
UCLA
UCLA Previously Published Works

Title
Integration of evidence across human and model organism studies: A meeting report

Permalink
https://escholarship.org/uc/item/824438bw

Journal
Genes Brain & Behavior, 20(6)

ISSN
1601-1848

Authors
Palmer, Rohan HC
Johnson, Emma C
Won, Hyejung
et al.

Publication Date
2021-07-01

DOI
10.1111/gbb.12738
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/824438bw
https://escholarship.org/uc/item/824438bw#author
https://escholarship.org
http://www.cdlib.org/


Title: Integration of Evidence across Human and Model Organism Studies: A Meeting Report 

Rohan H. C. Palmer1*, Emma C. Johnson2, Hyejung Won3, Renato Polimanti4, Manav Kapoor5, 
Apurva Chitre6, Molly A. Bogue7, Chelsie E. Benca-Bachman1, Clarissa C. Parker8, Oana Ursu9, 
Anurag Verma10, Timothy Reynolds7, Jason Ernst11,  Michael Bray2, Soo Bin Kwon11, Dongbing 
Lai12, Bryan C. Quach13, Nathan C. Gaddis13, Laura Saba14, Hao Chen15, Michael Hawrylycz16, 
Shan Zhang17, Yuan Zhou18, Spencer Mahaffey19, Christian Fischer20, Sandra Sanchez-Roige6, 
Anita Bandrowski21, Qing Lu18, Li Shen22, Vivek Philip7,  Joel Gelernter4, Laura J. Bierut2, Dana 
B. Hancock13, Howard J. Edenberg12,23, Eric O. Johnson13, Eric J. Nestler22, Peter B. Barr24, Pjotr 
Prins25, Desmond J. Smith26, Schahram Akbarian27, Thorgeir Thorgeirsson28, Dave Walton7, Erich
Baker29, Daniel Jacobson30,31, Abraham A. Palmer6,32, Michael Miles33, Elissa J. Chesler7, Jake 
Emerson7, Arpana Agrawal2, Maryann Martone20, Robert W. Williams20

1 Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, 
Atlanta, GA, USA

2 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA

3 Department of Genetics and Neuroscience Center, University of North Carolina at Chapel Hill, 
Chapel Hill, NC (only USA, Canada and Australia), USA

4 Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA

5 Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of 
Medicine at Mount Sinai, New York, NY 10029 USA

6 Department of Psychiatry, University of California, San Diego, CA, USA

7 The Jackson Laboratory, Bar Harbor, ME, USA
8 Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, 
VT, USA

9 The BROAD Institute, Massachusetts Institute of Technology, Cambridge, MA, USA

10 Biomedical and Translational Informatics Laboratory, University of Pennsylvania, 
Philadelphia, PA, USA

11 Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 
US

12 Department of Medical and Molecular Genetics, Indiana University School of Medicine, 
Indianapolis, IN, US

1

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15
16

17

18
19

20

21
22
23

24

25
26

27
28

29
30

1
2



13 GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology
Division, RTI International, Research Triangle Park, NC, USA

14 Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 
Aurora, CO

15 Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee 
Health Science Center, Memphis, TN, USA

16Allen Institute, Seattle, United States

17Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA

18Department of Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA

19 Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, 
Aurora, CO 80045, USA

20 Department of Genetics, Genomics and Informatics, University of Tennessee Health Science 
Center, Memphis, TN, USA

21 Department of Neuroscience, UCSD, SciCrunch Inc, La Jolla, CA 92093, USA.

22 Icahn School of Medicine at Mount Sinai, New York, New York

23 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 
Indianapolis, IN

24 Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA

25 Department of Genetics, Genomics and Informatics, University of Tennessee Health Science 
Center, Memphis, TN, USA

26 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, 
UCLA, Los Angeles, CA, USA

27 Friedman Brain Institute and Departments of Psychiatry and Neuroscience, Icahn School of 
Medicine at Mount Sinai, New York, NY USA

28 deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland

29 Department of Computer Science, Baylor University, Waco, TX, USA

30 Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak 
Ridge, TN (only USA, Canada, and Australia), USA

2

31
32

33
34

35
36

37

38

39

40
41

42
43

44

45

46
47

48

49
50

51
52

53
54

55

56

57
58

3
4



31 Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA

32 Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093.

33 Department of Pharmacology and Toxicology, Virginia Commonwealth University, 
Richmond, VA, USA

Corresponding Author:
Rohan H.C. Palmer
Department of Psychology
Emory University
36 Eagle Row, Atlanta GA, 30322
Rohan.Palmer@Emory.edu 
Tel: +1 404-727-3126

Manuscript info:

# of words (abstract): 177

# of words (cover + references): 6455

# of tables: 1

# of figures: 0

Keywords: Drug Abuse, Working Group, Genomics, Model Organisms, Multi-omic

3

59

60

61
62
63

64
65
66
67
68
69
70
71
72

73

74

75

76

77

78

79

5
6



Abstract

The National Institute on Drug Abuse and Joint Institute for Biological Sciences at the Oak 
Ridge National Laboratory hosted a meeting attended by a diverse group of scientists with 
expertise in substance use disorders (SUDs), computational biology, and FAIR (Findability, 
Accessibility, Interoperability, and Reusability) data sharing. The meeting’s objective was to 
discuss and evaluate better strategies to integrate genetic, epigenetic, and ‘omics data across 
human and model organisms to achieve deeper mechanistic insight into SUDs. Specific topics 
were to (a) evaluate the current state of substance use genetics and genomics research and 
fundamental gaps, (b) identify opportunities and challenges of integration and sharing across 
species and data types, (c) identify current tools and resources for integration of genetic, 
epigenetic, and phenotypic data, (d) discuss steps and impediment related to data integration, and
(e) outline future steps to support more effective collaboration—particularly between animal 
model research communities and human genetics and clinical research teams. This review 
summarizes key facets of this catalytic discussion with a focus on new opportunities and gaps in 
resources and knowledge on SUDs. 

