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Abstract

Nuclear level density and γ-ray strength function of 243Pu

by

Thibault Andre Laplace
Doctor of Philosophy in Engineering-Nuclear Engineering

University of California, Berkeley

Professor Jasmina Vujic, Chair

The level density and γ-ray strength function of 243Pu have been determined using the
Oslo method.
A 12 MeV deuteron beam from the University of Oslo cyclotron was used to populate
excited states in the quasi-continuum of 243Pu using the 242Pu(d, p) reaction. The dis-
tribution of primary γ-rays as function of the excitation energy has been extracted from
particle-γ coincidence data. Based on the Brink-Axel asumption that the primary γ-ray
spectrum is proportional to the product of the γ-ray transmission coefficient (which only
depends on the transition energy) times the level density at the excitation energy of the
final state. The γ-ray strength function is calculated from the γ-ray transmission coeffi-
cient assuming pure dipole radiation. Both, the level density and γ-ray strength function,
are normalized using available experimental data from libraries.
The level density of 243Pu follows closely the constant-temperature level density formula.
An enhancement of the γ-ray strength function is seen at low energies that is similar
to that previously measured in other actinides. This structure is interpreted as the M1
scissors resonance. Its centroid ω = 2.42(5) MeV and its total strength B = 10.1(15) µ2

N

are in excellent agreement with sum-rule estimates. The measured level density and γ-
ray strength function were then used to calculate the 242Pu(n, γ) cross section within the
Hauser-Feshbach formalism.
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Chapter 1

Introduction

All of the four fundamental interactions, except gravity, play an important role in the
binding and decay of the complex nuclear many-body quantum system that are nuclei.
The interactions between nucleons are the residual part of the more fundamental inter-
actions between quarks inside the nucleons. Since the forces between nucleons are not
fully understood, nuclear properties cannot be derived theoretically from the first princi-
ple. Furthermore, even if the interactions between nucleons could be described exactly,
calculating nuclear properties would still be limited by the gigantic size of the problem.
Therefore, the understanding and calculation of nuclear properties relies on approxima-
tions and models.

Two of the most important models in nuclear physics are the liquid drop model and the
nuclear shell model. The liquid drop model was historically the first model attempting
to describe several bulk properties of nuclei. In it, the nucleus is treated as a drop of
incompressible quantum liquid. This model leads to the famous semi-empirical mass
formula [1] giving the total binding energy of a nucleus as a function of its number of
protons and neutrons. Deformations, rotations, vibrations and fission have also been
described using the liquid drop model. In contrast, the nuclear shell model [2] describes
the nucleus in terms of nucleons moving independently within a mean field. This model
was motivated by the presence of shell gaps for neutrons and protons similar to electron
shell gaps in atomic physics. Single particle energies can be calculated using the Hartree-
Fock formalism and used as input parameters in more advanced calculations incorporating
some residual interaction.

Ab initio calculations based on the shell model can reproduce some observables such
as energy levels with given spin and parity, and transition strengths and branching ratios
between low excitation energy levels. However, with increasing excitation energy, the
spacing between levels decreases. When the density of levels is so high that it is impractical
or impossible to resolve them, the nucleus can be described with statistical quantities. Two
important statistical quantities are the level density (number of energy levels per unit of
excitation energy) and the γ-ray strength function (average reduced γ-decay probability
independent of the number of final states).
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The nuclear physics group at the University of Oslo has developed a method to si-
multaneously extract the level density and γ-ray strength function below the neutron
separation energy from first generation γ-ray spectra [3, 4, 5]. Recent work has provided
experimental evidence of the breaking of nucleon Cooper pairs [6]. The M1 scissors res-
onance, corresponding to a collective excitation mode, has been observed in rare-earth
nuclei and actinides [7, 8]. The level density and γ-ray strength function are important
input parameters for modeling nuclear reactions that proceed via the formation of an
intermediate "compound nucleus" whose decay is independent of the way in which it was
formed.

In the compound nucleus model, reaction cross sections can be calculated using the
Hauser-Feshbach formalism [9]. Reliable reaction cross sections are of importance for as-
trophysical models of stellar evolution and improved predictions of actinide abundances
on Earth [10], advanced nuclear energy systems [11, 12], and the US DOE stockpile stew-
ardship program.

Plutonium and uranium are perhaps the most practically important elements for nu-
clear applications since they can produce energy via fission reactions. Furthermore, since
there are many long-lived isotopes of each of these elements, they offer the possibility
of measuring nuclear statistical properties for several isotopes over a large mass region.
The 238−242,244Pu isotopes have long enough half lives (from 14 years for 241Pu to 80
million years for 244Pu) that targets can be fabricated. Because they are neutron rich
isotopes, neutron skin oscillation should be strong and pygmy dipole resonances should
be observed [13]. Those nuclei are also well deformed and the scissors resonance should
be observed as in other actinides. Two measurements were performed at the Oslo cy-
clotron, populating the 240Pu and 243Pu compound nuclei in the quasi-continuum. This
thesis reports the measurement of the nuclear level density and γ-ray strength function of
243Pu, and uses this data to calculate the neutron capture cross section of 242Pu via the
Hauser-Feshbach formalism.

Chapter 2 gives a historic overview of the major models and experimental techniques
concerning level densities and γ-ray strength functions. The Hauser-Feshbach formalism
is briefly introduced. Chapter 3 presents the experimental setup, the detection systems
and their calibration, and the extraction of the distribution of measured γ rays as function
of the excitation energy of 243Pu, which will be used as the starting point for the Oslo
method detailed in Chapter 4. Chapter 5 contains experimental results. The measured
level density and γ-ray strength function of 243Pu are then used as input of Hauser-
Feshbach calculations in order to predict the 242Pu(n, γ) cross section. Finally, conclusions
are drawn in Chapter 6.
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Chapter 2

Theory and models

2.1 Nuclear energy level density
At low excitation energies, nuclear levels display a discrete spectrum of low-lying

energy levels. With increasing excitation energy, the average spacing between the levels
is progressively reduced. Above a few MeV of excitation energy, the spacing between the
levels becomes so small that it is difficult to experimentally resolve different levels. At
higher energies, the amount of levels per unit energy becomes so high that states are
overlapping. This does not depend on the experimental resolution, but on the fact that
the average level spacing becomes comparable with the γ width of the level, which is in
turn inversely proportional to the level lifetime. Thus, it is necessary to use a continuous
description using the nuclear level density, representing the number of levels per unit of
excitation energy. This nuclear level density is a fundamental quantity in nuclear physics,
and is a crucial ingredient in nuclear reaction theories, allowing prediction of nuclear
reactions rates and cross sections used to predict astrophysical processes and to model
processes in nuclear reactors.

Several different models have been developed to describe the level density. Semi-
empirical models have been developed by analogy with other areas of physics such as
thermodynamics. Microscopic models attempt to calculate the level density solving the
many-body Schrödinger equation. In the following sections, the most common models
are introduced and the experimental methods to extract level densities. In addition, a
comparison between the major databases of level densities is given.

2.1.1 Semi-empirical models
Foundation

In his 1936 seminal paper [14], Hans Bethe presented a first theoretical calculation of
the level density by comparing the excited states of a nucleus to a Fermi gas, and the
logarithm of the level density to the gas entropy. The derived level density, ρint, is given
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as a function of the excitation energy of the nucleus, Ex:

ρint(Ex) =
√
π

12
exp(2

√
aEx)

a
1
4E

5
4
x

, (2.1)

where a is the level density parameter. A possible empirical formulation of this parameter
is given by:

a = π2

4
A

ξ0
, (2.2)

where A is the mass number of the considered nucleus and ξ0 is the average Fermi energy
for protons and neutrons. The derived level density can be compared to experimental
resonance spacing data. The latter gives information about the average energy difference
between two consecutive levels at a given excitation energy. Available resonance spacing
data are generally for s- or p-wave neutrons, which will only populate levels with total
angular momentum equal to ±1/2 or ±3/2 ~ with respect to the total angular momentum
of the target. Thus, the angular momentum dependence of the level density needs to be
known to compare it to resonance data. Based on Bethe’s initial expression, and more
experimental data available, Ericson [15] proposed a spin dependent formulation of the
level density, known as the Fermi-gas Model:

ρFG
int (Ex, J) = 2J + 1

2
√

2πσ3
exp

(
−(J + 1/2)2

2σ2

) √
π

12
exp(2

√
aU)

a
1
4U

5
4

, (2.3)

where J is the total angular momentum of the nucleus, σ is the spin cut-off parameter,
which represents the width of the angular momentum distribution, and U is a shifted
energy given by:

U = Ex −∆, (2.4)
where ∆ is an empirical parameter included to take into account the pairing energy.
Summing over all spins yields the total level density:

ρFG
int (Ex) = 1√

2πσ

√
π

12
exp(2

√
aU)

a
1
4U

5
4

. (2.5)

Thus, the total level density is determined by the three parameters: a, σ, and ∆.
Various parametrizations of a, σ, and ∆ are available. Moreover, the level density

parameter can be taken as either independent or dependent of the excitation energy.
W.Dilg et al. [16] and more recently T. von Egidy and D.Bucurescu [17, 18, 19] compiled
values of the three parameters for over 300 nuclei.

The constant temperature model

In 1965, A.Gilbert and A.G.W.Cameron [20] proposed a new formulation of the level
density, based on experimental data. Experimental evidences show that the cumulative
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number of levels in a nucleus, N(Ex), follows an exponential law:

N(Ex) = exp
(
Ex − E0

T

)
, (2.6)

where the energy shift E0 and a parameter T are to be adjusted to the experimental
discrete levels. The level density ρCT

int is obtained by taking the derivative of the cumulative
number of levels with respect to the excitation energy:

ρCT
int (Ex) = dN(Ex)

dEx
= 1
T

exp
(
Ex − E0

T

)
. (2.7)

Considering the nucleus as a microcanonical ensemble, the nuclear entropy of the system,
S(Ex), is proportional to the logarithm of the level density:

S(Ex) = kB ln
(
ρCT

int (Ex)
ρ0

)
, (2.8)

where kB is the Boltzmann and ρ0 is a constant set to ensure the third law of thermody-
namics (i.e S(T → 0) = S0 with S0 being a constant). The nuclear temperature, Tnuc, is
defined as:

Tnuc =
[
∂S(Ex)
∂Ex

]−1

= kBT. (2.9)

The constant T is equivalent to the nuclear temperature, but expressed in units of energy.
The constant temperature model is, in general, only used to describe the level density

up to a given excitation energy EM . Above this excitation energy, the Fermi-gas model is
used. The level densities obtained from the Fermi-gas model and the constant temperature
model, as well as their derivatives, have to be equal at the matching excitation energy
EM .

The physical picture for this model is that the nucleus undergoes a first order phase
transition over the constant temperature energy range, and then has an increasing tem-
perature with excitation energy for the Fermi-gas part of the level density. The first order
phase transition has been traditionally associated with the transition from superfluid to
non-superfluid behavior arising from the breaking of the nuclear pairing interaction.

The generalized superfluid model

Similarly to the constant temperature model, the generalized superfluid model [21, 22]
distinguishes two energy regions. At high energies, the level density is described by the
Fermi-gas model. At low energy, the concepts of pairing and shell effects are included in
the model. Similarly to the Fermi-gas model, the level density is written as:

ρGSM
int (Ex) = 1√

2πσ
eS√
D
, (2.10)
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where S is the entropy andD is the determinant related to the saddle-point approximation
from the partition function method [23]. All the parameters are defined at the critical
energy Uc: 

Uc = acT
2
c + Econd

Sc = 2acTc
Dc = 144

π
a3

cT
5
c

σ2
c = 6

π2A
1/3ac 〈m2〉Tc

, (2.11)

where ac is the critical level density parameter, Tc is the critical temperature, Econd is
the condensation energy, characterizing the decrease of the ground state energy of the
superfluid phase relative to the Fermi gas phase, and 〈m2〉 the average square of the
angular momentum projection of the single particle states near the surface. Using the
superfluid equation of state [22], it is possible to calculate the level density below the
critical energy.

All of the models above are phenomenological rather than microscopic. Several pa-
rameters are introduced in order to reproduce experimental data. Those parameters are
dependent on the mass number, shell effects and sometimes the excitation energy, which
makes it difficult to calculate them and even harder to predict them for poorly known
nuclei.

Collective enhancement

The phenomenological models described so far do not explicitly take into account
collective effects. The total nuclear level density, ρtot, can be expressed as:

ρtot(Ex, J) = ρint(Ex,J)Krot(Ex)Kvib(Ex), (2.12)

where Krot and Kvib are respectively the rotational and vibrational enhancement of the
level density, which can be considered as additional degrees of freedom "built" on the
intrinsic single-particle wavefunctions for high-lying nuclear states.

The rotational enhancement can be estimated by [24]:

Krot(Ex) =
{

1 for spherical nuclei,
Θ⊥T for deformed nuclei, (2.13)

where Θ⊥ is the projection of the nuclear moment of inertia perpendicular to the symmetry
axis given by:

Θ⊥ = 2
5
m0R

2A

(~c)2 , (2.14)

where m0 is the neutron mass given in energy units, R is the nuclear radius and A
the total number of nucleons. Θ⊥ is expressed in units of inverse energy. T is the
nuclear temperature expressed in units of energy, and depends on the excitation energy.
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A damping parameter can be added in order to have the rotational enhancement vanish
for high excitation energies, where the breakdown in axially-symmetric deformation due
to the mixture of levels from many harmonic oscillator shells makes these enhancements
vanish.

A liquid drop model estimation of the vibrational enhancement is given by [24]:

Kvib(Ex) ≈ exp(0.0555A 2
3T

4
3 ). (2.15)

Different calculations of the vibrational enhancement based on a more microscopic ap-
proach are detailed in [25].

Vibrational and particularly rotational enhancement can have a large effect on the
level density (Kvib ∼ 3, Krot ∼ 10− 100 [26]).

2.1.2 Microscopic models
Although a reasonable agreement can be achieved between experimental data and

semi-empirical or phenomenological models such as the ones mentioned above, they are
based on various simplifying approximations. Shell effects, pairing, collective enhancement
and parity distribution are either not taken into account or included in some parameters
calculated to reproduce experimental data. Microscopic models have been developed in
order to be able to describe fine structure of the level density as well as being able to
predict it for nuclei far from the valley of stability where little to no experimental data
are available.

Most microscopic theories treat the nucleus as a quantum mechanical many-body
system, in which the velocities of nucleons are small enough to neglect relativistic effects.
Also, interactions between nucleons are generally limited to a two-body interaction. A
full description is given by the many-body Schrödinger equation:

H |Ψ〉 =
− A∑

i=1

~2

2m∆i +
A∑
i<j

v(i, j)
 |Ψ(1, ..., A)〉 = E |Ψ(1, ..., A)〉 , (2.16)

where H is the Hamiltonian of the system with energy E and described by the wave-
function |Ψ〉, m is the nucleon mass, ∆i is the Laplacian for the nucleon i, and v(i, j) is
the two-body interaction between the nucleon i and the nucleon j. This Hamiltonian can
be written in the second quantization formalism using single particle energies εk:

H =
∑
k

εka
†
kak + 1

2
∑

k,l,m,n

Vklmna
†
ka
†
lanam, (2.17)

where a†k and ak are, respectively, creator and annihilation operators of a particle in
the state k. Vklmn is the matrix element of the two-body interaction. Most current
microscopic models neglect the three-body interaction or any higher order contribution
due to the high increase in complexity and computing power, thereby allowing the form
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given in Eq. (2.17) to be considered valid. Successful ab initio calculations including the
three-body interactions have been performed for nuclei with masses up to A = 132 [27]
focusing on reproducing the ground state energy and the first few excited states.

Combinatorial calculation

Combinatorial calculations of the level density have been first suggested by Hillman
and Grover[28]. The nuclear level density can be calculated as a function of the excitation
energy, the spin and parity by means of a combinatorial counting of excited many particle-
hole states. No assumptions on the spin and parity distributions are made. Recently, with
the increase in computational power, the method has gained interest and collective effects
are taken into account [29, 30, 31]. Comparison of the calculations made by Uhrenholt et
al. [30] to experimentally measured data using the Oslo method [32, 33, 34, 35] are shown
in Figure 2.1. Relatively good agreement is found in the rare-earth region. The work of
Goriely et al. [31] contains calculated level densities using a combinatorial approach for
more than 8500 nuclei. The model predicts s- and p-wave neutron resonance spacings
with a degree of accuracy comparable to the best semi-empirical models.

Shell model monte carlo

The exact diagonalization of the Shell-Model Hamiltonian given in Equation(2.17) can,
in principle, give an accurate and consistent description of a wide range of nuclear prop-
erties (assuming correct single-particle energies and two-body matrix elements). Compu-
tation capabilities limit this method to light nuclei or heavier nuclei that can be treated
as an inert core plus a few valence nucleons. The Shell Model Monte Carlo method could
potentially consider all correlation effects exactly within the limits of the two-body in-
teraction even though exact diagonalization of the Hamiltonian is not performed. In the
Shell Model Monte Carlo method, the path integral of the imaginary-time evolution op-
erator, exp(−βH), where β ∈ R, is evaluated by a Monte Carlo calculation. This method
does not result in the complete solution of the problem (i.e. all eigenvalues and eigen-
states of the Hamiltonian of the system), but expectation values corresponding to some
observables in the grand canonical ensemble can be determined [36, 37]. This method
currently works for even-even nuclei only, with masses ranging from 50 < A < 70 and in
the rare-earth region (A ∼ 150). A good agreement with experimentally measured data
is achieved [38].

2.1.3 Experimental methods to extract the level density
Spectroscopy

At low energy, discrete levels can be extracted by coincident γ-ray spectroscopy fol-
lowing various types of nuclear reactions. They can be grouped in energy bins to give an
equivalent of the level density. Depending on the nuclear reaction used, not all spins might
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Figure 2.1: Comparison of the combinatorial calculation of the level density as a function
of the excitation energy by Uhrenholt et al. [30] (black solid lines) to experimentally
extracted level density using the Oslo method [32, 33, 34, 35] (red dots). Figure taken
from Ref. [30].
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be excited. However, the level scheme is often complete up to the excitation energies of
Ex ≈ 2∆ where the first pair of nucleons breaks up (Cooper pairs). Adopted levels can
be found in databases such as the Evaluated Nuclear Structure Data File (ENSDF)1.

Resonance spacing

The level density at the neutron or proton separation energy can be calculated using
resonance spacing data [25]. For example, considering the following reaction:

n+ A
ZX → A+1

ZY
∗, (2.18)

the average neutron resonance spacing of the nucleus X for s-wave neutrons, D0, can be
written as function of the level density for the nucleus Y at the neutron separation energy
Sn:

1
D0

= 1
2 [ρY (Sn, JY = IX + 1/2) + ρY (Sn, JY = IX − 1/2)] , (2.19)

where JY is the angular momentum of the product nucleus Y , and IX is the total ground
state angular momentum of the target nucleus X. This simple formulation assumes equal
contribution from both parities to the level density at the neutron separation energy.
Knowing the resonance spacing parameter, the previous relation can be used to calculate
the level density. For a target nucleus with total ground state angular momentum IX = 0,
the equation simplifies to:

2
D0

= ρY (Sn, JY = 1/2). (2.20)

Ericson fluctuations

For excitation energies where the average level width, Γ, is larger than the average
spacing between levels, D, the Ericson fluctuation method can be used [39]. The method
relies on carefully measuring the variance of the total neutron cross section, σT, which
allow calculation of the level density of the compound nucleus, ρCN , using the following
relation:

varσT ≡ < (σT− < σT >)2 >

= 2
[

πχ2
P

(2IP+1)(2It+1)

]2
1

πΓρCN

∑
J

(2J+1)2

H(J)
∑
i(T Jnl)2, (2.21)

where χP is the reduced wavelength of the projectile, IP is the spin of the projectile, It
is the spin of the target, Γ is the average level width, H(J) is the fraction of compound
nucleus levels with spin J , and T Jnl is the transmission coefficient for a neutron of or-
bital angular momentum l coupled to the compound nuclear spin J . To extract the level
density of the compound nucleus, ρCN, one needs to experimentally measure the variance

1http://www.nndc.bnl.gov/ensdf/
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of the total cross-section, varσT, along with the average level width Γ. Then, the neu-
tron transmission coefficients are calculated using the Hauser-Feshbach formalism, and
the H(J) parameter is obtained using a calculated spin distribution (generally using a
calculated spin-cutoff parameter). This method provides a mean to determine the level
density at high excitation energies where other techniques are difficult or impossible to
use [40].

The particle evaporation method

This method consists of measuring the particle evaporation spectra following a nuclear
reaction [41]. In the Hauser-Feshbach formalism, the particle evaporation spectra can
be calculated and their shape depend only on the nuclear temperature, which can be
derived from the level density, and the transmission coefficient of the outgoing particle.
The latter can be calculated using optical model potentials, which should be accurate
for nuclei with well measured elastic scattering and total cross sections. The accuracy
of this method depends on the ability to accurately calculate transmission coefficients
and meeting the underlying assumptions of the Hauser-Feshbach theory, including the
formation of a compound nucleus. Pre-equilibrium emission and direct reaction could
result in distorted evaporation spectra [41]. Using this method, the level density can
be calculated for energies above the neutron separation energy but well below the two
neutron emission threshold (in order to avoid non-equilibrium emission).

The Oslo method

The Oslo method allows simultaneous extraction of the level density and the γ-ray
strength function[5]. Coincidence measurement of particles and γ rays following a nuclear
reaction are used to construct particle-γ-ray matrices. The matrix of primary γ rays
(which consists of the spectrum of the first γ ray emitted after creation of the compound
nucleus as a function of the excitation energy of the compound nucleus) is extracted [3].
The Brink-Axel hypothesis [42, 43], which states that the γ ray emission probability
depends only on the energy of the transition and not on the initial or final excitation energy
of the transition, is assumed. The functional form of the level density and transmission
coefficient can be extracted from the primary γ-ray matrix. To obtain absolute values,
normalization using discrete levels at low energy and neutron or proton resonance data
at the binding energy is necessary. The accessible range of energies for the extraction of
the level density using the Oslo method is limited to energies below the neutron binding
energy.

2.1.4 Level density in databases
Level densities and γ-ray strength functions are key ingredients to calculate cross sec-

tions using the Hauser-Feshbach formalism. The Evaluated Nuclear Data File (ENDF/B-
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VII.1)[11] library adopts the cross sections given by the Japanese Evaluated Nuclear Data
Library (JENDL-4.0) [44] library for most minor actinides. Parameters used for the level
density are unfortunately not available when the evaluation is not based on JENDL-4.0.
The JENDL-4.0 [44] contains cross sections which are calculated using the Comprehen-
sive COde for Nuclear data Evaluation (CCONE) code [45]. Talys-based Evaluated Nu-
clear Data Library (TENDL-2014) [46] uses TALYS [26]. In the codes underlying the
JENDL-4.0 and TENDL-2014 evaluations, the level density is described by the constant
temperature model [20] at low energies and the Fermi gas model [15] above a matching
energy, but with different parameters. Figure 2.2(a) shows the level density for 241Pu and
242Pu used by JENDL-4.0 and TENDL-2014. The difference is striking for 241Pu. The
slope given by the constant temperature is different at low energy (TJENDL = 0.37 MeV,
TTENDL = 0.41 MeV) and the matching excitation energy marking the transition from
the constant temperature model to the Fermi gas model is different (EJENDL

M = 3.6MeV,
ETENDL
M = 5.1 MeV). Those differences are highlighted in Figure 2.2(b) where the ratio

between the level density used by JENDL-4.0 and the one used by TENDL-2014 is plotted
for 239−243Pu. The level density plotted for the isotope with A nucleons is the one used for
the calculation of the neutron capture cross section in the (A − 1) nucleons isotope. Of
the nuclei shown in this figure, only the level density of 240Pu shows reasonable agreement
between the databases and is used for the 239Pu(n, γ) cross section calculation. The level
density used in TENDL-2014 shows discontinuity at the matching excitation energy for
several isotopes which explains the discontinuities in the ratios from Figure 2.2b.

In the TENDL-2014 input files, the default TALYS parameters of the level density are
modified. Figure 2.3 shows the ratio between the level density used by JENDL-4.0 to the
default level density in TALYS-1.6 [26]. The default level density model in TALYS is the
constant temperature model, as used in TENDL-2014 and JENDL-4.0. The agreement
is better but there are still discrepancies of up to a factor of two for excitation energies
below the neutron separation energy.

JENDL-4.0 level densities used for a given isotope depend on the reaction of inter-
est. Figure 2.4 shows the level density used for 239Pu (a) and 241Pu (b), for neutron
induced reactions on different Pu isotopes. For example, the level density of 239Pu is used
for the calculation of cross sections for the following reactions: 238Pu(n, γ), 239Pu(n, n′),
240Pu(n, 2n), 241Pu(n, 3n) and 242Pu(n, 4n). The level density of a given isotope is an
intrinsic quantity and should not depend on the considered reaction. While the disagree-
ment is small for 239Pu, it is above 25% for 241Pu. The changes in slopes are due to
different matching excitation energies. Reliable level densities are required to predict
accurate cross sections where experimental data are not available.

2.2 γ-ray emission
When observing γ decay between discrete levels, one can infer branching ratios and

the level scheme of a given nucleus. This task becomes practically quite difficult when
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looking at levels in the quasi-continuum, making a description using continuous function
referred to as statistical quantities relevant. In this section, γ-ray transition probabilities
are introduced, followed by collective excitations. This leads to the γ-ray strength func-
tion, describing the average electromagnetic transition properties of the nucleus. Some
of the most common macroscopic models used to describe the γ-ray strength function
are introduced, as well as an overview of relevant microscopic calculations. Finally, some
experimental methods used to extract the γ-ray strength function are presented as well
as their implementation in various databases.

