4Adapted from https://github.com/arcbit/arcbit-android/blob/master/app/src/main/java/

com/arcbit/arcbit/ui/SendFragment.java#L468. Accessed in August 2018.
5Adapted from https://github.com/AppLozic/Applozic-Android-Chat-Sample/blob/

master/Applozic-Android-AV-Sample/app/src/main/java/com/applozic/mobicomkit/sample/

LoginActivity.java#L171. Accessed in August 2018.
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6.5 Evaluation of Aroma’s Code Recommendation Ca-

pabilities

Our goal in this section is to assess how Aroma code recommendation can be useful to

programmers. To do so, we collected real-world code snippets from Stack Overflow, used

them as query snippets, and inspected the code recommendations provided by Aroma to

understand how they can add value to programmers in various ways.

6.5.1 Datasets

We instantiated Aroma on 5,417 GitHub projects where Java is the main language and

Android is the project topic. We ensured the quality of the corpus by picking projects that

are not forked from other projects, and have at least 5 stars. A previous study [75] shows

that duplication exists pervasively on GitHub. To make sure Aroma recommendations are

created from multiple different code snippets, rather than the same code snippet duplicated

in multiple locations, we removed duplicates at project level, file level, and method level. We

do this by taking hashes of these entities and by comparing these hashes. After removing

duplicates, the corpus contains 2,417,125 methods.

For evaluation, we picked the 500 most popular questions on Stack Overflow with the android

tag. From these questions, we only considered the top voted answers. From each answer, we

extracted all Java code snippets containing at least 3 tokens, a method call, and less than

20 lines, excluding comments. We randomly picked 64 from this set of Java code snippets.

We then used these code snippets to carry out the experimental evaluations in the following

two sections. In these experiments, we found that on average Aroma takes 1.6 seconds end-

to-end to create recommendations on a 24-core CPU. The median response time is 1.3s and

95% queries complete in 4 seconds. A 24-core server was not necessary to achieve reasonable
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response time: We reran our experiments on a 4-core desktop machine, and the average

response time is 2.9 seconds. We believe this makes Aroma suitable for integration into the

development environment as a code recommendation tool.

6.5.2 Recommendation Performance on Partial Code Snippets

In this experiment, we manually created partial code snippets by taking the first half of

the statements from each of the 64 code snippets. Since each full code snippet from Stack

Overflow represents a popular coding pattern, we wanted to check whether Aroma could

recommend the missing statements in the code snippet given the partial query code snippet.

We always selected the first half of each code snippet to avoid subjective bias. Since we

know how the tool works, we would be inclined to pick the lines that we think will produce

better results. On average, the query code snippets were 1 to 5 lines and contained 10 to

100 features.

We could not extract partial query code snippets from 14 out of 64 code snippets because they

contained a single statement. Single-statement snippets do get recommendations, but since

we do not have a ground truth, we cannot judge their quality objectively. For the remaining

50 query code snippets, Aroma recommendations fall into the following two categories.

6.5.2.1 Exact Recommendations.

In 37 cases (74%), one of the top 5 Aroma recommendations matched the original code

snippet. Example D in Table 6.1 shows a partial query snippet which included the first two

statements in a try-catch block of a Stack Overflow code snippet, and Aroma recommended

the same error handling code as in the original code snippet.
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6.5.2.2 Alternative Recommendations.

In the other 13 cases (26%), none of the Aroma recommended code snippets matched the

original snippets. While in each case the recommended snippets did not contain the original

usage pattern, they still fall in some of the categories in Table 6.3 which we discuss in the

next section. Example E in Table 6.1 shows a partial code snippet which included one of

two common ways to send an object with an Intent. Given the statement, Aroma did not

recommend the other way to serialize an object in the original code snippet, but suggested

a customary way to start an activity with an Intent containing a serialized object.

6.5.3 Recommendation Quality on Full Code Snippets

In this experiment, we used the 64 code snippets as queries to evaluate the quality of

Aroma’s recommendations. While the experiment in the previous section used partial snip-

pets extracted from each of the 64 code snippets, here we used the full code snippets. This

meant that we could use all 64 snippets instead of just the 50 used in Section 6.5.2, as we

did not have to filter out single-statement code snippets.

We manually inspected the recommended code snippets and determined whether they are

useful. We considered a recommended code snippet to be “useful” if in a programming

scenario where a programmer writes the query code, they would benefit from seeing the

related methods or common usage patterns in the code recommendations. We classified the

recommended snippets into several categories by how the recommended code relates to the

query snippet. The classification is subjective because there is no “ground truth” on what

the recommended code should be, and the actual usefulness depends on how familiar the

programmer is with the language and framework. Nevertheless, we present the categories

and some examples in Table 6.1 to demonstrate the variety of code recommendations Aroma

can provide. Two of the authors did the manual inspection and categorization, and two other
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authors verified the results.

6.5.3.1 Configuring Objects

In this category, the recommended code suggests additional configurations on objects that are

already appearing in the query code. Examples include adding callback handlers, and setting

additional flags and properties of an existing object. Listings 6.1, 6.2 in the introduction, as

well as Example A in Table 6.1 shows examples of this category. These recommendations can

be helpful to programmers who are unfamiliar with the idiomatic usages of library methods.

6.5.3.2 Error Checking and Handling

In this category, the recommended code adds null checks and other checks before using an

object, or adds a try-catch block that guards the original code snippet. Such additional

statements are useful reminders to programmers that the program might enter an erroneous

state or even crash at runtime if exceptions and corner cases are not carefully handled.

Listings 6.1, 6.3 in the introduction show an example of this category.

6.5.3.3 Post-processing

The recommended code extends the query code to perform some common operations on

the objects or values computed by the query code. For example, recommended code can

show API methods that are commonly called. Example B in Table 6.1 shows an example of

this category, where the recommendation applies Gaussian blurring on the decoded bitmap

image. This pattern is not obligatory but demonstrates a possible effect that can be applied

on the original object. This category of recommendations can help programmers discover

related methods for achieving certain tasks.
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6.5.3.4 Correlated Statements

The recommended code adds statements that do not affect the original functionalities of

the query code, but rather suggests related statements that commonly appear alongside the

query code. In Example C in Table 6.1, the original code moves the cursor to the end of text

in an editable text area, where the recommended code also configures the Android Support

Action Bar to show the home button and hide the activity title in order to create a more

focused view. These statements are not directly related to the text view, but are common

in real-world code.

6.5.3.5 Unclustered Recommendations

In rare cases, the query code snippet could match method bodies that are mostly different

from each other. This results in clusters of size 1. In these cases, Aroma performs no

intersection and recommends the full method bodies without any pruning.

