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A CLASS OF TWO-DIMENSIONAL AKLT MODELS WITH A GAP

HOUSSAM ABDUL-RAHMAN, MARIUS LEMM, ANGELO LUCIA, BRUNO NACHTERGAELE,
AND AMANDA YOUNG

Abstract. The AKLT spin chain is the prototypical example of a frustration-free quan-
tum spin system with a spectral gap above its ground state. Affleck, Kennedy, Lieb, and
Tasaki also conjectured that the two-dimensional version of their model on the hexagonal
lattice exhibits a spectral gap. In this paper, we introduce a family of variants of the
two-dimensional AKLT model depending on a positive integer n, which is defined by deco-
rating the edges of the hexagonal lattice with one-dimensional AKLT spin chains of length
n. We prove that these decorated models are gapped for all n ≥ 3.

1. Introduction

A central question concerning a quantum spin system is whether it is gapped or gapless.
(We say a system is gapped if its Hamiltonian exhibits a uniform spectral gap above the
ground state. Otherwise, it is gapless.) The existence of a spectral gap is known to have
wide-ranging consequences for the system’s low energy physics. For instance, the ground
states of gapped Hamiltonians display exponential clustering [21, 35] and, in one dimension,
they are known to satisfy various notions of bounded complexity [3, 4, 20, 29]. Of particular
interest are the spin liquid states conjectured to describe a number of interesting two- and
three-dimensional systems [26, 45, 13]. Moreover, with the advent of Hastings’ spectral flow
[19] (also called quasi-adiabatic evolution), it has become possible to explore gapped ground
state phases in considerable detail. Different gapped phases are separated from each other by
quantum phase transitions, which are accompanied by a closing of the spectral gap [6, 12].
Accordingly, numerous recent works are concerned with the stability of the spectral gap
under finite-range perturbations assuming local topological order [12, 31, 32, 36]. From these
considerations, it would be desirable to have a multitude of gapped Hamiltonians that one
can use as starting points for further analysis. However, proving the existence of a spectral
gap is a non-trivial mathematical task and there exist only limited tools [15, 16, 22, 27, 30]
and only a few special models in which a spectral gap has been rigorously established
[2, 5, 7, 9, 10, 11, 27, 30], particularly in dimensions ≥ 2. We also mention in passing that
deciding whether a general Hamilltonian is gapped or not is known to be undecidable in
general, even for reasonable (i.e., translation-invariant and local) Hamiltonians [8, 14]. See
also [33].

The foundational work in the field was done by Affleck, Kennedy, Lieb and Tasaki (AKLT
in the following) in 1988 [1, 2]. Motivated by a famous conjecture of Haldane [17, 18] that
predicts a spectral gap for the one-dimensional integer-spin Heisenberg antiferromagnet,
AKLT provided two main contributions that proved seminal in the years to come:
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(1) They defined what is now called the one-dimensional AKLT chain: a spin-1, isotropic
(i.e., SU(2)-invariant) antiferromagnet on a one-dimensional chain. They found that
it has a unique ground state in the thermodynamic limit and rigorously established
a spectral gap.

(2) They defined analogous spin-z/2 AKLT models on any z-regular bipartite graph.
They focused on the hexagonal lattice case (so spin-3/2) and derived exponential
decay of correlations in the infinite-volume ground state. These facts led AKLT to
conjecture that the hexagonal model is also gapped.

We make two further remarks about the AKLT model: (a) The ground state of the
hexagonal AKLT model was proved to have a unique [24] thermodynamic limit when the
limit is taken with boundary conditions in a certain natural class. It is also known that
the ground state in finite-volume with periodic boundary conditions (a finite honeycomb
lattice wrapped on a torus) is unique [25]. Kennedy, Lieb, and Tasaki also proved expo-
nential decay of spin-spin correlations, which is significant because it shows that the AKLT
antiferromagnet does not exhibit Néel order, in contrast to its spin-3/2 Heisenberg analog,
and that there very likely is a spectral gap above the ground state. (b) Historically, the
AKLT chain provided the first example of a Hamiltonian whose ground states are matrix
product states. This notion has been vastly generalized, starting with [15], to what are now
called tensor network states, and has developed into a central tenet of modern many-body
physics [37, 42].

The conjecture of AKLT that the hexagonal AKLT model (or any other AKLT model in
dimension ≥ 2) is gapped remains open to this day. This is insofar remarkable as all of the
AKLT models share a key feature that makes the spectral gap problem in principle more
amenable: They are frustration-free, meaning that the global ground state is also locally
energy-minimizing.

In the present work, we introduce a novel family of AKLT models on ‘decorated’ hexag-
onal lattices depending on an integer parameter n, and prove that these models are gapped
for sufficiently large values of n. We call these models the edge-decorated AKLT models
(or decorated AKLT models for short). The positive integer n will be called the decoration
number, and we explain its role in the next paragraph.

The decorated AKLT model is defined by replacing each edge of the hexagonal lattice
with a copy of the one-dimensional AKLT chain of length n. Notice that this means that
there are two types of vertices in the system: vertices of the hexagonal lattice which have
degree 3 and spin 3/2, and “internal vertices” of the decorated edges which have degree
2 and spin 1; see Figure 1. The heuristic behind this construction is that the decorated
AKLT model incorporates features of the one-dimensional AKLT chain, which is known to
be gapped from the work of AKLT. While the decorated model is a bit contrived, it is not
unreasonable to expect its ground state(s) to belong to the same gapped phase as those of
the original AKLT model on the hexagonal lattice. It seems likely that the same features
that generated interest in two-dimensional AKLT models [38, 40, 43] are also present for
the decorated AKLT model. In particular, we mention [44], where it was shown that the
valence-bond ground states of similarly decorated AKLT models can serve as a universal
resource for quantum computation. Going beyond AKLT-type models, an SU(3) spin liquid
with Z3 topological order has recently been proposed in [28]. It too is expected to be gapped.
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Figure 1. The decorated hexagonal lattice for n = 2.

The strategy that we use to derive the spectral gap of the decorated model follows
two main steps. We begin by taking the square of the Hamiltonian, as usual. Step 1 is
to employ an inequality due to Fannes, Nachtergaele, and Werner [15] which relates the
anticommutator between interaction terms to the angle between ground state projections
via a duality argument. This inequality reduces the claim to a sufficiently strong bound
on the angle between two ground state projections that overlap along one decorated edge
(so mainly along a one-dimensional AKLT chain of length n). Step 2 is to establish the
desired angle bound by a computation with quasi-one-dimensional matrix product states.
With an eye toward possible future applications, we generalize the last computation (of the
angle between ground state projections overlapping on a chain) to other models with matrix
product ground states.

