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Baseline Cartilage Quality Is Associated With Voxel-Based T1ρ 

and T2 Following ACL Reconstruction: A Multicenter Pilot Study

Colin Russell1, Valentina Pedoia1, Keiko Amano2, Hollis Potter3, Sharmila Majumdar1, AF-
ACL Consortium
1Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging 
Research, University of California, California

2Deparment of Orthopaedic Surgery, University of California, San Francisco, California

3Department of Radiology, Hospital for Special Surgery, New York City, New York

Abstract

In this multi-center study, voxel-based relaxometry (VBR), a novel technique to automatically 

quantify localized cartilage change, was used to investigate T1ρ and T2 relaxation times of patients 

with anterior cruciate ligament (ACL) tears at the time of injury and 6 months after reconstructive 

surgery. Sixty-four ACL-injured patients from three sites underwent bilateral 3T MR T1ρ and T2 

mapping; 56 patients returned 6 months after surgery. Cross-sectional and longitudinal VBR 

comparisons of relaxation times were calculated. Noyes Score (NS) clinical grades of cartilage 

lesions were noted at both times and correlated with relaxation times. Lastly, patients were divided 

into two groups based on baseline NS grades in the injured knee. T1ρ times of each group were 

assessed with VBR and compared. Results illustrate the feasibility of VBR for efficiently 

analyzing data from patients at different sites. Significant relaxation time elevations at baseline 

were observed in the injured knee compared to the uninjured, particularly in the posterolateral 

tibia (pLT). Longitudinally, a decrease was observed in the pLT and patella, while an increase was 

noted in the trochlea. Stratifying patients by baseline lesion presence revealed T1ρ increased more 

6 months after surgery in patients with lesions. Such findings propose that the presence of 

cartilage lesions at baseline are associated with the longitudinal progression of T1ρ and T2 after 
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ACL injury, and may contribute to early cartilage degeneration. Furthermore, the speed and 

localized specificity of automatic VBR analysis may translate well for clinical application, as seen 

in this multicenter study.

Keywords

T1ρ; T2; voxel-based relaxometry; ACL injury; cartilage degeneration

The anterior cruciate ligament (ACL), a principal stabilizer of the knee joint that prevents 

anterior tibial translation and internal tibial rotation, is susceptible to damage from rotational 

and hyperextension injury, resulting in functional instability, abnormal loading patterns, and 

osteoarthritis (OA).1–3 Although the association between abnormal joint biomechanics 

following ACL injury and subsequent cartilage degeneration is not fully understood, it has 

been suggested that ACL injuries predispose patients to posttraumatic OA, despite ACL 

reconstructive surgery (ACLR).1–14 Following ACL injury, characteristic subchondral bone 

impaction sites on the lateral femoral condyle (LF) and posterior tibial plateau (pLT) can be 

seen on MR images; however, the location of LF impaction may be dependent on knee 

flexion during the injury.7,15 Despite this femoral variability, it is clear that the bone marrow 

edema pattern sustained from the pivot shift-induced transchondral fracture most frequently 

occurs over the anterior aspect of the LF and posterior margin of the inner plateau, 

secondary to tibial translation and abnormal rotation.7,9 Research has suggested that bone 

contusions associated with ACL injury could develop into degenerative lesions.7,9,10,15

Conventional radiography and MRI are currently employed to image damaged and diseased 

joints, and have been deemed clinically accurate in grading cartilage lesions based on an 

arthroscopic standard.16–20 A widely accepted articular cartilage grading method is the 

Noyes Score (NS), which offers a semi-quantitative scale to score the appearance and 

quantity of knee cartilage.21 Many studies have correlated this grading method with 

established metrics of cartilage health, positioning NS as an accurate and accepted method 

of identifying lesions.16,18,19 Furthermore, baseline cartilage damage has been associated 

with longitudinal symptoms of OA.22 However, this relationship between clinical and 

radiographic characteristics of OA is most present in patients with severely worsening 

lesions, and may not detect early degenerative changes.4,11,23,24 In fact, it has been 

suggested that 10% of knee cartilage is lost by the time radiographs detect chondral change.
23