The number of recommended code snippets for each category is listed in Table 6.3. For

recommendations that belong to multiple categories, we counted them for each of the cat-

egories. We believed the first four categories all can be useful to programmers in different

ways, where the unclustered recommendations may not be. For 59 out of the 64 query code

snippets (92%), Aroma generated at least one useful recommended snippet that falls in the

first four categories.

Table 6.3: Categories of Aroma code recommendations

Configuring Objects 17
Error Checking and Handling 14
Post-processing 16
Correlated Statements 21
Unclustered Recommendations 5
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6.5.4 Comparison with Pattern-Oriented Code Completion

Pattern-oriented code completion tools [87, 91, 93] could also be used for code recommen-

dation. For example, GraPacc [91] proposed using mined API usage patterns for code

completion. To compare GraPacc’s code recommendation capabilities to Aroma’s, we

took the dataset of 15 Android API usage patterns manually curated from Stack Overflow

posts and Android documentation by the authors of BigGroum [87]. We used BigGroum’s

dataset because this tool extends the pattern-mining tool Groum to scale to large corpora

with over 1000 repos. While there are more recent ML-based code completion tools, they

focus on completing the next token or predicting the correct API method to invoke, which

does not directly compare to Aroma. Among the 15 snippets in this dataset, 11 were found

in BigGroum mining results. Therefore, if GraPacc is instantiated on the patterns mined

by BigGroum, 11 out of the 15 patterns could be recommended by GraPacc.

In order to evaluate Aroma, we followed the same methodology as in Section 6.5.2 to create

a partial query snippet from each of the 15 full patterns, and checked if any of the Aroma

recommended code snippets contained the full pattern. For 14 out of 15 patterns, Aroma

recommended code containing the original usage patterns, i.e. they are exact recommenda-

tions as defined in Section 6.5.2.1. An advantage of Aroma is that it could recommend code

snippets that do not correspond to any previously mined pattern by BigGroum. Moreover,

Aroma could recommend code which may not contain any API usage.

6.6 Evaluation of Search Recall

One of the most important and novel phases of the Aroma’s code recommendation algorithm

is phase II: prune and rerank, which produces the reranked search results. The purpose of

this phase is to rank the search results from phase I (i.e. the light-weight search phase) so
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that any method containing most parts of the query code is ranked higher than a method

body containing a smaller part of the query code. Therefore, if a method contains the entire

query code snippet, it should be ranked top in the reranked search result list. However, in

rare cases this property of Aroma may not hold due to two reasons: 1) Aroma’s pruning

algorithm is greedy and approximate due to efficiency reasons, and 2) the kinds of features

that we extract may not be sufficient.

To evaluate the recall of the prune and rerank phase, we created a micro-benchmark dataset

by extracting partial query code snippets from existing method bodies in the corpus. On

each of these query snippets, Aroma should rank the original method body as number 1 in

the reranked search result list, or the original method body should be 100% similar to the

first code snippet in the ranked results. We created two kinds of query code snippets for this

micro-benchmark:

• Contiguous code snippets. We randomly sampled 1000 method bodies with at least 12

lines of code. From each method body we take the first 5 lines to form a partial query

code snippet.

• Non-contiguous code snippets. We again randomly sampled 1000 method bodies with at

least 12 lines of code. From each method body we randomly sample 5 lines to form a

partial query code snippet.

We first evaluated Aroma’s search recall on this dataset. We employed statistical bootstrap-

ping to minimize sampling bias from the dataset. Then, we compared it with alternative

setups using clone detectors and conventional search techniques. The results are reported in

Table 6.4.
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Table 6.4: Comparison of recall between a clone detector, conventional search techniques,
and Aroma

Contiguous Non-contiguous

Recall@1 Recall@100 Recall@1 Recall@100

SCC (12.2%) (7.7%)
Keywords Search 78.3% 96.9% 93.0% 99.9%
Features Search 78.3% 96.8% 88.1% 98.6%
Aroma 99.1% 100% 98.3% 100%

6.6.1 Comparison with Clone Detectors and Conventional Search

Techniques

Aroma’s search and pruning phases are somewhat related to clone detection and conven-

tional code search. In principle, Aroma can use a clone detector or a conventional code

search technique to first retrieve a list of methods that contain the query code snippet, and

then cluster and intersect the methods to get recommendations. We tested these alternative

setups for search recall on the same micro-benchmark dataset.

6.6.1.1 Clone Detectors

SourcererCC [116] is a state-of-the-art clone detector that supports Type-3 clone detec-

tion. We wanted to compare Aroma with SourcererCC to examine whether a current-

generation clone detector can be used as the light-weight search phase in Aroma.

We instantiated SourcererCC on the same corpus indexed by Aroma. We then used

SourcererCC to find clones of the same 1000 contiguous and non-contiguous queries in

the micro-benchmark suite. SourcererCC retrieved all similar methods above a certain

similarity threshold, which is 0.7 by default. However, it does not provide any similarity

score between two code snippets, so we were unable to rank the retrieved results and report

recall at a specific ranking. We could modify SourcererCC to return the similarity scores,
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but we do not expect the results to change.

SourcererCC’s recall was 12.2% and 7.7% for contiguous and non-contiguous code queries,

respectively. SourcererCC indexes at method-level granularity, and only returns methods

whose entire body matches the query code. We also found that in many cases Sourcer-

erCC found code snippets shorter than the query snippet. While these are Type-3 clones

by definition, they are not useful for generating code recommendations in Aroma. Extend-

ing SourcererCC to return the methods enclosing the clone snippets found would not

work, because it does not consider the methods enclosing the target snippets as “clones”

in the first place. We worked closely with a member of the SourcererCC team, and

found that making SourcererCC find all occurrences of an arbitrary code snippet, con-

tiguous and non-contiguous, would require significant reengineering. Therefore, we conclude

that current-generation clone detectors may not suit Aroma’s requirements for light-weight

search.

6.6.1.2 Conventional Search Using TF-IDF and Structural Features

We implemented a conventional code search technique using classic TF-IDF [118]. Specifi-

cally, instead of creating a binary vector in the featurization stage, we created a normalized

TF-IDF vector. We then created the sparse index matrix by combining the sparse vectors

for every method body. The (i, j)th entry in the matrix is defined as:

tfidf (i, j) = (1 + log tf (i, j)) · log
J

df (i)

where tf (i, j) is the count of occurrences of feature i in method j, and df (i) is the number

of methods in which feature i exists. J is the total number of methods. During retrieval, we

created a normalized TF-IDF sparse vector from the query code snippet, and then took its

dot product with the feature matrix. Since all vectors are normalized, the result contains
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the cosine similarity between the feature vectors of the query and of every method. We then

returned the list of methods ranked by their cosine similarities.