Keywords: GWAS; data integration; cross-species; substance use disorders

4

80

81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96

7
8



1. Introduction

On May 29–31, 2019, the National Institute on Drug Abuse (NIDA) and the Joint 

Institute for Biological Sciences at the Oak Ridge National Laboratory (ORNL) hosted the 

Addiction Genetics and Epigenetics Data Jamboree meeting at Oak Ridge, Tennessee. Over 

thirty scientists with expertise in genetics and genomics of substance use in human and model 

organisms gathered to discuss linking data and results across systems that exploit genetics, 

genomics, epigenetics, and other omics by leveraging innovative statistical methods and 

computational tools. The meeting commenced with an open discussion of the state of substance 

use genetics, including the strengths and weaknesses of various approaches to genotype-

phenotype associations in humans and model organisms. Most notably, researchers discussed 

how joint data- and theory-driven studies using integrative cross-species and multi-omics 

approaches could more rapidly discover and translate mechanisms than relying upon genome-

wide association studies (GWAS) or model organisms alone. Over the course of two days, 

researchers participated in thematic discussions that centered on the current state of knowledge, 

gaps in understanding and advantages and challenges of: (1) data analyses using multi-species 

and multi-omic data, (2) data integration methods/procedures, and (3) multi-omic data generation

and sharing/accessibility. Meeting participants reconvened on the third day to summarize 

findings and since then have reflected upon the field’s latest findings around the meeting’s topical

areas in the preparation of the current document. Each researcher brought their unique 

experience, perspective, and expertise to these discussions, and a consensus was not always 

reached for the best path forward on every topic. Not all authors of this report necessarily 

endorse all ideas presented herein. 

This report aims to summarize the discussions by focusing on the state of science, 

including opportunities for more effective cross-talk and collaboration between human and 

model organism research communities, as well as barriers to data acquisition and integration. 

Next, we discuss the methods and tools used for genetic and genomic discovery, their 

assumptions and limitations, as well as areas for improvement needed to achieve rapid 

translation of genetic loci to identified mechanisms and potential treatments. We review 

challenges of data transportability and sharing (i.e., Findability, Accessibility, Interoperability, 
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and Reusability data practices), for which there are interpersonal, legal, and technological 

barriers of integrating diverse data types. Finally, we describe some gaps to address in future 

programs on substance use disorders (SUDs). 

Status of Substance Use and Disorders Genetics and Genomics 

SUDs represent a pressing area of unmet medical, psychological, and social needs. In 

2017, alcohol and illicit substance use and disorders resulted in 13,969 and 67,000 deaths 

(directly and indirectly) in the United States, respectively,1 which was less than smoking 

(~250,000 deaths), but more than liver disease (62,493 deaths)2 and diabetes (68,558 deaths).3 

Worldwide, SUDs have a relatively early onset and contribute to approximately 21% of lost 

disability-adjusted life years4 (15% for smoking and second-hand smoke not counting comorbid 

drug use1), emphasizing the high societal and personal cost to affected individuals and 

communities. Twin- and family-based studies show that SUDs generally have moderate to high 

heritability,5 with sequence differences contributing to 50–70% of variance in liability. Large-

scale GWASs investigating hundreds of thousands of participants have become a reliable method

to localize and identify genomic regions, genes, and common and substance-specific nucleotide 

differences that contribute to the heritability of the many facets of SUDs. 6-8

To date, there has been substantial progress in the characterization of the genetic etiology

of human SUDs.9-13 Data sharing, meta-analysis, and very large sample sizes have begun to yield 

loci for alcohol-,14-19 tobacco-,18,20 and cannabis-related traits.20 The past three years have 

witnessed an escalation in these discoveries - for instance, findings for alcohol use disorder 

(AUD) increased from one locus (N=14,904 cases) in 2018 to 29 independent variants in 2020 

(N=435,563, including >57,000 cases). These human GWASs have shown that SUDs are highly 

polygenic. This polygenicity may be partially explained by human-specific evolutionary 

pressures and diagnostic heterogeneity.21 Notably, the history of SUD and psychiatric GWAS has

shown that more common variants with modest effect sizes can be identified and replicated when

studies are well-powered. Yet, there are other substances of abuse for which we still lack 

sufficient power (e.g., opioids22 and cocaine23) for unbiased identification of the heritable 
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components of susceptibility, severity, and relapse. For most common diseases, the number of 

genome-wide significant hits that are discovered increases sharply after a threshold sample size 

that ranges from about 10,000 to 100,000.24 In the case of psychiatric disease, it took 36,989 

cases and 113,075 controls to identify 108 loci for schizophrenia.25 A simulation study by 

Walters et al. 2019 suggested that AUD and other related SUDs26 have effect size distributions 

similar to major depression,27 a disease that required approximately 10,000 cases to identify the 

first locus,28 and may require sample sizes between 55,000 and 130,000 cases (or more) to 

identify large numbers of commonly occurring variants. 15 While biobanks and electronic health 

records provide opportunities for increasing sample sizes for AUD, the ability to adequately 

assess illicit drug use disorder from biobanks remains questionable. That said, steady progress is 

being made for illicit substances. For example, a recently published GWAS for opioid use 

disorder (OUD) in the Million Veterans Program and two additional samples, obtained genome-

wide significance for rs1799971 in the gene encoding the mu-opioid receptor, OPRM1, with 

8,529 cases and 71,200 opioid-exposed controls22 though additional work is needed to validate 

these findings.

It is also important to note that identifying genetically-mediated mechanisms of disease is

also partially contingent on how well a phenotype is defined so that it reflects relevant biological 

and environmental variation. In human GWAS, phenotypic heterogeneity, which is evident in 

diagnostic classification, as well as the imprecision of recall and self-report, has been shown to 

result in low heritability (in some instances) and specificity for disease prediction.29 Compared to

humans, model organisms have the advantages of narrowly defined phenotypic assays applied to 

both experimental and control groups and objective measurements. However, animal models 

poorly reflect the interpersonal and quality of life aspects of human SUD.30 Human studies using 

case-control and quantitative phenotypes of the most predominantly used substances, alcohol and

tobacco, with sufficiently large sample size have recently confirmed suspected genetic mediation 

of pharmacokinetic and pharmacodynamic pathways; studies also suggest greater relevance of 

single nucleotide variants expressed in brain 31-33. Liu et al. 201918 found that all central-nervous-

system-expressed nicotinic receptor genes (except for CHRNA7) were significantly associated 

with one or more smoking phenotypes that they examined. This suggests that related phenotypes,
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such as age of smoking initiation and cigarettes per day, may show overlapping but differential 

patterns of associations with relevant genetic variation. Therefore, it is important to examine a 

variety of different phenotypes, from case-control phenotypes to endophenotypes. For example, 

in a GWAS of a pharmacologically relevant phenotype for smoking, a measure of the rate of 

nicotine metabolism (the nicotine metabolite ratio [NMR]), identified polymorphisms that 

accounts for nearly 40% of the phenotypic variance in NMR,34 but these same loci do not have a 

similarly large effect on nicotine dependence. Consequently, there is still a gap in understanding 

the broad and substance-specific mechanisms and the functional significance of DNA variants 

that have been discerned to date using endo-, clinical-, and coarse phenotypes and biomarkers. 