Noninvasive MR methods, such as T1ρ and T2 relaxation mapping, have provided 

complementary indications of early and longitudinal cartilage matrix depletion.25 T1ρ, the 

spin-lattice relaxation in the rotating frame, has shown to be sensitive to proteoglycan (PG) 

content, while T2 is associated with collagen fibril orientation of cartilage.12,13,24,26,27 Due 

to PG loss, water content fluctuations, and molecular changes associated with early cartilage 

matrix degeneration, elevations in both values have been observed in patients with OA.
2,11,17,24,27–29 Traditionally, Region Of Interest (ROI)-based approaches are used to quantify 

changes in relaxation times. As cartilage composition changes occur before radiographic 

evidence is observed, voxel-based relaxometry (VBR), a highly sensitive and novel 
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technique, could capture early localized differences in relaxation times compared to standard 

ROI-based methods.11

Additionally, the fully automatic nature of VBR makes the translation of this compositional 

imaging technique to clinical application more feasible; previous manual segmentations 

would no longer be needed, drastically reducing the time between scans and results, as well 

as effort from the clinician. This fully automatic method would also allow for the analysis of 

other large data sets from multiple center trials in an efficient and timely manner, a feat too 

laborious and prone to errors with traditional ROI-based manual methods. Moreover, despite 

promising spatial assessments provided by texture and laminar ROI-based analyses, the local 

spatial distribution of relaxation times in different patient populations remains a challenge.30 

Thus, a detailed study employing VBR to analyze the effects of ACL tears on early 

degeneration could quickly identify localized regions first displaying cartilage changes and 

direct disease-modifying strategies following the injury.

The goal of this study is to investigate the relationship between ACL injury and subsequent 

cartilage degeneration, as seen by relaxation time changes, with data acquired from three 

sites, and correlate these findings with a previously established clinical cartilage grading 

method. Using VBR, this study analyzes T1ρ and T2 in patients with ACL injuries at 

baseline and 6 months following ACLR, correlates relaxation times with Noyes Score 

grades, and assesses the progression of T1ρ in two cohorts defined by the presence of 

baseline cartilage lesions.

We first hypothesize that VBR will accurately analyze the data collected from the different 

sites, indicating VBR as a step towards clinical translation. Next, that there will be clear 

relaxation time differences between injured and uninjured knees at both time points, 

particularly in the lateral injured knee. Furthermore, we postulate that VBR will be able to 

detect longitudinal increases in relaxation times due to early cartilage degeneration, as 

previously detailed in literature,12,13 revealing additional localized patterns. Regarding NS 

correlations, we expect an association between the NS of the cartilage compartment with 

lesions and elevated relaxation times in that compartment. Finally, we hypothesize that 

patients with baseline cartilage lesions will demonstrate a greater longitudinal degenerative 

progression than those without.

METHODS

Subjects

In this Institutional Review Board (IRB)-approved analytic case-control study (Level of 

Evidence: III), all patients provided informed consent by the Committee on Human 

Research of the home institution prior to scanning. Sixty-four patients (28 Female; Age = 

28.3 ± 12.5 years; BMI = 24.5 ± 3.1 kg/m2) were scanned at three sites: University of 

California, San Francisco (San Francisco, CA), Mayo Clinic (Rochester, MN), and Hospital 

for Special Surgery (New York City, NY). Sixty patients sustained acute, unilateral ACL 

tears with no previous history of knee trauma or disease, two patients had previous 

contralateral ACLR, and two patients did not undergo ACLR (n = 64 patients). To date, 56 

patients (24 Female; Age = 29.3 ± 12.7 years; BMI = 24.7 ± 3.1kg/m2) returned 6 months 
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after ACLR, or 6 months following injury in the two cases with no ACLR (Table 1). All 

patients underwent standard postoperative rehabilitation protocol.

MRI Protocol

All bilateral knee scans were acquired on a 3T MR (General Electric Healthcare, 

Milwaukee, WI) using an eight-channel phased array knee coil (Invivo, Inc., Gainesville, 

FL) following ACL injury (baseline) and 6 months post-ACLR (Table 1). MRI sequence 

protocol included: (i) sagittal intermediate-weighted, fluid sensitive, fat-saturated three-

dimensional (3D) fast spin-echo (CUBE) images (TR/TE = 1,500/25 ms, FOV = 16 cm, 384 

