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INVESTIGATION
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ABSTRACT Regulation of plant root angle is critical for obtaining nutrients and water and is an important trait for
plant breeding. A plant’s final, long-term root angle is the net result of a complex series of decisions made by a root
tip in response to changes in nutrient availability, impediments, the gravity vector and other stimuli. When a root tip
is displaced from the gravity vector, the short-term process of gravitropism results in rapid reorientation of the root
toward the vertical. Here, we explore both short- and long-term regulation of root growth angle, using natural
variation in tomato to identify shared and separate genetic features of the two responses. Mapping of expression
quantitative trait loci mapping and leveraging natural variation between and within species including Arabidopsis
suggest a role for PURPLE ACID PHOSPHATASE 27 and CELL DIVISION CYCLE 73 in determining root angle.
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Directing growth toward optimal conditions is critical to plant survival.
Roots must grow toward water, nutrients, and physical support, while
simultaneously avoiding growth toward hostile, inadequate, and non-
supportive environments. To that end, the plant must integrate numer-
ous environmental and internal signals to direct root tip and growth
angle in a way that will place the root in an environment capable of
nurturing sustainable long-term growth. A root’s final angle is the

net result of a series of responses to these stimuli. As such, regu-
lation of root angle is an important trait for plant breeding and has
been correlated with increased yield (de Dorlodot et al. 2007;
Lynch 1995).

Among the many environmental conditions to which a plant must
sense, integrate and respond, gravity is a central input. Gravitropism, a
directed short-term growth response to gravity, has been extensively
genetically and mechanistically studied in Arabidopsis thaliana (Müller
et al. 1998; Chen et al. 1998; Marchant et al. 1999; Mullen et al. 1998;
Luschnig et al. 1998; Fukaki et al. 2002; Kerwin et al. 2015). In a short-
term response to gravity, dense starch-containing amyloplasts in the
columella cells at the root tip sediment downward via dynamic inter-
actions with vacuolar membranes and the cytoskeleton (Morita 2010).
This triggers a signaling cascade (Baldwin et al. 2013; Toyota andGilroy
2013; Kimbrough et al. 2004) that alters the localization of auxin PIN
efflux transporters (Sack 1997; Friml et al. 2002). The outward-flowing
auxin transport via AUX, PIN, and ABCB transporters at the root tip
becomes asymmetric, leading to an auxin concentration difference
across the root. A subsequent auxin signaling cascade leads to altered
epidermal cell elongation, with the side of the epidermis having the
higher auxin level exhibiting a lower elongation rate, resulting in the
root tip bending downward (Band et al. 2012; Spalding 2013; Swarup
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et al. 2005). The shifted auxin accumulation also interacts with a com-
plex signaling network including signaling from cytokinin, ethylene,
brassinosteroid, jasmonate, strigolactone, and glucose, enabling multi-
ple environmental inputs to influence gravitropism (Kushwah et al.
2011; Zhou et al. 2011; Kim et al. 2007; Koltai 2015; Gutjahr et al.
2005; Zheng et al. 2011; Sang et al. 2014).

In Arabidopsis thaliana, another type of root growth that involves
long-term interpretation of the gravity vector is wavy growth in a
particular direction (usually right-handed) that occurs when roots are
grown on a vertical, hard agar surface. Arabidopsis roots grown on hard
agar plates inclined to the vertical produce a pattern of waves whose
slanting to the right side is enhanced relative to the directionality on
a vertical agar plate. This phenomenon is referred to as slanting or
skewing. Okada and Shimura (Okada and Shimura 1990) initially
interpreted this as the consequence of an interaction between thigmot-
ropism (bending in response to touch) and positive gravitropism.
Right-handed slanting was first reported by Simmons et al.
(Simmons et al. 1995). and subsequently, slantingmutants were report-
ed by Rutherford andMasson (Rutherford andMasson 1996). Circum-
nutation, or a revolving nutation, is a type of bendingmovement that is
created by unequal growth rates on different sides of the organ
(Migliaccio et al. 2013). Migliaccio and Piconese interpreted slanting
on tilted agar plates as the result of an interaction between right-handed
circumnutation (defined with respect to the right-handedness of the
root helix), positive gravitropism and negative thigmotropism
(Migliaccio and Piconese 2001). Recent employment of computer au-
tomation is providing accurate high-throughput measurement of the
short-term gravity response, allowing an increasing characterization of
novel gravitropism components (Miller et al. 2007; Brooks et al. 2010)
in Arabidopsis thaliana and revealing the presence of additional un-
identified players in a root’s response to gravity.

Root growthangle is regulatednot only by a response togravity. Root
angle can also be regulated in response to nutrient availability and
temperature (Niu et al. 2015; Ritchie et al. 1997;Massa andGilroy 2003;
Bonser et al. 1996; Nakamoto 1995). Regulation of root angle has been
previously linked to drought avoidance in rice (Uga et al. 2011). It is
conceivable that plant species have employed distinct genetic mecha-
nisms to regulate a root’s response to gravity differently from regulation
of root growth angle in response to specific environments. This could
include different short-term and long-term signaling processes to op-
timize root growth angles for nutrient and water acquisition. Here, we
explore the genetic basis of root angle relative to a root’s response to
gravity in the context of natural variation.

Tomato (S. lycopersicum) is an important food crop whose root
development differs in many aspects from the model species, A. thali-
ana, including root angle in the cultivar M82 (Ron et al. 2013). S.
pennellii is an inter-crossable wild relative adapted to growth in dry,
saline and rocky desert conditions, diverging from tomato some seven
million years ago (Nesbitt and Tanksley 2002; Peralta et al. 2005). Root
angle was previously demonstrated to differ between the accessions of
these two species (long-term regulation) (Ron et al. 2013). Further-
more, 24 hr after rotating a plate 90 degrees, the resulting angle was
the same as that prior to the rotation (short-term regulation) (Ron et al.
2013). While the root’s net angle requires the transduction of the grav-
ity vector into growth control, it is unclear if this angle is established
differentially in a dynamic fashion in the short-term and maintained
over the long-term using the same genetic mechanisms. To identify
genetic loci that may independently control root angle over these time
scales, we have exploited natural variation in these traits within tomato.

We thus further explore the long-term regulation of root net angle
between M82 and S. pennellii using a more sensitive and quantitative

descriptor after several days of plant growth (Figure 1A). To determine
if the genetic basis of the long-term regulation of root growth angle is
the same or different from the short-term response to a change in
gravity stimulus, we utilize “computer vision” to determine the dy-
namic genetic basis of root gravitropism over the short-term. This
automated high-throughput approach allows the calculation of the rate
of change of the root tip angle at discrete time points over two hours of
root tip growth following a 90� rotation of a vertically-oriented plate
(Figure 1D).

Using quantitative genetic and transcriptomic approaches, we
mapped quantitative trait loci and expression quantitative trait loci
underlying differences in root angle in the short-term and the long-
term between the accessions from each of these Solanum species.
Together, these data demonstrate that the short-term and long-
term regulation of root angle is largely genetically distinct. Using
this genetic and gene expression resource across 76 introgression
lines containing the S. pennellii genome introgressed into the S.
lycopersicum genome, as well as a GenomeWide Association Study
in Arabidopsis thaliana, we identify two novel players in regula-
tion of root angle, PURPLE ACID PHOSPHATASE 27 (PAP27) and
CELL DIVISION CYCLE 73.