6.6.1.3 Conventional Search Using TF-IDF and Keywords

We implemented another conventional code search technique by simply treating a method

body as a bag of words and using the standard TF-IDF technique for retrieval. To do

so, we extracted words instead of structural features from each token, and used the same

vectorization technique as in Section 6.6.1.2.

As shown in Table 6.4, the recall rates of both conventional search techniques are considerably

lower than Aroma. We observed that in many cases, though the original method was present

in the top 100 results, it was not the top result because there are other methods with higher

similarity scores due to more overlapping features or keywords. Without pruning, there is

no way to determine how well a method contains the query code snippet. This experiment

shows that pruning is essential in order to create a precise ranked list of search results.

6.7 Conclusion

We presented Aroma, a new tool for code recommendation via structural code search.

Aroma works by first indexing a large code corpus. It takes a code snippet as input,

assembles a list of method bodies from the corpus that contain the snippet, and clusters and

intersects those method bodies to offer several succinct code recommendations.

To evaluate Aroma, we indexed a code corpus with over 2 million Java methods, and

performed Aroma searches with code snippets chosen from the 500 most popular Stack

Overflow questions with the android tag. We observed that Aroma provided useful recom-
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mendations for a majority of these snippets. Moreover, when we used half of the snippet as

the query, Aroma exactly recommended the second half of the code snippet in 37 out of 50

cases.

Further, we performed a large-scale automated evaluation to test the accuracy of Aroma

search results. We extracted partial code snippets from existing method bodies in the corpus

and performed Aroma searches with those snippets as the queries. We found that for 99.1%

of contiguous queries and 98.3% of non-contiguous queries, Aroma retrieved the original

method as the top-ranked result. We also showed that Aroma’s search and pruning algo-

rithms are decidedly better at finding methods containing a code snippet than conventional

code search techniques.

Our ongoing work shows that Aroma has the potential to be a powerful developer tool.

Though new code is frequently similar to existing code in a repository, currently available

code search tools do not leverage this similar code to help programmers add to or improve

their code. Aroma addresses this problem by identifying common additions or modifications

to an input code snippet and presenting them to the programmer in a concise, convenient

way.

147



Chapter 7

Method-level Recommendation for

Related Code

7.1 Introduction

Over the past decade, code search has emerged as an interesting, but challenging, topic to

both industry and research communities. Various code search techniques have been proposed

in the literature [22, 74, 79, 107], and some code search engines have been implemented and

are, or were, publicly available [1, 2, 3, 4, 5, 73]. Code search engines take some specification

as input (e.g., a keyword description, a code fragment, or a test) and recommend pieces of

code that match the given specification based on some forms of “similarity” measurement.

Prior work has shown that by identifying and contrasting similar code, programmers could

quickly understand the gist of implementing a function and explore potential variations to

write more complete and robust code [76, 153]. For instance, by inspecting variations in

similar code found in GitHub, programmers are able to identify critical code parts such as

safety checks and exception handling logics that are missed in a given code example [153].
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This work explores the opportunities of searching relevant code beyond similarity. Consider

the following scenario. A programmer is implementing a Java method for file decompression.

A code search engine may recommend a code example as as shown in Listing 7.1 in Figure 7.1,

which takes the path to a zip file as input and unpacks all files within the zip into a target

directory. This piece of code is sufficient for a simple program task of unpacking a zip file.

However, in practice, the programmer may undertake a more complex programming task

where unzipping a file is a small, integral part. Therefore, the programmer may also want to

know what else may be related to this functionality. If an additional functionality often co-

occurs with unzipping, the programmer may want to add it to her own project as needed. For

instance, Listing 7.2 shows an example of this kind of additional functionalities—a method

that zips a list of files from a folder into the target zip file. Unzipping and zipping are

two kinds of file manipulation in the opposite direction. Though these two functions work

independently, they are often implemented together in a code base to complement each other.

We consider the zip method and the unzip method related to each other, or complementary

code fragment, to be more specifically.

Code-to-code search engines could be leveraged to identify related code given a code fragment

of interest [5, 68, 73]. However, these techniques find syntactically or semantically similar

code fragments only, without considering about auxiliary or complementary functionality.

For instance, given an unzip function, they cannot find a complementary zip function, since

neither the implementation nor the functionality of these two operations are similar. Cur-

rently, there is also limited understanding about what other kinds of relevant code beyond

similar code may exist in practice and thus should be recommended modern code search

engines.

Complementary methods shown in Figure 7.1 often co-occur in the same source file or the

same code base, which serves as an interesting property to exploit for recommending relevant

code examples. Manually identifying co-occurring code is tedious and time-consuming, since
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1 public static boolean unpackZip(String path,

String zipname, String targetDirectory) {

2 try {

3 InputStream is = new FileInputStream(path +

zipname);

4 ZipInputStream zis = new ZipInputStream(new

BufferedInputStream(is));

5 byte[] buffer = new byte[1024];

6 int count;

7 while ((ZipEntry ze = zis.getNextEntry()) !=

null) {

8 String filename = ze.getName();

9 if (ze.isDirectory()) {

10 File fmd = new File(targetDirectory + filename);

11 fmd.mkdirs();

12 continue;

13 }

14 FileOutputStream fout = new

FileOutputStream(targetDirectory +

filename);

15 while ((count = zis.read(buffer)) != -1) {

16 fout.write(buffer, 0, count);

17 }

18 fout.close();

19 zis.closeEntry();

20 }

21 zis.close();

22 } catch (IOException e) {

23 e.printStackTrace();

24 return false;

25 }

26 return true;

27 }

Listing 7.1: Query code: unpacking a zip
file

1 public static void zip(String baseFolder,

List<File> files, String zipFile) {

2 try {

3 BufferedInputStream origin = null;

4 FileOutputStream dest = new

FileOutputStream(zipFile);

5 ZipOutputStream out = new ZipOutputStream(new

BufferedOutputStream(dest));

6 byte data[] = new byte[BUFFER];

7 for (File file : files) {

8 FileInputStream fi = new FileInputStream(file);

9 origin = new BufferedInputStream(fi, BUFFER);

10 String relativeFileName =

file.getAbsolutePath().replace(baseFolder

+ File.separator , """");

11 ZipEntry entry = new ZipEntry(relativeFileName);

12 out.putNextEntry(entry);

13 int count;

14 while ((count = origin.read(data, 0, BUFFER))

!= -1) {

15 out.write(data, 0, count);

16 }

17 origin.close();

18 }

19 out.close();

20 } catch(Exception e) {

21 e.printStackTrace();

22 }

23 }

Listing 7.2: Related code: zipping a file

Figure 7.1: An example of recommending relevant code that complements desired
functionality

some co-occurring code may be project-specific and thus not relevant to a given code query.

