
UC Davis
UC Davis Previously Published Works

Title
Applying Formal Methods Informally

Permalink
https://escholarship.org/uc/item/8248v5wm

Authors
Bishop, Matt
Hay, Brian
Nance, Kara

Publication Date
2011

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8248v5wm
https://escholarship.org
http://www.cdlib.org/

Applying Formal Methods Informally	
	

 Matt Bishop Brian Hay Kara Nance
 Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
 University of California at Davis University of Alaska Fairbanks University of Alaska Fairbanks
 bishop@cs.ucdavis.edu brian.hay@alaska.edu klnance@alaska.edu

Abstract

While many problems associated with software

development and the associated vulnerabilities are
well documented and discussed, there is a distinct and
obvious lack of consensus on the means to overcome
and remedy these identified issues. This paper
introduces the idea of integrating the concepts of
formal methods into the programming process from the
beginning. This method of applying formal methods
informally has the potential to change the
programming paradigm to include formal methods;
and, when formal methods cannot be applied, an
ancillary application of the philosophy and underlying
foundational concepts to move towards a culture of
more secure programming.

1. Introduction

The poor quality of software is well known and has
been for some time. Indeed, in the early 1970s, Gerald
Weinberg coined Weinberg’s Second Law: “if builders
built buildings the way programmers wrote programs,
then the first woodpecker to come along would destroy
civilization” [4]. To remedy this state of affairs, formal
methods were developed. Formal methods allow the
mathematical validation of programs, and in some
cases, implementation in such a way that programs can
be proved to be correct.

The benefit of formal methods is multifold. The
two most important ones are the validation of the
correctness of the software, assuming the preconditions
are met. The second is less formal. In order to verify
the software, one must understand it thoroughly,
especially how different components interact and how
interactions with the system (such as input and output)
are constrained. The very exercise of deriving the
constraints, preconditions, and postconditions makes
the analyst understand the software, and potential
problems, in greater depth than otherwise.

The problem with formal methods is their
associated expense. They require time, specialized
tools, and trained people. Furthermore, they must be
integrated into a software development life cycle at

points beyond the design and development stages. For
example, should the software have to be modified to
meet new requirements, or to compensate for
erroneous assumptions about how users interact with
the program, it will have a significant impact when
formal methods are applied. Any such changes must go
through much of the design and development phases,
and then the entire program must be re-evaluated.
Thus, formal methods are used in two situations: first,
when the system or program being built is small; and
second, when the developers have the resources and
the need for very high assurance that specific
requirements have been met.

Even though formal methods are widely seen as
impractical, there is much wisdom and rigor in them
that can be applied to programs for a much lower cost.
These ideas, of course, produce programs with much
less assurance than the application of full formal
methods. But given the choice between applying ad
hoc rules and a framework derived from formal
methods, the choice to try to be as complete as possible
seems appropriate.

The goal of this paper is to demonstrate how to
adapt and apply the ideas and concepts behind formal
methods for use in everyday programming. A
subtheme of this paper is that formal methods are
useful even when not applied fully; they are much
more than an academic exercise.

Throughout this paper, we use an example program
to illustrate our methodology. This program, the login
program from UNIX-like systems, is critical to the
security of the system. It has four clear goals:

1. Authenticate the user as required;
2. Change the UID of the process (which is

initially root) to that of the authenticating user;
3. Update log files to reflect the new login; and
4. Initiate a command interpreter (a shell) for the

user.

Although it is a small program (1405 lines of C code
spread over 5 files), login controls most ways to access

the system1, and has many points of interaction with
both the user and system resources. Therefore, it
provides a good demonstration of how some moderate
analysis can improve one’s confidence in the
correctness of the software.

2. Formal vs. Informal vs. Ad Hoc Methods

A method is an organized way to attain an
objective; formal means mathematically or logically
verifiable. Thus, for our purposes, formal methods are
a way to construct programs that can be proved correct.
If a program developed using formal methods fails,
then the error(s) must lay in either the assumptions or
axioms—in other words, the statement of
preconditions—only. We assume that all verification
steps are performed correctly (whether by theorem
provers, other automated techniques, or by humans).

Informal in this context means not involving proof,
but providing a strong, rigorously reasoned argument
for correctness. Thus, informal methods do not prove
correctness. Instead, they provide a strong argument
for correctness by providing assurance evidence that
others can evaluate. Unlike formal methods, errors can
occur in the techniques used by informal methods, but
points at which errors can (or are likely to) occur can
be described.