METHODS

Plant growth conditions – average absolute angle and
RNAseq analysis
Seedlings of S. lycopersicum (cv.M82), S. pennellii (LA0716), and ILswere
grown on Murashige and Skoog (MS) plates containing 4.3g L-1 MS,
0.5gL01 2-(N-morpholino) ethanesulfonic, 10g L-1 Suc, pH = 5.8, and
8g L-1 Agar. Seeds were placed in tissue-embedding cassettes and surface
sterilized in 70% ethanol for 2 min, then in 3% hypochlorite for 20 min,
followed by three washes with distilled water. Seven sterilized seeds were
plated on each MS plate in a row 2.5 cm from the top of a square 12- x
12-cm plate and then sealed with 3M surgical tape. A minimum of four
biological replicates of each of 79 genotypes were grown independently at
four different times with 2 weeks between growth cycles for each of the
four replicates. Genotypes included 73 of the 76 ILs of the IL population
(1-1, 3-3, and 6-2-2 lacked seeds), the two parents S. lycopersicum (cv.
M82) and S. pennellii (LA0716), and four sub-ILs: 1-1-4, 7-5-P5, 7-5-P75,
and 7-5-1. Seven plate holders (A through G) each with slots to hold
12 pairs of plates (1A/1B through 12A/12B) were used, with plates paired
so that their bottom sides faced one another. Each plate had 7 seeds
oriented so the radicle would emerge from the seed in a downward
direction. Each IL was plated on 2 plates for 14 seeds total (i.e., per
biological replicate), except M82 and S. pennellii were plated on 4 plates.
For 79 genotypes this totals 79�2 + 4 = 162 plates, leaving 6 empty plate
holder slots. Independently for each replicate, each IL was randomly
assigned to a plate holder and plate position, using an Excel macro
making use of the rand() function to randomly permute the list of ILs
for the replicate. The 2 plates of each IL were placed into the same plate
holder slot, back-to-back (positions A/B), and the 6 empty plate holder
slots were filled with extra plates containing seeds. The 7 plate holders
were placed on one shelf in the growth chamber, positioned and oriented
so as to give each plate the same exposure to light and surrounding space.
The experiments were carried out in a growth chamber with a 16:8 light:
dark cycle at 22� and 50–75% humidity with a light intensity of 100mE. A
harvest day was chosen for each plate by choosing the day that maxi-
mized the number of plate seeds that were 3 to 4 days post-germination.
Immediately prior to harvesting root tissue for RNA-seq, plates were
scanned with an Epson Perfection V700 photo flatbed scanner into
24-bit RGB TIF image files at 300 dpi. Plates were opened only once,
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at harvest time, to ensure the same growth conditions for all seedlings.
Sampling occurred mid-afternoon. Between 7 and 14 root tip segments
(1cm), 3 to 4 days post-germination, from each genotype replicate were
cut and immediately placed into a labeled 2ml tube containing silica
beads and immersed in liquid nitrogen. Samples were stored at 280�
until library preparation.

Image analysis, phenotype measurement, mixed effect
linear model and ANOVA
Each replicate of each genotype had between 2 and 5 plates, all of which
were scanned as described above. Images were analyzed with ImageJ
(Rasband 1997-2014) supplemented with custom macros. Based on
germination date and scan date, seedling age in days after germination

Figure 1 Average absolute angle and gravitropism in M82 and S. pennellii. (A) Roots of M82 (left) and S. pennellii (right). Scale bar = 1 cm. (B)
Quantification of average absolute angle. (C) S. pennellii has a significantly greater average absolute angle relative to M82. ���= P, 0.001 (ANOVA). (D)
Gravitropism was measured as the rate of tip angle change over two hours following a 90� rotation, with 0� as horizontal to the right and positive angle
clockwise (as the tip bends downward). (E) Mean tip angle of M82 (n = 89) and S. pennellii (n = 18) as a function of time after rotation by 90 degrees. Error
bars represent standard error of the mean. (F) Mean tip angle curve for all rotated (Rot) roots (solid) has the same response curve shape as, and is
intermediate between, curves for roots rotated (rot) through or away from the gravity vector (dashed). M82: n = 36 away, n = 53 through; S. pennellii: n =
10 away, n = 8 through. Error bars represent standard error of the mean. (G) Mean rate of change of tip angle (swing rate), per time point in the two hours
following 90 degree rotation of M82 (n = 89) and S. pennellii (n = 18). Error bars represent standard error of the mean.
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wasdetermined, andprimary roots of seedlings thatwere 3 or 4 days post-
germination were traced with the imageJ polyline tool, following the root
centerline from the top of the root (the hypocotyl/root junction) to the tip
along with metadata including genotype, plate ID, plating date, germi-
nation day of each seedling, plate harvest date,measurer, and twoflags for
each root: “collide”was true if the root contacted or crossed another root,
and “along”was true if the root contacted another root and grew along it
for any distance. Additional data were calculated from themetadata: root
age (days from germination to harvest), “germination age” (days from
plating to germination), “plating age” (days from plating to harvest), and
biological replicate number The polylines in the data were analyzed to
measure root average absolute angle (Figure 1B).

The derived angle datawere used tofit themixed-effect linearmodel
trait � genotype + collide + (1|germAge) + (1|plateDate), using the R
lm() function in the stats package [68], the lmer() function in the lme4
package (Bates et al. 2015), and the lme() function in the nlme package
[69]. The p.adjust() function was used to perform FDR adjustment of
p-values using the “fdr”method [70]. Significance was defined as either
pFDR # 0.01 or pFDR # 0.05 depending on the analysis (Table S1). All
phenotype analysis code, macros, input data, augmented data, and re-
sult files are included in a supplemental dataset (S1_Dataset.zip).

Four ILs from the 2013 experiment (Ron et al. 2013), 6-1, 6-2-2, 8-2
and 9-1, along withM82 samples from that experiment, were measured
for avgAbsAng as described above, and the angle data were used to fit
the mixed-effect linear model trait � genotype + (1|plateDate) using
the lme() function, and p.adjust() was again used to perform FDR
adjustment of p-values using the “fdr” method. Significance was de-
fined as pFDR # 0.01 (Table S1).

Gravitropic Rotation experiment

Growth and plating: Tomatoseedsplaced inperforatedplasticcassettes
were surface-sterilized by soaking for 2 min in 70% ethanol, then for
15 min in a 50% household bleach solution. The seeds were then rinsed
6 timeswith sterile distilledwater and immediatelymoved to sterilefilter
paper wetted with sterile distilled water contained in polystyrene Petri
dishes. The dishes were placed horizontally in a continuously lit growth
chamber for a minimum of 24 hr. Upon emergence of the radicle, seeds
wereplaced onMS salts+ 1%sucrose+ 0.8%agarmedia. The agar plates
were maintained vertically in a continuously lit growth chamber for
a minimum of 24 hr, after which seedlings with roots between 10 and
20 mmwere moved to a new plate of MSmedia in such a way as not to
alter the initial angle of growth. These plates with seedlings were
mounted in the imaging platform and allowed to recover for 1 hr.