2.2.1 γ-ray transition probabilities
Nuclear reactions may leave the nucleus in an excited state. One possible way to

de-excite to a more stable form is the emission of a γ ray of energy Eγ. Electromagnetic
transitions can be characterized by their type X (i.e electric E, or magnetic M) and their
multipolarity L. The magnetic substates are denoted by the variable µ. The transition
probability between an initial state i and a final state f , TXLµi→f , is given by Fermi’s
golden rule of time-dependent perturbation theory in the long wavelength limit (for Eγ >
20 MeV) [47, 48]:

TXLµi→f = 2
ε0~

L+ 1
L [(2L+ 1)!!]2

(
Eγ
~c

)2L+1 ∣∣∣〈εfJfmf

∣∣∣H(XLµ)
∣∣∣ εiJimi

〉∣∣∣2 , (2.22)

where ε0 is the vacuum permittivity, εk, Jk and mk are, respectively, the energy, spin and
magnetic substate of the state k, and H(XLµ) is the nuclear operator associated with the
multipole radiation field XLµ. Summing over the magnetic substates, using the Wigner-
Eckart theorem [48], the multipole transition rate becomes:

TXLi→f = 2
ε0~

L+ 1
L [(2L+ 1)!!]2

(
Eγ
~c

)2L+1
BXL
i→f , (2.23)

where the reduced transition probability B(XL)
i→f is given by:

B
(XL)
i→f = 1

2Ji + 1
∣∣∣〈εfJf ∥∥∥H(XL)

∥∥∥ εiJi〉∣∣∣2 . (2.24)

One can distinguish between the reduced transition probabilities for excitation (εf > εi),
B

(XL)
i→f ↑, and de-excitation (εf < εi), B(XL)

i→f ↓. Considering two states a and b with εa < εb,
the two reduced transition probabilities are proportional by a spin ratio between the two
states, according to the principle of detailed balance:

B
(XL)
a→b ↑=

2Jb + 1
2Ja + 1B

(XL)
b→a ↓ . (2.25)
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2.2.2 Selection rules
The decomposition of an electromagnetic interaction in terms of multipoles allows

to characterize γ-ray transitions and simplifies the calculation of the transition matrix
elements. Selections rules constrain the possible transitions between two states. The
electric and magnetic operators are given by [48]:

H(ELµ) ∝ rLYLµ, H(MLµ) ∝
~l
~s

}
· ~∇

(
rLYLµ

)
, (2.26)

where YLµ are the spherical harmonics with parity (−1)L, rLis the position scalar with
parity (+1), ~l and ~s are respectively the orbital and spin angular momentum vectors,
with parity (+1) as axial vectors, and finally the parity of the vector operator ~∇ is
(−1). Therefore, the electric L-pole has a parity πEL = (−1)L and the magnetic L-pole
πML = (−1)L+1. Considering a transition from an initial state with parity πi to a final
state with parity πf , the following parity conservation rule has to be followed:

πiπf =
{

(−1)L for EL
(−1)L+1 forML.

(2.27)

For a transition between states of angular momenta Ji and Jf , the total angular
momentum of the system needs to be conserved, introducing the second selection rule:

|Ji − Jf | ≤ L ≤ Ji + Jf . (2.28)

The only exception is the transition 0 → 0 which is forbidden because the spin of a
photon is 1. M0 transitions are not possible because the magnetic operator described in
Equation 2.26 vanishes for L = 0. The electric operator is constant for L = 0, and there-
fore cannot connect two different nuclear states. There is no E0 single γ-ray transition but
E0 transitions are possible via internal conversion. In that case, the nucleus de-excites
by the ejection of an electron from the atomic nucleus. The double γ decay, which is a
second order process of quantum electrodynamics, can connect two J = 0 states. It has
been observed in 16O, 40Ca and 90Zr with branching ratio on the order of 10−4 [49, 50, 51].

Depending on the spins of the initial and final states, several multipolarities might be
allowed. For example, a 2+ → 1+ transition allows M1, E2, and M3 multipolarities. In
this particular example,M3 will most likely be without significance because the transition
probability decreases drastically with increasing multipolarity. E2 andM1 transitions are
in general competing and mixing has to be taken into account.

2.2.3 Collective excitations
Giant resonances

Giant resonances are collective excitations involving all nucleons. The Giant Electric
Dipole Resonance (GEDR) was first discovered by Baldwin and Klaiber in 1947 [52] by
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Figure 2.5: Macroscopic picture of the different giant resonances for L=0 (monopole),
L=1 (dipole) and L=2 (quadrupole) modes as well as their electric (∆S = 0) or magnetic
(∆S = 1) character and their isoscalar (∆T = 0) or isovector (∆T = 1) character.
Schematic taken from Ref. [54].

measuring the photo-fission cross section in actinides. A resonance-like behavior of the
cross section is seen and is a general feature of all nuclei in the Eγ = 10 − 20 MeV en-
ergy region. Giant resonances can be classified by their multipolarity and their character
(isoscalar or isovector). In the macroscopic picture, the isoscalar character (∆T = 0)
corresponds to protons and neutrons oscillating in phase, while the isovector charac-
ter (∆T = 1) corresponds to neutrons oscillating against the protons. Giant magnetic
resonances differ from the electric ones by having a spin flip (∆S = 1). Figure 2.5
shows schematics for the different possible giant resonances. The strongest resonance
is the isovector giant electric dipole resonance (IVGEDR) whose macroscopic picture
corresponds to neutrons oscillating against protons. A comprehensive review on giant
resonances, experimental methods as well as theoretical description can be found in
Refs. [53, 54].

Pygmy dipole resonances

The macroscopic picture of the IVGEDR is the oscillations of all protons against all
neutrons. Inspired from the discovery of halo nuclei, Suzuki et al. [55] described the
pygmy dipole resonance in neutron (proton) rich nuclei as a core nucleus and the excess
neutrons (protons) vibrating against the core. The energy centroid of the resonance and
its magnitude are smaller than the GDR since the restoring force will depend on the
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number of excess neutrons (protons). A review on the pygmy dipole resonance can be
found in Ref. [13].

Scissors resonances

The scissors resonance is a M1 resonance expected at low energy in deformed nu-
clei. It has been measured in rare-earth nuclei [7], and more recently in actinides [8, 56].
This resonance is generally viewed as the neutrons oscillating against the protons in a
scissors-like motion (see Figure 2.6). However, a recent review concluded that the scissors
resonance is mostly due to single particle transition and is only weakly collective [57].
Recent microscopic calculations suggest that the scissors resonance is both due to the
orbital scissors mode (counter rotation of protons against neutrons) and the spin scissors
mode (oscillations of spin-up nucleons against spin-down nucleons) [58].

neutronsprotons

Figure 2.6: Macroscopic picture of the scissors resonance. In deformed nuclei, the proton
core oscillates against the neutron core in a scissor-like motion.

Resonance strength calculation using the sum rule approach

One possible way to theoretically calculate the strength of a resonance is to use the sum
rule approach detailed in Ref. [59]. Considering an operator F exciting the nucleus from
its ground state |0〉 to an excited state |k〉 of the nuclear Hamiltonian H. The strength
function, S(ω), characterizing the action of the operator F on the nuclear ground state is
given by:

S(ω) =
∑
k

|〈k |F | 0〉|2 δ(ω − ωk), (2.29)

where ωk is the excitation energy of the eigenstates |k〉. In this form, the calculation of
the strength requires also the calculation of the eigenstates |k〉. In the sum rule approach,
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the completeness relation is used to calculate the moment of order p, mp of the strength
function,

mp =
ˆ ∞

0
S(ω)ωpdω, (2.30)

as mean values of the ground state. If the operator F fulfills the relation 〈0 |F | 0〉 = 0,
for any p ≥ 0, the moments fulfill the relation:

mp =
〈
0
∣∣∣F †(H − E0)pF

∣∣∣ 0〉 , (2.31)

where E0 is the ground state energy. In the presence of resonant phenomena, a few
moments are able to characterize the strength function [59]. The isovector rotational
motion associated with the M1 scissors resonance can be defined by the operator [60]:

M1,SR ∝
∑
i

T xi τ̂ 3
i , (2.32)

where the angular momentum operator perpendicular to the symmetry axis is given by
T x, and the isospin projection is denoted by τ̂ 3. Because M1,SR is an Hermitian operator,
the moments for p = 1 and p = −1 can be written as the following commutation relations:

m1 =
〈
0
∣∣∣M†

1,SR(H − E0)1M1,SR

∣∣∣ 0〉 = 1
2 〈0 |[M1,SR, [H,M1,SR]]| 0〉 , (2.33)

m−1 =
〈
0
∣∣∣M†

1,SR(H − E0)−1M1,SR

∣∣∣ 0〉 = 1
2
〈
0
∣∣∣[[X†, H] , X]∣∣∣ 0〉 , (2.34)

where the operator X is solution of the equation:

[H,X] = M1,SR. (2.35)

Using the Breit-Wigner distribution to describe the energy dependence of the resonance
cross section, σ(ω), the strength of the resonance, S(ω), is given by:

σ(ω) = AωS(ω) = σ0ω
2Γ2

(ω2 − ω2
c )2 + ω2Γ2 , (2.36)

where A is a constant, σ0 is the cross section maximum at the resonance centroid energy
ωc, and Γ is the width of the resonance. With the assumption that ωc � Γ, the m1 and
m−1 moments become:

m1 =
ˆ ∞

0
S(ω)ωdω = σ0Γπ

A , (2.37)

m−1 =
ˆ ∞

0

S(ω)
ω

dω = σ0Γπ
Aω2

c
, (2.38)

and the integrated strength is:
ˆ ∞

0
S(ω)dω = σ0Γπ

Aωc
. (2.39)
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Combining Equations (2.37,2.38), the resonance centroid and strength can be extracted:

ωc =
√
m1

m−1
, (2.40)

S(ω) = √m1m−1. (2.41)
Theoretical calculation of Equations (2.33,2.34) for the scissors resonance, using a Skyrme-
type Hamiltonian allows to express the moments in terms of observables [59, 60]:

m1 = 3
20πr

2
0A

5/3δ2ω2
DmN(gp − gn)2ξ

[
µ2
NMeV

]
, (2.42)

m−1 = 3
16πΘIV (gp − gn)2

[
µ2
NMeV −1

]
, (2.43)

where r0 is the nuclear radius, A is the mass number, δ is the ground state deformation
parameter, ωD is the centroid of the IVGDR, mN is the nucleon mass, gp and gn are the
orbital gyromagnetic ratios of the deformed neutrons and protons valence bodies, ΘIV is
the moment of inertia from the isovector motion, and ξ represents the contribution from
the IVGQR of centroid ωQ:

ξ =
ω2
Q

ω2
Q + ω2

D

. (2.44)

2.2.4 γ-ray strength function
The γ-ray strength function, fXL, (also called radiative strength function or photon

strength function in the literature), was first introduced by Bartholomew [61] to describe
neutron capture data. The de-excitation process depends on the average width of the
states 〈ΓXL〉 and the resonance spacing parameter DXL for a type X photon of multipo-
larity L and energy Eγ:

fXL = 〈ΓXL〉
E2L+1
γ DXL

. (2.45)

While initially considered to describe γ decay following neutron capture, two γ-ray strength
functions can be considered, the “downward” strength function, ←−f , related to the emis-
sion of γ-rays by the nucleus during de-excitation, and the “upward” strength function,−→
f , related to the absorption of γ-rays by the nucleus. The excitation process depends on
the photo-absorption cross section 〈σXL(Eγ)〉 and is given by:

−−→
fXL = 1

(π~c)2(2L+ 1)
〈σXL〉
E2L+1
γ

. (2.46)

To calculate the competition between the γ-ray emission and other reaction channels
(such as particle emission, fission, etc...), transmission coefficients are used as input to
Hauser-Feshbach calculations. The γ-ray emission transmission coefficient, TXL(Eγ), for
a type X photon of multipolarity L and energy Eγ is given by:

TXL(Eγ) = 2π←−−fXL(Eγ)E2l+1
γ . (2.47)
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2.2.5 The generalized Brink-Axel hypothesis
In 1955, D.M.Brink suggested in his Ph.D thesis [42] that the cross section for pho-

toabsorption has the same transition energy dependence if the absorption happens on the
ground state or an excited state. In addition, P.Axel made the assumption that as long
as the dipole selection rule is fulfilled, there is no dependence on the spin value of the
initial and final state[43]. As a result of the Brink-Axel hypothesis, the upward and down-
ward strengths are equal: ←−−fXL(Eγ) = −−→fXL(Eγ). Despite the strong assumptions of Brink
and Axel, this hypothesis is frequently used to calculate E1 and M1 strength functions.
This hypothesis has also been used for β decay and electron capture to calculate Gamov-
Teller and Fermi transitions strength[62]. Some experimental and theoretical calculations
support the Brink-Axel hypothesis [63, 64]. Other experimental work and theoretical cal-
culations reveal deviation from the hypothesis [65, 66]. Under which conditions is the
Brink-Axel hypothesis valid remains an open question.

2.2.6 γ-ray strength function models
Several parametrizations of the γ-ray strength function are available in the literature.

Only the most used models are given here, describing the collective excitation modes
with Lorentzian-like functions. The E1 strength function is the main focus of the follow-
ing. While the following models only describe single isolated resonances, the total γ-ray
strength function is generally described as a sum of multiple resonances with different
centroids and total strength.

The Standard Lorentzian model (SLO)

This is the model implementing the Brink-Axel hypothesis and is widely used to
describe the GEDR strength. The strength is only dependent of the γ-ray energy, Eγ:

fSLOE1 (Eγ) = 1
(π~c)2

σ0EγΓ2
0

(E2
γ − E2

0)2 + E2
γΓ2

0
, (2.48)

where σ0, Γ0 and E0 are, respectively, the cross section, width and energy centroid of
the resonance. Parameters derived from experimental data are available for 121 nuclides
in RIPL-3 [25]. This mathematical function describes properly photo-nuclear data for
A > 50 [67, 68]. However, γ-ray emission is underestimated for Eγ < 2 MeV [25] and
experimental data around the neutron separation energy, such as neutron capture cross
sections and the average radiative widths of heavy nuclei are overestimated[69, 70, 71, 72].

Another formulation adding an energy dependence of the resonance width has been
suggested [73]:

fE1(Eγ) = 1
(π~c)2

σ0EγΓ0ΓK(Eγ, T )
(E2

γ − E2
0)2 + E2

γΓK(Eγ, T )2 , (2.49)
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where ΓK is the energy dependent resonance width. Based on the Fermi liquid theory,
it is dependent on both the γ-ray energy and the temperature of the state on which the
giant resonance is built on [71]:

ΓK(Eγ, T ) = Γ0
E2
γ + 4π2T 2

E2
0

, (2.50)

where T is the nuclear temperature of the final state. This formulation slightly breaks
the Brink-Axel hypothesis because of the dependence on the nuclear temperature. Good
agreement is also found with proton or heavy-ion capture experiments [71].

The Generalized Lorentzian model (GLO)

The generalized Lorentzian model was first proposed by Kopecky and Chrien [74], and
consists of a Lorentzian term with energy and temperature dependent width and a term
corresponding to the temperature dependent width for Eγ = 0:

fGLOE1 = σ0Γ0

(π~c)2

[
EγΓK(Eγ, T )

(E2
γ − E2

0)2 + E2
γΓK(Eγ, T )2 + 0.7ΓK(Eγ = 0, T )

E3
0

]
, (2.51)

where ΓK is given by Equation (2.50). It is the model of choice for spherical nuclei. This
model provides a good description of average resonance capture data (ARC), neutron
capture cross sections and γ-ray production [71].

The Enhanced Generalized Lorentzian model (EGLO)

Both the SLO and GLO models fail to reproduce γ-ray strength function data over
the whole mass region. The more flexible EGLO model was introduced to reproduce
experimental data for strongly deformed nuclei, the energy and temperature dependent
width parametrization is modified:

ΓEGLOK (Eγ, T ) =
[
k0 + (1− k0)Eγ − ε0

E0 − ε0

]
ΓK(Eγ, T ), (2.52)

where the enhancement parameter k0 is used to reproduce experimental data at the refer-
ence energy ε0. For k0 = 1, ΓEGLOK (Eγ, T ) = ΓK(Eγ, T ). A possible parametrization given
in Ref. [75] uses ε0 = 4.5 MeV and:

k0 =
 1 for A < 148

1 + 0.09(A− 148)2 exp [−0.18(A− 148)] for A > 148
. (2.53)
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The Modified Lorentzian model (MLO)

All the models above are usually based on parametrizations of experimental data. The
shapes of the temperature dependent models (all except SLO) are in contradiction with
microscopic theoretical studies [76, 77, 78]. The modified Lorentzian model has been sug-
gested to take into account theoretical studies, and is based on general relations between
the γ-ray strength function and the imaginary part of the nuclear response function to
the electromagnetic field [25]. It is given by:

fMLO
E1 (Eγ) = Λ(Eγ, Tf )σ0Γ0

(π~c)2
EγΓK(Eγ, Tf )

(E2
γ − E2

0)2 + E2
γΓK(Eγ, Tf )2 , (2.54)

where Tf is the nuclear temperature of the final state, and a scaling factor Λ(Eγ, Tf ) is
introduced, given by:

Λ(Eγ, Tf ) = 1
1− exp(1− Eγ/Tf )

. (2.55)

This scaling factor determines the enhancement of the γ-ray strength function as a func-
tion of the nuclear temperature. Different semi-empirical expression are available for the
energy and temperature dependent width [25].

Other macroscopic models

More macroscopic models and variations of the presented ones exists. Some of them
can be found in Ref. [25]. Most consist in different formulation of the scaling factor, Λ, or
the γ-ray energy and temperature dependent width, ΓK . In TALYS [26], E1 resonances
are modeled by default using the GLO model while all other resonance types and multi-
polarities are modeled using SLO. SLO and MLO parameters for a large number of nuclei
are available in the RIPL-3 database [25].

In Figure 2.7 is shown a comparison of the SLO, GLO, EGLO and MLO models for
239Pu and measured (γ, x) data from Gurevich [79]. Parameters for the SLO model are
taken from Ref.[79]. The same parameters are taken for the GLO and EGLO calculations.
Parameters for the MLO model are taken from RIPL-3 [25]. Because 239Pu is a deformed
nucleus, the GEDR is split in two components characterizing the proton-neutron oscilla-
tions along the two symmetry axis of the deformed nucleus. The agreement between the
different models is good close the centroid energies of the GEDR. The deviation between
the GLO, EGLO and MLO models is relatively small for a large energy range, even though
there is significant deviation of the MLO model at low energies. The SLO model shows
significant deviation from the other models and measured data for Eγ < 10 MeV.

Microscopic calculations

Despite the good fit of the GEDR and possible empirical determination of the strength,
centroid and width of the GEDR, a microscopic calculation of the γ-ray strength function
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Figure 2.7: Comparison of the SLO, GLO, EGLO and MLO models to experimental data
from Ref. [79] for 239Pu.

is necessary in order to understand the underlying nuclear structure, predict strength
function for exotic nuclei and possible low-energy enhancements.

Large scale QRPA calculations of the E1 strength were performed by Goriely and
Khan for over 8000 nuclei with 8 6 Z 6 110 [80]. The results are in good agreement
with available experimental data, in particular at low energies. Theoretical predictions
are available at http://www.astro.ulb.ac.be. Figure2.8 shows the calculated E1 strengths
for several Sn isotopes. It can be observed that the shape of the γ-ray strength function
becomes increasingly more complicated with the number of excess neutrons and more
low-energy strength is present. Small variations in the low energy region of the γ-ray
strength function can have a big impact on the neutron capture cross sections calculated
using the Hauser-Feshbach formalism.

Recently, theoretical calculations focused on the low lying strength and its origins.
In Ref. [81], realistic potentials derived from nucleon-nucleon forces are used to gen-
erate Hartree-Fock-Bogoliubov basis of states. The dipole response is calculated us-
ing the Quasi-particle Tamm-Dancoff and Quasi-particle Random-Phase Approximation
approaches [48]. The description of the dipole response is improved but discrepancies
between the theory and the experiments subsist, which is currently filled by adding a
phenomenological density dependent repulsive term to the potential.

http://www.astro.ulb.ac.be/pmwiki/IAA/NuclearData
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Figure 2.8: Microscopic calculation of E1 γ-ray strength function for several Sn isotopes
by Goriely and Khan [80].

2.2.7 Experimental methods to extract the γ-ray strength func-
tion

Photonuclear reactions

The photoexcitation strength function, −→f , can be extracted by measuring the average
photon absorption cross section using Eq. (2.46). For energies higher than a few hundred
keV above the neutron separation energy, the particle emission mechanism dominates
over the γ-ray emission mechanism [69]. The absorption cross section is then assumed
to be equal to the sum of the different particle emission cross sections and the fission
cross section for fissionable nuclei. Measurements using broad bremsstrahlung beam are
possible but require a differential analysis to extract the average particle emission cross
section [82].

Quasi-monoenergetic photon beams with 100-200keV energy spread are achieved using
in-flight positron annihilation [67]. The photons are created by electron-positron annihi-
lation occurring when a beam of fast positrons interacts with a thin low-Z target. The
energy spread of the photon beam depends on the thickness of the low-Z target and the
momentum spread of the positron beam. This technique enables measurements of the
strength function across the nuclear chart in the GEDR energy region. RIPL-3 recom-
mended parameters for the GEDR are given according to those measurements.
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Below the neutron separation energy and the fission threshold, the total absorption
cross section, 〈σγ,abs〉, is given by:

〈σγ,abs〉 = 〈σγ,γ〉+
∑
γ′
〈σγ,γ′〉 , (2.56)

where 〈σγ,γ〉 is the photoelastic scattering cross section and the summation of pho-
toinelastic cross sections ∑

γ′
〈σγ,γ′〉. Direct measurement of the inelastic contribution is

a hard task and is generally replaced by an estimate of the ground state branching ra-
tio. The average elastic scattering cross section can be measured using a bremsstrahlung
monochromator [83, 84]. Rough values of the strength function can be extracted by esti-
mating the inelastic cross section.

Nuclear resonance fluorescence measurements use high energy resolution detector, like
High-purity germanium detectors, to measure discrete states populated by photoexci-
tation. If the interrogating photon beam is linearly polarized, angular distribution of
emitted photons will allow extraction of the spin and parity of the measured levels. In
practice, only γ rays from the de-excitation from the populated state to the first excited
state and ground state are seen. Thus a common approximation is to only consider the
branching ratio to the ground state and to the first excited state. Photoexcitation is very
selective and only one to two units of angular momentum are transferred. Weak transi-
tions cannot be seen and this method is not reliable to extract the total γ-ray strength
function but gives a lower limit.

Radiative capture

In Ref.[85], the primary γ rays following neutron capture in 156Gd have been measured
for two neutron beam energies (2 keV and 24 keV). Relative intensities of the γ rays are
extracted and are used to calculate the γ-ray strength function. The 2keV beam was used
to extract the strength function while the 24keV beam was used to resolve E1 transitions
from M1 and E2 transitions.

Improvement of this method leads to the Two Step Cascade method[72]. The γ rays are
measured in coincidence following neutron capture. The method consists of looking for two
coincident γ rays whose energies sum up to the energy difference between the capturing
state and a low-lying state. The obtained γ spectra are fitted with trial γ-ray strength
functions. The level density is assumed and therefore remains a large source of systematic
uncertainty. This method allows to separate between the different transition types and
multipolarities. This method is often not able to give a unique solution. Recently, the
method has been applied to proton capture data [86]. The use of protons offers better
precision on the Two Step Cascade intensities and because proton capture undergoes less
Porter-Thomas fluctuations, therefore the range of possible γ-ray strength functions is
reduced.
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The Oslo method

In the Oslo method, particle-γ coincidences are recorded. Presently, measurements
have been realized detecting protons, deuterons, tritons, helions, and α particles. The
primary γ-ray spectra are extracted as a function of the excitation energy [3, 4]. The
level density and the γ-ray strength function are simultaneously extracted below the
particle emission threshold [5]. This method does provide the shape of the γ-ray strength
function, but not its absolute values. It is normalized to the average total radiative
neutron resonance width. Very good agreement has been observed with the extrapolation
of the γ-ray strength function extracted from photonuclear reactions.

Recently, the Oslo method has been adapted to unstable neutron rich isotopes. The
nuclei are populated by β decay with a high Q-value. This method is called β-Oslo in the
literature [87].

2.2.8 γ-ray strength function in databases
As for the level density, JENDL-4.0[44] databases use the CCONE code[45] to calculate

cross sections, and TENDL-2014 [46] uses the TALYS code [26]. In the two databases,
the EGLO model is used to describe the E1 strength, and the SLO model is used to
describe the M1 and E2 strengths. Parameters used by JENDL-4.0 are given in the
interpreted ENDF file. TALYS uses by default the EGLO parameters from RIPL-3 [25].
When no parameters are available in RIPL-3, empirical formulas are used to calculate the
EGLO parameters. Empirical formulas are also used to calculate SLO parameters for the
M1 and E2 resonances. Figure 2.9 shows the γ-ray strength functions used to calculate
neutron capture cross section by JENDL-4.0, and TENDL2014 for 238Pu(n, γ)239Pu (a)
and 242Pu(n, γ)243Pu (b). For 239Pu, the E1 and M1 contributions of the JENDL-4.0
strength function are shown along with measured photonuclear data [79]. JENDL-4.0 is
reproducing the measured data. The discrepancy between JENDL-4.0, and TENDL2014
is rather significant at low energies. In TENDL2014, the γ-ray strength function shown
is multiplied by a constant factor in order to reproduced the average radiative capture
width. Results of QRPA calculations of the E1 strength by Goriely do not reproduce well
GEDR measured data. For 243Pu, no GEDR parameters are available in RIPL-3. The
GEDR strength is calculated using an empirical formula for spherical nuclei, therefore
only one Lorentzian is used to describe the GEDR.