× 384 matrix, slice thickness = 1 mm, echo train length = 50, BW = 50 kHz, NEX = 0.5); 

and (ii) sagittal combined 3D Tlρ/T2 (Tlρ TSL = 0/10/40/80 ms, FSL = 500 Hz, FOV = 14 

cm, 256 × 128 matrix, slice thickness = 4 mm, T2 preparation TE = 0/12.87/25.69/51.39 

ms).31

Image Quality Control and Site Cross-Calibration

All images underwent an automatic quality control procedure to check the stability of the 

MRI protocol settings. Identical agarose phantoms were scanned monthly at each site to 

ensure longitudinal cross-calibration. Initial calibration was established by analyzing two 

traveling volunteers at all three sites, scanned at the beginning of patient enrollment and 12 

months later.32 Phantom longitudinal RMS-CVs ranged from 1.3% to 2.6% for T1ρ and 

1.2% to 2.7% for T2. No significant differences were observed in T1ρ and T2 of the traveling 

volunteers between the sites (RMS-CV T1ρ and T2: 4.9% and 4.4%, respectively).32

Image Processing

All image post-processing was conducted at a single site with in-house programs written in 

MatLab (MathWorks, Natick, MA), integrated with the elastix toolbox for non-rigid image 

registration.11,33,34 Analysis of the Jacobian determinant (J) determined the minimum 

deformation template reference, ensuring absence of local volume vanishing in the cartilage 

region (J < 0), and minimizing local volume contraction (J > 1) and expansion (J > 0). Using 

the VTK CISG registration toolkit, reference sagittal high-resolution CUBE images were 

rigidly registered with the first TSL = 0, T1ρ-weighted image, and used for segmentation. 

Cartilage compartments were defined as the medial femoral condyle (MF), medial tibia 

(MT), lateral femoral condyle (LF), lateral tibia (LT), femoral trochlea (TrF), and patella (P), 

and were semiautomatically segmented using a Bezier spline and edge detection-based 

method.35 The non-rigid registration technique, developed using elastix, was applied 

between the reference and each first TSL = 0, T1ρ-weighted image in the dataset. Five-level 

recursive pyramidal multi-resolutions with a random sampler approach estimated the non-

rigid transformation between the fixed and moving image. The transformation field was 

applied to all later TSL images. ROIs established by the previously described cartilage 

compartments were used to constrain a second iteration of the non-rigid registration 

procedure between the outputs of the first non-rigid registration phase. Employing a 

Levenberg-Marquardt mono-exponential (S[TSL]∝exp[–TSL/T1ρ] and S-[TE]∝exp[–TE/

T2]) applied to each voxel, T1ρ maps were acquired by fitting the morphed T1ρ-weighted 

images from different TSLs.36 Finally, the reference-ROIs were applied to the morphed 

maps, establishing a fully automatic atlas-based segmentation procedure.
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Automatic Segmentation Reproducibility

Cartilage compartments of an ACL-tear cohort demonstrated an average CV of 3.81% when 

comparing atlas-based automatic results and semiautomatic, classical ROI-based technique. 

No significant differences were observed in algorithm performances between baseline and 1-

year ACL-tear subjects (1-year average CV = 3.78%).11 Scan/rescan repeatability on six 

healthy volunteers resulted in an average CV of 2.38% for fully automatic segmentation, 

slightly overcoming the performance obtained by the semiautomatic technique when applied 

to the same cohort (average CV = 2.76%).11

Quality Control (QC) and Semi-Automatic Adjustment of Mis-Registered Images

To avoid bias from applying an automatic segmentation technique, every registered image 

was put through a graded Quality Control (QC) before statistical analyses were conducted. 

ROIs were overlaid onto Echo 1 and 3, using the clearly defined edges of the articular 

cartilage surface to gauge the accuracy of segmentation. Images were visually rated on a 1–5 

scale (1: ROI correctly overlaid; 2: <5% ROI incorrectly overlaid; 3: <20% ROI incorrectly 

overlaid; 4: ROI shifted off correct position; 5: unreadable image). For compartments with 

QC scores 3–5, an ad hoc procedure was applied using a manually cropped region of Echo 1 

in the reference and the case images, targeting the specific compartment of interest. The 

coordinates of these cropped regions were used to initialize the non-rigid registration with a 

roto-translation, aligning cropped regions and constraining the sequential non-rigid 

registration. Following this reregistration procedure, images were rechecked for accuracy. 