Ad hoc describes the methods generally used now.
Programmers think through the design, and may or
may not document it. They then implement the code,
and test it. Rarely is the test coverage complete;
usually, it involves those paths of control that the tester
believes are the most likely to have errors, or that are
most critical to the correct functioning of the program.
No proofs of correctness are given. The assurance
evidence is, in essence, the result of the testing. The
maxim “testing can provide proof of errors, but not
proof of their absence” illustrates that this argument for
correctness is quite weak. Errors may occur throughout
this process.

3. Formal Specification

First, let us examine a specification that uses formal
methods. We will then be able to apply the lessons to
our example program.

3.1. Formal Methods

A specification states goals. Formal methods do so
using a precise language. The associated language may

1 Under some conditions, physical access to the computer
enables someone to gain access to the system.

be a purely mathematical formulation, or it may be
stated in a specification language such as SPECIAL,
HOL, or Z. Once the specifications are clearly defined,
one then verifies that they are consistent (otherwise,
they cannot be satisfied) and that they meet the stated
requirements. With both a mathematical and a
specification language formulation, this requires
axioms be stated explicitly, and from those that
theorems be proven. This may be done manually,
although in practice the programs and systems are too
large, and automated theorem provers and other tools
are used.

As an example, consider the venerable Bell-
LaPadula model [5]. One of the rules of this model,
which gives a subject access to an object, is the
give_access rule. The specification for that rule in
SPECIAL is [7]:

MODULE Bell_LaPadula_Model Give_access

TYPES

Subject_ID: DESIGNATOR;
Object_ID: DESIGNATOR;
Access_Mode: {OBSERVE_ONLY, ALTER_ONLY,

 OBSERVE_AND_ALTER};
Access: STRUCT_OF(Subject_id subject;
 Object_id object;
 Access_Mode mode);

FUNCTIONS
VFUN active (Object_ID object) -> BOOLEAN active;
HIDDEN;
INITIALLY

TRUE;

VFUN access_matrix () -> Access accesses;
HIDDEN:
INITIALLY

FORALL Access a: a INSET accesses => active (a.object);

OFUN give_access(Subject_ID giver; Access access);
ASSERTIONS
 active(access.object) = TRUE;
EFFECTS
 ‘access_matrix() = access_matrix () UNION (access);

END_MODULE

The other rules are defined similarly. There is no
ambiguity in the Bell-LaPadula SPECIAL
specifications as written in SPECIAL. They are
precise. Their consistency (or rather, lack of
inconsistency) can be verified. The lessons that this
demonstrates include the following:

Lesson 1. State goals clearly and unambiguously. This
falls out of the use of formal specification
languages.

Lesson 2. Be complete; adding a new goal later may
create inconsistencies with earlier ones. With
formal methods, adding a new rule or goal
requires re-verifying the system is consistent.

Lesson 3. Understand the environment in which the
program runs. This springs from formal methods’
requiring axioms and propositions.

Lesson 4. Know your assumptions. In the realm of
formal methods, this is the same as stating axioms.

3.2. Applying the Lessons

We now apply these to the example login program.
First, as lessons 1 and 2 suggest, we list the goals:

1. Only allow users with accounts on the system

to use the system;
2. Restrict that user’s privileges to those allowed

to the user; and
3. Log sufficient information to reconstruct any

unauthorized login.

Lessons 3 and 4 take us to the environment and
assumptions. The first assumption is that the login
program accesses the correct authentication data. For
example, is this data stored in /etc/master.passwd, or
obtained from a remote server (such as a Kerberos
authentication server) or somewhere else? The second
assumption is that the login data is up to date.

Take the first assumption. The question is how the
login program determines what authentication data to
access. If the location of that data is determined from
the environment, we next ask how it reads the
information from the environment. Consider the
following code:

if ((p = getenv(“HOST”)) < 0)
 … handle the error …
if (strcmp(p, “host1”) == 0)
 authenticate(SKEY);
else if (strcmp(p, “host2”) == 0)
 authenticate(KERBEROS);
else
 authenticate(PASSWORD_FILE);

This code first determines the name of the host on
which the program is running. It then uses this
information to determine where the correct
authentication data is. So, the authentication data
depends on the host named, which is, in turn,
determined from the environment variable HOST. But

the user can set that variable; therefore, the user can
control which authentication data the program uses.

