UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
An Invesitgation of Balance Scale Success

Permalink
https://escholarship.org/uc/item/823935gwj
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Schmidt, William C.
Shultz, Thomas R.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/823935gw
https://escholarship.org
http://www.cdlib.org/

An Investigation of Balance Scale Success

William C. Schmidt and Thomas R. Shultz
Department of Psychology
McGill University
1205 Penfield Avenue
Montréal, Québec, Canada H3A 1B1
schmidu@lima.psych.mcgill.ca Il shultz@psych.mcgill.ca

Abstract

The success of a connectionist model of cognitive
development on the balance scale task is due to
manipulations which impede convergence of the back-
propagation learning algorithm. The model was trained
at different levels of a biased training environment with
exposure to a varied number of training instances. The
effects of weight updating method and modifying the
network topology were also examined. In all cases in
which these manipulations caused a decrease in
convergence rate, there was an increase in the proportion
of psychologically realistic runs. We conclude that
incremental connectionist learning is not sufficient for
producing psychologically successful connectionist
balance scale models, but must be accompanied by a
slowing of convergence.

Introduction

Connectionist learning algorithms have successfully
acted as transition mechanisms in a number of recent
models of cognitive developmental phenomena.
McClelland (1988) suggested that gradual, incremental
error reduction is a key property of connectionism that
is responsible for this success. In the current paper, we
focus on McClelland's (1988) connectionist model of
cognitive development on the Piagetian balance scale
task. We show that variants of the original model
perform well psychologically as long as they delay
convergence of the back-propagation learning algorithm.

The Balance Scale Task

The balance scale task consists of showing a child a
balance scale (Figure 1) supported by blocks so that it
stays in the balanced position. A number of weights are
placed on one of a number of evenly spaced pegs on
each side of the fulcrum, and it becomes the child's task
to predict which arm will go down, or whether the scale
will balance, once the supporting blocks are removed.
Siegler (1976, 1981) has reported that children's
performance on the balance scale progresses through 4
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distinct rule based stages: (1) use only weight
information to determine if the scale will balance, (2)
emphasize weight information but consider distance if
weights on either side of the fulcrum are equal, (3)
correctly integrate both weight and distance information
for simple problems, but respond indecisively when one
arm has greater weight and the other greater distance, (4)
correctly integrate weight and distance information.

Siegler (1976, 1981) partitioned the set of all
possible balance scale problems into 6 distinct problem
types. Balance problems have equal numbers of weights
placed at equal distances from the fulcrum. In weight
problems, distances on either side of the fulcrum are
equal, hence the side with more weights goes down. In
distance problems, the arm with greater distance goes
down since the sides have equal weights. Conflict
problems have greater weight on one arm and greater
distance on the other. The correct response to the
problem determines its classification as a conflict-
weight, conflict-distance, or conflict-balance problem.
Performance in terms of the percentage of correct
predictions made on some subset of problems drawn
from each of the problem types can be used to classify
subjects as conforming to a particular rule. Rules and
their predicted performance levels for each of the 6
problem types appear in Figure 1. In order to classify
children's performance, Siegler (1981) used 24 testing
instances (4 from each of the 6 different problem types).
Children scoring 4 or fewer deviations from responses
predicted by a given rule were counted as acting in
accord with the rule, Additionally, Siegler introduced a
number of safeguards to ensure that a child classified at
one stage was not actually responding in a manner
characterized by another.

McClelland (1988) reported the creation of a
connectionist model of the balance scale task with 5
pegs and 5 weights per arm. The network topology,
which appears in Figure 2, consisted of two sets of 10
input units, each fully connected to a distinct pair of
hidden units. Each pair of hidden units was fully
connected to two output units. One set of input units
represented, in a localist fashion, the number of weights
on each of the balance scale's two arms (1 to 5), while
the other represented the distance of the weight from the
fulcrum (1 to 5). Activation values of the outputs were
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interpreted to transform the network's output (2 real
numbers between 0.0 and 1.0) into one of three possible
prediction responses.

Problem Type Rules
1. Balance : 2 3 .
- Bale 100 100 100 100
L L1 L=l
ZN
2. Waight 100 00
L* | | l I I [_]_ I 100 100 !
LN
3. Distance 0 100 100 100
[ | el 1
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4. Confifet-Waelght 100 100 33 100
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5. Confliet-Distance
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& “Tight Dewn™ “Right Down™ Respending
6. Conflict-Balance 0 0 13 100

should say should say Chance
TRight Dewn™ "Right Dewn" Respending

Figure 1. Predictions of percent problems correct for
children using different rules.
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Right
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Figure 2. Network topology from McClelland (1988).