After this second phase, images with scores below two were not included in statistical 

analyses.

Cartilage Grading and Group Determination

A single board-certified musculoskeletal radiologist (HP) with 25 years of experience 

performed blinded Noyes Score grading of cartilage lesions at baseline and 6 months on MR 

images.16,21 In the NS system, Grade I lesions indicate a closed chondromalacia lesion. 

Grade II lesions are characterized by clear cartilage surface damage, such as fissures and 

fibrillations, and grade III lesions signify bone surface exposure. Further sub-classifications 

specify the extent of degradation and lesion size.

A summation of the baseline medial and patellofemoral (PFJ) NS for the injured knees of 

patients who underwent ACLR with 6-month scans (n = 54) determined two cohorts: 37 

with no lesions (Σ(NS) = 0) at baseline (16 Female; Age = 22.8 ± 9.4 years; BMI = 23.9 

± 2.5 kg/m2), and 17 with lesions or abnormalities (Σ(NS)>1) at baseline (7 Female; Age = 

40.8 ± 10.4 years; BMI = 26.1 ± 3.5kg/m2). Table 2 details the distribution of NS grading by 

compartment. Lateral NS of the injured knee were not included, as observed lesions may be 

due to femoral-tibial impact during injury and pivot shift, thus designating medial and PFJ 

compartments as indicators of baseline cartilage quality. To further support this, using PFJ 

and medial NS from the uninjured knee yielded almost identical groups and cartilage defect 

distributions were highly correlated between the injured and uninjured sides (R = 0.70).
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Statistical Analyses

Statistical Parametric Mapping (SPM) was performed to study the local cross-sectional 

differences between injured and uninjured knees. Voxel-based summary statistics, such as 

mean and standard deviation, were computed for the different groups. Group comparisons 

were performed through paired student t-tests, obtaining p-value SPMs. Average percent 

differences were analyzed in the areas of the SPMs that showed significance (p < 0.05). The 

same procedure was adopted to analyze T1ρ and T2 longitudinal changes. Percentages of 

voxels showing significance (PSV), average p-values in the overall compartment (p-value) 

and average percentage differences (APD) for each compartment were summarized by 

SPMs. T1ρ and T2 Pearson Partial correlations with NS were computed, obtaining R-value 

SPMs, color-coded to distinguish weak, moderate and strong positive and negative 

correlations (R: −0.8 to +0.8). Significant averaged R and p-value clusters were summarized 

by SPMs. Longitudinal and cross-sectional analyses of T1ρ were performed on the two 

groups defined by baseline NS in the injured knee. Age, gender, BMI, meniscal tears, MCL 

lesions, surgery type, and graft source were considered as adjusting factors in statistical 

analyses (Table 1).

RESULTS

QC Grading

After QC grading, 100% of baseline MF, 99% MT, 100% LF, 99% LT, 100% TrF, and 98% 

P cartilage compartments were used for statistical analyses. For the 6-month scans, 99% of 

MF, 99% MT, 94% LF, 98% LT, 98% TrF, and 91% P compartments were used for statistical 

analyses.

T1ρ and T2 VBR Comparisons

Considering two patients had previous contralateral ACLR and two patients did not undergo 

ACLR, we compared data with and without these four patients. No significant changes were 

observed, so all patients were included in analyses. Significant T1ρ and T2 elevations were 

observed in the injured knee compared to the uninjured at baseline, particularly in the pLT 

(Fig. 1A–C; T1ρ PSV = 42.4%; p-value = 0.01). After 6 months, T1ρ in the injured LT 

remained elevated compared to the uninjured (Fig. 1D–F; T1ρ PSV = 53.0%, p-value = 

0.01). SPMs reveal a more diffuse and anteriorly shifted region of elevated T1ρ in the injured 

knee after 6 months, no longer concentrated in the most posterior region of the pLT, as at 

baseline (Fig. 1D–F). Elevated baseline relaxation times were also observed in the LF (Fig. 

1A–C; T1ρ PSV = 40.2%; p-value = 0.01) and patella (T1ρ PSV = 31.6%; p-value = 0.009). 

