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Abstract

It is still not possible to predict whether a given molecule will have a perceived odor, or what 

olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction 

Prediction Challenge. Using a large olfactory psychophysical dataset, teams developed machine 

learning algorithms to predict sensory attributes of molecules based on their chemoinformatic 

features. The resulting models accurately predicted odor intensity and pleasantness, and also 

successfully predicted eight among 19 rated semantic descriptors (“garlic”, “fish”, “sweet”, 

“fruit,” “burnt”, “spices”, “flower”, “sour”). Regularized linear models performed nearly as well 

as random-forest-based ones, with a predictive accuracy that closely approaches a key theoretical 

limit. These models help to predict the perceptual qualities of virtually any molecule with high 

accuracy and also reverse-engineer the smell of a molecule.

In vision and hearing, the wavelength of light and frequency of sound are highly predictive 

of color and tone. In contrast, it is not currently possible to predict the smell of a molecule 

from its chemical structure (1, 2). This stimulus-percept problem has been difficult to solve 

in olfaction because odors do not vary continuously in stimulus space, and the size and 

dimensionality of olfactory perceptual space is unknown (1, 3, 4). Some molecules with very 

similar chemical structures can be discriminated by humans (5, 6), and molecules with very 

different structures sometimes produce nearly identical percepts (2). Computational efforts 

developed models to relate chemical structure to odor percept (2, 7–11), but many relied on 

psychophysical data from a single 30-year-old study that used odorants with limited 

structural and perceptual diversity (12, 13).

Twenty-two teams were given a large, unpublished psychophysical dataset collected by 

Keller and Vosshall from 49 individuals who profiled 476 structurally and perceptually 

diverse molecules (14) (Fig. 1a). We supplied 4884 physicochemical features of each of the 

molecules smelled by the subjects, including atom types, functional groups, and topological 

and geometrical properties that were computed using Dragon chemoinformatic software 

(version 6) (Fig. 1b).

Using a baseline linear model developed for the challenge and inspired by previous efforts to 

model perceptual responses of humans (8, 11), we divided the perceptual data into three sets. 

Challenge participants were provided with a training set of perceptual data from 338 

molecules that they used to build models (Fig. 1c). The organizers used perceptual data from 

an additional 69 molecules to build a leaderboard to rank performance of participants during 

the competition. Towards the end of the challenge, the organizers released perceptual data 

from the 69 leaderboard molecules so that participants could get feedback on their model, 
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and enable refinement with a larger training+leaderboard data set. The remaining 69 

molecules were kept as a hidden test set available only to challenge organizers to evaluate 

the performance of the final models (Fig. 1c). Participants developed models to predict the 

perceived intensity, pleasantness, and usage of 19 semantic descriptors for each of the 49 

individuals and for the mean and standard deviation across the population of these 

individuals (Fig. 1d–e).

We first examined the structure of the psychophysical data using the inverse of the 

covariance matrix (15) calculated across all molecules as a proxy for connection strength 

between each of the 21 perceptual attributes (Fig. 1f and Fig. S1). This yielded a number of 

strong positive interactions including those between “garlic” and “fish”, “musky” and 

“sweaty”, “sweet” and “bakery” and “fruit”, “acid” and “urinous”, and a negative interaction 

between pleasantness and “decayed” (Fig. 1f and Fig. S1a). The perception of intensity had 

the lowest connectivity to the other 20 attributes. To understand whether a given individual 

used the full rating scale or a restricted range, we examined subject-level variance across the 

ratings for all molecules (Fig. 1g). Applying hierarchical clustering on Euclidean distances 

for the variance of attribute ratings across all the molecules in the dataset, we distinguished 

three clusters: subjects that responded with high-variance for all 21 attributes (left cluster in 

green), subjects with high-variance for four attributes (intensity, pleasantness, “chemical”, 

“sweet”) and either low variance (middle cluster in blue) or intermediate variance (right 

cluster in red) for the remaining 17 attributes (Fig. 1g).