Therefore, we first build an automated approach to identify, cluster, and rank common, co-

occurring code given a code query. Our approach uses a state-of-the-art clone detector called

SourcererCC [116] to identify similar counterparts (i.e., clones) in a large code corpus. Then

our approach contrasts surrounding code of those clones and identify common code that are

shared around multiple clones.

Using 21K Java code snippets from Stack Overflow as code queries, we automatically identify

relevant code of these code queries in a large corpus of 50K GitHub projects with at least

five stars. As a result, we obtained 21K groups of similar code in GitHub. We manually
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inspected a random sample of 50 common, co-occurring code fragments and examined their

relevancy to the original query. 74% of those common, co-occurring code fragments repre-

sented relevant functionality, which should be included in code search results. Furthermore,

we identified three major types of relevant co-occurring code—complementary, supplemen-

tary, and alternative functions. These findings show that it is beneficial to recommend

common, co-occurring code of a given code query to achieve more complete functionalities,

instead of just recommending similar code.

To further demonstrate this idea, we implement a Chrome extension called CodeAid that

recommends related but non-similar code when programmers browse code examples in Stack

Overflow. It is well known that programmers often search and reuse online examples during

modern software development [28, 52, 136]. CodeAid augments this programming work-

flow by reminding programmers what other complementary, supplementary, or alternative

functions should also be included as they copy and paste code from the Web. We compared

CodeAid with a state-of-the-art code search engine called Facoy [68]. Among ten sample

search queries, FaCoy only identified related code for one query since the related code is sim-

ilar to the code query. A general-purpose search engine, Google Search, was able to identify

GitHub files that contain related code recommended by CodeAid for half of the queries.

However, Google could only retrieve full files where programmers still had to manually go

through those files to identify related code. By contrast, CodeAid pinpointed where related

code fragments were based on how frequently they occurred in other similar locations.

In summary, this paper makes the following contribution:

• We present a new code search method that recommends common, co-occurring code of a

given code query, rather than only recommending similar code.

• We empirically show the prevalence of common, co-occurring code by quantifying the

commonality of surrounding code of GitHub clones. We also find that the majority of such
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co-occurring code fragments represent meaningful functionality such as complementary,

supplementary, or alternative functions, which should be recommended by modern code

search engines.

• We develop a Chrome extension called CodeAid to recommend related code during online

code search and demonstrate that CodeAid is capable of recommending related code that

cannot be identified by a state-of-the-art code search tool.

The rest of the paper is organized as follows: Section 7.3 describes the approach for generating

common, co-occurring methods, with ranking. Section 7.5 presents the manual analysis result

of common, co-occurring code in terms of its relevance to the original query. Section7.6

illustrates the Chrome extension, CodeAid, as well as a use scenario of it, and Section 7.7

explores whether recommended code from existing search engines can provide same relevance

as results from CodeAid. Section 7.2, 7.8, and 7.9 summarize the related work, point out

the threats to validity, and conclude the paper.

7.2 Related Work

Various code search techniques have been proposed to discover relevant code components

(e.g., functions, code snippets) given a user query. For example, given a keyword query,

Portfolio retrieves function definitions and their usages using a combination of a PageRank

model and an association model [80]. Chan et al. improve Portfolio by matching the textual

similarity between containing nodes in an API usage subgraph with a keyword query [34].

CodeHow also finds code snippets relevant to a natural language query. It explores API

documents to identify relationships between query terms and APIs [77]. Instead of using

natural language queries, several techniques automatically recommend relevant code snippets

based on contextual information such as types in a target program [62, 102? ? ]. CodeGenie
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is a test-driven code search technique that allows developers to specify desired functionality

via test cases and then matches relevant methods and classes with the given test [74]. To

more precisely capture search intent, S6 allows developers to express desired functionality

using a combination of input-output types, test cases, and keyword descriptions [107].

Code-to-code search tools are most related to our technique among all different kinds of code

search techniques. Given a code snippet as input, FaCoY [68] finds semantically similar code

snippets in a Stack Overflow dataset by first matching with accompanied natural language

descriptions in related posts instead of matching code directly. Unlike FaCoY, several tech-

niques infer an underlying code search pattern from a given code fragment [81, 82, 121, 151].

Sydit generalizes concrete identifiers (e.g., variable names, types, and method calls) in a

given code example as an abstract code template and identifies other similar locations via

AST-based tree matching [81]. Lase uses multiple code examples instead of a single example

to better infer the search intent of a user [82]. Critics allows developers to construct an AST-

based search pattern from a single example through manual code selection, customization,

and parameterization [151]. These code-to-code search tools focus on identifying relevant

code snippets that are syntactically or semantically similar to a given code snippet. However,

since many programming tasks (e.g., password encryption and decryption) require multiple

code snippets or functions to work together, none of the existing techniques recommend code

snippets that complement a given code snippet to complete desired functionality.

7.3 Data Collection Approach

Our approach takes a code fragment as input and searches a code corpus to identify related

code fragments. Given a user-selected code fragment, we first detect its similar methods

in the corpus based on syntactic similarity. Then we trace back to the containing files of

these similar methods and identifies other co-occurring methods in these files. Among these
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co-occurring methods, we further measure each method’s similarity to methods in other files,

and cluster similar methods. Then we rank co-occurring methods based on the size of cluster

it centers. Figure 7.2 describes the pipeline of finding common, co-occurring code fragments

given an input code fragment.

7.3.1 Retrieve similar methods

7.3.1.1 Parse a code corpus

We focus on method-level code fragments written in Java in this work. We parse all Java

source files to abstract syntax trees (ASTs) and traverse the ASTs to extract all defined

methods. Note that the approach is not limited to any programming language. We can switch

to any other language by using its particular parser. We use the phrases code fragments and

methods interchangeably in the paper.

7.3.1.2 Tokenization

Tokenization is the process of transforming source code into a bag of words. Tokenization

starts from removing comments, spaces, tabs and other special characters. Then it identifies

distinct tokens and count their frequencies. For each method, the result of tokenization is

formatted as a list of tuples such as (token, freq), where the first element is a token in the

method and the second element refers to the token occurrence in the method.

We tokenize both the input code fragment and all methods in the code corpus, in preparation

for the next step of finding similar pairs.
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Figure 7.2: The pipeline of collecting common co-occurring methods
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7.3.1.3 Search for similar methods

For the input code fragment, we retrieve its similar counterparts from the code corpus using

a token-based clone detection tool called SourcererCC [116]. By evaluating the scalability,

execution time, recall and precision of SourcererCC, and comparing it to publicly available

and state-of-the-art tools, SourcererCC has been shown to have both high recall and preci-

sion, and is able to scale to a large repository using a standard workstation. All of the above

make SourcererCC a good candidate for retrieving similar counterparts for our inputs.