Rotation, imaging, image processing, trait measurement: Vertically-
oriented plates containing seedlings were rotated +90� (counter-clock-
wise) about an axis perpendicular to the plate, so that a seedling
growing at an angle of 6A� to vertical (positive angle counter-clock-
wise) attains an orientation of +90 6 A� to vertical, or ∓ A� to hori-
zontal (positive angle clockwise, thus the sign flip). Plates were rotated
in a direction that was randomwith respect to whether the pre-rotation
angle of any given seedling was clockwise or counter-clockwise of
straight down, hence the initial angle after rotation, when averaged
across many seedlings, is close to zero.

Images were recorded every 3.75 min a total of 34 times over the
course of two hours immediately at and following 90 degree rotation.
Images were analyzed using a high-throughput automated image ac-
quisition and analysis system for root tip angle and tip angle rate of
change (Moore et al. 2013).

Linear model fitting and ANOVA: Model fitting for the gravitropic
rotation experiment was done using R (RCore Team 2014). The lm()
function in the stats package fit the model “trait� genotype” to each
individual time point for both the tip angle and derivative traits, and
the p.adjust() function was used to perform FDR adjustment of
p-values using the Benjamini-Hochberg method. Time points with
pFDR # 0.01 were considered significant. All rotation analysis code,
input data, and result files are included in a supplemental dataset
(S2_Dataset.zip).

RNA-seq experiments

RNA-seq for germination day expression variation testing: Due to
the inability to synchronize germination in M82 seeds and seed limi-
tation, we explored expression variation in 3-, 4- and 5-day-old seed-
lings.M82 seedlingswere grownasdescribed above, andharvest date for
eachplatewas chosen toprovide7 to10seedlings ononeplate for eachof
the three germination ages, and 7 to 10 root tips for each seedling age
were collected as described above.

RNA-seqlibrarieswerepreparedfromfour replicatesofM82foreach
of the three root ages.

Libraries were created using a custom high-throughput method for
Illumina RNA-seq with a poly-A enrichment step (Kumar et al. 2012).
Libraries were pooled and sequenced in 50 bp single-end format at the
UC Berkeley Genomics Sequencing Laboratory on two lanes of the
HiSeq 2000 platform (Illumina Inc. San Diego, CA, USA).

Reads from the sequencing were demultiplexed, filtered for quality,
and mapped to the Heinz cDNA genome version ITAG2.3, obtained
from SolGenomics.net (www.solgenomics.net) (Fernandez-Pozo et al.
2015). The R package edgeR (Robinson et al. 2010) was used to nor-
malize themapped read counts using the TMMmethod (Robinson and
Oshlack 2010), to estimate overdispersion and tagwise dispersion
(Robinson and Smyth 2007), and then to call differentially expressed
(D.E.) genes between each of the three pairs of conditions (3-4,
3-5, and 4-5 days post-germination). The topTags() “fdr” method
(Benjamini and Hochberg 1995) was used to adjust for multiple
testing (pFDR # 0.01).

The number of D.E. genes between each pair was small, and the
differences between each pair were small, with the largest difference
deemed to be between the 3- and 5- day samples. Days 3 and 4 were
chosen as germination days for subsequent RNA-seq sampling.

IL RNA-seq library preparation and sequencing
The same root tissue harvested for measuring average absolute angle,
described above, was used for the RNA-seq libraries,whichwere created
using the Kumar et al. protocol with one modification: NEXTflex-96
adaptors were used. Library enrichment was done using 12 cycles. Each
library was barcoded, using a unique bar code for each IL, but the same
barcode for all replicates of an IL. The libraries of each replicate were
pooled, and the four pools were purified with Ampure beads. The
library pooling was tested using a Bioanalyzer.

Each replicate’s libraries were pooled and sequenced in 50 bp single-
end format on a total of 5 lanes of a HiSeq 2000 platform (Illumina Inc.
San Diego, CA, USA) at the UC Berkeley Genomics Sequencing Lab-
oratory. Two replicates were lost during library creation, pennellii #3
and IL7-5 #3, and the remaining three replicates were deemed sufficient
for the experiment.

RNA-seq data filtering
Perl (Wall 1987-2012) scripts were written to check sequencing read
files for expected bar codes, discarding questionable reads, masking
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low-quality bases, and demultiplexing the reads. RNA-seq reads con-
taining polyN sequences of length $15 or containing significant frag-
ments of either the forward or reverse adapter or their reverse
complements were discarded. Bases with quality scores # 20 were
masked asN’s, and leading or trailingN’s were trimmed from the reads.
Any two N’s within the read separated by fewer than 20 bp of non-N
were trimmed and the read split into two reads at that point, with the
longest piece retained. Trimmed reads with fewer than 10 non-N bases
at the start or end, or with length, 30, were discarded. Libraries were
demultiplexed by matching the read bar code to the library bar code or
any code obtained from it by a single bp change including a change to
N. FASTQC (Andrews 2011) was applied to the demultiplexed read
files and its output examined for problems. Two test lanes were run for
each pool for genotyping and double-checking library concentrations,
before running the final three lanes, with all useable reads retained.

Genotyping
We genotyped all libraries using the sequencing data. Matched refer-
ences for S. lycopersicum cv. M82 and S. pennellii (Koenig et al. 2013)
were concatenated into a single reference, and reads mapping with
BWA (Li and Durbin 2009) to more than one position were discarded,
leaving reads uniquely mapping to one or the other accessions of the
two species. These reads were plotted and compared to the expected
introgression positions of each IL.

Chimeric references, read mapping, D.E. calling, and
cis/trans classification
The approximate genomic positions of each IL’s introgression, from
(Chitwood et al. 2013) for most ILs and via IL genotyping for a small
subset of ILs (1-1-4, 7-5-P5, 7-5-P75, and 7-5-1), were used to combine
the two matched references into a single chimeric reference containing
the M82 sequence everywhere except in the introgression, where the S.
pennellii sequence was used. Genes located at the introgression bound-
aries may have suspect expression counts, particularly in IL7-5-1, IL7-5-
P75, and IL7-5-P5. Reads were mapped to the chimeric references using
BWA (Li and Durbin 2009) with arguments “aln -t 4 -k 1 -l 25 -n 0.1 -e
15 -i 10”. Mapped reads were counted per file with samtools (Li et al.
2009), and R code was used to gather and combine all count files. The R
package edgeR (Robinson et al. 2010) was used to normalize the mapped
read counts using the TMMmethod (Robinson and Oshlack 2010) and
normalized counts were summed over replicates for each genotype to
provide mean expression data for later use. Overdispersion and tagwise
dispersion were estimated with edgeR (Robinson and Smyth 2007), and
differentially expressed (D.E.) genes were called between each genotype
and M82 or PENN. The topTags() “fdr” method (Benjamini and
Hochberg 1995) was used to adjust for multiple testing (pFDR# 0.01).
Each D.E. gene was categorized as cis or trans (Figure 3A) based on its
known genomic position and the known positions of each introgression.