A similar trend of elevation in the injured knee compared to uninjured was observed in the 

MT (baseline: T1ρ PSV = 61.6%; p-value = 0.009; 6 months: T1ρ PSV = 45.0%; p-value = 

0.01), MF (baseline: T1ρ PSV = 47.5%; p-value = 0.01; 6 months: T1ρ PSV = 45.9%; p-

value = 0.01), and TrF (baseline: T1ρ PSV = 34.5%; p-value = 0.008; 6 months: T1ρ PSV = 

55.3%; p-value = 0.009). T2 followed similar trends observed in T1ρ findings.

A longitudinal decrease of T1ρ in the injured knee over 6 months was observed in the most 

posterior aspect of the pLT (PSV = 6.6%; APD = −22.7%; p-value 0.02), while an increase 

was seen in the more central part of the compartment (PSV = 15.9%; APD = 14.3%; p-value 

Russell et al. Page 6

J Orthop Res. Author manuscript; available in PMC 2019 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 0.02; Fig. 2A–D). The medial compartments, particularly the posterior aspect of MF (PSV 

= 9.3%; APD = −13.8%; p-value = 0.02) also indicated a longitudinal decrease as well as a 

slight increase in the weight-bearing region (Fig. 2E–H; PSV = 7.5%; APD = 9.9%; p-value 

= 0.03). A significant decrease in relaxation times was noted in the upper region of the 

patella (Fig. 2I–L; PSV = 18.5%; APD = −15.6%; p-value = 0.02). The trochlea did not 

follow the same general decreasing relaxation time pattern and, in fact, demonstrated higher 

T1ρ values after 6 months (Fig. 2I–L; PSV = 37.3%; APD = 14.3%; p-value = 0.01). T2 

followed similar trends observed in T1ρ findings. Due to the particular results seen in the 

trochlea, the corresponding NS of this compartment was correlated with T1ρ and T2 

relaxation times.

Relaxation Time Correlations With Trochlea Noyes Score

In the injured knee at baseline, trochlea NS showed the greatest correlation with T1ρ of the 

LT (Fig. 3A and E; PSV correlated = 20.2%; Average R-value = 0.33; p-value = 0.02), 

patella (PSV correlated = 20.0%; Average R-value = 0.34; p-value = 0.02), and LF (PSV 

correlated = 7.2%; Average R-value = 0.32; p-value = 0.02). Few voxels in the trochlea 

correlated with the trochlea NS (Fig. 3A; PSV correlated = 3.6%; Average R-value = 0.32; 

p-value = 0.02). The uninjured knee at baseline similarly displayed a high correlation 

between the uninjured trochlea NS and T1ρ of the LT (Fig. 3B and F; PSV correlated = 

7.7%; Average R-value = 0.31; p-value = 0.02), and patella (PSV correlated = 31.1%; 

Average R-value = 0.35; p-value = 0.01), as well as showing little correlation with trochlea 

T1ρ (PSV correlated = 4.3%; Average R-value = 0.29; p-value = 0.03). At 6 months, trochlea 

NS of the injured knee did not significantly correlate with more than 3% of voxels (PSV) in 

any region (Fig. 3C and G). The uninjured trochlea NS remained correlated with T1ρ in the 

patella (Fig. 3D and H; PSV correlated = 19.2%; Average R-value = 0.42; p-value = 0.01). 

T2 relaxation time correlations with the corresponding injured and uninjured trochlea NS for 

both knees were similar to the correlations observed in the T1ρ results.

Cross-Sectional Differences Between Cohorts

NS defined cohorts based on the lesion presence in the medial side and PFJ of the injured 

knee at baseline. There were no significant differences between the cohorts regarding MCL 

lesion presence (p-value = 0.32), meniscal tears (p-value = 0.52), or gender (p-value = 0.89). 

The cohort with lesions had a significantly higher BMI (p-value = 0.01), was older (p-value 

= 6.9 × 10−8), and sustained more allografts than autographs (p-value = 2.3 × 10−5). Table 3 

displays cross-sectional comparisons of T1ρ between patients with (n = 17) and without (n = 

37) cartilage lesions at baseline for both time points, with PSV, the APD within this volume, 

and associated p-values. At baseline, significant T1ρ cross-sectional differences between the 

cohorts in the injured knee were most observed in the MF, MT, and LT (Fig. 4A, C, E, G, I, 

and K), and in the MF, MT, LT, and TrF at 6 months (Fig. 4B, D, F, H, J, and L; Table 3).