2. AKLT models on decorated two-dimensional lattices

For concreteness, we will first discuss in detail an AKLT model on a honeycomb lattice
with additional spins on the edges. It will then be straightforward to consider generalizations
to which the same arguments apply.

Let Γ be the hexagonal lattice and n ≥ 1. The standard AKLT model on Γ [24] has a
spin-3/2 degree of freedom at each vertex. For the ‘decorated’ models we introduce here,

we add n spin 1’s along each edge of Γ and call the resulting ‘lattice’ Γ(n). On this graph
with both degree 2 and degree 3 vertices (see Figure 1) we define the AKLT Hamiltonian as

usual with nearest neighbor interactions given by the orthogonal projection P (z(e)/2) onto
the space of total spin z(e)/2, where for any edge e, z(e) is the sum of the degrees of its

two vertices. For the AKLT model on Γ(1) all the interaction terms are P (5/2). For n ≥ 2,
the model also has interactions P (2) between neighboring spin 1’s. This class of models
is a special case of the general class of AKLT-type models studied in [25]. There, it is
shown that they are frustration-free and also that the ground state is non-degenerate if the
model is considered with periodic boundary conditions. The frustration-freeness is easily
proved in the same way as for the original AKLT models by using the Valence Bond Solid
construction of a non-zero vector in the kernel of the manifestly non-negative Hamiltonian.

Let Λ be a suitable finite subset of Γ considered with periodic boundary conditions and
denote by Λ(n) its decoration as above. Let EΛ(n) denote the set of edges of the decorated
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graph and consider the Hamiltonian

(2.1) HΛ(n) =
∑

e∈E
Λ(n)

P (z(e)/2)
e .

We claim that for n large enough there is γn > 0 such that for all nice Λ the gap of HΛ(n) is
lower bounded by γn. In this context, ‘nice’ Λ, means that one can consider the decorated
graph Λ(n) as a union of overlapping subgraphs isomorphic to the H-shaped graph shown in
Figure 2. For concreteness, we will explicitly treat the case of periodic boundary conditions
(a finite rectangle cut out of the hexagonal lattice and wrapped around a torus). Other
shapes can be considered without any significant change in the arguments.

To prove the claim we consider a comparable model defined as follows. For each vertex
v in Λ and the three edges meeting in v, we consider the subsystem consisting of the spin
3/2 at v and the 3n spin 1’s residing on the three edges. Let Yv denote the corresponding

set of 3n+ 1 vertices in Λ(n) and define hv to be the AKLT Hamiltonian on Yv. Then

(2.2) HΛ(n) ≤
∑
v∈Λ

hv ≤ 2HΛ(n) .

To simplify things further, define Pv to be the orthogonal projection onto ranhv. It is a
straightforward calculation to check that kerPv = kerhv is 8-dimensional for n = 1, and
hence for all larger values of n as well. We will estimate the gap of

(2.3) H̃Λ(n) =
∑
v∈Λ

Pv,

which is also comparable to HΛ(n) :

(2.4)
1

2
γY H̃Λ(n) ≤ HΛ(n) ≤ ‖hY ‖H̃Λ(n) ,

with γY > 0. This inequality implies that H̃Λ(n) is also frustration-free since ker(H̃Λ(n)) =

ker(HΛ(n)) 6= {0}. Therefore, it suffices to study the gap of H̃Λ(n) .

We will obtain a lower bound for the gap of H̃Λ(n) , by finding a constant γ > 0 satisfying

(2.5) (H̃Λ(n))2 = H̃Λ(n) +
∑

{v,w}⊂Λ,v 6=w

(PvPw + PwPv) ≥ γH̃Λ(n) .

If v and w are not nearest neighbors, Pv and Pw commute and PvPw + PwPv ≥ 0. There-
fore, in the second term we can drop all contributions from such pairs. For the nearest
neighbor pairs (v, w), instead of the combinatorial style argument in [27], which requires
good estimates of a specific finite-volume gap, we apply the following inequality for a pair
orthogonal projections E and F (for a proof see [15, Lemma 6.3]):

(2.6) EF + FE ≥ −‖EF − E ∧ F‖(E + F ).

Here, E ∧F is the orthogonal projection onto ranE ∩ ranF . We need this for E = Pv, F =
Pw, with v, w nearest neighbors in Λ.

The norm in (2.6) remains unchanged if we replace E and F by 1l−E and 1l−F , which,
in our application, are the corresponding ground state projections. All nearest neighbor
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pairs are equivalent in this consideration and we denote 1l − Pv = P�, 1l − Pw = P�, and
P� ∧ P� = P��. Define

(2.7) εn = ‖P�P� − P��‖.
Since every v ∈ Λ has 3 nearest neighbors, we have shown

(2.8) (H̃Λ(n))2 ≥ (1− 3εn)H̃Λ(n) .

Therefore,

(2.9) gap(HΛ(n)) ≥
1

2
γY (1− 3εn).

It remains to show that εn < 1/3.

Proposition 2.1. Let

An =
4

3n
(

1− 8(1+3−2n−1)
3n(1−3−2n)

) .
Then, for all n ≥ 3, the quantity εn defined in (2.7) satisfies

(2.10) εn ≤ An +A2
n

(
1 +

8(1 + 3−2n−1)2

3n(1− 3−2n)2

)
< 1/3.

The proof of this proposition is contained in the next two sections. As a consequence,
we can state the following theorem.

Theorem 2.2. The spectral gap above the ground state of the AKLT model on the edge-
decorated honeycomb lattice with n ≥ 3 has a strictly positive lower bound uniformly for all
finite volumes with periodic boundary conditions.

3. Ground state projections for subgraphs overlapping on a chain

To prove Proposition 2.1 we will formulate the quantity εn in terms of the ground state
projections of quasi-one-dimensional Matrix Product States (MPS). A rather straightfor-
ward generalization of the arguments in [15] to MPS systems with matrices that may vary
from site to site and are not necessarily square, will then yield the desired estimate. With
an eye toward possible further generalizations and applications, we will estimate εn in a
slightly more general setting, which we now introduce. The role of the finite subgraph ��
of the decorated honeycomb lattice will be played a finite graph G with a certain structure
and we will make a number of assumptions on the ground states of a frustration free Hamil-
tonian on G. In Section 4 we will show that these assumptions are satisfied for the AKLT
model on the decorated honeycomb lattice.