We use 70% similarity threshold, because it yields the best precision and recall on multiple

clone benchmarks [116]. SourcererCC takes the token lists of the input code fragment and

all methods in the code corpus, and returns the similar methods to the input in the code

corpus. As shown in Figure 7.2, the user input has three similar counterparts in our code

corpus, which are Method A in File1, Method E in File2, and Method G in File3.

7.3.2 Identify Co-occurring Code Fragments

Given those similar code fragments identified in the previous step, we trace back to the files

that contain these similar counterparts and identify co-occurring methods in the same file

as potentially related code fragments. Algorithm 1 gives a more formal description of the

process.

Method A, E, G are the three similar methods detected by SourcererCC. File 1, 2, 3 are

the three GitHub files contain these similar methods respectively. File1 also contains Method

B, C, File2 has another two methods Method D, F, and Method H is in File3. Therefore,

Method B, C, D, F, H will be returned as co-occurring methods by Algorithm 1.
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Algorithm 1: Identify co-occurring code fragments

Data: similar methods
Result: co-occurring methods
initialize resultList;
for ms in similarMethods do

ghFiles = traceGitHubFiles(method) ;
for f in ghFiles do

methodsInF ile = parse(f);
for mf in methodsInFile do

if mf is not ms then
resultList.add(mf ) ;

end

end

end

end

7.3.3 Clustering and Ranking

7.3.3.1 Cluster co-occurring code fragments

We further get the token lists for those co-occurring methods identified in the previous step

and remove duplicate methods. In order to detect common co-occurring code fragments, we

cluster the remaining unique co-occurring methods based on their token similarity. Given

each method, we compute its similarity to other methods from different GitHub files. Each

method will serve as the center of a cluster, we browse among other methods from different

files and add similar methods to the current cluster. Algorithm 2 describes the process.

For the co-occurring methods pool, Method B, C, D, F, H, each method will be the center

of a cluster. For Method B, we compute token similarity with Method D, F, H and get two

similar ones, Method D, H, so we add these two similar methods to the cluster, resulting in

cluster size being three. Similarly, we add Method F to the cluster centered by Method C and

get a cluster with size two.
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Algorithm 2: Clustering co-occurring code fragments

Data: n co-occurring methods
Result: clustered co-occurring methods
initialize clusters = {X1, X2, ..., Xn};
for mi in cooccurringMethods do

Xi.add(mi) ;
for mj in cooccurringMethods do

if mi and mj do not come from the same file then
if tokenSimilarity(mi, mj) > 0.7) then

Xi.add(mj);
end

end

end

end

7.3.3.2 Screen and rank clusters by size

After getting the candidate clusters, we keep only clusters with size being at least two.

This means the center of the cluster has occurred at least twice among the GitHub files.

We rank the remaining clusters by size and return the cluster centers as our final list of

common, co-occurring code fragments with ranking. If two clusters have the same size, we

will further rank them by the line number distance between the cluster center and the original

counterpart of the user input (e.g. Method C, A), in ascending order. In our example, we

will return Method B first, and then Method C, as our common co-occurring code fragments.

7.4 Dataset

We apply our approach to Stack Overflow (SO) and GitHub. We use code snippets in SO

as the pool of user-input queries and use Java projects in GitHub as our code corpus to

search from. We choose these two datasets not only because of their popularity within the

programming community, but also because they are part of a larger system of software pro-

duction. The same users that rely on the hosting and management characteristics of GitHub
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often have difficulties and need help on the implementation of their computer programs, seek

support on SO for their specific problems, or hints of solutions from ones with a degree of

similarity, and return to GitHub to apply the knowledge acquired.

Previous work have shown that developers often copy and paste code snippets from Stack

Overflow to their GitHub projects and make adaptations as needed [18, 148, 150, 153]. Our

approach will facilitate such opportunistic code reuse process when developers browse code

snippets in SO. The use scenario will be: when a user is interested in a code snippet in SO,

we recommend related code fragments from GitHub, showing what other code they may also

want to investigate and integrate into their own project.

We downloaded Java projects on GitHub by querying GHTorrent [57]. GHTorrent is a

scalable, offline mirror of data offered through the GitHub REST API, available to the

research community as a service. It provides access to all the metadata of GitHub projects,

e.g., the clone url, the number of stars and committers, main programming languages in a

project, etc. We use these metadata to screen the projects. Our project selection criteria

are:

• We only consider GitHub projects that have at least five stars, in order to avoid toy

projects that do not adequately reflect software engineering practices [65].

• We only keep non-forked projects, because project forking leads to many identical projects

and would unnecessarily skew our recommendation.

• Prior work on GitHub cloning finds many identical files among GitHub projects, since

developers may copy the whole file into another project without making any changes [75].

To account for this internal duplication in GitHub, we remove duplicated GitHub files

using the same file hashing method as in [75].

As a result, we downloaded 50,826 non-forked Java repositories with at least five stars from
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GitHub. After de-duplication, 5,825,727 distinct Java files remain.

We downloaded the SO dump taken in October 2016 [17]. From the data dump, we extract

code snippets in the markdown <code> from SO posts with java or android tags. We consider

code snippets in answer posts only, since snippets in question posts are rarely used as valid

code examples. This results in 312,219 Java and Android answer posts.

Since SO snippets are often free-standing statements with low parsable rates [149], we used a

customized pre-processor before tokenization. For free-standing statements, we wraps them

with dummy class and method definitions, and add semicolons after statements as needed.

For snippets contain multiple methods, we chunk them into individual ones. We keep only

parsable SO snippets after pre-processing.

Prior work finds that larger SO snippets have more meaningful clones in GitHub [150].

Hence, we choose to study SO snippets with no less than 50 tokens after tokenization. We

also remove duplicated examples within SO. As a result, we collect 186,392 distinct SO

snippets.

We run SoucererCC to find all similar pairs between SO and GitHub. We run on a server

machine with 116 cores and 256G RAM. It takes 24 hours to complete. As a result, we get

21,207 distinct SO methods that have one or more similar code fragments in GitHub. The

SO snippets have a median of two GitHub clones and a mean of one GitHub clones. The

distribution of number of GitHub clones is shown in Figure 7.3. From the distribution we

can see that SO snippets most commonly have zero to five similar counterparts in GitHub.

Most of the SO snippets have less than twenty GitHub clones.