This means that, when writing a program, one must
control the environment. This ensures that the program
can be constrained to access only trusted, or
trustworthy, data and resources. If the environment
cannot be controlled, neither the program nor any
subprograms should trust it. In the broadest sense, this
is impossible because the program must trust some
foundational elements such as the CPU. So, we must
determine where the program explicitly uses
information from the environment (as in the first line
of the example). If the user can control that, there is a
potential problem.

A similar, much more subtle problem occurred in a
vendor’s login program. The code was subsequently
adapted for open source software—and the problem
was not completely eliminated for 10 years:

authenticate = YES;
while ((o = getopt(argv, argc, “fph:n”)) != EOF){
 switch(o){
 case ‘n’: authenticate = NO; break;
 …
}

The reason for the –n option was to allow login to

be called whenever a new window opened; were it not
present, the user would need to enter her password
whenever she opened a window. The reason this is an
environmental problem, under the control of the user,
is clear.

The dependency on environment may not always be
obvious. For example:

if ((fp = popen(“mail staff”, “w”)) != NULL){
 fprintf(fp, “Send help soon!\n”);
 fclose(fp);
}

The function popen executes the first argument as a
command using the standard command interpreter. It,
in turn, uses multiple command environment variables
to locate the desired “mail” program. The correctness
of the program with the above code fragment depends
entirely on those environment variables that control
which mail program is accessed. In particular, the
environment variable PATH controls the directories
searched for the mail program. More fundamentally,
the environment variable IFS controls which
characters separate words in a command. For example,
if IFS is set to “l \t\n”2, the command will be
interpreted as invoking the program “mai” (because the

2 That is, the letter “l”, space, tab, and newline.

“l” is a word separator, not a part of a word) with the
argument “staff”. By defining the PATH variable
appropriately, or by adding an executable program
with name “mai”, one can force the program to execute
arbitrary actions, contrary to its intended function.

Understanding assumptions often requires knowing
the fine points of how a system works, something
frequently overlooked by programmers. As an
example, consider the following code, which resets the
program’s search path (contained in the PATH
environment variable, as noted above). Then the
program executes a subcommand, which the system
locates by searching the directories in the search path
in the order given:

for(k = 0; environ[k] != NULL; k++)
 if (strncmp(environ[k], ”PATH=”, 5) == 0)
 break;
if (environ[k] != NULL)
 environ[k] = ”PATH=/bin:/usr/bin:/usr/etc”;
…
system(“echo hithere | mail bishop”);

This code looks for the first occurrence of PATH in
the environment, and sets it to something known to be
safe. The problem is that there may be multiple
definitions of PATH in the environment, and this code
only changes the first occurrence. And the system may
use the second occurrence to determine the directories
to search.

This leads to a short list of basic questions:

Question 1. What will the users, and the remote
servers, be supplying to the program? How can it
be checked for validity? How should the program
act if it is invalid?

Question 2. What assumptions are made about each
library function’s actions? What are its side
effects? What assumptions does the library
function make?

4. Formal Design

Designing a system requires a structured approach.
We first examine one formal methodology for system
design, and then extract and apply its lessons to our
example program.

4.1. Formal Methods

One approach in formally designing a system is to
use layers. In this case, the system functions are
broken into layers, and each layer is defined in terms of
the layer beneath it. Thus, the layers are in a linear

hierarchy and each layer is represented by an abstract
machine.

An example of such a methodology is the
Hierarchical Decomposition Methodology (HDM). It
was used to produce a formally verified design the
Provably Secure Operating System (PSOS) [1].
(Unfortunately, the sponsor never funded an
implementation, although the importance of the
underlying concepts was revisited in 2003 [2].) The
HDM proceeds in 5 stages.

The first stage is the interface definition. In this
stage, the system interface is designed and decomposed
into a set of modules. System security requirements are
formulated. Two examples of such requirements in
PSOS are:

Detection principle: one cannot get information

without authorization.
Alteration principle: one cannot alter information

without authorization.

The second stage is the actual hierarchical
decomposition. In it, modules are arranged into a linear
hierarchy, and each is represented by an abstract
machine. Using these machines, consistency of
structure and function names are verified.

As an example, the PSOS hierarchy had 17 layers,
the lowest being capabilities. These layers are shown
in Table 1 [1].

Table 1. The PSOS Hierarchy

16 Command interpreter
15 User environments and name space
14 User input/output
13 Procedure records
12 User processes and visible input/output
11 Creation, deletion of user objects
10 Directories

9 Abstract data types
8 Virtual memory (segmentation)
7 Paging
6 System processes and system input/output
5 Primitive input/output
4 Basic arithmetic, logical operations
3 Clocks
2 Interrupts
1 Real memory (registers, core)
0 Capabilities

The third stage is to develop formal specifications

for each module, and verify it is consistent and meets
the system specifications. In PSOS, the detection and
alteration principles were expressed in terms of

capabilities, and then the modules were verified to be
consistent with the two principles.