Testing IL bins for D.E. genes consistent with a trait
A D.E. gene was defined as consistent with a trait if the gene is
significantly differentially expressed in relation to M82 in at least two
significant ILs of the gene’s bin, and the direction of the change in
expression relative to M82 over all those significant ILs is consistent
with the trait. To be consistent with the trait, the expression was either
positively or negatively associated with the trait in all significant ILs for
that trait – i.e., an increase in expression (relative to M82) corresponds
to an increase (positive) or decrease (negative) in the value (relative to
M82). A minimum mean normalized expression count of 5 was re-
quired for a gene to be tested.

Validation of Sl/SpPAP27 as an eQTL using qPCR
Real-time PCR primer pairs were designed using Primer-BLAST (Ye et al.
2012). Reference gene primers (Solyc01g014230): F, 59 AGATTTGATG-
GACCCTGCTACCG-39 and R, 59- TCTTGACCGATTCCTGCTCT-
TCC-39; PAP27 primers: F, 59- CCCATTTACCAGAATCAATGTGT-39
andR, 59-TGGTGGTGAATCTATTCAAATGAG-39. Amplification was
performed with a MyIQ Real-Time PCR Detection System (BIO-
RAD) using SyberGreen Dye (Biorad) and the following program:
cycle 1, 10 min at 95�; cycle 2, 45 times 20 s at 95� followed by 30 s
at 60� for Ref gene and 62� for PAP27; cycle 3, 15 s at 95�; and cycle 4,
70 times 30 s at 55�. The final volume of the PCR was 20 ml. The
U-box domain-containing protein 4 (Solyc01g014230) was used as an
internal control to normalize for variation in the amount of cDNA
template. Each real-time PCR experiment contained three technical
replicates. Three biological replicates (RNA from independently har-
vested tissues) were used. The relative gene expression levels were
calculated using the 2–ΔΔt method (Livak and Schmittgen 2001).

Measuring average absolute angle in Col-0
overexpression lines of PAP27
The AtPAP27 gene (AT5G50400) was amplified from Col-0 cDNA
using primers at the start and stop codons and cloned into D-TOPO
and sequence validated. Primer sequences are found in Table S11.
Resulting pENTR clones were recombined via LR into pK2GW7,
which contains a 35S promoter. These constructs were transformed
into Agrobacterium tumefaciens strain GV3101 and Col-0 plants were
transformed via the floral dip method. T1 transformants were selected
onMSmedia containing kanamycin, and reselection was repeated with
T2 transformants. To confirm that the construct increased expression
of PAP27, RT-qPCR was performed on the T3 transformants.

Quantifying expression in PAP27 overexpression lines
Total RNA was extracted from PAP27 overexpression lines and
Col-0 controls approximately 7 to 10 days after germination.
cDNA for each biological replicate was synthesized from four to
six Arabidopsis seedlings using an adapted protocol in (Kumar
et al. 2012). Amplification was performed on CFX96 Touch Real-
Time PCR Detection System (Biorad) using SyberGreen Dye
(Biorad) using the following program: cycle 1, 2 min at 95�, cycle
2, 40 times 5 sec 95� followed by 60� for 30 sec, cycle 3, 5 sec 95�
followed by 60� for 5 sec. Primer sequences are found in Table S8.
EF1a, was used as an internal control for variation in cDNA.
Three to five biological replicates and four technical replicates per
biological replicates were used. The relative gene expression levels
were calculated using the 2–ΔΔt method (Livak and Schmittgen
2001).

Determination of orthology for PAP27 homologs
BLAST+ (Camacho et al. 2009) was used with the protein se-
quence for Solyc07g008570 against the S. lycopersicum ITAG2.3
genome(Bombarely et al. 2011; Tomato Genome Consortium 2012)
to identify five highly similar paralogs, and again against the S. pennellii
V2.0 genome(Bolger et al. 2014) to identify seven highly similar homo-
logs, and a third time against the A. thaliana TAIR10 genome(Lamesch
et al. 2012; TAIR10 2013) to identify three highly similar homologs, the
most similar being AT5G50400 (Table S9). Two more homologs per
species were identified with BLAST+, having lower identity to the query
sequence, for use as outgroup sequences. AT5G50400 was used to query
EnsemblPlants (Kersey et al. 2014) for a phylogenetic gene tree (EBI
2015) precomputed using homology to the protein sequence of
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AT5G50400 (Vilella et al. 2009). The tree was used to identify two A.
thaliana paralogs and six S. lycopersicum homologs, which were the same
ones identified with BLAST+ (Figure S5). The protein sequences of all
16 homologs were multiply aligned with Muscle (Edgar 2004). A max-
imum likelihood phylogenetic tree was constructed with 200 bootstraps
using MEGA (Tamura et al. 2011) from the aligned sequences. To con-
firm relationships shown in this tree, we used protein sequences from all
these genes and the next two best BLAST hits from each of the three
species to serve as outgroups, for a total of 22 protein sequences, to do a
multiple alignment and generate a maximum likelihood tree (Figure S6).
Based on these two trees, we identified PAP27 (AT5G50400) as the most
similar Arabidopsis gene to Solyc07g008570. Also based on these trees, we
assigned working symbolic names to the genes (Table S9).

PAP27 homolog rearrangements
Close study of the alignment of the PAP27 homologs in M82 and S.
pennellii showed that the Sopen07g004470 region containing exons
6-11 appears to have undergone a tandem duplication to the region
containing exons 12-17 of the same gene and another tandem dupli-
cation to exon 6-11 region of Sopen07g004480. Solyc07g008550 has
11 exons, and exon region 5-11 maps well to Sopen07g004470 exon
region 5-11. There is no sign of Sopen07g004480s exon 1-5 region in S.
lycopersicum, but Sopen07g004470s intron 1-2 region maps well to
Solyc07g008550 intron 1-2 region.

Arabidopsis root angle genome wide
association analysis

Plant material and growth conditions: Seeds of 257 Arabidopsis
thaliana accessions (Table S6) from the RegMap panel (Horton
et al. 2012) were surface sterilized for one hour with chlorine gas
generated from 130 mL of 10% sodium hypochlorite and 3.5 mL of
37% hydrochloric acid. For each accession, 24 seeds were plated
over eight plates in a permutated block design to account for posi-
tional and within-plates effects. Seeds were placed on the surface of
50 mL 1x MS medium pH 5.7 with added 0.8% (w/v) agar (Duchefa
Biochemie), 1% (w/v) sucrose. Seeds on plates were stratified 3 days
at 4� in the dark, then plates were positioned vertically in tight racks.
Racks with plates were then transferred for germination and growth
to a chamber with constant 21� and a 16h-light/8h-dark cycle. Data
for a subset of these lines (163 accessions) has been published in
(Slovak et al. 2014).