We collect the original GitHub files which contain the similar counterparts, then we extract

all co-occurred methods from these GitHub files. For each co-occurring method in each

GitHub file, we cluster its similar counterparts from other files. We keep only the clusters

with size of at least two and return the remaining clusters in descending order of size.
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Figure 7.3: Distribution of number of GitHub clones

For 11,110 out of 21K SO queries, we can retrieve common, co-occurring code fragments

from GitHub. That is, using our SO query code base and GitHub search code corpus, we

can find common co-occurring code for 52.4% of the queries. The SO queries have a median

of 24 common co-occurring methods in GitHub and a mean of 74. The retrieved methods

have a median of 12 average lines of code, and a mean of 14 average lines of code. The

distribution of number of retrieved methods and distribution of average lines of code are

shown in Figure 7.4 and 7.5 respectively. From the figures we can see that a SO query is

most likely to have less than ten common co-occurring code fragments, and most of the SO

queries have less than 50 common co-occurring methods in GitHub. Most retrieved methods

for a query will have five to thirty average lines of code.

7.5 Manual Analysis and Categorization

We randomly select 50 SO snippets with its common co-occurring code fragments from the

11,110 groups, and manually examine whether these code fragments are related to the SO

input or not, and categorize why we call the relationship a relevant one.

We use Precision@k metric to evaluate the common co-occurring code which is defined as
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Table 7.1: Complementary method examples

Query Code Snippet Related Code

1 public static byte[] encrypt(final SecretKeySpec

key, final byte[] iv, final byte[] message)

2 throws GeneralSecurityException {

3 final Cipher cipher =

Cipher.getInstance(AES_MODE);

4 IvParameterSpec ivSpec = new

IvParameterSpec(iv);

5 cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);

6 byte[] cipherText = cipher.doFinal(message);

7 log(""cipherText"", cipherText);

8 return cipherText;

9 }

1 public static byte[] decrypt(final SecretKeySpec

key, final byte[] iv, final byte[]

decodedCipherText)

2 throws GeneralSecurityException {

3 final Cipher cipher =

Cipher.getInstance(AES_MODE);

4 IvParameterSpec ivSpec = new

IvParameterSpec(iv);

5 cipher.init(Cipher.DECRYPT_MODE, key, ivSpec);

6 byte[] decryptedBytes =

cipher.doFinal(decodedCipherText);

7 log(""decryptedBytes"", decryptedBytes);

8 return decryptedBytes;

9 }

Example B: Complementary method

• The query snippet implements encrypt functional-
ity for an byte array.

• The related method decrypts a decoded byte array.

1 public void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState);

3 setContentView(R.layout.main);

4 preferred =

(TextView)findViewById(R.id.preferred);

5 orientation =

(TextView)findViewById(R.id.orientation);

6 mgr = (SensorManager)

this.getSystemService(SENSOR_SERVICE);

7 accel =

mgr.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

8 compass =

mgr.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

9 orient =

mgr.getDefaultSensor(Sensor.TYPE_ORIENTATION);

10 WindowManager window = (WindowManager)

11 this.getSystemService(WINDOW_SERVICE);

12 int apiLevel =

Integer.parseInt(Build.VERSION.SDK);

13 if(apiLevel <8) {

14 mRotation =

window.getDefaultDisplay().getOrientation();

15 }

16 else {

17 mRotation =

window.getDefaultDisplay().getRotation();

18 }

19 }

1 protected void onPause() {

2 mgr.unregisterListener(this, accel);

3 mgr.unregisterListener(this, compass);

4 mgr.unregisterListener(this, orient);

5 super.onPause();

6 }

Example C: Complementary method

• The query snippet implements onCreate function-
ality for an Android app activity.

• The related method implements onPause which does
not have direct function call with the query snippet,
but adds extra functionality to the activity.
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Table 7.2: Supplementary method examples

Query Code Snippet Related Code

1 private void queueJob(final String url, final

ImageView imageView,final Drawable

placeholder) {

2 /* Create handler in UI thread. */

3 final Handler handler = new Handler() {

4 @Override

5 public void handleMessage(Message msg) {

6 String tag = mImageViews.get(imageView);

7 if (tag != null && tag.equals(url)) {

8 if (imageView.isShown())

9 if (msg.obj != null) {

10 imageView.setImageDrawable((Drawable)

msg.obj);

11 } else {

12 imageView.setImageDrawable(placeholder);

13 }

14 }

15 }

16 };

17

18 mThreadPool.submit(new Runnable() {

19 @Override

20 public void run() {

21 final Drawable bmp = downloadDrawable(url);

22 // if the view is not visible anymore, the

image will be ready for next time in

cache

23 if (imageView.isShown())

24 {

25 Message message = Message.obtain();

26 message.obj = bmp;

27 handler.sendMessage(message);

28 }

29 }

30 });

31 }

1 public void loadDrawable(final String url, final

ImageView imageView) {

2 imageViews.put(imageView, url);

3 Drawable drawable = getDrawableFromCache(url);

4 // check in UI thread, so no concurrency issues

5 if (drawable != null) {

6 Log.d(null, "Item loaded from cache: " + url);

7 imageView.setImageDrawable(drawable);

8 } else {

9 imageView.setImageDrawable(placeholder);

10 queueJob(url, imageView);

11 }

12 }

Example D: Supplementary method

• The related method calls the query snippet within its
method body. It is a higher-level funtionality to the
query.

1 @Override

2 protected void onLayout(boolean changed, int l,

int t, int r, int b) {

3 final int count = getChildCount();

4 for (int i = 0; i < count; i++) {

5 View child = getChildAt(i);

6 LayoutParams lp = (LayoutParams)

child.getLayoutParams();

7 child.layout(lp.x+5, lp.y+5, lp.x +

child.getMeasuredWidth(), lp.y +

child.getMeasuredHeight());

8 }

9 }

1 @Override

2 protected LayoutParams

generateLayoutParams(ViewGroup.LayoutParams

p) {

3 return new LayoutParams(p);

4 }

Example E: Supplementary method

• The related code generates the Layout
parameters, it will be traced by
getLayoutParam function, which will further
be called inside the query method onLayout. There
is a dependency chain between the query and the
related code.
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Table 7.3: Different implementation example

Query Code Snippet Related Code

1 public static <K, V extends Comparable<? super

V>> SortedSet<Map.Entry<K, V>>

entriesSortedByValues(Map<K, V> map) {

2 SortedSet<Map.Entry<K, V>> sortedEntries = new

TreeSet<Map.Entry<K, V>>(

3 new Comparator<Map.Entry<K, V>>() {

4 @Override

5 public int compare(Map.Entry<K, V> e1,

Map.Entry<K, V> e2) {

6 return

e1.getValue().compareTo(e2.getValue());

7 }

8 });

9 sortedEntries.addAll(map.entrySet());

10 return sortedEntries;

11 }

1 public static <K, V extends Comparable<? super

V>> Map<K, V> sortByValue( Map<K, V> map ) {

2 List<Map.Entry<K, V>> list =

3 new LinkedList<Map.Entry<K, V>>(

map.entrySet() );

4 Collections.sort( list, new

Comparator<Map.Entry<K, V>>(){

5 public int compare( Map.Entry<K, V> o1,

Map.Entry<K, V> o2 ){

6 return (o1.getValue()).compareTo(

o2.getValue() );

7 }

8 } );

9

10 Map<K, V> result = new LinkedHashMap<K, V>();

11 for (Map.Entry<K, V> entry : list){

12 result.put( entry.getKey(), entry.getValue() );

13 }

14 return result;

15 }

Example F: Different implementation

• The question title of the SO post is: Sort the values in
HashMap.