3.1. Assumptions on the tensor network states for the local patch G. Consider a
finite graph G = (V, E) of the form GL−Cn−GR, meaning there are finite graphs GL and
GR, Cn = [v1, vn] is a chain of n vertices, and there exist vL ∈ GL, vR ∈ GR such that V is
the disjoint union of the vertices of GL, Cn and GR and E consists of the edges of GL, Cn
and GR together with (vL, v1) and (vn, vR), see Figure 2. We consider a frustration-free
Hamiltonian on G of the following form:

(3.1) HG = HGL
+HCn +HGR

+ hvL,v1 + hvn,vR ,



6 H. ABDUL-RAHMAN, M. LEMM, A. LUCIA, B. NACHTERGAELE, AND A. YOUNG

Cn

GL GRvL vR
. . .

..
.

...
. .
.

. . .
Figure 2. The graph G for the decorated AKLT model.

where HGL
, HGR

, and HCn satisfy the following conditions. First, we assume HCn has
ground states given by a translation invariant MPS with a primitive transfer matrix E. Let
D denote the bond dimension of this MPS and pick an orthonormal basis {|i〉 | 1 ≤ i ≤ d}
for the physical degree of freedom at each of the n sites of Cn. In this case the transfer
matrix E, in isometric form, is given in terms of d D ×D matrices Vi:

(3.2) E(B) =
d∑
i=1

V ∗i BVi, B ∈MD, with E(1l) = 1l.

The primitivity assumption implies that there exists a non-singular density matrix ρ ∈MD

satisfying Et(ρ) = ρ, and constants C ≥ 0 and λ ∈ [0, 1), such that

(3.3) a(n) := ‖En − |1l〉〈ρ|‖ ≤ Cλn.

For the spin-1 AKLT chain one has this estimate with C = 1 and λ = 1/3, and both
constants are sharp in that case.

We now turn to the assumptions we make on HGL
and HGR

. For ] ∈ {L,R}, let H] be
the Hilbert space associated with the system on G]. We assume that the ground states of

HG]
are given by a tensor T ] as follows. We will consider TL as a set of dimHL D ×DL

matrices labeled by an orthonormal basis {|r〉L} of HL and TR as a set of dimHR DR ×D
matrices labeled by an orthonormal basis {|r〉R} of HR. The physical Hilbert space for the
system on G is HG = HGL

⊗HCn ⊗HGR
, and the auxiliary space, which parametrizes the

ground states, is KG = CDL ⊗ CDR , which we identify with L(CDR ,CDL) and equip with
the standard inner product 〈·, ·〉KG

. The map ΓG : KG → HG is then given by

(3.4) ΓG(B) =
∑

l,i1,...,in,r

Tr[BTRr Vin · · ·Vi1TLl ] |l〉L ⊗ |i1, . . . , in〉 ⊗ |r〉R , B ∈ KG.

We assume that HG is frustration free, which means that all terms in (3.1) are non-negative
and kerHG 6= {0} and, in addition, we assume kerHG = ran ΓG.

We also introduce the transfer matrices associated with GL and GR, EL : MD → MDL

and ER : MDR
→MD, as follows:

(3.5) EL(B) =
∑
l

(TLl )∗BTLl , ER(B) =
∑
r

(TRr )∗BTRr ,
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and define

(3.6) QL = EL(1l), QR = EtR(ρ)

where EtR(B) =
∑

r T
R
r B(TRr )∗. We assume that QL and QR are non-singular.

For Λ ∈ {GL, Cn, GR, GL − Cn, Cn − GR}, considered as subsets of G, let HΛ and KΛ

denote the corresponding physical and auxiliary Hilbert spaces, respectively, and define the
corresponding maps ΓΛ : KΛ → HΛ in the obvious way. These maps are of the same form
as ΓG in (3.4); if one or both parts described by GL or GR are absent, the absent degrees
of freedom associated with G] correspond to taking HG]

= C, HG]
= 0, and T ] ≡ 1.

We assume that the maps ΓΛ are injective, meaning

(3.7) dim ran ΓΛ = dimKΛ,

and ran ΓΛ = kerHΛ.

3.2. General estimate of εn. Let GΛ denote kerHΛ, and PΛ the orthogonal projection
onto GΛ. Our next goal is to estimate εn = ‖PGL−CnPCn−GR

− PG‖. It is easy to see that
εn is explicitly given by the following expression:
(3.8)

εn = sup

{
|〈φ, ψ〉|
‖φ‖‖ψ‖

∣∣∣∣φ ∈ GGL−Cn ⊗HGR
, ψ ∈ HGL

⊗ GCn−GR
, φ, ψ ⊥ GG, φ, ψ 6= 0

}
.

We will derive an estimate of the type of inner products that appear in (3.8), but first
recall some basic properties of MPS.

Since ρ is non-singular and positive, it defines an inner product on MD by

(3.9) 〈A,B〉ρ = TrρA∗B for all A,B ∈MD ,

and let ‖ · ‖ρ denote the corresponding norm. We will also let ρmin denote the smallest
eigenvalue of ρ, which is positive by assumption. It follows that the norm ‖ ·‖ρ is equivalent

to the Hilbert-Schmidt norm on MD, which is given by ‖ · ‖2 =
√

TrA∗A. Explicitly:

(3.10) ‖A‖2 ≤
1

√
ρmin
‖A‖ρ, A ∈MD .

The map ΓCn : MD → HCn is explicitly given by

(3.11) ΓCn(B) =
∑
i1,...,in

Tr[BVin · · ·Vi1 ] |i1, . . . , in〉 , B ∈MD.

Lemma 3.1 ([15, Lemma 5.2]). For any B,C ∈MD,

(3.12) |〈ΓCn(B),ΓCn(C)〉 − 〈B,C〉ρ| ≤ a(n)Trρ−1‖B‖ρ‖C‖ρ .
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Proof. Using (3.11) we can express the inner product as follows:

〈ΓCn(B),ΓCn(C)〉 =
∑
i1,...,in

Tr[BVin · · ·Vi1 ]Tr[CVin · · ·Vi1 ]

=
∑
i1,...,in

Tr[V ∗i1 · · ·V
∗
inB

∗]Tr[CVin · · ·Vi1 ].(3.13)

By expanding the traces using any orthonormal basis {|1〉 , . . . , |D〉} for CD, we obtain

〈ΓCn(B),ΓCn(C)〉 =
D∑

α,β=1

∑
i1,...,in

〈α|V ∗i1 · · ·V
∗
inB

∗|α〉〈β|CVin · · ·Vi1 |β〉

=

D∑
α,β=1

〈α| Ên (B∗|α〉〈β|C) |β〉 .(3.14)

Now observe that

(3.15) 〈B,C〉ρ =
D∑

α,β=1

〈α| |1l〉〈ρ| (B∗|α〉〈β|C) |β〉 .