We assessed the performance of models submitted to the DREAM challenge by computing 

for each attribute the correlation between the predictions of the 69 hidden test molecules and 

the actual data. We then calculated a Z-score by subtracting the average correlations and 

scaling by the standard deviation of a distribution based on a randomization of the test set 

molecule identities. Of the 18 teams who submitted models to predict individual perception, 

Team GuanLab (author Y.G) was the best performer with a Z-score of 34.18 (Fig. 1h and 

Data File S1). Team IKW Allstars (author R.C.G.) was the best performer of 19 teams to 

submit models to predict population perception, with a Z-score of 8.87 (Fig. 1h and Data 

File S1). The aggregation of all participant models gave Z-scores of 34.02 (individual) and 

9.17 (population) (Fig. 1h), and a post-challenge community phase where initial models and 

additional molecular features were shared across teams gave even better models with Z-

scores of 36.45 (individual) and 9.92 (population) (Fig. 1h).

Predictions of the models for intensity were highly correlated with the observed data for 

both individuals (r = 0.56, t-test p < 10−228) and the population (r = 0.78, p < 10−9) (Fig. 1i, 

j). Pleasantness was also well predicted for individuals (r = 0.41, p < 10−123) and the 

population (r = 0.71, p <10−8) (Fig. 1i, j). The 19 semantic descriptors were more difficult to 

predict, but the best models performed respectably (individual: r = 0.21, p < 10−33; 

population: r = 0.55, p < 10−5) (Fig. 1i, j). Previously described models to predict 

pleasantness (8, 10) performed less well on this dataset than our best model (Fig. 1j). To our 

knowledge there are no existing models to predict the 19 semantic descriptors.

Random-forest (Fig. 2a and Data File S1) and regularized linear models (Fig. 2b and Data 

File S1) out-performed other common predictive model types for the prediction of individual 
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and population perception (Fig. 2, Fig. S2, and Data File S1). Although the quality of the 

best-performing model varied greatly across attributes, it was exceptionally high in some 

cases (Fig. 2c), and always considerably higher than chance (dotted line in Fig. 1i), while 

tracking the observed perceptual values (Fig. S2 for population prediction). In contrast to 

most previous studies that attempted to predict olfactory perception, these results all reflect 

predictions of a hidden test set, avoiding the pitfall of inflated correlations due to over-fitting 

of the experimental data.

The accuracy of predictions of individual perception for the best-performing model was 

highly variable (Fig. 2c), but the correlation of six of the attributes was above 0.3 (Fig. 2d; 

white circles). The best-predicted individual showed a correlation above 0.5 for 16 of 21 

attributes (Fig. 2d). We asked whether the usage of the rating scale (Fig. 1g) could be related 

to the predictability of each individual. Overall we observed that individuals using a narrow 

range of attribute ratings, measured across all molecules for a given attribute, were more 

difficult to predict (Fig. 2e–f, derived from the variance in Fig. 1g). The relationship 

between range and prediction accuracy did not hold for intensity and pleasantness (Fig. 2e–

f).

We next compared the results of predicting individual and population perception. The seven 

best predicted attributes overall (intensity, “garlic”, pleasantness, “sweet”, “fruit”, “spices”, 

“burnt”) were the same for both individuals and the population (Fig. 2d and Fig. 3a except 

“fish”). Similarly, the seven attributes that were the most difficult to predict (“acid”, “cold”, 

“warm”, “wood”, “urinous”, “chemical”, “musky”) were the same for both individual and 

population predictions (Fig. 2d and Fig. 3a), and except for a low correlation for “warm”, 

these attributes are anti-correlated or un-correlated to the “familiarity” attribute (14). This 

suggests some bias in the predictability of more familiar attributes, perhaps due to a better 

match to a well-defined reference molecule (14), and that in this categorization individual 

perceptions are similar across the population. For the population predictions, the first ten 

attributes have a correlation above 0.5 (Fig. 3a). The connectivity structure in Fig. 1f follows 

the model’s performance for the population (Fig. 3a). “Garlic”/“fish” (p < 10−4), “sweet”/

“fruit” (p < 10−3) and “musky”/“sweaty” (p < 10−3) are pairs with strong connectivity that 

were also similarly difficult to predict.

We analyzed the quality of model predictions for specific molecules in the population (Fig. 

3b). The correlation between predicted and observed attributes exceeded 0.9 (t-test p < 10−4) 

for 44 of 69 hidden test set molecules when we used aggregated models, and 28 of 69 when 

we averaged all models (Data File S1). The quality of predictions varied across molecules, 

but for every molecule the aggregated models exhibited higher correlations (Fig. 3b). The 

two best-predicted molecules were 3-methyl cyclohexanone followed by ethyl heptanoate. 