Some researchers at the meeting commented that mixed-linear-model-based and traditional 

GWAS and quantitative trait locus (QTL) analyses alone cannot solve these phenotype 

limitations because the variance structure of agglomerative phenotypes does not match that of 

the genome and the associated structures/tissues. Others countered that well-powered GWAS 

complemented by new post-hoc computational methods (e.g., genomic structural equation 

modeling 35 and multivariate GWAS 36, to name a few) might surmount minimal phenotyping 

limitations. For a detailed example of deep phenotyping issues in a complex psychiatric disorder,

we recommend the recent paper by Cai et al. 2020.29

Based on these observations, researchers recognized that other methods should help 

complement and extend well-powered GWAS methods to address current knowledge gaps in the 

genetic architecture of SUDs. A notable illustration arises from the characterization of the 

complement C4 pathway in schizophrenia, which arose from a GWAS that identified a strong 

signal in the MHC locus but required deep, cross-species cellular and molecular experiments to 

explicate. Previous studies15,37 have also indicated this will require (1) larger sample sizes, (2) 

better phenotyping, (3) more diverse samples, (4) improved coverage of genetic variation by 

GWAS arrays or greater emphasis on sequencing,38-40 and (5) more comprehensive system-based 

models and hypotheses that incorporate epistasis (GxG), environmental factors, GxE, and many 

comorbidities. Systems-based and multi-level studies would ideally model the complex nature of

SUDs using multiple cofactors (and confounders) and take into account the inevitability that 

many agglomerative phenotypes will be made up of multiple mechanistically distinct sub-
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phenotypes. In addition to the more nuanced and precisely defined and quantified phenotypes and

cofactors (e.g., BMI for alcohol41) and confounders,42 such studies would also incorporate other 

forms of DNA variation and potential non-linear (i.e., GxG and GxE) effects - although recent 

studies have suggested that most of the genetic variance for complex traits appears to be largely 

due to additive effects, with negligible dominance effects, and an indeterminate amount of 

epistatic effects due to power and study design issues.43 While the importance of these different 

issues and approaches was discussed, a diversity of opinions was expressed about GxG effects, 

and the group did not reach a consensus. Still, it is worth noting that a negligible genome-wide 

contribution of dominance effects does not preclude the existence of individual loci with a 

dominant mode of inheritance. While the importance of these different issues and approaches 

was discussed, a diversity of opinions was expressed about GxG effects, and the group did not 

reach consensus. 

At the sequence level, many studies are also still missing significant genetic diversity—

particularly from non-European populations.44 Even though copy number variant (CNV) studies 

of psychiatric disorders are becoming more commonplace,45 mobile element polymorphisms, 

inversions and other types of structural variants are still missed in GWAS—as are subsets of 

variants not tagged using standard GWAS arrays or incorrectly aligned to a single canonical 

reference genome. In short, recent insights from past studies highlight how gaps in our 

understanding could be addressed using large and genetically diverse samples (is being achieved 

for nicotine and alcohol, but not other substances), better phenotyping, new computational 

methods, and long-read sequencing technologies to capture and model causal genome variants, 

especially those (e.g., CNVs, insertions, deletions, and inversions) not well captured by GWAS 

arrays; see Peterson et al. 2019 46 for a detailed discussion on opportunities for diversity in 

GWAS.  In addition, single-cell technologies, such as single-cell-RNA-seq, and complementary 

approaches towards studying regulatory effects of variants, among others, will help to better 

uncover cell-type specific networks involved in SUDs, as has been documented for 

schizophrenia.47 Altogether, these types of systems-based approaches that incorporate multiple 

layers of genomic and environmental data will require advanced methods, that may include 

multilevel machine learning, deep learning, and explainable-artificial intelligence techniques to 

9

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

17
18



name a few; and these model-free approaches will have to accommodate features specific to the 

human genome, such as population substructure, which can confound association signals.48 

Likewise, it will require a more comprehensive, integrated capture of population-scale data at 

multiple omics layers (genome, epigenome, transcriptome, metabolome, microbiome) in both 

model organism and human studies (see Table 1). Costs for generating multi-omic data, 

including brain proteomics and metabolomics are falling rapidly and making such programs 

possible. 

Complementary to human GWAS, research using model organisms is amassing a large 

body of evidence supporting causal roles for many genomic loci and gene variants related to 

SUDs (e.g., Taar1 for methamphetamine’49 APBA2 for addiction,46 XRCC5 for alcohol 

dependence,50 and the use of CRISPy Critters for instance in alcohol research51). Still, these 

findings probe only a small part of the complex central nervous system (CNS) molecular and 

cellular networks affected by addictive substances. There is also deep sequence data on shorter 

classes of DNA variants and expression data collected in many contexts across large populations 

of key model organisms, including Drosophila (the Drosophila Genetic Reference Panel),52,53 

mouse (Collaborative Cross, the Hybrid Mouse Diversity panel, and the BXD family, 

collectively n > 200 isogenic strains,54,55 and outbred mouse populations, including several 

heterogeneous stocks,56-59 advanced intercross lines60), and rat populations (e.g., Hybrid Rat 

Diversity Panel and the National Institute of Health (NIH) heterogeneous stock60, and outbred 

Sprague Dawley61,62). As a field, behavior geneticists, both human and animal modelers, are 

beginning to catalog and even understand the function(s) of subsets of variants that alter protein-

coding sequence, modulate transcript and protein isoforms, or change expression.63-65 However, 

although great progress has been made, we highlight key gaps:

1. the comparative invisibility of mobile element polymorphisms, some types of structural 

variants, simple tandem repeats, and rare variants, including de novo mutations; 