Combining these two expressions and using (3.3), we obtain

|〈ΓCn(B),ΓCn(C)〉 − 〈B,C〉ρ| ≤
D∑

α,β=1

| 〈α| (En − |1l〉〈ρ|) (B∗|α〉〈β|C) |β〉 |

≤ a(n)

(
D∑
α=1

‖B∗ |α〉 ‖

) D∑
β=1

‖C∗ |β〉 ‖


Now, pick for the orthonormal basis one that diagonalizes ρ, such that ρ |α〉 = ρα |α〉. Then(

D∑
α=1

‖B∗ |α〉 ‖

)2

=

(
D∑
α=1

‖B∗ |α〉 ‖ρ1/2
α ρ−1/2

α

)2

≤
D∑
α=1

ρα 〈α|BB∗ |α〉
D∑
α=1

ρ−1
α = ‖B‖2ρTrρ−1.

Together with the analogous estimate for the second factor, this proves the lemma. �

Note that one has the bound

Trρ−1 ≤ D

ρmin
,

which is often saturated in models with symmetry. It will be convenient to define

(3.16) b(n) = a(n)Trρ−1

The following is an immediate corollary of Lemma 3.1, and shows that ΓCn is injective for
sufficiently large n.

Corollary 3.2. For any B ∈MD, the bound

(3.17) ‖B‖ρ
√

1− b(n) ≤ ‖Γn(B)‖ ≤ ‖B‖ρ
√

1 + b(n)

holds for n sufficiently large so that b(n) ≤ 1.
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Proof. The bound

(3.18)
∣∣‖ΓCn(B)‖2 − ‖B‖2ρ

∣∣ ≤ b(n)‖B‖2ρ

follows immediately from (3.12). If B = 0, there is nothing to prove. Otherwise, this bound
can be re-written as

(3.19) −b(n) ≤ ‖ΓCn(B)‖2

‖B‖2ρ
− 1 ≤ b(n)

from which the above claim readily follows. �

Inner products of vectors of the form ΓG(B), B ∈ KG can be estimated with a straightfor-
ward generalization of Lemma 3.1. To formulate the result, for each Λ ∈ {G, GL−Cn, Cn−
GR} we define an inner product on KΛ, denoted by 〈·, ·〉Λ, via

〈B,C〉G = Tr(QRB
∗QLC)(3.20)

〈B,C〉GL−Cn = Tr(ρB∗QLC)(3.21)

〈B,C〉Cn−GR
= Tr(QRB

∗C)(3.22)

That these are inner products follows from the positive-definiteness of QL and QR. With
respect to these inner products we obtain the following analog of Lemma 3.1.

Lemma 3.3. Let Λ ∈ {G, GL − Cn, Cn −GR}. Then for any B,C ∈ KΛ,

(3.23) |〈ΓΛ(B),ΓΛ(C)〉 − 〈B,C〉Λ| ≤ a(n)D2CΛ‖B‖‖C‖,

where

(3.24) CG = ‖EL‖‖ER‖, CGL−Cn = ‖EL‖, and CCn−GR
= ‖ER‖.

Proof. We prove the bound in the case of Λ = G. All other cases follow from similar
arguments. Let B, C ∈ KG, and {|1〉 , . . . , |D〉} be an orthonormal bases of CD. Then,
calculating similar to (3.13) and (3.14), we find

〈ΓG(B),ΓG(C)〉 =
∑
`,r

i1,...,in

Tr[V ∗i1 · · ·V
∗
in(TRr )∗B∗(TL` )∗]Tr[TL` CT

R
r Vin · · ·Vi1 ]

=

D∑
α,β=1

〈α|En ◦ ER
[
B∗EL(|α〉〈β|)C

]
|β〉 ,(3.25)

where we have also use cyclicity of the trace in the first equality. Now consider 〈B,C〉G. It
can easily be shown, e.g. by simplifying the RHS, that

(3.26) 〈B,C〉G =
D∑

α,β=1

〈α| |1l〉〈ρ| ◦ ER[B∗EL(|α〉〈β|)C
]
|β〉 .
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By substituting these (3.25) and (3.26) into (3.23) and then using (3.3), we estimate as
follows:

|〈ΓG(B),ΓG(C)〉 − 〈B,C〉G| ≤
D∑

α,β=1

∣∣〈α| (En − |1l〉〈ρ|) ◦ ER[B∗EL(|α〉〈β|)C
]
|β〉
∣∣

≤ a(n)
D∑

α,β=1

∥∥ER[B∗EL(|α〉〈β|)C
]∥∥

≤ a(n)D2‖EL‖‖ER‖‖B‖‖C‖.(3.27)

This completes the claim. �

Note that the bound in Lemma 3.3 is expressed in terms of the operator norms ‖B‖
and ‖C‖. This is just a common norm of reference. The natural norm to use is the one
induced by the inner product that appears on the left of (3.23), as in done in Lemma 3.1.
Since these norms are all equivalent to the operator norm, the estimates from (3.23) can be
converted to the ‘natural’ norm by multiplying by an appropriate constant as follows: Let
qL (resp. qr) be the minimal eigenvalue of QL (resp. QR). Then,

(3.28) ‖B‖ ≤ 1
√
qLqR

‖B‖G, ‖B‖ ≤ 1
√
ρminqL

‖B‖GL−Cn , ‖B‖ ≤ 1
√
qR
‖B‖Cn−GR

.

We can thus obtain a corollary to Lemma 3.3 similar to Corollary 3.2.

Corollary 3.4. Let Λ ∈ {G, GL − Cn, Cn −GR}. Then for any B ∈ KΛ,

(3.29) ‖B‖Λ
√

1− bΛ(n) ≤ ‖ΓΛ(B)‖ ≤ ‖B‖Λ
√

1 + bΛ(n)

holds for n sufficiently large so that bΛ(n) ≤ 1, where
(3.30)

bG(n) =
a(n)D2

qLqR
‖EL‖‖ER‖, bGL−Cn(n) =

a(n)D2

ρminqL
‖EL‖, bCn−GR

(n) =
a(n)D2

qR
‖ER‖.

In order to simplify notation, we will write bL(n) for bGL−Cn(n) and bR(n) for bCn−GR
(n).

