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Abstract 
 
While many problems associated with software 

development and the associated vulnerabilities are 
well documented and discussed, there is a distinct and 
obvious lack of consensus on the means to overcome 
and remedy these identified issues. This paper 
introduces the idea of integrating the concepts of 
formal methods into the programming process from the 
beginning.  This method of applying formal methods 
informally has the potential to change the 
programming paradigm to include formal methods; 
and, when formal methods cannot be applied, an 
ancillary application of the philosophy and underlying 
foundational concepts to move towards a culture of 
more secure programming.  
 
1. Introduction  
 

The poor quality of software is well known and has 
been for some time. Indeed, in the early 1970s, Gerald 
Weinberg coined Weinberg’s Second Law: “if builders 
built buildings the way programmers wrote programs, 
then the first woodpecker to come along would destroy 
civilization” [4]. To remedy this state of affairs, formal 
methods were developed. Formal methods allow the 
mathematical validation of programs, and in some 
cases, implementation in such a way that programs can 
be proved to be correct. 

The benefit of formal methods is multifold. The 
two most important ones are the validation of the 
correctness of the software, assuming the preconditions 
are met. The second is less formal. In order to verify 
the software, one must understand it thoroughly, 
especially how different components interact and how 
interactions with the system (such as input and output) 
are constrained. The very exercise of deriving the 
constraints, preconditions, and postconditions makes 
the analyst understand the software, and potential 
problems, in greater depth than otherwise. 

The problem with formal methods is their 
associated expense. They require time, specialized 
tools, and trained people. Furthermore, they must be 
integrated into a software development life cycle at 

points beyond the design and development stages. For 
example, should the software have to be modified to 
meet new requirements, or to compensate for 
erroneous assumptions about how users interact with 
the program, it will have a significant impact when 
formal methods are applied. Any such changes must go 
through much of the design and development phases, 
and then the entire program must be re-evaluated. 
Thus, formal methods are used in two situations: first, 
when the system or program being built is small; and 
second, when the developers have the resources and 
the need for very high assurance that specific 
requirements have been met. 

Even though formal methods are widely seen as 
impractical, there is much wisdom and rigor in them 
that can be applied to programs for a much lower cost. 
These ideas, of course, produce programs with much 
less assurance than the application of full formal 
methods. But given the choice between applying ad 
hoc rules and a framework derived from formal 
methods, the choice to try to be as complete as possible 
seems appropriate. 

The goal of this paper is to demonstrate how to 
adapt and apply the ideas and concepts behind formal 
methods for use in everyday programming. A 
subtheme of this paper is that formal methods are 
useful even when not applied fully; they are much 
more than an academic exercise.  

Throughout this paper, we use an example program 
to illustrate our methodology. This program, the login 
program from UNIX-like systems, is critical to the 
security of the system. It has four clear goals: 

 
1. Authenticate the user as required; 
2. Change the UID of the process (which is 

initially root) to that of the authenticating user; 
3. Update log files to reflect the new login; and 
4. Initiate a command interpreter (a shell) for the 

user. 
 
Although it is a small program (1405 lines of C code 
spread over 5 files), login controls most ways to access 



the system1, and has many points of interaction with 
both the user and system resources. Therefore, it 
provides a good demonstration of how some moderate 
analysis can improve one’s confidence in the 
correctness of the software. 
 
2. Formal vs. Informal vs. Ad Hoc Methods  
 

A method is an organized way to attain an 
objective; formal means mathematically or logically 
verifiable. Thus, for our purposes, formal methods are 
a way to construct programs that can be proved correct. 
If a program developed using formal methods fails, 
then the error(s) must lay in either the assumptions or 
axioms—in other words, the statement of 
preconditions—only. We assume that all verification 
steps are performed correctly (whether by theorem 
provers, other automated techniques, or by humans). 

Informal in this context means not involving proof, 
but providing a strong, rigorously reasoned argument 
for correctness. Thus, informal methods do not prove 
correctness. Instead, they provide a strong argument 
for correctness by providing assurance evidence that 
others can evaluate. Unlike formal methods, errors can 
occur in the techniques used by informal methods, but 
points at which errors can (or are likely to) occur can 
be described. 

Ad hoc describes the methods generally used now. 
Programmers think through the design, and may or 
may not document it. They then implement the code, 
and test it. Rarely is the test coverage complete; 
usually, it involves those paths of control that the tester 
believes are the most likely to have errors, or that are 
most critical to the correct functioning of the program. 
No proofs of correctness are given. The assurance 
evidence is, in essence, the result of the testing. The 
maxim “testing can provide proof of errors, but not 
proof of their absence” illustrates that this argument for 
correctness is quite weak. Errors may occur throughout 
this process. 
 