2. the problematic nature of aligning a sequence to a linear reference genome rather than to 

pangenomes that are savvy with respect to sequence differences among individuals and 

ancestries; and 
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3. the reliance on simple additive models that cannot detect or are confounded by gene-by-

gene epistatic interactions or cleanly dissect and unconfound GxE effects.64,66 

Researchers at the meeting discussed gaps in knowledge and possibilities for the next 

phase of functional discovery for substance use and disorders, which will likely require (1) the 

construction of appropriate resources for systematic evaluation of loci function in humans, (2) 

quantitative experimental studies of SUDs in model organisms with a more realistic level of 

genetic complexity, (3) concerted multidisciplinary efforts to acquire additional samples for 

discovery/validation, and (4) a shift towards causal models and quasi-experimental research 

designs in order to understand gene-by-environment, gene-by-development, and epigenetic 

modifiers across a range of genetically-admixed and genetically simple cohorts of model 

organisms.  

Theme A: Bridging the Gap between Human and Animal Research 

Prioritizing variants for functional follow-up

In recent years, larger human GWAS have begun to produce a more robust and reliable 

set of genomic loci and gene variants. Similarly, model system studies complement these 

phenotype-genotype associations via behavioral neurogenetic methods, but not without 

limitations (see Table 1). Indeed, human and model organism studies offer varying degrees of 

power and limitations to identify a gene or network for functional follow-up. For example, 

human GWAS require very large samples to study phenotypes that may be less proximal to the 

biological elements. Model organisms require smaller sample sizes, but their individual single 

nucleotide polymorphisms (SNPs) and genes may not entirely map onto human biology and the 

substance use phenotypes that operate in a complex, human environment. Given that the 

collection of larger, more diverse GWAS samples for SUD phenotypes will require targeted data 

collection, especially in underrepresented populations, some researchers at the meeting 

acknowledged that animal QTL, and other methods (e.g., recombinant inbred strains55), can help 

make headway in parallel. One area for further development includes refinement of efficient and 

unbiased computational workflows to rank top variants and map their target genes and gene, 
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molecular, and cellular networks. 

Researchers at the meeting discussed strategies to make advances in using integrative 

approaches, which could rapidly locate and translate loci for SUDs. These strategies combine 

data from GWAS in humans with well-matched experimental work in model organisms—both 

genetically admixed crosses and gene knockout and knock-in studies. Ideally, these studies 

would leverage a universal platform for sharing current datasets from model organisms with 

human GWAS findings, a resource currently lacking. At the time of this publication, data from 

model organism studies are largely isolated by species and even by strain and type. As such, they

are often far from FAIR compliant67 and are just as hard to access and integrate as GWAS data 

from heterogeneous human populations, which are not all shared on the NIH’s database of 

Genotypes and Phenotypes (dbGaP) or other repositories available to the scientific community. 

These realities further compound the challenge of rigorously combining human and animal 

model data sets (see Theme C discussion for details). 

Why data integration across species and multiple omics is important for expansion, discovery, 

and translation of genetic risk for SUDs

While there are many differences between behaviors, body, and brain structures of all 

model organisms and humans, there is still a high level of genomic and functional commonality 

that can be leveraged under tightly controlled environmental and treatment conditions. In 

essence, a randomized controlled trial across multiple genotypes can usually be designed and 

implemented reasonably easily with model organisms.68 Likewise, causal models can be 

constructed to evaluate potential confounders by, for instance, comparing behavioral assays 

across constructed genetic backgrounds of varying disease susceptibility (see Table 1: Areas of 

Convergence). Molecular and cellular endophenotypes of SUDs are readily accessible in many 

model organisms. Conservation of functional genes and networks across species can provide 

genuine insight of high translational relevance–particularly when the GWAS searchlight has 

illuminated a small number of plausible genes and genomic regions. Because of differing 

evolutionary histories, individual variants among humans and model organisms are often not 
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conserved69,70; however, the prospects of comparing genetically engineered lines to diverse 

populations of mice holds significant promise for disease mapping and detecting epistatic 

interactions.55 This apparent gap in the literature highlighted why analyses are best suited to be 

conducted at the level of genes, molecular networks, and gene sets. Still, attendees at the meeting

acknowledged that experimental models could complement these analyses by providing a 

reproducible resource to identify fundamental processes and modifiers that affect aspects of SUD

with the goal to transition as efficiently as possible to well-reasoned interventions that reduce 

SUD burden. Gene network perturbations that are evident in certain model organism experiments

and humans may highlight novel entry points for pharmaceutical intervention and innovation that

would be missed by the study of humans alone (e.g., modulation of an associated protein if 

variants are in a regulatory region). Further, identification of molecular and cellular networks 

that contribute to SUD risk, progression, and relapse will benefit from access to longitudinally 

collected datasets to strengthen causal inferences, define and test plausible models, and refine 

treatment options on the basis of genotypes and diplotypes. 

Human tissues, cells, and organoids are highly useful tools for elucidating molecular and 

cellular networks in human-relevant model systems but have fundamental limitations, especially 

with respect to higher-order behavioral outcome variables that replicate aspects of human 

addiction. While formal proof of the roles of DNA variants is most readily provided using gene-

engineered animals or specific pharmacological treatments, it is vital to note that "necessary and 

sufficient" causal criteria depend greatly on the genomic background 71. Moreover, gene-

engineered models will ideally account for genetic diversity in order to ensure that results are not

only replicable but are likely to have external validity across species. While some researchers 

predicted that data generated from these approaches would show greater consilience with the 

diversity of human behavioral outcomes, others contended that additional research is needed to 

understand which animal paradigms and tissues best characterize the basic behavioral properties 

and neurobiological components of addiction, respectively. 