Conversely, the five molecules that were most difficult to predict were L-lysine and L-

cysteine, followed by ethyl formate, benzyl ether, and glycerol (Fig. 3b and Fig. S3).

To better understand how the models successfully predicted the different perceptual 

attributes, we first asked how many molecular features were needed to predict a given 

population attribute. While some attributes required hundreds of features to be optimally 

predicted (Fig. 3c–e), both the random-forest and linear models achieved prediction quality 
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of at least 80% of that optimum with far fewer features. By that measure, the algorithm to 

predict intensity was the most complex, requiring fifteen molecular features to reach the 

80% threshold (Fig. 3c). “Fish” was the simplest, requiring only one (Fig. 3d). Although 

Dragon features are highly correlated, these results are remarkable because even those 

attributes needing the most molecular features to predict required only a small fraction of the 

thousands of chemoinformatic features.

We asked what features are most important for predicting a given attribute (Fig. S4, Fig. S5, 

Fig. S6, and Data File S1). The Dragon software calculates a large number of molecular 

features, but is not exhaustive. In a post-challenge phase (Fig. 1h, triangles), four of the 

original teams attempted to improve their model predictions by using additional features. 

These included Morgan (16) and NSPDK (17), which encode features through the presence 

or absence of particular substructures in the molecule; experimentally derived partition 

coefficients from EPI Suite (18); and the common names of the molecules. We used cross-

validation on the whole dataset to compare the performance of the same models using 

different subsets of Dragon and these additional molecular features. Only Dragon features 

combined with Morgan features yielded decisively better results than Dragon features alone 

both for random-forest (Fig. 4a) and linear (Fig. 4b) models. We then examined how the 

random-forest model weighted each feature (Data File S1 for a similar analysis using the 

linear model). As observed previously, intensity was negatively correlated with molecular 

size, but was positively correlated with the presence of polar groups, such as phenol, enol, 

and carboxyl features (Fig. S6a) (1, 7). Predictions of intensity relied primarily on Dragon 

features.

There is already anecdotal evidence that some chemical features are associated with a 

sensory attribute. For example, sulfurous molecules are known to smell “garlic” or “burnt”, 

but no quantitative model exists to confirm this. Our model confirms that the presence of 

sulfur in the Dragon descriptors used by the model correlated positively with both “burnt” (r 

= 0.661 p < 10−62 Fig. S4a) and “garlic” (r = 0.413 p < 10−22 Data File S1). Pleasantness 

was predicted most accurately using a mix of both Dragon and Morgan/NSPDK features. 

For example, pleasantness correlated with both molecular size (r = .160 p < 10−3) (9), and 

similarity to paclitaxel (r = 0.184 p < 10−4) and citronellyl phenylacetate (r = 0.178 p < 

10−4)(Fig. S6b). “Bakery” predictions were driven by similarity to the molecule vanillin (r = 

0.45 p < 10−24)(Fig. S4b). Morgan features improved prediction in part by enabling a model 

to template-match target molecules against reference molecules for which the training set 

contains perceptual data. Thus, structural similarity to vanillin or ethyl vanillin predicts 

“bakery” without recourse to structural features.

Twenty of the molecules in the training set were rated twice (“test” and “retest”) by each 

individual, providing an estimate of within-individual variability for the same stimulus. This 

within-individual variability places an upper limit on the expected accuracy of the optimal 

predictive model. We calculated the test-retest correlation across individuals and molecules 

for each perceptual attribute. This value of the observed correlation provides an upper limit 

to any model, because no model prediction should produce a better correlation than data 

from an independent trial with an identical stimulus and individual. To examine the 

performance of our model compared to the theoretically best model, we calculated a 
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correlation coefficient between the prediction of a top-performing random-forest model and 

the test data. All attributes except “burnt” were statistically indistinguishable from the test-

retest correlation coefficients evaluated at the individual-level (Fig. 4c). The slope for the 

best linear fit of the test-retest and model-test correlation coefficients was 0.80 ± 0.02, with a 

slope of 1 expected for optimal performance (Fig. 4c). Similar results were obtained using 

model-retest correlation. Thus, given this dataset, performance of the model is close to that 

of the theoretically optimal model.