The model was trained using the back-propagation
learning algorithm.! Learning in each epoch was from
100 instances randomly selected from the entire set of
625 possible training problems augmented with a bias
for balance and distance problems (equal-distance
problems). The bias increased the training set to include
5 times or 10 times the original number of equal-
distance problems. After each epoch the model's
performance was evaluated using Siegler's rule
assessment methodology. Other than where noted, all
simulations in the current paper assume the network

1 A batch updating method was used in conjunction
with permuted presentation of training instances, a
learning rate of 0.075, and momentum of 0.9. Weights
in the model were initialized randomly in the range of
-0.5 sw; < 0.5.
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topology, training method, and parameter settings used
in McClelland's (1988) original simulations.

Simulation 1: Subset Size and Bias

The first simulation examined the effects of two
manipulations. One manipulation varied the size of the
bias for equal-distance problems. Five different levels of
bias were employed. The unadulterated set of 625
possible balance scale problems was augmented with 0,
5, 10, 15 and 20 times the normal number of equal-
distance problems, resulting in new training corpuses of
625, 1125, 1750, 2375, and 3000 patterns respectively.

The other manipulation varied the size of the subset
of training instances randomly selected each epoch from
the training corpus. These subsets were selected without
replacement, and a permuted batch weight updating
method was used as in McClelland's (1988) original
model. Since the sizes of training corpuses were unequal
across different levels of bias, a percentage of the total
number of exemplars belonging to each training corpus
was selected. The levels of subset size investigated were
0.25%, 0.5%, 1%, 2%, 3%, 4%, 5%, 15%, 25%, 35%,
45%, 55%, 65%, 15%, 85%, and 95% of the entire
training corpus.

Ten runs for each of the 80 groups (5 levels of bias x
16 subset sizes) were carried out. Each run was tested on
the entire set of 625 possible training patterns both
before training began and after weight updating. The
patterns' total sum of squared errors score (TSS) was
recorded every epoch, and the network's responses were
evaluated for their fit to any of the 4 psychological
rules. This longitudinal rule record was assessed to
determine whether or not the network passed through all
4 stages. Training continued for 200 epochs each run.

In order to evaluate the style of learning characteristic
to each group of runs, a simple linear regression model
was fitted to the longitudinal TSS error scores for each
run, with epoch predicting error score. This yielded
regression equations of the form error = by +
bj*log(epoch). The log coefficient b} assesses the fall
off of the learning curve, and hence the rate of
convergence. This measure of convergence rate will be
more negative for networks which reduce error more
slowly. The constant bg offsets the learning curve from
the abscissa. In the case that there is both a large by
term, and a small value of b}, the network will have
failed to converge.

Additionally, for each run, the proportion of error
reduction over the 200 training epochs was assessed by
dividing the initial TSS error less the average error score
for the last 10 epochs of training by the initial level of
TSS error. This value can be negative in the event that
TSS error increases. Proportion of error reduction was
used to assess depth of learning. A network which has a
steep convergence rate, but has reduced little error, has
failed to solve the problem.



A 5 x 16 (bias x subset sizes) ANOVA of the log
coefficients was undertaken, revealing main effects for
bias (F(4,720) = 148.4, p<.0001), subset sizes
(F(15,720) = 237.3, p<.0001), and their interaction
(F(60,720) = 16.9, p<.0001). A second ANOVA of
learning depth revealed main effects for bias (F(4,720) =
432.5, p<.0001), subset sizes (F(15,720) = 278.5,
p<.0001), and their interaction (F(60,720) = 39.6,
p<.0001). A third ANOVA of the proportion of
networks showing realistic psychological performance
showed main effects for bias (F(4,720) = 26.4,
p<.0001), subset sizes (F(15,720) = 25.3, p<.0001),
and their interaction (F(60,720) = 5.4, p<.0001). In this
initial simulation, the average regression captured 57%
of available variance (RZ = .57, sd = .28). After
excluding models which failed to learn, this average fit
increased to 73% of the variance (R? = .73, sd = .16).