2.3 The Hauser-Feshbach formalism
The Hauser-Feshbach formalism is based on the compound nucleus picture based on

Bohr’s independence hypothesis [88]. It states that the decay of the compound nucleus is
independent of its formation. The formalism was developed initially for neutron induced
reaction [89], but is applicable for all nuclear reactions forming a compound nucleus. The
idea is that because of the large number of states in the quasi-continuum and continuum
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Figure 2.9: (a) Comparison between the γ-ray strength function used by JENDL-4.0 (black
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by Goriely. (b) Comparison between the γ-ray strength function used by JENDL-4.0
(black line) and TENDL2014 (blue line) for 243Pu. Empirical calculation of the GEDR
resonance parameter is done for the TENDL2014 evaluation (for a spherical nucleus!)
since evaluated data are absent from RIPL-3.
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regions of the excitation energy, statistical averages over the resonances can be used
instead of treating each resonance separately. A quick demonstration of the Hauser-
Feshbach cross section is given here.

Applying Bohr’s independence hypothesis, if we consider a compound nucleus formed
via the entrance channel α which subsequently decays via the exit channel β, the reaction
cross section, σα,β, can be written as:

σα,β = σαPβ, (2.57)

where σα is the cross section for forming the compound nucleus though the entrance chan-
nel α and Pβ is the decay probability of the compound nucleus through the exit channel
β. Each reaction channel is characterized by the particles and the quantum numbers
involved. Considering all possible decay channels, the sum over all decay probabilities
has to be unity: ∑

β

Pβ = 1. (2.58)

Using time-reversal symmetry, we can write:

k2
ασα,β = k2

βσβ,α, (2.59)

where ki is the wave number for the entrance channel i. Combining Eq. (2.57) and
Eq. (2.59), we obtain:

k2
ασα
Pα

=
k2
βσβ

Pβ
. (2.60)

Because α and β are independent channels, both sides of Eq. (2.60) must be equal to a
channel independent constant Λ:

For all ι k2
ι σι
Pι

= Λ. (2.61)

Combining Eqs. (2.57), (2.58) and (2.61), we obtain the Hauser-Feshbach formula:

σα,β = k2
β

σασβ∑
ι k2

ι σι
, (2.62)

where the sum is carried over all possible exit channels.
The cross section for the scattering of a particle α on a potential barrier, σα, can be

decomposed in terms of partial waves of orbital angular momentum l:

σα = π

k2
α

∑
l

(2l + 1)T (l)
α = π

k2
α

Tα, (2.63)

where T (l)
α is the transmission coefficient of the lth partial wave for the channel α, and Tα

the transmission coefficient for the channel α summed over all spins. These coefficients
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give the probability of penetrating the potential barrier. Inserting Eq.(2.63) in Eq.(2.62),
we obtain:

σα,β = π

k2
α

TαTβ∑
ι Tι

. (2.64)

The given formula doesn’t take into account the total angular momentum J and parity
Π. The complete Hauser-Feshbach formula which conserves angular momentum and parity
is given by [90]:

σα,β(Ex) = π

k2
α

∑
J,Π

2J + 1
(2Jα + 1)(2Jβ + 1)

Tα(Ex, J,Π)Tβ(Ex, J,Π)∑
ι Tι(Ex, J,Π) , (2.65)

where Ex is the excitation energy of the compound nucleus.
The Hauser-Feshbach formalism, via Eq. (2.65), is a powerful tool to describe reaction

cross section if a compound nucleus is created. The main difficulty resides in the evaluation
of the transmission coefficients. Level densities are required to estimate the transmission
coefficient for the formation of the compound nucleus while γ-ray strength functions are
important for the description of the γ-ray emission channel. Measurement of those two
quantities for 243Pu are presented in this work. Finally, the optical model, describing
the interaction between the incident particle and a mean field potential representing the
nucleus, plays an important role in the cross section calculation. No parameters of the
optical model are extracted in this work.
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Chapter 3

The 242Pu experiment

This chapter presents the experimental setup used to measure the nuclear reaction
(d, pγ) on a thin 242Pu target. First are given details about the facility and the target
fabrication, followed by details on the detection systems used to detect the outgoing
protons, γ rays and fission products. Then, the calibration of the detectors is presented
as well as corrections for the leading edge discrimination used to trigger the electronic
acquisition chain. A gate on proton events as well as a time gate on γ rays coincident
with the protons are set to extract the distribution of measured γ rays as function of the
excitation energy of 243Pu, which will be used as the starting point for the Oslo method
presented in Chapter 4.

3.1 Introduction
The experiment was performed at the Oslo Cyclotron Laboratory (OCL) at the Uni-

versity of Oslo, Norway, in June 2014. The MC-35 Scanditronix cyclotron used was
installed in 1979 and has been operating since then, delivering pulsed light ion beams
(1H+, 2H+, 3He2+, 4He2+). A 242Pu target (≈ 0.4 mg/cm2), mounted on a 9Be backing
(1.8 mg/cm2), was bombarded with a ≈ 1 nA, 12 MeV deuteron beam.

Prior to electrodeposition, the Pu material was cleaned from decay products and other
impurities using an anion-exchange resin column procedure [91]. The purified product was
electroplated onto a thin Be foil (1.8 mg/cm2 thickness) from a small aliquot of dilute
nitric acid placed into a large volume of isopropanol. The resulting target was dried,
baked at 500 ◦C in a muffle furnace, then glued to the Aluminum target frame. Passive
spectroscopy was used to quantify radioactive impurities in the target. Table 3.1 gives
the number of atoms of 242Pu and impurities detected by the passive spectroscopy. The
number of 242Pu nuclei is at least four orders of magnitude greater than any other isotopes
detectable using passive spectroscopy.
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Table 3.1: Target composition obtained by passive spectroscopy.
Nuclide Number of atoms Uncertainty (%)

237U 2.20× 106 14.1
238Pu 3.52× 1013 9.5
241Pu 6.85× 1013 32.7
242Pu 1.53× 1018 2.7
241Am 1.49× 1011 6.5

3.2 Experimental setup
Figure 3.1, shows an illustration of the experimental setup. The 242Pu target is placed

in the beam using the target ladder at the center of the CACTUS array, which is used to
measure γ rays. The beam goes first through the Be backing and then through the 242Pu
layer. The silicon detector array SiRi is used to measure light outgoing particles (in our
case protons, deuterons and tritons), and the NIFF detector to detect fission products.
Both SiRi and NIFF are not drawn to scale.

Beam direction

Target

SiRi

NIFF

Figure 3.1: Detection setup. The NaI crystals (gray squares) are surrounded by a 3 mm
lateral lead shielding. Each detector is collimated with a 10 cm conical lead collimator
(black cones). The target is surrounded by the particle telescope array SiRi and the fission
fragment array NIFF (not to scale).
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3.2.1 The CACTUS array
The CACTUS array [92, 93], shown in Figure 3.2, is composed of 28 5” × 5” NaI

detectors mounted on a 25 cm radius spherical frame surrounding the target. The NaI
crystals are doped with Tl (NaI(Tl)). Two detectors were not used in order to make room
for the fission detector NIFF. The distance between the target and the face of the NaI
detectors is 22 cm. Each NaI detector is collimated with a 10 cm conical lead collimator.
A 3 mm lateral lead shielding is present around the crystals to reduce the probability of
having a given γ ray interact in more than one detector. X-rays are suppress with a 2mm
Cu plate positioned on the face of the detectors.

The total solid angle covered by the 26 collimated NaI scintillators is 16.4 % of 4π.
The total efficiency is 14.1(2)%, and the resolution is ≈ 7% Full Width at Half Maximum
(FWHM) at Eγ = 1.33 MeV.

The target is placed in a cylindrical tube, directly connected to the beam line, with a
diameter of 11.7cm and inner length of 48cm. This chamber is brought to vacuum (≈ 0.1
Pa) and also contains the SiRi and NIFF detectors.

Figure 3.2: The CACTUS detector array, taken from http://lynx.uio.no/siri.html.

3.2.2 The SiRi particle telescope system
The γ rays detected in the NaI detectors are measured in coincidence with charged

particle ejectiles. The Silicon Ring, SiRi [94], is composed of 64 [∆E − E] particle tele-
scopes. The front ∆E detectors are 130 µm thick and the back E detectors are 1550 µm
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thick. The array is shown in Figure 3.3. Each front detector ∆E is segmented into eight
segments, each one covering a two degree angle, from 125◦ to 141◦ relative to the beam
direction and at a distance of 5 cm from the target. Placing the particle detector at back-
wards angles from the beam direction drastically reduced the contribution from elastically
scattered deuterons. Another advantage is that a broader spin distribution is populated
in backward angles.

SiRi has been specifically designed to measure the outgoing particles observed in ex-
periments at the OCL. The detection energy range is 3.7 − 16.5 MeV for protons and
15.0 − 63.0 MeV for α particles. Proper deuteron detection is possible for particles with
energies between 4.9 and 22.3 MeV. The Full Width at Half Maximum (FWHM) for the
total energy deposited in both the ∆E (front) and E (back) detectors is approximately
100− 200 keV.

Figure 3.3: The SiRi particle telescope, picture taken from Ref. [94], Figure 3.

3.2.3 The NIFF array
The Nuclear Instrument for Fission Fragments (NIFF) array is used for the detection

of fission fragments [95]. It is composed of four low pressure gas-filled Parallel Plate
Avalanche Counters, (PPAC), and covers an estimated solid angle of 30 % of 4π and is
shown in Figure 3.4. The face of each counter is at 45◦ with respect to the beam axis.
The isobutane gas filling the detector gets polymerized by the avalanche process created
by the interaction of an incident heavy ion. A constant gas flow is needed to maintain
the detection efficiency. The detector’s purpose is to tag or veto fission events. Therefore,
it was designed to achieve high detection efficiency, fast time response (on the order of
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Figure 3.4: The NIFF fission fragment detector; taken from Ref. [95], Figure 2.

nanoseconds), durability, and sensitivity to only heavy ions (it should be insensitive to
αparticles or lighter ions, electrons and γ rays). Due to its design, there is no information
about the energy or the position of fission fragments interacting. The intrinsic efficiency
is above 90 %. The detection efficiency of one of the two fission fragment is 55(2) % [95].

3.2.4 Data acquisition
The signals from the 64 ∆E detectors from SiRi are sent to four 16-channel preampli-

fiers and one 16-channel preamplifier for the eight E detectors. The preamplified signals
are sent to Mesytec STM-16 modules that serves as spectroscopy amplifiers, timing filter
amplifiers and leading-edge discriminators. To start of the acquisition system it is possible
to select between the following different master trigger conditions:

• output of at least one E detector (logic OR for all E detector outputs)

• output of at least one ∆E detector

• coincidence between E and ∆E detector

Because of the use of leading-edge discriminators and not constant fraction discriminators
the signal rise times are different for different energy deposited. This is taken into account
and corrected in the offline analysis as presented in Section 3.3.4.

The stop signal is individual for each of the 26 NaI detector and the four PPACs.
A time gate is applied in the offline analysis to select γ-ray events coincident with the
detection of a particle by SiRi.



36

3.3 Data analysis
In this section, details on the calibration of the particle spectra obtained from SiRi

and γ-ray spectra obtained from CACTUS are given. Then, the timing and correction for
the leading edge triggering is presented. The energy deposited in SiRi is then converted
in the excitation energy left in 243Pu after the (d, p) reaction. The measured data is then
expressed as a matrix of the nucleus excitation energy versus the γ-ray spectra resulting
from the de-excitation, which is the starting point of the Oslo method.

3.3.1 Particle spectra
Bombardment of the 242Pu target with a deuteron beam opens several reaction chan-

nels. Calculation of the reaction Q value gives the threshold for the reaction to be en-
ergetically feasible. For a nuclear reaction X(a, b)Y , where a is the projectile impinging
on a target nucleus X, and Y is the residual nucleus after emission of the ejectile b, the
reaction Q value is given by:

Q =
[
m0
a +m0

X −m0
b −m0

Y

]
· c2, (3.1)

where m0
i is the rest mass of the nucleus/particle i and c is the speed of light in vacuum.

Table 3.2 gives the Q values for the (d, p) reaction on 242Pu and the major target contam-
inants as well as 27Al from which the target holder is made of. Nuclear masses are taken
from the NNDC database [96].

Table 3.2: Q values for the (d, p) reaction on 242Pu, and the major target contaminants
and the target holder.

Element 242Pu 16O 9Be 237U 238Pu 241Pu 241Am 27Al
Q (MeV) 2.809 1.919 4.586 3.930 3.422 4.085 3.313 5.501

Using the conservation of energy and momentum, we can predict the energy of the
proton that will be detected by the particle telescopes. The conservation of the total
energy for the reaction X(a, b)Y , on a stationary target X, is given by:

m0
Xc

2 +m0
ac

2 + Ta = m0
Y c

2 + TY +m0
bc

2 + Tb, (3.2)

where the m0’s are the rest masses and the T ’s are the kinetic energies. TX = 0 because
the target is stationary in the laboratory reference frame. By considering the plane defined
by the incident projectile and the outgoing ejectile, the linear momentum conservation
relation can be written as:

pa = pb cos θ + pY cosφ, (3.3)
0 = pb sin θ + pY sinφ, (3.4)
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where θ and φ are the angle as defined in Figure 3.5. The silicon detectors are positioned
at fixed angles θ, and therefore, it is possible to calculate the kinetic energy of the ejectile
that will be detected, Tb using Equations (3.2),(3.3) and (3.4).

pa

pb

pY

θ
φ

b

a
X

Y

Figure 3.5: Schematic illustration of the kinematics of the X(a, b)Y reaction.

The energy lost by the ejectile in the silicon [∆E − E] detectors can be calculated
using the Bethe-Bloch formula, giving the mean rate of energy loss per unit path length
of the heavy charged particle in solids [97]:

− dE

dx
= 4π
mec2

(
e2

4πε0

)2
ZρNAz

2

AMuβ2

[
ln
(

2mec
2β2

I

)
− ln

(
1− β2

)
− β2

]
, (3.5)

where me is the electron rest mass, c is the speed of light in vacuum, e is the electron
charge, ε0 is the vacuum permittivity, Z, A, and ρ are the atomic number, mass number
and density of the absorbing medium,Mu is the molar mass constant, z is the charge state
of the interacting particle, β is the special relativity factor of the charged particle and
I represents the average excitation and ionization potential of the absorbing medium.
For nonrelativistic charged particles, β → 0 and only the first term in the brackets is
significant. When comparing nonrelativistic charged particles, the dependence of the
energy loss outside of the logarithm is z2/β2 meaning that the charge state has a quadratic
influence on the energy loss. For ions with the same charge state, only β is influencing the
energy loss. At low kinetic energies Tion, β ≈ 2Tion/(m0c

2), where m0 is the rest mass of
the ion. The energy loss is then linearly dependent on the rest mass. As a rule of thumb,
at the same kinetic energy, a deuteron will lose twice as much energy as a proton, and an
α particle will lose sixteen times as much energy as a proton.

Each particle type will, therefore, lose a different amount of energy in the ∆E de-
tectors. The particle is then stopped in the E detector, losing all the energy left after
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interacting in the ∆E detector. Characteristic banana-shaped curves for each type of
particles are seen by plotting the energy deposited in the ∆E detector against the energy
deposited in the back detector E, therefore allowing particle identification, as seen in
Figure 3.6.

Predictions of the measured data using the SiRi array are made using the Qkinz1 soft-
ware developed at the University of Oslo. This software does the kinematic calculations,
including the mean energy loss for the particle going through the target. The output is a
calculated ∆E vs E spectrum for the SiRi detector. Figure3.6 shows the expected energy
lost in the front detector versus the back detector for protons (red), deuterons (green)
and tritons (grey) detected after interaction of the 12MeV deuteron beam with the 242Pu
target.

Figure 3.6: Qkinz calculation of the protons (red), deuterons (green) and tritons (grey)
detected in strip 0 of SiRi after interaction between a 12 MeV deuteron beam and our
242Pu target.

Figure 3.7 shows a measured ∆E vs E spectrum for one E detector and one ∆E strip
(θ ∈ [139◦; 141◦]). A total of 64 spectra are measured with the SiRi array. Horizontal
and vertical features are due to incomplete charge collection in, respectively, the back

1The software can be downloaded at https://github.com/oslocyclotronlab/Qkinz
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Figure 3.7: Measured ∆E − E spectrum, for one E detector and one ∆E strip (θ ∈
[139◦; 141◦]). The proton (p), deuteron (d), and triton (t) bananas are clearly distinguish-
able.

E detector or the front ∆E detector. Contamination peaks from Oxygen (labeled O1
and O2 for (d, p) to respectively the ground state and first excited state of 17O) and
Beryllium (labeled Be1 for (d, p) to the first excited state of 10Be which decays back to
the ground state via internal conversion only) can be seen in the proton banana. In
the 243Pu excitation energy range of interest for the Oslo method (below the neutron
separation energy), only O2 will produce γ rays and will need to be corrected for in the
particle-γ coincidence spectrum.

Despite the fact that the O and Be peaks have good statistics and are well isolated,
they are not used for energy calibration of the E and ∆E detectors. The proton energy
following a (d, p) reaction on those light nuclei has a higher angular dependence in order
to fulfill conservation of linear momentum. For a heavy nucleus like Pu, the effect is a
lot smaller. If the angles for the detector stripes are slightly off, or if the target is not
perfectly centered, the error on the energy calibration will be more important if light
nuclei are used. For comparison, with an angle of 2◦ between 2 stripes, the difference
in energy deposited in the back detector of the particle telescope is ≈ 5 keV for 242Pu
while it is 33, 45 and 69 keV for, respectively, 28Si, 16O and 9Be. Thus, to calibrate the
particle telescope in energy, Pu1 and Pu2 are chosen. Pu1 is the result of deuteron elastic
scattering on 242Pu.

A good Pu2 calibration point was more difficult to find since the (d, p) reaction to the
ground state of 243Pu is not seen in the ∆E vs E spectrum. Spectroscopic measurement
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of 243Pu has been realized using the 242Pu(d, p) reaction in Ref. [98]. Cross sections for
each energy level are measured at 90◦ and 150◦ with respect to the beam direction. Low
lying states have small cross sections which explains why the (d, p) reaction to the ground
state of 243Pu is so weak that the state is not seen in the ∆E vs E spectrum. The first
state seen is at 388 keV above the ground state. Results from Ref. [98] have been folded
with a 180 keV FWHM detector response function to reproduce the spectrum using the
MAMA software2 as shown in Figure 3.8. This spectrum is a histogram of the number of
counts as a function of the total energy deposited by the proton, ∆E + E. The feature
seen in the ∆E+E spectrum centered around 13500keV corresponds to a group of states
at Ex ≈ 835 keV above the ground state in 243Pu. This feature is used as the second
calibration point Pu2 shown in Figure3.7. Both E and ∆E detectors signals are digitized
using a 2048 channels Analog to Digital Converter (ADC). A linear function is used to
convert from channels (voltage) to the energy deposited by the particle in the detectors.

3.3.2 γ-ray spectra
The CACTUS array is composed of 26 NaI detectors, and it is used to detect γ

rays. Interaction between γ rays and a NaI crystal occur via three main mechanisms:
photoelectric absorption, Compton scattering and pair production.

The photoelectric absorption process is the complete absorption of the incoming γ
ray by an atom. The energy is transferred to an outgoing electron from one of the atom
bound shells. The most probable origin of the photoelectron is the most tightly bound
shell [97]. In a NaI crystal, iodine atoms are the primary absorbers. The binding energy
of the K-shell is ≈ 33 keV. A free electron from the medium is then captured and the
vacancy created by the ejection of the photoelectron might be filled by an electron from a
less tightly bound electron, producing a characteristic X-ray. In the majority of cases, the
characteristic X-ray is reabsorbed near the original interaction site. If the photoelectric
effect occurs near the surface of the detector, the X-ray might escape and the energy
deposited in the detector decreases by the energy of the escaped X-ray. These peaks tend
to be most prominent for low energy γ rays and large surface-to-volume ratio detectors.
When an electron transitions to a lower shell, it is possible that the energy is transferred
to an Auger electron.

The photoelectric effect is dominant for low energy γ rays. For NaI crystals, the
probability for photoelectric absorption becomes smaller than Compton scattering for γ
rays with energy greater than Eγ ≈ 200− 400 keV [97].

The Compton scattering process occurs when the incoming γ ray inelastically scatters
on an electron. The energy transferred depends on the angle at which the photon is
scattered, which results in a continuum of possible energies deposited in the NaI crystal.
Multiple scatters within the detector can occur. In our experiment, cross-talk, i.e. inter-

2The Matrix Manipulation (MAMA) software allows application of arithmetic operations, peak fitting,
smoothing and (un)folding procedures on one and two dimensional spectra [99].



41

(a)

h_ede_b0f0

Entries  3300792
Mean   1.219e+04
RMS     846.4

E [keV]∆E+
11500 12000 12500 13000 13500 14000 14500

0

100

200

300

400

500

h_ede_b0f0

Entries  3300792
Mean   1.219e+04
RMS     846.4

E detector 0 strip 0∆E+

(b)
Figure 3.8: Second calibration point for the ∆E−E detectors corresponding to a group of
states in 243Pu centered around Ex = 835keV. (a) States measured in Ref. [98] folded with
a 180 keV FWHM response function to reproduce SiRi’s measurement using the Mama
software [100]. The abscissa represents the excitation energy in 243Pu. (b) Measurement
of the E + ∆E spectrum for one strip. The feature in the ellipse corresponds to the
prediction made with the Mama software. The abscissa is the energy of the proton after
the (d, p) reaction, which is opposite to the excitation energy in 243Pu.
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action within multiple detectors is reduced by the presence of lateral shielding around the
detectors. The remaining cross-talk is suppressed by requiring only one γ-ray detector to
trigger within a given time stamp. Multiple detector triggering events are deleted because
it is not possible to distinguish between two unrelated γ rays interacting in neighboring
detectors or γ rays resulting from the same initial photon.

Pair production is only possible for γ rays with energy greater or equal to twice the
electron rest mass energy (1.022MeV). The cross section for pair production increases with
increasing γ-ray energy. Pair production consists of the absorption of the γ ray and the
creation of an electron-positron pair. In order to conserve both energy and momentum,
this process cannot occur in vacuum, but only when a photon is subject to the Coulomb
field of a nucleus and some of its momentum can be transferred to the nucleus. The
positron will quickly annihilate in the medium and create two 511 keV photons. In NaI
detectors, pair production is the most probable interaction mechanism for photons with
energy Eγ > 6− 8 MeV [97].

Figure 3.9, taken from Ref. [101], shows the contribution of the photoelectric ab-
sorption, Compton scattering and pair production to the linear attenuation coefficient of
NaI as a function of the γ-ray energy. The linear attenuation coefficient, µl, is directly
proportional to the reaction cross section σ:

σ = µl
ρ

M

NA

, (3.6)

where ρ is the density of the material, M is the molar mass, and NA is the Avogadro
constant.
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Figure 3.9: Linear attenuation coefficient of NaI. The different contribution from photo-
electric effect, Compton scattering and pair production are shown; taken from Ref. [101],
Figure 2.3.

The three processes lead to electrons being ejected from their atomic shell. Those
electrons will travel through the NaI(Tl) crystal and excite electrons from the valence
band (electrons bounded at lattice sites of the crystal) to the conduction band (electrons
which have enough energy to move freely through the crystal). Those latter electrons will
de-excite at the lattice sites where the Tl impurities are present. Those impurities modify
the band structure from the one of a pure crystal and lower the gap energy between
the valence and conduction band, facilitating de-excitation of conduction electrons back
to the valence band. This transition will lead to the emission of visible photons whose
energy is too low to re-excite the scintillation material. Those photons are collected by
a photomultiplier tube located at one face of the crystal. Photons are converted into
electrons by a photocathode located at the entry of the photomultiplier tube. Electrons
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are accelerated by an electrical potential through a series of dynodes. The accelerated
electrons will hit the dynodes releasing secondary electrons. An increasing number of
electrons is released at each dynode. An anode is located at the end of the series of
dynode. The current read on the anode is proportional to the amount of light that enters
the photomultiplier tube, and therefore, to the energy deposited in the crystal.

In Figure 3.10 is shown a γ-ray spectrum from one of the 26 NaI detectors. Some
photoelectric peaks are clearly discernible from the interaction of γ rays emitted by 17O
(871 keV), 10Be (2590, 2895 and 3367 keV). Some features can be seen around 6 and
6.9 MeV and can be due to 16O, 17O or 10Be. Figure 3.11 shows the energy region from
500 keV to 4000 keV. The 871 keV line is particularly hard to fit properly. It is fortu-
nately possible to fit the 871 keV line from the time versus energy spectrum presented in
Figure 3.15. A linear function is used to convert from channels (voltage) to the energy
deposited by a γ ray in the detectors. Deviation from linearity for the CACTUS detectors
remains very small and no general trend has been observed [93]. The energy calibration
is checked using γ-ray spectra measured when the beam was hitting a natural natSi cali-
bration target. Figure 3.12 shows the 1273 and 2028 keV lines from 29Si and the 1779 keV
line from 28Si.
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Figure 3.10: Full γ-ray spectrum from one NaI detector before unfolding.
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Figure 3.11: γ-ray spectrum from one NaI detector, before unfolding, showing the pho-
toelectric peaks at 871 and 3367 keV from respectively 17O and 10Be used for the energy
calibration of the NaI detectors.
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Figure 3.12: Raw γ-ray spectrum measured with a 28Si calibration target.
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3.3.3 Timing calibration
The start signal of the acquisition chain is given by detection of a charged particle in

SiRi. The stop signal is given by interaction of one or more γ rays in the NaI detectors.
The time between the start and stop signals is referred as ∆t. The individual time spectra
are aligned with a shift such that the prompt peak comes in the same channel arbitrarily
set to ∆t = 0 ns as shown in Figure 3.13. Detector channels 8 and 9 were not used while
the signals from the four PPAC detectors from NIFF were recorded in channels 4, 12, 30
and 31.
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Figure 3.13: Timing spectra for the NaI detectors. The individual time spectra are aligned
such that the prompt peak occurs at ∆t = 0 ns. The detectors with ID 4, 12, 30 and 31
are the PPAC detectors. The detector channels 8 and 9 were not used.