The next stage refined the layering. It defined the
functions of each module in terms of the interfaces at
the next lower layer. These functions, and the
decomposition as a whole, were verified to be
consistent with the specification.

The final stage (not accomplished by the PSOS
project) was to implement the system. Working from
the bottom up, each layer was implemented in terms of
the layer beneath it, so each layer could be verified
before the layer above it was implemented. Each
layer’s implementation was proven to meet the
specifications.

Two lessons from this decomposition will prove
useful.

Lesson 5: Break the problem into parts, and so forth,

refining each step. Try to keep modules to one
task each.

Lesson 6: Layer the design. Then each layer can be
implemented in terms of the next lower layer. This
simplifies checking and debugging.

4.2. Applying the Lessons

In order to apply these important lessons to our
example, the login program can be broken into four
modules.

The first module authenticates the user. A further
refinement of this module might be:

1. Get user’s authenticator (hashed password);
2. Get user’s authentication data (password); and
3. Compare the two; on match, success; else

failure

The second module restricts the user’s rights to those
that are authorized. In this context, this means the
program must determine the user and group
identifications, and reduce its privileges to them:

1. Get the user’s UID and primary and
secondary GIDs; and

2. Change the program’s UID and GIDs to them.

The third module updates the appropriate log file:

1. Call the function to open the log file;
2. Add a record to the log file to show the user

has logged in; and
3. Close the log file.

The last module spawns the appropriate shell, so the
user can use the system:

1. Obtain the file name of the (executable) shell

associated with that user;
2. Verify that the name of the shell is a valid

shell; and
3. Overlay the login program with the shell

Each of these steps can be broken down further. This is
the process of stepwise refinement that every
introductory programming student learns. In essence,
lesson 5 reinforces the usefulness of stepwise
refinement.

 Each of the modules above relies on lower-level
modules—in this context, most probably library
functions—so lesson 6 states that we need to know the
assumptions of the modules (library functions) that are
called. Unfortunately, the UNIX-like systems do not
have manuals documenting the assumptions; the
existing descriptions list some, but not all, of the
associated assumptions. The omitted information is
almost always “fence” or “boundary” cases.

As examples, the string copy function strcpy copies
the string identified by the second parameter into the
space identified by the first. Thus, there is an implicit
assumption that the string is no longer than the space.
If this assumption is not acceptable, the function
strncpy stops copying after a given number of
characters in the string have been copied; but if that
happens, no terminating NULL byte is added to the
(new) first string.

More subtle conditions occur when bogus
arguments are given. What happens if you try to
allocate 0 or –2048 bytes? Or if the program tells
strncpy to copy –5 bytes of the string?

Some of these questions are defined by the
standards for the C library functions; others are
machine- or implementation-dependent. In either case,
not knowing how the library functions will react means
that the programmer must check that the parameters
are such that the result is well-defined, and is
consistent with what is desired.

This leads to the following questions:

Question 3: Is the program structured so that security
relevant elements are separate from non-security
relevant elements? (This simplifies checking the
correctness of the security relevant parts.)

Question 4: Are security relevant elements
modularized so that each module performs exactly
one security related function? (Again, this
simplifies checking.)

Question 5: Are the interfaces compatible and simple
to use? (In general, all parameters and return
values should be checked to ensure their values are
consistent with what is expected, except where the

value under consideration is never used. The
software should be designed so that validation is
as straightforward as possible. For example,
passing pointers is an invitation to problems. Other
techniques, such as using tokens or tickets that
encapsulate the pointers make checking for illegal
or undesired values much simpler.)

5. Implementation

The final step, implementation, requires that the
actual code be proved correct. The methods and
techniques for this vary greatly, but all have the same
basic structure. First, state the precondition and
postconditions to the functions or modules; then prove
that, if the preconditions hold, so will the
postconditions. Underlying these proofs are the
assumption that the compiler correctly implements, and
the processor and other hardware or firmware
components execute, the program’s operations
correctly. We make that assumption in what follows.