3. Formal Specification  
 

First, let us examine a specification that uses formal 
methods. We will then be able to apply the lessons to 
our example program. 
 
3.1. Formal Methods 
 

A specification states goals. Formal methods do so 
using a precise language. The associated language may 

                                                
1 Under some conditions, physical access to the computer 
enables someone to gain access to the system. 

be a purely mathematical formulation, or it may be 
stated in a specification language such as SPECIAL, 
HOL, or Z. Once the specifications are clearly defined, 
one then verifies that they are consistent (otherwise, 
they cannot be satisfied) and that they meet the stated 
requirements. With both a mathematical and a 
specification language formulation, this requires 
axioms be stated explicitly, and from those that 
theorems be proven. This may be done manually, 
although in practice the programs and systems are too 
large, and automated theorem provers and other tools 
are used. 

As an example, consider the venerable Bell-
LaPadula model [5]. One of the rules of this model, 
which gives a subject access to an object, is the 
give_access rule. The specification for that rule in 
SPECIAL is [7]:  
 
MODULE Bell_LaPadula_Model Give_access 
 
TYPES 
 
Subject_ID: DESIGNATOR; 
Object_ID: DESIGNATOR; 
Access_Mode: {OBSERVE_ONLY, ALTER_ONLY, 

 OBSERVE_AND_ALTER}; 
Access: STRUCT_OF( Subject_id subject; 
   Object_id  object; 
   Access_Mode mode);  
 
FUNCTIONS 
VFUN active (Object_ID object) -> BOOLEAN active; 
HIDDEN; 
INITIALLY 

TRUE; 
 

VFUN access_matrix () -> Access accesses; 
HIDDEN:  
INITIALLY 

FORALL Access a: a INSET accesses => active (a.object); 
 

OFUN give_access(Subject_ID giver; Access  access); 
ASSERTIONS 
    active(access.object) = TRUE; 
EFFECTS 
   ‘access_matrix() = access_matrix () UNION (access); 
 
END_MODULE 

 
The other rules are defined similarly. There is no 
ambiguity in the Bell-LaPadula SPECIAL 
specifications as written in SPECIAL. They are 
precise. Their consistency (or rather, lack of 
inconsistency) can be verified. The lessons that this 
demonstrates include the following: 

 



Lesson 1. State goals clearly and unambiguously. This 
falls out of the use of formal specification 
languages. 

Lesson 2. Be complete; adding a new goal later may 
create inconsistencies with earlier ones. With 
formal methods, adding a new rule or goal 
requires re-verifying the system is consistent. 

Lesson 3. Understand the environment in which the 
program runs. This springs from formal methods’ 
requiring axioms and propositions. 

Lesson 4. Know your assumptions. In the realm of 
formal methods, this is the same as stating axioms. 

 
3.2. Applying the Lessons 
 

We now apply these to the example login program.  
First, as lessons 1 and 2 suggest, we list the goals: 

 
1. Only allow users with accounts on the system 

to use the system; 
2. Restrict that user’s privileges to those allowed 

to the user; and 
3. Log sufficient information to reconstruct any 

unauthorized login. 
 

Lessons 3 and 4 take us to the environment and 
assumptions. The first assumption is that the login 
program accesses the correct authentication data. For 
example, is this data stored in /etc/master.passwd, or 
obtained from a remote server (such as a Kerberos 
authentication server) or somewhere else? The second 
assumption is that the login data is up to date. 

Take the first assumption. The question is how the 
login program determines what authentication data to 
access. If the location of that data is determined from 
the environment, we next ask how it reads the 
information from the environment. Consider the 
following code: 

 
if ((p = getenv(“HOST”)) < 0) 
 … handle the error … 
if (strcmp(p, “host1”) == 0) 
 authenticate(SKEY); 
else if (strcmp(p, “host2”) == 0) 
 authenticate(KERBEROS); 
else 
 authenticate(PASSWORD_FILE); 
 

This code first determines the name of the host on 
which the program is running. It then uses this 
information to determine where the correct 
authentication data is. So, the authentication data 
depends on the host named, which is, in turn, 
determined from the environment variable HOST. But 

the user can set that variable; therefore, the user can 
control which authentication data the program uses. 