Scanning, phenotyping, and direction index/root angle analysis:
Color images at 1200dpiwere acquired onday 4using a cluster of Epson
PerfectionV600 flatbed scanners (Seiko Epson). The cluster of scanners
was operated by the BRAT image acquisition tool to speed up the
acquisition process and acquire 8 scans simultaneously (Slovak et al.
2014). TIFF images at 1200dpi 8-bit RGB were processed by BRAT
software (Slovak et al. 2014), a FIJI plug-in (Schindelin et al. 2012).
BRAT image acquisition tool and software executed unsupervised im-
age segmentation and root detection, supervised quality control and
subsequent automatic trait evaluation. The direction index trait is cal-
culated as a sum of values assigned at each pixel of the main root from
the hypocotyl/root junction toward the root tip (straight downward: 0,
diagonal downward: 1, straight left or right: 2, diagonal upwards: 3,
upwards: 4) (Slovak et al. 2014). The total sum is then divided by the
number of pixels visited. Root angle is calculated as the angle between
root vector (specified by the hypocotyl/root junction and the root tip
projected on the root topological skeleton) and the vertical axis of root
picture (assumed vector of gravity) [�].

Genome wide association mapping for average root direction in
A. thaliana:Median root direction index of 257 accessions (n = 7 to 24)
quantifiedbyBRAT(n=7 to24)wasused forGWAS(Slovak etal.2014).
TheGWASwas performed on a GMI computer cluster with algorithms
identical to the ones used in the GWAPP Web interface (Seren et al.
2012). In particular, this is an accelerated mixed model (EMMAX)
(Kang et al. 2010) followed by EMMA (Kang et al. 2008) for the most
significant 200 associations. We took into account SNPs with minor
allele counts greater than or equal to 12.

Identifying genes with conservation of root angle Between A.
thaliana and Solanum species: The GWAS results for median root
direction index/root anglewerefiltered to include only SNPs that passed
FDR threshold of 10% using the Benjamini–Hochberg–Yekutieli mul-
tiple testing procedure (Benjamini and Yekutieli 2001). We listed an-
notatedA. thaliana genes (Lamesch et al. 2012; TAIR10 2013) that were
within 4000 bp (upstream or downstream) of significant SNPs. This list
was intersected with putative S. lycopersicum orthologs that mapped
into intervals that influenced root GSA from ILs significant for avgAb-
sAng. Putative orthologous genes were selected through a multi-step
process utilizing the expressolog database (Patel 2013; Patel et al. 2012).
S. lycopersicum genes having an expressolog homology score of at least
50 and an expression correlation of at least 0.25 were selected. If these
conditions could not be met, the S. lycopersicum gene with the highest
homology score in the same orthoMCL (Li et al. 2003) cluster as the A.
thaliana gene and having a homology score of at least 50 was used.

Growing and phenotyping T-DNA and transgenic Lines for GSA:
Col-0 and randomly drawn (negative control) T-DNA lines in Table S7
were grown and phenotyped for GSA. Confirmed homozygous lines
were obtained using PCR with the standard primers for the particular
T-DNA and transgenic line (Table S8). For each line tested, two plates
of seedlings were grown. Each plate had 16 T-DNA or transgenic seeds
and 16 Col-0 seeds on opposite sides of the plate with four rows of four
seeds each, andwere grown in the same growth chamber for seven days,
then scanned on an Epson Perfection V700 photo flatbed scanner into
24-bit RGB TIF image files at 600 dpi.

Fixed-effect linear models for root angle analysis of T-DNA and
transgenic lines: Scanned images were loaded into ImageJ (Rasband
1997-2014) supplementedwith custommacros asdescribed for the tomato
root imaging. Angle traits were computed and used to fit the fixed-effect
linear model “angle �1+genotype�plate” on an individual basis for the
seedlings from each pair of plates containing a single T-DNA or trans-
genic line and Col-0 controls, using the R functions lm() and anova().

DATA AVAILABILITY STATEMENT
RNA-seq raw read data for the ILs and parents are available under GEO
accession GSE87162. Supplemental material available at Figshare:
https://doi.org/10.6084/m9.figshare.7237562.

RESULTS

Long-term and short-term regulation of root growth
angle differs Between M82 and S. pennellii
S. lycopersicum cv. M82 differs dramatically from S. pennellii in mean
root tip angle (Figure 1A) (Ron et al. 2013). To determine whether this
difference extends to the net root angle, we used a more sensitive and
quantitative descriptor – average absolute angle (avgAbsAng). We
defined avgAbsAng as the net angle from the root-hypocotyl junction
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to the final root tip (Figure 1B). This is a different trait than root slanting
or skewing. Slanting or skewing in Arabidopsis is characterized by a
right-handedness of growth observed on a vertical plate but which is
enhanced on a tilted agar plate. In tomato, there is no similar angle bias
as neither M82 nor S. pennellii displayed a significant preference for
right-handed or left-handed growth (Figure S1).The two parents differed
significantly (pFDR = 6e-45) in avgAbsAngwith S. pennellii always having
an increased angle relative to S. lycopersicum (Figure 1A, 1C).

To explore whether the short-term dynamics of a root’s response to
gravity (gravitropism) differs between the accessions of these two So-
lanum species, root tip angle was measured every 3.75 min at 34 time
points over the course of two hours following a 90� rotation (Figure
1D). 3.75min was determined to be an appropriate sampling frequency
such that enough growth occurred during the time interval to exceed
one pixel, the minimum measurable change. The standard coordinate
system for rotation experiments is used, where 0� is to the right (di-
rection to which seedlings were rotated) and positive angle is clockwise.
In response to the 90� rotation, M82 rapidly changed over the 124 min
from an average initial angle of -4� to +32� (90-32 = 58� from vertical),
a total change of 36� (Figure 1E, Supplemental Movies 1 and 2). In
contrast, the mean angle of S. pennellii changed much more slowly,
from its initial average angle of +10� to +22� (90-22 = 68� from verti-
cal), a change of 12�, two hours after rotation. The initial root angles are
not at 0� because the plates were rotated 90� independent of their root’s
established growth angles. Thus, if one considers a horizontal line in the
changed plate to be 0�, some roots may rotate “through” the gravity
vector to a positive angle (below horizontal after rotation) and others
will rotate “away” from the gravity vector to a negative angle (above
horizontal after rotation). The response curve of tip angle over time has
the same shape for roots rotating “away” and “through”, and therefore
“away” and “through” samples were combined to calculate the mean
rate of change of the root tip angle (swing rate) (Figure 1F). Swing rate
measures the dynamics of gravitropism. These dynamics differ sub-
stantially between the accessions of these two species. Approximately
30 min (Timepoint 7) after the gravity stimulus, M82 showed a maxi-
mum swing rate of 11�min-1, while S. pennellii showed a peak of 4�min-1

at 10 min, followed by a dampened and noisy swing rate, when com-
pared to M82 (Figure 1G, Table S2). ANOVA analysis showed that
the swing rate of S. pennellii differed significantly (pFDR # 0.01) from
M82 at 11 time points (Table S3). To determine if root growth rate
over this time period could account for these differences in swing rate
over time, we also calculated root growth rates for M82 and S. pennellii
(Figure S2). These rates are very similar and are not sufficient to
explain the difference in the gravitropic response between the acces-
sions of these two species. This is similar to what has been reported in
Arabidopsis thaliana (Brooks et al. 2010).