We evaluated the specificity of the predictions of the aggregated model by calculating how 

frequently the predicted sensory profile had a better correlation with the actual sensory 

profile of the target molecule than it did with the sensory profiles of any of the other 68 

molecules in the hidden test set (Fig. 4d–e). For 14 of 69 molecules, the highest correlation 

coincided with the actual sensory profile (p < 10−11). For an additional 20% it was second 

highest and 65% of the molecules ranked in the top ten predictions (Fig. 4f and Data File S1; 

AUC = 0.83). The specificity of the aggregated model shows that its predictions could be 

used to reverse-engineer a desired sensory profile using a combination of molecular features 

to synthesize a designed molecule.

Finally, to ensure that the performance of our model would extend to new subjects, we 

trained it on random subsets of 25 subjects from the DREAM dataset and consistently 

predicted the attribute ratings of the mean across the population of the 24 left out subjects 

(Fig. S7A). To test our model across new subjects and new molecules, we took advantage of 

a large unpublished dataset comprising 403 volunteers who rated the intensity and 

pleasantness of 47 molecules, of which only 32 overlapped with the stimuli used in the 

original study (Data File S1). Using a random forest model trained on the original 49 

DREAM challenge subjects and all the molecules, we are able to show that the model 

robustly predicts the average perception of all of these molecules across the population (Fig. 

S7B).

The DREAM Olfaction Prediction Challenge has yielded models that generated high-quality 

personalized perceptual predictions. This work significantly expands on previous modelling 

efforts (2, 3, 7–11) because it predicts not only pleasantness and intensity, but also 8 out of 

19 semantic descriptors of odor quality. The predictive models enable the reverseengineering 

of a desired perceptual profile to identify suitable molecules from vast databases of chemical 

structures and closely approach the theoretical limits of accuracy when accounting for 

within-individual variability. Although highly significant, there is still much room for 

improving in particular the individual predictions. While the current models can only be 

used to predict the 21 attributes, the same approach could be applied to a psychophysical 

dataset that measured any desired sensory attribute (e.g. “rose”, “sandalwood”, or “citrus”). 

How can the highly predictive models presented here be further improved? Recognizing the 

inherent limits of using semantic descriptors for odors (12–14), alternative perceptual data 

such as ratings of stimulus similarity will be important (11).

What do our results imply about how the brain encodes an olfactory percept? We speculate 

that for each molecular feature there must be some quantitative mapping, possibly one to 

many, between the magnitude of that feature and the spatiotemporal pattern and activation 
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magnitude of the associated olfactory receptor. If features rarely or never interact to produce 

perception, as suggested by the strong relative performance of linear models in this 

challenge, then these feature-specific patterns must sum linearly at the perceptual stage. 

Peripheral events in the olfactory sensory epithelium, including receptor binding and sensory 

neuron firing rates might have non-linearities, but the numerical representation of perceptual 

magnitude must be linear in these patterns. It is possible that stronger non-linearity will be 

discovered when odor mixtures or the temporal dynamics of odor perception are 

investigated. Many questions regarding human olfaction remain that may be successfully 

addressed by applying this method to future datasets that include more specific descriptors; 

more molecules that represent different olfactory percepts than those studied here; and 

subjects of different genetic, cultural, and geographic backgrounds.

Results of the DREAM Olfaction Prediction Challenge may accelerate efforts to understand 

basic mechanisms of ligand-receptor interactions, and to test predictive models of olfactory 

coding in both humans and animal models. Finally, these models have the potential to 

streamline the production and evaluation of new molecules by the flavor and fragrance 

industry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

Results of a crowdsourcing competition show that it is possible to accurately predict and 

reverse-engineer perceptual attribute values for individuals smelling pure molecules.
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Fig. 1. DREAM Olfaction Prediction Challenge
(A) Psychophysical data. (B) Chemoinformatic data. (C) DREAM challenge flowchart. (D) 

Individual and population challenges. (E) Hypothetical example of psychophysical profile of 

a stimulus. (F) Connection strength between 21 attributes for all 476 molecules. Width and 

color of the lines show the normalized strength of the edge. (G) Perceptual variance of 21 

attributes across 49 individuals for all 476 molecules at both concentrations sorted by 