Many researchers have begun to tackle the issue of variant prioritization by integrating 

multiple sources of information.72-74 Indeed, most GWAS include detailed post-hoc analyses 

towards the identification of credible causal variants. Network integration is one method that can 
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permit the full illumination of patterns that are shared across gene sets derived from single omics

data (e.g., genetic variants, RNA-seq in bulk tissue, single-cell RNA-seq, chromatin 

immunoprecipitation sequencing [ChIP-seq], ATAC-seq, methylome, etc.). Variant-based 

networks can be mapped onto genes, enabling a common basis for network integration: the gene 

level. A range of public data (e.g., ChIP-seq from ENCODE, RNA-seq from the Genotype-

Tissue Expression [GTEx] project 75, Hi-C data for chromatin structure 76, protein-protein 

interaction data, etc.) can be incorporated to add evidence for the networks’ biological 

plausibility; however several researchers advised caution as data limitations and improper 

handling could create biased results. Further sophisticated network layers can be generated with 

the use of new explainable-AI tools that can find highly accurate linear and nonlinear multi-way 

associations within and across omics layers 77; though, as shown in the case of machine learning 

using a candidate SNPs for opioid dependence, extreme care should be taken to account for 

social inequities that permeate research practices and could likely confound biological 

mechanisms under study.78 After integrating the networks from the different data inputs based on 

gene IDs, lines-of-evidence (LOE) scoring79 methods offer a way to establish links between the 

networks, with each link adding to the score for connecting layers. Explainable-AI approaches 

such as Iterative Random Forest- Leave One Out Prediction (iRF-LOOP) are able to find linear 

and linear expression relationships in expression datasets derived from population-scale RNA-

seq datasets and are more accurate than traditional co-expression approaches.77 These 

explainable-AI derived networks can be built from publicly available datasets (such as GTEx) to 

provide tissue-specific regulatory patterns.  They can similarly be built of single-cell-RNA-seq 

datasets to provide cell-type-specific regulatory networks.  Of course, they can also be built from

novel experimental data from individuals who were addicted to opioids. These networks can be 

combined with networks derived from other data types to form a multiplex network.  For 

example, an explainable-AI-derived RNA expression network associated with opioid addiction 

in the nucleus accumbens (NAc) may link to a genome-wide epistasis (GWES)-based network80 

and a NAc-specific network assembled from the GTEx,  and may also connect through to a 

protein-protein interaction network and signaling cascade network all through common gene IDs.

Subsequently, Random Walk with Restart (RWR) approaches, which use an advanced form of 

network-association that is not limited to exploring shortest paths or nearest neighbors, can 
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jointly examine these multiple heterogeneous multiplex networks while retaining the critical 

topological information present in each network.81 By jointly integrating multiple heterogeneous 

data layers, one can score and rank candidate genes from GWAS and genome-wide epistasis 

study (GWES) analyses using RWR-based LOE algorithms.  This can help to prioritize genes 

from GWAS/GWES results and to provide mechanistic context for the resulting filtered genes 

sets by way of subnetworks that include the links among members of the filtered gene set and 

links to genes highly connected to members of the gene set in the network. This context greatly 

enhances mechanistic interpretation and the creation of conceptual models that can be used to 

design validation experiments in human tissue or animal models. Because similar gene-based 

networks can also be generated from model organisms, they can also be integrated with human 

networks via ortholog projection in order to leverage information from multiple species.

Challenges and Knowledge Gaps in Cross-Species Research

There is heterogeneity in the behavioral phenotypes and paradigms across humans and 

model organisms, respectively, that needs to be considered when attempting to identify the 

biobehavioral processes underlying substance use and disorders. Clinical diagnoses of SUDs in 

humans are based on assessments of drug-seeking, physical dependence, and social disruption 

but often struggle to quantify each of these phenotypes (e.g., the problem of going from a 

polythetic diagnosis to understanding severity/impact of combinations of criteria on a person’s 

life).82 It is often the case that qualitative symptoms are employed, and several combinations of 

criterion endorsements (i.e., 2 or more of 11 DSM-5 symptoms) could result in a diagnosis. This 

diagnostic heterogeneity (i.e., different case subjects meeting the criteria for endorsing varying 

sets of symptoms) leads to challenges in genetic mapping83-85 and alignment with unconditioned 

and conditioned quantitative traits used in animal models. In contrast, animal studies place a high

emphasis on measuring quantity/frequency and physiological dependence. Studies of alcohol and

cannabis use disorders have shown quantitative and qualitative differences between the genetics 

of consumption quantity and frequency and the genetics of the disorders (e.g., impaired 

functioning, physical dependence, disruption of social responsibilities). 86,87 Likewise, a geneset 

derived from tobacco exposure paradigms in rodents shows modest enrichment for the SNP-
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heritability of human tobacco consumption.88 Notably, inbred strain comparison/selective 

breeding studies have allowed scientists to examine the effects of genetic background on 

multiple related traits.89 Differences in the phenotypes assessed in humans and rodents may 

therefore contribute to a partially disconnected approach to understanding risk rather than a fully 

integrated approach, thus requiring detailed studies of consilience across phenotypes and omic-

phenotype associations. For example, even just within humans, recent studies suggest that the 

genetics of human alcohol consumption, particularly frequency of alcohol intake, is only partly 

related to the genetics of alcohol problems (e.g., impaired functioning, physical dependence, 

disruption of social responsibilities).19 Likewise, a geneset derived from tobacco exposure 

paradigms in rodents shows modest enrichment for the SNP-heritability of human tobacco 

consumption.88 Therefore, differences in phenotypes and their associated genetic architecture, 

whether within or across organisms, should be taken into consideration, and leveraged when 

possible. As mentioned above, there is tremendous potential to build integrated, cross-species 

multi-omics networks that can serve to unify and utilize data and extant knowledge from both 

humans and model organisms.

There are several knowledge gaps that, if addressed, would help inform whether genetic 

results for SUD phenotypes can be translated across species. These included understanding (1) 

the degree of concordance among model organism findings, as well as (2) the extent to which 

model organism evidence generalizes to humans, (3) the contextual implication of tissue, sex, 

and ancestry on these effects, and (4) how unifying phenotypic definitions across databases can 

enhance sample sizes and data integration. To date, several studies have shown enrichment of 

mouse and rat gene sets (i.e., those that are differentially expressed in the presence of cocaine) in 

the human brain transcriptome for cocaine use disorder 90, as well as human GWAS of 

tobacco/nicotine consumption.88 Identifying convergent genetic mechanisms between humans 

and model organisms in SUDs is an exciting challenge but is (relatively) close at hand. Even 

more daunting challenges (and rewards) are presented by the ambitious goal of identifying neural

pathways conserved between model organisms and humans for addiction and its associated 

constellation of complex behaviors. Clearly, the molecular and bioinformatics tools that emerge 

from tackling the first problem will be a starting point for attacking the second.
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Theme B: Current tools for integration of genetic, epigenetic, and phenotypic data