Identification of genetic loci regulating the S. pennellii
long-term root growth angle trajectory
To explore whether the short-term vs. long-term regulation of root
angle is determined by distinct genetic mechanisms, we proceeded to
map the underlying loci using the introgression lines derived from these
two parents (Eshed and Zamir 1995). Out of the 76 ILs, 23 were sig-
nificantly more angled than M82 (pFDR # 0.01) for avgAbsAng (Table
S1) which highlights the multigenic control of this trait. Significant
difference of an IL relative to its recurring parent is by definition a
QTL. In a previous study, 15 ILs had a significant increase in mean
root tip angle (Ron et al. 2013) and 11 of these 15were among the 23 ILs
identified as having an avgAbsAng significantly different from M82
(Figure S3). Of the remaining four ILs, 6-1, 6-2-2, 8-2, and 9-1, one

(6-2-2) was not grown or measured in this experiment due to lack of
seed. We re-measured the archived images of these four ILs for the
avgAbsAng trait, and all four were significantly different than M82
(Table S1). Two of these ILs had low but non-significant avgAbsAng
q-values in the current experiment (0.175 for 6-1; 0.060 for 8-2) and the
last IL, 9-1, had completely non-significant avgAbsAng. This extensive
overlap of these two datasets is expected since avgAbsAng and mean
root tip angle measure similar traits. We thus included the four ILs that
were exclusive to the earlier experiment, to comprise a comprehensive
set of ILs regulating root angle (Table S1).

Identification of genetic loci regulating root
gravitropism in the short-term
Because these two accessions differ in root angle and gravitropism, we
proceeded tomap the underlying loci. The same automatedpipeline and
ANOVAanalysis approach described above was used to phenotype root
tip angle and swing rate over a two-hour time period as described above,
in the same IL population as that for identification of loci regulating root
angle. ANOVA statistical models showed that 30 ILs that were signif-
icantly different than the M82 recurrent parent in swing rate at many
time points (Figure 2A, Table S3). Nine ILs had a significantly different
swing rate compared with M82 at three or more consecutive time
points, with some ILs responding to the gravity stimulus more slowly
than M82 (IL1-4-18, IL4-1-1, IL4-3, IL6-1 and IL7-5-5) and other ILs
responding faster thanM82 (IL1-4-18, IL2-1, IL2-1-1, IL10-2 and IL12-
3-1). Notably, IL1-4-18was slower thanM82 fromT2 through T11, and
faster than M82 from T24 to T27. Those responding faster than M82
did so either early or late in the time course, while those responding
slower than M82 typically did so in the middle of the time course. This
shows that distinct genetic loci regulate the root’s rate of change in
growth angle at different times over the observed period.

Common and distinct genetic loci determine short-term
and long-term regulation of root angle
We hypothesized that if root angle and gravitropismwere controlled by
polymorphisms in genes within the same pathways, that the significant
ILs identifiedwouldoverlapbetween these two traits.Alternatively, if the
polymorphisms were in genes affecting different pathways, the ILs
would be specific to one trait (i.e., gravitropism) and not affect the other
trait (i.e., avgAbsAng). Pearson correlation of avgAbsAng with swing
rate at each of the 34 time points showed that R2 is never more than 0.2
and is only larger than 0.1 at 2 time points (T21 and T22) (Figure S4).
Comparison of significant ILs identified for gravitropism (limited to
those with a swing rate significantly different from M82 at three or
more consecutive time points) and for root angle (avgAbsAng signif-
icantly different from M82) The vast majority of the significant ILs are
specific to either root growth angle or gravitropism. Twenty-four ILs
are specific to root growth angle, six ILs are specific to gravitropism,
and only three ILs (1-4-18, 6-1 and 7-5-5) showed an effect on both
root growth angle and gravitropism (Figure 2B). Therefore, root angle
and gravitropism are largely regulated by different loci suggesting that
most of the polymorphisms are trait-specific. We hypothesize that the
two ILs which influence both traits may contain loci that influence com-
mon molecular processes that are central to a plant’s response to gravity.

Global transcriptional changes underlying root angle
and gravitropism
A common approach to identify causal genes underlying QTL is to
conduct an Expression Quantitative Trait Locus (eQTL) analysis. To
further refine this approach, we conducted a developmentally focused

Volume 8 December 2018 | Regulation of Root Angle and Gravitropism | 3847



eQTL analysis by measuring gene expression solely within 1 cm of the
root tip under the hypothesis that signaling that regulates these traits
operates within the root tip. Using RNA-seq, we measured variation in
gene expressionwithin 1 cmof the root tip for the parents and all the ILs
across independently replicated samples. To align the resulting se-
quences, we created custom chimeric reference genomes for each IL,
predominantly comprised of S. lycopersicum sequence except for the
IL’s introgression region, which was comprised of S. pennellii sequence.
This approach has previously been successfully utilized to characterize
biological processes underlying leaf number, complexity and hypocotyl
length (Ranjan et al. 2016; Koenig et al. 2013).

Each identified eQTL represents a position in the genome where a
polymorphism causes differential accumulation of a specific transcript.
A cis-eQTL represents a polymorphismphysically located near the gene
encoding the transcript being measured. A trans-eQTL is located in a
portion of the genome with no physical linkage to the gene encoding
the measured transcript (Kliebenstein 2009). Differentially expressed
genes (DEGs) and thus, eQTL, were identified in cis and in trans for
each IL relative to M82 (Kliebenstein 2009). In the majority of ILs, the
number of cis-eQTL is more than the number of trans-eQTL (Figure
3A). The frequency of trans-eQTL was more variable than that of cis-
eQTL suggesting that ILs withmuch higher numbers of trans-eQTL are
hot spots for trans-effects (Figure 3A). The resulting differential gene
expression in each IL is visualized at the University of Toronto BAR
browser (Patel 2015) (Figure 3B).

Fine mapping of regulatory genes for root angle
To identify putative regulatory genes controlling the variation in
avgAbsAng, we refined the size of candidate genetic intervals by
identifying “bins”, areas of overlap covered by multiple ILs (Figure

3B). Among the 23 ILs which have a significantly different root angle
than M82, are 49 “bins” which represent independent genetic intervals
that regulate avgAbsAng. This allowed us to focus on the bin d-7B
interval, defined by overlap of ILs 7-5, 7-4-1 and 7-4, which all possess
an increased avgAbsAng and the exclusion of the region defined by IL7-
5-5, which did not possess an increased avgAbsAng. To further narrow
the bin d-7B interval, we investigated sub-ILs that subdivided this bin,
sub-IL7-5-1, sub-IL7-5-P5 and sub-IL7-5-P75 (Figure 4A). The sub-
IL7-5-P75 had an average absolute angle that differed significantly from
M82, while sub-IL7-5-1 and sub-IL7-5-P5 did not (Figure 4A). This
result indicates that sub-bin d-7B-3, which spans an estimated 220kbp
region comprising 19 genes, contains a gene for which the S. pennellii
allele is causative for a higher avgAbsAng. To further reduce the num-
ber of candidate genes within these regions, we identified candidate cis-
eQTL in multiple ILs whose introgression overlaps define a bin where
expression correlated with root avgAbsAng. Of these bins with corre-
lated cis-eQTL, bin d-7B-3 contains a single cis-eQTL out of 19 genes in
the interval, Solyc07g008570, PURPLE ACID PHOSPHATASE27-4a
(Figure 4B). Expression of the gene associated with this cis-eQTL,
Solyc07g008570/Sopen07g004470 (hereafter referred to as SlPAP27) cor-
relates with root average absolute angle across the ILs used to identify
the interval on chromosome 7 (R2 =0.79, Figure 4B) and was confirmed
with qPCR in these ILs (Figure 4C).