Ultimately, we will want a bound for the inner product in (3.8) in terms of the norms of
the vectors φ and ψ defined below. Lemma 3.3 can also be used to show that this is once
again straightforward at the cost of another prefactor in the bound.

Since ΓGL−Cn and ΓCn−GR
are assumed to be injective, there exist DR DL×D matrices

Bφ(r), and DL D ×DR matrices Bψ(l), uniquely determined by φ and ψ, such that

φ =
∑

l,i1,...,in,r

Tr[Bφ(r)Vin · · ·Vi1TLl ] |l〉L ⊗ |i1, . . . , in〉 ⊗ |r〉R(3.31)

ψ =
∑

l,i1,...,in,r

Tr[Bψ(l)TRr Vin · · ·Vi1 ] |l〉L ⊗ |i1, . . . , in〉 ⊗ |r〉R .(3.32)
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These expressions are simply expansions of

φ =
∑
r

ΓGL−Cn(Bφ(r))⊗ |r〉R(3.33)

ψ =
∑
l

|l〉L ⊗ ΓCn−GR
(Bψ(l)).(3.34)

It will be convenient to define Cφ, Cψ ∈ KG as follows:

Cφ =
∑
r

Bφ(r)ρ(TRr )∗(3.35)

Dψ =
∑
l

(TLl )∗Bψ(l).(3.36)

Next, we consider inner products of the form 〈φ, ψ〉, with φ ∈ GGL−Cn ⊗ HGR
and

ψ ∈ HGL
⊗ GCn−GR

.

Lemma 3.5. Suppose that n is large enough so that b(n) < 1. Then, for all φ ∈ GGL−Cn ⊗
HGR

and ψ ∈ HGL
⊗ GCn−GR

, we have

(3.37) |〈φ, ψ〉 − 〈Cφ, Dψ〉KG
| ≤ b(n)√

1− bLR(n)
‖φ‖‖ψ‖,

where

(3.38) bLR(n) = bL(n) + bR(n)− bL(n)bR(n),

and bL(n) and bR(n) are defined in (3.30).

Proof. Using the expansions (3.31) and (3.32) we find

〈φ, ψ〉 =
∑

l,i1,...,in,r

Tr[Bφ(r)Vin · · ·Vi1TLl ]Tr[Bψ(l)TRr Vin · · ·Vi1 ]

=
∑
l,r

〈ΓCn(TLl Bφ(r)),ΓCn(Bψ(l)TRr )〉(3.39)

Similarly, we observe that 〈Cφ, Dψ〉KG
can be expressed as a sum of inner products:

〈Cφ, Dψ〉KG
= Tr

(∑
r

TRr ρBφ(r)∗

)(∑
l

(TLl )∗Bψ(l)

)
=

∑
l,r

TrρBφ(r)∗(TLl )∗Bψ(l)TRr

=
∑
l,r

〈TLl Bφ(r), Bψ(l)TRr 〉ρ.
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Now we apply Lemma 3.1 term by term to obtain, using Cauchy-Schwarz:

|〈ϕ,ψ〉 − 〈Cφ, Dψ〉KG
| ≤

∑
l,r

∣∣〈ΓCn(TLl Bφ(r)),ΓCn(Bψ(l)TRr )〉 − 〈TLl Bφ(r), Bψ(l)TRr 〉ρ
∣∣

≤ b(n)
∑
l,r

‖TLl Bφ(r)‖ρ · ‖Bψ(l)TRr ‖ρ

≤ b(n)

√∑
l,r

‖TLl Bφ(r)‖2ρ ·
√∑

l,r

‖Bψ(l)TRr ‖2ρ.(3.40)

The quantity under the first square root can be bounded in terms of ‖φ‖ as follows:∑
l.r

‖TLl Bφ(r)‖2ρ =
∑
l,r

TrρBφ(r)∗(TLl )∗TLl Bφ(r)

=
∑
r

TrρBφ(r)∗QLBφ(r) =
∑
r

‖Bφ(r)‖2GL−Cn

≤ 1

1− bL(n)

∑
r

‖ΓGL−Cn(Bφ(r))‖2

=
1

1− bL(n)
‖φ‖2 ,

where we have used the definition of QL, Corollary 3.4 and (3.33). The quantity under the
second square root is similarly estimated in terms of ‖ψ‖:

(3.41)
∑
l,r

‖Bψ(l)TRr ‖2ρ ≤
1

1− bR(n)
‖ψ‖2 .

Inserting these into (3.40) yields

(3.42) |〈ϕ,ψ〉 − 〈Cφ, Dψ〉KG
| ≤ b(n)√

(1− bL(n))(1− bR(n))
‖φ‖‖ψ‖ .

�

Now, we are ready to estimate the quantity of interest in (3.8), which is an inner product
of the form considered in Lemma 3.5 with the additional information that φ and ψ are both
orthogonal to GG.

Proposition 3.6. Under the assumptions stated in Section 3.1 and with the notations
introduced there, we have the following estimate for the quantity εn defined in (3.8):

(3.43) εn ≤
b(n)√

1− bLR(n)
+

(
b(n)√

1− bLR(n)

)2

(1 + bG(n)) ,

with

(3.44) b(n) = a(n)Trρ−1, a(n) = ‖En − |1l〉〈ρ|‖ ,

and bLR(n) and bG(n) are defined in (3.30) and (3.38).



A CLASS OF TWO-DIMENSIONAL AKLT MODELS WITH A GAP 13

Proof. Any ξ ∈ GG belongs to both GGL−Cn ⊗ HGR
and HGL

⊗ GCn−GR
. Therefore, there

are unique matrices Bξ(r) and Bξ(l) and corresponding expressions (3.31) and (3.32) for ξ.
Since ξ ∈ GG, there also exists X ∈ KG such that ξ = ΓG(X). By injectivity it follows that

(3.45) BL
ξ (l) = TLl X, BR

ξ (r) = XTRr .