Longitudinal Differences Within Cohorts

Within the two cohorts, longitudinally assessing the regions previously identified from the 

cross-sectional analysis (MF, MT, LT, and TrF) revealed a differing longitudinal T1ρ 
progression between the cohorts. Patients with baseline cartilage lesions showed greater 

average T1ρ longitudinal increases in MF and the superficial TrF of the injured knee 
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compared to those without abnormalities (Fig. 5A–D). Significant longitudinal changes were 

further observed in the patella and LT of both groups, though the trend appeared similar 

between the groups (Fig. 5C–F).

DISCUSSION

This is the first study, to the best of our knowledge, to extensively apply VBR on ACL-

reconstructed patients, and analyze cross-sectional and longitudinal differences in both 

knees from patients at three different sites. Furthermore, we studied the local correlation 

between cartilage morphological defects identified by Noyes Score and relaxation times to 

assess the contribution of medial and PFJ cartilage lesion presence on chondral 

degeneration. Our results illustrate the feasibility of VBR for efficiently analyzing images 

acquired from different sites and effectively assessing localized cartilage changes on an 

atlas-model.

In the initial T1ρ and T2 analyses, VBR was employed to isolate localized relaxation 

differences between injured and uninjured knees at baseline and 6 months after ACLR. 

Many previous ACL studies have similarly used the contralateral knee of the patient as a 

control.2,5,6 As hypothesized, significant relaxation time differences were noted on the 

lateral side of baseline injured knees compared to the uninjured knees, most likely due to the 

contusion during the injury.7,9,10 An “MRI triad” has been described in literature, 

encapsulating the ACL tear, subsequent bone bruise to the terminal sulcus of the LF, and 

regions of abnormal signal in the pLT.10 Elevated pLT relaxation times remained 6 months 

following ACLR, appearing to diffuse and shift anteriorly (Fig. 2A and B). While a 

longitudinal decrease in T1ρ and T2 was observed in the most posterior aspect of the injured 

pLT and MF, an increase was also seen in the more central weight-bearing regions (Fig. 2A–

H). Additionally, the injured patella demonstrated a significant decrease between time 

points, while the trochlea had greater relaxation times 6 months after ACLR than baseline 

(Fig. 2I–L). Further studies would need to determine if these regions, particularly the pLT 

and patella, are in fact healing over this window of time.

With the ability to evaluate each individual voxel, we were able to localize changes from this 

sizeable dataset that may have otherwise been overlooked by traditional ROI-based or 

subcompartmental analyses. For example, subcompartmental analysis of the LT divides the 

compartment into three subcompartments based on the position of the meniscus.12 In this 

study, such a division would encompass the decreasing region of the most posterior aspect of 

the pLT as well as the increasing region of the more central pLT (Fig. 2C), subsequently 

washing out these highly localized changes.

Next, we sought to correlate a previously established lesion grading method with T1ρ and T2 

to ultimately assess the link between lesions in one compartment with relaxation times in the 

entire knee. An association between the trochlea compartment NS and elevated T1ρ and T2 

in the trochlea was expected, evident of the present lesions. However, other compartments 

were significantly correlated with the trochlea NS, indicating intricate connections between 

compartments. In particular, the patella of both knees at baseline was correlated with the 

corresponding trochlea NS (Fig. 3A–B). Yet at 6 months, only the uninjured patella 
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remained correlated, suggesting a change in the injured patella (Fig. 3C–D). This detected 

change may be due to the observed longitudinal decrease of relaxation times in the patella 

(Fig. 2I–L). Further research analyzing the effect of a cartilage lesion on nonadjacent 

cartilage degeneration could reveal more about these intricately connected knee regions.

In the latter part of this study, two groups classified by baseline medial and PFJ cartilage 

lesions were analyzed. Ralles et al. demonstrated that prolonged time between injury and 

ACLR on the scale of months increased incidence of chondral injury,37 while the patients in 

this study were scanned 18.5 ± 7.9 days following injury. Thus, it is reasonable to assume 

the lesions in the medial and PFJ compartments were unrelated to the injury, and ultimately 

highlighting cartilage abnormalities already present at the time of injury. In other words, we 

employed NS to demonstrate that presence of cartilage lesions in compartments not directly 

involved in the injury may contribute to later cartilage degeneration, as seen by elevated T1ρ 
and T2. A variety of factors were adjusted for in the statistical comparison to minimize 

group differences, such as graft source (Table 1), which is known to affect degree of 

cartilage degeneration.1 Nevertheless, there were significant demographic differences 

between the cohorts, such as age and BMI. Kumar et al. similarly separated patients with 

ACL tears based on a baseline characteristic.2 This study identified two groups and found a 

trend associated with elevated relaxation times.