3.3.4 Triggering
The start and stop logic pulses are generated using leading edge discriminators.

Figure 3.14 shows two signals having identical shapes and start times but different ampli-
tudes. They cross the trigger level at different times t1 and t2 introducing amplitude walk.
Because lower energy γ rays will produce an electronic signal with lower voltage, they will
appear delayed in time as seen in Figure 3.15. Similarly, walk can also be introduced if
the shape of pulses or rise times of the signal are varying. Corrections for the walk has
to be done before setting time gates to the data.
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Figure 3.14: Amplitude walk due to the leading edge triggering. Two signals with identical
shapes and start times but different amplitudes will cross the trigger level at different
times.

Figure 3.15 shows a 2-D histogram of the stop time from the NaI detector versus the
γ-ray energy measured for all NaI detectors. The low energy γ-ray stop signal comes at
a later time compared to higher energy γ rays. To correct for walk, the time dependence
is fitted with the following function [102]:

f = a0 + a1 × tNaI + a2

a3 + tNaI
, (3.7)

where a0, a1, a2 and a3 are free parameters and tNaI is the time difference between the
start and stop signals which we want centered around ∆t = 0 ns. Figure 3.16 shows the
time versus energy spectrum once walk correction is applied. The stop signal from the
NaI detectors is centered around ∆t = 0 ns. The same correction needs to be applied to
the particle detector array SiRi. Figure 3.17 shows the stop time in the NaI detectors as
function of the energy deposited in SiRi. The correction is bad when less than 5MeV are
deposited in the E detector of SiRi. Fortunately it doesn’t impact the analysis because
the region of interest for the Oslo method is below the separation energy of 243Pu, which
corresponds to at least 7.8 MeV deposited in in the E detector of SiRi. Similarly, only
γ rays with energy Eγ > 900 keV are used for the Oslo method so the spreading for low
energy γ rays is not of interest.

Figure3.18 shows the time versus energy deposited in the NaI detectors spectrum once
walk correction is applied and for a maximum excitation energy left in 243Pu below its
neutron separation energy (Sn(243Pu) = 5.034 MeV). The spectrum is a lot cleaner since
most of the contamination γ rays (except contamination from 17O with Eγ = 870 keV)
occur when the excitation energy is higher than the 243Pu neutron separation energy as
it can be seen in Figure 3.21.
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Once the raw data are corrected for the walk, a time gate around the prompt peak can
be applied (≈ 50 ns window center around ∆t = 0 ns) as indicated by the two horizontal
black lines in Figure 3.18. Thus the background can be subtracted.

E(NaI) [keV]
0 2000 4000 6000 8000 10000 12000

t(
N

a
I)

 [
n
s
]

­400

­200

0

200

400

600

10

210

3
10

410

t : E NaI all together

O 871 keV
17

Be 3367 keV
10

Figure 3.15: 2-D histogram of the time difference between the start and stop signals as
a function of the γ-ray energy. Walk is clearly seen as the stop signal comes at later
times for low energy γ rays. The periodicity is due to events coming from former or latter
cyclotron turns.

3.3.5 From E + ∆E to Ex

Now that the detectors are calibrated and corrected for walk due to the leading edge
discrimination triggering, the energy deposited in the particle telescopes needs to be
converted into the excitation energy left in a 243Pu nucleus after the (d, p) reaction. The
excitation energy of the nucleus Ex is given by:

Ex = Ed +Q− Ep, (3.8)

where Ed = 12MeV is the energy of the incoming deuteron beam, Q is the Q value for the
(d, p) reaction and Ep is the outgoing proton energy. Following the nuclear reaction, the
proton has to go through the 1.8 mm Be target backing and a 10.5 µm Al layer on the
surface of the particle telescope. The attenuation is taken into account using the Qkinz
program shown in Figure 3.6. A table of corresponding excitation energies, Ex, and total
energy deposited in the particle telescopes, ∆E+E, is given as output of the calculation.
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Figure 3.16: 2-D histogram of the time difference between the start and stop signals as
a function of the γ-ray energy after walk correction. A time gate can now be applied on
the NaI detectors to correct for background.
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Figure 3.17: 2-D histogram of the time difference between the start and stop signals as a
function of the energy deposited in the E particle detector after walk correction.
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Figure 3.18: 2-D histogram of the time difference between the start and stop signals as a
function of the γ-ray energy after walk correction restricting the excitation energy left in
243Pu to be below the neutron separation energy. The time window is given by the two
black lines.

A second order polynomial function is fitted through the points, giving the excitation
energy as a function of the total energy deposited in SiRi, (∆E + E):

Ex = a0 + a1(∆E + E) + a2(∆E + E)2, (3.9)

where a0, a1 and a2 are free parameters. The a0 parameter corresponds to the sum
of the deuteron energy and Q value from Eq. 3.8, but corrected for attenuation in the
target backing. The attenuation is ≈ 0.8 − 0.9 MeV over the angular range covered.
The a1 parameter corresponds to the proton energy dependence in Eq. 3.8, also corrected
from attenuation in the target backing, and is therefore close to −1. The a2 parameter,
describing the non-linearity of the excitation energy as a function of the energy deposited
in the particle detector, remains fairly small. The tables of corresponding Ex, ∆E and E
along with the ai parameters for each detector ring can be found in Appendix A.

Fine tuning of the excitation energy is realized by fitting the feature at Ex ≈ 835 keV
that was used for the calibration (see Figure 3.8). The alignment of the eight detector
rings is shown in Figure 3.19.

3.3.6 Correction for fission events
The NIFF detector is used to veto fission events. For 243Pu, the fission barrier is

empirically predicted at 6.05 MeV [25], which is above the neutron separation energy,
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Figure 3.19: Alignment of the eight particle detector rings. The feature at Ex ≈ 835 keV,
was used for the calibration and predicted using available particle spectroscopy data (see
Figure 3.8).

S
243Pu
n = 5.034 MeV [103]. The Oslo method only allows extraction of the level density

and γ-ray strength function up to the neutron separation energy. Figure 3.20 (a) shows
coincident particle-γ events as a function of the excitation energy (blue) and requiring
coincidence with the fission detector (red). The fission barrier is clearly visible with the
sharp rise of coincident particle-γ-fission events between 5 and 6 MeV. Some sub-barrier
fission events are seen between 3 and 4MeV, and have been observed in other actinides[104,
105]. The number of coincident fission events is at least two orders of magnitude lower
than the total number of events for the energy region of interest. Figure 3.20 (b) shows
the particle-γ coincident events (blue curve) and particle-γ-fission coincident events (red
curve) as a function of the γ-ray energy deposited in the NaI detectors. At all γ-ray
energies the number of coincident particle-γ-fission events is negligible with regards to
the number of coincident particle-γ events. We note the Maxwellian shape of the prompt
fission γ rays. The level density and γ-ray strength function have been extracted with
and without fission corrections over the excitation energy range Ex = 2.6− 4.3 MeV, and
as expected, no statistically significant deviation is observed.

3.3.7 Extraction of the particle-γ matrix
Now that the excitation energy left in the residual 243Pu nucleus is correctly calibrated,

along with the γ-ray energy deposited in the NaI detectors, a particle-γ matrix can be
extracted. The following gates and corrections are used:

• Particle gate on the proton banana, thus only considering (d, pγ) events
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Figure 3.20: (a) Comparison of the number of γ rays measured as a function of the
excitation energy left in the residual nucleus in coincidence with fission (red curve) and
without (blue curve). (b) Comparison of the number of γ rays measured as a function of
their energy in coincidence with fission (red curve) and without (blue curve).



53

• Time gate on the NaI stop time. Only events with time ∆t ∈ [−24 ns,+24 ns] are
considered and background subtracted.

• Subtraction of fission events3.

The raw particle-γ matrix is shown in Figure 3.21. Below the 243Pu neutron separation
energy indicated by the horizontal black line, there is one contamination line from 17O at
Eγ = 871 keV, which will be subtracted. This particle-γ spectrum is the starting point of
the Oslo method described in Chapter 4.
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Figure 3.21: Raw particle-γ spectrum. Below the neutron separation energy of 243Pu,
there is only one contamination line from 17O at Eγ = 871 keV.

3No statistical significant deviation has been observed with no correction for fission.
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Chapter 4

The Oslo method

Starting from the raw particle-γ-ray matrix, the Oslo method leads to simultaneous
extraction of the level density and the γ-ray strength function. The raw particle-γ-ray ma-
trix is first unfolded with the known NaI detector response. A folding iteration method[4]
similar to Ref. [106] is applied to estimate the shape of a spectrum containing a Compton
continuum, single and double escape peaks. The obtained spectrum is then subtracted
from the measured spectrum to obtain the true full γ-ray energy spectrum. From it,
the distribution of first generation γ rays is extracted by an iterative subtraction method
described in Ref. [3]. This first generation matrix is proportional to the product of the
level density times a transmission coefficient (from which the γ-ray strength function is
calculated) [5]. The level density and γ-ray strength function need to be normalized since
only their functional forms are extracted in a model independent way via the Oslo method.

4.1 Unfolding
Several different interactions of γ rays with the NaI detectors can occur, such as the

photoelectric effect, Compton scattering and pair production, as described in Section 3.3.2.
This leads to complicated detector response functions as shown in Figure 4.1 showing the
response of a LaBr detector to a 3 MeV monoenergetic γ-ray source. The LaBr spectrum
is shown here instead of the response of a NaI detector used in this work because of its
better energy resolution to clearly distinguish the different features.

The principal features of a γ-ray spectrum are the full energy peak (f), corresponding
to the γ ray depositing all its energy via photoelectric absorption or multiple scatter
through the detector. It also assumes that all photoelectrons are stopped in the detector,
as well as characteristic X-rays. The single (s) and double (d) escape peaks correspond
to pair production within the detector and one or two 511 keV γ rays escaping from the
detector after the electron-positron annihilation. An annihilation peak at 511 keV is seen
from electron-positron annihilation in the materials surrounding the detectors. Lastly,
if the incident photon is scattered by an electron, only a partial amount of its energy
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Figure 4.1: Folded spectrum for a monoenergetic 3 MeV γ-ray source. Distinct features
can be seen, the full energy peak (f), the single (s) and double (d) escape peaks as well
as the annihilation peak (a). (s), (d) and (a) are on top of the Compton continuum
distribution. This spectrum is obtained for a LaBr detector which has better energy
resolution than the NaI used in this work.

is deposited in the detector, depending on the scattering angle. The event will appear
in the Compton continuum. Events corresponding to an energy deposited less than the
full energy are rather frequent. In the NaI detectors used, the probability for full energy
deposition varies from 74% for a 100 keV incident photon to 11% for a 10 MeV incident
photon [4].

The response function of the detector R(E,Eγ), where Eγ is the energy of the incident
photon and E the energy deposited in the detector, should ideally be know for all possible
incident γ-ray energies. Unfortunately, only a few monoenergetic γ-ray sources are avail-
able. The response function has been measured for a total of 10 monoenergetic lines rang-
ing from 122 to 15110 keV from radioactive sources and in-beam experiments [4]. Proper
interpolation between measured incident photon energies is necessary. The interpolation
is easily done for peak structures, modeled by Gaussian distributions, knowing the de-
tector energy dependent efficiency and resolution. Proper interpolation of the Compton
continuum is more complicated because the energy deposited in the detector, E, depends
on both the incident γ-ray energy, Eγ, and the angle θ at which it gets scattered:

E = Eγ −
Eγ

1 + Eγ
mec2 (1− cos θ)

, (4.1)

where mec
2 is the rest mass energy of the electron. The observed Compton continuum

energy range is increasing with increasing incident photon energy. The interpolation is
done connecting channels corresponding to the same scattering angle θ. In Figure4.2, the
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Figure 4.2: Calculation of the Compton continuum for three different incident photon
energy Eγ for all angles. The colored band under the curve represents the Compton
continuum for a scattering angle θ ∈ [30◦, 40◦]. Interpolation between different incident
photon energies is complicated by the deposited energy and scattering angle dependence
of the Compton continuum to the incident photon energy. Those Compton continuum
curves have not been convoluted with the detector resolution and efficiency and assume
that no multiple scattering occurs within the detector volume. The figure is inspired by
Fig. 1 from Ref. [4].

distribution of the energy E lost by a photon undergoing Compton scattering is plotted.
It corresponds to what would be seen in a detector with perfect resolution and constant
efficiency. It is also assumed that no multiple scattering occurs within the detector volume.
The energy deposited differential cross section for Compton scattering, dσc/dE, is given
by:

dσc
dE ∝

1
E2
γ

[
2 + (mec

2)2E2

E2
γ(E2

γ − E2) + E(E − 2mec
2)

Eγ(Eγ − E)

]
. (4.2)

The colored area under the curve represents the Compton continuum for a scattering
angle θ ∈ [30◦, 40◦]. This figure illustrate the variation of the energy range of the Compton
continuum and the variable number of energy bins corresponding to a given angle range.

Given the appropriate response function function of the detector, R(E,Eγ), discretized
in a matrix R, the folding iteration method described in Ref.[4] is used because it is reliable
even with spectra where the number of counts are strongly fluctuating from channel to
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channel. The method takes advantage of the fact that the folding operation (multiplying
the unfolded by the detector response function) is computationally easy and fast. The
matrix element Rij corresponds to the detector response in the energy channel i when
the detector is hit by a incident photon of energy Eγ corresponding to channel j. Each
response function for a channel j is normalized to 1:

∀j,
∑
i

Rij = 1. (4.3)

The folding procedure is then given by:
f1
f2
...
fN

 =


R11 R12 . . . R1N
R21 R22 . . . R2N
... ... . . . ...

RN1 RN2 . . . RNN




u1
u2
...
uN

 , (4.4)

where fi and ui represent, respectively, the folded and unfolded spectra. A diagram of
the folding algorithm is shown in Figure 4.3. The first trial function for the unfolded
spectrum u(0) is the experimentally measured spectrum r. A first folding spectrum f (0)

is calculated using the detector response function R. A new trial function is obtained by
adding the difference between the measured spectrum and the calculated folded spectrum
to the previous trial function. This process is repeated until the folded spectrum agrees
with the measured spectrum within experimental uncertainties. With about 10 iterations,
the folded spectrum f (i) agrees with the measured spectrum. It has been observed [4, 107]
that the best unfolding results are obtained when the response matrix is calculated with
an energy resolution smaller than the experimentally observed one. As suggested, the
energy resolution of the response matrix is half of the experimental one.

The obtained unfolded spectrum u(i) displays strong oscillations, which gives an arti-
ficially better resolution than the experimental one. A Compton subtraction method [4]
is used to correct this effect.

We define pf (i), ps(i), pd(i), pa(i) and pc(i) the probabilities of observing, for an
incoming photon in the energy channel i, respectively a photopeak, single escape peak,
double escape peak, annihilation peak or Compton continuum. Estimated values for those
probabilities as a function of the incoming photon energy is given in Table 1 from Ref. [4].
Starting the Compton subtraction method with the unfolded spectrum obtained with
the folding algorithm, renamed u0 = u(last), we define the expected contribution from
the full energy deposition peak, uf , single escape peak, us, double escape peak, ud, and
annihilation peak, ua:

uf (i) = pf (i)u0(i), (4.5)
us(i− i511) = ps(i)u0(i), (4.6)
ud(i− i1022) = pd(i)u0(i), (4.7)
ua(i511) =

∑
i

pa(i)u0(i), (4.8)
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Initialization

u0 = r

Folding

f (i) = Ru(i)

New trial function

u(i+1) = u(i) + (r − f (i))

Convergence

f (i) ≈ r

Figure 4.3: Diagram of the folding algorithm. r is the measured spectrum, u(i) are the
trial unfolded spectra, f (i) the trial folded spectra and R the detector response matrix.

where i511 and i1022 are the channels corresponding to E = 511 keV and E = 1022 keV. In
order to reproduce the experimental data, the ua spectrum corresponding to the annihi-
lation peak is smoothed to reproduce the experimental energy resolution. The resolution
of uf , us, ud is determined by the resolution of the measured spectrum and the response
matrix. Those spectra are smoothed to match the experimental resolution. The Compton
continuum spectrum uc(i) can be obtained by subtracting all the other features from the
measured spectra r(i):

uc(i) = r(i)− uf (i)− us(i)− ud(i)− ua(i). (4.9)

The obtained Compton continuum spectrum uc(i) still displays strong oscillations when
it should be slowly varying as function of energy. This spectrum is smoothed again. The
final resolution of uc is

√
2 times the experimental resolution. The new unfolded spectrum,

unew is obtained by subtracting the smoothed Compton continuum along with all features
others than the photopeak, weighted by the photopeak probability, pf (i), and corrected
for the γ-ray detection efficiency, εγ:

unew(i) = r(i)− uc(i)− us(i− i511)− ud(i− i1022)− ua(i511)
pf (i)εγ(i)

. (4.10)

4.2 First generation γ rays
The γ decay from a highly excited state will most likely involve a cascade of γ rays.

Transitions in the actinides are generally very fast (below 1 ns for the few states which
lifetime was measured and generally on the order of the femtosecond), except for very



59

few low-lying isomeric states. It is, therefore, not possible to determine the order in
which those γ rays are emitted with timing techniques. The unfolded spectrum shown in
Figure 5.3 contains γ rays from all generations in the cascade.

A subtraction method was developed by the Oslo nuclear physics group to extract the
first generation γ rays from the unfolded spectrum[3]. It is assumed that the γ decay from
an excited energy bin is independent on how the states in the energy bin were populated,
whether from γ decay from a higher excited state or from a particle induced reaction.
This assumption is automatically fulfilled when the cross sections for the two different
population mechanism are equal for all states.

Starting from the unfolded spectra ui obtained from the unfolding procedure, the first
generation spectra fi is given by:

fi = ui − gi, (4.11)
where gi is a weighted sum of the unfolded spectra:

gi =
∑
j

nijwijuj. (4.12)

The sum is carried over all excitation energy bins j. The unknown coefficients wij corre-
spond to the decay probability from the excitation energy bin i to the bin j. It is equivalent
to the branching ratio of each primary γ ray depopulating the excitation energy bin i.
Therefore, the wij values correspond to a first generation spectrum fi normalized to 1.
The nij coefficients are correction factors for the different population cross sections of the
excitation energy bin i cascading to the energy bins j. Those coefficients are determined
such that nijuj = k, with k being a constant independent of j, corresponding to a fixed
number of γ-ray cascades. The nij coefficients can be calculated following two different
normalization depending on the experimental conditions [3].

• Singles normalization: The number of populated states is proportional to the singles
particle cross sections. Let Si and Sj be the number of counts in the singles particle
spectra at the excitation energy bin i and j. The normalization factor nij is then
given by:

nij = Sj
Si
. (4.13)

• Multiplicity normalization: The average γ-ray multiplicity 〈M〉 of an excited state
of energy E is linked to the average γ-ray energy 〈Eγ〉 [108]:

〈M〉 = E

〈Eγ〉
. (4.14)

The average γ-ray multiplicity at a given excitation energy bin i can easily be
calculated using Eq. 4.14. The singles particle cross section Si is proportional to
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the ratio A(ui)/ 〈Mi〉, where A(ui) corresponds to the total number of counts in the
unfolded spectrum ui. Eq. 4.13 becomes:

nij = A(ui) 〈Mj〉
A(uj) 〈Mi〉

. (4.15)

The experimental conditions need to be taken into account to decide between the two
normalization procedures.

The first generation spectra fi can be calculated using an iterative procedure[3]. Using
the unfolded spectrum, the calculated cross section coefficients nij and a trial function
wij, the first generation spectra fi is calculated using Eq. 4.11. New weighting coefficients
wij can be calculated by normalizing the area of the first generation spectra fi to one.
The procedure is repeated until the weighted function converges. A diagram of the first
generation spectra extraction is shown in Figure 4.4. Tests of the convergence procedure
have been performed using simulated spectra and convergence is obtained within three
iterations [3]. Less than 20 iterations are needed on experimental spectra.

Trial weighting function

w
(0)
ij

Unfolded spectra
ui

Cross section factors
nij

Extract first generation

f
(k)
i = ui −

∑
j nijwijuj

New weighting function

f
(k)
ij → w

(k+1)
ij

Convergence

w
(k+1)
ij ≈ w

(k)
ij

Figure 4.4: Diagram of the first generation spectra extraction.

4.3 Simultaneous extraction of the level density and
γ-ray strength function

Following the particle induced reaction, the nucleus is assumed to reach a compound-
like system before emitting γ rays. A compound state is created within ≈ 10−18 s while
typical lifetime for states in the quasi-continuum is ≈ 10−15 s. In the compound nucleus
picture, the relative decay probabilities into any particular final state is independent of the
way the compound nucleus was formed, and governed by statistical rules. Therefore the
decay probability of an excited state is proportional to a transmission coefficient linking
the initial and final state times the level density at the final excitation energy ρ(Ef ).
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According to the Brink-Axel hypothesis described in Sec. 2.2.5, the cross section for
photoabsorption has the same energy dependence if the absorption happens on the ground
state or an excited state and as long as the dipole selection rule is fulfilled, there is
no dependence on the spin value of the initial and final state. Therefore, the γ-ray
transmission coefficient T only depends on the γ ray of energy Eγ and not on the excitation
energy. The decay probability P (Ex, Eγ) from the excitation energy Ex by emitting a γ
ray of energy Eγ can be written as:

P (Ex, Eγ) ∝ ρ(Ef )T (Eγ) . (4.16)

An iterative procedure is used to extract the level density and the γ-ray transmission
coefficient from the first generation matrix as described in Ref. [5]. The first generation
matrix is obtained as described in Sec. 4.2. In order for the first generation matrix to
represent the decay probability, the sum of the γ-ray emission probability for a given
excitation energy bin needs to be normalized to one:

Ex∑
Eγ=Eminγ

P (Ex, Eγ) = 1, (4.17)

where Emin
γ is the minimum γ-ray energy considered, and set to 900keV. Matrix elements

below this limit are discarded because of issues associated with the subtraction method
used to obtain the first generation matrix. The γ rays considered should only be from the
statistical excitation-energy region. From Eq.4.16, the normalized first generation matrix
can be approximated by:

Pth(Ex, Eγ) = ρ(Ex − Eγ)T (Eγ)∑Ex
E′
γ=Eminγ

ρ(Ex − E ′γ)T (E′γ)
, (4.18)

where the energy of the final state is written as a function of the excitation energy and the
emitted γ-ray energy: Ef = Ex−Eγ. It can be shown [5], that if ρ and T are solutions of
Eq.4.18, an infinite number of functions solution can be created using the transformation:

ρ̃(Ex − Eγ) = A exp[α(Ex − Eγ)]ρ(Ex − Eγ), (4.19)

T̃ (Eγ) = B exp(αEγ)T (Eγ), (4.20)
where A, B, and α are constant parameters. Thus, only the functional form is found by
fitting the first generation matrix.

The start of the iterative method to extract the functional form for ρ and T consist
in setting ρ(0) = 1, the initial estimate of T is given by:

T (0)(Eγ) =
Emaxx∑

Ex=max(Eminx ,Eγ)
P (Ex, Eγ). (4.21)
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The ρ and T solutions are found by using a least χ2 method:

χ2 = 1
N

Emaxx∑
Ex=Eminx

Ex∑
Eγ=Eminγ

(
Pth(Ex, Eγ)− P (Ex, Eγ)

∆P (Ex, Eγ)

)2

, (4.22)

where N is the number of degrees of freedom, and ∆P (Ex, Eγ) is the uncertainty in the
primary γ-ray matrix. The reduced χ2 is minimized for all Eγ and (Ex − Eγ). The
iterations take place here, where previous estimates of the level density and transmission
coefficient are used to calculate the derivative of the reduced χ2, which returns updated
values. In order to achieve better convergence, the variation of the level density and
transmission coefficient is limited for each iteration to a given percentage of their values:

i(n)

1 + P
≤ i(n+1) ≤ i(n)(1 + P ), (4.23)

where i(n) is the nth iteration of the parameter i and P limits the accessible range for i.
P is decreased as function of the number of iterations from 20% to 1%.

4.3.1 Normalization of the level density
Only the functional form of the level density and the γ-ray strength function are

extracted. In order to determine the parameters α and A from Eq. 4.19, the level density
is normalized to the number of known discrete levels at low excitation energy and to
neutron resonance data at the neutron separation energy. The known discrete levels are
extracted using the NNDC website [103].

The average neutron resonance spacing D0 corresponding to the level spacing for s-
wave neutron excitation is given by Eq. (2.19). Combining Eq. (2.3), giving the spin
dependent level density, and (2.19), we obtain the level density at the neutron separation
energy as a function of the s-wave level spacing:

ρ(Sn) = 2σ2

D0

1
(It + 1) exp[−(It + 1)2/2σ2] + It exp[−I2

t /2σ2] , (4.24)

where It is the target spin and σ the spin cutoff parameter.