Inserting the first relation above into the expression for Dψ and the second into Cφ we find
the following special form of these matrices for a ground state ξ:

Cξ =
∑
r

Bφ(r)ρ(TRr )∗ =
∑
r

XTRr ρ(TRr )∗ = XQR(3.46)

Dξ =
∑
l

(TLl )∗Bψ(l) =
∑
l

(TLl )∗TLl X = QLX.(3.47)

We use this to extract information from the orthogonality of φ and ψ to GG. Using 〈φ, ξ〉 =
〈ξ, ψ〉 = 0, from Lemma 3.5 we have that for all X ∈ CDR×DL :

|〈Cφ, QLX〉KG
| ≤ b(n)√

1− bLR(n)
‖φ‖‖ξ‖(3.48)

|〈XQR, Dψ〉KG
| ≤ b(n)√

1− bLR(n)
‖ξ‖‖ψ‖.(3.49)

Applying Corollary 3.4 gives

‖ξ‖2 = ‖ΓG(X)‖2 ≤ (1 + bG(n)) ‖X‖2G.
Using this with (3.48) and (3.49) yields

|〈Cφ, QLX〉KG
| ≤ δ(n)‖φ‖‖X‖G(3.50)

|〈XQR, Dψ〉KG
| ≤ δ(n)‖ψ‖‖X‖G,(3.51)

where

δ(n) =
b(n)√

1− bLR(n)

√
1 + bG(n).

The LHS of these inequalities can be expressed in terms of the inner product 〈·, ·〉G as
follows:

〈Cφ, QLX〉KG
= TrC∗φQLX = TrQRQ

−1
R C∗φQLX = 〈CφQ−1

R , X〉G
〈XQR, Dψ〉KG

= TrQRX
∗Dψ = TrQRX

∗QLQ
−1
L Dψ = 〈X,Q−1

L Dψ〉G.
The estimates (3.50) now become: for all X∣∣〈CφQ−1

R , X〉G
∣∣ ≤ δ(n)‖φ‖‖X‖G(3.52) ∣∣〈X,Q−1

L Dψ〉G
∣∣ ≤ δ(n)‖ψ‖‖X‖G,(3.53)

which imply

‖CφQ−1
R ‖G ≤ δ(n)‖φ‖(3.54)

‖Q−1
L Dψ‖G ≤ δ(n)‖ψ‖.(3.55)

Noting the identity

〈Cφ, Dψ〉KG
= TrQR(Q−1

R C∗φ)QL(Q−1
L Dψ) = 〈CφQ−1

R , Q−1
L Dψ〉G,

we have
|〈Cφ, Dψ〉KG

| ≤ ‖CφQ−1
R ‖G‖Q

−1
L Dψ‖G ≤ δ(n)2‖φ‖‖ψ‖.
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Cn
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v w

. . .
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.

...
. .
.

. . .

Figure 3. The VBS picture for the decorated AKLT model.

Moreover, it follows from (3.37) that

(3.56) |〈φ, ψ〉| ≤ |〈Cφ, Dψ〉KG
|+ b(n)√

1− bLR(n)
‖φ‖‖ψ‖.

Combining the last two inequalities we obtain the final estimate

(3.57) |〈φ, ψ〉| ≤

 b(n)√
1− bLR(n)

+

(
b(n)√

1− bLR(n)

)2

(1 + bG(n))

 ‖φ‖‖ψ‖.
�

In the next section we verify the assumptions stated in this section for the AKLT model
on the decorated honeycomb lattice with n ≥ 2 and apply Proposition 3.6 to show that for
this model we have εn < 1/3, for all n ≥ 3.

4. Gap of the decorated AKLT model

In this section we prove Proposition 2.1 and Theorem 2.2 by applying the results of
Section 3 to the decorated AKLT model discussed in Section 2. In this case, the graph G is
given by Yv∪Yw for two adjacent sites v and w in Γ. We decompose G as G = GL−Cn−GR,
where Cn = Yv ∩ Yw, GL = Yv \ Cn and GR = Yw \ Cn. The VBS (Valence Bond Solid)
or PEPS (Product of Entangled Pairs) ground states on G are depicted in Figure 3. The
corresponding Hilbert spaces are give by

HGL
= HGR

= (C3 ⊗ C3)⊗n ⊗ C4, and HCn = (C3)⊗n.

For s ∈ {1, 3/2}, we use Bs = {|s〉 , |s− 1〉 . . . , |−s〉} to denote an orthonormal basis
of C2s+1 consisting of eigenvectors of the third component of spin associated to the spin-s
irreducible representation of SU(2). We begin by discussing the MPS ΓCn and its associated
transfer operator E. We then define the operator EL associated with GL and prove that
ΓGL−Cn is injective for n ≥ 2, after which we prove the main results.
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On Cn we have the one-dimensional AKLT spin chain, which has the bond dimension
D = 2. For this model, every physical spin-1 vertex is identified with the symmetric
subspace of the virtual space C2 ⊗ C2. We will denote by SX , SY , SZ the usual spin-1/2
operators, and by S± the corresponding lowering and raising operators. To differentiate
between the physical and virtual spins, we will use |↑〉 , |↓〉 ∈ C2 to denote the standard

orthonormal eigenbasis of SZ rather than |±1/2〉. The intertwiner P
(1)
sym : C2 ⊗ C2 → C3

that maps between the virtual and physical space of a site v is given by:

P (1)
sym = |1〉〈↑↑|+ |0〉〈ψ+|+ |−1〉〈↓↓|,

where |ψ+〉 = 1√
2
(|↑↓〉+ |↓↑〉).

Recall that the symmetric subspace of C2 ⊗ C2 can be encoded into the MPS matrices

P
(1)
1 = |↑〉〈↑|, P

(1)
0 =

√
2SX , P

(1)
−1 = |↓〉〈↓|.

The ground states of the one-dimensional AKLT model can then be described as a valence-
bond solid state obtained from projecting each (virtual) edge of the graph into the singlet
states |ψ−〉 = 1√

2
(|↑↓〉 − |↓↑〉); this is represented by the MPS matrix

K =
1√
2

(|↑〉〈↓| − |↓〉〈↑|) =
√

2iSY .

With these matrices, and with a convenient choice of normalization, the ground state space
of the one-dimensional AKLT matrix is given by

ΓCn(B) =
∑

i1,..., in∈{±1,0}

Tr[BVin . . . Vi1 ] |i1 . . . in〉

where Vi = 2√
3
KP

(1)
i . Explicitly,

(4.1) V1 = −
√

2

3
S+, V0 =

2√
3
SZ , V−1 =

√
2

3
S−.

Given the form of ΓCn , the choice of multiplying on the left by K in the definition of Vi
corresponds to projecting the edge to the right of the associated site into the singlet state.
This convention will also be used to define the tensors TL` and TRr . For more details on this
and other MPS constructions, see [41, 39, 37].