A plot of the mean log coefficient as a function of
subset size appears in Figure 3, along with the mean
proportion of runs demonstrating psychologically
realistic stages.2 The shallowest learning curves
occurred for networks trained with subsets of randomly
chosen training instances in the range of 1% to 5%.
This effect turns around below the 1% level as the
leamning curves begin to steepen. Could these networks
trained on so few instances actually have converged
faster? No, since investigation of the amount of error
reduced (Figure 4) at these levels indicates that these
networks failed to solve the problem at all!
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Figure 3. Mean log coefficient and percent runs
showing all 4 rules.

Figure 3 also shows that the most psychologically
realistic data were generated by models trained using
subset sizes in the range of 2% to 25%. For both
convergence rate and depth of learning, there is wider
variation among networks outside this range of small
subsets. This wide variation reflects the fact that fewer
networks outside of this range converged on a solution.

2 All error bars in this paper represent 1 standard
deviation.
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All networks which failed to converge were trained with
subset sizes outside of the range of the range of 0.5% to
15%.
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Figure 4, Mean learning depth and number of training
presentations.

Investigation of the interaction effects for
psychological performance revealed that models trained
under levels of 5, 10, 15 and 20 times bias performed
realistically while no models run without bias did. This
is consistent with McClelland's (1988) two successful
models, with subset size 6%, bias 5 times, and subset
size 9%, bias 10 times. Here, the ordering of the cell
means saw the level of 10 times bias yield the greatest
proportion of psychologically realistic subjects,
followed by levels of 15, 20, and S times bias
respectively.

A plot of learning depth appears in Figure 4.
Maximum error reduction occurred for networks trained
with subsets of instances in the range of 2% to 15%,
which overlaps with networks having the slowest
convergence rates and the most psychologically realistic
performances. In addition, Figure 4 plots the mean
number of training instances witnessed in the models'
200 epoch lifetimes.

Comparing across Figures 3 and 4, it is clear that the
number of training instances is negatively related to
learning depth and positively related to the log
coefficient. The negative relation of number of training
instances to learning depth is an artifact of the failure of
many networks to learn at high levels of subset size.
The positive relation of the number of training
presentations to log coefficient demonstrates that rate of
convergence was generally faster for networks that had
more chances to reduce error. Together this reveals that
networks seeing a large number of biased training
presentations converged quickly on inadequate solutions.

Unfortunately the inequality of the number of training
instances across levels of bias prevented us from
properly assessing the effect that bias has on
convergence rate. A separate experiment controlling for
the number of training presentations across all levels of



bias revealed that the more bias used in training, the
slower the networks were to converge.

In every ANOVA, the interaction effects demonstrated
that networks trained with different levels of bias
behaved similarly at those psychologically optimal
levels of small subset size. For subsets larger than
15%, increasing bias played an increasingly prominent
role in preventing convergence. For subsets smaller
than 0.5%, there was a gradual drop off in the
magnitude of the log coefficient and in the proportion of
error reduced. Convergence failed to occur for many runs
at the smallest level of subset size.

Thus, the first simulation showed that McClelland's
(1988) assumptions of a strongly biased training
environment and of a small subset size impeded
convergence of the back-propagation learning algorithm.
By analyzing a wider range of these variables than were
used in his model, we discovered that the most
psychologically realistic data were generated by models
exhibiting a slow rate of convergence. We also found a
failure of back-propagation to learn successfully when
trained with a bias and large subset sizes.

Simulation 2: Continuous Weight
Updating

The first simulation was surprising in that so many
networks failed to converge at all. To determine whether
these results might be due to the use of batch weight
updating, we repeated the above simulation using a

continuous® weight updating method. A permuted
presentation of training instances was used to prevent
any unforeseen side effects due to auto-correlation of the
sequence of exemplars.

As before, a 5 x 16 (bias x subset sizes) ANOVA of
convergence rate was undertaken, revealing main effects
for bias (F(4,720) = 15.4, p<.0001), subset sizes
(F(15,720) = 1426.4, p<.0001), and their interaction
(F(60,720) = 39.5, p<.0001). The ANOVA of learning
depth also revealed main effects for bias (F(4,720) =
180.4, p<.0001), subset sizes (F(15,720) = 3891.3,
p<.0001), and their interaction (F(60,720) = 22.1,
p<.0001). Finally, the ANOVA predicting
psychological performance demonstrated main effects for
bias (F(4,720) = 106.2, p<.0001), subset sizes
(F(15,720) = 33.6, p<.0001), and their interaction
(F(60,720) = 6.9, p<.0001).