Consider the following formal proof that a routine
properly computes the remainder of a division:

{ x > 0, y > 0 }
int rem(int x, int y){
 while (x >= y)
 { x ≥ y, x > 0, y > 0 }
 x –= y;
 { x – y ≥ 0, x > 0, y > 0 }
 { x < y, x > 0, y > 0 }

return(x);
}
{ x > 0, y > 0, rem ≥ 0, rem < y, rem ≡ x mod y }

The preconditions, postconditions, and proof steps are
in boldface. The precondition here is that x and y are
both positive. On entry into the while loop, the
preconditions hold, as does the property x ≥ y (else the
loop would not have been entered). After subtracting y
from x, the difference is non-negative (because before,
x ≥ y), so the preconditions hold. When the while loop
exits (or if it is bypassed), x < y. The value of x
becomes the value of the function; thus, the
postcondition that the function return a non-negative
value (rem ≥ 0) less than y (rem < y) that is congruent
to x mod y (rem ≡ x (mod y)) holds.

Thus, when this function is called with two positive
arguments, it returns the remainder of the first divided
by the second. Notice the if; this proof says nothing
about the value if either x or y is non-positive. Were we
formally verifying the program, we could check that
the code never made such a call (or reconstruct the
proof).

In our more informal view of verification, though,
we simply take the preconditions and turn them into
tests. We ensure that, each time rem() is called, our
program checks that the preconditions hold—in this
case, that both arguments to rem() are positive. Thus,
the following would be considered poor coding:

int rem(int x, int y)
{
 while(x >= y)
 x –= y;
 return(x);
}

This is considered poor coding because we do not
know what will happen when it is called. For example,
suppose x > 0 and y < 0. Also, in most programming
languages, there is an ambiguity to the definition of
“remainder” when x < 0. Specifically, when –5 is
divided by 2, is the remainder –1 or 1?

A better coding style is to note, or handle, the cases
not covered by the preconditions, explicitly. So, we
rewrite rem() to set an error code remerror indicating
whether the arguments meet the preconditions (in
conventional C style, 1 means they do and 0 means
they do not) and then have rem() return the remainder:

int remerror = 0; /* no error */
int rem(int x, int y)
{
 if (x <= 0 || y <= 0){
 remerror = 1;
 return(0);
 }
 while(x >= y)
 x –= y;
 return(x);
}

This allows the program to check for errors when the
routine is called.

The lessons from this are:

Lesson 7: Know the assumptions made by each

function. Check them whenever possible, and if
not possible (for example, when a program must
use a pointer as an argument) check the results.

Lesson 8: Check the results of system calls and library
functions to ensure they worked as expected.
Often, programming manuals either omit side
effects or describe them ambiguously. Document
such instances in your program, so a reviewer will
know why any seemingly unnecessary checking is
present.

5.2. Applying the Lessons

We turn to the routine in login.c that makes
environment variables and their values available to the
user. This is called exporting environment variables.
As noted above, these variables are critical to the
correct functioning of the command interpreters and
many programs. The environment variables are stored
in an array of strings, and each has the form “name-
value”. The preconditions are as follows:

1. Do not export any environment variable with a

string length of over 1024 characters;
2. Do not export any environment variable

without a value (note the value may be empty,
so this means that there is no “=” sign); and

3. Do not export any environment variable named
in the noexport list.

There is one postcondition:

1. The environment variable is placed in the list
of environment variables to be made available
to the user.

The following simple function is called for each
environment variable to be exported, and it places them
in the environment:

static int exportv1(const char *s)
{
 p = strchr(s, ‘=’);
 *p = ‘\0’;
 (void) setenv(s, p + 1, 1);
 *p = ‘=’;
 return(1);
}

But there is no checking of preconditions. We add the
following code to do that:

static int export(const char *s)
{
 char *p;
 const char **pp;
 size_t n;
 /* check precondition 1 */
 if (strlen(s) > 1024) return(0);
 /* handle precondition 2 */
 if (strchr(s, ‘=’) == NULL)
 return(0);
 /* handle precondition 3 */
 for (pp =- noexport; *pp != NULL; pp++){
 n = strlen(*pp);
 if (s[n] == ‘=’ && strncmp(s, *pp, n) == 0)

 return(0);
 /* now the original code */
 p = strchr(s, ‘=’);
 *p = ‘\0’;
 rv = setenv(s, p + 1, 1);
 *p = ‘=’;
 /* check the postcondition */
 if (rv == -1) return(0);
 return(1);
}

In fact, this is almost exactly part of the login.c code
used in FreeBSD 8.0. Aside from differences that are
cosmetic (for example, p is assigned at the first strchr
call), the precondition checking code is the same.
Interestingly, the postcondition check is omitted; in
case of error, no recovery is attempted and the error is
ignored. A better approach would be to force the use of
a preset environment, or at least log the failure for
future investigation.3

This leads to the following questions:

Question 6: Does the function have a well-defined
goal? In the above function, the goal was to make
the environment variable available to the user. The
function setenv does that.