Assessing cross-sectional differences between the cohorts first identified the MF, TrF, and 

LT as dynamic regions with significant differences between baseline lesion cohorts. The 

large, positive cross-sectional differences in these compartments seen at both times (Fig. 4) 

indicated that the group with baseline lesions sustained more elevated T1ρ times compared to 

the cohort without lesions. Following with a longitudinal analysis, from the intense change 

seen in the group with baseline lesions, it is clear that this cohort had larger T1ρ elevations in 

the MF and superficial TrF than the cohort without baseline lesions (Fig. 5B and D). The LT 

elevations appeared somewhat similar across both time points.

Combining results from T1ρ to T2 VBR analyses with the NS-separated cohorts, it is 

interesting to note that the injured patella also remained fairly similar between the cohorts 

despite lesion presence (Table 3; Figs. 4E–F and 5C–D). From the initial VBR analysis, 

injured patella cartilage revealed decreasing relaxation times over 6 months. Considering the 

homogeneity between cohorts, the observed relaxation time decrease may also involve 

biomechanical changes from ACLR, such as loading pattern changes. Nevertheless, the 

trochlea of the injured knee, which demonstrated a significant relaxation time increase over 

6 months, also displayed a large difference between cohorts, pointing towards the 

significance of cartilage quality at the time of injury. Results ultimately suggest that cartilage 

of patients with baseline lesions had more elevated relaxation times in the injured knee, and 

consequently deteriorated at a faster rate compared to those without baseline lesions, 

particularly in the MF and superficial TrF. Such findings emphasize the identification of 

existing chondral abnormalities at the time of injury, and their contribution to posttraumatic 

cartilage degeneration.

Identifying patients at risk for accelerated cartilage degeneration is a crucial step to treat OA. 

Luyten et al. propose three criteria to distinguish patients with early OA38; however, they do 
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not discuss pending degeneration following ACL injury. More research on early 

degenerative factors, such as the suggested presence of cartilage lesions unrelated to the 

injury, would help identify patients who are at risk for more severe chondral degeneration 

following ligament injuries. The data and techniques presented here also document the 

utility of VBR analysis with ACL-injured patients, and could assist with medical 

intervention at the time of injury and postponement of OA progression.

Ultimately, many of the findings from this study confirmed our initial hypotheses. 

Relaxation times were clearly different in the injured and uninjured knees at both time 

points, particularly in the lateral side, as anticipated (Fig. 1). There was a longitudinal 

increase in the trochlea T1ρ and T2, possibly illustrating the early stages of degeneration 

(Fig. 2I–L). Dividing the population into two cohorts revealed that the cartilage of those with 

baseline lesions had more elevated relaxation times, suggesting more rapid cartilage 

degeneration. Contrary to the hypothesis of longitudinally increasing relaxation times, the 

local nature of VBR allowed us to observe the pLT and patella both demonstrated decreasing 

relaxation times 6 months following ACLR. However, future research will have to analyze 

whether these regions are truly recovering from cartilage degeneration.

Despite encouraging results obtained from this study, there are limitations. Many studies 

show cartilage change over the period of years, while this study is limited to several 

months14; a larger population and extended analysis over several years would bolster our 

findings. Confounding factors, such as meniscal tears, despite being adjusted for in 

statistical analyses, were not incorporated into the primary focus of the study. In future, 

larger studies, incorporating the severity of meniscal lesions, rather than a binary yes/no 

adjustment as in this study, as well as the choice of treatment (repair, excision, etc.) could 

greatly benefit the findings, as meniscal lesions and their method of treatment are correlated 

with longitudinal clinical outcomes.39 Additionally, using the VBR method, while providing 

highly sensitive measurements of cartilage relaxation times, may also come with some 

limitations. For example, diffuse changes occurring in different morphological locations in 

different subjects may not be detected, due to the localized nature of VBR; this is one aspect 