• The query snippet from SO uses SortedSet to store
the map entries, while the related code provides an
alternative, using LinkedList, and show how to
iterate the map.
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follows:

Precision@k =
1

N

N∑
i=1

|relevanti,k|
k

(7.1)

where |relevanti,k| represents the number of positive related results in the top k common

co-occurring results for query i, N is the number queries we evaluate, which is 50. k is the

number of top results we examine, here we use k = 1 and k = 3.

We achieve 80% and 74.6% for Precision@1 and Precision@3 respectively. That is to say,

for the 50 most commonly co-occurring results, 40 of them are manually examined as related,

for the 150 top 3 results, 112 of them are related.

We find the following types of relevance in our sample set:

• A complementary method that adds more functionality.

• A supplementary method that helps with, or gets help from, the query.

• A different implementation for the query.

Table 7.4: Categorization of related methods

Category Top 1 Top 3

Complementary method 20 (50%) 55 (49%)

Supplementary method 18 (45%) 53 (47%)

Different implementation 2 (5%) 4 (3%)

Total related methods 40 112

7.5.0.1 Complementary method

In this category, the query code can function alone, but the related method provides extra

functionality to the query code and will further complete the user class. For the example
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shown as Listing 7.1 and 7.2 in Section 7.1, the query snippet implements unzip a folder

in Java. We find zip function. These two methods can function independently, but often

implemented together to get a stronger ability for file manipulation.

Similarly, we find decrypt function for encrypt and onPause function for onCreate in Table

7.1. The two methods in each pair do not have any direct function call association between

them, but they complete each other with extra functionality and are often implemented

together in real-life scenarios.

Table 7.4 shows the number of related methods for each category. For the top related

methods, half of them are complementary methods. 49% of the sampled top 3 related

methods belong to this category.

7.5.0.2 Supplementary method

The related code serves as a helper function to the query, or vice versa. One may make

function call to the other. For example the merge function for sort. sort calls merge as a

helper function and cannot achieve functionality without it.

In our first example in Table 7.2, our related code loadDrawable calls queueJob inside

its method body. There is another related method being recommended together with

loadDrawable, which is shown below in Listings 7.3. loadDrawable also makes a function

call to getDrawableFromCache inside its method body, The related methods give the user a

broader picture of the whole class, point to a higher level of functionality the user may want

to implement, and also direct the user to the most-frequently used higher level functionality

and its auxiliaries.

Less than half of the sampled related results are supplementary methods.

1 public static Drawable getDrawableFromCache(String url) {

2 if (DrawableManager.cache.containsKey(url)) {
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3 return DrawableManager.cache.get(url);

4 }

5

6 return null;

7 }

Listing 7.3: Related method #2

7.5.0.3 Different implementation

This category represents those related methods that have similar functionality to the query

code. The result provides an alternative, or a more detailed or extended implementation for

the functionality. As shown in Table 7.3, both of the methods implement sorting values in a

Map, the query store the map entries in a SortedSet, while the related code uses LinkedList,

and shows how to iterate a Map. For the encrypt function in Table 7.1, the related code also

provide an alternative implementation with String inputs, as shown in Listing 7.4.

A small number of sampled related methods provide different implementation to the query

itself.
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1 public static String encrypt(final String password, String message) throws GeneralSecurityException {

2 try {

3 final SecretKeySpec key = generateKey(password);

4 log("message", message);

5 byte[] cipherText = encrypt(key, ivBytes, message.getBytes(CHARSET));

6 //NO_WRAP is important as was getting \n at the end

7 String encoded = String.valueOf(

8 Base64.encodeToString(cipherText, Base64.NO_PADDING ));

9 log("Base64.NO_WRAP", encoded);

10 return encoded;

11 } catch (UnsupportedEncodingException e) {

12 if (DEBUG_LOG_ENABLED)

13 Log.e(TAG, "UnsupportedEncodingException ", e);

14 throw new GeneralSecurityException(e);

15 }

16 }

Listing 7.4: different implementation for encrypt

From the in-depth manual analysis from this section, we can see that there is a large amount

of related code among the common co-occurring code, and they are worth to be considered

for recommendation besides similar code to the query.

7.6 Chrome Extension for Stack Overflow

In the purpose demonstrating recommending related methods in practice, we build a Chrome

extension, CodeAid, for the Stack Overflow query code base and GitHub search code corpus,

based on our approach of retrieving common co-occurring code. Figure 7.6 shows a screenshot

of using the Chrome extension. The highlighted yellow snippet is the query method from

SO, and on the right-hand side we present the ranked list of related code fragments from

GitHub.
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The Chrome extension demonstrates a real-life use scenario of getting related methods from

GitHub for a SO snippet, thus serves as a proof of our concept of recommending related code

fragments beyond similarity. The use scenario will be: suppose the user is searching on Stack

Overflow for the question how to unzip a folder in java. The user locates the highlighted

yellow snippet as the correct implementation of the query functionality. They are interested

in learning the other methods that can be possibly added to their project along with the

unzip method. So the user invokes searching on CodeAid and gets recommended related

methods. They may investigate the recommended results and select to add a zip method to

complete the functionalities of file manipulation.

Figure 7.6: Screenshot of Chrome extension
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Table 7.5: Related code which can be retrieved by FaCoY

Query Code Snippet Related Code

1 public int readFramesChanel(short[]

sampleBuffer, int offset, int

numFramesToRead,int channel) throws

IOException, WavFileException{

2 if (ioState != IOState.READING) throw new

IOException("Cannot read from WavFile

instance");

3 for (int f=0 ; f<numFramesToRead ; f++){

4 if (frameCounter == numFrames) return f;

5 for (int c=0 ; c<numChannels ; c++){

6 if(channel==c){

7 sampleBuffer[offset] = (short) readSample();

8 offset ++;

9 }

10 else

11 readSample();

12 }

13 frameCounter ++;

14 }

15 return numFramesToRead;

16 }

1 public int writeFrames(int[] sampleBuffer,

final int offSetIn, int numFramesToWrite)

throws IOException{

2 if (this.ioState != IOState.WRITING) throw new

IOException("Cannot write to WavFile

instance"); //$NON-NLS-1$

3 int offSet = offSetIn;