4.3.2 Normalization of the γ-ray transmission coefficient
Similarly to the level density, an infinite number of transmission coefficient functions

are solutions of the extraction procedure and given in Equation 4.20. The parameter α
corresponding to the slope of the transmission coefficient is obtained while normalizing
the level density. The remaining constant parameter B gives the absolute normalization.
Calculation of the normalization parameter using the average total radiative width 〈Γγ〉
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at the neutron separation energy Sn is described in Ref. [109]. The average total radiative
width can be written as a function of the transmission coefficient [71]:

〈Γγ(Ex, J, π)〉 = 1
2πρ(Ex, J, π)

∑
XL

∑
Jf ,πf

ˆ Ex

Eγ=0

dEγT XL(Eγ)ρ(Ex − Eγ, If , πf ), (4.25)

where 〈Γγ(Ex, J, π)〉 is the average total radiative width of levels at the excitation energy
Ex, with spin J and parity π. The integration is taken over γ-ray energies Eγ between 0
and the excitation energy Ex. The summation is taken over all electromagnetic character
X and multipolarity L for a γ ray de-exciting to a final level of given spin Jf and parity
πf . If we assume that the main contribution to the experimental transmission coefficient
T is from dipole radiation (L=1), we obtain:

BT (Eγ) = B
∑
XL

T XL(Eγ) ≈ B[T E1(Eγ) + T M1(Eγ)]. (4.26)

The γ-ray strength function f assuming pure dipole radiation is given by:

f(Eγ) = 1
2πE3

γ

BT (Eγ). (4.27)

The average total radiative width measured for s-wave neutron capture on states with
spin It ± 1/2, where It is the ground state spin of the target, is given by combining
Equations (4.25) and (4.26):

〈Γγ(Sn, It ± 1/2, πt)〉 = 1
2πρ(Sn, It ± 1/2, πt)

∑
If

ˆ Sn

0
dEγBT (Eγ)ρ(Sn − Eγ, If ), (4.28)

where πt is the parity of the target nucleus. The summation is performed over all final
levels with spin If that are accessible via E1 or M1 transitions with energy Eγ. The
same number of accessible levels with positive and negative parity is assumed. Using the
intrinsic spin distribution g given in Equation (5.2), and using Equation (2.3) to introduce
D0, we obtain:

〈Γγ(Sn, It ± 1/2, πt)〉 = D0

2π

ˆ Sn

0
dEγBT (Eγ)ρ(Sn − Eγ)

1∑
J=−1

g(Sn − Eγ, It ± 1/2 + J).

(4.29)
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Chapter 5

Experimental results

The level density and γ-ray strength function of 243Pu have been extracted using the
Oslo method described in Chaper 4. An enhancement of the γ-ray strength function
is seen in the 1.5-3.5 MeV energy range and interpreted as the scissors resonance. Its
centroid and strength are compared to the sum rule estimate. Finally, the measured level
density and strength function are used as input in Hauser-Feshbach calculations in order
to estimate the 242Pu(n, γ) cross section.

5.1 From the raw particle-γ-ray matrix to the first
generation matrix

The raw particle-γ-ray matrix giving the γ-ray spectra as a function of the excitation
energy of 243Pu is shown in Figure 5.1. It is obtained after calibration of the NaI detectors
and the SiRi array as discussed in Chapter 3, and is the starting point of the Oslo method.
For 243Pu, the neutron separation energy is Sn = 5.034 MeV, the proton separation is
Sp = 6.95 MeV, and the fission barrier is Bf ≈ 6 MeV. To make sure there are only γ
rays from 243Pu, only γ-ray spectra for excitation energies below the neutron separation
energy will be used to extract the level density and γ-ray strength function. For γ rays
spectra for excitation energies below the neutron separation energy, the first state of 17O
is populated via the (d, p) reaction and emits a 871 keV γ ray. This peak is not an issue
because only γ rays above 900 keV will be taken into account to extract the level density
and γ-ray strength function. The first excited state of 10Be is also populated but decays
back to the ground state via internal conversion only. In Figure 5.1, large contamination
peaks from population of 17O and 10Be can be observed for excitation energies above the
neutron separation energy.

The raw matrix is unfolded using the known detector response following the procedure
detailed in Section 4.1. Each unfolded spectrum is calculated by iteratively folding a trial
spectrum until agreement is found with the measured spectrum. Figure 5.2 shows the
measured, unfolded and folded spectra for a 16 keV wide channel at the excitation energy
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Figure 5.1: 243Pu raw particle-γ-ray matrix.

Ex = 4.1 MeV in 243Pu. The folded spectrum agrees very well with the measured one,
except for the very low γ-ray energy part below 200 keV. A threshold of 400 keV is chosen
to extract the first generation matrix. Figure 5.3 shows the unfolded coincident particle-
γ-ray matrix for 243Pu. The z-axis represents the number of counts per Eγ = 16 keV,
Ex = 41 keV bins. For each excitation energy bin, the γ-ray spectrum has been unfolded.
The massive peak centered at (Eγ, Ex) = (0.87, 4.5) MeV comes from population of the
first excited state of 17O and is removed before proceeding to the extraction of the first
generation spectrum.

The first generation γ-ray matrix is extracted following the procedure described in
Section 4.2. The coefficient nij from Eq. (4.12) can be calculated by two different nor-
malization procedures: using singles from the particle spectrum and Eq. (4.13), or using
the γ-ray multiplicity and Eq. (4.15). The experimental conditions need to be taken into
account to decide between the two normalization procedures. The ∆E vs E spectrum
presented in Figure 3.7 shows contamination peaks from the (d, p) reaction on 9Be and
16O. Amongst the known contaminants, the only measured γ rays in the excitation energy
range of interest (below the neutron separation energy), are from the decay of the first
excited state of 17O. The feature has been subtracted from the unfolded particle-γ ray
spectrum. This feature is difficult to remove from the singles particle spectrum because
of its magnitude compare to the signal of interest.

The singles normalization is sensitive to contaminants that don’t emit γ rays, therefore,
the multiplicity normalization is chosen. Figure 5.4 shows the first generation spectra
obtained using the singles normalization (red) or the multiplicity normalization (black)
for three different energies. The agreement is excellent for Eγ > 1MeV but poor at lower
γ-ray energies. The probable cause of this disagreement could be contamination in the
singles spectrum, mostly (d, p) to the ground state of 10Be. The other three contamination
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Figure 5.2: 243Pu measured (a), unfolded (b), and folded (c) γ-ray spectra for a 16 keV
wide energy bin at the excitation energy Ex = 4.1 MeV.
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Figure 5.4: Comparison of the first generation spectra obtained using the singles normal-
ization (red) or the multiplicity normalization (black) for a 41keV bin in excitation energy
at the following excitation energies: 2 MeV (a), 2.5 MeV (b) and 3 MeV (c).

peaks appear at higher excitation energies. Some low energy γ rays are not subtracted
correctly, even with the multiplicity normalization. This could be due to some strong low
energy transitions which probability to be populated through γ decay is higher than via
the (d, p) reaction. For the extraction of the level density and strength function described
in Sec. 4.3, only γ rays with energy Eγ > 900 keV are considered.

Figure5.5 shows the γ-ray multiplicity as a function of the excitation energy for 243Pu.
Only γ-rays with energy greater than 400 keV are taken into account. Below 2 MeV, the
multiplicity shows oscillations, indicating a non-statistical behavior of the decay process
at low excitation energies. Above 4.5MeV, the multiplicity fluctuates due to the opening
of the fission and neutron emission channels. The extraction of the level density and γ-ray
strength function is only applied for the excitation energy range Ex = 2.6− 4.3MeV. The
extracted first generation spectrum for 243Pu is shown in Figure 5.6. The red contour
shows the limits for the extraction of the level density and γ-ray strength function.

5.2 Extraction of level density and γ-ray transmis-
sion coefficient

The level density and γ-ray transmission coefficient functional forms are simultane-
ously extracted from the primary γ-ray matrix using the algorithm described in Section 4.3,
over the excitation energy range Ex = 2.6 − 4.3 MeV and for γ rays with energy Eγ >
900 keV. Figure 5.7 shows the normalized first generation matrix, P (Ex, Eγ), and the the-
oretical expectation Pth(Ex, Eγ). The bin size is 123 keV, both in excitation energy and
γ-ray energy. Figure 5.8 shows the same comparison for given excitation energy bins,
giving confidence in the extraction method.
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Figure 5.6: 243Pu first generation matrix.
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Figure 5.8: Comparison between the experimental first generation matrix (black crosses)
and the calculated one (blue lines) for a given excitation energy bin.

5.3 Normalization of the level density
Only the functional form of the level density and the γ-ray strength function are

extracted. The level density is normalized to the number of known discrete levels at low
excitation energy and to neutron resonance data at the neutron separation energy. The
normalization procedure is described in Section 4.3.1.

At the neutron separation energy, assuming that both parities contribute equally, the
level density is given by Eq. (4.24). For 243Pu, the target spin is It(242Pu) = 0 and the
level density at the neutron separation energy is given by:

ρ(Sn, It = 0) = 2σ2

D0

1
exp[−1/2σ2] . (5.1)

SeveralD0 values are reported in the literature for 243Pu. In his atlas of neutron resonances[110],
Mughabghab reports D0 = 17(1) eV. In their measurement of the total and absorption
neutron cross sections of 242Pu, Young and Reeder [111] quote D0 = 16.5 eV, with-
out uncertainties. Rich et al. recently modeled reaction cross sections on several Pu
isotopes [112]. Using the ESTIMA code, they obtain D0 = 16.8(5) eV. The RIPL-3 evalu-
ation by Ignatyuk [25] gives D0 = 13.5(15) eV, which is inconsistent with the other work.
In this analysis, the D0 = 17(1) eV value from Mughabghab is taken to normalize the
level density.

The following spin distribution, g, of the level density is assumed [113]:

g(Ex, J) = 2J + 1
2σ2 exp

[
−(J + 1/2)2

2σ2

]
, (5.2)
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Table 5.1: Parameters used to extract the level density of 243Pu given for the two different
parametrization from von Egidy and Bucurescu.

Ref. Sn a E1 σ(Sn) D0 ρ(Sn) TCT E0
(MeV) (MeV−1) (MeV) (eV) (106MeV−1) (MeV) (MeV)

EB06a 5.034 25.82a -0.45a 8.15a 17(1)c 7.87(163) 0.40(1) -0.95(16)
EB09b 5.034 23.96b -0.22b 5.11b 17(1)c 3.13(64) 0.44(1) -1.19(16)

aEstimated from systematics [18].
bEstimated from systematics [19].

cReference [110].

where J is the spin of the different levels. The spin cutoff parameter σ is determined from
the global systematic study of level density parameters by von Egidy and Bucurescu,
using a rigid-body moment of inertia [18]. Another parametrization of the spin cutoff
parameter by the same authors is available [19]. The second parametrization gives con-
sistently a lower spin cutoff parameter. It is more suitable for light nuclei, while the
first parametrization should be used for heavier nuclei, particularly actinides. The level
density shown in Figure 5.9 is normalized using the two different parametrizations given
in Table 5.1. The black squares correspond to the extraction of the level density using the
spin cutoff parameter from Ref. [19] and the red squares using the spin cutoff parameter
from Ref. [18]. Both normalizations extrapolate the measurements to the neutron separa-
tion energy using the constant temperature model presented in Sec. 2.1.1, represented by
the dashed lines on the figure, given by the equation:

ρCT (Ex) = 1
TCT

exp Ex − E0

TCT
, (5.3)

where TCT represents the slope of the level density with a shift in excitation energy E0,
and are given in Table 5.1. The spin cutoff parametrization from Ref. [18] (red squares)
is more suitable for actinides and is considered to be the correct one in the following
analysis. Results from Ref. [19] are given as a comparison and show the impact of the
spin cutoff parameter on the level density at the neutron separation energy (more than a
factor of two).

Because we only apply the Oslo method from 2.6 to 4.3 MeV of excitation energy, we
need to extrapolate the level density to the normalization data point at the neutron bind-
ing energy. The Fermi-gas (FG) and constant temperature (CT) models (see Sec. 2.1.1)
are the two most used semi-empirical models to describe the level density. Figure 5.10
shows the extracted level density if we assume a Fermi-gas (black squares) or a constant
temperature (red squares) dependence of the level density. Comparing the reduced chi-
square fit value evaluated between Ex = 0.5 and 3.4MeV, the constant temperature model
gives a better description of the measured data. All other measurements in the actinide
region[6, 114] confirm a constant temperature dependence of the level density rather than
a Fermi-gas dependence. The interpretation of the constant temperature model is that the
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Figure 5.9: 243Pu nuclear level density measured with the Oslo method (squares). The
extraction has been realized normalizing to known levels at low excitation energy and to
the level density calculated from neutron resonance data at the neutron separation energy
(using a spin cutoff parameter σ = 5.11 for the black data points and σ = 8.15 for the
red data point). Extrapolation of the data up to the neutron separation energy is done
using the constant temperature model.

excitation energy goes into breaking Cooper pairs similarly to a first order phase transi-
tion in thermodynamics[115]. On the contrary, the Fermi-gas model considers the nucleus
as a gas of fermions. The present results provide empirical support for the importance of
pairing in the energetics of the nucleus.

5.4 Normalization of the γ-ray transmission coeffi-
cient and extraction of the γ-ray strength func-
tion

The normalization procedure for the γ-ray transmission coefficient is described in
Section 4.3.2.

The constant coefficientB is calculated using the previous equation with
〈
Γ243Pu
γ (Sn)

〉
=

22(1) meV [110]. Though, from the first generationγ-ray matrix, only γ rays with energy
Eγ > 900keV are considered and the level density and transmission coefficient are only ex-
tracted up to Ex = 4.3MeV. The transmission coefficient is extrapolated for Eγ < 900keV
and Eγ > 4.3 MeV with exponential functions as shown in Figure 5.11.

The determination of B using Equation4.29 is in general sufficient to extract a reliable
γ-ray strength function[109, 116, 117] for medium-mass nuclei. For actinides, some correc-
tions need to be taken into account otherwise this method will yield an unphysical γ-ray
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Figure 5.10: Comparison of the 243Pu experimental level density with the constant tem-
perature (CT) and Fermi-gas (FG) level density formulas.
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strength function. Situated far from closed shells, the level density of actinides rapidly
increases with excitation energy because of a high density of single particle orbitals. The
spin distribution is broad at the neutron separation energy and the (d, p) reaction will
not populate the highest spins available in the nucleus. The transmission coefficient is
assumed to be independent of spin but the shape of the observed primary γ-ray matrix
should be influenced by not populating all the available levels. Therefore, the primary
γ-ray matrix should be fitted by the product of the transmission coefficient and a reduced
level density accounting only for the levels populated by the reaction. Because the de-
termination of the parameter B depends on the level density (see Equation 4.29), which
is dependent of the spin-cutoff parameter and our estimation of the relative amount of
states populated by the (d, p) reaction, it is rather uncertain. The strength function can
be written as a function of the transmission coefficient as in Equation4.27, or as a function
of the photonuclear cross section σ(Eγ):

f(Eγ) = 1
3π2~2c2

σ(Eγ)
Eγ

. (5.4)

Strength function measurements using (γ, x) reactions are available for excitation energies
greater than the neutron separation energy and fit parameters of the Giant Electric Dipole
Resonance (GEDR) are available on the RIPL website [25]. Unfortunately there are
no measured γ-ray strength function data for 243Pu. Only measurements for the 239Pu
isotope exists. We assume that the E1 strength does not vary much from 239Pu to 243Pu.
This assumption is supported by the classical Thomas-Reiche-Kuhn sum rule for E1
strength [118, 119, 120] and experimentally observed between 236U and 238U [8].

Figure 5.12 shows our best interpretation of the experimental γ-ray strength func-
tion. The γ-ray strength function derived from 239Pu(γ, x) data from Berman et al. [121],
Gurevitch et al. [79] and Moraes et al. [122] are shown and fitted with two enhanced gen-
eralized Lorentzians (EGLO) as defined in RIPL [25] but with a constant-temperature
parameter of final states Tf suggested by the constant-temperature dependence of the
level density. This temperature taken to be the same as the one describing the level
density influences the slope of the low γ-ray energy part of the strength function and is
used as a base line for our extracted γ-ray strength function, since the γ-ray strength
function extracted via the Oslo method in this work covers γ-ray energies from 900 keV
up to 4.3 MeV while the lowest energy point for (γ, x) data is 6.7 MeV.

To describe the structure around Eγ = 7.5 MeV, a resonance described by a standard
Lorentzian without damping (SLO described in Section2.2.4) is added (labeled pygmy2 in
Figure 5.12). To take into account the sharp rise of our data for Eγ = 3− 4MeV, another
resonance is postulated at Eγ = 4.4 MeV and labeled pygmy1. To match the slope
determined by the constant-temperature, the γ-ray strength function data are extracted
assuming a level density at the neutron separation energy reduced from 7.87 to 3.94
million levels per MeV. This correspond to only populating half of the available levels
using the (d, p) reaction. A similar reduction factor of ≈ 1/2 has been postulated for the
extraction of the γ-ray strength function of 232Th [8] and 238Np [114]. Calculations of the
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Figure 5.12: Experimental γ-ray strength function from the present (d, pγ)243Pu experi-
ment. The black filled triangles, empty triangles and green dots are 239Pu(γ, x) data from
respectively Bermanet al.[121], Gurevitchet al.[79] and Moraeset al.[122]. The red curve is
the estimated underlying E1 γ-ray strength function. The structure for Eγ = 1−3.5MeV
is interpreted as the scissors resonance. Figure taken from Ref. [123].

ratio of spins populated are presented in Appendix B. All the parameters used to obtain
the estimated underlying E1 γ-ray strength function (red curve in Figure 5.12) are given
in Table 5.2.

5.4.1 The scissors resonance
The experimental γ-ray strength function shown in Figure 5.12 exhibits extra strength

from the expected base line (red curve) for Eγ = 1.5−3.5MeV. Figure 5.13 shows the extra
strength when the base line is subtracted. A similar structure has been observed in all
actinides measured at Oslo[8, 114] and is interpreted as the scissors resonance described in
Section 2.2.3. The scissors resonance is fitted with two Lorentzian distributions. Table5.3
lists the resonances centroid ωi, cross section σi and width Γi. The integrated strength
BSR,i, for each resonance i is given by:

BSR,i = 9~c
32π2

(
σiΓi
ωi

)
. (5.5)

The total strength of the scissors resonance is obtained by adding the strength from the
two resonances:

BSR =
∑
i

BSR,i. (5.6)
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Table 5.2: Parameters used to estimate underlying E1γ-ray strength function (red curve
in Figure 5.12). The Giant electric dipole resonance (GEDR) is described by two EGLO
distributions, characteristic of deformed nuclei) with constant temperature Tf obtained
from the description of the level density. Pygmy1 and pygmy2 are described with standard
Lorentzian distributions. ω, σ, and Γ are respectively the centroid, the cross section and
the width of a given resonance.

GEDR
ωE1,1 σE1,1 ΓE1,1 ωE1,2 σE1,2 ΓE1,2 Tf
(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV)
11.1 290 3.2 14.2 340 5.5 0.40(1)

pygmy1 pygmy2
ωpyg1 σpyg1 Γpyg1 ωpyg2 σpyg2 Γpyg2
(MeV) (mb) (MeV) (MeV) (mb) (MeV)
4.4(1) 9(3) 1.0(2) 7.4(3) 20(6) 1.3(3)

The average centroid ωSR is taken as the strength weighted average of the two resonances:

ωSR =
∑
i ωiBSR,i∑
iBSR,i

. (5.7)

The total resonance strength BSR and centroid ωSR of the scissors resonance can be
calculated using the sum rule approach presented in Section 2.2.3. The ground state
moment of inertia (appropriate to describe the scissors resonance build on the ground
state) was replaced by the rigid body moment of inertia Θrigid (appropriate to describe
the scissors resonance in the quasi-continuum), given by:

Θrigid = 2
5mNr

2
0A

5/3(1 + 0.31δ), (5.8)

where mN = 939 MeV is the nucleon mass, r0 = 1.15 fm is the nucleon radius, A is
the number of nucleons and δ is the nuclear quadrupole deformation. The m1 and m−1
moments are given by:

m1 = 3
8πΘrigidδ

2ω2
D(gp − gn)2ξ

[
µ2
NMeV

]
, (5.9)

m−1 = 3
16πΘrigid(gp − gn)2

[
µ2
NMeV−1

]
, (5.10)

where gp ≈ 2Z/A and gn ≈ 0 are the gyromagnetic factors for respectively protons and
neutrons [124]. Z is the number of protons in the nucleus. ξ is a reduction factor given
by:

ξ =
ω2
Q

ω2
D + ω2

Q

, (5.11)
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which depends on the energy centroid of the isovector giant dipole resonance ωD and the
isoscalar giant quadrupole resonance ωQ approximated by [60]:

ωD = (31.2A−1/3 + 20.6A−1/6)(1− 0.61δ) [MeV] , (5.12)

ωQ = 64.7A−1/3(1− 0.3δ)) [MeV] . (5.13)
The sum rule gives:

ωSR =
√
m1

m−1
= δωD

√
2ξ, (5.14)

BSR = √m1m−1 = 3
4π

(
Z

A

)2
ΘrigidδωD

√
2ξ. (5.15)

The nuclear quadrupole deformation parameter δ is calculated using ground state
deformation parameter, β2. The two quantities are to lowest order proportional [124]:

δ ≈ β2

√
45

16π . (5.16)

In order to calculate the centroid and the strength using the sum rule estimate, the
ground state deformation value is taken as the average of the RIPL-3 [25] tabulated
value for 242Pu and 244Pu (β2 = 0.29) and from results of a Hartree-Fock-Bogoliubov
calculation [125] (β2 = 0.28). The centroid of the isovector dipole resonance calculated
using the empirical equation (5.12) gives ωD = 11.06 MeV. Using the GEDR parameters
from Table 5.2, the strength weighted average gives ωD = 13.00 MeV. Table 5.3 gives the
experimental scissors resonance strength and centroid as well as the ones calculated using
the sum rule. The agreement between our measurement and the sum rule estimate is
within the uncertainty range.
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Figure 5.13: The observed scissors resonance for 243Pu. The strength is obtained by sub-
tracting the underlying tail of the GEDR and the two pygmy resonances from Figure 5.12.
The scissors resonance is described by two standard Lorentzian distributions whose pa-
rameters are given in Table 5.3.
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Table 5.3: Parameters used to estimate the centroid and strength of the scissors resonance.
The extra strength was fit with two standard Lorentzian distributions. ω, σ, and Γ are
respectively the centroid, the cross section and the width of a given resonance. Parameters
used for the sum rule estimate are given in the bottom table.

Experimental
ωSR,1 σSR,1 ΓSR,1 ωSR,2 σSR,2 ΓSR,2 ωexp

SR Bexp
SR

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (µ2
N)

1.99(4) 0.45(6) 0.60(8) 2.81(5) 0.51(8) 0.83(14) 2.42(5) 10.1(15)

Sum rule estimate
δ ωD ωQ ξ Θrigid ωSR BSR

(MeV) (MeV) (µ2
N .MeV−1) (MeV) (µ2

N)
0.27 13.0 9.5 0.21 131 2.3 10.6

5.5 Influence of the spin population from the (d, p)
reaction

As mentioned in Section 4.3.2, not all available spins in 243Pu are populated by the
(d, p) reaction. Because the γ-ray strength function is simultaneously extracted along with
the level density, the level density should be normalized to the populated level density
and not to the intrinsic level density of 243Pu. Our data covers the γ rays with energies
from 900 keV up to 4.3 MeV while the lowest energy point for (γ, x) data is 6.7 MeV. It
is, therefore, difficult to correctly interpolate between those two points. In the case of
238Np, (γ, x) data are available for energies above the neutron separation energy while the
γ-ray strength function in Ref. [114] is extracted for energies up to the neutron separation
energy. No interpolation was needed and the level density was reduced by a factor of
≈ 1/2. In our best estimate presented in Figure 5.12.

Appendix B presents a calculation using the EMPIRE code [126] used to estimate the
relative amount of levels populated. Table B.2 suggests that only 29% of the levels in
243Pu are populated by the (d, p) reaction. Figure5.14 shows the extracted γ-ray strength
function and estimated underlying E1 γ-ray strength function when we assume that all
levels (black), half the levels (red) or 29% of the levels (blue) are populated by the (d, p)
reaction. The parameters used for the resonance postulated at 4.4 MeV are given in
Table 5.4 along with the temperature responsible for the slope of the low energy tail of
the GEDR.
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Table 5.4: Parameters used to describe the resonance at Eγ = 4.4 MeV and the temper-
ature of final state giving the slope of the low energy tail of the GEDR when the γ-ray
strength function is extracted assuming different amount of levels populated.

Levels populated ωpyg1 σpyg1 Γpyg1 Tf
(%) (MeV) (mb) (MeV) (MeV)
100 4.4 12.5 1.05 0.33
50 4.4 9 1.0 0.40
29 4.4 7 1.0 0.44
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Figure 5.14: The γ-ray strength function is extracted assuming all levels are populated
(black squares), half the levels are populated (red squares) or 29% of the levels are pop-
ulated (blue squares). The curves represent the estimated underlying E1γ-ray strength
function.

As shown in Figure 5.15, independently of the amount of levels populated, some extra
strength is present in the γ-ray energy range 1.5-3.5MeV and is interpreted as the scissors
resonance. The absolute strength is slightly smaller when all levels or only 29% of the
levels are assumed to be populated than when 50% of the levels are populated, but within
the uncertainty range.
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Figure 5.15: Extra strength function above the estimated underlying E1γ-ray strength
function and interpreted as the scissors resonance assuming all levels are populated (black
diamonds), half the levels are populated (red squares) or 29% of the levels are populated
(blue stars). The red curve is the estimated scissors resonance when half the levels are
populated.

5.6 Estimation of the 242Pu(n, γ) cross section
Neutron capture cross sections are well reproduced by Hauser-Feshbach calculations

using the level density and γ-ray strength function measured using the Oslo method as
inputs [102, 114, 127]. Thus, this technique represents a true alternative to the extraction
of neutron capture cross sections with the traditional surrogate method that overestimates
the cross section by several times due to spin hindrance [128].