Noting that S+BS−+S+BS− = 2(SXBSX +SYBSY ), the transfer operator E : M2 →
M2 associated with ΓCn takes the form

(4.2) E(B) =
∑

i∈{±1, 0}

V ∗i BVi =
4

3
(SXBSX + SYBSY + SZBSZ),

which can be easily diagonalized as

(4.3) E = |1l〉〈ρ| − 2

3

∑
U∈{X,Y,Z}

|SU 〉〈SU |,

where ρ = 1l/2 is the maximally mixed state. This allows to easily compute

En = |1l〉〈ρ|+ 2
(−1)n

3n

∑
U∈{X,Y,Z}

|SU 〉〈SU |,
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from which (3.3) takes the explicit form

a(n) = ‖En − |1l〉〈ρ|‖ = 3−n,

and b(n) = Tr(ρ−1)a(n) = 4 · 3−n. By Corollary 3.2, this implies that ΓCn is injective when
n ≥ 2. It can easily be shown that it is not injective for n = 1.

We now consider GL and GR. For the decorated AKLT model, DL = DR = 4 and so
KG = M4. We first construct the operator EL associated with GL, and use this to prove
ΓGL−Cn is injective of n ≥ 2. The analogous operator ER for GR and the injectivity of of
ΓCn−GR

follow from similar calculations.

We first note that GL can be written as [u1
1, u

1
n] × [u2

1, u
2
n] × {v}, where the sites uik

correspond to the 2n spin-1’s, and v is the spin-3/2. By grouping the sites u1
i and u2

i into
a single site (u1

i , u
2
i ), we can recognize the ground states of HGL

as a PEPS. We choose the
product basis for HGL

given by

|i1, j1〉 ⊗ · · · ⊗ |in, jn〉 ⊗ |k〉 i1, . . . , in, j1, . . . , jn ∈ {±1, 0}, k ∈
{
±3

2
,±1

2

}
.

For each element |l〉L = |i1, j1〉 ⊗ · · · ⊗ |in, jn〉 ⊗ |k〉 of the basis, the 2 × 4 matrix TLl is
given by

TLl = WL
k Vin ⊗ Vjn · · ·Vi1 ⊗ Vj1 ,

where the Vi are as defined in (4.1), and the WL
k ∈ L(C4,C2) are given by the PEPS

representation of the AKLT on the hexagonal lattice, which we now define. Analogous to
the spin-1 case, the virtual space of a spin-3/2 particle is the symmetric subspace of three

spin-1/2 particles, and so the intertwiner P
(3/2)
sym : C2 ⊗ C2 ⊗ C2 → C4 between the virtual

and physical space is given by

P (3/2)
sym = |3/2〉〈↑↑↑|+ |1/2〉〈φ+|+ |−1/2〉〈φ−|+ |−3/2〉〈↓↓↓|,

where ∣∣φ+
〉

= 1√
3
(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉) = 1√

3
|↓〉 |↑↑〉+

√
2
3 |↑〉 |ψ

+〉 ,(4.4) ∣∣φ−〉 = 1√
3
(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉) = 1√

3
|↑〉 |↓↓〉+

√
2
3 |↓〉 |ψ

+〉 .(4.5)

By grouping two virtual edges to the left of v, see Figure 3, the virtual space can be

represented by the MPS matrices P
(3/2)
k ∈M2×4 defined by

P
(3/2)
3/2 = |↑〉〈↑↑|, P

(3/2)
1/2 = 1√

3
|↓〉〈↑↑|+

√
2
3 |↑〉〈ψ

+|

P
(3/2)
−3/2 = |↓〉〈↓↓|, P

(3/2)
−1/2 = 1√

3
|↑〉〈↓↓|+

√
2
3 |↓〉〈ψ

+|.

Once again projecting edges on the right of v into a singlet state (and choosing a convenient

normalization) we define WL
k =

√
2KP

(3/2)
k . Explicitly,

WL
3/2 = −|↓〉〈↑↑|, WL

1/2 = 1√
3
|↑〉〈↑↑| −

√
2
3 |↓〉〈ψ

+|,(4.6)

WL
−3/2 = |↑〉〈↓↓|, WL

−1/2 = − 1√
3
|↓〉〈↓↓|+

√
2
3 |↑〉〈ψ

+|,(4.7)
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which satisfies
∑4

i=1W
L
i (WL

i )∗ = 21lC2 . For B ∈ M2, define E�(B) =
∑

i(W
L
i )∗BWL

i .
While this is a completely positive map from M2 to M4, unlike the MPS case it is not
unital, since

E�(1l) =
4∑
i=1

(WL
i )∗WL

i =
4

3
(|↑↑〉〈↑↑|+ |↓↓〉〈↓↓|+ |ψ+〉〈ψ+|) = 1l +

4

3
S · S,

where as usual S = (SX , SY , SZ) and S · S = SX ⊗ SX + SY ⊗ SY + SZ ⊗ SZ . By direct
calculation, we see that

(4.8) (E�)∗(B) = c(B)ρ+
∑

U∈{X,Y,Z}

cU (B)SU ,

where

c(B) =
4

3
(〈↑↑|B |↑↑〉+ 〈↓↓|B |↓↓〉+ 〈ψ+ |B |ψ+〉)

cX(B) = −2
√

2

3
Re[〈ψ+ |B |↑↑〉+ 〈↓↓|B |ψ+〉]

cY (B) = −2
√

2

3
Im[〈ψ+ |B |↑↑〉+ 〈↓↓|B |ψ+〉]

cZ(B) =
2

3
(〈↓↓|B |↓↓〉 − 〈↑↑|B |↑↑〉).

It can easily be checked that (E�)t ◦ τ = (E�)t where τ : M4 → M4 is the transposition
operator

τ(A⊗B) = B ⊗A
Combining this with (4.8) allows us to verify that

(E�)t(ρ⊗ ρ) = ρ, (E�)t(SU ⊗ SU ′) = δU,U ′
1

3
ρ, (E�)t(ρ⊗ SU ) = (E�)t(SU ⊗ ρ) = −1

3
SU ,

or equivalently

(4.9) E� = |1l⊗ 1l〉〈ρ|+ 4

3
|S · S〉 〈ρ| − 4

3

∑
U∈{X,Y,Z}

(∣∣SU ⊗ 1l
〉

+
∣∣1l⊗ SU〉) 〈SU ∣∣ .