Question 7: Are assumptions checked? In this case, the
assumptions occur in two places. The first is in the
entry to the routine, because there are three
preconditions the argument to the function must
meet. The second is that the postcondition is met.
The above code checks it; as noted, the original
FreeBSD code does not.

Question 8: Is all security-relevant code checked? The
checking does indeed add overhead, but if
properly modularized the security relevant parts of
the program are typically called infrequently
(because most of the computations will be done
after the checking), so the overhead is typically
negligible. Also, while the checking may seem
unnecessary once a program is thoroughly
debugged, it will become invaluable should the
program ever be altered or moved to a different
system or environment.

6. Conclusion

While formal methods have been used with
spectacular success in restrictive environments and on
small, limited, or specialized programs and systems
[3,6], they are not yet practical for the average
programmer nor do they fit within the budgets of most
software development environments. Verifying

3 Whether this is inconsequential, a feature, or a bug is left to
the reader to determine.

implementations is seen as too complex and time-
consuming, and indeed if high assurance is not a
priority, formal specification, design, and
implementation validation is seen as consuming too
much time and resources. The specialized training and
software required is another drawback.

The assumption inherent in this approach is that the
correct use of formal methods improves assurance;
therefore, the use of this method will also improve
assurance (although, as noted above, not so much as
formal method would). Of course, just as formal
methods can be applied poorly, and thus not provide
assurance (or, worse, mislead the analyst into believing
that the software is of higher assurance than is
appropriate), this method also can be misleading or
inadequate if poorly applied. In other words, assurance
methods that are applied poorly or incorrectly do not
work as well as those applied completely and correctly.

The thesis of this paper is that the philosophy and
concepts of formal methods can be integrated into the
vast majority of programming that goes on, for all
levels of programmers. The evidence of correctness is
by no means as strong as when formal methods, or
other high assurance methods, are applied—but that
the evidence of correctness is much stronger than when
the usual ad hoc methods are used.

Indeed, analyzing how formal methods work leads
to approaches that are useful for any kind of
programming. They increase awareness in
programmers by suggesting what to look for, where in
the code to check, and how to design and implement
programs. Thus, even when formal methods cannot be
used in their full glory, the philosophy and underlying
concepts and ideas should be.

Changing the programming culture to one that
produces more secure code is essential if we want to be
able to protect our digital assets. Historically, much of
the content discussed in this paper is taught once in
beginning programming classes, and then glossed over

in later classes. We can begin to change the culture by
increasing the emphasis on these methods the academic
arena throughout the curriculum, as well as in industry
during all phases of the software development process.
This increased emphasis will help to improve the
safety and security of the resulting software products.

7. References

[1] P. G. Neumann, L. Robinson, K. N. Levitt, R. S. Boyer,

and A. R. Saxena, “A Provably Secure Operating
Systems: The System, Its Applications, and Proofs,”
Technical Report CSL-116, Computer Science
Laboratory, SRI International, Menlo Park, CA (May
1980).

[2] P. G. Neumann and R. J. Feiertag, “PSOS Revisited,”
Proceedings of the 19th Annual Computer Security
Applications Conference pp. 208–216 (2003).

[3] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D.
Cockl, P. Derrin, D. Elkaduwe, K. Engelhardt, R.
Kolanski, M. Norrish, T. Sewell, H. Tuch, and S.
Winwood, “seL4: Formal Verification of an Operating-
System Kernel,” Communications of the ACM 53(6) pp.
107–115 (June 2010).

[4] G. Weinberg, The Psychology of Computer
Programming; Silver Anniversary Edition, Dorset
House, New York, NY (1998).

[5] D. E. Bell and L. LaPadula, “Secure Computer System:
Unified Exposition and Multics Interpretation,”
Technical Report ESD-TR-75-306, ESD/AFSC,
Hanscom AFB, Bedford, MA (1975).

[6] J. Pan and K. N. Levitt, “A Formal Specification of the
IEEE Floating-Point Standard with Application to the
Verification of Floating-Point Coprocessors,”
Proceedings of the 24th Asilomar Conference on
Signals, Systems and Computers pp. 505–510 (Nov.
1990).

[7] M. Bishop, Computer Security: Art and Science,
Addison-Wesley Professional, Boston, MA (2003).