Euclidean distance. Three clusters are indicated by green, blue, and red bars above the 

matrix. (H) Model Z-scores, best performers at left. (I–J) Correlations of individual (I) or 

population (J) perception prediction sorted by team rank. The dotted line represents the p < 

0.05 significance threshold with respect to random predictions. The performance of four 

equations for pleasantness prediction suggested by Zarzo (10) [from top to bottom: 

equations (10, 9, 11, 7, 12)] and of a linear model based on the first seven principal 

components inspired by Khan et al. (8) are shown.
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Fig. 2. Predictions of individual perception
(A) Example of a random-forest algorithm that utilizes a subset of molecules from the 

training set to match a semantic descriptor (e.g “garlic”) to a subset of molecular features. 

(B) Example of a regularized linear model. For each perceptual attribute yi a linear model 

utilizes molecular features xij weighted by βi to predict the psychophysical data of 69 hidden 

test set molecules, with sparsity enforced by the magnitude of λ. (C) Correlation values of 

best-performer model across 69 hidden test set molecules, sorted by Euclidean distance 

across 21 perceptual attributes and 49 individuals. (D) Correlation values for the average of 

all models (red dots, mean ± s.d.), best-performing model (white dots), and best-predicted 
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individual (black dots), sorted by the average of all models. (E) Prediction correlation of the 

best-performing random-forest model plotted against measured standard deviation of each 

subject’s perception across 69 hidden test set molecules for the four indicated attributes. 

Each dot represents one of 49 individuals. (F) Correlation values between prediction 

correlation and measured standard deviation for 21 perceptual attributes across 49 

individuals, color coded as in E. The dotted line represents the p < 0.05 significance 

threshold obtained from shuffling individuals.
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Fig. 3. Predictions of population perception
(A), Average of correlation of population predictions. Error bars indicate standard deviations 

calculated across models. (B) Ranked prediction correlation for 69 hidden test set molecules 

produced by aggregated models (open black circles, standard deviation indicated with grey 

bars) and the average of all models (solid black dots, standard deviation indicated with black 

bars). (C–E) Prediction correlation with increasing number of Dragon features using 

random-forest (red) or linear (black) models. Attributes are ordered from top to bottom and 

left to right by the number of features required to obtain 80% of the maximum prediction 
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correlation using the random-forest model. Plotted are intensity and pleasantness (C), and 

attributes that required six or fewer (D) or more than six features (E). The combined training

+leaderboard set of 407 molecules was randomly partitioned 250 times to obtain error bars 

for both types of models.
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Fig. 4. Quality of predictions
(A–B) Community phase predictions for random-forest (A) and linear (B) models using both 

Morgan and Dragon features for population prediction. The training set was randomly 

partitioned 250 times to obtain error bars *p < 0.05, **p < 0.01, ***p < 0.001 corrected for 

multiple comparisons (FDR). (C) Comparison between correlation coefficients for model 

predictions and for test-retest for individual perceptual attributes using the aggregated 

predictions from linear and random-forest models. Error bars reflect standard error obtained 

from jackknife resampling of the retested molecules. Linear regression of the model-test 

correlation coefficients against the test-retest correlation coefficients yields a slope of 0.80 

± 0.02 and a correlation of r = 0.870 (black line) compared to a theoretically optimal model 

(perfect prediction given intra-individual variability, dashed red line). Only the model-test 

correlation coefficient for “burnt” (15) was statistically distinguishable from the 

corresponding test-retest coefficient (p < 0.05 with FDR correction). (D) Schematic for 

reverse-engineering a desired sensory profile from molecular features. The model was 
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presented with the experimental sensory profile of a molecule (spider plot, left) and tasked 

with searching through 69 hidden test set molecules (middle) to find the best match (right, 

model prediction in red). Spider plots represent perceptual data for all 21 attributes, with the 

lowest rating at the center and highest at the outside of the circle. (E) Example where the 

model selected a molecule with a sensory profile 7th closest to the target, butyric acid. (F) 

Population prediction quality for the 69 molecules in the hidden test set when all 19 models 

are aggregated. The overall area under the curve (AUC) for the prediction is 0.83, compared 

to 0.5 for a random model (grey dotted line) and 1.0 for a perfect model.
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