Several tools (e.g., methods, software, databases) currently exist and are under active 

development to aid scientists in analyzing and integrating multiple types and streams of data 

from a wide variety of model organisms and diverse human populations. Here we highlight a few

that facilitate multi-omics and cross-species research. For a more comprehensive list of tools 

please see the paper by Reynolds et al. 2021.91 

Functional mapping and annotation of genetic associations (FUMA) was developed 92 to 

annotate, prioritize, visualize, and interpret GWAS results. The application integrates genome-

wide summary statistics with functional information, such as expression-QTL (eQTL) and 

chromosomal interaction mapping in a tissue-specific manner to identify the most likely causal 

SNPs. FUMA uses 18 biological data repositories (e.g., GTEx) and tools to functionally annotate

GWAS hits. FUMA employs two gene-mapping strategies. First, it uses Multi-marker Analysis 

of Genomic Annotation (MAGMA) to aggregate SNP-level statistics up to the gene level, which 

enables more facile follow-up network analyses. However, MAGMA does not take gene 

regulatory information into account when mapping SNPs to genes. Alternatively, FUMA allows 

GWAS annotation by leveraging Hi-C and eQTL data, leveraging available data resources 

including GTEx, Brain eQTL Almanac (BRAINEAC) 93, CommonMind 94, and 

PsychENCODE.95 

Hi-C-associated Multi-marker Analysis of GenoMic Annotation (H-MAGMA) was developed to 

overcome limitations in MAGMA.96 H-MAGMA advances MAGMA by incorporating long-

range (gene regulatory) interactions defined by Hi-C in mapping SNPs to genes. Further, it 

adopts the genome-wide mapping capability of MAGMA and expands the gene set to follow-up 

for molecular and biological pathway analysis. H-MAGMA has been developed on multiple Hi-

C datasets96,97—those obtained from human fetal brains, adult brains, neurons, and glia sorted 

from the adult dorsolateral prefrontal cortex (DLPFC), iPSC-derived neurons, and iPSC-derived 

astrocytes. This enables developmental stage and cell type-specific gene mapping. 
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GeneWeaver is a suite of database and analysis tools that integrate data from expression 

microarray, RNA-seq, QTL mapping, GWAS, and mutation and perturbation screening 

experiments across species (yeast, worm, fly, zebrafish, mouse, rat, dog, human, and other 

species).98-100 It also integrates protein-protein, molecular networks, and regulatory relationships 

to impute biological functions of variants and genes to phenotypes. In addition, GeneWeaver can

assess molecular and trait relations through graphical network algorithms that leverage gene-

gene and variant-variant comparison using complex, heterogeneous networks and random walk 

or network flow-based approaches. Until recently, GeneWeaver has used a gene-based strategy 

to integrate data because convergence or conservation of mechanism across species has typically 

relied on gene orthology. Authoritative data resources, including model organism databases and 

the Alliance of Genome Resources, have cataloged orthologous genes across species based on 

sequence alignments. Functional genomics analysis systems, including GeneWeaver, have made 

use of these reported orthologues to compare the results of genomic experiments across species 

at the gene level. Transitive associations are made to infer cross-species orthology where 

sequence alignment has not inferred a relationship (e.g., a Drosophila:zebrafish orthologue and 

zebrafish:mouse orthologue can be used to infer Drosophila:mouse orthology). Although 

functional coding variants, such as missense variants, are enriched among GWAS findings, most 

genome-wide significant variants implicate noncoding regions.33 These noncoding variants are 

poorly conserved at the sequence level, and their functional interpretation presents a major 

challenge for the field. New approaches are being developed by the GeneWeaver project for 

mapping noncoding variants across species based on functional similarity and target orthology 

using combined genomic data sources. These methods are being applied to prioritize GWAS-

identified variants based on evidence obtained in model organisms.

GeneNetwork. GeneNetwork is an interactive system for genome-to-phenome analysis, QTL 

mapping, and network integration. This resource incorporates large genetic, multi-omic, and 

phenotype data sets for highly diverse animal model populations such as the BXD and CC lines 

of mice, the HXB and HS rats, and several large number transcriptome data sets, including 

GTEx. GeneNetwork integrates 40 years of animal model data relevant to NIDA, NIAAA, 

NINDS, and NIMH missions, starting with catalytic studies by Crabbe, McClearn, Hitzemann 

18

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

35
36



and Flint—especially data on behavioral variation and its linkage to gene and protein expression 

in the central nervous system.55,68,101 The great majority of data in GeneNetwork is both open and 

FAIR-compliant and can be downloaded or used on-site in combination with powerful mapping 

modules that include R/qtl,102,103 and the Bayesian Network Webserver.104 

PrediXcan / MetaXcan. PrediXcan was developed as a gene-based association test that prioritizes

genes likely to be causal for the phenotype, using predicted gene expression levels, most often 

with GTEx as the reference.105 S-PrediXcan is a variation of this test that uses summary statistics 

instead of individual-level data. MultiXcan and S-MultiXcan are multivariate approaches (in 

contrast to the single-tissue approaches of PrediXcan/S-PrediXcan) that integrate measurements 

across tissues while accounting for correlations. Extensions of this approach are now being used 

to transfer polygenic findings from GWAS between human populations, and the authors suggest 

that these techniques might allow translation between species in the future.106 These methods fall 

under the family of transcriptome-wide association study (TWAS)107 approaches more broadly 

(e.g., Fusion is a similar approach that can be performed on GWAS summary statistics).107   

Theme C: Ensuring that data are ready for integration

The long-term data curation and implementation of FAIR data principles 

(https://www.go-fair.org/fair-principles/) is integral to the success of integrating human and 

model organism research and multi-omic data. FAIR standards are particularly important. 

Without attention to data accessibility, many large and small SUD-related data sets risk 

evaporating over a relatively short period of time—often only five to ten years. This is 

particularly true of animal model data that tends to be highly granular and often siloed. Data 

sharing issues aside, there is a need for (inter)national storage and curation efforts because those 

aspects are typically beyond the scope of most research projects. Continued access to data, 

regardless of its presumed value, is key to leveraging future technological advances. There are, 

however, notable cases where advances in computing capacity and statistical methods greatly 

improve the value of older data. For example, phenotype data on drugs of abuse acquired over 

three decades ago can now be reanalyzed using new mapping algorithms (e.g., linear mixed 

models) and full genome sequence data. For example, data generated by a team at ORNL a 
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decade ago68 can be remapped today to generate significantly stronger and even novel results 

than they did initially.