4 for (int f = 0; f < numFramesToWrite; f++){

5 if (this.frameCounter == this.numFrames)

return f;

6 for (int c = 0; c < this.numChannels; c++){

7 writeSample(sampleBuffer[offSet]);

8 offSet++;

9 }

10 this.frameCounter++;

11 }

12 return numFramesToWrite;

13 }

7.7 Comparison with code search engines

As an evaluation of CodeAid, we compare the related results of CodeAid with those from

code search engines. We choose Google search engine since its the most popular destination

when people look for programming assistance. We also compare to FaCoY [68], a code-to-

code search engine which proved to have state-of-art precision. It uses SO snippets as its

query base and indexes GitHub files as search space. searchcode [5] and Krugle [73] are

another two online code-to-code search engines. We only compare with FaCoY because it

beats searchcode and Krugle in the total number of outputs and the precision of outputs

when using SO snippets as queries [68]. We look for whether the search engines can also

retrieve top 1 related code fragments recommended by our approach in their top 10 search

results.

For one out of our ten sample queries, FaCoY can return the related code recommended by

CodeAid in its top 10 search results. This results from the related code being very similar

to the query, as shown in Table 7.5. For the rest of nine queries, the related code is not
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similar to the query, so it cannot be retrieved by FaCoY.

As for Google search engine, for five out of the ten queries, Google can locate the GitHub

file(s) which contain similar methods to the query, therefore we can find the related code

by our approach inside these GitHub files by manually examine the methods one by one.

However, Google can only retrieve the full files, while we aim at pointing to the method

which is mostly used among these files.

By performing the comparison above, we can see that code search engines may not fulfill the

purpose of recommending related code as we proposed.

7.8 Threats to Validity

In terms of internal validity, we only investigate the kinds of code relevancy in common, co-

occurring code, based on the observation that relevant code may often co-locate in the same

file. Though we indeed find interesting types of relevant code by exploiting this proximity

property of code, we may miss other kinds of relevant code that is not in the same file.

In terms of external validity, this work only analyzes code written in one programming

language, Java. Previous studies have shown that JavaScript and Python have more clones

than Java and C [75, 150]. Therefore, we are likely to find more common, co-occurring code

for JavaScript and Python. In addition, we may find other kinds of relevant code in those

different languages. For instance, Lopes et al. find that a large portion of code clones in

JavaScript are generated from boilerplate [75]. Hence, we may also find that many common,

co-occurring code of a JavaScript code fragment is because of boilerplate code.

Limitations. Given a code query, CodeAid needs to first search a code corpus to find the

counterparts of this query and then recommends common, co-occurring code around those
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counterparts. In this work, we curate a large code corpus of 50K GitHub repositories with

at least five stars to ensure that we have a large code corpus to search from. However, if

a given code fragment implements a project-specific logic that is not likely to be found in

other projects, CodeAid is unlikely to recommend relevant code of the given code frag-

ment. Though CodeAid currently supports Java, it is not restricted to any programming

languages. The Java parser is only used to tokenize code fragments for clone detection and

can be substituted with any off-the-shelf parsers of other languages.

7.9 Conclusion

Code-to-code search engines focuses on retrieving syntactically or semantically similar code

fragments to a given query, without considering auxiliary or complementary code that may

also be related to the query. The goal of this work is to explore the existence of other

kinds of related code beyond similar code, and discuss the usefulness of such related code

for recommendation in practice.

Co-occurring code is an interesting start point of exploring related code. We built an au-

tomated approach to identify, cluster, and rank common, co-occurring code. From detailed

manual evaluation, we found 74% of our sampled code show valid relevancy to the query,

and this relevancy can be categorized into three types–complementary, supplementary, and

alternative functionality. Our findings shows the benefit of recommending common-occurring

code, beyond similar code. We also implemented a Chrome extension that demonstrates an

application of our approach in practice. We experimented to show that other search engines

cannot fulfill recommending related code fragments as we proposed. We are planning to

perform more user study on our tool in near future.
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Chapter 8

Conclusion

There is an increasing number of research and tools that rely on software artifacts from SO

and GitHub. Without understanding the artifacts themselves beforehand, those studies and

tools may end up with skewed analysis results or disappointing tool performance.

This dissertation starts with investigating the quality of software artifacts from SO and

GitHub. It studies the usability of SO snippets in four popular languages: Java, Python,

C#, and JavaScript. The results show that usability rates for the two dynamic languages

is substantially higher than that of the two statically-typed, compiled languages. With

heuristic repairs, this work curates a dataset of reasonable amount of usable SO snippets for

future research and development.

This dissertation then presents an exhaustive investigation of code cloning in GitHub for

four of the most popular object-oriented languages: Java, C++, Python and JavaScript.

The result shows the amount of file-level duplication is staggering in the four language

ecosystems. Code duplication can severely skew the conclusions of the studies which use

GitHub projects as data sources. The assumption of diversity of projects in those datasets

may be compromised. This dissertation provides a tool to assist selecting projects from
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GitHub. DéjàVu is a publicly available index of file-level code duplication. DéjàVu can

help researchers and developers navigate through code cloning in GitHub, and avoid it when

necessary.

SO and GitHub form a larger system of software production: the same users that reply

on managing projects in GitHub often seek help on SO for implementation difficulties, and

return to GitHub to apply the knowledge acquired. Because of the special bonding between

the two websites, more attention is paid to the crossover between SO and GitHub in this

dissertation. This dissertation conducts a detailed similarity study of code fragments bettwen

the two websites, and makes publicly available a comprehensive dataset of adaptations and

variations between SO and GitHub. It puts forward an adaptation taxonomy of online code

examples and an automated technique for classifying adaptations. The taxonomy captures

the particular kinds of adaptations done over online code examples and can be used as a

guidance for future research.

The good-quality code fragments from SO and GitHub and their crossover can be leveraged

in code search tools. Current code-to-code search engines focuses on retrieving syntactically

or semantically similar code fragments to a given query, without considering auxiliary or

complementary code that may also related to the query. The goal of the rest of this dis-

sertation is to explore the existence of other kinds of related code beyond similar code and

discuss the usefulness of such related code for recommendation in practice. Given a code

query, Aroma returns extra statements which come from methods that contain similar snip-

pets to the query, and CodeAid recommends auxiliary methods which co-occurring with

similar ones to the query. Both of the two tools use selected usable SO snippets as query

base. Aroma uses selected non-duplicated GitHub projects as search corpus. CodeAid

starts with the crossover between SO and GitHub to investigate co-occurring methods. The

evaluation of these two tools shows the benefit of recommending related code beyond similar

ones, and shows that current search engines cannot fulfill recommending related code, either
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statement-level or method-level, as this dissertation proposed.
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