The convergence rate and learning depth interaction
effects were negligible, and none were of interest. The

3 Continuous (also known as per-sample, on-line, or
pattern) weight updating computes derivatives and
weight changes after the presentation of each pattern, as
opposed to a batch (also known as per-epoch, or epoch)
updating method in which the derivative of the error
function summed over all patterns is taken each epoch,
before weight changes occur.
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average regression captured 57% of available variance

(R2 = .57, sd = .24). After excluding models which
failed to converge, this average fit was 58% of the
variance (R2 = .58, sd = .24). Only 4 of the 800 (.05%)
runs failed 1o converge, and all of these networks were
at the lowest level of subset size, having been delivercd
too few training exemplars.

Figure 5 plots learning depth as a function of subset
size for both continuous and batch updating methods.
Continuous, but not batch, updating confirmed our
intuitions that the amount of error reduced was
proportional to the number of observed training
instances.

The failure of batch weight updating to learn in a
reasonable amount of time may be related to the
anecdotal report that highly redundant data sets result in
slower convergence on a solution with batch, but not
with continuous, weight updating (see connectionists e-
mail list exchanges in October 1991).

Psychologically realistic data were generated by
continuous runs trained at practically all levels of subset
size. However, the interaction effect for both measures
of psychological performance showed that the best
performance came from models with subset sizes
between 1% and 5%. No models trained without bias
exhibited realistic performance. A strong linear trend
(F(1,794) = 404.0, p<.0001) in the cell means of bias
demonstrated that the larger the bias level used in
training, the more likely one was to observe
psychologically realistic runs. Additionally, a weaker,
but still significant linear trend among the cell means of
subset size (F(1,783) = 32.6, p<.0001) demonstrated

that the smaller the subset size, the more
psychologically realistic the model.
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Figure 5. Learning depth for weight update methods.

Contrasting batch updating with the current data in a
16 x 2 (subset size x updating method) ANOVA on use
of all 4 rules revealed main effects for subset size
(F(15,1568) = 60.7, p<.0001), training method
(F(1,1568) = 9.5, p<.0001), and their interaction
(F(15,1568) = 1.9, p<.03). Investigating the interaction
effect showed that for all levels of subset size in the



segregated nctwork, continuous updating produced more
runs which fit the psychological data. Figure 6 plots
this interaction. Interestingly, those runs presented with
fewer training instances, large biases, and trained with
continuous weight updates yielded the greatest
proportion of psychologically realistic results, even
outperforming McClelland's (1988) original model.

Thus, the second simulation demonstrated that the
earlier failures of networks to converge were due to the
use of batch weight updating. The first two simulations
suggest that a biased training environment and small
subset training method slow convergence and enhance
psychological realism.

Simulation 3: Fully Connected Nets

The final simulation investigated the effect that
segregating the weight and distance dimensions had on
producing psychologically realistic performance. This
simulation repeated the manipulations of the first two,
but without the assumption of segregated hidden units.
The network topology had 20 inputs, 4 hidden units, 2
outputs, and was fully connected. Networks were trained
under conditions of both continuous and batch weight
updating. Since in the previous simulations a lack of
training set bias did not result in rule use, this group
was dropped. All other details remained unchanged from
the earlier simulations.
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Figure 6: Psychological performance for different
network topologies and weight update methods.

For each of the weight update methods (batch and
continuous), segregated data generated in earlier
simulations were contrasted with the new non-
segregated data in 2 x 16 (network topology x subset
size) ANOVAs for convergence rate and all 4
psychological rules.

For continuous weight updating, main effects were
found for topology (F(1,1248) = 54.8, p<.0001), subset
size, (F(15,1248) = 866.8, p<.0001) and their
interaction (F(15,1248) = 85.3, p<.0001). Investigation
of the interaction revealed that segregated networks
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converged more slowly than non-segregated for subset
levels above 1%. The opposite occurred below 1%.
Main effects were observed on all 4 rules for topology
(F(1,1248) = 44.9, p<.0001), subset size (F(15,1248) =
31.4, p<.0001), and their interaction (F(15,1248) =
12.5, p<.0001). Investigation of the interaction showed
that the segregated networks outperformed the non-
segregated networks at subset sizes above 1%. Below
1%, the opposite occurred. Performance corresponded
with rate of convergence, in that the interaction effects
mirror one another. The group of runs with slowest
convergence were also those with highest psychological
performance (see Figure 6),

The slower convergence witnessed for the segregated
networks seems 1o be a result of using fewer weights to
encode the same amount of information as in the non-
segregated networks. More weight changes per epoch in
the non-segregated networks speeds convergence.