The nuclear reaction code TALYS-1.6 [26] is used to calculate the 242Pu(n, γ) cross
section. The level density and γ-ray strength function of 243Pu measured in this work
have been used as input parameters. In this section, a brief overview of TALYS is given
and results of a TALYS calculation from Ref.[114] are shown and serve as a validation case
for the TALYS code ability to calculate neutron capture cross sections in actinides. The
level densities and γ-ray strength functions of 243Pu used in the evaluations of the 242Pu
neutron capture cross section by major databases are compared to our measurements,
followed by a comparison of the 242Pu(n, γ) cross section.

5.6.1 TALYS-1.6
TALYS is a nuclear reaction simulation computer code system. It is intended to

simulate nuclear reactions induced by photons, neutrons, protons, deuterons, 3He and α
particles in the 1keV to 200MeV energy range, and for target nuclides of at least mass 12.
It can be used as a tool for analysis of nuclear reaction experiments. Using experimental
results, the nuclear models used were constrained, therefore allowing better predicting
power. It remains a work in progress as more experimental data will allow to constrain
the models further. TALYS can also be used as a tool to predict nuclear data when no
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measurements are available. This is crucial for a broad range of applications, in areas
like nuclear power reactors, fusion reactors, transmutation of radioactive waste, medical
applications, homeland security, and astrophysics.

Figure5.16 shows a schematic of the different reactions mechanism that can occur dur-
ing an arbitrary nucleon-induced reaction. Despite the simplicity of the schematic, TALYS
does not only calculate the outcome of a particular reaction; the decay of all residual nuclei
created during the reaction are calculated following the same model. Figure 5.17 gives an
overview of the nuclear models present in TALYS, associated with the different reaction
mechanisms.

Figure 5.16: Schematic of the different nuclear reaction mechanism included in TALYS;
taken from the TALYS-1.6 manual, Figure 3.1.

5.6.2 237Np(n, γ) cross section calculation
The level density and γ-ray strength function of 238Np have been measured using the

Oslo method [114]. Experimental data of the 237Np neutron capture cross section exist
up to 1 MeV, making it a good validation case of the TALYS calculation. The observed
level density and γ-ray strength function are used as input to the TALYS calculation.
Figure 5.18, taken from Ref. [114], shows the calculated 237Np(n, γ) cross section. The
agreement with available experimental data is excellent. The impact of the scissors reso-
nance is shown and reaches a maximum of ≈ 25% for neutron energies of ≈ 1 MeV.
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Figure 5.17: Nuclear models used in TALYS; taken from the TALYS-1.6 manual,
Figure 4.1.
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Figure 5.18: Calculation of the 237Np neutron capture cross section using TALYS. Excel-
lent agreement is found with experimental data; taken from Ref. [114], Figure 7.
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5.6.3 Comparison of the 242Pu(n, γ) cross section calculated with
TALYS with databases

Unfortunately, there are no measurements of the 242Pu(n, γ) for neutron energies above
200 keV. Our TALYS calculation will therefore be compared to cross sections available
in the ENDF/B-VII.1 [11], JENDL-4-0 [44] and TENDL2014 [46], as well as a TALYS
calculation with default parameters. The three main inputs of the neutron capture cross
section calculation are the level density, the γ-ray strength function and the optical model
potential. In this work, we only focus on the level density and γ-ray strength function that
we measured. The default optical model potential for actinides is taken. The ENDF/B-
VII.1 evaluation adopts some of the results from JENDL4.0 but no details are given about
changes made to the level density or γ-ray strength function. JENDL-4.0 on the contrary
lists all the parameters used in their calculations.

Level densities

Figure5.19(a) shows the 243Pu level density measured in this work along with the level
density used by JENDL-4.0, TENDL2014 in their evaluations and the default TALYS
input. All use the constant temperature model. Figure 5.19(b) shows the ratio of re-
spectively the JENDL-4.0, TENDL2014 and the default TALYS level densities to the one
measured in this work. TENDL2014 shows the largest discrepancy, being a factor 2-3
smaller than the measured level density. JENDL-4.0 and the default TALYS level density
are more in agreement with our measurement, but discrepancies reach a factor of 2.

Strength functions

Figure 5.20 shows the comparison between the 243Pu γ-ray strength function ex-
tracted in the present work (red curve) from measured data (black squares) and the one
used in JENDL-4.0 (dashed black curve), and TENDL2014 (blue dashed-dotted curve).
TENDL2014 uses the default input from TALYS. The strength function extracted from
the present work is in very good agreement with the one used by JENDL-4.0 above 8MeV,
reproducing measured 239Pu(γ, x) data from Berman et al. [121], Gurevitch et al. [79], and
Moraes et al. [122]. The lowest energy measured by Moraes is 6.7MeV. No measurements
were available at lower energies before the present one. The main discrepancy is the addi-
tion of the resonance at 4.4MeV and the low energy tail from the EGLO parametrization
used by JENDL-4.0. The γ-ray strength function from the present work assumes also
an EGLO parametrization for the giant electric dipole resonances at Eγ = 11.1 MeV and
Eγ = 14.2MeV, but with a constant temperature T = 0.40MeV. The other resonances are
modeled with a SLO parametrization. The TENDL2014 parametrization is completely
off. There are no available suggested parameters for the 243Pu γ-ray strength function
in RIPL-3 [25]. TALYS uses empirical formulations of the γ-ray strength function. In
the present work, as well as in the JENDL-4.0 calculation, it was assumed that the γ-ray
strength function does not vary much from 239Pu to 243Pu.
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Figure 5.19: (a) Measured 243Pu level density (black filled squares) compare to the level
density used in JENDL-4.0 [44] (red continuous curve), TENDL2014 [46] (blue dotted-
dashed curve), and TALYS default (black dashed curve) calculations. The measured level
density was normalized to the know levels (thin black line) and to the level density ex-
tracted from known neutron resonance spacings D0 (empty square). (b) Ratio of the 243Pu
level density from respectively JENDL-4.0, TENDL2014 and the default one from TALYS
to the level density measured in this work. Out of the three databases, TENDL2014 shows
the largest discrepancy and is constantly about a factor of two lower than the level density
measured in this work.
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86

In TALYS and for the TENDL2014 evaluation, a normalization factor is introduced
in order to reproduce observables. The average radiative capture width Γγ is due entirely
to the s-wave interaction. Using the known Γγ value at the neutron separation energy,
the normalization factor Gnorm is obtained by equaling the s-wave radiation width to the
integral of the γ-ray transmission coefficients over the density of final states that may be
reached by primary γ-rays [26]:

2πΓγ
D0

= Gnorm
∑

J,Π,Xl

J+l∑
I′=|J−l|

∑
Π′

ˆ Sn

0
dEγTXl(Eγ)ρ(Sn − Eγ, I ′,Π′)g(X, l,Π′), (5.17)

where D0 is the average s-wave resonance spacing and ρ is the level density. J, Π corre-
spond to the compound nuclear states spin and parity that can be formed with s-wave
incident neutrons. I ′ and Π′ correspond to the spin and parity of the final state after
the primary γ-ray is emitted. X and l correspond to the different γ-radiation types and
multipolarities. The function g(X, l,Π′) is equal to 1 is the multipole selection rule is
satisfied and 0 if not.

For the TENDL2014 evaluation, Gnorm = 5.26. The default TALYS calculation uses
Gnorm = 3.22.

The 242Pu(n, γ) cross section

The 242Pu(n, γ) cross section is calculated using TALYS and the experimentally mea-
sured level density and γ-ray strength function. The average neutron resonance spacing
parameter D0 and the average radiative capture width Γγ are reproduced. The entire pro-
cedure is detailed in Appendix C, only the main results are given in the present section.

The experimentally measured level density is parsed through TALYS in energy and
spin dependent tables. Values are calculated using the constant temperature formula from
Eq. (2.7). The spin distribution is given by the Eq. (B.3) with the spin cutoff parameter
calculated using the parametrization from Egidy and Bucurescu[18, 17] given in Eq.(B.6).
In order for the TALYS calculation to reproduce the experimentally measured D0 = 17 eV
parameter, the constant temperature of the level density is taken to be TCT = 0.3833 MeV.

The γ-ray strength function is implemented using the fstrength.f source file. The
constant temperature of the EGLO tail of the GEDR is modified in order to match the
experimental average radiative capture width 〈Γγ〉 = 22 eV. Matching results are obtained
for T = 0.3860 MeV. The cross section has been calculated with and without the scissors
resonance.

Figure 5.21 shows the results of the TALYS calculated cross section with the scissors
resonance (continuous red curve with blue error-band) and without (dashed red curve with
red dots error band). The error bands are generated by taking into account the uncer-
tainty in the two pygmy resonances described in Table5.2 and the average radiative width
〈Γγ〉 = 22(1)meV. Including the scissors resonance in the calculation leads to an increase
in the capture cross section (up to ≈ 10% for incident neutron energy En = 1.7MeV). The
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scissors resonance has a smaller effect for this calculation than for the 237Np(n, γ) calcu-
lation (up to ≈ 25% for a comparable scissors resonance strength) [114]. Our calculated
cross section agrees with experimental data from Refs. [129, 130]. Unfortunately, there
are no experimental data available above 200keV. The calculation is also compared to the
ENDF/B-VII.1 (black curve), JENDL-4.0 (dashed brown curve), TENDL2014 (dashed
blue curve) evaluations, and the default TALYS calculation (magenta). The present cal-
culation is in great agreement with the ENDF/B-VII.1 and JENDL-4.0 evaluations below
200 keV but not above. The TENDL2014 evaluation underestimates experimental data
while the default TALYS calculation overestimates them. Large discrepancies are ob-
served in the 1 MeV region as can be expected due to the discrepancies in level densities
and γ-ray strength function. Experimental measurements of the 242Pu(n, γ) cross section
are needed to solve the discrepancies.
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Figure 5.21: Calculated 242Pu(n, γ) cross section using level density and γ-ray strength
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Chapter 6

Conclusion

6.1 Summary
Statistical properties of 243Pu have been investigated using the Oslo method. Nuclear

states in the quasi-continuum of 243Pu were populated using the 242Pu(d, p) reaction.
From the primary γ-ray spectra, the level density and γ-ray strength function have been
extracted for initial excitation energies ranging from 2.6 MeV to 4.3 MeV and for γ rays
with energy Eγ > 900 keV.

The level density has been normalized to known levels at low excitation energy and
to neutron resonance spacing data at the neutron separation energy. It follows closely
a constant-temperature level density formula as seen in investigations on other actinides
using the same method [6, 114]. The extracted nuclear temperature is T = 0.40(1) MeV,
in agreement with the other measured actinides, but lower than the temperature observed
in rare-earth nuclei (T ≈ 0.5− 0.6 MeV) [35].

The γ-ray transmission coefficient has been normalized to the average total radiative
width and extracted assuming that only half of the available nuclear levels at the neutron
separation energy are populated by the (d, p) reaction. The γ-ray strength function is
then calculated from the transmission coefficient assuming pure dipole radiation.

The γ-ray strength function exhibits two pygmy resonances, characteristic of neutron
rich nuclei. Between 1.5 MeV and 3.5 MeV, the enhancement of the strength function
is interpreted as the M1 scissors resonance. Similarly to the other actinides measured
at Oslo, the measured centroid and strength of the scissors resonance are in very good
agreement with the sum rule estimate from Ref. [60].

Using the measured level density and γ-ray strength function, the 242Pu(n, γ) cross
section is calculated with the TALYS code. Similarly to the calculation of the 237Np(n, γ)
cross section, the scissors resonance leads to an increase in the cross section. The increase
reaches a maximum for incoming neutron energies around 1 MeV. For the 242Pu(n, γ) cross
section, the maximum increase is ≈ 10%, while it reaches ≈ 25% for the 237Np(n, γ) cross
section. Large disagreement exists between the present calculation, the ENDF/B-VII.1
database, the JENDL-4.0 database, and the TENDL2014 database for the 242Pu(n, γ)
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cross section in the 1 MeV region, where no measured data is available. Very few mea-
surements of the neutron capture cross section are available for actinides in this energy
range, where the scissors resonance has the strongest influence. Reliable cross sections
up to neutron energies of a few MeVs are crucial for the development of fast neutron
spectrum nuclear reactors and nuclear waste management.

6.2 Outlook
Plutonium offers the possibility of measuring the pygmy and scissors resonances over a

large mass region since 238−242,244Pu have long enough half lives (from 14 years for 241Pu to
80 million years for 244Pu) that targets of those isotopes can be fabricated. A measurement
of the 240Pu level density and γ-ray strength function has been realized and shows the
same constant temperature dependence of the level density [131]. The scissors resonance
is also observed in the γ-ray strength function of 240Pu and the measured strength agrees
within uncertainties.

A 244Pu target has recently been made at Lawrence Livermore National Laboratory
and will allow population of the 243Pu compound nucleus using the (3He, α) reaction with
a broader spin than with the (d, p) reaction on 242Pu. The effect of the spin distribution on
the extraction of the level density and γ-ray strength function remains an open question.
The 245Pu isotope can also be populated using the (d, p) reaction.
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Appendix A

Qkinz calculations of the energy
deposited in the particle detectors

Predictions of the energy deposited in the ∆E and E detectors are made using the
Qkinz1 software developed at University of Oslo. This software does the kinematic cal-
culations, including the mean energy loss for the particle going through the target, the
target backing and the Al layer on top of the ∆E detectors. The output is a calculated
∆E−E spectrum for the Siri detector and a table of the energy deposited in the particle
telescope as a function of the excitation energy in the residual nucleus. Those results are
used to calibrate the particle detectors and, later in the analysis, to translate the energy
deposited in the detector to the excitation energy left in the residual nucleus.

The excitation energy, Ex, is approximated to a second order polynomial function of
the total energy deposited in the particle telescope, ∆E + E:

Ex = a0 + a1(∆E + E) + a2(∆E + E)2, (A.1)

where a0, a1 and a2 are free parameters. The a2 parameter describing the non-linearity
and remains small. The tables of corresponding Ex, ∆E and E are given below.

1The software can be downloaded at https://github.com/oslocyclotronlab/Qkinz
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Table A.1: Ring 0, for θ ∈ [139◦, 141◦], where θ is the angle between the beam direction
and the detector ring.

Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]
0 851.01 ± 0.41 13426.93 ± 8.97 14277.94 ± 8.98

287.4 865.15 ± 0.43 13125.35 ± 9.04 13990.51 ± 9.05
333.2 867.46 ± 0.43 13077.24 ± 9.05 13944.69 ± 9.06
383.6 870.01 ± 0.44 13024.27 ± 9.06 13894.28 ± 9.07
402.6 870.98 ± 0.44 13004.30 ± 9.07 13875.27 ± 9.08
625.6 882.51 ± 0.46 12769.66 ± 9.13 13652.17 ± 9.14
653.8 884.00 ± 0.46 12739.95 ± 9.14 13623.95 ± 9.15
677.2 885.23 ± 0.46 12715.30 ± 9.14 13600.54 ± 9.15
703.9 886.65 ± 0.46 12687.17 ± 9.15 13573.82 ± 9.16
790.7 891.29 ± 0.47 12595.67 ± 9.17 13486.96 ± 9.18
809.5 892.30 ± 0.47 12575.85 ± 9.18 13468.15 ± 9.19
813.8 892.53 ± 0.47 12571.31 ± 9.18 13463.84 ± 9.19
845.4 894.24 ± 0.47 12537.98 ± 9.19 13432.22 ± 9.20
873.7 895.78 ± 0.47 12508.12 ± 9.20 13403.90 ± 9.21
905.7 897.52 ± 0.48 12474.35 ± 9.21 13371.87 ± 9.22
948.0 899.84 ± 0.48 12429.69 ± 9.22 13329.53 ± 9.23
981.0 901.66 ± 0.48 12394.84 ± 9.23 13296.50 ± 9.24
1130.1 909.98 ± 0.49 12237.27 ± 9.27 13147.25 ± 9.28
1176.5 912.61 ± 0.50 12188.19 ± 9.28 13100.80 ± 9.30
1213.0 914.69 ± 0.50 12149.57 ± 9.29 13064.25 ± 9.31
1301.6 919.78 ± 0.51 12055.76 ± 9.32 12975.54 ± 9.33
1367.8 923.63 ± 0.51 11985.63 ± 9.34 12909.26 ± 9.36
1387.4 924.78 ± 0.52 11964.85 ± 9.35 12889.63 ± 9.36
1420.5 926.72 ± 0.52 11929.76 ± 9.36 12856.48 ± 9.37
1434.7 927.56 ± 0.52 11914.70 ± 9.36 12842.26 ± 9.38
1516.6 932.42 ± 0.53 11827.82 ± 9.39 12760.24 ± 9.40

Fit a0 = 13.986927 MeV a1 = −0.951438 a2 = −2.019× 10−3 MeV−1
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Table A.2: Ring 1, for θ ∈ [137◦, 139◦].
Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]

0 847.74 ± 0.42 13431.78 ± 9.08 14279.52 ± 9.09
287.4 861.83 ± 0.44 13130.19 ± 9.16 13992.02 ± 9.17
333.2 864.12 ± 0.44 13082.07 ± 9.17 13946.19 ± 9.18
383.6 866.67 ± 0.44 13029.10 ± 9.18 13895.77 ± 9.19
402.6 867.63 ± 0.44 13009.13 ± 9.19 13876.76 ± 9.20
625.6 879.12 ± 0.46 12774.48 ± 9.25 13653.60 ± 9.26
653.8 880.60 ± 0.46 12744.77 ± 9.26 13625.37 ± 9.27
677.2 881.83 ± 0.46 12720.12 ± 9.26 13601.95 ± 9.28
703.9 883.24 ± 0.47 12691.99 ± 9.27 13575.23 ± 9.28
790.7 887.86 ± 0.47 12600.49 ± 9.30 13488.35 ± 9.31
809.5 888.87 ± 0.47 12580.66 ± 9.30 13469.53 ± 9.31
813.8 889.10 ± 0.47 12576.13 ± 9.30 13465.23 ± 9.31
845.4 890.80 ± 0.48 12542.79 ± 9.31 13433.59 ± 9.32
873.7 892.33 ± 0.48 12512.93 ± 9.32 13405.26 ± 9.33
905.7 894.07 ± 0.48 12479.16 ± 9.33 13373.23 ± 9.34
948.0 896.38 ± 0.48 12434.50 ± 9.34 13330.88 ± 9.35
981.0 898.19 ± 0.49 12399.65 ± 9.35 13297.84 ± 9.36
1130.1 906.48 ± 0.50 12242.07 ± 9.40 13148.55 ± 9.41
1176.5 909.10 ± 0.50 12192.99 ± 9.41 13102.09 ± 9.42
1213.0 911.17 ± 0.51 12154.37 ± 9.42 13065.54 ± 9.43
1301.6 916.24 ± 0.51 12060.56 ± 9.45 12976.80 ± 9.46
1367.8 920.08 ± 0.52 11990.42 ± 9.47 12910.50 ± 9.48
1387.4 921.22 ± 0.52 11969.65 ± 9.47 12890.87 ± 9.49
1420.5 923.16 ± 0.52 11934.56 ± 9.48 12857.71 ± 9.50
1434.7 923.99 ± 0.53 11919.50 ± 9.49 12843.49 ± 9.50
1516.6 928.83 ± 0.53 11832.61 ± 9.52 12761.44 ± 9.53

Fit a0 = 13.980141 MeV a1 = −0.950380 a2 = −2.053× 10−3 MeV−1
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Table A.3: Ring 2, for θ ∈ [135◦, 137◦].
Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]

0 845.56 ± 0.42 13435.35 ± 9.21 14280.91 ± 9.22
287.4 859.61 ± 0.44 13133.73 ± 9.29 13993.34 ± 9.30
333.2 861.90 ± 0.44 13085.60 ± 9.30 13947.50 ± 9.31
383.6 864.43 ± 0.45 13032.63 ± 9.32 13897.06 ± 9.33
402.6 865.40 ± 0.45 13012.65 ± 9.32 13878.05 ± 9.33
625.6 876.86 ± 0.47 12777.97 ± 9.39 13654.83 ± 9.40
653.8 878.33 ± 0.47 12748.26 ± 9.39 13626.60 ± 9.41
677.2 879.56 ± 0.47 12723.61 ± 9.40 13603.17 ± 9.41
703.9 880.97 ± 0.47 12695.47 ± 9.41 13576.44 ± 9.42
790.7 885.58 ± 0.48 12603.96 ± 9.43 13489.54 ± 9.45
809.5 886.58 ± 0.48 12584.13 ± 9.44 13470.71 ± 9.45
813.8 886.81 ± 0.48 12579.59 ± 9.44 13466.41 ± 9.45
845.4 888.51 ± 0.48 12546.26 ± 9.45 13434.76 ± 9.46
873.7 890.03 ± 0.48 12516.39 ± 9.46 13406.43 ± 9.47
905.7 891.77 ± 0.49 12482.62 ± 9.47 13374.38 ± 9.48
948.0 894.07 ± 0.49 12437.95 ± 9.48 13332.02 ± 9.49
981.0 895.88 ± 0.49 12403.10 ± 9.49 13298.98 ± 9.50
1130.1 904.15 ± 0.51 12245.50 ± 9.54 13149.64 ± 9.55
1176.5 906.76 ± 0.51 12196.41 ± 9.55 13103.17 ± 9.56
1213.0 908.82 ± 0.51 12157.78 ± 9.56 13066.60 ± 9.57
1301.6 913.88 ± 0.52 12063.96 ± 9.59 12977.85 ± 9.60
1367.8 917.71 ± 0.53 11993.81 ± 9.61 12911.52 ± 9.62
1387.4 918.85 ± 0.53 11973.04 ± 9.62 12891.88 ± 9.63
1420.5 920.78 ± 0.53 11937.94 ± 9.63 12858.72 ± 9.64
1434.7 921.61 ± 0.53 11922.88 ± 9.63 12844.49 ± 9.65
1516.6 926.44 ± 0.54 11835.98 ± 9.66 12762.42 ± 9.67

a0 = 13.972100 MeV a1 = −0.949176 a2 = −2.092× 10−3 MeV−1



95

Table A.4: Ring 3, for θ ∈ [133◦, 135◦].
Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]

0 844.45 ± 0.43 13437.64 ± 9.36 14282.09 ± 9.37
287.4 858.48 ± 0.45 13135.95 ± 9.44 13994.43 ± 9.45
333.2 860.77 ± 0.45 13087.82 ± 9.45 13948.58 ± 9.46
383.6 863.30 ± 0.45 13034.83 ± 9.47 13898.13 ± 9.48
402.6 864.26 ± 0.46 13014.85 ± 9.47 13879.11 ± 9.48
625.6 875.71 ± 0.47 12780.11 ± 9.54 13655.82 ± 9.55
653.8 877.18 ± 0.47 12750.40 ± 9.55 13627.58 ± 9.56
677.2 878.41 ± 0.48 12725.74 ± 9.55 13604.15 ± 9.56
703.9 879.81 ± 0.48 12697.60 ± 9.56 13577.41 ± 9.57
790.7 884.42 ± 0.48 12606.06 ± 9.59 13490.48 ± 9.60
809.5 885.42 ± 0.49 12586.23 ± 9.59 13471.65 ± 9.60
813.8 885.65 ± 0.49 12581.69 ± 9.59 13467.35 ± 9.61
845.4 887.35 ± 0.49 12548.35 ± 9.60 13435.69 ± 9.61
873.7 888.87 ± 0.49 12518.48 ± 9.61 13407.35 ± 9.62
905.7 890.60 ± 0.49 12484.69 ± 9.62 13375.29 ± 9.63
948.0 892.90 ± 0.50 12440.02 ± 9.63 13332.92 ± 9.65
981.0 894.71 ± 0.50 12405.16 ± 9.64 13299.86 ± 9.66
1130.1 902.97 ± 0.51 12247.52 ± 9.69 13150.49 ± 9.70
1176.5 905.58 ± 0.52 12198.42 ± 9.71 13103.99 ± 9.72
1213.0 907.64 ± 0.52 12159.78 ± 9.72 13067.42 ± 9.73
1301.6 912.69 ± 0.53 12065.94 ± 9.75 12978.63 ± 9.76
1367.8 916.51 ± 0.53 11995.78 ± 9.77 12912.29 ± 9.78
1387.4 917.65 ± 0.54 11974.99 ± 9.77 12892.65 ± 9.79
1420.5 919.58 ± 0.54 11939.89 ± 9.79 12859.47 ± 9.80
1434.7 920.41 ± 0.54 11924.82 ± 9.79 12845.24 ± 9.81
1516.6 925.24 ± 0.55 11837.90 ± 9.82 12763.14 ± 9.83

a0 = 13.962684 MeV a1 = −0.947812 a2 = −2.136× 10−3 MeV−1
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Table A.5: Ring 4, for θ ∈ [131◦, 133◦].
Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]