where a ROI-based methodology might be used in tandem with VBR. Lastly, although T1ρ 
and T2 have been shown to accurately reflect PG and collagen changes, there are MR 

parameter-dependencies and different field strength effects on relaxation times that were not 

considered.40
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Figure 1. 
Average cross-sectional T1ρ SPMs of all patients overlaid onto registered image. Paired p-

value SPMs (C and F) show significant differences between injured and uninjured knees at 

both time points, with a threshold set at p < 0.05. The most posterior aspect of the pLT 

exhibits a highly focused region with elevated T1ρ values (A–C), becoming more diffuse and 

anterior after 6 months (D–F).
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Figure 2. 
Average longitudinal T1ρ SPM of all patients overlaid onto registered image. Paired p-value 

with a threshold set at p < 0.05 and Percent Difference SPMs (C, D, G, H, K, and L) show 

regions of significant differences between baseline and 6-month T1ρ relaxation times, 

particularly in the pLT, posterior MF, patella, and superficial trochlea. In the Percent 

Difference SPMs, red regions indicate higher T1ρ times at 6 months, while blue regions 

indicate lower T1ρ times at 6 months.
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Figure 3. 
Average cross-sectional SPMs of all patients correlating T1ρ values of both knees with the 

corresponding trochlea Noyes Scores (NS). At baseline, both sides (A and B) are correlated 

with T1ρ values in the patella, LT, and LF. At 6 months, the trochlea NS of the injured knee 

(C) are no longer correlated with any T1ρ values, while the uninjured trochlea NS remains 

correlated with the patella (D). p-value SPMs (E-F) identify regions of significance within 

the correlation SPMs (A–D) with a threshold set at p < 0.05.
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Figure 4. 
Average cross-sectional percent difference (A, B, E, F, I, and J) and unpaired p-value (C, D, 

G, H, K, and L) SpMs with a threshold set at p < 0.05 of all patients in each cohort in the 

injured knee. There is greater T1ρ deviation in the MF at 6 months (B and D) between the 

two groups than at baseline (A and C). Significant differences between groups can also be 

seen in the superficial trochlea, while the patella at both time points remain similar (F and 

H). Significantly higher T1ρ relaxation times in the group with lesions can be seen in the LT 

at both time points (I–L).
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Figure 5. 
Average longitudinal percent difference SPMs (A–F) of all patients in the injured knee. The 

group with lesions at baseline shows a greater longitudinal increase in T1ρ than the group 

without initial lesions, especially in the MF (A–B) and superficial trochlea (C–D). There is 

almost no longitudinal difference observed in the patella between the cohorts (C–D), and the 

LT remains fairly similar (E–F).
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Table 2.

Baseline Clinical Characteristics of the Injured Knee for Patients With 6 Month Scans as Assessed by Noyes 

Score (NS)
a

Characteristic (n = 54)

LF cartilage lesion LT cartilage lesion

NS = 0 7 (13%) NS = 0 11 (20%)

NS = 1 0 (0%) NS = 1 0 (0%)

NS = 2 39 (72%) NS = 2 20 (37%)

NS = 3 6 (11%) NS = 3 12 (22%)

NS = 4 0 (0%) NS = 4 0 (0%)

NS ≥ 5 2 (4%) NS ≥ 5 11 (20%)

MF cartilage lesion MT cartilage lesion

NS = 0 44 (81%) NS = 0 48 (89%)

NS = 1 0 (0%) NS = 1 0 (0%)

NS = 2 8 (15%) NS = 2 4 (7%)

NS = 3 1 (2%) NS = 3 2 (4%)

NS = 4 0 (0%) NS = 4 0 (0%)

NS ≥ 5 1 (2%) NS ≥ 5 0 (0%)

Trochlea cartilage lesion Patella cartilage lesion

NS = 0 48 (89%) NS = 0 42 (78%)

NS = 1 1 (2%) NS = 1 0 (0%)

NS = 2 5 (9%) NS = 2 8 (15%)

NS = 3 0 (0%) NS = 3 1 (2%)

NS = 4 0 (0%) NS = 4 3 (6%)

NS ≥ 5 0 (0%) NS ≥ 5 0 (0%)

NS, Noyes score; LF, lateral femoral condyle; LT, lateral tibia; MF, medial femoral condyle; MT, medial tibia.

a
Data expressed as count (%).
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