This means that, when writing a program, one must 
control the environment. This ensures that the program 
can be constrained to access only trusted, or 
trustworthy, data and resources. If the environment 
cannot be controlled, neither the program nor any 
subprograms should trust it. In the broadest sense, this 
is impossible because the program must trust some 
foundational elements such as the CPU. So, we must 
determine where the program explicitly uses 
information from the environment (as in the first line 
of the example). If the user can control that, there is a 
potential problem. 

A similar, much more subtle problem occurred in a 
vendor’s login program. The code was subsequently 
adapted for open source software—and the problem 
was not completely eliminated for 10 years: 

 
authenticate = YES; 
while ((o = getopt(argv, argc,  “fph:n”)) != EOF){ 
 switch(o){ 
 case ‘n’:  authenticate = NO;  break; 
 … 
} 
 
The reason for the –n option was to allow login to 

be called whenever a new window opened; were it not 
present, the user would need to enter her password 
whenever she opened a window. The reason this is an 
environmental problem, under the control of the user, 
is clear. 

The dependency on environment may not always be 
obvious. For example: 

 
if ((fp = popen(“mail staff”, “w”)) != NULL){ 
 fprintf(fp, “Send help soon!\n”); 
 fclose(fp); 
} 
 

The function popen executes the first argument as a 
command using the standard command interpreter. It, 
in turn, uses multiple command environment variables 
to locate the desired “mail” program. The correctness 
of the program with the above code fragment depends 
entirely on those environment variables that control 
which mail program is accessed. In particular, the 
environment variable PATH controls the directories 
searched for the mail program. More fundamentally, 
the environment variable IFS controls which 
characters separate words in a command. For example, 
if IFS is set to “l \t\n”2, the command will be 
interpreted as invoking the program “mai” (because the 

                                                
2 That is, the letter “l”, space, tab, and newline. 



“l” is a word separator, not a part of a word) with the 
argument “staff”. By defining the PATH variable 
appropriately, or by adding an executable program 
with name “mai”, one can force the program to execute 
arbitrary actions, contrary to its intended function. 

Understanding assumptions often requires knowing 
the fine points of how a system works, something 
frequently overlooked by programmers. As an 
example, consider the following code, which resets the 
program’s search path (contained in the PATH 
environment variable, as noted above). Then the 
program executes a subcommand, which the system 
locates by searching the directories in the search path 
in the order given: 

 
for(k = 0; environ[k] != NULL; k++) 
 if (strncmp(environ[k], ”PATH=”, 5) == 0) 
  break; 
if (environ[k] != NULL) 
 environ[k] = ”PATH=/bin:/usr/bin:/usr/etc”; 
… 
system(“echo hithere | mail bishop”); 
 

This code looks for the first occurrence of PATH in 
the environment, and sets it to something known to be 
safe. The problem is that there may be multiple 
definitions of PATH in the environment, and this code 
only changes the first occurrence. And the system may 
use the second occurrence to determine the directories 
to search.  

This leads to a short list of basic questions: 
 

Question 1. What will the users, and the remote 
servers, be supplying to the program? How can it 
be checked for validity? How should the program 
act if it is invalid? 

Question 2. What assumptions are made about each 
library function’s actions? What are its side 
effects? What assumptions does the library 
function make?  

 
4. Formal Design  
 

Designing a system requires a structured approach. 
We first examine one formal methodology for system 
design, and then extract and apply its lessons to our 
example program. 
 
4.1. Formal Methods 
 

One approach in formally designing a system is to 
use layers.  In this case, the system functions are 
broken into layers, and each layer is defined in terms of 
the layer beneath it. Thus, the layers are in a linear 

hierarchy and each layer is represented by an abstract 
machine. 

An example of such a methodology is the 
Hierarchical Decomposition Methodology (HDM). It 
was used to produce a formally verified design the 
Provably Secure Operating System (PSOS) [1]. 
(Unfortunately, the sponsor never funded an 
implementation, although the importance of the 
underlying concepts was revisited in 2003 [2].) The 
HDM proceeds in 5 stages. 

The first stage is the interface definition. In this 
stage, the system interface is designed and decomposed 
into a set of modules. System security requirements are 
formulated. Two examples of such requirements in 
PSOS are: 

 
Detection principle: one cannot get information 

without authorization. 
Alteration principle: one cannot alter information 

without authorization. 
 

The second stage is the actual hierarchical 
decomposition. In it, modules are arranged into a linear 
hierarchy, and each is represented by an abstract 
machine. Using these machines, consistency of 
structure and function names are verified. 