0 844.40 ± 0.44 13438.60 ± 9.52 14283.01 ± 9.53
287.4 858.44 ± 0.45 13136.82 ± 9.61 13995.26 ± 9.62
333.2 860.73 ± 0.46 13088.67 ± 9.62 13949.40 ± 9.63
383.6 863.26 ± 0.46 13035.67 ± 9.63 13898.93 ± 9.64
402.6 864.22 ± 0.46 13015.68 ± 9.64 13879.90 ± 9.65
625.6 875.67 ± 0.48 12780.87 ± 9.71 13656.54 ± 9.72
653.8 877.15 ± 0.48 12751.15 ± 9.71 13628.30 ± 9.73
677.2 878.37 ± 0.48 12726.48 ± 9.72 13604.85 ± 9.73
703.9 879.78 ± 0.49 12698.33 ± 9.73 13578.11 ± 9.74
790.7 884.38 ± 0.49 12606.77 ± 9.76 13491.15 ± 9.77
809.5 885.39 ± 0.49 12586.93 ± 9.76 13472.31 ± 9.78
813.8 885.62 ± 0.50 12582.39 ± 9.76 13468.00 ± 9.78
845.4 887.31 ± 0.50 12549.03 ± 9.77 13436.34 ± 9.79
873.7 888.84 ± 0.50 12519.15 ± 9.78 13407.99 ± 9.80
905.7 890.57 ± 0.50 12485.35 ± 9.79 13375.92 ± 9.81
948.0 892.87 ± 0.51 12440.67 ± 9.81 13333.54 ± 9.82
981.0 894.67 ± 0.51 12405.79 ± 9.82 13300.47 ± 9.83
1130.1 902.94 ± 0.52 12248.10 ± 9.87 13151.04 ± 9.88
1176.5 905.55 ± 0.53 12198.98 ± 9.88 13104.53 ± 9.89
1213.0 907.61 ± 0.53 12160.33 ± 9.89 13067.94 ± 9.91
1301.6 912.67 ± 0.54 12066.46 ± 9.92 12979.13 ± 9.94
1367.8 916.49 ± 0.54 11996.27 ± 9.95 12912.76 ± 9.96
1387.4 917.63 ± 0.55 11975.48 ± 9.95 12893.11 ± 9.97
1420.5 919.56 ± 0.55 11940.36 ± 9.96 12859.92 ± 9.98
1434.7 920.39 ± 0.55 11925.30 ± 9.97 12845.68 ± 9.98
1516.6 925.21 ± 0.56 11838.35 ± 10.00 12763.56 ± 10.01

a0 = 13.951749 MeV a1 = −0.946275 a2 = −2.187× 10−3 MeV−1
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Table A.6: Ring 5, for θ ∈ [129◦, 131◦].
Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]

0 845.43 ± 0.44 13438.19 ± 9.71 14283.62 ± 9.72
287.4 859.49 ± 0.46 13136.29 ± 9.79 13995.77 ± 9.80
333.2 861.78 ± 0.47 13088.12 ± 9.80 13949.90 ± 9.82
383.6 864.32 ± 0.47 13035.09 ± 9.82 13899.41 ± 9.83
402.6 865.28 ± 0.47 13015.09 ± 9.83 13880.37 ± 9.84
625.6 876.75 ± 0.49 12780.19 ± 9.89 13656.94 ± 9.91
653.8 878.22 ± 0.49 12750.46 ± 9.90 13628.68 ± 9.92
677.2 879.45 ± 0.49 12725.78 ± 9.91 13605.23 ± 9.92
703.9 880.86 ± 0.50 12697.61 ± 9.92 13578.47 ± 9.93
790.7 885.47 ± 0.50 12606.01 ± 9.95 13491.48 ± 9.96
809.5 886.48 ± 0.51 12586.16 ± 9.95 13472.64 ± 9.97
813.8 886.71 ± 0.51 12581.62 ± 9.96 13468.33 ± 9.97
845.4 888.41 ± 0.51 12548.25 ± 9.97 13436.66 ± 9.98
873.7 889.93 ± 0.51 12518.36 ± 9.97 13408.29 ± 9.99
905.7 891.67 ± 0.51 12484.55 ± 9.99 13376.21 ± 10.00
948.0 893.97 ± 0.52 12439.84 ± 10.00 13333.81 ± 10.01
981.0 895.78 ± 0.52 12404.95 ± 10.01 13300.73 ± 10.02
1130.1 904.06 ± 0.53 12247.19 ± 10.06 13151.25 ± 10.07
1176.5 906.67 ± 0.54 12198.05 ± 10.08 13104.72 ± 10.09
1213.0 908.74 ± 0.54 12159.38 ± 10.09 13068.12 ± 10.10
1301.6 913.80 ± 0.55 12065.47 ± 10.12 12979.27 ± 10.13
1367.8 917.63 ± 0.56 11995.25 ± 10.14 12912.88 ± 10.16
1387.4 918.77 ± 0.56 11974.45 ± 10.15 12893.22 ± 10.17
1420.5 920.70 ± 0.56 11939.31 ± 10.16 12860.02 ± 10.18
1434.7 921.54 ± 0.56 11924.24 ± 10.17 12845.78 ± 10.18
1516.6 926.37 ± 0.57 11837.25 ± 10.20 12763.62 ± 10.21

a0 = 13.939883 MeV a1 = −0.944707 a2 = −2.236× 10−3 MeV−1
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Table A.7: Ring 6, for θ ∈ [127◦, 129◦].
Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]

0 847.53 ± 0.45 13436.33 ± 9.91 14283.87 ± 9.92
287.4 861.63 ± 0.48 13134.28 ± 10.00 13995.91 ± 10.01
333.2 863.93 ± 0.48 13086.08 ± 10.01 13950.02 ± 10.03
383.6 866.48 ± 0.48 13033.03 ± 10.03 13899.51 ± 10.04
402.6 867.44 ± 0.48 13013.02 ± 10.04 13880.47 ± 10.05
625.6 878.95 ± 0.50 12778.00 ± 10.11 13656.95 ± 10.12
653.8 880.43 ± 0.50 12748.25 ± 10.12 13628.68 ± 10.13
677.2 881.66 ± 0.51 12723.56 ± 10.12 13605.22 ± 10.14
703.9 883.07 ± 0.51 12695.38 ± 10.13 13578.45 ± 10.15
790.7 887.70 ± 0.52 12603.73 ± 10.16 13491.42 ± 10.18
809.5 888.71 ± 0.52 12583.87 ± 10.17 13472.57 ± 10.18
813.8 888.94 ± 0.52 12579.33 ± 10.17 13468.26 ± 10.18
845.4 890.64 ± 0.52 12545.94 ± 10.18 13436.58 ± 10.19
873.7 892.17 ± 0.52 12516.03 ± 10.19 13408.20 ± 10.20
905.7 893.91 ± 0.53 12482.20 ± 10.20 13376.11 ± 10.21
948.0 896.23 ± 0.53 12437.47 ± 10.22 13333.69 ± 10.23
981.0 898.04 ± 0.53 12402.56 ± 10.23 13300.60 ± 10.24
1130.1 906.34 ± 0.55 12244.71 ± 10.28 13151.05 ± 10.29
1176.5 908.96 ± 0.55 12195.55 ± 10.30 13104.51 ± 10.31
1213.0 911.04 ± 0.55 12156.86 ± 10.31 13067.89 ± 10.32
1301.6 916.12 ± 0.56 12062.89 ± 10.34 12979.00 ± 10.36
1367.8 919.96 ± 0.57 11992.63 ± 10.37 12912.58 ± 10.38
1387.4 921.10 ± 0.57 11971.82 ± 10.37 12892.92 ± 10.39
1420.5 923.04 ± 0.57 11936.66 ± 10.38 12859.70 ± 10.40
1434.7 923.87 ± 0.58 11921.58 ± 10.39 12845.45 ± 10.41
1516.6 928.73 ± 0.58 11834.54 ± 10.42 12763.26 ± 10.44

a0 = 13.926142 MeV a1 = −0.942932 a2 = −2.293× 10−3 MeV−1
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Table A.8: Ring 7, for θ ∈ [125◦, 127◦].
Ex [keV] ∆E [keV] E [KeV] ∆E + E [keV]

0 850.73 ± 0.47 13432.94 ± 10.14 14283.68 ± 10.15
287.4 864.90 ± 0.49 13130.71 ± 10.23 13995.60 ± 10.25
333.2 867.20 ± 0.49 13082.48 ± 10.25 13949.69 ± 10.26
383.6 869.76 ± 0.50 13029.40 ± 10.27 13899.16 ± 10.28
402.6 870.73 ± 0.50 13009.38 ± 10.27 13880.11 ± 10.28
625.6 882.29 ± 0.52 12774.21 ± 10.35 13656.49 ± 10.36
653.8 883.77 ± 0.52 12744.44 ± 10.36 13628.21 ± 10.37
677.2 885.01 ± 0.52 12719.73 ± 10.36 13604.74 ± 10.38
703.9 886.43 ± 0.52 12691.53 ± 10.37 13577.96 ± 10.39
790.7 891.08 ± 0.53 12599.82 ± 10.40 13490.90 ± 10.42
809.5 892.09 ± 0.53 12579.95 ± 10.41 13472.04 ± 10.42
813.8 892.32 ± 0.53 12575.41 ± 10.41 13467.73 ± 10.43
845.4 894.03 ± 0.54 12542.00 ± 10.42 13436.03 ± 10.44
873.7 895.57 ± 0.54 12512.07 ± 10.43 13407.64 ± 10.45
905.7 897.32 ± 0.54 12478.22 ± 10.44 13375.54 ± 10.46
948.0 899.64 ± 0.54 12433.46 ± 10.46 13333.10 ± 10.47
981.0 901.46 ± 0.55 12398.52 ± 10.47 13299.99 ± 10.49
1130.1 909.80 ± 0.56 12240.57 ± 10.53 13150.38 ± 10.54
1176.5 912.44 ± 0.57 12191.37 ± 10.54 13103.81 ± 10.56
1213.0 914.52 ± 0.57 12152.66 ± 10.56 13067.18 ± 10.57
1301.6 919.62 ± 0.58 12058.63 ± 10.59 12978.25 ± 10.61
1367.8 923.48 ± 0.59 11988.32 ± 10.62 12911.80 ± 10.63
1387.4 924.63 ± 0.59 11967.49 ± 10.62 12892.12 ± 10.64
1420.5 926.58 ± 0.59 11932.31 ± 10.64 12858.89 ± 10.65
1434.7 927.42 ± 0.59 11917.22 ± 10.64 12844.64 ± 10.66
1516.6 932.29 ± 0.60 11830.11 ± 10.67 12762.41 ± 10.69

a0 = 13.910267 MeV a1 = −0.940922 a2 = −2.358× 10−3 MeV−1
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Appendix B

EMPIRE estimation of the relative
amount of levels populated by
nuclear reaction

EMPIRE[126] is a “modular system of nuclear reaction codes for advanced modeling of
nuclear reactions using various theoretical models. It consists of a number of FORTRAN
codes, input parameter libraries, and experimental data library (EXFOR/CSISRS)”1.

Simultaneous extraction of the level density and γ-ray strength function is performed
by analyzing coincident particle-γ data from charged particle reaction using the Oslo
method [5, 132]. Recent measurements in the actinides revealed normalization issues
when the (d, p) reaction is used [8, 114, 123]. The γ-ray strength function extracted below
the neutron separation energy, supposing that all spins are populated in the residual
nucleus, is not realistic and cannot match previously measured values above the neutron
separation energy. More realistic results are obtained assuming that not all spins are
populated and extracting the γ-ray strength function using a reduced level density.

In order to estimate the relative level population, the EMPIRE code is used to estimate
the spin distribution left in the residual nucleus after charged particle reactions. The
EMPIRE code has been modified by incorporating the spin dependent level density from
Ref. [17] and Ref. [19]. Population of residual nuclei are compared to their intrinsic spin
distribution to extract the ratio of level populated for some La isotopes and actinides. No
effort was put into reproducing experimental cross section data.

B.1 Spin dependent level density
A phenomenological model is used to describe the level density ρ as a function of the

excitation energy, Ex, the nuclear spin, J , and parity, π, assuming that the following
1http://www.nndc.bnl.gov/empire/main.html



101

separable form holds:
ρ(Ex, J, π) = 1

2ρ(Ex)f(J). (B.1)

The parity dependence is neglected. Our main focus is the population at the neutron
separation energy where the parity dependence should be small. The distribution of
different magnetic states is given by Ref. [14]:

ρ(Ex,M) = ρ(Ex)
exp (−M2/2σ2)

σ
√

2π
, (B.2)

where σ is the spin cutoff parameter.
In the absence of an external field, only levels of different spin J can be observed.

The magnetic states of quantum number, M , are degenerate. As suggested by Refs. [14,
20], states like |J + 1,M = J + 1〉 and |J + 1,M = J〉 are degenerate. To avoid double
counting, we notice that the expression ρ(M = J) − ρ(M = J + 1) give the number of
states |J,M = J〉, which corresponds to f(J). Using a Taylor expansion, the following
expression is used for f(J):

f(J) = exp (−J2/2σ2)− exp (−(J+1)2/2σ2) ≈ 2J + 1
2σ2 exp

(
−(J+ 1

2)2
/2σ2

)
. (B.3)

The Back-Shifted Fermi Gas (BSFG) model [20] gives the energy dependence of the level
density:

ρ(Ex) =
exp

(
2
√
a [Ex − E1]

)
12
√

2σa1/4 (Ex − E1)5/4
, (B.4)

where a is the level density parameter and E1 the energy back-shift. Egidy and Bucurescu
published systematics of the level density parameters for nuclei between 18F and 251Cf [17,
18, 19].

B.2 Additions to the EMPIRE code
Two new spin dependent level density distributions have been added to the Empire2

code [126]. Following the parametrization from Refs. [17, 18], the energy dependent level
density parameter is given by:

a(Ex) = ã

[
1 + S(Z,N)−∆

Ex − E1
(1− exp {−γ(Ex − E1)})

]
, (B.5)

where ã is the asymptotic level density parameter, S(Z,N) is a shell correction term, ∆
is a pairing term and γ is set to 0.06 MeV−1. The spin cutoff parameter is given by the

2Modifications have been made from the version 3.2 (Malta).
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following parametrization:

σ2 = 0.0146A5/3
1 +

√
1 + 4a(Ex − E1)

2a , (B.6)

where A is the mass number.
The second parametrization used is taken from Ref. [19]. The level density parameter

is not energy dependent and the spin cutoff parameter is given by:

σ2 = 0.391A0.675(Ex − E1 − 0.381)0.312. (B.7)

The two parametrizations can be called chosen the keyword LEVDEN (5 and 6 respec-
tively). The second parametrization gives consistently a lower spin cutoff parameter. It
is more suitable for light nuclei, while the first parametrization should be used for heavier
nuclei, especially actinides.

The following changes have been made to the EMPIRE code:

• The data files mass.mas03, rct2.mas03 and rct7.mas03 available in the Oslo software
package have to be added to $EMPIRE/data/egidy03

• main.f: The subroutine ReadEgidy is called. It will load the data files mass.mas03,
rct2.mas03 and rct7.mas03 into matrices that will be used to calculate the different
level density parameters.

• input.f: Modifications allowing to call for the two parametrizations above using the
LEVDEN keyword.

• Egidy.f: contains the subroutines ReadEgidy, reading the data tables, RO_EGIDY
calculating the spin dependent level density for the parametrization from Refs. [17,
18] and RO_EGIDY2009 calculating the spin dependent level density using the
parametrization from Ref. [19]. Both RO_EGIDY and RO_EGIDY2009 fill the
level density matrix RO(Ex, J, π,Nnuc) used later by EMPIRE to calculate the
population in the residual nucleus. Nnuc represents the nucleus id number.

B.3 Spin population following charged particle reac-
tion

Measurement of the statistical properties of the nuclei, such as the nuclear level density
and γ-ray strength function are key inputs for calculations of nuclear cross sections within
the framework of the statistical model. The Oslo method [5, 132] allows extraction of
the functional form of the level density and γ-ray strength function. The level density
is normalized by matching the data points to known discrete levels at low energy and
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estimated level density at the neutron separation energy from neutron-resonance spacing
data using the formula[5]:

ρ(Sn) = 2σ2

D0
· 1

(It + 1) exp [−(It + 1)2/2σ2] + It exp [−I2
t /2σ2] , (B.8)

where σ is the spin-cutoff parameter, D0 is the neutron resonance spacing, and It is the
spin of the target nucleus. The following intrinsic spin distribution is assumed [113]:

g(Ex, J) = 2J + 1
2σ2(Ex)

exp
[
−(J + 1/2)2/2σ2(Ex)

]
, (B.9)

where J is the spin of the nucleus considered. Recent measurements in the actinides
revealed normalization issues when the (d, p) reaction is used [8, 114, 123]. The γ-ray
strength function extracted below the neutron separation energy, assuming that all spins
are populated in the residual nucleus, is not realistic and cannot match previously mea-
sured values above the neutron separation energy. More realistic results are obtained as-
suming that not all spins are populated and extracting the γ-ray strength function using
a reduced level density. The EMPIRE code [126] is used to estimate the spin distribution
populated in the residual nucleus after charged particle reaction. EMPIRE outputs the
cross section to populate each spin as a function of the excitation energy of the residual
nucleus following a charged particle induced reaction. This distribution is normalized to
the intrinsic spin distribution from Eq.(B.9). The reduction factor, i.e. the fraction of the
intrinsic spin populated is calculated assuming that there is at least one spin for which
all levels are populated by the reaction. In the following, the reduction factor, fred, is
estimated for the two parametrizations presented above.

No effort has been made in reproducing reaction cross sections. The only changes from
a default run is the changes in the level density calculation including the spin distribution.

B.3.1 Reactions on 139La
The following reactions: (d, p), (3He,3He), and (3He, α), on a 139La target, were mea-

sured at the Oslo Cyclotron Laboratory [133]. The beam energy was 13.5 MeV for deu-
terium and 38 MeV for the 3He beam.

Figures B.1, B.2, and B.3 show the intrinsic spin distribution at the neutron separation
energy (black squares) and the populated spin distribution calculated with EMPIRE (red
crosses). The calculated population is normalized to the intrinsic population by supposing
that there is one spin for which all levels are populated. Calculations are run for the two
different parametrizations proposed by Egidy and Bucurescu. The parametrization from
Ref. [17] has a spin cutoff parameter that is systematically higher than the parametriza-
tion from Ref. [19], and should be more appropriate for heavier nuclei for actinide and
lanthanide. The parametrization from Ref. [19] is used here as a lower limit for the spin
cutoff parameter. While the reduction factor is very similar for the (d, p) reaction, 3He
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induced reactions populates higher spins and the intrinsic spin distribution from Ref. [19]
is too narrow. The normalization point is then situated on the high spin tail of the spin
distribution which increases the sensitivity of the reduction factor.

Table B.1 gives the reduction factors for the different reactions. No estimation is
given for 3He induced reactions using the parametrization from Ref [19] because no proper
normalization is possible.
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(a) Ref. [17] parametrization.
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(b) Ref. [19] parametrization.
Figure B.1: 140La intrinsic spin distribution at the neutron separation energy (black
squares) for the two different parametrizations presented above. The populated spin dis-
tribution following a (d, p) reaction at Ex = Sn is calculated with the EMPIRE code [126]
and normalized to the intrinsic spin distribution.
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(a) Ref. [17] parametrization.
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Figure B.2: 139La intrinsic spin distribution at the neutron separation energy (black
squares) for the two different parametrizations presented above. The populated spin
distribution following a (3He,3He) reaction at Ex = Sn is calculated with the EMPIRE
code [126] and normalized to the intrinsic spin distribution. Using the parametrization
from Ref. [19], the spin cutoff parameter for the intrinsic spin distribution is too small.
The EMPIRE output suggests that the intrinsic spin distribution is not broad enough, or
that only very few levels are populated.
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(a) Ref. [17] parametrization.
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(b) Ref. [19] parametrization.
Figure B.3: 138La intrinsic spin distribution at the neutron separation energy (black
squares) for the two different parametrizations presented above. The populated spin
distribution following a (3He,α) reaction at Ex = Sn is calculated with the EMPIRE
code [126] and normalized to the intrinsic spin distribution. Using the parametrization
from Ref. [19], the spin cutoff parameter for the intrinsic spin distribution is too small.
The EMPIRE output suggests that the intrinsic spin distribution is not broad enough, or
that only very few levels are populated.
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Table B.1: Reduction factors calculated using EMPIRE for the different reaction on the
139La target.

Residual nucleus Reaction Sn fred
a fred

b

140La (d, p) 5.16 0.68 0.71
139La (3He,3He) 8.78 0.73 /
138La (3He,α) 7.45 0.58 /

afrom Ref [17]
bfrom Ref [19]

B.3.2 Reactions on actinides
Several actinides have recently been studied [6, 8, 123, 114]. FiguresB.4 and B.5 show

the intrinsic spin distribution and the population following a (d, p) reaction on several
actinides. The relative number of populated states using the spin cutoff parameter from
Ref. [19] is systematically higher than using Ref. [17]. The reduction factors used to
extract the γ-ray strength function of 233Th, 239U and 238Np in Ref. [8, 114] are between
the minimum value set by Ref. [17] and Ref. [19], which could be used as higher and lower
limits for the calculated reduction factors.

FigureB.6 compares population following (d, d′) and (3He,3He′) reactions. The (3He,3He′)
reaction populates a broader range of spin and therefore has a higher ratio of populated
states. The published estimated reduction factor are in better agreement with Ref. [19]
but systematically higher than the calculated population. Calculated populations on U
isotopes following (d, d′) and (d, t) reactions, shown in FigureB.7, are also lower than pub-
lished results from Ref. [8]. In Ref. B.8, 3He induced reactions were assumed to populate
all available levels. Calculated values suggests that at least 57 of the levels are populated.
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(a) 233Th(a).
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(b) 233Th(b).
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(c) 239U(a).

)hNuclear Spin (
0 5 10 15 20 25

R
e
la

ti
v
e
 i
n

te
n

s
it

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 Intrinsic spin distribution 

 Populated spin distribution 

(d) 239U(b).
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(e) 237Np(a).
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(f) 237Np(b).
Figure B.4: Comparison of the intrinsic spin distribution at the neutron separation energy
(black squares) to the calculated population following (d, p) reactions (red stars), for two
spin-cutoff parameters from Ref. [17] (a) and Ref. [19] (b).
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(a) (3He,α)231Th(a).
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(b) (3He,α)231Th(b).
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(c) (3He,d)233Pa(a).
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(d) (3He,d)233Pa(b).
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(e) (3He,t)232Pa(a).
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(f) (3He,t)232Pa(b).
Figure B.8: Comparison of the intrinsic spin distribution at the neutron separation energy
(black squares) to the calculated population following 3He induced reactions on 232Th, for
two spin-cutoff parameters from Ref. [17] (a) and Ref. [19] (b).
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(a) 240Pu(a).
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(b) 240Pu(b).
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(c) 243Pu(a).

)hNuclear Spin (
0 5 10 15 20 25

R
e
la

ti
v
e
 i
n

te
n

s
it

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 Intrinsic spin distribution 

 Populated spin distribution 

(d) 243Pu(b).
Figure B.5: Comparison of the intrinsic spin distribution at the neutron separation energy
(black squares) to the calculated population following (d, p) reactions (red stars), for two
spin-cutoff parameters from Ref. [17] (a) and Ref. [19] (b), for 240Pu and 243Pu.
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(a) 232Th(a).
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Figure B.6: Comparison of the intrinsic spin distribution at the neutron separation energy
(black squares) to the calculated population following (d, d′) (red stars) and (3He,3He’)
(blue stars) reactions on 232Th, for two spin-cutoff parameters from Ref. [17] (a) and
Ref. [19] (b).

Variation of the population ratio as a function of the spin cutoff parameters

The difference of spin cutoff parameters between Ref. [17] and Ref. [19] is impor-
tant. Calculations have been made by reducing the spin cutoff parameter, σ2

R, from
Equation (B.6), introducing a reduction factor R:

σ2
R = R2 × 0.0146A5/3

1 +
√

1 + 4a(Ex − E1)
2a = R2σ2

EB06, (B.10)

where σ2
EB06 is the spin cutoff parameter calculated with the parametrization from Ref.[17].

FigureB.9 shows the ratio of spin populated as a function of R at Ex = Sn. For (d, p)243Pu
and (3He,d)233Pa, the relative spin population is monotonically increasing while reducing
the spin cutoff parameter, but this isn’t the case for (3He,t)232Pa. For this reason, the
relative populations obtained from Ref.[17] and Ref.[19] parametrizations cannot be taken
as extrema without caution.

Beam energy dependence

With increasing beam energy, more units of spin can be transferred. The (d, p) re-
action on actinides fails to populate the high spin tail of the intrinsic spin distribution.
FigureB.10 shows the increase in the relative spin population for (d, p)243Pu as a function
of the beam energy, using the spin cutoff parameter from Ref [17].
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(a) 238U(a).
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(b) 238U(b).
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(c) 237U(a).
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(d) 237U(b).
Figure B.7: Comparison of the intrinsic spin distribution at the neutron separation energy
(black squares) to the calculated population following (d, d′) and (d, t) reactions on 238U,
for two spin-cutoff parameters from Ref. [17] (a) and Ref. [19] (b).
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Figure B.9: Variation of the relative spin population as a function of the fraction of spin
cutoff from Ref [17].
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Figure B.10: Evolution of the relative spin population as a function of the beam energy
using the spin cutoff parameter from Ref [17].

B.4 Conclusion
The Empire code has been modified in order to calculate relative spin population

following charged particle reactions with the spin dependent level density parametrization
from Ref[17] and Ref.[19]. As expected in Ref.[8, 114, 123], (d, p) reactions do no populate



114

all available levels in the actinides and a correction needs to be taken into account to
extract the γ-ray strength function using the Oslo method [5].

Better knowledge of the spin cutoff parameter would allow to constrain the range of
acceptable values for the relative population of the residual nuclei. Confirmation of the
results by an independent method would bring confidence in the calculation and allow for
uncertainty estimation.
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B.5 Egidy.f
Egidy.f is the file that contains the subroutine ReadEgidy reading the data tables

contains the parameters to calculate the spin dependent level density described in Refs.[17,
18, 19]. RO_EGIDY calculates the spin dependent level density for the parametrization
from Refs. [17, 18] and RO_EGIDY2009 calculates the spin dependent level density for
the parametrization from Ref. [19]. Both RO_EGIDY and RO_EGIDY2009 fill the level
density matrix RO(Ex, J, π,Nnuc) used later by EMPIRE to calculate the population in
the residual nucleus. Nnuc represents the nucleus id number.