Using gene phylogenetic trees (Figure S5, S6), we identified the
nearest SlPAP27 (designated SlPAP27-4a in Figure S6) homolog in
Arabidopsis as AT5G50400 (AtPAP27). To test and validate the
sufficiency of AtPAP27 to regulate root growth angle in plants, we
proceeded to test this gene’s influence on Arabidopsis root angle.
Since increased expression of this gene was correlated with in-
creased growth angle in S. pennellii, we overexpressed AtPAP27

Figure 2 The genetic architecture of root angle is largely distinct from that of root gravitropism. (A) ILs showing significant differences in swing
rate over time. Time points are separated by 3.75 min. Early response = T0-T6, middle response = T7-T19; late response = T20-T33. Color
indicates magnitude of effect (difference of means of swing rates of ILs vs. M82), and only ILs with pFDR # 0.05 (ANOVA) are colored. (B) Overlap
in QTL for root angle and QTL for gravitropism at three or more consecutive time points (pFDR # 0.05, ANOVA) relative to M82.
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in the Col-0 accession to determine if this was sufficient to alter
root growth angle. The collective average absolute angle of
AtPAP27 summed across four independent overexpression lines
of AtPAP27 differed significantly from Col-0 (P # 0.01 including
insertion line in the linear model, Figure 4D). Furthermore,

avgAbsAng significantly linearly correlates with expression of
AtPAP27 (P # 0.01, Figure 4E). Together, these data phenocopy
our observations in the tomato introgression lines and their par-
ents where two copies of the S. pennellii allele likely confers higher
expression of PAP27 and increased average absolute angle. Root

Figure 3 Differentially expressed genes associated with cis- and trans-eQTL in the root tips of ILs. (A) Number of differentially expressed genes (y-
axis) between each IL (x-axis) and M82 at pFDR # 0.01 (negative binomial distribution tests with edgeR). Blue = cis-eQTL; Gray = trans-eQTL. (B)
Tomato eFP browser with chromosome positions of introgressions in ILs. Expression of Solyc07g008570 (SlPAP27) is indicated in each IL. Asterisks
indicate significant differences from M82 (pFDR # 0.01).
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length does not vary linearly with respect to AtPAP27 expression
in these lines and thus cannot explain these differences in root
angle (Figure S7). Thus, the SIPAP27 homolog, AtPAP27, is suf-
ficient to regulate avgAbsAng in Arabidopsis and is associated
with variation in the same trait in tomato.

Variation in Root Growth Angle within Arabidopsis
thaliana and Solanum species
Significant ILs and eQTL mapping linked overexpression of the S. pen-
nellii allele of PAP27 to increased root angle. Using these tomato data, we
hypothesized and obtained further support that increased expression of

Figure 4 Solyc07g008570 is localized to a genetic interval associated with regulating root angle and its expression correlates with root growth angle
in ILs with introgressions on chromosome 7. (A) Bin d-7B-3 contains 19 genes. Chromosome 7 position (Mbp) is indicated on the x-axis, and each S.
pennelli introgression within the IL or sub-IL is colored green for a significantly increased avgAbsAng relative to M82 or red if it is not different from
M82. Light red lines indicate approximate boundaries of each bin. (B) Expression of Solyc07g008570 is positively correlated with avgAbsAng using
the ILs defining bin d-7B and as determined using RNA-seq (Pearson correlation), error bars are standard error of the mean, nEXPR: M82:4, S.
pennellii:3; IL7-4:4; IL7-4-1:4, 7-5;3; nANGLE: M82:64, S. pennellii:78; IL7-4:34; IL7-4-1:38; IL7-5:29. (C) Quantitative real-time PCR confirmation of the
increased expression of Solyc07g008570 in ILs with increased avgAbsAng, n = 3 for each genotype, error bars represent standard deviation. (D) An
increase of AtPAP27 expression is positively correlated with an increased root angle using multiple independent insertion lines (R2 = 0.66, P # 0.05,
ANOVA). Error bars represent standard error of the mean, n(Col-0)=275, n(35S:AtPAP27

P
A:D)=277. (E) The average absolute angle of four

independent insertion lines overexpressing AtPAP27 is increased relative to Col-0 (��P # 0.01, ANOVA). Error bars represent standard error of
the mean, nAngle: Col-0:275, 35S:AtPAP27/lineA:11, lineB:20, lineD:83, lineF:100; nExpr: Col-0:19, 35S:AtPAP27/lineA:11, lineB:20, lineD:22, lineF:7.
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its homolog AtPAP27 in Arabidopsis is sufficient to regulate root growth
angle (Figure 4D,E).We thus hypothesized that there is genetic similarity
in natural variation of root growth angle between tomato and Arabidop-
sis. To test this potential, we analyzed a comparative dataset in Arabi-
dopsis to identify genes that regulate root angle. Large-scale root
phenotyping was carried out using the BRAT algorithm (Slovak et al.
2014) and two traits relating to gravitropism, “Root Angle” (net angle of
the root vector) and “Direction Index” (average pixel-by-pixel deviations
from growth relative to the vector of gravity) were measured in 257 A.
thaliana accessions four days after germination. These 257 accessions
showed continuous variation in “Root Angle” and “Direction Index”,
thereby allowing quantitative genetic analysis (Table S4, S5). The BRAT
algorithm is designed to provide measurements at the throughput found
with GWAS. To ensure that “Root Angle” and “Direction Index” provide
similar mathematical approximations to avgAbsAng, we measured
avgAbsAng in the 5 accessions with the largest and least “Direction In-
dex” values as well as the largest and least “Root Angle” values. These
accessions have increased and decreased avgAbsAng respectively (Figure
S8). Thus, these three measurements are capturing similar, but slightly
different aspects of root angle.

A Genome-Wide Association Study (GWAS) was performed to
associate single nucleotide polymorphisms (SNPs) with natural pheno-
typic variation in “Direction Index” and “Root Angle” (Table S4, S5 and
Dataset S4). As the GWAS screen was not particularly highly powered
with 257 accessions, we chose a stringent but not highly conservative
FDR threshold of 0.1. A. thaliana genes within 4000 bp (upstream or
downstream) of significant (pFDR # 0.1) SNPs (Figure 5A) were inter-
sected with the set of putative S. lycopersicum orthologs found within
introgression intervals of ILs that were significant (pFDR # 0.05) in
avgAbsAng. Using these guidelines, a single gene was associated with
“Direction Index” in Arabidopsis,CELLDIVISIONCYCLE 73 (CDC73,
AT3G22590) and with avgAbsAng in tomato (Solyc06g054080 (S. lyco-
persicum) and Sopen06g019240 (S. pennellii)). This gene was found in
bin d-6B, defined by the introgressions contained within ILs 6-1, 6-2
and 6-2-2, all which were significantly different than M82 for avgAb-
sAng (Figure 2). The significant SNP (A. thaliana chromosome 3;
position 8008000) for CDC73 was located 2421 bp downstream of its
gene model (Figure S9) and in the upstream region of the LTPG5 gene.
An additional SNP upstream of CDC73, that was not included on the
original 250K SNP chip used in the GWAS, is common within the
haplotype associatedwith the highest direction index (Figure S9). Using
our prior logic that data in tomato may inform our understanding of
genes that regulate root angle in Arabidopsis, we carried out experi-
ments to test this the influence of AtCDC73 on root angle.