As an example, the PSOS hierarchy had 17 layers, 
the lowest being capabilities.  These layers are shown 
in Table 1 [1]. 

 
Table 1. The PSOS Hierarchy 

16 Command interpreter 
15 User environments and name space 
14 User input/output 
13 Procedure records 
12 User processes and visible input/output 
11 Creation, deletion of user objects 
10 Directories 

9 Abstract data types 
8 Virtual memory (segmentation) 
7 Paging 
6 System processes and system input/output 
5 Primitive input/output 
4 Basic arithmetic, logical operations 
3 Clocks 
2 Interrupts 
1 Real memory (registers, core) 
0 Capabilities 

 
The third stage is to develop formal specifications 

for each module, and verify it is consistent and meets 
the system specifications. In PSOS, the detection and 
alteration principles were expressed in terms of 



capabilities, and then the modules were verified to be 
consistent with the two principles. 

The next stage refined the layering. It defined the 
functions of each module in terms of the interfaces at 
the next lower layer. These functions, and the 
decomposition as a whole, were verified to be 
consistent with the specification. 

The final stage (not accomplished by the PSOS 
project) was to implement the system. Working from 
the bottom up, each layer was implemented in terms of 
the layer beneath it, so each layer could be verified 
before the layer above it was implemented. Each 
layer’s implementation was proven to meet the 
specifications. 

Two lessons from this decomposition will prove 
useful. 

 
Lesson 5: Break the problem into parts, and so forth, 

refining each step. Try to keep modules to one 
task each. 

Lesson 6:  Layer the design. Then each layer can be 
implemented in terms of the next lower layer. This 
simplifies checking and debugging. 

 
4.2. Applying the Lessons 
 

In order to apply these important lessons to our 
example, the login program can be broken into four 
modules. 

The first module authenticates the user. A further 
refinement of this module might be: 

 
1. Get user’s authenticator (hashed password); 
2. Get user’s authentication data (password); and 
3. Compare the two; on match, success; else 

failure 
 

The second module restricts the user’s rights to those 
that are authorized. In this context, this means the 
program must determine the user and group 
identifications, and reduce its privileges to them: 
 

1. Get the user’s UID and primary and 
secondary GIDs; and 

2. Change the program’s UID and GIDs to them. 
 

The third module updates the appropriate log file: 
 

1. Call the function to open the log file; 
2. Add a record to the log file to show the user 

has logged in; and 
3. Close the log file. 

 
The last module spawns the appropriate shell, so the 
user can use the system: 

 
1. Obtain the file name of the (executable) shell 

associated with that user; 
2. Verify that the name of the shell is a valid 

shell; and 
3. Overlay the login program with the shell 

 
Each of these steps can be broken down further. This is 
the process of stepwise refinement that every 
introductory programming student learns. In essence, 
lesson 5 reinforces the usefulness of stepwise 
refinement. 

  Each of the modules above relies on lower-level 
modules—in this context, most probably library 
functions—so lesson 6 states that we need to know the 
assumptions of the modules (library functions) that are 
called. Unfortunately, the UNIX-like systems do not 
have manuals documenting the assumptions; the 
existing descriptions list some, but not all, of the 
associated assumptions. The omitted information is 
almost always “fence” or “boundary” cases. 

As examples, the string copy function strcpy copies 
the string identified by the second parameter into the 
space identified by the first. Thus, there is an implicit 
assumption that the string is no longer than the space. 
If this assumption is not acceptable, the function 
strncpy stops copying after a given number of 
characters in the string have been copied; but if that 
happens, no terminating NULL byte is added to the 
(new) first string. 

More subtle conditions occur when bogus 
arguments are given. What happens if you try to 
allocate 0 or –2048 bytes? Or if the program tells 
strncpy to copy –5 bytes of the string? 

Some of these questions are defined by the 
standards for the C library functions; others are 
machine- or implementation-dependent. In either case, 
not knowing how the library functions will react means 
that the programmer must check that the parameters 
are such that the result is well-defined, and is 
consistent with what is desired. 

This leads to the following questions: 
 

Question 3: Is the program structured so that security 
relevant elements are separate from non-security 
relevant elements? (This simplifies checking the 
correctness of the security relevant parts.) 

Question 4: Are security relevant elements 
modularized so that each module performs exactly 
one security related function? (Again, this 
simplifies checking.) 

Question 5: Are the interfaces compatible and simple 
to use? (In general, all parameters and return 
values should be checked to ensure their values are 
consistent with what is expected, except where the 



value under consideration is never used. The 
software should be designed so that validation is 
as straightforward as possible. For example, 
passing pointers is an invitation to problems. Other 
techniques, such as using tokens or tickets that 
encapsulate the pointers make checking for illegal 
or undesired values much simpler.) 