To simplify notation we define∣∣ΩU
〉

=
∣∣SU ⊗ 1l

〉
+
∣∣1l⊗ SU〉 ∀U ∈ {X,Y, Z},

and notice that

‖S · S‖2 =

√
3

2
, ‖ΩU‖2 =

√
2, and 〈S · S,ΩU 〉2 = 0

for all U . The transfer matrix for GL, defined in (3.5), is then given by EL = (En⊗En)◦E�,
which can be simplified to

EL =

(
|1l〉〈ρ|+ 2

(−1)n

3n

∑
U

|SU 〉〈SU |

)
⊗

(
|1l〉〈ρ|+ 2

(−1)n

3n

∑
U

|SU 〉〈SU |

)
E�

= |1l⊗ 1l〉〈ρ|+ 2
(−1)n+1

3n+1

∑
U

|ΩU 〉〈SU |+ 4

32n+1
|S · S〉〈ρ|.(4.10)
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Using this decomposition to compute QL gives

(4.11) QL = 1l +
4

32n+1
S · S, =⇒ spec(QL) =

{
1− 1

32n
, 1 +

1

32n+1

}
.

Therefore, qL = 1− 1
32n , and moreover, since EL is a completely positive map,

‖EL‖ = ‖QL‖ = 1 +
1

32n+1
.

Since QL is invertible, the theory of Section 3 applies and we can use the above relations
to prove the following result.

Lemma 4.1. ΓGL−Cn is injective for n ≥ 2.

Proof. Let B ∈MD and consider ΓGL−Cn(B). Applying Corollary 3.4 gives

‖ΓGL−Cn(B)‖2 ≥ (1− bL(n)) ‖B‖2GL−Cn

with bL(n) = 4a(n)‖EL‖
ρminqL

. By inserting the values of a(n), ‖EL‖, ρmin, and qL into this

expression, one finds that

1− bL(n) = 1− 8(1 + 3−2n−1)

3n(1− 3−2n)
.

This quantity is strictly positive for any n ≥ 2 from which it follows that ΓGL−Cn is injective.
�

We now consider GR. The operator ER is obtained using a similar construction as EL.
As with GL, we can once again can group the spin-1 particles into pairs and to construct
an orthonormal basis

|r〉 = |i1, j1〉 ⊗ · · · ⊗ |in, jn〉 ⊗ |k〉 i1, . . . , in, j1, . . . , jn ∈ {±1, 0}, k ∈
{
±3

2
,±1

2

}
,

for which the corresponding tensor is given by

(4.12) TRr = Vin ⊗ Vjn · · ·Vi1 ⊗ Vj1WR
k ,

where V1, V0 and V−1 are as before, and WR
k = 2K ⊗K(P

(3/2)
k )∗. Explicitly,

WR
3/2 = |↓↓〉〈↑|, WR

1/2 = 1√
3
|↓↓〉〈↓| −

√
2
3 |ψ

+〉〈↑|,(4.13)

WR
−3/2 = |↑↑〉〈↓|, WR

−1/2 = 1√
3
|↑↑〉〈↑| −

√
2
3 |ψ

+〉〈↓|.(4.14)

Similar to the case of EL, we have ER := E� ◦ (En⊗En) where E� : M4 →M2 is defined by

(4.15) E�(B) :=
∑
i

(WR
i )∗BWR

i =
∑
i

WL
i B(WL

i )∗ = (E�)t(B).

The final equality above follows from recognizing

WR
3/2 = (WL

−3/2)∗, WR
1/2 = −(WL

−1/2)∗(4.16)

WR
−3/2 = −(WL

3/2)∗, WR
−1/2 = (WL

1/2)∗.(4.17)

It follows from the analogous arguments as used in Lemma 4.1 above that ΓCn−GR
is also

injective for n ≥ 2. We can now prove Proposition 2.1, and Theorem 2.2.



A CLASS OF TWO-DIMENSIONAL AKLT MODELS WITH A GAP 19

Proof of Proposition 2.1 and Theorem 2.2. Since E = Et, from (4.15) it follows that

ER = [(En ⊗ En) ◦ E�]t = (EL)t.

Therefore, ‖ER‖ = ‖EL‖ and

(4.18) QR := (ER)t(ρ) = EL(ρ) =
1

2
QL.

As a consequence,

qR =
1

2
qL = ρminqL.

Using (3.43) to estimate (3.8), we find

(4.19) εn ≤
4a(n)√

1− bLR(n)
+

(
4a(n)√

1− bLR(n)

)2

(1 + bG(n)) .

From (3.30) and the values above, it is clear that bL(n) = bR(n), and so

1− bLR(n) = (1− bL(n))(1− bR(n)) =
(

1− 8(1+3−2n−1)
3n(1−3−2n)

)2
,

1 + bG(n) =
(

1 + 8(1+3−2n−1)2

3n(1−3−2n)2

)
.(4.20)

This establishes Proposition 2.1.

Inserting these into (4.19), we find that εn <
1
3 whenever n ≥ 3. By (2.9) this implies

that the decorated AKLT model has a positive spectral gap above the ground state energy
for n ≥ 3. This completes the proof of Theorem 2.2. �

5. Discussion

We proved an explicit positive lower bound for the spectral gap above the ground state
of the AKLT model on the decorated honeycomb lattice for n ≥ 3, where n is the number
of vertices inserted on each edge of the honeycomb lattice. It is natural to ask whether the
approach of this paper could be used to prove that the AKLT model on the honeycomb
lattice itself (n = 0) is gapped too, which is expected. It is clear to us, however, that
significant changes to the arguments would be necessary to achieve this. For example, a
numerical calculation shows that ε1 ∼ .478 > 1/3. Therefore, our method does not work
for n = 1. For the case n = 2, we do not have a good estimate of ε2, but it is conceivable
that our approach could be extended to the case n = 2. For the model with n = 3, however,
we proved a positive lower bound. By using a numerically calculated value for the gap for
the small system on Y , which appears in (2.4), (γY ∼ 0.2966), and the rigorous estimate
showing ε3 < 0.2683 (Proposition 2.1), we found the following uniform lower bound for the
gap: γ > 0.0289.

About generalizations to frustration-free models on other decorated lattices on the other
hand, we can be rather optimistic. For example, we expect that similar arguments will work
to study the spectral of AKLT models on decorated hypercubic lattices of any dimension.
One could also try to apply our approach to some of the more exotic hybrid valence bond
models discussed in [44].
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For physical reasons, one wants the spectral gap to be robust under small perturbations
of the interactions. It seems very likely that the AKLT models on the decorated honey-
comb lattices (and likely also on the honeycomb lattice itself) satisfy the Local Topological
Quantum Order condition introduced by Bravyi, Hastings, and Michalakis [12]. If so, the
stability theorem of Michalakis and Zwolak [31] would apply to the AKLT models on dec-
orated lattices and provide the desired robustness of the spectral gap.
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