Participants discussed current knowledge gaps related to the development of metadata 

standards and data ontologies in order to move research forward. For instance, the lack of 

standards for describing disease phenotypes, such as those developed by the MONARCH 

initiative (Mondo disease ontology and Human Phenotype Ontology [HPO];108,109) and the 

limited amount and quality of derived phenotypes from electronic health records. Metadata helps

with findability, interoperability, and usability. Because of this, participants emphasized that 

distribution platforms and curation tools that make metadata searchable urgently need further 

development. Overcoming these limitations would involve the identification of missing summary

metadata fields for human data in dbGaP, as well as making prior results and data accessible both

in name and in practice. Still, there is not a standard process for making data more findable and 

readable. Participants discussed several possible approaches for making data more searchable, 

such as using a Digital Object Identifier (DOI), machine-readable identification number, and 

Research Resource Identifiers (RRIDs)110 as possible strategies to achieving data integration. As 

with all large-scale data endeavors, the researchers recognized a limitation around encryption 

software that would enable accessibility of primary raw data and allow searches across databases

without the loss of de-identification. A major benefit of overcoming this limitation would be the 

ability to work with raw data using alternative methods that meta-analysis does not permit. 

Similarly, researchers acknowledge the limited number of Application Programming Interfaces 

(APIs) to enable interactions between data, applications, and devices. APIs deliver data and 

facilitate connectivity between devices and programs. Compelling prototype solutions are 

described above, but issues remain in the widespread integration and adoption of these systems. 

The biggest challenges are dynamic updating and organization of data for sharing and discovery 

as well as connecting across organisms and data types (e.g., sequence, epigenomic, etc.). 

Integration between graphical and relational databases remains a problem to be solved. To 

address these major challenges, participants discussed areas for improvement, including a lack of

understanding of the following:
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1. The degree of modularity and interoperability of existing data analysis software that can 

be used to facilitate the integration of ChIP-seq, DNA methylation, Hi-C, RNA-seq, 

splice variants, and structural variants information.

2. How gene network, epistasis, and genetic modifiers affect substance use outcomes. 

3. How chromatin organization varies across human brain regions and in different cell 

types.

4. Ancestry differences in gene regulation.

5. How chromatin (Hi-C) and methylation (H3K27ac) data can be combined to predict gene

expression with higher accuracy.

6. How models using protein-protein interaction (or similarly relevant omic data) data can 

help to improve the performance of existing genetic prediction tools.

7. How to access raw primary data while maintaining de-identification. 

Conclusions and Future Directions

Genetics in human and animal models is now providing significant insights into 

molecular causes of addiction and SUDs. However, these leads still require extensive evaluation 

before being employed as prevention (e.g., to understand the utility of a polygenic score (PGS) 

beyond indicators of family history) and intervention tools (e.g., to reset CNS metabolic and 

cellular states back to health and well adapted behavior).111 Major gaps in the field’s mechanistic 

understanding of the perturbations underlying SUDs remain. Addressing these gaps and 

advancing the field will require attention to the following areas: (1) well-powered GWAS of 

SUDs and relevant human traits in diverse samples, (2) computational workflows that jointly 

leverage model organisms and large human cohorts, (3) generation and integration of multi-omic

data across developmental stages, brain regions, molecularly defined cell types, and disease 

conditions, (4) data harmonization across human and model organisms at the level of the 

phenotype, as well as different omic, cellular, and systems levels, and (5) data curation and 

sharing. 

Meeting participants also discussed key areas for future data integration, beginning with 

cross-species research and data integration tools. Continued research in integrative platforms will

allow the examination of various use cases that will help develop an understanding of the 
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difficulties and opportunities in data integration. As the goal is to develop a plausible set of gene 

networks/sets from robust GWAS and fine mapping studies in mice and humans, it will be 

important to consider the nuances of mapping top results based solely on positional data. For 

example, previous SUD GWASs limited annotations to genes nearest to the lead SNP, and only 

more recently have studies begun to include tissue-specific annotation methods such as H-

MAGMA and PrediXscan, to name a few. Many researchers are working on systematic multi-

omic integration approaches to fine map complex genetic loci and nominate target genes. Reports

on the progress of these efforts began at the Genetics and Epigenetics of Addiction (January 13–

14, 2020) and are available at https://www.drugabuse.gov/research/research-data-measures-

resources/genetics-epigenetics-ccrt/nida-genetics-consortium-ngc/nida-genetic-consortium-

meetings-abstracts. Second, we need an increased understanding of the neurotoxic and 

behavioral effects of drugs. This continuously evolving body of literature will facilitate 

computational experiments to identify gene variants in underpowered GWAS. Integrative 

analyses in humans that include model organism data could also be applied to GWAS data as 

have been realized to date using Bayesian approaches to optimize gene identification using 

functional categories in genetics112 and cis- and trans-eQTL information in transcriptomics.113

This Data Jamboree meeting represents a pivotal point in an ongoing process of 

information sharing that reflects the interdisciplinary nature of addiction genetics research. 

Notably, it builds on the previous report by Cates et al.,114 that emphasized the importance of 

harmonizing phenotypes and methods of analysis among studies. 