 
5. Implementation  
 

The final step, implementation, requires that the 
actual code be proved correct. The methods and 
techniques for this vary greatly, but all have the same 
basic structure. First, state the precondition and 
postconditions to the functions or modules; then prove 
that, if the preconditions hold, so will the 
postconditions. Underlying these proofs are the 
assumption that the compiler correctly implements, and 
the processor and other hardware or firmware 
components execute, the program’s operations 
correctly.  We make that assumption in what follows. 

Consider the following formal proof that a routine 
properly computes the remainder of a division: 

 
{ x > 0, y > 0 } 
int rem(int x, int y){ 
 while (x >= y) 
  { x ≥ y, x > 0, y > 0 }  
  x –= y; 
  { x – y ≥ 0, x > 0, y > 0 } 
 { x < y, x > 0, y > 0 } 

return(x); 
} 
{ x > 0, y > 0, rem ≥ 0, rem < y, rem ≡  x mod y } 

 
The preconditions, postconditions, and proof steps are 
in boldface. The precondition here is that x and y are 
both positive. On entry into the while loop, the 
preconditions hold, as does the property x ≥ y (else the 
loop would not have been entered). After subtracting y 
from x, the difference is non-negative (because before, 
x ≥ y), so the preconditions hold. When the while loop 
exits (or if it is bypassed), x < y. The value of x 
becomes the value of the function; thus, the 
postcondition that the function return a non-negative 
value (rem ≥ 0) less than y (rem < y) that is congruent 
to x mod y (rem ≡ x (mod y)) holds. 

Thus, when this function is called with two positive 
arguments, it returns the remainder of the first divided 
by the second. Notice the if; this proof says nothing 
about the value if either x or y is non-positive. Were we 
formally verifying the program, we could check that 
the code never made such a call (or reconstruct the 
proof). 

In our more informal view of verification, though, 
we simply take the preconditions and turn them into 
tests. We ensure that, each time rem() is called, our 
program checks that the preconditions hold—in this 
case, that both arguments to rem() are positive. Thus, 
the following would be considered poor coding: 

 
int rem(int x, int y) 
{ 
 while(x >= y) 
  x –= y; 
 return(x); 
} 
 

This is considered poor coding because we do not 
know what will happen when it is called. For example, 
suppose x > 0 and y < 0. Also, in most programming 
languages, there is an ambiguity to the definition of 
“remainder” when x < 0. Specifically, when –5 is 
divided by 2, is the remainder –1 or 1? 

A better coding style is to note, or handle, the cases 
not covered by the preconditions, explicitly. So, we 
rewrite rem() to set an error code remerror indicating 
whether the arguments meet the preconditions (in 
conventional C style, 1 means they do and 0 means 
they do not) and then have rem() return the remainder: 

 
int remerror = 0; /* no error */ 
int rem(int x, int y) 
{ 
 if (x <= 0 || y <= 0){ 
  remerror = 1; 
  return(0); 
 } 
 while(x >= y) 
  x –= y; 
 return(x); 
} 
 

This allows the program to check for errors when the 
routine is called. 

The lessons from this are: 
 
Lesson 7: Know the assumptions made by each 

function. Check them whenever possible, and if 
not possible (for example, when a program must 
use a pointer as an argument) check the results. 

Lesson 8: Check the results of system calls and library 
functions to ensure they worked as expected. 
Often, programming manuals either omit side 
effects or describe them ambiguously. Document 
such instances in your program, so a reviewer will 
know why any seemingly unnecessary checking is 
present. 

 



5.2. Applying the Lessons 
 

We turn to the routine in login.c that makes 
environment variables and their values available to the 
user. This is called exporting environment variables. 
As noted above, these variables are critical to the 
correct functioning of the command interpreters and 
many programs. The environment variables are stored 
in an array of strings, and each has the form “name-
value”. The preconditions are as follows: 

 
1. Do not export any environment variable with a 

string length of over 1024 characters; 
2. Do not export any environment variable 

without a value (note the value may be empty, 
so this means that there is no “=” sign); and 

3. Do not export any environment variable named 
in the noexport list. 
 

There is one postcondition: 
 