1

2 SUBROUTINE ReadEgidy
3 % COMMON/mas03/Zo(3200),Ao(3200),Elo(3200),Mexpo(3200),
4 & dMexpo(3200),iio(0:511,0:511)
5 COMMON/rct2/Sno(3200),dSno(3200),Spo(3200),dSpo(3200)
6 COMMON/rct7/Pdo(3200),dPdo(3200),Pno(3200),dPno(3200),
7 & Ppo(3200),dPpo(3200)
8 REAL Mexpo, dMexpo, S_primeo,Pa_primeo
9 CHARACTER Elo∗3,dum1o∗1,dum3o∗3,dum4o∗4,dumo,filnamo∗255

10 CHARACTER∗64 empiredir
11 INTEGER Zo,Ao,iio,Z0,A0,N0,ieo,idumo
12 DOUBLE PRECISION So,dSo, Pdo, dPdo
13 isig = 4
14 itemp = 1
15 Exx = −1.
16 sig2 = −1.
17 CALL GETENV (’EMPIREDIR’, empiredir)
18 WRITE(6,∗)’Reading␣file␣mass.mas03’
19 OPEN(20,ERR=98,FILE=trim(empiredir)//’/data/egidy03’
20 & //’/mass.mas03’, STATUS=’old’)
21 DO i=1,39
22 READ(20,7,ERR=99)dum
23 7 FORMAT(A1)
24 ENDDO
25 DO i=1,3200
26 READ(20,11,END=12,ERR=99)dum1o,idumo,idumo,Zo(i),Ao(i),
27 & Elo( i ) ,dum4o,Mexpo(i),dMexpo(i)
28 11 FORMAT(a1,i3,i5,i5,i5,1x,a3,a4,1x, f13 .5, f11 .5)
29 iio (Ao(i) ,Zo(i))=i
30 ENDDO
31 12 CONTINUE
32 WRITE(6,∗)’Number␣of␣nuclei␣read␣is’,i−1,
33 & ’␣with␣ last␣(A,Z)␣=␣(’, Ao(i−1),’ , ’ ,Zo(i−1),’) ’
34 WRITE(6,∗)’Reading␣file␣rct2␣’
35 OPEN(21,ERR=98,FILE=trim(empiredir)//’/data/egidy03’
36 & //’/rct2 .mas03’, STATUS=’old’)
37 DO i=1,39
38 READ(21,7,ERR=99)dumo
39 ENDDO
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40 DO i=1,3200
41 READ(21,13,END=14,ERR=99)dum1o,idumo,dum3o,idumo,Sno(i),
42 & dSno(i) ,Spo(i) ,dSpo(i)
43 13 FORMAT(a1,i3,1x,a3,i3,1x,2(f10.2, f8 .2) )
44 ENDDO
45 14 CONTINUE
46 WRITE(6,∗)’Number␣of␣nuclei␣read␣is’,i−1,
47 & ’␣with␣ last␣(A,Z)␣=␣(’,Ao(i−1),’, ’ ,Zo(i−1),’) ’
48 WRITE(6,∗)’Reading␣file␣rct7␣’
49 OPEN(22,ERR=98,FILE=trim(empiredir)//’/data/egidy03’
50 & //’/rct7 .mas03’, STATUS=’old’)
51 DO i=1,39
52 READ(22,7,ERR=99)dumo
53 ENDDO
54 DO i=1,3200
55 READ(22,15,END=16,ERR=99)dum1o,idumo,dum3o,idumo,Pdo(i),
56 & dPdo(i),Pno(i) ,dPno(i),Ppo(i),dPpo(i)
57 15 FORMAT(a1,i3,1x,a3,i3,1x,3(f10.2, f8 .2) )
58 ENDDO
59 16 CONTINUE
60 WRITE(6,∗)’Number␣of␣nuclei␣read␣is’,i−1,
61 & ’␣with␣ last␣(A,Z)␣=␣(’,Ao(i−1),’, ’ ,Zo(i−1),’) ’
62 WRITE(6,∗)’␣’
63 WRITE(6,∗)’Check␣that␣the␣same␣number␣of␣nuclei␣is␣read.’
64 WRITE(6,∗)’(If␣not,␣mismatch␣will␣give␣wrong␣results .) ’
65 GOTO 102
66 98 WRITE(6,∗)’Error␣during␣opening␣file’ C STOP 99 WRITE(6,101)i
67 101 FORMAT(’Error␣during␣reading␣line:␣’,I4)
68 102 END
69

70 SUBROUTINE RO_EGIDY(NNuc)
71 CCC
72 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
73 CCC ∗ CLASS:PPU∗
74 CCC ∗ RO_EGIDY ∗
75 CCC ∗ ∗
76 CCC ∗ ∗
77 CCC ∗ CALCULATES TABLE OF ENERGY AND SPIN DEPENDENT LEVEL DENSITIES ∗
78 CCC ∗ FROM EGIDY AND BUCURESCU 2006 ∗
79 CCC ∗ Phys. Rev. C 72, 044311 − Published 27 October 2005; ∗
80 CCC ∗ Erratum Phys. Rev. C 73, 049901 (2006) ∗
81 CCC ∗ ∗
82 CCC ∗ INPUT: ∗
83 CCC ∗ NNUC − index of the nucleus ∗
84 CCC ∗ ∗
85 CCC ∗ OUTPUT:RO(.,.,NNUC) − LEVEL DENSITIES ∗
86 CCC ∗ ∗
87 CCC ∗ ∗
88 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
89 INCLUDE ’dimension.h’
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90 INCLUDE ’global.h’
91 COMMON/mas03/Zo(3200),Ao(3200),Elo(3200),Mexpo(3200),
92 & dMexpo(3200),iio(0:511,0:511)
93 COMMON/rct2/Sno(3200),dSno(3200),Spo(3200),dSpo(3200)
94 COMMON/rct7/Pdo(3200),dPdo(3200),Pno(3200),dPno(3200),
95 & Ppo(3200),dPpo(3200)
96 REAL Mexpo, dMexpo, S_primeo,Pa_primeo
97 CHARACTER Elo∗3,dum1o∗1,dum3o∗3,dum4o∗4,dumo,filnamo∗255
98 INTEGER Zo,Ao,iio,Z0,A0,N0,ieo,idumo,io
99 DOUBLE PRECISION So,dSo, Pdo, dPdo

100 REAL Eex ! excitation energy
101 DOUBLE PRECISION aa, a_asympt, roU, roJ, roPi, Temp, scof2
102 C
103 C FROM ROEMP
104 C COMMON variables
105 C
106 REAL∗8 TCRt, ECOnd, ACRt, UCRt, DETcrt, SCR, ACR, ATIl ! CRIT
107 REAL∗8 AP1, AP2, GAMma, DEL, DELp, BF, A23, A2 ! PARAM
108 INTEGER NLWst ! PARAM
109 COMMON /CRIT / TCRt, ECOnd, ACRt, UCRt, DETcrt, SCR, ACR, ATIl
110 COMMON /PARAM / AP1, AP2, GAMma, DEL, DELp, BF, A23, A2, NLWst
111 C
112 C Dummy arguments
113 C
114 INTEGER Nnuc
115 C
116 C Local variables
117 C
118 REAL∗8 aj, defit , dshif , dshift , ellq , pi2 , rotemp, Ecrt
119 REAL FLOAT
120 INTEGER iz, kk, nplot
121 INTEGER INT
122 pi2 = PI∗PI
123 dshift =0.0d0
124 C A, Z, N of nucleus
125 A0 = INT(A(Nnuc))
126 Z0 = INT(Z(Nnuc))
127 A23 = A(Nnuc)∗∗0.666667d0
128 C check if the nucleus is even−even/odd−even/odd−odd N0=A0−Z0
129 IF((N0/2)∗2.EQ.N0.AND.(Z0/2)∗2.EQ.Z0)ieo=0 ! even−even nucleus
130 IF((N0/2)∗2.NE.N0.AND.(Z0/2)∗2.EQ.Z0)ieo=1 ! even−Z odd−N
131 IF((N0/2)∗2.EQ.N0.AND.(Z0/2)∗2.NE.Z0)ieo=2 ! odd−Z even−N
132 IF((N0/2)∗2.NE.N0.AND.(Z0/2)∗2.NE.Z0)ieo=3 ! odd−odd nucleus
133 io=iio(A0,Z0)
134 C pariring correction Sprime from Eq (10) and (11)
135 C backshifted Energy parameter E1 from (14) or (16) see Correction for pi parameters
136 IF( ieo .EQ.0)THEN
137 E1= −0.48 −0.5∗(Pdo(io)/1000.) + 0.29∗dSo
138 Sprime=So−0.5∗(Pdo(io)/1000.)
139 ENDIF
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140 IF( ieo .EQ.1)THEN
141 E1= −0.57 −0.5∗(Pdo(io)/1000.) + 0.70∗dSo
142 Sprime=So
143 ENDIF
144 IF( ieo .EQ.2)THEN
145 E1= −0.57 +0.5∗(Pdo(io)/1000.) − 0.70∗dSo
146 Sprime=So
147 ENDIF
148 IF( ieo .EQ.3)THEN
149 E1= −0.24 +0.5∗(Pdo(io)/1000.) + 0.29∗dSo
150 Sprime=So+0.5∗(Pdo(io)/1000.)
151 ENDIF
152 C for energy independent level density parameter BSFG
153 C aa=FLOAT(A0)∗(0.127 + 4.98E−03∗Sprime −8.95E−05∗FLOAT(A0))
154 C for energy dependent level density parameter BSFG−ED, aa will be the asymptotic level density

parameter
155 a_asympt=FLOAT(A0)∗(0.127 −8.95E−05∗FLOAT(A0))
156 C calculating the level density as a function of the excitation energy
157 DO kk = 1, NEX(Nnuc)
158 Eex = EX(Kk,Nnuc)
159 U=Eex−E1
160 C calculation of the level density parameter from its asymptotic value from Eq(5)
161 aa = a_asympt∗(1 + Sprime/(Eex−E1)∗(1−exp(−0.06∗(Eex−E1))))
162 C gamma taken to be 0.06 Mev−1
163 Temp=(1.+sqrt(1.+4.∗aa∗(Eex−E1)))/(2.∗aa)
164 scof2=0.0146∗A0∗∗(5./3.)∗Temp
165 roPi=0.5
166 roU=exp(2.∗SQRT(aa∗U))/(aa∗∗(1./4.)∗(U∗∗(5./4.)))
167 roU=roU/(12.∗sqrt(2.)∗2.)
168 DO i = 1, NLW
169 Aj = REAL(i) + HIS(Nnuc)
170 roJ=(2.∗Aj+1.)/scof2∗∗1.5
171 & ∗exp(−(Aj+1/2.)∗∗2/(2.∗scof2))
172 rotemp=roPi∗roU∗roJ
173 RO(Kk,i,1,Nnuc) = rotemp
174 RO(Kk,i,2,Nnuc) = rotemp
175 ENDDO
176 ENDDO
177 RETURN
178 END
179

180

181

182 SUBROUTINE RO_EGIDY2009(NNuc)
183 CCC
184 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
185 CCC ∗ CLASS:PPU∗
186 CCC ∗ RO_EGIDY ∗
187 CCC ∗ ∗
188 CCC ∗ ∗
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189 CCC ∗ CALCULATES TABLE OF ENERGY AND SPIN DEPENDENT LEVEL DENSITIES ∗
190 CCC ∗ FROM EGIDY AND BUCURESCU 2009 ∗
191 CCC ∗ Phys. Rev. C 80, 054310 ∗
192 CCC ∗ ∗
193 CCC ∗ INPUT: ∗
194 CCC ∗ NNUC − index of the nucleus ∗
195 CCC ∗ ∗
196 CCC ∗ OUTPUT:RO(.,.,NNUC) − LEVEL DENSITIES ∗
197 CCC ∗ ∗
198 CCC ∗ ∗
199 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
200 INCLUDE ’dimension.h’
201 INCLUDE ’global.h’
202

203 COMMON/mas03/Zo(3200),Ao(3200),Elo(3200),Mexpo(3200),
204 & dMexpo(3200),iio(0:511,0:511)
205 COMMON/rct2/Sno(3200),dSno(3200),Spo(3200),dSpo(3200)
206 COMMON/rct7/Pdo(3200),dPdo(3200),Pno(3200),dPno(3200),
207 & Ppo(3200),dPpo(3200)
208 REAL Mexpo, dMexpo, S_primeo,Pa_primeo
209 CHARACTER Elo∗3,dum1o∗1,dum3o∗3,dum4o∗4,dumo,filnamo∗255
210 INTEGER Zo,Ao,iio,Z0,A0,N0,ieo,idumo,io
211 DOUBLE PRECISION So,dSo, Pdo, dPdo
212 REAL Eex ! excitation energy
213 DOUBLE PRECISION aa, a_asympt, roU, roJ, roPi, Temp, scof2
214 C
215 C COMMON variables
216 C
217 REAL∗8 TCRt, ECOnd, ACRt, UCRt, DETcrt, SCR, ACR, ATIl ! CRIT
218 REAL∗8 AP1, AP2, GAMma, DEL, DELp, BF, A23, A2 ! PARAM
219 INTEGER NLWst ! PARAM
220 COMMON /CRIT / TCRt, ECOnd, ACRt, UCRt, DETcrt, SCR, ACR, ATIl
221 COMMON /PARAM / AP1, AP2, GAMma, DEL, DELp, BF, A23, A2, NLWst
222 INTEGER Nnuc
223 C
224 C Local variables
225 C
226 REAL∗8 aj, defit , dshif , dshift , ellq , pi2 , rotemp, Ecrt
227 REAL FLOAT
228 INTEGER iz, kk, nplot
229 INTEGER INT
230 pi2 = PI∗PI
231 dshift =0.0d0
232 C A, Z, N of nucleus
233 A0 = INT(A(Nnuc))
234 Z0 = INT(Z(Nnuc))
235 A23 = A(Nnuc)∗∗0.666667d0
236

237 C check if the nucleus is even−even/odd−even/odd−odd
238 N0=A0−Z0
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239 IF((N0/2)∗2.EQ.N0.AND.(Z0/2)∗2.EQ.Z0)ieo=0 ! even−even nucleus
240 IF((N0/2)∗2.NE.N0.AND.(Z0/2)∗2.EQ.Z0)ieo=1 ! even−Z odd−N
241 IF((N0/2)∗2.EQ.N0.AND.(Z0/2)∗2.NE.Z0)ieo=2 ! odd−Z even−N
242 IF((N0/2)∗2.NE.N0.AND.(Z0/2)∗2.NE.Z0)ieo=3 ! odd−odd nucleus
243 io=iio(A0,Z0)
244

245 C VALUES FROM E&B2009
246 Pa_prime = Pdo(io)/1000.
247 IF( ieo .EQ.0.OR.ieo.EQ.1)Pa_prime = −Pdo(io)/1000. ! See page 3 of E&B2009
248 S_prime = REAL(So) + 0.5 ∗ Pa_prime !Eq. (11) E&B2009
249 aa = (0.199 + 0.0096∗S_prime)∗FLOAT(A0)∗∗0.869
250 E1 = −0.381 + 0.5 ∗Pa_prime
251 C calculating the level density as a function of the excitation energy
252 DO kk = 1, NEX(Nnuc)
253 Eex = EX(Kk,Nnuc)
254 U=Eex−E1
255 Temp=(1.+sqrt(1.+4.∗aa∗(Eex−E1)))/(2.∗aa)
256 scof2=0.391 ∗(FLOAT(A0)∗∗(0.675))∗(U−(E1+0.381))∗∗0.312
257 roPi=0.5
258 roU=exp(2.∗SQRT(aa∗U))/(aa∗∗(1./4.)∗(U∗∗(5./4.)))
259 roU=roU/(12.∗sqrt(2.)∗2.)
260 DO i = 1, NLW
261 Aj = REAL(i) + HIS(Nnuc)
262 roJ=(2.∗Aj+1.)/scof2∗∗1.5
263 & ∗exp(−(Aj+1/2.)∗∗2/(2.∗scof2))
264 rotemp=roPi∗roU∗roJ
265 RO(Kk,i,1,Nnuc) = rotemp
266 RO(Kk,i,2,Nnuc) = rotemp
267 ENDDO
268 ENDDO
269 RETURN
270 END
271

272

273

274

275 SUBROUTINE ShellCorr(So,A0,Z0)
276 CCC
277 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
278 CCC ∗ ∗
279 CCC ∗ Calculates the Shell correction S(Z,N) from Eq. (7),(9) from ∗
280 CCC ∗ FROM EGIDY AND BUCURESCU 2006 ∗
281 CCC ∗ Phys. Rev. C 72, 044311 − Published 27 October 2005; ∗
282 CCC ∗ Erratum Phys. Rev. C 73, 049901 (2006) ∗
283 CCC ∗ ∗
284 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
285 COMMON/mas03/Zo(3200),Ao(3200),Elo(3200),Mexpo(3200),
286 & dMexpo(3200),iio(0:511,0:511)
287 REAL Mexpo, dMexpo
288 DOUBLE PRECISION Mn,Mp,u,eps0,e2,rZ,rA,rN,r0,avol,asf,asym,
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289 & ass ,Eb_on_A,pi,So,Mtheo
290 CHARACTER Elo∗3
291 INTEGER Zo,Ao,Z0,A0,iio
292 i=iio(A0,Z0)
293 rZ=FLOAT(Z0)
294 rA=FLOAT(A0)
295 rN=rA−rZ
296 u= 931.494043
297 Mn= (8071.323/1000.)+u
298 Mp= (7288.969/1000.)+u
299 pi=ACOS(−1.)
300 avol=−15.65
301 asf=17.63
302 asym=27.72
303 ass=−25.60
304 r0=1.233
305 e2=(1.60217653E−19)∗∗2 ! e∗∗2 in units of C∗∗2
306 eps0=8.854187817E−12 ! epsilon_0 in units of F/m
307 e2=e2/(4.∗pi∗eps0)
308 e2=e2∗6.24150947E+12
309 e2=e2∗(1.E+15)
310 Eb_on_A=−(avol+(asf∗(rA∗∗(−1./3.)))+((3.∗e2)/(5.∗r0))
311 & ∗(rZ∗∗2)∗(rA∗∗(−4./3.))+(asym+ass∗(rA∗∗(−1./3.)))
312 & ∗((rN−rZ)/rA)∗∗2)
313 Mtheo = rN∗Mn + rZ∗Mp − rA∗(Eb_on_A +u)
314 So = (Mexpo(i)/1000.)−Mtheo
315 RETURN
316 END
317

318 SUBROUTINE dSdA(dSo,A0,Z0)
319 CCC
320 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
321 CCC ∗ ∗
322 CCC ∗ Calculates the derivative of the Shell correction S(Z,N) with ∗
323 CCC ∗ respect to the number of nucleons A, from Eq. (12) from ∗
324 CCC ∗ FROM EGIDY AND BUCURESCU 2006 ∗
325 CCC ∗ Phys. Rev. C 72, 044311 − Published 27 October 2005; ∗
326 CCC ∗ Erratum Phys. Rev. C 73, 049901 (2006) ∗
327 CCC ∗ ∗
328 CCC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
329 INTEGER A0,Z0
330 DOUBLE PRECISION S1,S2,dSo
331 CALL ShellCorr(S1,A0+2,Z0+1)
332 CALL ShellCorr(S2,A0−2,Z0−1)
333 dSo=(1./4.)∗(S1−S2)
334 RETURN
335 END
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Appendix C

TALYS calculations of the 242Pu(n, γ)
cross section

C.1 Default input
The default TALYS input is given below. The average neutron resonance spacing pa-

rameter D0 and the average radiative capture width Γγ calculated by TALYS do not re-
produce experimentally measured data. A normalization factor described in Section5.6.3,
Gnorm = 3.22, is introduced in order to reproduce the average radiative capture width
Γγ. By default, Talys tries to reproduce the RIPL-3 [25] tabulated D0 = 13.5(15) eV and
Γγ = 25(4) meV.

Table C.1: Default TALYS output of the D0 and Γγ parameters.
D0 Γγ
(eV) (meV)

TALYS 12.7 7.8
Experimental 13.5(15)a 25(4)a

aReference [25].

1 # # TALYS INPUT FILE
2 # 242Pu(n,g)243Pu
3

4 # description of the reaction
5 projectile n
6 element pu
7 mass 242
8 # list of energies for which we want the cross sections
9 energy energies . txt

10

11 # outputs to be printed in the output file
12 outlevels y
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13 outdensity y
14 outgamma y
15 astro n

C.2 The use of experimentally measured level den-
sity and γ-ray strength function

Several level density models are available in TALYS via the ldmodel keyword. In
order to use our experimentally measured level density, ldmodel 4, which calls Goriely’s
tables, is used. The level density tables are available in the directory:
$TALYS$/structure/density/ground/goriely/.
Each element has a file containing level density tables for several isotopes. For example,
the tables for Pu are contained in the z094.tab file and contains the spin dependent level
density at a given excitation energy for isotopes 202-322. The excitation energy varies
from Ex = 0.25MeV to Ex = 150MeV with variable energy binning. The table for 243Pu is
modified to include the measured level density. The experimentally measured level density
(see Section 4.3.1) is implemented in the 243Pu table using the constant temperature
formula from Eq.(2.7). The spin distribution is given by the Eq.(B.3) with the spin cutoff
parameter calculated using the parametrization from Egidy and Bucurescu[17, 18] given in
Eq.(B.6). The constant temperature is slightly modified in order to reproduce the neutron
resonance spacing parameter D0 from the Ref. [110]. Table C.2 gives the parameters used
to calculate the level density used as input for the TALYS calculation. The D0 parameter
calculated by TALYS is strongly dependent on the constant temperature.

Table C.2: Parameters used to calculate the 243Pu energy and spin dependent level den-
sity, which is used as input for the TALYS calculation. The D0 value is calculated by
TALYS and the constant temperature TCT is modified until agreement is found with the
experimental value from Ref. [110].

a E1 σ(Sn) TCT E0 D0
(MeV−1) (MeV) (MeV) (MeV) (eV)
25.82a -0.45a 8.15a 0.3833 -0.95 17

aEstimated from systematics [18].
bEstimated from systematics [19].

The Giant Electric Dipole Resonance (GEDR) parameters are implemented in TALYS
using the EGLO model (see Section 2.2.6), specified by the keyword strength 1. The
parameters of the GEDR are specified using the keywords egr, sgr, ggr for respectively
the centroid of the resonance, its cross section, and its width. The temperature depen-
dence of the EGLO model is modified in the source file $TALYS$/source/fstrength.f
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Table C.3: Resonance parameters used to describe the γ-ray strength function in TALYS.
The temperature of the EGLO tail of the GEDR is set constant and modified to reproduce
the average radiative capture width Γγ.

ω1 σ1 Γ1 ω2 σ2 Γ2 Tf
(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV)

GEDR 11.1 290 3.2 14.2 340 5.5 0.3860
PYGMY 4.4 9 1.0 7.4 20 1.3
SCISSORS 1.99 0.45 0.60 2.81 0.51 0.83

The temperature is set constant. Parameters for the two pygmy resonances and the
scissors resonances are added in the fstrength.f file using standard Lorentzians.

To avoid TALYS using a normalization factor, it is forced to 1 via the keyword
gnorm 1. Experimental values of the average radiative capture width Γγ is reproduced
by slightly varying the constant temperature of GEDR low energy tail.

Finally, the s-wave strength S0 and scattering radius R′ are also calculated by TALYS
and is influenced by the optical model parameters. The output gives for a neutron energy
En = 32.5eV, S0 = 1.02×10−4 eV1/2 and R′ = 9.64 fm. Those parameters fall within error
bars of experimentally measured values[110, 112, 25, 134]. This should only be considered
as a safety check and no extended work as been done since all evaluated S0 and R′ values
from 229Th to 249Cf coincide within errors with their average: 〈S0〉 = 1× 10−4 eV1/2 and
〈R′〉 = 9.65 fm [134].

The TALYS input file is shown below:
1 # # TALYS INPUT FILE
2 # 242Pu(n,g)243Pu
3

4 # description of the reaction
5 projectile n
6 element pu
7 mass 242
8 energy energies . txt
9

10 # default mass model, from Goriely HFB−Skyrme tables
11 massmodel 2
12 # lower limit value to consider the transmission coefficient
13 transeps 1.00E−15
14 # limit in mb for considering cross sections in the reaction
15 xseps 1.00E−25
16 # limit in mb for considering population cross sections in the multiple emission calculation
17 popeps 1.00E−25
18

19 # number of included discrete levels for all residual nuclides that are considered in Hauser−
Feshbach decay and the gamma−ray cascade. For nuclides that do not have maxlevelsres available in
the discrete level file , we take the last known level as the last discrete level in our
calculation



125

20 maxlevelsres 20
21

22 # NUCLEAR LEVEL DENSITY MODEL
23 # LDMODEL 4 is chosen but the tables are modified with the experimentally measured data
24 # SHIFT AND SLOPE ADJUSTMENT SHOULD BE ZERO
25 ldmodel 4
26 ctable 94 243 0.0
27 ptable 94 243 0.0
28

29 # Flag to invoke the dispersive optical model
30 dispersion y
31

32 # GSF−MODEL: TWEAKED GENERALIZED LORENTZIAN
33 # see fstrength . f source file
34 strength 1
35 gnorm 1.
36 # ADJUSTMENT OF GEDR PARAMETERS
37 egr 94 243 11.1 E1 1
38 sgr 94 243 290 E1 1
39 ggr 94 243 3.2 E1 1
40 egr 94 243 14.15 E1 2
41 sgr 94 243 340 E1 2
42 ggr 94 243 5.5 E1 2
43 # canceling the default m1 GDR by forcing small cross section
44 egr 94 243 4.6 M1
45 sgr 94 243 0.001 M1
46 ggr 94 243 1 M1
47

48 # Fake resonance with inexistant cross section
49 # forces TALYS to read the additional pygmy resonance section in fstrength . f where the observed

pygmy + Scissors mode are added
50 epr 94 243 15 E1
51 spr 94 243 0.001 E1
52 gpr 94 243 1 E1
53

54 outdiscrete y
55 preequilibrium y
56 fileresidual y
57 outbasic y
58 outlevels y
59 outdensity y
60 outgamma y
61 astro n
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