For batch weight updating, main effects were found
for topology (F(1,1248) = 80.7, p<.0001), subset size,
(F(15,1248) = 190.7, p<.0001) and their interaction
(F(15,1248) = 8.1, p<.0001). Investigation of the
interaction showed non-segregated networks converged
more slowly than segregated, at all levels of subset size
except from 2% to 5%. Main effects were observed on
all 4 rules for topology (F(1,1248) = 70.0, p<.0001),
subset size (F(15,1248) = 49.4, p<.0001), and their
interaction (F(15,1248) = 6.8, p<.0001). Investigation
of the interactions showed that the non-segregated batch
networks outperformed the segregated batch networks at
all levels of subset size (see Figure 6).

Thus, the final simulation showed that, with
continuous weight updating, segregated networks
converged more slowly than non-segregated networks,
and also displayed more realistic psychological
performance. With batch weight updating, the opposite
effect occurred: non-segregated networks converged more
slowly than segregated networks, and also showed more
realistic psychological performance. In both cases,
whenever network topology impeded convergence of the
back-propagation learning algorithm, more realistic
psychological performance followed.

The slower convergence for non-segregated batch
networks may be due to the failure of so many
segregated batch networks to learn. Recall that these
nets tended to converge quickly on defective solutions.

Segregated networks do not invariably improve the fit
to psychological data. Rather, when segregation slows
convergence, as with continuous updating, better
psychological performance follows; when segregation
speeds convergence, as with batch updating, nets diverge
from psychological realism,

Discussion

In these simulations, psychological success of the
balance scale models increased as convergence slowed.



Decreasing the number of training presentations in all
models caused slower convergence, as did increasing
training bias. The precise effects of segregating hidden
units depended on the method of weight updating, but
the general principle was that psychological realism
followed slow convergence.

One ramification of the current findings is that
models, like humans, need not have access to all of the
information about a problem in order to succeed in
finding a solution. Indeed, if models are supplied with
complete information, realistic effects do not occur.

Shultz (1991) suggested that stages would emerge
whenever network models solve part of the overall
problem before solving the range of possible problem
types. Among the techniques he listed for encouraging
partial solutions (and thus stages) were hidden unit
herding, over-generalization, training pattern bias, and
hidden unit recruitment. Working on too much of the
problem at once may encourage overly rapid
convergence on a general solution and thus preclude the
appearance of stages. The present findings would
suggest that all of these methods slow network
convergence. A useful heuristic to apply in the creation
of connectionist models of cognitive development may
be to consider possible convergence slowing
assumptions that bear on the problem domain.

A phenomenon that may be related to the current
findings is Elman's (1991) "starting small" effect.
Elman reported that recurrent networks had difficulty
learning a small grammar unless there was a gradual
increase in either the complexity of the training
instances or the "working memory capacity" of the
network, Here we find analogously that models trained
with a reduced number of exemplars perform more
realistically, and in the case of batch updating under a
heavy bias, often fail to discover a solution unless
trained with a small subset of training examples. An
important issue for future investigation is whether the
staging of the child's environment and her developing
cognitive resources work in concert to selectively filter
information accessible to learning.

A second result of the current work is that
McClelland's (1988) specific set of assumptions is one
of several sufficiently capable of producing realistic
psychological performance. Although the incremental
nature of connectionist learning is crucial for the
success of balance scale models (Schmidt, 1991), so is
convergence slowing.

It would appear that some assumptions of
McClelland's original model are replaceable. The current
findings demonstrate balance scale performance without
the architectural assumption of a segregated network
topology. The bias and subset training assumptions,
too, can be replaced by other assumptions which favor
one problem dimension over another. Using a
generative algorithm, Schmidt (1991) demonstrated that
the state of the initial weights can place networks in a
position from which they traverse the psychological

rules in a realistic fashion. In another simulation, a
deliberate patterning of noise added to the training set
also achieved the same end.

Another generative connectionist model of balance
scale phenomena also demonstrated the disposability of
the segregated architectural assumption (Shuliz &
Schmidt, 1991). In addition, that model showed that a
randomly changing environment of training instances
could be replaced with a more stable, gradually
expanding set of exemplars. An important issue for
future research is to examine the plausibility of various
sets of balance scale model assumptions and the model's
corresponding ability to fit human data.
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