1. The environment variable is placed in the list 
of environment variables to be made available 
to the user. 
 

The following simple function is called for each 
environment variable to be exported, and it places them 
in the environment: 

 
static int exportv1(const char *s) 
{ 
 p = strchr(s, ‘=’); 
 *p = ‘\0’; 
 (void) setenv(s, p + 1, 1); 
 *p = ‘=’; 
 return(1); 
} 
 

But there is no checking of preconditions. We add the 
following code to do that: 
 

static int export(const char *s) 
{ 
    char *p; 
    const char **pp; 
    size_t n; 
    /* check precondition 1 */ 
    if (strlen(s) > 1024) return(0); 
    /* handle precondition 2 */ 
    if (strchr(s, ‘=’) == NULL) 
        return(0); 
    /* handle precondition 3 */ 
    for (pp =- noexport; *pp != NULL; pp++){ 
        n = strlen(*pp); 
        if (s[n] == ‘=’ && strncmp(s, *pp, n) == 0) 

            return(0); 
    /* now the original code */ 
    p = strchr(s, ‘=’); 
    *p = ‘\0’; 
    rv = setenv(s, p + 1, 1); 
    *p = ‘=’; 
     /* check the postcondition */ 
    if (rv == -1) return(0); 
    return(1); 
} 
 

In fact, this is almost exactly part of the login.c code 
used in FreeBSD 8.0. Aside from differences that are 
cosmetic (for example, p is assigned at the first strchr 
call), the precondition checking code is the same. 
Interestingly, the postcondition check is omitted; in 
case of error, no recovery is attempted and the error is 
ignored. A better approach would be to force the use of 
a preset environment, or at least log the failure for 
future investigation.3 

This leads to the following questions: 
 

Question 6: Does the function have a well-defined 
goal? In the above function, the goal was to make 
the environment variable available to the user. The 
function setenv does that. 

Question 7: Are assumptions checked? In this case, the 
assumptions occur in two places. The first is in the 
entry to the routine, because there are three 
preconditions the argument to the function must 
meet. The second is that the postcondition is met. 
The above code checks it; as noted, the original 
FreeBSD code does not. 

Question 8: Is all security-relevant code checked? The 
checking does indeed add overhead, but if 
properly modularized the security relevant parts of 
the program are typically called infrequently 
(because most of the computations will be done 
after the checking), so the overhead is typically 
negligible. Also, while the checking may seem 
unnecessary once a program is thoroughly 
debugged, it will become invaluable should the 
program ever be altered or moved to a different 
system or environment. 

6. Conclusion  
 

While formal methods have been used with 
spectacular success in restrictive environments and on 
small, limited, or specialized programs and systems 
[3,6], they are not yet practical for the average 
programmer nor do they fit within the budgets of most 
software development environments.  Verifying 
                                                
3 Whether this is inconsequential, a feature, or a bug is left to 
the reader to determine. 



implementations is seen as too complex and time-
consuming, and indeed if high assurance is not a 
priority, formal specification, design, and 
implementation validation is seen as consuming too 
much time and resources. The specialized training and 
software required is another drawback. 

The assumption inherent in this approach is that the 
correct use of formal methods improves assurance; 
therefore, the use of this method will also improve 
assurance (although, as noted above, not so much as 
formal method would). Of course, just as formal 
methods can be applied poorly, and thus not provide 
assurance (or, worse, mislead the analyst into believing 
that the software is of higher assurance than is 
appropriate), this method also can be misleading or 
inadequate if poorly applied. In other words,  assurance 
methods that are applied poorly or incorrectly do not 
work as well as those applied completely and correctly. 

The thesis of this paper is that the philosophy and 
concepts of formal methods can be integrated into the 
vast majority of programming that goes on, for all 
levels of programmers. The evidence of correctness is 
by no means as strong as when formal methods, or 
other high assurance methods, are applied—but that 
the evidence of correctness is much stronger than when 
the usual ad hoc methods are used.   

Indeed, analyzing how formal methods work leads 
to approaches that are useful for any kind of 
programming. They increase awareness in 
programmers by suggesting what to look for, where in 
the code to check, and how to design and implement 
programs. Thus, even when formal methods cannot be 
used in their full glory, the philosophy and underlying 
concepts and ideas should be. 

Changing the programming culture to one that 
produces more secure code is essential if we want to be 
able to protect our digital assets.  Historically, much of 
the content discussed in this paper is taught once in 
beginning programming classes, and then glossed over 

in later classes. We can begin to change the culture by 
increasing the emphasis on these methods the academic 
arena throughout the curriculum, as well as in industry 
during all phases of the software development process.  
This increased emphasis will help to improve the 
safety and security of the resulting software products. 
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