Even though geneticists at this meeting did not always agree on the ideal course of action 

for the next phase of discovery, the debate and dialogue, spurred by a shared commitment 

towards identifying tangible genetic targets, resulted in several new directions for human and 

model organism research.  
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Table 1. Considerations and Areas of Opportunity for Data Integration

Methodol
ogical 
Approach

Considerations in
Model Organism 
Genetics

Considerations 
for Human 
Genetics

Considerations 
for Reductionist 
Models
(Human and 
Model 
Organisms)

Areas of Convergence

G x E Many populations 
provide favorable 
recombination and 
allele frequencies 
to provide 
adequate power to 
detect G x E effects

Consortia efforts 
(e.g., Psychiatric 
Genetics 
Consortium (PGC)
115, deCODE 
Genetics 116, UK 
biobank 117, etc.) 
and integration of 
electronic health 
records can help 
construct large 
sample sizes for 
improved power to
detect G x E 
effects

Not possible to 
mimic most 
environmental 
effects (e.g. social 
interactions, early 
life adversity, etc) 
in cell lines or 
organ cultures

-Animal models can test the 
effects of a specific gene 
implicated in human GWAS 
across multiple 
environments, or different 
genes in the same 
environment.                         
-G x E hits from QTL mapping
can be used to prioritize 
promising variants in human 
GWAS that did not meet 
significance thresholds due 
stringent corrections for 
multiple testing

Some human 
environments are 
not possible to 

Some 
environments are 
unethical to 
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model in animals impose on humans

G x G QTL mapping in 
many populations 
can provide 
sufficient power to 
examine other 
forms of DNA 
variation and 
potential nonlinear 
G x G effects 

Need very large 
sample sizes (> 1 
million) to detect 
potential nonlinear
G x G effects118

QTL mapping 
efforts should 
utilize genetically 
diverse 
populations in 
order to better 
extrapolate results
across strains and 
species

-Development of new 
statistical models to detect G
x G epistatic interactions will 
improve our understanding 
of the polygenic nature of 
SUDs                                      
-Use of genetically admixed, 
mutant, and genetically 
simple cohorts of model 
organisms can identify 
epigenetic modifiers

Structured panels 
of F1 progeny that 
place null alleles 
on different genetic
backgrounds can 
identify G x 
background 
interactions 

Consortia efforts 
and private Direct 
to Consumer 
biotechnology 
companies (e.g. 23
& me , 
ancestry.com) may
be key to 
amassing large 
enough sample 
sizes for improved 
power to detect 
epistasis

If using CRISPR to 
study G x G 
interactions, 
researchers should
test multiple 
genetic 
backgrounds

CRISPR allows for 
simultaneous 
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alteration of 
multiple genes to 
examine G X G 
interactions

Meta-
analysis

Not commonly 
performed in 
model organisms, 
but the extendable 
nature of many 
populations is 
favorable to this 
approach

Meta-analysis has 
been key in the 
successful 
identification and 
replication of loci 
across human 
studies, thus 
increasing power 
and reproducibility

-Development and 
application of metadata 
standards and data 
ontologies (such as 
MONARCH) will be critical to 
harmonize data across 
organisms and data types     
-Improved data curation and 
sharing will allow for 
increased accessibility to all 
researchers
-Meta-analytic studies using 
omics data from both 
mapping populations and 
mutant animals can detect 
and validate novel findings 
entirely in silico

Polygenic
Risk 
Scores

Must account for 
allele frequency 
differences across 

Must account for 
allele frequency 
differences across 

-Need to develop 
methodology to integrate 
PGS between animals and 
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populations populations humans to improve 
translational, predictive and 
clinical utility

Not widely 
implemented in 
animal QTL 
mapping studies

PGS in humans 
have allowed 
cross-trait and 
cross-sample 
comparisons, 
greatly enhancing 
our knowledge of 
SUDs

For translational 
studies, need to 
limit PGS variants 
to those with 
orthologs in 
humans

 

Proteomi
cs/ 
Transcrip
tomics

Can be easily 
obtained in animals
from relevant 
tissues, cell-types, 
and timepoints 
(post-drug, 
developmental)

Post-mortem brain 
tissue from 
humans is 
confounded by life 
histories, drug use 
patterns, time 
elapsed between 
death and brain 
collection

-Multi-omics data (genome, 
epigenome, transcriptome, 
proteome, metabolome, 
microbiome) data in both 
model organisms and 
humans can improve our 
understanding of GWAS hits 
that fall in regulatory regions
-Single-cell RNAseq will help 

3467
68



uncover cell-type specific 
networks involved in SUDs    

-Animal models may identify 
mobile element 
polymorphisms, inversions, 
and other structural variants 
that can later be studied in 
human GWAS                         
-Network integration (such as
LOE, RWR) is key to permit 
the full illumination of 
patterns shared across multi-
omics datasets and can be 
used to leverage information 
across species
-Exploiting publicly available 
bioinformatics resources can 
provide secondary study 
replication/validation, 
increase power, and provide 
a priori information for study 
hypotheses and design

Multiple 
bioinformatics 
resources exist to 
integrate omics 
results 
(GeneWeaver, 
GeneNetwork)

Web-based 
repositories (GTEx,
BRAINEAC, 
CommonMind, 
PsychENCODE) 
provide valuable 
resources to 
examine effects of 
gene expression 
on disease 

Function
al 
Validatio

Multiple genetic 
resources exist 
(CRISPR, KO, 

Unethical to 
perform gene 
editing studies in 

Functional 
validation studies 
should test the 

-Model organisms provide 
opportunities to test the 
effects of a specific gene(s) 
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n transgenics, RNAi, 
etc) to functionally 
validate genes of 
interest in 
developmental-, 
tissue-, and cell-
specific regions

humans effects of gene 
manipulation on 
multiple genetic 
backgrounds

implicated in human GWAS 
to help elucidate the 
underlying biology
-Functional validation studies
may benefit from cross-
species analysis (yeast, 
worms, flies allow for the 
analysis of hundreds of 
candidate genes)                   
-Development of efficient 
and unbiased computational 
workflows (such as FUMA 
GWAS, H-MAGMA, 
GeneWeaver, 
PrediXcan/MetXcan) is 
needed to rank top variants 
and map their cellular 
networks in both human and 
model organisms

Optogenetic and 
other brain 
stimulation 
approaches can 
isolate neurons, 
define pathways 
relevant to traits of
interest

Transcranial 
magnetic 
stimulation can 
excite/silence 
brain regions in 
humans, but is 
limited

Lesion studies can 
readily be 
performed in 
animal models

Naturally occurring
lesions can be 
studied

Environm
ental 
Control

Can more tightly 
control 
environmental 
parameters

Diverse 
environmental and
lifestyle influences

-Improved statistical models 
that better account for 
confounds, Winner's Curse, 
and cofactors/covariates will 
enhance translational 
potential for both animal and

Cannot accurately Differing 
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model some 
human 
components (e.g., 
social elements) of 
environments

combinations of 
psychiatric and 
other risk factors

human research
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