Given that avgAbsAng captures the extreme variation observed for
“Direction Index” (Figure S8), we measured avgAbsAng in two different
TDNA insertion mutant alleles, cdc73-1 (php-1, SALK 150644) and
cdc73-2 (php-2, SALK_008357 (Yu and Michaels 2010) as well as in
17 othermutants randomly chosen as a negative control (Table S7, Figure
5B) (Alonso et al. 2003; Rosso et al. 2003; Sessions et al. 2002). Of all these
lines, only the mutations in CDC73 result in an increased avgAbsAng
relative to Col-0 (Table S7). The cdc73-1 allele of CDC73 is also present in
the FRIGIDA background and a similar root angle phenotype was iden-
tified relative to the FRI control (Figure 5B). While root length was
altered in these mutant alleles, these changes were not correlated with
the changes in root angle as – cdc73-1 had a longer root relative to wild
type and cdc73-2 had a shorter root relative to wild type (Figure S10).
Thus, changes in root growth are not sufficient to explain these differ-
ences in root angle. In summary, these data demonstrate that CDC73
is involved in regulation of root angle in Arabidopsis. Allelic com-
plementation experiments would be needed to resolve which of the

polymorphisms identified within the haplotype block are causal for
the large avgAbsAng/dirIndex in the accessions.

DISCUSSION

Merging quantitative genetic data to identify genes
associated With root growth angle
Characterization of root angle in the tomato introgression line pop-
ulation coupled with eQTL analysis in all 76 of these lines allowed the
identification of genes associatedwith a trait of interest.Ourfinding that
the S. pennellii allele of PAP27 is the only gene out of 19 in a significant
genetic interval whose elevated expression correlates with increased
root growth angle, as well as evidence that AtPAP27 overexpression
is sufficient to increase root angle in A. thaliana, are the backbone of
our hypothesis that polymorphic alleles of this gene regulate avgAb-
sAng in all three species. Further evidence is needed to determine if
overexpression of the S. pennellii allele is sufficient to regulate root
growth angle in S. lycopersicum. The expression resource of these
76 lines will enable identification of genes for which their altered root
expression is associated with a trait of interest. Coupled with a similar
resource profiling expression in leaves within this population, genes
influencing development pleiotropically across the segregating popula-
tion can also be identified and should be of use to breeders (Chitwood
et al. 2013).

To the best of our knowledge, this is the first time that quantitative
genetic assays frommultiple species (tomato and Arabidopsis) have been
combined de novo to identify genes regulating root growth angle. Iden-
tification of a CDC73 homolog as regulating root growth angle in Arab-
idopsis, started with identification of significant ILs in tomato which was
subsequently intersected with a GWAS analysis in Arabidopsis.
AtCDC73 was never previously identified to regulate root growth angle
in Arabidopsis via developmental genetic screens, suggesting that diverse
quantitative genetic datasets across species may be generally effective at
identifying genes that naturally vary and thus represent an additional
source of novel loci/genes underlying conserved developmental process-
es. In the GWAS, a single SNP associated with AtPAP27 was also iden-
tified on Chromosome 5 at position 20525997 at an uncorrected p-value
of 0.018 (Dataset S4) which did not pass our FDR threshold. The iden-
tification of genes regulating root angle in one species based on studies
from another species from which its family diverged approximately
112 million years ago (Ku et al. 2000), is quite striking.

Distinct Genetic Regulation of Long-Term and Short-
Term Response to Gravity
Many more loci were identified that contribute to regulation of root
growth angle (24 QTL/significant ILs or 49 “bins”) and the gravitropic
response (6 ILs). These additional loci contribute to the differences in
root angle and gravitropism observed between tomato and S. pennellii.
Although the effect size of the observed change on average absolute
angle inArabidopsis thaliana is small within the overexpression lines, it
is consistent with the multi-genic control of this trait. Since a greater
number of distinct ILs regulating root angle and gravitropism were
identified relative to common loci, the genetic architecture of root angle
and gravitropism are largely different.

Acid Phosphatases and their Potential Ecological
Importance in Regulating Root Growth
Acid phosphatases, including purple acid phosphatases, are generally
up-regulated during the phosphate stress response (PSR) ( _Zebrowska
et al. 2011; Bozzo et al. 2006) to produce, transport, or recycle Pi (Duff
et al. 1994). These enzymes are also secreted to scavenge external
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phosphate from the rhizosphere (Bozzo et al. 2002; Abel 2011;
Robinson 2012) or localized within cells to serve as Pi transporters
(Zimmermann et al. 2004; Liu et al. 1998). Phosphate is concen-
trated in upper soil layers, and is often a limited resource, so plants
that are seeking phosphorus will develop a root system to locate it
via topsoil foraging (Lynch and Brown 2001). S. pennellii is endemic
to sandy coastal regions and dry rocky regions of Peru and Chile
(Moyle 2008; Peralta and Spooner 2005). One hypothesis is that in
this region, phosphorus is in low abundance and concentrated near
the surface, and S. pennellii has adapted by developing a shallow
root system architecture to obtain phosphate and capture adequate
water during brief (and rare) precipitation events.

Chromatin Availability, Transcription and Root
Growth Angle
CDC73 (alsoknowasPHP,PLANTHOMOLOGOUSTOPARAFIBROMIN)
(A. thaliana AT3G22590, S. lycopersicum Solyc06g054080, S. pennellii
Sopen06g019240) is a promising new candidate for regulation of root
growth angle. CDC73 is a subunit of the Paf1c complex and is a tran-
scriptional co-factor of RNA Polymerase II (Amrich et al. 2012). In
animals, CDC73 coordinates various steps of the transcriptional process
from initiation to termination by interacting with and recruiting various
proteins to the proper locus at each step (Zhang et al. 2009; Nordick et al.
2008; Shi et al. 1997). In Arabidopsis, CDC73 coordinates the transcrip-
tional regulation and histone post-translational modification of flowering
time genes (Park et al. 2010). While CDC73 is expressed in Arabidopsis
roots, its function there has never been described. Rapid transcriptional
changes accompany the response of Arabidopsis roots to a gravity stim-
ulus and we propose that CDC73 may influence chromatin availability
dynamics and/or transcriptional regulation of critical genes during the
response to a gravity stimulus (Kimbrough et al. 2005; Kimbrough et al.

2004). While all SNPs are synonymous within the CDC73 coding region
between S. lycopersicum and S. pennellii, extensive changes exist in both the
59 and 39UTR and in the intron-exon structure, suggesting altered tran-
scriptional or translational regulation may influence root growth angle.
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